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Vol. 46(66)(2011), 455 – 469

TRANSLATION SURFACES IN THE GALILEAN SPACE

Željka Milin Šipuš and Blaženka Divjak

University of Zagreb, Croatia

Abstract. In this paper we describe, up to a congruence, translation
surfaces in the Galilean space having constant Gaussian and mean
curvatures as well as translation Weingarten surfaces. It turns out that,
contrary to the Euclidean case, there exist translation surfaces with
constant Gaussian curvature K that are not cylindrical surfaces, and
translation surfaces with constant mean curvature H 6= 0 that are not
ruled.

1. Introduction

In this paper we describe translation surfaces in the special ambient
space – the Galilean space. We are specially interested in the analogues of
the results from the Euclidean space concerning translation surfaces having
constant Gaussian K and mean curvature H , and translation surfaces that
are Weingarten surfaces as well.

A translation surface is a surface that can locally be written as the sum
of two curves α, β

x(u, v) = α(u) + β(v).

Translation surfaces in the Euclidean and Minkowski space having
constant Gaussian curvature are described in [5]:

Theorem 1.1. Let S be a translation surface with constant Gaussian
curvature K in 3-dimensional Euclidean space or 3-dimensional Minkowski
space. Then S is congruent to a cylindrical surface (i.e., generalized cylinder),
so K = 0.

Translation surfaces having constant mean curvature, in particular zero
mean curvature, are described in [5] as well:
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Theorem 1.2. Let S be a translation surface with constant mean
curvature H 6= 0 in 3-dimensional Euclidean space. Then S is congruent
to the following surface or a part of it (class of cylindrical surfaces)

z =
−
√
1 + a2

2H

√

1− 4H2x2 − ay, a ∈ R,

and for H = 0 to a plane or to the Scherk minimal surface

z =
1

a
log(cos(ax)) − 1

a
log(cos(ay)), a ∈ R \ {0}.

Similar results hold in Minkowski space ([5]).
Additionally, we state a general result from Euclidean space where the

following theorem holds ([4], p. 254):

Theorem 1.3 (S. Lie). A surface is a minimal surface if and only if it
can be represented as a translation surface whose generators (i.e., translated
curves) are isotropic (minimal) curves (i.e., curves having arc-length 0).

Weingarten surfaces are surfaces whose Gaussian and mean curvature
satisfy a functional relationship (of class C0 at least). The class of Weingarten
surfaces contains already mentioned surfaces of constant curvatures K,H , as
well as surfaces having both curvatures as functions of a single parameter. In
the Euclidean and Minkowski space the latter surfaces are helicoidal surfaces,
i.e., surfaces obtained by a rotation of a profile curve around an axis and
its simultaneous translation along the axis so that the speed of translation is
proportional to the speed of rotation.

For the translation Weingarten surfaces in Euclidean space the following
theorem holds ([1]):

Theorem 1.4. A translation surface in R
3 is a Weingarten surface if

and only if it is either (a part of)

1. a plane,
2. a cylindrical surface,
3. the minimal surface of Scherk,
4. an orthogonal elliptic paraboloid parametrized by x(s, t) = (s, t, a(s2 +

t2)).

Counterparts of these results for surfaces in Minkowski space can be found
in [1]. Furthermore, in [3] Weingarten quadric surfaces in Euclidean 3-space
are studied and in [8] resp. [11] polynomial translation Weingarten surfaces
resp. polynomial translation surfaces of Weingarten types. Polynomial
translation surfaces are surfaces parametrized by x(u, v) = (u, v, f(u)+ g(v)),
where f and g are polynomials.

Translation surfaces have been extensively studied in some other ambient
spaces, see for example [7] on affine translation surfaces and [6] on minimal
translation surfaces in hyperbolic geometry.
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Ruled Weingarten surfaces in the Galilean space have been studied in [9].

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space defined from a 3-
dimensional projective space P(R3) with the absolute figure that consists
of an ordered triple {ω, f, I}, where ω is the ideal (absolute) plane, f the
line (absolute line) in ω and I the fixed elliptic involution of points of f . We
introduce homogeneous coordinates in G3 in such a way that the absolute
plane ω is given by x0 = 0, the absolute line f by x0 = x1 = 0 and the elliptic
involution by (0 : 0 : x2 : x3) 7→ (0 : 0 : x3 : −x2). In affine coordinates
defined by (x0 : x1 : x2 : x3) = (1 : x : y : z), distance between points
Pi = (xi, yi, zi), i = 1, 2, is defined by

(2.1) d(P1, P2) =

{

|x2 − x1|, if x1 6= x2,
√

(y2 − y1)2 + (z2 − z1)2, if x1 = x2.

