
Izgradnja modela autonomnog vozila

Oršolić, Ivan

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet 
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:936104

Rights / Prava: Attribution 3.0 Unported / Imenovanje 3.0

Download date / Datum preuzimanja: 2024-05-14

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital 
Repository

https://urn.nsk.hr/urn:nbn:hr:211:936104
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:5404
https://repozitorij.unizg.hr/islandora/object/foi:5404
https://dabar.srce.hr/islandora/object/foi:5404


UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

VARAŽDIN

Ivan Oršolić
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Summary

The goal of this thesis is to provide a blueprint for building an autonomous RC scale car model.
The thesis covers the important aspects of such model vehicles, the building and integration
of the hardware platform necessary to control the vehicle via software and the end-to-end ma-
chine learning pipeline which allows a deep learning model to take the input from the hardware
platform and control the movement and behavior of the vehicle.

Keywords: artificial intelligence; deep learning; end-to-end machine learning; behavioural
cloning; autonomous vehicles; computer vision; embedded hardware;
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1. Introduction

The topic of this Master’s thesis is building an autonomous vehicle from scratch, and
more specifically, a self-driving RC car. The goal of the thesis is to build a model capable of
autonomous driving on the track, while demonstrating the capability to perform behaviors such
as lane changing. The thesis will go through the entire process of building such a vehicle,
starting from the very RC car model and the embedded hardware platform, to the end-to-
end machine learning pipeline necessary for automated data acquisition, labelling and model
training.

The main motivation behind the selected topic is the fast-moving progress of applied
artificial intelligence (AI) and the predicted importance of autonomous vehicles on the future of
humanity, from independent mobility for non-drivers and low-income individuals, reduced pollu-
tion, traffic and parking congestion to increased safety on the roads. [1] Autonomous vehicles
are also predicted to be relied on in some of the most complex human planned endeavours,
such as space exploration [2]. The meteoric rise of AI along with deep learning (DL) meth-
ods and frameworks, have made possible the creation of such an autonomous vehicle without
expensive laboratories and years of research.

Currently, there are a number of private companies as well as academic groups working
on autonomous vehicles and their integration into existing regulations, laws and society itself.
Some of the leading companies are Google Waymo, which already has vehicles without a
safety driver autonomously driving around Phoenix, Arizona, USA [3], Uber which is also testing
driverless autonomous vehicles as of 2020 after some delay due to the autonomous vehicle
fatally injuring a pedestrian in 2018 [4] and Tesla which has the most widely used autonomous
vehicle system in the world [5], albeit on a less autonomous level than Waymo.

Aside from the technological obstacles that are yet to be surmounted, one big barrier
precluding autonomous vehicles on roads are of an ethical and legislative nature. As mentioned
earlier, Uber, Tesla and others have already had fatal accidents involving autonomous vehicles,
which prompted investigations [6] and a long overdue discussion concerning the liabilities that
come with allowing vehicles to autonomously navigate real streets with real humans on them,
focusing specifically on impossible situations in which a fatal collision may be unavoidable in
which the vehicle will have to decide what course of action to take, from self-sacrifice which
would mean sacrificing the passengers the car is transporting to intentionally fatally injuring
other traffic participants [7]. Other issues include the cost and scalability of self-driving tech-
nology and the standardisation of safety assurance in such vehicles, for which models and
frameworks have been proposed just in the last year or two [8].
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The advantages and quality of life improvements autonomous vehicles offer range from
safer and less congested roads, reduced parking and fewer vehicles per capita to up to sev-
eral thousands of dollars saved per year in travel time reduction, fuel efficiency, parking ben-
efits and crash costs. [9] Through a public research done by Howard and Dai on 107 likely
autonomous technology adopters in Berkeley, California, the adopters are attracted to the po-
tential safety benefits and other amenities, while mostly being concerned about the liabilities
explained above, the costs of such technology and losing control over the vehicle and letting it
drive itself.

It’s obvious, with everything stated above, as well as with the well known rise of artificial
intelligence, that the field of autonomous vehicles is at its very beginnings and that it will have
an important long term impact on society, through both financial and ethical aspects. The
accessibility of such technology should be made more broadly available to researches and
students if the field is to continue progressing through increased discussions on important
topics and not stagnate in a winter of autonomous vehicles, which is one of the reasons behind
the topic of this thesis.
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2. Methods and techniques of work

Throughout the thesis, many free and open source (FOSS) tools and frameworks will be
used, without whom such work could not be feasible in such a short period of time, that writing
a Master’s thesis allows to have.

The entirety of the implementation of the project is written using the Python scripting
language and a number of its libraries and application programming interfaces (APIs). For the
mathematical parts programmed in Python, the thesis uses the NumPy library [11], a mathe-
matical library for scientific computing in Python.

For higher-level neural network (NN) modeling and training, the thesis uses Keras [12],
a high-level API for rapid NN prototyping, which runs on top of TensorFlow [13], an end-to-end
open source ML platform. For various computer vision and image processing tasks, the thesis
uses OpenCV [14], an open source computer vision and machine learning library.

The thesis heavily uses, builds on and modifies the DonkeyCar [15] platform, an open
source do-it-yourself (DIY) self driving platform for small scale cars, which provides an interface
between the higher-level models created with Keras and the low-level RC car electronics and
controls. Along with the DonkeyCar platform the Unity game engine is used to modify the
Donkey simulator in order to expand its functionalities as needed for the thesis.

The main approach to the neural network architecture modeling is rapid prototyping by
collecting smaller data-sets using the simulator, training the model and testing it in the sim-
ulator. After verifying the validity of the model and making sure it performs well on smaller
data-sets, the model is trained for longer periods of time on bigger data-sets obtained from
multiple sources.
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3. Building the hardware platform

This chapter describe the components necessary to build the hardware platform which
will running all of the software on the RC car, from low-level car controls such as steering
and throttle to high-level NN software and models. Multiple alternatives will be considered and
explanations will be provided for each selected piece of hardware.

3.1. RC Car models

The process of constructing a scale RC car model could be, and is, a topic on its own.
But for the purposes of this thesis, the following sub chapters will focus only on the aspects
most important in the context of building an self-driving autonomous RC car.

3.1.1. Scale

Most RC car models are scaled down versions of their real-life equivalent, with the scale
expressed as a ratio of the size of the car the model is representing and the size of the model
itself (real-life size : RC model size). Some of the most common scales, ordered by size, are:
(1 : n), n ∈ {8, 10, 16, 18}. The trade off between smaller and bigger scales is:

• a larger scale model can carry more electronics without damaging the electronic motors
with the added weight

• a smaller scale model does not need as large tracks as the larger models

Larger scale models can also easily reach speeds up to 100 kilometres per hour, which
may also be a consideration if high speed autonomous driving is preferred.

For the purposes of this thesis, a scale size of 1 : 16 would have been enough to carry
the hardware platform while maintaining safe electronic motor operation, but a 1 : 10 scale was
chosen for future upgradeability and higher maximum speed the model can achieve.

Figure 1: RC scale comparison
(Source: ModelToyCars)
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3.1.2. Body type

RC car body types can roughly be grouped into four distinct categories:

• Race/Street body types are the fastest type, made for paved, flat surfaces and meant for
on road use only. They are also the most stable type for on-road uses, due to their low
center of gravity.

• Buggy body types are both an off-road and on road RC car. They can go off-road, unlike
the race/street type, but at the price of being slower than them on road.

• Truggy body types are also an in-between body type, but they lean more to the off-road
role, as opposed to the buggies. They are faster off-road than buggies, but slower than
them on-road.

• Truck body types are monster truck models. They are bad for on-road self-driving appli-
cations, due to their high center of gravity, because of which they easily flip on high-speed
turning on roads. Off-road, they are the fastest RC type.

Figure 2: Race/street body type
(Source: Tamiya)

Figure 3: Buggy body type
(Source: RampageShop)

Figure 4: Truggy body type
(Source: Goolsky)

Figure 5: Truck body type
(Source: Traxxas)

For the purposes of this thesis, the race/street body type was chosen for its low center
of gravity which provides the greatest possible stability for on-road purposes, as well as its
maximum speed of 100 kilometres per hour (for the particular model chosen for the thesis).
The goal of the thesis is to emulate a real-life scenario of autonomous driving on roads, which
is why the off-road capabilities were deemed unnecessary and the other body types were not
considered.
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3.1.3. Electric motors

The electric motor is one of the most important parts of the RC car, but in the context of
this thesis, the only thing of interest is whether the motor is brushed or brushless. A brushed
motor uses a set of wound coils as its rotor, which act as an (reversible) electromagnet with two
poles, and a brushless motor uses a permanent magnet as its rotor. [21]

Figure 6: Brushed vs. brushless comparison
(Source: ThinkRC)

Much of the technical complexities of both types can be disregarded while focusing on
only the following trade-offs between the two:

• Brushed motors are cheaper, simpler and better for off-road, but they are also heavier,
bigger, have worse power efficiency and wear out faster. [21]

• Brushless motors have long lifespan, much better speed and handling and better power
efficiency but they are much more expensive and worse for off-road uses. [21]

It is important to note that motors can easily be swapped, which makes deciding be-
tween the two much easier. For this thesis, a brushed motor variant was chosen mainly due
to the much lower price. Most RC cars come with an electric motor, and if they do not, any
motor that the chassis manufacturer has listed as compatible can be used, be it a brushless or
a brushed one.
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3.1.4. Servo motors

RC cars use a servo motor to control steering wheels of the car. The official DonkeyCar
documentation [22] states that the servo typically expects around 4.8V to 6V input on the power
wire (varies by car) and a PWM control signal on the signal wire. Typically, the three wires are
colored black-red-white, or brown-red-yellow, where:

• the dark wire (black/brown) is ground

• the center wire (red) is power,

• the light wire (white/yellow) is control.

The official DonkeyCar documentation [22] also states that the control signal is RC-
style PWM, where one pulse is sent 60 times a second, and the width of this pulse controls
how left/right the servo turns. When this pulse is:

• 1500 microseconds, the servo is centered;

• 1000 microseconds, the servo is turned all the way left (or right)

• 2000 microseconds, the servo is turned all the way in the other direction.

Figure 7: Servo motor
(Source: Solarbotics)

Other that it is necessary for a functional RC car model, there are no specific character-
istics one should look for when obtaining a servo motor for that use. Most RC car models come
with one, and if they don’t, any servo that fits in the car chassis can be used.
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3.1.5. Electronic Speed Controller (ESC)

The official DonkeyCar documentation [22] states that: "The role of the ESC is to take
a RC PWM control signal (pulse between 1000 and 2000 microseconds) in, and use that to
control the power to the motor so the motor spins with different amounts of power in forward or
reverse."

It also states that the ESC PWM signals are the same as for the servo motor, where
1500 for an ESC would mean that the electric motor will be stopped.

The ESC connects to the RC car battery and provides power to the servo motor.

Figure 8: Electronic speed controller
(Source: Tamiya)

For the purposes of this thesis, any ESC that comes together with an RC car can be
used. If it does not come provided by the manufacturer of the RC car and if a brushless motor
is used, it is important to pay attention that the separately obtained ESC can be used with
brushless motors. Otherwise, any ESC that the RC car manufacturer has listed as compatible
can be used.
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3.1.6. Receivers

A wireless receiver allows an RC car to be controlled via a wireless controller. Many
RC cars come with an receiver, which can operate on any number of frequencies, the most
common one being 2.4GHz.

Figure 9: Wireless receiver
(Source: RC-Hobbies)

For the purposes of this thesis, a receiver is not necessary, and in fact, it is better if an
RC car without a receiver is used since it minimises the risk of the RC car electronics being
tailor made to that specific model of receiver. If an RC car that comes with a receiver is used,
it can be taken out.

3.1.7. Batteries

Detailed explanations of different battery technologies are out of the thesis scope and
will be disregarded, while focusing only on the things of importance in the context of the thesis,
which would be deciding between Nickel Metal Hydride batteries (NiMH) and Lithium Polymer
batteries (LiPo) and the amount of energy stored in them:

• LiPo batteries provide much longer driving times, but are also more expensive.

• NiMh batteries provide much shorter driving times, but are more cheaper.

The best option are LiPo batteries, regardless of their increased price, since driving
time is one of the most important factors of an RC car. While choosing a battery it is important
to make sure it matches the voltage of the ESC the RC car is using, and to also obtain an
appropriate charger for the batteries.

Since batteries can be damaged by excessive discharge and carry the risk of exploding
during charging, it is highly recommended to buy additional safety equipment, most notably a
LiPo charging bag and a LiPo alarm.
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Figure 10: LiPo batteries
and charger

(Source: FlashRC)

Figure 11: LiPo discharge
alarm

(Source: GreensModels)

Figure 12: LiPo charging
bag

(Source: FuseModel)

A LiPo alarm is connected to the LiPo battery via the provided wiring ports and can be
set to sound a loud alarm when the battery gets discharged between a certain threshold, in
order to stop the battery from being damaged by excessive discharge.

A LiPo charging bag is a fire and explosion resistant bag inside which a LiPo battery is
placed while charging, to minimise the spread of fire in an event of an explosion.

The RC car described built for this thesis uses two LiPo batteries, a 3000mAh and a
6000mAh 7.4V batteries.

3.2. Electronics

Aside from an RC car model, other electronics as well as an embedded system is neces-
sary to enable controlling the car via software and to deploy and run ML models and control the
car with them. The following sub chapters explain what such components were used through
the process of building an RC car for this thesis, along with possible alternatives.

3.2.1. Embedded system

The most important part of the hardware platform is the embedded system which runs
the operating system which will in turn be running all the software necessary for the end-to-end
machine learning pipeline and the lower level software which allows RC car control.

There are multiple possible alternatives to choose from, with varying graphics process-
ing units (GPU), random access memory (RAM) sizes and central processing units (CPU):

• Nvidia Jetson Nano with a 128-core dedicated GPU (768 GFLOPS), 4GB of shared
LPDDR4 RAM and a Quad-core ARM CPU (1.43 GHz)

• Raspberry Pi 4B without a dedicated GPU, 4GB of LPDDR4 RAM and a Quad core ARM
CPU (1.5GHz)

• Google Coral TPU Dev Board with an dedicated TPU co-CPU(4 TOPS), 4GB of LPDDR4
RAM and a Quad core ARM CPU (1.5GHz)
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Figure 13: Nvidia Jetson
Nano

(Source: Franklin)

Figure 14: Google Coral
Board

(Source: Coral)

Figure 15: Raspberry Pi 4
Model B

(Source: RaspberryPi)

At first look, the Google Coral Board seems like the most powerful choice, but according
to benchmarks made by Nvidia [29] the board cannot run a lot of complex models and full
TensorFlow models, and for the ones that it can, it doesn’t have a great advantage. There are
some instances where using a Google Coral board is much better than using a Jetson Nano,
but they do not fit into the purposes of this thesis.

The Raspberry Pi is the weakest of the three alternatives, but it is also the cheapest,
costing half the price[31] of the Jetson Nano[29] and three times less than the Coral[30], but it
simply lacks the processing power for the complex models this thesis implements later on.

The main difference between the Nano and the Coral is that the Nano is more similar
to a full computer with a dedicated GPU that can do generalised tasks, and the Coral is a
specialised board that performs much better on a very small subset of tasks.

The best choice for the purposes of this thesis is the Jetson Nano.

3.2.2. Batteries

The Jetson Nano uses 5 watts (W) of power through its microUSB port, but can also use
up to 10W of power through the barrel jack adapter, which effectively doubles the processing
power of the dedicated GPU.[29]

It can be powered from the RC car battery, but the necessary power converting com-
ponents would be complicated to build and in case the RC loses power, the entire embedded
system would lose power as well.

For those reasons, the hardware platform described in this thesis uses a 20 000 mil-
liampere hour (mAh) battery which can provide up to 2 amperes (A) of power through a dedi-
cated USB-A port, or up to 65W of power using a special power-delivery USB-C port.
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3.2.3. Servo and ESC Driver

In order to control the RC car servo motor and ESC with the Nano, a specialised piece
of equipment that will serve as an interface between the twoo needs to be used. The platform
described in this thesis will use a PCA9685 16 Channel 12-bit pulse width modulating (PWM)
servo driver board. [32] This board allows the Jetson Nano to send PWM signals to the RC
Car by sending Inter-Integrated Circuit (I2C) signals through its general-purpose input/output
(GPIO) header. This will be explained in more detail in the following chapter.

Figure 16: PCA9685

3.2.4. Storage

The Jetson Nano requires the use of a MicroSD card as its primary storage component
from which it runs its operating system (OS) and all other software. [29]

For the purposes of this thesis a 64GB MicroSD card will be used, but an external solid-
state drive (SSD) enclosed in an USB 3.1 can, and in this thesis will, be used to achieve better
storage performance, which will require creating a custom Linux kernel, which will be explained
in the following chapter.

3.2.5. Cameras

The hardware build also requires a camera that will be used to gather images of the
track the RC car will be driving on, which will be passed as input to an end-to-end machine
learning pipeline which will then infer appropriate car control values.

The Jetson Nano supports the use of both USB and MIPI CSI-2 cameras. [29] The
build in this thesis will be using an USB action camera with a 170-degree field of view (FOV).
Any USB camera and MIPI CSI-2 cameras that the Jetson Nano manufacturer has stated as
compatible can be used, while keeping in mind that bigger FOV is desirable in the context of
this thesis.
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3.2.6. Other sensors

Aside from cameras, other sensors can be used to enable the creation of more complex
and accurate models. Although no additional sensors are used in the build described by this
thesis, the following sensors are relatively inexpensive and could provide much better results in
the context of autonomous driving:

• An inertial measurement unit that uses a combination of accelerometers, gyroscopes,
and sometimes magnetometers to measure the speed and direction the car is travelling
in, as well as other forces acting on the car.

• An ultrasonic proximity sensor that measures the distance between an obstacle and the
car by measuring the time it takes an ultrasonic signal to reach and bounce back from the
obstacle to the car.

3.2.7. Wireless

To allow wireless communication with the Jetson Nano, and in turn, the RC car, an M.2
key E wireless card can be built into the Jetson Nano, which would allow Bluetooth and 2.4
GHz WiFi communication between the Nano and a dedicated host personal computer (PC).

The build described in this thesis uses an Intel 8265 M.2 card to allow wireless commu-
nication. Other cards that the Nano manufacturer has listed as compatible can be used.

3.2.8. Controller

In order to obtain the most accurate possible driving data, use of a gamepad controller
is recommended, due to its high resolution analog inputs. The build in this thesis uses an Xbox
One controller, but other controllers listed in the following chapter can be used.
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3.3. Assembly

The last step in building the hardware platform is assembling all of the components
described previously. The following sub chapters will describe the assembly process.

3.3.1. RC Car assembly

The RC car used for this thesis is a Tamiya TT-02 1:10 scale model car that comes as
an ready-to-race (RTR) kit. Any other car that has an ESC and a servo driver can also be used.

Figure 17: PCA9685
(Source: Lindinger)

Most RC cars are sold completely unassembled, with the manufacturer providing de-
tailed instructions on assembly. The assembly process can vary by complexity and the time
necessary to complete it.

By contrast, RTR kits come either fully assembled and ready-to-race out of the box,
which means they require very little assembly. The above mentioned TT-02 kit required only
the assembly of minor chassis elements and wheels.
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The figures below shows parts of the assembly process for the TT-02 RTR kit:

Figure 18: TT-02 RTR Assembly

Figure 19: TT-02 RTR Assembly
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3.3.2. Mounting plate assembly

In order to mount the electronics assembly on the RC car, creating a mounting plate as
a platform for the electronics is necessary. Two easy ways to do so is to either 3D print custom
designed plates or to just create a mounting plate using a piece of aluminium, plexiglass or
similar material.

During the process of building the mounting assembly for this thesis, two approaches
were used: 3D printing custom plates and creating multi-levelled mounting plates using a spe-
cial type of aluminium.

The following 3D model was created and used as a guideline for both approaches:

Figure 20: 3D model of the hardware assembly

The 3D printed mounting plates were created using polylactic acid (PLA) filament. After
some time of usage, the 3D printed parts proved to be fragile upon RC car crashes and were
replaced by a hand-made improved version using a special type of aluminium that proved to be
much more stable and resistant to crashes.
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The figure below shows the 3D printed mounting plate parts and the final result after
mounting all of the electronics on the plates:

Figure 21: 3D printed mounting plates

Figure 22: The first version of the hardware assembly

It is visible from the figure above that the electronics were relatively unsafely mounted
on the car, with the center of mass being unevenly distributed due to a lack of a larger mounting
plate on which the battery could be better positioned on. Also, the approach shown above did
not allow for antennae usage, which would need to be mounted on a very secure surface since
their connectors are relatively sensitive to impacts.
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The next and final iteration of the mounting plate design on which the hardware assem-
bly is secured on used very light but very strong aluminium, which was cut to the proper size
and drilled to allow a second level to be mounted which used a softer, but rigid polyurethane
sheet on which the embedded system was mounted on. The figure below shows the aluminium
sheet used:

Figure 23: Aluminium mounting plate

And the figure below shows the final iteration of the assembly, which also incorporated
wireless antennas.

Figure 24: The final assembled version of the RC car
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3.3.3. Assembling the Jetson Nano

After assembling the RC car and the mounting plates, the rest of the electronics can be
assembled together and mounted on the RC car. The first step is the Jetson Nano, to which a
MicroSD, wireless card and antennae need to be plugged in.

To get to the MicroSD and M.2 wireless card slot on the Nano board, first it’s necessary
to remove the two screws shown in the figures below, pop the module board up and pull it out.

Figure 25: The two screws holding
the module in place

Figure 26: Latches that hold the
module in place

Figure 27: The module pops out
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The MicroSD card slot can be seen after pulling out the module, as well as the M.2 slot
where the wireless card goes:

Figure 28: MicroSD Slot

This is also a good time to install a fan on the Jetson Nano to allow for later overclocking
with the previously mentioned barrel jack adapter that can take up to 10W of power, effectively
doubling the dGPU processing power:

Figure 29: Installing a fan on the Nano module
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The installed fan also needs to be connected via the 3-pin (or 4-pin) connector to the
Jetson Dev board just below the Ethernet port:

Figure 30: Fan PWM connector

The M.2 wireless card (with IPEX4 antennae connectors plugged in) should be installed
on the Jetson Dev board just above the slot into which the Nano module gets plugged into:

Figure 31: Installing the M.2 card
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Finally, this the Nano module can be plugged back in and the antennae connectors and
screws secured to the mounting plates, with the hardware assembly looking something similar
to the following figure:

Figure 32: Jetson Nano assembled

3.3.4. Connecting the PCA9685 to the Jetson Nano

The next step is connecting the PCA9685 board to the Jetson Nano using its I2C header
and the PCA9685 board to the RC car ESC and servo motor, as shown in the diagram below:

Figure 33: Jetson Nano assembled
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As shown on the diagram above, the I2C header highlighted below needs to be con-
nected to the Jetson Nano GPIO header:

Figure 34: Jetson Nano assembled

By consulting the Jetson Nano pinout [34] the two I2C buses that the Jetson Dev Board
has can be identified, highlighted in yellow below, the ground pins are highlighted in black and
the 3.3V pins are highlighted in red:

Figure 35: Jetson Nano pinout

• 3V3: labeled red, position 1 and 17, connect PCA VCC pin to either of them

• GND: labeled black, all over the place, connect PCA GND pin to any of them

• I2C busses: labeled yellow, there are two of them:

– Bus 0: position 27 (SDA) and position 28 (SCL)

– Bus 1: position 3 (SDA) and position 5 (SCL)

• Connect the PCA SDA and SCL pins to either bus

• Note: the SDA/SCL pins come in pairs, a pair/bus has to be chosen and used together
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Finally, the wires can be connected to the Nano header:

Figure 36: Jetson Nano I2C bus connected

3.3.5. Connecting the ESC and servo to the PCA9685

The last step in the hardware chapter is connecting the ESC and servo motor from the
RC car to the PCA9685. First it’s necessary to find the ESC and servo connectors on the RC
car. This can be either done by tracing the connector wires from the components:

Figure 37: The ESC and servo motor connectors in an RC car
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If the RC car comes with a receiver out of the box, the connectors can easily be found
by looking into the wireless receiver: The connectors need to be plugged out from the receiver

Figure 38: The RC car receiver with ESC and servo connectors

and connected to the PCA9685 board into any two channels, preferably the zeroth and first, for
easier reference and with care taken that the color coding of the connectors is aligned with the
PCA9685 board:

Figure 39: The PCA9685 connected to the ESC and servo

After connecting the PCA9685 to the ESC and servo motor of the RC, the hardware
assembly part of the build is complete.
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4. Software

This chapter describes the process of installing all of the software necessary in order to
create and train models using an end-to-end ML pipeline which takes inputs from the camera
and outputs the steering and throttling controls directly to the RC car.

4.1. Base operating system installation

The first step is installing the base operating system on the Jetson Nano and can be
performed very easily by downloading the Nvidia SD card image from the official Jetson Nano
documentation and flashing it to the MicroSD card. [35]

4.2. Kernel hacking

This sub chapter is optional, but improves the Jetson Nano system performance by
allowing the OS to boot from an external SSD which is much faster than the MicroSD card
in both latency and sequential reading speeds. This sub chapter follows Syonyk’s guide to
patching the Jetson Nano firmware.[36]

The idea is to use an external SSD drive as the root file system for the OS, but that
usually is not possible due to:

• The USB 3 ports requiring the kernel to load USB firmware on boot to enable them to
work, which means the USB ports won’t work until the device boots up

• That same USB firmware is stored on the root file system, which should be on the external
SSD if it’s going to be the boot device for the OS

• Which would mean that the firmware needs to be loaded from the SSD in order to use
the SSD

The solution to the above problem is to patch the Linux kernel and embed the firmware
needed right into it, so it doesn’t need to read it from the root file system, which can then be
freely put on the external SSD.

While patching the kernel, there is another thing that could provide a noticeable perfor-
mance boost, zswap, which also requires adding same-filled page merging support for to the
kernel.