The group of motions of G3 is a six-parameter group given (in affine
coordinates) by

x̄ = a+ x

ȳ = b+ cx+ y cosϕ+ z sinϕ

z̄ = d+ ex− y sinϕ+ z cosϕ.

With respect to the absolute figure, there are two types of lines in the
Galilean space – isotropic lines which intersect the absolute line f and non-
isotropic lines which do not. A plane is called Euclidean if it contains f ,
otherwise it is called isotropic. In the given affine coordinates, isotropic
vectors are of the form (0, y, z), whereas Euclidean planes are of the form
x = k, k ∈ R. The induced geometry of a Euclidean plane is Euclidean and
of an isotropic plane isotropic (i.e., 2-dimensional Galilean or flag-geometry).

More about the Galilean geometry can be found in [10].

A Cr-surface S, r ≥ 1, immersed in the Galilean space, x : U → S, U ⊂
R

2, x(u, v) = (x(u, v), y(u, v), z(u, v)), has the following first fundamental
form

I = (g1du+ g2dv)
2 + ε(h11du

2 + 2h12dudv + h22dv
2),

where the symbols gi = xi, hij = x̃i · x̃j stand for derivatives of the first
coordinate function x(u, v) with respect to u, v and for the Euclidean scalar
product of the projections x̃k of vectors xk onto the yz-plane, respectively.
Furthermore,

ε =

{

0, if direction du : dv is non− isotropic,
1, if direction du : dv is isotropic.
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In every point of a surface there exists a unique isotropic direction defined
by g1du+ g2dv = 0. In that direction, the arc length is measured by

ds2 = h11du
2 + 2h12dudv + h22dv

2 =
h11g

2
2 − 2h12g1g2 + h22g

2
1

g21
dv2,

=
W 2

g21
dv2, g1 6= 0.

A surface is called admissible if it has no Euclidean tangent planes.
Therefore, for an admissible surface either g1 6= 0 or g2 6= 0 holds. An
admissible surface can always locally be expressed as

z = f(x, y).

The GaussianK and mean curvatureH areCr−2-functions, r ≥ 2, defined
by

K =
LN −M2

W 2
, H =

g22 L− 2g1g2M + g21N

2W 2
,

where

Lij =
x1xij − xijx1

x1
·N, x1 = g1 6= 0.

We will use Lij , i, j = 1, 2, for L,M,N if more convenient. The vector N

defines a normal vector to a surface

N =
1

W
(0,−x2z1 + x1z2, x2y1 − x1y2),

where W 2 = (x2x1 − x1x2)
2.

3. Translation surfaces in the Galilean space

For counterparts of Euclidean results, we will consider translation surfaces
that are obtained by translating two planar curves. In order to obtain an
admissible surface, translated curves can be, with respect to the absolute
figure, either

Type 1. a non-isotropic curve (having its tangents non-isotropic) and an
isotropic curve or,

Type 2. non-isotropic curves.

There are no motions of the Galilean space that carry one type of a curve into
another, so we will treat them separately.

Translation surfaces of the Type 1 in the Galilean space can be locally
represented by

z = f(x) + g(y),

which yields the parametrization

x(x, y) = (x, y, f(x) + g(y)).
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One translated curve is a non-isotropic curve in the plane y = 0

α(x) = (x, 0, f(x))

and the other is an isotropic curve in the plane x = 0

β(y) = (0, y, g(y)).

The Gaussian curvature is then given by

K =
f ′′(x)g′′(y)

(1 + g′2(y))2

where by ′ we have denoted derivatives with respect to corresponding
variables. Contrary to the Euclidean case, since variables x, y in the function
K can be separated, K is constant if and only if either

f ′′(x) = const. 6= 0 and
g′′(y)

(1 + g′2(y))2
= const. 6= 0,

or

f ′′(x) = 0 or
g′′(y)

(1 + g′2(y))2
= 0.