All of the below described procedures should be ran on the Jetson Nano, and they take
a while to perform, since taking kernels apart, patching them and building them takes a while
even on regular workstations or servers, and doing it on an embedded device makes it even
more time consuming.
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4.2.1. Obtaining the kernel source

The Jetson Nano does not run the stock Linux kernel, rather a custom Nvidia build of it,
for which Nvidia provides the source code, which can be found under board support package
(BSP) sources under Jetson Nano on the Nvidia Jetson Linux Driver Package (L4T) download
page.[37]

After downloading the kernel source files, they should be unpacked and the directory
should be changed to the current kernel version directory:

tar -xf public_sources.tbz2

cd ~

tar -xf ~/Downloads/public_sources/kernel_src.tbz2

cd ~/kernel/kernel-4.9

To enable the kernel that is being modified to work with the Nano board, the current
kernel (that the Nano is running) needs to it:

zcat /proc/config.gz > .config

4.2.2. Adding the external USB firmware blob to the kernel

The external USB firmware blob that allows the OS to use USB devices needs to be
copied to the new kernel:

cp /lib/firmware/tegra21x_xusb_firmware ./firmware/

A Linux kernel and its modules can be modified using the menuconfig tool, shown in the
figure below, can be used:

sudo apt-get install libncurses5-dev

make menuconfig

Figure 40: Linux kernel configuration using menuconfig

When selecting kernel features in menuconfig, a star (*) denotes a built-in feature and
M denotes a module. Stars should be selected for features that need to be built in.
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To build in the external USB firmware blob into the kernel binary:

• Select: Device Drivers

• Select: Generic Driver Options

• Select: External firmware blobs to build into the kernel binary

• Select: Type: tegra21x_xusb_firmware

• Exit and save the new configuration

Figure 41: Adding the external firmware
blob to the kernel binary

Figure 42: Saving the added external
firmware blob

4.2.3. Adding zswap support to the kernel

First, some features need to be enabled using menuconfig:

• Select: Kernel features

• Select: Enable frontswap to cache swap pages if tmem is present

• Select: Compressed cache for swap pages (EXPERIMENTAL) (NEW)

• Select: Low (Up to 2x) density storage for compressed pages

The next step is back-porting same-filled page compression from a newer version of the
kernel to the 4.9 that is being modified. The new feature can easily be patched into the older
kernel by finding the zswap source code on the Linux GitHub repository, choosing the commit
that implements same-filled page compression[38] and adding a .patch suffix at the end of the
commit URL to get the patch file that adds the feature to a kernel:

# Downloading the patch file

wget https://github.com/torvalds/linux/commit/

a85f878b443f8d2b91ba76f09da21ac0af22e07f.patch

# Changing to the kernel directory

cd ~/kernel/kernel-4.9

patch -p1 < ~/Downloads/a85f878b443f8d2b91ba76f09da21ac0af22e07f.patch

28



# Replacing the not yet implemented memset_l call with a regular memset

sed -i 's/memset_l(page, value, PAGE_SIZE \/ sizeof(unsigned

long));/memset(page, value, PAGE_SIZE);/g' mm/zswap.c↪→

Figure 43: Patching the kernel

4.2.4. Building the kernel

After adding all necessary changes to the kernel, it can be built and placed on the boot
partition by running:

make -j5 # -j denotes the number of threads

sudo make modules_install

sudo cp /boot/Image /boot/Image.dist

sudo cp arch/arm64/boot/Image /boot

Figure 44: Building the kernel
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Building the kernel takes a very long time, since it is running on the embedded platform
that has relatively limited processing power. After the build and a reboot, running the following
command verifies that the new kernel is being used:

# The stock kernel returns '4.9.140-tegra'

# The custom kernel should return only '4.9.140'

uname -r

4.2.5. Booting from the custom kernel

If the command above confirms that the custom kernel is working, the root partition can
be transferred to the external SSD by:

• Plugging the SSD in

• Wiping the partition table

• Creating a GPT partition table

• Creating a new EXT4 volume 4 GB smaller than the SSD

• Creating a 4 GB swap partition

# Wiping the partition table

sudo dd if=/dev/zero of=/dev/sda bs=1M count=1

# Creating a GPT partition table, then creating a new EXT4 volume

# Creating a Linux swap partition (4GB) - arrow over to "Type" and select

"Linux swap"↪→

# Going over to "Write", typing "yes" and then quitting

sudo cfdisk /dev/sda

# Making an ext4 volume and a swap partition

sudo mkfs.ext4 /dev/sda1

sudo mkswap /dev/sda2

# Mounting the partition and copying the root filesystem to it

sudo mkdir /mnt/root

sudo mount /dev/sda1 /mnt/root

sudo mkdir /mnt/root/proc

sudo apt -y install rsync

sudo rsync -axHAWX --numeric-ids --info=progress2 --exclude=/proc /

/mnt/root↪→
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The OS can be booted from the external SSD by:

• Editing /boot/extlinux/extlinux.conf so the kernel points at /dev/sda1 (the SSD) instead of
/dev/mmcblk0p1 (the microSD)

• Enabling zswap in extlinux.conf

sudo sed -i 's/mmcblk0p1/sda1/' /boot/extlinux/extlinux.conf

sudo sed -i 's/rootwait/rootwait zswap.enabled=1/'

/boot/extlinux/extlinux.conf↪→

4.3. DonkeyCar installation

According to the official Donkey documentation: "Donkey is a high level self driving
library written in Python. It was developed with a focus on enabling fast experimentation and
easy contribution." [22]

For this thesis, Donkey will be used as an interface between the RC car and the neural
net that should drive it. As shown on the figure above,the camera should send data from the

Figure 45: Donkey platform as an interface
(Source: DonkeyCar)

RC to a model which would analyse it and tell the RC where to steer and how fast to go, in
order to stay on the road. Donkey provides an interface to do just so, without having to worry
about the details of:

• (Pre)Processing the camera data

• Converting the steering/throttle values to actual signals for the RC to understand

• Actually steering the RC and increasing/decreasing throttle

• Collecting and labelling training data

• Defining and training custom models

• Controlling the car using a Web interface or a controller

• Using a simulator to rapidly test and train models
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4.3.1. Installing and configuring Donkey

There are two ways Donkey can be used to create a self-driving RC car:

• Doing everything on the RC car/Jetson Nano, including model training

• Training and developing the model on a host PC, running and testing it on the RC

The second options is much more feasible, since a PC usually has much greater pro-
cessing power to train and develop complex models, preferably by using a GPU. But it is also
possible to exclusively use the Jetson Nano without a dedicated PC for model training and test-
ing. Detailed instructions for installing the Donkey platform on both the RC car and the host
PC, as well as the simulator, can be found on the official Donkey documentation website. [22]
To create and use the Donkey platform, the official documentation states that a new Donkey
application should be created using the following command:

donkey createcar --path <dir> [--overwrite] [--template <donkey2>]

After creating a new Donkey application, the most important file that should be edited
is the myconfig.py file where the camera type, the I2C bus used on the Nano and the RC
calibration values that will be explained in the following subchapter should be edited in.

4.4. Car calibration

To control the RC car using the Jetson Nano, the Linux user on the Nano should be
added to the i2c group:

# Adding the user to the i2c group

sudo usermod -aG i2c %USERNAME%

# Rebooting so it takes effect

sudo reboot

To verify that the PCA9685 board is properly connected to the Nano, the following com-
mand should be run with the number of the I2C bus the PCA9685 board is connected to:

sudo i2cdetect -r -y %BUS_NUMBER%

If the PCA9685 is properly connected to the Nano, the command above should output:

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: 70 -- -- -- -- -- -- --
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The numbers 40 and 70 in the command output above denote the I2C address of the
PCA9685 board and they should be written in the myconfig.py file under the following settings:

PCA9685_I2C_ADDR = 0x40

PCA9685_I2C_BUSNUM = 1

Now the Donkey application can be used to detect the PWM values for steering and
throttle by using the following command along with the channel number used for throttle or
steering on the PCA9685:

donkey calibrate --channel %THROTTLE_OR_STEERING_CHANNEL%

--bus=%I2C_BUS_NUMBER%↪→

To calibrate both steering and throttle, the number 370 should be used as a starting
PWM setting and should be increased or decreased in increments of 10 until the maximum and
minimum values are found for throttle and steering. After finding out the values, they should be
written down into the myconfig.py script under the following settings:

STEERING_RIGHT_PWM = # The value which steers the car completely to the

right.↪→

STEERING_LEFT_PWM = # The value which steers the car completely to the

right.↪→

THROTTLE_STOPPED_PWM = # The neutral throttle value.

THROTTLE_FORWARD_PWM = # The maximum forward throttle value.

THROTTLE_REVERSE_PWM = # The maximum reverse throttle value.

4.5. Connecting a controller

To control the RC car, any controller can be used that can be mounted at the /dev/in-
put/js0 file on the Nano, either via Bluetooth or by using a cable.

After connecting the controller, the Donkey createjs command can be used to create a
custom mapping that is saved into a Python class and can be imported and used by the main
Donkey manage.py class.

The myconfig.py file already has a number of predefined controller mappings for the
most common controllers, which can be used by uncommenting the CONTROLLER_TYPE
setting and writing the appropriate mapping name.
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4.6. Testing the Donkey pipeline

After installing the Donkey platform and calibrating the RC car and setting up a con-
troller, the Donkey pipeline can be tested by building a test track, collecting a small amount
of testing data, training a built-in Donkey model and testing the RC by letting it autonomously
drive around the same test track.

The test track can be a simple circle with the lane lines made using some tape, such as:

Figure 46: First test track

Or it can be a more complex one, with a very contrasted background as the asphalt and
well defined and up to scale lanes and lane lines, such as:

Figure 47: Fancier test track
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After creating the test track and placing the RC car on it, training data can be collected
by running the manage.py script with the drive flag, and the - -js flag if a controller is used:

python manage.py drive --js

After the above command executes, the RC car will automatically start recording la-
belled training data when it starts moving around the track. A good training dataset should
have at least 10 recorded laps of the test track without any major errors being made. After
recording enough data, the data should be copied from the data/tub_**_**-**-** folder to the
host PC, and trained using the manage.py script along with the train flag and a predefined
Donkey model, a list of whom can be found inside the official Donkey documentation [22]:

python ~/mycar/manage.py train --tub /path/to/the/dataset/tub --model

~/mycar/models/theNameOfTheModel.h5 --type=architectureName↪→

When the training completes, the trained model file should be copied back to the RC
car and can be used to autonomously drive the car using the following command:

python manage.py drive --model ~/mycar/models/yourModel.h5

The RC car should be able to successfully autonomously drive at least one lap around
the track, which confirms that the Donkey pipeline is correctly set up.

Figure 48: RC driving around the first test track

If the Donkey pipeline is correctly set up and the RC car can autonomously drive around
the test track, everything needed to build and train custom ML models for the RC is finished.
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5. Modding the simulator

In order to use the simulator to gather training data that’s larger than the default 160x120
image size, a modified version of it has to be created. First off, the original simulator made by
Tawn Kramer made for Donkey [39] should be cloned from GitHub.

git clone --single-branch --branch donkey https://github.com/tawnkramer/sdsandbox

Unity also needs to be installed, after which the project can be opened in it.

5.1. Modifying the camera resolution

After opening the project in Unity, the default RC prefab (donkey), can be found in the
Prefabs folder.

Inside the prefab hierarchy the cameraSensorBase which contains the CameraSen-
sor , which is the RC camera sensor that is used to generate the training data (take pictures
from inside the simulator).

After selecting the CameraSensor , its visible that there is a CameraSensor script
connected to it. It can be opened up by double clicking on it or finding it in the lower left project
viewer inside AssetsScriptsCameraSensor.cs.

The width and height fields of the class should be made static, so they can be edited
them from other scripts:

// Default resolution

public static int width = 640;

public static int height = 480;

The parameters of the ReadPixels function should be edited to use the defined width and
height:

tex.ReadPixels(new Rect(0, 0, width, height), 0, 0);

The CameraHelper script also needs to be edited to use the above defined static fields for the
width and height:

Texture2D texture2D = new Texture2D(CameraSensor.width,

CameraSensor.height, TextureFormat.RGB24, false);↪→

texture2D.ReadPixels(new Rect(0, 0, CameraSensor.width,

CameraSensor.height), 0, 0);↪→
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Now the menu scene can be opened and a Dropdown element added to it menu by right
clicking on the Canvas and selecting UI > Dropdown. This dropdown will serve as a resolution
picker and inside the inspector panel all of the resolutions that want to be used can be added
as options:

Figure 49: Resolution dropdown

The dropdown should be resized and placed on an appropriate position on the menu:

Figure 50: Resized resolution dropdown

The final step is to go back to the Scripts folder and add a new class called Resolution-
Setter . This class will set the resolution inside the CameraSensor class based on the selected
option in the dropdown. The source code for this class can be seen in the Appendix (2.1).

After the ResolutionSetter class is created, it the dropdown element created earlier
can be set to use it by selecting the dropdown element and dragging the newly created class
on it:

Figure 51: Resolution setting script

And that’s it. Now the output images will have the resolution that is set in the main menu
using the dropdown.
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5.2. Updating the default donkey-gym port

One thing that has to be edited in donkey itself before the modded simulator can be
used:

• The dgym.py file found inside donkeycar/parts/ should be open

• The port number should be changed from 9090 to 9091:

def __init__(self, sim_path, port=9091, headless=0,

env_name="whatever-env-name-here", sync="asynchronous"):↪→

Now the simulator can be used with the manage.py script.

If the simulator is compiled to a different directory than the default one, or the projectexecutable
name was changed, be sure to update the myconfig.py file, specifically the DONKEY_SIM_PATH
variable. Here’s a sample output image when the dropdown is set to 640x480:

Figure 52: 640x480 image
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5.3. Creating 3D version of the RC car model

To get better data for a specific build of an RC model, the default model that comes with
the simulator should also be modified so it accurately represents the RC model being trained.
Most notably, the camera position, resolution and field of view should be edited. Multiple cam-
eras can also be added and the center of mass of the vehicle can be edited, as well as any
other properties that would make a difference to more realistically represent the RC model.

5.3.1. Editing the camera

To edit the camera of the default model, in the donkey prefab, the cameraSensorBase
and the CameraSensor can be modified.

On the right, in the Inspector panel, under the Camera settings, a bunch of settings
related to them can be edited. The FOV value should match the FOV the real RC camera has,
and the Fisheye and Post Processing scripts can be disabled.

The camera can also be moved to different positions using the move and rotate tools
and the editor on the center of the screen, and pivot/angle can be used to match it to the real
RC camera position and orientation.

5.3.2. Testing the modified model

Any scene can be started, such as the warehouse scene, zoomed up to the track and
the prefab can be dragged and dropped onto it. After dropping it on the track, the camera
sensor can be selected to see what its output now looks like:

Figure 53: Camera preview

5.3.3. Adding additional parts and changing the center of mass

A custom 3D model of the electronics that are on the RC can also be created and
inserted into the default Donkey model, or an entire new model can be created.
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After creating a 3D model, it can be dragged and dropped into the Models folder. The
added elements can then be added to the default prefab and positioned and resized to fit them
on the RC.

If any elements need reordering or individual editing, but the element looks blue, like
the power bank v1 element shown in the figure below, they can be right clicked unpack prefab
can be selected:

Figure 54: Packed prefab

It should then be possible to be individually move parts around.

If significant changes to the model were made, a lot of parts were added, the RC’s center
of mass has probably changed, and that should be reflected in the simulator by changing the
defined center of mass, since it’s desirable to as realistically handle corners just as it would in
real life, and if the center of mass is higher up because a bunch of stuff has been added, it
could perform great in the simulator but tip over in real life.