Therefore, in the first case we obtain f(x) = ax2+ bx+ c, a, b, c ∈ R with
g(y) which is the solution of the ordinary differential equation

g′(y)

1 + g′2(y)
+ arctan g′(y) = Ay +B, A,B ∈ R.

By reparametrizing the translated curve β by the arc-length u, β(u) =
(0, h(u), k(u)), h′2(u) + k′2(u) = 1, we get K = f ′′(x)k′′(u) and we can solve
the obtained ordinary differential equation. We get

(3.1)
k(u) =

1

2
Au2 +Bu+ C,

h(u) =
Au+B

2A

√

1− (Au +B)2 +
1

2A
arcsin(Au +B) + C1,

for A,B,C,C1 ∈ R. The obtained surface is a special translation surface
having parabolas (i.e., parabolic circles in the Galilean geometry) as one
family of translated curves.

In the second case the obtained surface is a cylindrical surface

z(x, y) = ax+ b+ g(y),

or (for g(y) = cy + d, c, d ∈ R)

z(x, y) = f(x) + cy + d.

We have proved in Galilean space the counterpart of Theorem 1.1:

Theorem 3.1. If S is a translation surface of Type 1 of constant Gaussian
curvature in the Galilean space, then S is congruent to a special surface with
f(x) = ax2 + bx + c, a, b, c ∈ R and k, h given by (3.1) (K 6= 0), or to a
cylindrical surface (K = 0) having either non-isotropic or isotropic rulings.
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Figure 1. A surface of Type 1 with constant Gaussian
curvature K 6= 0
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Figure 2. A cylindrical surface with non-isotropic and
isotropic rulings which lie in an isotropic and a Euclidean
plane, respectively

Furthermore, the mean curvature of a translation surface in the Galilean
space is given by

H =
g′′(y)

2(1 + g′2(y))
3

2

.

Theorem 3.2. If S is a translation surface of Type 1 of constant mean
curvature H 6= 0 in the Galilean space, then S is congruent to a surface

(3.2) z = f(x)− 1

2H

√

1− (2Hy + c1)2 + c2, c1, c2 = const.
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Proof. One should solve the ordinary differential equation

h′(y) = 2H(1 + h2(y))
3

2 , H = const.

where h(y) = g′(y). The solution is given by h(y) = 2Hy+c1√
1−(2Hx+c1)2

, c1 ∈ R.

Therefore, the result follows.

Notice that contrary to the Euclidean situation, this surface need not be
ruled.
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Figure 3. A translation surface of Type 1 with constant
mean curvature with f(x) = sinx

Theorem 3.3. If S is a translation surface of Type 1 of zero mean
curvature in the Galilean space, then S is congruent to a cylindrical surface
with isotropic rulings (and therefore K = 0)

z = f(x) + ay + b, a, b ∈ R.

In other words, the obtained surface is a ruled surface with rulings
having the constant isotropic direction (0, 1, a). This theorem agrees with
the following theorem which describes minimal surfaces in the Galilean space
(see [10]):

Theorem 3.4. Minimal surfaces in G3 are cones whose vertices lie on
the absolute line and the ruled surfaces of type C. They are all conoidal ruled
surfaces having the absolute line as the directional line in infinity.

Let now consider a surface of Type 2, i.e., a surface having both translated
curves non-isotropic

x(u, v) = (u+ v, g(v), f(u)),
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where α(u) = (u, 0, f(u)) is a curve in the isotropic plane y = 0, and β(v) =
(v, g(v), 0) is a curve in the isotropic plane z = 0.

The Gaussian curvature of a translation surface of Type 2 is given by

(3.3) K =
1

W 4
f ′(u)f ′′(u)g′(v)g′′(v),

and the mean curvature

(3.4) H =
1

2W 3
(f ′′(u)g′(v) + f ′(u)g′′(v))

where W 2 = f ′2(u) + g′2(v). Derivatives are taken with respect to
corresponding variables.

The Gaussian curvature is equal to 0 if and only if f ′′(u) = 0 or g′′(v) = 0.
Then f(u) = au + b or g(v) = cv + d, a, b, c, d ∈ R. Therefore the obtained
surface is a cylindrical surface with non-isotropic rulings.