The centerOfMass element can be found inside the donkey prefab, moved and pivoted
around just like any other element:

Figure 55: Center of mass

The simulator can now be built and the custom 3D RC car model can be tested.
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5.4. Simulator camera calibration

The simulator camera should be calibrated just like the real RC car camera, and to do
so, a checker-board object needs to be added into the simulator so photos of it can be taken
with the simulator RC camera. This can be achieved by adding a GameObject object to any
scene in the simulator and applying the checker-board pattern that was printed earlier as its
texture.

Figure 56: Simulator calibration

The cube proportions can be made to fit the original checker-board size, e.g. an A4
paper, by clicking on the cube and editing the scale values in the Inspector panel and setting
them to, e.g. 0.297 for X and 0.21 for Y, since an A4 is 29.7 cm x 21.0 cm.

After that, the simulator can be run and screenshots can be taken from at least ten
different angles, just like when calibrating a real camera. Here’s what it could look like:

Figure 57: Simulator calibration image 1

Figure 58: Simulator calibration image 2
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6. Camera calibration

This chapter will explain some common problems that occur when cameras try to map
the 3D world onto a 2D sensor plane. It will also describe methods that can be used to make
lane line detection from input images easier.

6.1. Camera distortions

Since the RC car uses only cameras to obtain the entirety of its data, which will be used
to drive the car around the real world, a lot of trust is placed in them. Which refers to trusting
that they’ll provide the car with accurate representations of real world 3D objects as 2D images
that will get fed into its neural network.

Cameras shouldn’t be inherently trusted to accurately represent the world they see,
since they, albeit cheap and easy to use, come with all sorts of issues when it comes to mapping
the 3D world onto a 2D sensor/image correctly. But luckily, there are ways of solving those
issues, which will be described in the following sub chapters

6.1.1. The pinhole camera model

The pinhole camera model is a model of an ideal camera, that describes the mathemat-
ical relationship between the real world 3D object’s coordinates and its 2D projection on the
image plane. [40]

Figure 59: Pinhole camera model
(Source: Wikiwand)
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Pinhole cameras were the very beginning of photography, and are used even today
to explain basic photography to students. They posses some advantages over regular lens
cameras [40]:

• They have near infinite depth of field; everything appears in focus.

• No lenses are used to focus light, so they have no lens distortion and wide-images remain
absolutely rectilinear.

Basically, the smaller the pinhole gets, the more the resolution increases, until it reaches
the diffraction limit, at which point the image just gets darker and blurrier. Also, the smaller the
pinhole, less light comes in, so the exposure time needs to be increased. [40] Which brings up
the big issue with them; Their exposure times are really long, which causes significant motion
blur around any moving objects or it causes their complete absence if they’ve moved too fast.
[40] Is it possible to get a small pinhole that gets a lot of light? A convex lens can be used, for
starters.

Figure 60: Convex lens
(Source: HowThingsWork)

Why does this help: instead of a single ray of light illuminating a single image point, now
pencils of light illuminate each image point. [41]

Figure 61: Camera lens
(Source: OpenStax)
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But of course, lenses bring the issues mentioned earlier [40]:

• They have finite aperture so blurring of unfocused objects appears.

• They contain geometric distortions due to lenses, which increase closer to the edges of
the lenses.

6.1.2. Types of distortions

The first, and most common type of camera lens distortion is called radial distortion.[43]

Figure 62: Types of distortions
(Source: Bradski)

There are two types of this distortion, the positive or barrel radial distortion, and the
negative or pincushion radial distortion. [43]

In the context of self driving RCs, barrel distortion is the most often distortion, that will
most probably be caused by fish eye lenses, since it’s desirable to get as big a field of view as
possible. Some action cams even have a FOV of 170 to 180 degrees, which causes a lot of
positive radial distortion.

The other type of distortion possible is called tangential distortion, which occurs when
the lens is not aligned perfectly parallel to the imaging plane (the sensor).[14] It causes the
image to look tilted, which is obviously bad since some objects look further away than they
really are.

6.1.3. Removing distortions using OpenCV

The radial and tangential distortions can be described using a couple of coefficients
[14]:

• kn coefficients will describe radial distortion

• pn coefficients will describe tangential distortion

The worse the distortion, the more coefficients are needed to accurately describe it.
OpenCV works with up to six (k1, k2, k3, k4, k5 and k6) radial distortion coefficients, which
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Figure 63: Tangential distortion

should be more than enough for the purposes of this thesis, and with two (p1, p2) tangential
distortion coefficients.

If the barrel radial distortion type is present, k1 will typically be larger than zero. If the
pincushion distortion is present, k1 will typically be smaller than zero. [14]
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• (X,Y, Z) are the coordinates of a 3D point that’s being imaged (u, v) are the 2D coordi-
nates of the projection point in pixels

• The first matrix after the equation is the camera matrix, containing intrinsic camera pa-
rameters

– (cx, cy) defines the principle point which is usually the center of the image

– fx and fy are the focal lengths expressed in pixel units

• The matrix containing the rmn parameters is the joint rotation-translation matrix, a matrix
of extrinsic parameters which describes camera motion around a static scene. It’s used to
translate the 3D coordinates to a 2D coordinate system, fixed with respect to the camera.

Since the RC car is imaging 2D images, to undistort them it’s necessary to map the 3D
coordinates to a coordinate system:
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x′ = x/z

y′ = y/z

u = fx ∗ x′ + cx

v = fy ∗ y′ + cy

(6.2)
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Also, since the RC car is not using a pinhole camera, the distortion coefficients need to
be added to the model:

x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′

where r2 = x′2 + y′2

u = fx ∗ x′′ + cx

v = fy ∗ y′′ + cy

(6.3)

Since the primary interest is in efficiently removing the radial distortion, the formulae
above are using Fitzgibbon’s division model [44] as opposed to Brown-Conrady’s even-order
polynomial model [45], since it requires fewer terms in cases of severe distortion. It is also a bit
easier to work with, since inverting the single parameter division model requires solving a one
degree less polynomial than inverting the single-parameter polynomial model. [46]

6.1.4. Finding the camera’s intrinsic and extrinsic parameters

After laying out all of the formulas used to correct radial and tangential distortion, the
only question that remains is how to get the intrinsic and extrinsic camera parameters. For
those purposes, the OpenCV calibrateCamera function will be used, along with its findChess-
boardCorners function. [14]

The calibrateCamera function is based on Zhang’s A Flexible New Technique for
Camera Calibration [47] and Caltech’s Camera Calibration. [48] It needs the coordinates
of a 3D object that’s being imaged and its corresponding 2D projected coordinates in order to
detect the intrinsic and extrinsic parameters of the camera used to image the object. To easily
get those coordinates, using a chessboard is recommended. A chessboard is an object with a
known geometry and it has easily detectable feature points. Such objects are called calibration
rigs or patterns, and OpenCV has a built-in function that uses a chessboard as a calibration rig,
the findChessboardCorners function.

The findChessboardCorners function attempts to determine whether the input image
is a view of the chessboard pattern and automatically locate the internal chessboard corners.
The great thing with this is that a 3D object (a chessboard) can be printed out, whose geometry
is well known, and its 3D coordinates can be mapped to the 2D image projection. The 3D
points of the chessboard from the real world are called object points and their 2D mappings
on the image are called image points. So, after printing out a chessboard and taking multiple
pictures of it from different angles to better capture the camera distortions, they can be fed to the
findChessboardCorners function, which returns the detected object points and corresponding
image points, which can be used to calibrate the camera.
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The calibrateCamera function, given the object points and image points by the find-
ChessboardCorners function, performs the following [14]:

• Computes the initial intrinsic parameters. The distortion coefficients are all set to zeros
initially.

• Estimates the initial camera pose as if the intrinsic parameters have been already known.

• Runs the global Levenberg-Marquardt optimisation algorithm [49] to minimise the repro-
jection error, that is, the total sum of squared distances between the observed feature
points imagePoints and the projected (using the current estimates for camera parame-
ters and the poses) object points objectPoints.

• The function returns a matrix with the intrinsic camera parameters and a matrix with the
distortion coefficients, which can be used to undistort input images.

6.2. Camera calibration implementation

This sub chapter will use the implementation of the above mentioned camera calibration
techniques (source code: Appendix 1.1, 1.2, 1.3), and demonstrate their results when applied
to the action camera used in the RC car hardware platform, which has an advertised 170 degree
FOV:

Figure 64: EleCam Explorer action camera
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First, a checker board pattern needs to be created and printed to be used as a calibra-
tion rig. The following example will be used for the undistortion demonstration for the above
mentioned camera:

Figure 65: Checkerboard calibration rig

The calibration rig should be printed and photographed from at least ten different angles,
to allow for precise calibration:

Figure 66: Calibration photo 1 Figure 67: Calibration photo 2
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After processing the calibration images using the implemented calibration function (source
code: Appendix 1.1), the function finds the following image points and maps them to the pre-
defined object points:

Figure 68: Found imagepoints 1

Figure 69: Found imagepoints 2
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The camera calibration functions can be used right before feeding an input image to the
neural network using the following code:

# At the beginning of run

getObjectAndImagePoints()

calibrateCamera(inputImage.shape[1::-1])

# For every input image to the NN

undistortedImage = undistortImage(inputImage)

# Pass it along to the NN

Using the image points found using the calibration images the calibration function (source
code: Appendix 1.2) can be called to obtain the undistortion matrix, which can then be used to
call the undistort function (source code: Appendix 1.3) and get the following results:

Figure 70: Undistorted image 1

Figure 71: Undistorted image 2
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7. Lane line extraction

This chapter will explain how to extract lane lines from raw images by performing a
perspective transform on every input image to get a birds-eye view of the road and converting
the image to HLS color space, extracting only the S channel and performing some thresholding
on it to extract only the lanes.

7.1. Mapping the 3D world on a 2D sensor plane

An inherent problem that comes with mapping a 3D world onto a 2D sensor plane,
which was also explained in the previous chapter, is that the 2D representation can’t perfectly
represent the real world, and shouldn’t be taken for granted. For humans, this is easy to
understand, but for a neural network that has only ever seen 2D images as inputs, it couldn’t be
faulted for believing in those incorrect representations as true. This is very visible when taking
an image of a road for an example:

Figure 72: An image of a highway

To the human reader, the image is a pretty normal image of a highway. No errors can
be obviously seen. But stepping into the shoes of a neural network that looks at it without any
previous knowledge of what the world, nontheless a road is, it could be fairly assumed that the
lane lines intersect somewhere in the distance. That assumption is argued by the illustration
on the following page:
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Figure 73: An image of a highway with visualized intersection of lane lines

Based on this image alone, it could be fairly hypothesised that the lane lines are not in
fact parallel, and that they get closer and closer as shown above, until they intersect. This is
what the RC car would see when looking at a road:

Figure 74: An image of simulated road

Figure 75: An image of simulated road with visualized intersection of lane lines
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The only way the RC car, the neural network, could possibly know that the lane lines
are parallel would be from real life experience and general knowledge about the world, or by
having a bird’s eye perspective in which the lane lines would obviously be parallel, as shown
below:

Figure 76: A bird’s-eye view of a highway

Luckily, one of the options is much easier than the other, so a method for transforming
the frog’s perspective of the car into a bird’s-eye view will be explained and implemented.

The first step in creating a perspective transform from a frog’s perspective to the bird’s-
eye view is to define a region of interest (ROI) that will take into account only the part of the
image that is of any interest to the RC car, and transform it into another perspective by mapping
those ROI coordinates to another set of defined coordinates.
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7.1.1. Implementing a perspective transform

The following simulated road image will be used as a starting point for the definition of
a ROI that will be transformed to a bird’s-eye perspective:

Figure 77: Starting perspective (320x180 pixels)

One region of interest could be defined using the following coordinates, illustrated on
the figure below:

# Define the region of the image we're interested in transforming

regionOfInterest = np.float32(

[[0, 180], # Bottom left

[112.5, 87.5], # Top left

[200, 87.5], # Top right

[307.5, 180]]) # Bottom right

Figure 78: Starting perspective
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Using the above shown ROI as the starting point, a bird’s eye perspective would mean
that the green and blue lines are parallel, so the following destination coordinates can be de-
fined:

# Define the destination coordinates for the perspective transform

newPerspective = np.float32(

[[80, 180], # Bottom left

[80, 0.25], # Top left

[230, 0.25], # Top right

[230, 180]]) # Bottom right

Figure 79: Starting perspective

Once the coordinates are, that’s actually it. The rest of the implementation just calls a
couple OpenCV functions, the first of which is cv2.getPerspectiveTransform, which takes in
the starting coordinates defined eariler (ROI) and the target coordinates and returns a matrix
with which the original image can be warped to the target perspective:

# Compute the matrix that transforms the perspective

transformMatrix = cv2.getPerspectiveTransform(regionOfInterest, newPerspective)

# Compute the inverse matrix for reversing the perspective transform

inverseTransformMatrix = cv2.getPerspectiveTransform(newPerspective, regionOfInterest)

This transformation actually isn’t that complicated, it’s actually pretty simple math which
generates a transformation matrix with which defines how to map some input to a defined
output. Also, to unwarp the image back into its original perspective, an inverse transformation
matrix can be obtained by calling the cv2.getPerspectiveTransform and simply switching the
coordinate parameters (see code above).
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Once a transformation matrix is calculated, input images can be warped to the destina-
tion perspective using cv2.warpPerspective:

# Warp the perspective

# image.shape[:2] takes the height, width,

# [::-1] inverses it to width, height

warpedImage = cv2.warpPerspective(image, transformMatrix, image.shape[:2][::-1], flags=cv2.INTER_LINEAR)

The end result is shown on the two figures below:

Figure 80: Starting perspective

Figure 81: Transformed perspective
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7.2. Extracting lane lines from the warped images

One other thing that can ease the detection of lane lines from the above warped im-
ages is actually just converting the image into another colorspace and selecting just one color
channel. OpenCV uses the blue, green, red (BGR) colorspace by default, which needs to be
converted into the hue, saturation and lightness (HSL) colorspace [50] to easier detect lane
lines:

# Convert the image to HLS colorspace

hlsImage = cv2.cvtColor(warpedImage, cv2.COLOR_BGR2HLS)

# Split the image into three variables by the channels

hChannel, lChannel, sChannel = cv2.split(hslImage)

Figure 82: RGB warped image

Figure 83: HSL warped image
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After separating the image into three HSL channels, displaying each one individually, it’s
visible that the saturation channel is strongly correlated with the lane lines on the image, since
the lane lines are always very saturated in color, be it regular white, orange or any hue inbe-
tween, which makes this method robust to varying lane line colors in different lighting conditions
or traffic situations:

Figure 84: Hue channel

Figure 85: Lightness channel

Figure 86: Saturation channel

59



There’s one more thing that could make the lane lines pop out, as opposed to the lightly
activated pixels on the asphalt, the sand on the right and the RC shadow in the middle of the
lane: a simple thresholding of the values of the saturation channel image, which means keeping
only the pixels that are above a certain level of saturation.