The Gaussian curvature is constant if by differentiating the expression for
K with respect to u and v we get

∂K

∂u
= h(v)

W 2e′(u) + 4e2(u)

W 6
= 0,

∂K

∂v
= e(u)

W 2h′(v) + 4h2(v)

W 6
= 0,

where we put e(u) = f ′(u)f ′′(u), h(v) = g′(v)g′′(v). Previous equation are
simultaneously equal to 0 if and only if e(u) = 0 or h(v) = 0. Therefore,
either f(u) = au+ b, a, b ∈ R or g(v) = cv + d, c, d ∈ R. A translated curves
in both cases is a non-isotropic line. The following theorem holds:

Theorem 3.5. If S is a translation surface of Type 2 of constant Gauss-
ian curvature, then S is congruent to a cylindrical surface with non-isotropic
rulings (and therefore K = 0).

The mean curvatureH is equal to 0 if and only if f ′′(u)g′(v)+f ′(u)g′′(v) =
0, i.e.,

f ′′(u)

f ′(u)
= −g′′(v)

g′(v)

which implies there exists a constant c ∈ R such that

f ′′(u)

f ′(u)
= −g′′(v)

g′(v)
= c.

If c = 0, then f ′′(u) = 0, g′′(v) = 0 which generates an isotropic plane. If
c 6= 0 then

f(u) =
1

c
ecu + c1, g(v) = −1

c
e−cv + c2, c, c1, c2,

and the surface is

(3.5) x(u, v) = (u + v,−1

c
e−cv + c2,

1

c
ecu + c1).
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Let us notice that by reparametrizing the obtained surface by ū = u + v,
v̄ = − 1

c e
−cv + c2, we obtain

x(ū, v̄) = (ū, v̄,−ecūv̄ + d), d ∈ R,

which is a ruled surface with isotropic rulings of non-constant direction

v̄ 7→ (ū0, 0, d) + v̄(0, 1, e−cu0).

Therefore, the following theorem agrees again with Theorem 3.4.

Theorem 3.6. If S is a translation surface of Type 2 of zero mean
curvature, then S is congruent to a ruled surface of type C with isotropic
rulings, which is not a cylindrical surface.

-4
-2

0
2

4

x

-6
-4

-2 0
y

0

2

4

6

z

Figure 4. A translation minimal surface of Type 2 with
traced rulings

Example 3.7. Notice that there is an one-parametric family of translation
minimal surfaces of Type 2 with a curve α lying in the plane y = 0, and a
curve β in a plane y cosϕ− z sinϕ = 0 which forms the angle ϕ to the plane
y = 0,

β(v) = (v, g(v) cosϕ, g(v) sinϕ).

In the same way as before, we can calculate

f(u) =
1

C
eCu + C1, g(v) = − 1

C
e−Cv + C2, C, C1, C2 ∈ R.

Finally, we investigate the case when the mean curvature H is constant
but not equal to zero. Differentiating (3.4) with respect to u, and then the
obtained expression with respect to v, we obtain

f ′′′g′ + f ′′g′ = 6Wf ′f ′′H,
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(f ′′′g′′ + f ′′g′′)W = 6Hf ′f ′′g′g′′.

The assumption f ′′(x) 6= 0 and g′′(y) 6= 0 implies

6H = (
f ′′′

f ′′
+

g′′′

g′′
)

√

1

f ′2
+

1

g′2
.

Differentiating the previous expression with respect to u, we get

(
f ′′′

f ′′
)′
√

1

f ′2
+

1

g′2
− (

f ′′′

f ′′
)

f ′′

f ′3
√

1
f ′2 + 1

g′2

= 0,

or

(3.6) (
f ′′′

f ′′
)′
√

(
1

f ′2
+

1

g′2
)3 = 6H

f ′′

f ′3
.

Now, if we differentiate (3.6) with respect to v and if f ′′(u) 6= 0 and

g′′(v) 6= 0, we have ( f
′′′

f ′′
)′ = 0, which implies H = 0. That contradicts the

assumption H 6= 0.
Therefore either f ′′(u) = 0 or g′′(v) = 0. Let us take f ′′(u) = 0, which

implies f ′(u) = a, a ∈ R. Then the function g satisfies the following ordinary
differential equation

ag′′(v) = 2H(a2 + g′2(v))3/2.

By substituting h(v) = g′(v), we get

h(v) =
2aHv + c

√

1− (2aHv + c)2
, c ∈ R,

which implies

(3.7) g(v) = − 1

2aH

√

1− (2aHv + c)2 + c1, c, c1 ∈ R.

The obtained surfaces form a special class of cylindrical surfaces (ruled surface
of type C) having non-isotropic rulings translated along the curve β(v) =
(v, g(v), 0) where g(v) is given by (3.7).

Theorem 3.8. If S is a translation surface of Type 2 of constant mean
curvature H 6= 0 in the Galilean space, then S is congruent to a cylindrical
surface

(3.8) x(u, v) = (u+ v,− 1

2aH

√

1− (2aHv + c)2 + d, au+ b), a, b, c, d ∈ R,

i.e.,

x =
1

a
(z − b) +

1

2aH

√

1− 4a2H2(y − d)2.
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Figure 5. A translation surface of Type 2 with constant
mean curvature

4. Translation Weingarten surfaces

In the case of translation surfaces of Type 1 the following theorem holds:

Theorem 4.1. A translation surface of Type 1 in the Galilean space is a
Weingarten surface if and only if it is either (a part of)

1. an isotropic plane,
2. a cylindrical surface with isotropic or non-isotropic rulings,
3. a translation surface of constant Gaussian curvature of Theorem 3.1,
4. a translation surface (3.2) of constant mean curvature of Theorem 3.2,
5. a surface z = ax2 + bx+ c+ g(y), a, b, c ∈ R.

Proof. A C3-surface is Weingarten if and onlyKxHy−HxKy = 0. Since
the mean curvature H is a function of y only, the previous equation reduces
to KxHy = 0. Therefore, either Kx = 0 or Hy = 0. Obviously, an isotropic
plane satisfies these conditions since its Gaussian and mean curvatures are
K = H = 0.

The first conditionKx = 0 describes translation surfaces that are either of
constant curvature K, i.e., a special translation surface or cylindrical surfaces
with non-isotropic or isotropic rulings (Theorem 3.1), and more generally,
surfaces that satisfy

∂K

∂x
= f ′′′(x)

g′′(y)

(1 + g′2(y))2
= 0.

Therefore either f ′′′(x) = 0 or g′′(y) = 0, which implies

f(x) = ax2 + bx+ c, a, b, c ∈ R,
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or

g(y) = Ay +B, A,B ∈ R.

Surfaces z = ax2+ bx+ c+ g(y) are obtained by translating a parabolic circle
α(x) = (x, 0, ax2+bx+c) along an isotropic curve β(y) = (0, y, g(y)). Among
them, there are also (parabolic) spheres in the Galilean space.
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15
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Figure 6. A translation Weingarten surface of Type 1 for
g(y) = sin y

Surfaces z = f(x)+Ay+B are cylindrical surfaces with isotropic rulings.
The second equation describes the surfaces of constant mean curvature,

including minimal surfaces (Theorem 3.2, Theorem 3.3).

For the translation surfaces of Type 2, the condition KuHv −KvHu = 0
can be written as

(4.1)

f ′2f ′′(3f ′′2 − f ′f ′′′)g′2g′′′ + f ′2f ′′′g′2g′′(−3g′′2 + g′g′′′)

+ f ′f ′′f ′′′g′3(g′′2 − g′g′′′) + g′g′′g′′′f ′3(−f ′′2 + f ′f ′′′)

+ 2f ′′3g′′2(−g′)3 + 2f ′3f ′′2g′′3 = 0.

Obviously, if f ′′(u) = 0 or g′′(v) = 0, then the relation is fulfilled. By these
functions, cylindrical (ruled) surfaces with non-isotropic rulings are generated.

The expression (4.1) is analyzed with the method as in [1]. We write

6
∑

i=1

fi(u)gi(v) = 0,

where

f1(u) = f ′2(u)f ′′(u)
(

3f ′′2(u)− f ′(u)f ′′′(u)
)

, g1(v) = g′2(v)g′′′(v)
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etc. Because of the symmetry of the problem, we investigate only the
possibilities for the functions fi. First we treat the cases when one of the
functions fi is equal to 0.

If f6 = 0 or f5 = 0, then f ′′(u) = 0 and the equation (4.1) is fulfilled for
any function g. The same happens if the first factor of f1 or f2 is equal to 0.
Similarly for f3.