# Threshold the S channel image to select only the lines

lowerThreshold = 65

higherThreshold = 255

# Threshold the image, keeping only the pixels between the lower and higher

threshold↪→

returnValue, binaryThresholdedImage =

cv2.threshold(sChannel,lowerThreshold,higherThreshold,cv2.THRESH_BINARY)↪→

# Since this is a binary image, convert it to a 3-channel image so OpenCV can use it

# Doesn't really matter if RGB/BGR/anything else is used

thresholdedImage = cv2.cvtColor(binaryThresholdedImage, cv2.COLOR_GRAY2RGB)

Figure 87: Thresholded S channel

Further on in the thesis, during the advanced custom model implementation, the thresh-
olding of images as shown above will be used for image processing and input to the neural
network. Another method that was tried during the writing of this thesis was taking a histogram
of the above shown figure, which can easily be done by just summing up the values of the pix-
els by the X-axis (column), since it is a binary image whose pixels have values of either 0 and
1, and then using the histogram as a starting point for searching lane lines in the thresholded
image and fitting a polynomial to the two separate lines, as shown below:

Figure 88: Histogram of the thresholded S channel
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Figure 89: Overlaid histogram over the thresholded S channel

Figure 90: Visualized fitted polynomial on an unwarped image

The two main reasons why the method above wasn’t used are:

• It’s computationally expensive to do all of the processing and fitting for every single frame

• It can go haywire if the car moves the slightest out of the predefined ROI, and even if it’s
quickly corrected, since it uses the previous frames as a start for the next one, to be more
computationally efficient, it would take some time for it to correct itself.

• Not using the previous frame and doing all of the work for every single frame was also
tried, and it takes a lot of computational power to do so.

• Also, it’s not ideal that the model relies so much on feature engineering and extraction, it’s
preferable for it to be more robust, even if it means it will be harder to train or take longer to
train. By simply passing the thresholded image to a small convolutional network, it should
be able to get all the information it needs from it, and it should be way less computationally
expensive in the long run, even if a couple of additional convolutional layers were added
to the model. Even if the fitted polynomials were passed to the network, it’d still have to be
trained to interpret them, and taking into consideration the results of the short tests done,
the conclusion was made that it would be less robust and even more computationally
expensive to do so.
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8. Artificial intelligence

This chapter describes the process of modelling, implementing and training custom
neural networks that control the RC car through their outputs. The chapter will briefly introduce
some of the basic building blocks of neural networks used, such as convolutions and dense
layers, as well as their activation functions and ways of regularizing them.

The process of implementing a custom network architecture using Keras and interfacing
it with the RC car using DonkeyCar will be described, after which a test model will be created
using one of the first self-driving RC car models created. Then, new proposed architecture for
modelling self-driving behaviour will then be proposed, implemented and trained to demonstrate
its feasibility.

8.1. Convolutions

In the context of neural networks, Goodfellow et al. [51] define the convolutional opera-
tion as:

convolution(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (8.1)

Where the I denotes a two-dimensional image input, the K defines the kernel and the i, j

arguments denoting the input indices. The output of the convolutional operation is often reffered
to as the feature map. [51] They also define convolutional networks as: "... simply neural
networks that use convolution in place of general matrix multiplication in at least one of their
layers". [51] The use of convolutions was first proposed by Fukushima in his Neocognitron
paper, but the modern approach as they’re used today was proposed by LeCun, Bengio, et al.
in their Convolutional networks for images, speech, and time series paper.

Convolutional layers will be used throughout this thesis in order to map features from
two-dimensional input images.

8.2. Dense layers

Dense, or fully connected layers are layers between which every unit (neuron) from one
layer is connected with every other neuron from the other layer. Dense layers take the output
from the previous layer as their input, which is then multiplied by the weights that connect the
two layers and passed through an activation function to calculate the output for each unit in the
layer.

These layers will be used throughout the thesis to let the network learn the mapping
of the output feature maps from the convolutional networks to the output values (steering and
throttle) of the network.
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8.3. Activation functions

Activation functions are mathematical functions used in neural network units whose
input is a weighted sum of the unit input an added bias value, which bind the input value to a
range defined by the selected mathematical function that tells the neural network should the
neuron be activated or not.

A wide range of mathematical functions can be chosen as the activation function for a
given unit, but their purpose is often to introduce a non-linearity to the unit output, so various
non-linear mathematical functions are chosen.

8.3.1. Rectified Linear Unit

The rectified linear unit (ReLU) is one of the most widely used activation functions today.
It was first introduced by Hahnloser, Sarpeshkar, Mahowald, et al. in 2000., later used in the
context of object recognition by Jarrett, Kavukcuoglu, Ranzato, et al. in 2009. and finally was
popularized by Nair and Hinton in the context of restricted boltzmann machines in 2010.

ReLU improved on the sigmoid activation function, that was widely used until the paper
on Restricted Boltzmann Machines in 2010, by simplifying it while still keeping its non-linear
form.

The ReLU function is defined as:

f(x)


x when x=>0

0 when x<0

(8.2)

The figure below shows the plot of the ReLU activation function:

Figure 91: ReLU activation function

One significant downside when using the ReLU activation function is the possibility of
dying ReLU, which occurs when a large negative value gets input to the activation function,
which causes the unit in question to basically never activate again. To solve this problem,
another activation function that builds on ReLU can be used.
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8.3.2. Leaky ReLU

Leaky ReLU was introduced by Maas, Hannun, and Ng in 2013. as a method of solving
the dying ReLU problem by introducing a parameter that defines a percentage of the value to
keep if the activation input is negative.

The Leaky ReLU function is defined as:

f(x)


x when x=>0

α · x when x<0

(8.3)

The α parameter can be set to any value, with the α = 0.3 being the default setting in
the Keras framework. The figure below shows the Leaky ReLU function plot with two possible
α settings:

Figure 92: Leaky ReLU with α = 0.3

Figure 93: Leaky ReLU with α = 0.03

The α parameter can also be treated as a parameter that the network should learn,
which was proposed by He, Zhang, Ren, et al. in 2015 and called Parametric ReLU (PReLU).
For the purposes of this thesis, through experimentation, it was determined that the Leaky
ReLU activation function solved the dying ReLU problem appropriately, so PReLU will not be
used as not to increase the number of parameters the network should learn, at the possible
expense of improved performance.
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8.4. Regularization layers

Goodfellow et al. state that: "A central problem in machine learning is how to make
an algorithm that will perform well not just on the training data, but also on new inputs. Many
strategies used in machine learning are explicitly designed to reduce the test error, possibly at
the expense of increased training error." [51]

Two regularization layers that will be used throughout this thesis are dropout regulariza-
tion and batch normalization.

8.4.1. Dropout regularization

To stop the model from overfitting the data, some neurons can be deliberately disabled
while training the model. This in turn causes the model to be unable to rely on just a particular
set of neurons, or a pathway of neurons, so it has to train multiple subsets of neural nets, which
makes it much more difficult to overfit the data, since it never knows when some of the neurons
will be knocked out. This method is called dropout regularization, which was introduced by
Srivastava, Hinton, Krizhevsky, et al. in 2014.

8.4.2. Batch normalization

Another method of regularizing is batch normalization, which reduces internal covariate
shift that its creators, Ioffe and Szegedy (2015.), define as: "... the change in the distribution of
network activations due to the change in network parameters during training.".

Simplified, the output of the first layers feed into the subsequent layers, and so on which
means that changing the parameters of a layer causes the distribution of inputs to subsequent
layers to change, which batch normalization prevents.

8.5. Using a custom model with Donkey

All of the predefined Donkey models can be found in the keras.py script in the parts
directory of the Donkey project. Donkey provides users with a base class called KerasPilot
which provides an interface between Donkey and Keras by implementing several helper func-
tions.

This class can be inherited by creating a new subclass, and a custom model can be
implemented by specializing the model compilation and run functions. This subchapter will
demonstrate an implementation, training and testing of a custom neural network architecture
using Keras and DonkeyCar.
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8.5.1. Creating a first custom model

Since the goal of this section is to only demonstrate how to create and use a custom
model with Donkey, a model designed by Bojarski, Del Testa, Dworakowski, et al. from Nvidia
will be used. The Nvidia team based their project on previous work made for the Defense
Advanced Research Projects Agency (DARPA) seedling project known as DARPA Autonomous
Vehicle (DAVE) [62], in which a sub-scale radio control (RC) car drove through a junk-filled
alley way, which seems like a fitting way to start the custom architecture modeling for this
thesis, by honouring the very beginning of autonomous RC cars. The architecture that will be
implemented is shown below:

Figure 94: Nvidia model architecture
(Source: Bojarski, Del Testa, Dworakowski, et al.)

The architecture consists of 9 layers, including a normalization layer, 5 convolutional
layers, and 3 fully connected layers. The authors explain that [61]:

• The first layer of the network performs image normalization. The normalizer is hard-coded
and is not adjusted in the learning process. Performing normalization in the network
allows the normalization scheme to be altered with the network architecture, and to be
accelerated via GPU processing.
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• The convolutional layers are designed to perform feature extraction, and are chosen em-
pirically through a series of experiments that vary layer configurations. We then use
strided convolutions in the first three convolutional layers with a 2×2 stride and a 5×5
kernel, and a non-strided convolution with a 3×3 kernel size in the final two convolutional
layers.

• We follow the five convolutional layers with three fully connected layers, leading to a final
output control value which is the inverse-turning-radius. The fully connected layers are
designed to function as a controller for steering, but we noted that by training the system
end-to-end, it is not possible to make a clean break between which parts of the network
function primarily as feature extractor, and which serve as controller.

The first step in a custom model implementation compatible with DonkeyCar is to create
a new class named nvidia.py which inherits the base KerasPilot class and implements all
necessary methods:

from donkeycar.parts.keras import KerasPilot

class NvidiaModel(KerasPilot):

def __init__(self, num_outputs=2, input_shape=(120, 160, 3), *args, **kwargs):

super(NvidiaModel, self).__init__(*args, **kwargs)

self.model = customArchitecture(num_outputs, input_shape)

self.compile()

def compile(self):

self.model.compile(optimizer="adam",

loss='mse')

def run(self, img_arr):

img_arr = img_arr.reshape((1,) + img_arr.shape)

steering, throttle = self.model.predict(img_arr)

return steering[0][0], throttle[0][0]

To make the new class usable with Donkey, a new type of model has to be defined in
Donkey’s utils.py script, inside the get_model_by_type function:

elif model_type == "nvidia":

from donkeycar.parts.nvidia import NvidiaModel

kl = NvidiaModel(input_shape=input_shape)
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The next step is implementing the architecture shown above (Figure: 94) in Keras:

def customArchitecture(num_outputs, input_shape):

img_in = Input(shape=input_shape, name='img_in')

x = img_in

# Dropout rate

keep_prob = 0.9

rate = 1 - keep_prob

# Convolutional Layer 1

x = Convolution2D(filters=24, kernel_size=5, strides=(2, 2), input_shape =

input_shape)(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 2

x = Convolution2D(filters=36, kernel_size=5, strides=(2, 2),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 3

x = Convolution2D(filters=48, kernel_size=5, strides=(2, 2),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 4

x = Convolution2D(filters=64, kernel_size=3, strides=(1, 1),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 5

x = Convolution2D(filters=64, kernel_size=3, strides=(1, 1),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Flatten Layers

x = Flatten()(x)

# Fully Connected Layer 1

x = Dense(100, activation='relu')(x)

# Fully Connected Layer 2

x = Dense(50, activation='relu')(x)

# Fully Connected Layer 3

x = Dense(25, activation='relu')(x)

# Fully Connected Layer 4

x = Dense(10, activation='relu')(x)

# Fully Connected Layer 5

x = Dense(5, activation='relu')(x)

outputs = []

outputs.append(Dense(1, activation='linear', name='n_outputs1')(x))

outputs.append(Dense(2, activation='linear', name='n_outputs1')(x))

model = Model(inputs=[img_in], outputs=outputs

return model

After training on a small dataset (<5000 records), the Nvidia architecture sucessfuly
navigates the basic simulator track, albeit not perfectly, but successfully nonetheless. This
means that the approach works and that it can be used for creating a more complex custom
architecture.
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8.6. Optimizing and training a model

The following subchapters were written through a longer period of time with the knowl-
edge obtained through experimentation and model training, and through best practices shared
in the literature and the machine learning community. Two most notable sources of insights and
ideas behind the instructions written below are the Deep Learning book written by Goodfellow
et al. [51] and the Deeplearning.ai specializations made by Andrew Ng [63].

8.6.1. Data preparation

The first step in preparing a dataset for training use is to split the dataset into multiple
parts that serve a specific training, validation and testing purpose. One common practice is to
split the data into three parts, explained in the following subchapter.

8.6.1.1. Training set, cross validation/dev set and test set

Figure 95: Training set, cross validation/dev set and test set

• A model can be trained the training set, and validated using the dev set.

• Since the dev set is used to tune the model hyperparameters, they’re being fit to the data
in the dev set. That’s why after choosing the exact hyperparameters wanted and after
completely training the model, it should be tested using the test set, which is data it has
never ever seen before, and provides a "real-world" benchmark on how it performs.

8.6.1.2. Splitting the data (size-wise)

• If a small amount of data is used, in the tens of thousands the pre big-data way of splitting
the data can be used:

– 60% for the training set

– 20% for the dev and 20% for the test set

• If the dataset has millions of records:

– 1%, or about 10 000 examples can be used for the dev/test sets

– 99% for the training set

• If the dataset has hundreds of millions of records or more:

– 99.5% can be used for the training set

– about 0.4% for the dev set

– and about 0.1% for the test set
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8.6.1.3. Data distribution

It is important to make sure that the training and dev/test sets come from the same
distribution. An example would be:

• If the training data is really high in resolution, but the data used during inference is lower
quality due to lower resolutions, shaky camera, dirty lenses, and so on, the model won’t
perform well.

• The training data should be as similar as possible to real world data used during inference,
and as much possible situations should be covered, which includes different weather
conditions, bumpy roads, and so on.

The main reason for this type of mismatch is that when there isn’t enough training data,
it is easily acquireable through other sources, for an example if a YouTube video of a car driving
around town that has a super high res camera was taken and added to the training data, while
the RC car has a low resolution camera used during inference.

8.6.1.4. Determining if a model has high variance or bias (or both)

• High variance: the model is overfitting the training data and performing poorly on new
unseen data.

• High bias: the model isn’t even performing well on the training data.

• High bias and high variance: the model underfits the training data but performs even
worse on the dev data.

• By looking at how well the model performs on the training data, it can be determined how
much bias it has; if it has a low error, it has a low bias, if it has a large error, it has large
bias.

• By looking at how well the model performs on the dev set, it can be determined how much
variance it has; if it performs much worse than on the training set, it has high variance, if
it performs slightly worse or the same, it has low variance and generalizes well.
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8.6.2. Basic training recipe

• The model should perform well on the training data (low bias)

• The model should perform well on the dev set data (low variance)

8.6.2.1. Solving high bias

• Almost always works: Try a bigger network: more hidden layers, more hidden units.

• Sometimes works, but never hurts: Try training it longer: give it more time or use more
advanced optimization algorithms.

• Maybe it’ll work, maybe it won’t: Try finding a better neural net architecture: try finding
an architecture that’s proven to work for the specific problem the network should solve.

• Consider asking: is this even possible to do? If a classifier is being trained on very blurry
low res images, is it even possible to do so? What is the base error for that problem?

8.6.2.2. Solving high variance

• Best way to solve it: Get more data, it can only help. But sometimes it’s impossible to
get more data.

• Almost always helps: Regularization

• Maybe it’ll work, maybe it won’t: Try finding a better neural net architecture. Same as
for the large bias problem.

8.6.3. Regularization

To gain some intuition about regularization in neural nets, a walk through implementing
L2 regularization in a neural net is described below. Since this thesis will be dealing mostly with
computer vision with the self-driving RC car, batch normalization and dropout regularization will
most likely be used rather than L2, which are used much more often in computer vision.

If a cost function is defined as:

J (w[1], b[1], ..., w[l], b[l]) =
1

n

n∑
i=1

L(ŷ(i), y(i)) (8.4)

It can be regularized by adding a regularization term:

J (w[1], b[1], ..., w[l], b[l]) =
1

n

n∑
i=1

L(ŷ(i), y(i)) + λ

2n

l∑
l=1

||w[l]||2 (8.5)
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The first part of the equation uses the regularization parameter λ, which is a hyperpa-
rameter to be tuned using the dev set, and divides it by 2n, which is just a scaling constant.
The second part uses the Frobenius norm [64] (the L2 norm of a matrix), which sums up the
squares of all the elements of all w matrices used:

||w[l]||2 =
nl∑
i=1

n[l−1]∑
j=1

(w
[l]
i,j)

2 (8.6)

w is a (n[l], n[l−1]) dimensional matrix, where the first dimension represents the number
of units in the l-th layer, and the second represents the number of units in the previous layer.

When implemented, during backprop the W [l] matrix gets multiplied by λ
n , a number

slightly smaller than 1, which is why it’s also called weight decay [51], since the weight loses
just a bit of it’s value.

8.6.3.1. Why regularization helps

If the λ parameter in the regularization term below is set to a large value, it will set the
values of w[l] very close to zero.

J (w[1], b[1], ..., w[l], b[l]) =
1

n

n∑
i=1

L(ŷ(i), y(i)) + λ

2n

l∑
l=1

||w[l]||2 (8.7)

So what happens if w[l] is close to zero? It will cause z[l] to have a very small range of
values, close to zero.

z[l] = w[l]a[l−1] + b[l] (8.8)

If tanh(z) is used as the activation function:

Figure 96: tanh(z)
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If the value of z[l] can be only a small range of values close to zero, the activation
function will start looking like a linear function, as shown below:

Figure 97: tanh(z)

Which in turn means every layer in the neural network will begin to look like a linear
layer, which will cause the network to be able to approximate only a linear function to the
dataset, which will cause the model to go from high variance to high bias.

Of course, λ parameter shouldn’t ever be set to a very large value, and setting it to a
reasonable value will get rid of a high variance problem and not cause high bias instead.

8.6.3.2. Applying regularization layers

To decrease variance, the dropout and batch normalization layers described in the ear-
lier chapters will be used throughout the thesis.

8.6.4. Defining custom metrics for model performance

First, two terms will be defined using a classifier example; precision and recall.

• Precision: of the examples that the classifier recognizes as X, how many examples
actually are X.

• Recall: of the examples that are actually X, how many of them does the classifier recog-
nize as X.

These two metrics can be combined into a single number as a harmonic mean [65] of
the two, which is often called the F1 score [66]:

F1 =
2

1
precision + 1

recall

(8.9)
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Now an example of trying to decide between three implementations of a classifier with
3 possible classes will be used:

Implementation/Classes A (precision) A (recall) B (precision) B (recall) C (precision) C (recall)

First implementation 95% 90% 89% 88% 92% 89%
Second implementation 93% 89% 92% 90% 92% 90%
Third implementation 89% 88% 95% 93% 90% 89%

Table 1: Deciding between three classifiers

From the table above, it is difficult to tell which classifier performs the best. This is what
the table would look like if the F1 score was used for all of the possible classes:

Implementation/Classes A (F1 score) B (F1 score) C (F1 score)

First implementation 92.4% 88.5% 90.5%
Second implementation 91% 91% 91%
Third implementation 88.5% 94% 89.5%

Table 2: F1 score

Looks much simpler than the first table, but still could be simpler. Since the goal is most
probably to make the classifier work as best as possible over all classes, take the average of
all of the 3 F1 scores can be calculated to get one simple number that measures how well the
classifier works:

Implementation/Classes Average F1 score

First implementation 90.5%
Second implementation 91%
Third implementation 90.7%

Table 3: Averaged F1 score

The example above could’ve easily had a hundred different classes, with a dozen differ-
ent implementations. That would’ve been impossible to look at even if F1 scores were used for
every class.

When trying out a bunch of different values of hyperparameters and implementation de-
tails, it’s much faster to iterate and much easier to decide between all possible implementations
if a single number is calculated that describes how well it performs. This is a pretty good way
to get one, even considering the amount of some fine-grained details lost during the process.
Those details can always be looked up after eliminating some implementations, while keeping
only a few of the best ones to decide from.
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8.6.5. Minimum requirements of the model

One important thing to notice is that there could be other important metrics to look at
other than how accurate a classifier is.

A classifier that classifies obstacles the car will collide with if not avoided will be used.
Surely, the goal is to correctly classify as much of those as possible, so a table is created using
the previously mentioned metrics:

Classifier/Score F1 score

First classifier 92%
Second classifier 97%
Third classifier 99%

Table 4: Three classifiers compared

One could assume that the best classifier is the third one, which would be correct but
only in terms of it correctly classifying as much of the objects in the car’s path as possible, but
there is one thing the table above doesn’t take into account: the time it takes it to classify an
object.

Classifier/Score F1 score Average runtime

First classifier 92% 20 ms
Second classifier 97% 70 ms
Third classifier 99% 3000 ms

Table 5: Minimum requirements

So while the third classifier would recognize most of the objects the car was on a colli-
sion path with, by the time that it did, the car would have already crashed into them. Taking that
in mind, the second classifier is obviously the better choice.

So it’s important to keep in mind that while trying to optimize one of the metrics of the
model, it is also important to pay attention to the other minimum requirements the model must
have in order to actually be usable in the real world, as per the above real-time necessary
example.
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8.6.6. Data augmentation

The following track will be taken as an example of a track that the RC car would be
trained on:

Figure 98: Melbourne Grand Prix Circuit
(Source: Reina)

After running a few laps on the track and saving the data, if the track was driven around
in the standard counter-clockwise direction, the model will inadvertently be slightly biased to
always turn a bit to the left. The reason for this is that globally, the car is always turning a bit to
the left. So if only this data is included in the training set, the car will always be inclined to turn
just a bit to the left.

Figure 99: Melbourne Grand Prix Circuit
(Adapted from: Reina)
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A way of solving this, other than driving around the track in both directions, is to create
mirrored copies of all the images in the dataset:

Figure 100: Melbourne Grand Prix Circuit
(Adapted from: Reina)

8.6.7. Early stopping

When training the model, the validation error should get lower over time, following the
training error curve, but then at one moment it takes off and get much worse over time. One
possible solution is stopping the training early, when the validation error starts to increase:

Figure 101: Early stopping
(Source: [68])

But by doing so, two optimization problems that were being solved as separate before
are now coupled:

• The optimization of the cost function

• The prevention of overfitting to the dataset

By doing so, it will be impossible to maximally minimize the cost function, since it’s
obvious that the error could get much lower if the training wasn’t stopped early, because it is
simultaneously trying not to overfit the data.
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8.6.8. Hyperparameter optimisation

One of the most important parts of training a model to perform well is to choose hy-
perparameters. They can be choosed by using the tools that come with machine learning
frameworks, or they can be manually tuned by changing the values by a small amount and
seeing the resulting effect on the model performance. Hyperparameters in order by importance
are:

• learning rate (alpha)

• beta, number of hidden units, mini-batch size

• number of layers, learning rate decay

Hyperparameters should also be re-evaluated every once in a while, because as the
amount of data increases, the ones chosen beforehand are perhaps no longer the best ones.
This is often reffered to as hyperparameters getting stale. They can also get stale if a new
GPU/CPU is used, the network is changed a bit or for any number of reasons.
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9. Modeling and training the RC car to autonomously
drive and perform behaviours

This chapter will introduce a new proposed type of network architecture which is based
on training multiple specialized subnetworks in an architecture whose outputs would converge
into a final decision-making layer. The chapter will explain the idea and reasoning behind
the proposed architecture, explore similar ideas used in the industry and will demonstrate the
plausibility of the proposed architecture by implementing two iterations of a model based on the
architecture with iterative addition of specialized subnetworks, the first of which will extract lane
lines from raw images using methods described in earlier chapters, and second of which will
allow the car to perform behaviours, where lane changing behaviour will be used as a proof of
concept.
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9.1. First iteration of the new proposed network architecture

First, the image below will show the architecture diagram of the neural network architecture that will be proposed, for easier understanding
and reference further on:

Figure 102: First iteration of the proposed architecture

The model will consist of two parallel CNNs, each of which end with a dense 100-unit layer, which are then concatenate and passed through
three additional dense layers, and end with two linear activations. The model has about 6.5 million parameters, which take up about 2GB of VRAM,
so it should be runnable on the Jetson Nano with half as much RAM to spare. One CNN takes the raw image as its input and the other takes a
thresholded image using the extraction procedure explained in the previous chapter.
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9.2. The idea of teaching a vehicle to drive autonomously

While true that a whole separate (and rather big) CNN is an overkill for the thresholded
binary image, the main reason for doing it is testing if its possible to have multiple specialized
parts of the architecture all siphon in to a smaller final part (the last n dense layers) in order for
the car to make a decision where to steer and how much to throttle, which is more or less how
drivers do everything while they’re in a car, parking, driving, they just combine multiple inputs:

• Checking their mirrors and dead angle to make sure they’re safe to do a maneuver

• Recognizing a sign that says what exit they should take in order to get to their destination

• Actually knowing where they are with respect to that exit and by what path can they get
to it

• Actually give the appropriate steering and throttle to actually perform the maneuver

As seen above, no matter what the driver is doing in a car, be it parking, changing
lanes or driving to a destination, all they can really do to control the car is turn the steering
wheel and control its speed (assuming no gear shifting), they’re just taking in the input from
their surroundings, mostly using their eyes, which they analyze through a series of specialized
procedures which ultimately lead them to control their car based on the decisions they’ve made,
in order to perform a maneuver.

So what was intended as the final part of this thesis is to have a series of specialized
parts in the net, which could even be call smaller subnets, which would take the input images
and extract highly specific data from it, using (relatively) specialized procedures, which would
then plug into the final layer, along with the first convolutional network that uses the raw input
image, which should give the final part of the network enough context about the world and
enough information in order to appropriately control the RC. The above idea, explained using a
diagram, would look something like this:

Figure 103: Multiple specialized subnets architecture diagram
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While implementing the above described architecture, a similar idea was described by
Karpathy in the Pytorch at Tesla presentation, where the author described the use of a single
large shared backbone out of which 48 networks with a total of 1000 output predictions emerge,
which are called HydraNets. [69] The described approach used at Tesla makes more sense
than the architecture shown in the diagram above, since it uses a single large shared backbone
to enable the 48 separate networks to share the knowledge about the world that they would
otherwise have to learn separately, but further on in the thesis, it will be shown that the archi-
tecture with multiple specialized subnets converging into one final dense layer also performs
well.

9.2.1. Implementing the proposed architecture

The first step, as mentioned earlier, is to create a new class file, which will be named
orimodel.py :

class OriModel(KerasPilot):

'''

Custom model that takes an input image and feeds it and a preprocessed version

of it to the model.↪→

The preprocessing converts the image to HSL color space, extracts the S channel

and thresholds it.↪→

The thresholded S channel is passed to the model to help find lane lines easier.