Let us now consider the second factor of f1,

(4.2) 3f ′′(u)2 − f ′(u)f ′′′(u) = 0.

Since f ′′ 6= 0, by integrating (4.2) written as 3
f ′′

f ′
=

f ′′′

f ′′
we get

(4.3) f ′′(u) = − 1

a2
(f ′)3(u), a ∈ R \ {0},

and therefore

(4.4) f(u) = a
√
2u+ b+ c, a, b, c ∈ R.

Substitution of f ′′′(u) from the expression (4.2) in (4.1) leads to

f ′′2
(

3f ′g2 + 3f ′′g3 + 2f ′3g4 + 2f ′′g5 + 2f ′3g′′3
)

= 0

which by using the expression (4.3) turns to

(f ′(u))2(3cg3 + 2cg5 + 2g4 + 2g6)(v) + 3g2(v) = 0.

Now we get g2(v) = 0 i.e., −3g′′(v)2+g′(v)g′′′(v) = 0. Therefore, if g′′(v) 6= 0,

(4.5) g(v) = A
√
2v +B + C, A,B,C ∈ R.

By substituting (4.4), (4.5) in (4.1) we get that the relation (4.1) is fulfilled
if and only if a = A. Therefore, the obtained surface is parametrized by

x(u, v) = (u+ v, a
√
2v +B + C, a

√
2u+ b+ c).

By reparametrizing the obtained surface by ū = a
√
2u+ b + c, v̄ =

a
√
2v +B + C we get

(4.6) x(u, v) = (
1

2a2
(ū2 + v̄2) + C, v̄, ū),

i.e.,

(4.7) x =
1

2a2
(y2 + z2) + C.

The obtained surface is an analogue of an orthogonal elliptic paraboloid which
is a translation Weingarten in Euclidean space ([1]).

Another possibility is that a function g in this case satisfies g′′(v) = 0.
This is the case of a surface with constant mean curvature.

Let us consider the second factor of f4, i.e., the factor −f ′′(u)2 +
f ′(u)f ′′′(u) = 0. Integration of this expression implies that f ′′(u) = Cf ′(u).
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Figure 7. A translation Weingarten surface of Type 2 –
improper affine sphere

In this case f(u) = 1
ce

cu+c1 + c2, c, c1, c2 ∈ R, and f satisfies f ′′(u) = cf ′(u)
as well. By substituting these conditions in (4.1), the following is obtained

(4.8) c2
(

f ′(u)5(cg1 + g6)(v) + f ′(u)3(g2 + cg3 + 2cg5)(v)
)

= 0.

Therefore
(cg1 + g6)(v) = 0,

(g2 + cg3 + 2cg5)(v) = 0.

The first condition implies g′′(v)3 + cg′(v)2g′′′(v) = 0, which with the second
condition substituted in (4.8) gives

−cf ′(u)3g′(v)g′′(v)2(cg′(v) + g′′(v))2 = 0.

Therefore, either g′′(v) = 0 and the obtained surface is a cylindrical surface
with non-isotropic rulings, or cg′(v) + g′′(v) = 0 and the obtained surface is
a constant mean curvature surface (3.5).

Finally, we must treat all other possibilities when fi appears as a linear
combination of other functions. For example, if f1, f2, f3 are collinear with
the function fj for some j, f1 = a1fj, f2 = a2fj, f3 = a3fj then a2f1 = a1f2,
a1f3 = a3f1. Therefore

a1f
′′′ = a2f

′′(3f ′′2 − f ′f ′′′)

a1f
′′′ = a3f

′(3f ′′2 − f ′f ′′′).

Previous equation are satisfied if either f ′′ = 0 or 3f ′′2 − f ′f ′′′. Both cases
lead to already obtained surfaces.

The thorough further investigation brings no new types of surfaces.
Therefore:

Theorem 4.2. A translation surface of Type 2 in the Galilean space is a
Weingarten surface if and only if it is either (a part of)
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1. an isotropic plane,
2. a cylindrical surface with non-isotropic rulings,
3. a translation surface (3.8) of constant mean curvature of Theorem 3.8

and ruled surfaces of type C of Theorem 3.6,
4. a surface x(u, v) = (u+ v, a

√
2v + b+ c, a

√
2u+B+C), a, b, c, B,C ∈

R, i.e., a surface given by (4.6) or (4.7).
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