'''

def __init__(self, model=None, input_shape=(180, 320, 3), *args, **kwargs):

super(OriModel, self).__init__(*args, **kwargs)

self.model = oriModel(inputShape=input_shape)

self.compile()

def compile(self):

self.model.compile(optimizer=self.optimizer,

loss='mse')

The model performs the lane extraction procedure at runtime, which was benchmarked
and made sure that it doesn’t in any way bottleneck or impact the inference performance:

def run(self, inputImage):

# Preprocesses the input image for easier lane detection

extractedLaneInput = self.processImage(inputImage)

# Reshapes to (1, height, width, channels)

extractedLaneInput = extractedLaneInput.reshape((1,) +

extractedLaneInput.shape)↪→

inputImage = inputImage.reshape((1,) + inputImage.shape)

# Predicts the output steering and throttle

steering, throttle = self.model.predict([inputImage, extractedLaneInput])

print("Throttle: %f, Steering: %f" % (throttle[0][0], steering[0][0]))

return steering[0][0], throttle[0][0]
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The lane extraction methods are also included as class methods:

def warpImage(self, image):

# Define the region of the image we're interested in transforming

regionOfInterest = np.float32(

[[0, 180], # Bottom left

[112.5, 87.5], # Top left

[200, 87.5], # Top right

[307.5, 180]]) # Bottom right

# Define the destination coordinates for the perspective transform

newPerspective = np.float32(

[[80, 180], # Bottom left

[80, 0.25], # Top left

[230, 0.25], # Top right

[230, 180]]) # Bottom right

# Compute the matrix that transforms the perspective

transformMatrix = cv2.getPerspectiveTransform(regionOfInterest, newPerspective)

# Warp the perspective - image.shape[:2] takes the height, width, [::-1]

inverses it to width, height↪→

warpedImage = cv2.warpPerspective(image, transformMatrix, image.shape[:2][::-1],

flags=cv2.INTER_LINEAR)↪→

return warpedImage

def extractLaneLinesFromSChannel(self, warpedImage):

# Convert to HSL

hslImage = cv2.cvtColor(warpedImage, cv2.COLOR_BGR2HLS)

# Split the image into three variables by the channels

hChannel, lChannel, sChannel = cv2.split(hslImage)

# Threshold the S channel image to select only the lines

lowerThreshold = 65

higherThreshold = 255

# Threshold the image, keeping only the pixels/values that are between lower and

higher threshold↪→

returnValue, binaryThresholdedImage =

cv2.threshold(sChannel,lowerThreshold,higherThreshold,cv2.THRESH_BINARY)↪→

# Since this is a binary image, we'll convert it to a 3-channel image so OpenCV

can use it↪→

thresholdedImage = cv2.cvtColor(binaryThresholdedImage, cv2.COLOR_GRAY2RGB)

return thresholdedImage

def processImage(self, image):

warpedImage = self.warpImage(image)

# We'll normalize it just to make sure it's between 0-255 before thresholding

warpedImage = cv2.normalize(warpedImage,None,0,255,cv2.NORM_MINMAX,cv2.CV_8U)

thresholdedImage = self.extractLaneLinesFromSChannel(warpedImage)

one_byte_scale = 1.0 / 255.0

# To make sure it's between 0-1 for the model

return np.array(thresholdedImage).astype(np.float32) * one_byte_scale
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Finally, the model implementation in Keras starts by defining the input layers:

def oriModel(inputShape):

# Dropout rate

keep_prob = 0.9

rate = 1 - keep_prob

# Input layers

imageInput = Input(shape=inputShape, name='imageInput')

laneInput = Input(shape=inputShape, name='laneInput')

The first convolutional neural network takes the extracted lane image as its input and
performs a series of convolutions, using dropout regularisation and the Leaky ReLU activation
function in order to mitigate the dying ReLU problem described earlier:

# Input image convnet

x = imageInput

x = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_imageInput_1")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_imageInput_2")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_imageInput_3")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_4")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_5")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Flatten(name="flattenedx")(x)

x = Dense(100)(x)

x = Dropout(rate)(x)
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The second, generalized convolutional neural network takes in the raw image as its input in
order to gain as much information and contextual knowledge about the world as possible, and
also uses dropout regularisation and the Leaky ReLU activation function:

# Preprocessed lane image input convnet

y = laneInput

y = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_laneInput_1")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_laneInput_2")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_laneInput_3")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_4")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_5")(y)

y = LeakyReLU()(y)

y = Flatten(name="flattenedy")(y)

y = Dense(100)(y)

y = Dropout(rate)(y)

Finally, both feature maps created by the two convolutional neural networks can be converged
into the third and final decision-making neural subnetwork, comprised of three dense layers
and two output neurons that produce steering and throttle values for the RC car:

# Concatenated final convnet

c = Concatenate(axis=1)([x, y])

c = Dense(100, activation='relu')(c)

c = Dense(50, activation='relu')(c)

# Output layers

steering_out = Dense(1, activation='linear', name='steering_out')(o)

throttle_out = Dense(1, activation='linear', name='throttle_out')(o)

model = Model(inputs=[imageInput, laneInput], outputs=[steering_out,

throttle_out])↪→

return model

The model was trained using about 10 000 records made using the simulator on a ran-
domly generated track. The training lasted for 12 epochs which took 21m 45s on an RTX 2060.
The final validation loss was 0.003665 and the model has been tested and can successfully
autonomously navigate a completely different, randomly generated track with some minor error
(2-3 lane crossings) while staying on the road throughout the entire track.
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The graphs below show the progress of the model training, specifically the model train-
ing loss, the model validation loss and the training loss overlaid on the validation loss:

Figure 104: Training and validation loss graph

Figure 105: Training loss

Figure 106: Validation loss
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9.3. Second iteration of the new proposed network architecture

As before, first the architecture diagram will be shown below:

Figure 107: Second iteration of the proposed architecture

The new architecture just incrementally adds a new specialized subnetwork that is resposnible for learning behaviours. The behavioural
subnetwork is consisted of three small dense layers which converge into the last decision-making subnetwork. It can be seen on the right side of
the diagram, just before the first 100-unit dense layer of the last subnetwork.
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9.3.1. Recording behavioural data

If a network is going to be trained for certain behaviours, it needs labeled training data
with said behaviours. This can be done in many ways, even make other networks trigger
certain behaviours, for an example if a classifier detects a stop sign, it could trigger a stopping
behaviour. But for this proof of concept, a simple button click on a controller will be used.

DonkeyCar comes with some support for behavioural data recording and networks,
which can be enabled by setting an appropriate variable in the configuration file. Then, a list of
behaviours can be defined which are then mapped to an instance of the BehaviourPart class,
which allows iterating through a given list of behaviours or explicit behaviour setting using the
built-in class methods:

# List of behaviours

behaviours = ['Left_Lane', 'Right_Lane']

# Example behavioural data that the BehaviourPart class writes

# If a certain behaviours is triggered or iterated through

"behavior/state": 0,

"behavior/label": "Left_Lane",

"behavior/one_hot_state_array": [1.0, 0.0]

As explained earlier, a custom controller mapping can be used to map a button to the
BehaviourPart method which iterates through a list of behaviours:

# The function which is used to set a button press to trigger a function

def set_button_down_trigger(self, button, func):

# assign a string button descriptor to a given function call

self.button_down_trigger_map[button] = func
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9.3.2. Incrementally adding a behavioural subnetwork to the previ-
ously implemented model

The previous model implementation can just be upgraded by adding a behavioural sub-
network:

# New input layer

behaviourInput = Input(shape=(numberOfBehaviourInputs,), name="behaviourInput")

# ConvNet parts ...

# Behavioural net

z = behaviourInput

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

# Concatenating the convolutional networks with the behavioural network

o = Concatenate(axis=1)([z, c])

o = Dense(100, activation='relu')(o)

o = Dense(50, activation='relu')(o)

# Output layers ...

# Update the model inputs

model = Model(inputs=[imageInput, laneInput, behaviourInput], outputs=[steering_out,

throttle_out])↪→

The number of behaviour inputs should also be passed as an input to the OriModel
class constructor, and the behavioural data as an input to the model. That way any number of
behaviours can be easily trained.

After training the second iteration of the architecture on a even smaller dataset of
around 10 000 records with about 20 lane changes for 13 epochs, the final validation loss
was 0.003947. The model has been tested and the RC car can autonomously navigate a com-
pletely different, randomly generated track with behaviours performed without any issues while
staying on the road throughout the entire track.

Figure 108: Training and validation loss graph
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10. Testing the implemented proposed architecture

After performing a basic sanity check by training the implemented proposed architecture
and verifying everything works as intended, the network was trained on a larger, but relatively a
still very small data set which consisted of about 25 000 records with around 50 lane changes,
generated using the simulator, due to constraints in available real world space which wouldn’t
allow such a complex track to be generated. The trained model was then tested in the simulator,
which allows more difficult tests with a random complex generated track. The RC car success-
fully navigated the complete track, while performing lane changing behaviours on demand.

The RC car starts in the left lane behaviour and follows the track while staying in the left
lane:

Figure 109: Simulator testing: Left lane behaviour

When a lane line changing behaviour is triggered, the RC car performs a switching
manoeuvre, which the RC car has implicitly learned to delay if a tight corner is being made with
higher speeds by following the data set examples:

Figure 110: Simulator testing: Switching to right lane behaviour
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The RC car then stays in the right lane while following the track, until a lane changing
behaviour is triggered again:

Figure 111: Simulator testing: Returning to left lane behaviour

Due to the aforementioned real world constraints such a complex track could not be
made since a very large surface area would be necessary. The reason being that the RC car
model is a scale 1:10 model which means the turn radius of each wheel must be no larger
than 15 degrees, and the turn radius of the car cannot be larger than 30 degrees, which in
turn requires a larger surface area for corners and lanes. That being said, a smaller, very
simple track was made to test just the lane keeping behaviour, which the RC car successfully
navigated with minimal errors:

Figure 112: Real track testing: lane keeping
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11. Conclusion

The thesis resulted in a fully functional custom hardware platform with an end-to-end
machine learning pipeline that allows automated data collection and labelling, with complex
models such as the second iteration of the proposed architecture implementation which allows
the car to autonomously navigate randomly generated, never before seen tracks and even per-
form behaviours. The rapid prototyping pipeline has also proved functional, with the trained
models even being interchangeable between the simulated vehicle and the real one, which
could be used as a valuable tool for pre-training real vehicles to mitigate the otherwise unavoid-
able errors at the beginning stages of an autonomous vehicles training.

There are a number of avenues of further research, from applying reinforcement learn-
ing to the simulated environment to modelling even more complex behaviours and specialised
sub-nets in the proposed, and experimentally proven architecture. The following sub-chapters
will go through some of the hard-learned lessons, insights and suggestions for others that may
try and reproduce this project.

11.1. RC car limitations

One of the biggest obstacles to real world testing is the sheer amount of surface area a
track requires for the RC car to be able to navigate on it.

The easiest possible solution would be to get a smaller scale RC car, which should work
just as good, but probably won’t go as fast as a 1:10 would. If the 1:10 scale is non-negotiable
due to speed and equipment requirements, one possible mitigation to this issue is to install
longer turnbuckle shafts and 5mm hop ups to the RC car.

One other possible suggestion is to use a different body type, such as a truggy or a
buggy, which by default have a slightly larger turn radius, but come with a number of stability
and speed disadvantages for on-road use.

11.2. Power limitations

The Jetson Nano has proven unstable with a regular 5V@2A power supply with frequent
shutdowns even when used without any peripherals (in a headless setup).

If a power bank that supports USB power delivery (PD) protocol is used, a direct current
(DC) fast charge trigger polling detector board can be used, which takes in a PD input from
one side and negotiates the necessary voltage for a regular DC USB output on the other side,
which would easily provide the Jetson Nano with 5V@4A (10W) for the barrel jack power port.
The Nano doesn’t support the PD protocol by default, which is why such an intermediary board
is necessary. The power bank used for the build in this thesis supports up to 65W of power
delivery and supports a wide range of voltages and currents through its PD output port, so 10W
would be no issue for it.
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Another possible solution is to use the RC car LiPo battery to power the car and the
Nano, which can be connected to the Nano through a DC-to-DC step-down or buck converter
which would step down the 7.4 battery voltage to the 5V the Nano needs, while stepping up
its current. This approach is not recommended since coupling the Nano to the RC car battery
means that the Nano shuts down when the car battery is drained, which could mean data loss
and all sorts of troubles. Also, this approach means that each time a car battery is switched, the
Nano needs to be booted up again and eventual configuration and starting procedures have to
be performed all over again.

11.3. The simulator

As noted earlier, there is no real substitute for real world data, and a simulator can
simulate physics and other conditions with very limited fidelity. That being said, a well made
and tuned simulator can be an incredible time saver and rapid prototyping tool, and should most
definitely be used.

The simulator used throughout this thesis could be improved in many ways, which would
allow for even more rigorous model testing and prototyping. For an example, different weather
conditions could be added, such as snow or rain, higher resolution road and lane textures could
be used, a procedural generated track could very easily be implemented which would allow for
autonomous training if used in conjunction with the reinforcement learning approach.

Even without those improvements, the simulator has proven a very valuable tool for data
collection, model testing and elimination. It saves a lot of time by rapidly providing feedback
on model validity and performance before it gets tested in the real world through a lengthy
procedure.

11.4. Moving beyond the Donkey platform

The Donkey platform proved to be an amazing tool in terms of time invested and results
achieved. It implements a lot of features and absolves the user of a lot of domain knowledge and
technical prerequisites. It is highly recommended to beginners without experience in robotics or
embedded platforms to get their feet wet before moving on to more complex implementations.

That being said, Donkey has a lot of moving parts, unseemly code and some weird
architectural choices. Also, it lacks support for more advanced sensors and platforms, but to
be fair, that isn’t its intended use. It’s intended to be used by beginners interested in making a
self-driving RC car with no or very little prior knowledge, and it does that splendidly with a great
community behind it.

The logical next step for this project would be to create a more advanced and versa-
tile platform using the Robot Operating System (ROS) instead of Donkey as the middle-ware,
which would allow much more detailed low-level hardware controls, offer much better support
for advanced sensors and hardware but also allow much better software and environment man-
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agement and upgradeability. This would be an order of magnitude more difficult to implement
than Donkey, but for more advanced users with experience in robotics it shouldn’t present a
great difficulty and would also be the much easier way to go in the long term.

11.5. Final thoughts

The project has proven to be a great way through which machine learning can be studied
and applied through a hands on approach. It can seem a bit overwhelming for unassuming
beginners, but when taken in bite sized steps, it is more than manageable while being a lot
of fun. It also proves that working on autonomous vehicles, albeit smaller scale models, does
not need to involve a huge financial investment or obligation, the necessary equipment can be
obtained for a couple hundred euros or dollars and with a savvy building mindset can be made
into a great platform which actually performs well in the real world. The fields of autonomous
vehicles and AI in general is only beginning and this seems like a great and affordable way to
introduce a practical aspect of them to many aspiring enthusiasts, some of which could end up
working in and shaping the field.
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1. Appendix: Camera calibration code

The following functions are implemented to allow the automated calibration of a camera,
given a number of calibration rig photographs:

1.1. getObjectAndImagePoints

import numpy as np

import cv2, os, glob

objectPoints = []

imagePoints = []

cameraIntrinsicValues = []

# Distortion coefficients

cameraExtrinsicValues = []

def getObjectAndImagePoints():

global objectPoints, imagePoints

# Number of inside corners per row and column

cornersPerRow = 10

cornersPerColumn = 7

# Initializing the object points to zero

chessboardObjectPoints = np.zeros((cornersPerColumn * cornersPerRow, 3),

np.float32)↪→

# Prepare a meshgrid for object points

# (0,0,0), (1,0,0), (2,0,0) ..., (cornersPerRow,cornersPerColumn,0)

# This can be done since the number of corners there are on the printed

chessboard is known in advance↪→

chessboardObjectPoints[:,:2] = np.mgrid[0:cornersPerRow,

0:cornersPerColumn].T.reshape(-1, 2)↪→

# List of calibration images

images = []

# To make sure the script can be run on any image filetype

extensions = ['*.gif', '*.png', '*.jpeg', '*.jpg', '*.tiff']

for extension in extensions:

images.extend(glob.glob('calibration_images/'+extension))

# Step through the list and search for chessboard corners

for calibrationImageFileName in images:

calibrationImage = cv2.imread(calibrationImageFileName)

# The detector doesn't work well with images larger than 1280x720

# So images will be resized until they're 720p or smaller

height, width = calibrationImage.shape[:2]

while width > 1280:
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width //= 2

height //= 2

calibrationImage = cv2.resize(calibrationImage, (width, height))

# Convert it to grayscale

grayCalibrationImage = cv2.cvtColor(calibrationImage, cv2.COLOR_BGR2GRAY)

# Find the image points

cornersFound, foundCorners = cv2.findChessboardCorners(grayCalibrationImage,

(cornersPerRow, cornersPerColumn),None)↪→

# If corners were found on the images

# Append the found image points and defined object points to global

variables↪→

if cornersFound:

objectPoints.append(chessboardObjectPoints)

imagePoints.append(foundCorners)

# Visualize the found corners

cv2.drawChessboardCorners(calibrationImage, (cornersPerRow,

cornersPerColumn), foundCorners, cornersFound)↪→

cv2.imshow('Preview', calibrationImage)

cv2.waitKey(500)

1.2. calibrateCamera

def calibrateCamera(imageSize):

global cameraIntrinsicValues, cameraExtrinsicValues, objectPoints, imagePoints

retVal, cameraIntrinsicValues, cameraExtrinsicValues, rotationVectors,

translationVectors = cv2.calibrateCamera(objectPoints, imagePoints,

imageSize, None, None)

↪→

↪→

1.3. undistortImage

def undistortImage(image):

return cv2.undistort(image, cameraIntrinsicValues, cameraExtrinsicValues, None,

cameraIntrinsicValues)↪→
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2. Appendix: Custom simulator code

2.1. ResolutionSetter class

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class ResolutionSetter : MonoBehaviour

{

//Attach this script to a Dropdown GameObject

Dropdown m_Dropdown;

//This is the string that stores the current selection m_Text of the Dropdown

string m_Message;

//This Text outputs the current selection to the screen

public Text m_Text;

//This is the index value of the Dropdown

int m_DropdownValue;

void Start()

{

//Fetch the Dropdown GameObject

m_Dropdown = GetComponent<Dropdown>();

//Add listener for when the value of the Dropdown changes, to take action

m_Dropdown.onValueChanged.AddListener(delegate {

DropdownValueChanged(m_Dropdown);

});

setCameraSensorRes(m_Dropdown.options[m_DropdownValue].text);

}

void DropdownValueChanged(Dropdown change)

{

setCameraSensorRes(m_Dropdown.options[change.value].text);

}

void setCameraSensorRes(string resolution){

CameraSensor.width = System.Convert.ToInt32(resolution.Split('x')[0]);

CameraSensor.height = System.Convert.ToInt32(resolution.Split('x')[1]);

}

}
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3. Appendix: First custom architecture code

3.1. Model class

class NvidiaModel(KerasPilot):

def __init__(self, num_outputs=2, input_shape=(120, 160, 3), roi_crop=(0, 0),

*args, **kwargs):↪→

super(NvidiaModel, self).__init__(*args, **kwargs)

self.model = customArchitecture(num_outputs, input_shape, roi_crop)

self.compile()

def compile(self):

self.model.compile(optimizer="adam",

loss='mse')

def run(self, img_arr):

img_arr = img_arr.reshape((1,) + img_arr.shape)

outputs = self.model.predict(img_arr)

steering = outputs[0]

throttle = outputs[1]

return steering[0][0], throttle[0][0]

3.2. Model implementation

def customArchitecture(num_outputs, input_shape, roi_crop):

input_shape = adjust_input_shape(input_shape, roi_crop)

img_in = Input(shape=input_shape, name='img_in')

x = img_in

# Dropout rate

keep_prob = 0.9

rate = 1 - keep_prob

# Convolutional Layer 1

x = Convolution2D(filters=24, kernel_size=5, strides=(2, 2), input_shape =

input_shape)(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 2

x = Convolution2D(filters=36, kernel_size=5, strides=(2, 2),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 3

x = Convolution2D(filters=48, kernel_size=5, strides=(2, 2),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 4
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x = Convolution2D(filters=64, kernel_size=3, strides=(1, 1),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Convolutional Layer 5

x = Convolution2D(filters=64, kernel_size=3, strides=(1, 1),

activation='relu')(x)↪→

x = Dropout(rate)(x)

# Flatten Layers

x = Flatten()(x)

# Fully Connected Layer 1

x = Dense(100, activation='relu')(x)

# Fully Connected Layer 2

x = Dense(50, activation='relu')(x)

# Fully Connected Layer 3

x = Dense(25, activation='relu')(x)

# Fully Connected Layer 4

x = Dense(10, activation='relu')(x)

# Fully Connected Layer 5

x = Dense(5, activation='relu')(x)

outputs = []

for i in range(num_outputs):

# Output layer

outputs.append(Dense(1, activation='linear', name='n_outputs' + str(i))(x))

model = Model(inputs=[img_in], outputs=outputs)

return model
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4. Appendix: Advanced model code

4.1. Model class

class OriModel(KerasPilot):

'''

Custom model that takes an input image and feeds it and a preprocessed version

of it to the model.↪→

The preprocessing converts the image to HSL color space, extracts the S channel

and thresholds it.↪→

The thresholded S channel is passed to the model to help find lane lines easier.

'''

def __init__(self, model=None, input_shape=(180, 320, 3), *args, **kwargs):

super(OriModel, self).__init__(*args, **kwargs)

self.model = oriModel(inputShape=input_shape)

self.compile()

def compile(self):

self.model.compile(optimizer=self.optimizer,

loss='mse')

def run(self, inputImage):

# Preprocesses the input image for easier lane detection

extractedLaneInput = self.processImage(inputImage)

# Reshapes to (1, height, width, channels)

extractedLaneInput = extractedLaneInput.reshape((1,) +

extractedLaneInput.shape)↪→

inputImage = inputImage.reshape((1,) + inputImage.shape)

# Predicts the output steering and throttle

steering, throttle = self.model.predict([inputImage,

extractedLaneInput])↪→

print("Throttle: %f, Steering: %f" % (throttle[0][0], steering[0][0]))

return steering[0][0], throttle[0][0]

def warpImage(self, image):

# Define the region of the image we're interested in transforming

regionOfInterest = np.float32(

[[0, 180], # Bottom left

[112.5, 87.5], # Top left

[200, 87.5], # Top right

[307.5, 180]]) # Bottom right

# Define the destination coordinates for the perspective transform

newPerspective = np.float32(

[[80, 180], # Bottom left

[80, 0.25], # Top left

[230, 0.25], # Top right

[230, 180]]) # Bottom right

# Compute the matrix that transforms the perspective

transformMatrix = cv2.getPerspectiveTransform(regionOfInterest,

newPerspective)↪→
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# Warp the perspective - image.shape[:2] takes the height, width, [::-1]

inverses it to width, height↪→

warpedImage = cv2.warpPerspective(image, transformMatrix,

image.shape[:2][::-1], flags=cv2.INTER_LINEAR)↪→

return warpedImage

def extractLaneLinesFromSChannel(self, warpedImage):

# Convert to HSL

hslImage = cv2.cvtColor(warpedImage, cv2.COLOR_BGR2HLS)

# Split the image into three variables by the channels

hChannel, lChannel, sChannel = cv2.split(hslImage)

# Threshold the S channel image to select only the lines

lowerThreshold = 65

higherThreshold = 255

# Threshold the image, keeping only the pixels/values that are between lower

and higher threshold↪→

returnValue, binaryThresholdedImage =

cv2.threshold(sChannel,lowerThreshold,higherThreshold,cv2.THRESH_BINARY)↪→

# Since this is a binary image, we'll convert it to a 3-channel image so

OpenCV can use it↪→

thresholdedImage = cv2.cvtColor(binaryThresholdedImage, cv2.COLOR_GRAY2RGB)

return thresholdedImage

def processImage(self, image):

warpedImage = self.warpImage(image)

# We'll normalize it just to make sure it's between 0-255 before

thresholding↪→

warpedImage =

cv2.normalize(warpedImage,None,0,255,cv2.NORM_MINMAX,cv2.CV_8U)↪→

thresholdedImage = self.extractLaneLinesFromSChannel(warpedImage)

one_byte_scale = 1.0 / 255.0

# To make sure it's between 0-1 for the model

return np.array(thresholdedImage).astype(np.float32) * one_byte_scale

112



4.2. Model implementation

def oriModel(inputShape):

# Dropout rate

keep_prob = 0.9

rate = 1 - keep_prob

# Input layers

imageInput = Input(shape=inputShape, name='imageInput')

laneInput = Input(shape=inputShape, name='laneInput')

# Input image convnet

x = imageInput

x = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_imageInput_1")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_imageInput_2")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_imageInput_3")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_4")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_5")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Flatten(name="flattenedx")(x)

x = Dense(100)(x)

x = Dropout(rate)(x)

# Preprocessed lane image input convnet

y = laneInput

y = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_laneInput_1")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_laneInput_2")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_laneInput_3")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_4")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_5")(y)

y = LeakyReLU()(y)

y = Flatten(name="flattenedy")(y)

y = Dense(100)(y)

y = Dropout(rate)(y)

# Concatenated final convnet
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c = Concatenate(axis=1)([x, y])

c = Dense(100, activation='relu')(c)

c = Dense(50, activation='relu')(c)

# Output layers

steering_out = Dense(1, activation='linear', name='steering_out')(o)

throttle_out = Dense(1, activation='linear', name='throttle_out')(o)

model = Model(inputs=[imageInput, laneInput], outputs=[steering_out,

throttle_out])↪→

return model
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5. Appendix: Advanced behavioural model code

5.1. Model class

class OriModel(KerasPilot):

'''

Custom model that takes an input image and feeds it and a preprocessed version

of it to the model.↪→

The preprocessing converts the image to HSL color space, extracts the S channel

and thresholds it.↪→

The thresholded S channel is passed to the model to help find lane lines easier.

'''

def __init__(self, model=None, input_shape=(180, 320, 3), num_behavior_inputs=2,

*args, **kwargs):↪→

super(OriModel, self).__init__(*args, **kwargs)

self.model = oriModel(inputShape=input_shape, numberOfBehaviourInputs =

num_behavior_inputs)↪→

self.compile()

def compile(self):

self.model.compile(optimizer=self.optimizer,

loss='mse')

def run(self, inputImage, behaviourArray):

# Preprocesses the input image for easier lane detection

extractedLaneInput = self.processImage(inputImage)

# Reshapes to (1, height, width, channels)

extractedLaneInput = extractedLaneInput.reshape((1,) +

extractedLaneInput.shape)↪→

inputImage = inputImage.reshape((1,) + inputImage.shape)

behaviourArray = np.array(behaviourArray).reshape(1,len(behaviourArray))

# Predicts the output steering and throttle

steering, throttle = self.model.predict([inputImage, extractedLaneInput,

behaviourArray])↪→

#print("Throttle: %f, Steering: %f" % (throttle[0][0], steering[0][0]))

return steering[0][0], throttle[0][0]

def warpImage(self, image):

# Define the region of the image we're interested in transforming

regionOfInterest = np.float32(

[[0, 180], # Bottom left

[112.5, 87.5], # Top left

[200, 87.5], # Top right

[307.5, 180]]) # Bottom right

# Define the destination coordinates for the perspective transform

newPerspective = np.float32(

[[80, 180], # Bottom left

[80, 0.25], # Top left

[230, 0.25], # Top right
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[230, 180]]) # Bottom right

# Compute the matrix that transforms the perspective

transformMatrix = cv2.getPerspectiveTransform(regionOfInterest,

newPerspective)↪→

# Warp the perspective - image.shape[:2] takes the height, width, [::-1]

inverses it to width, height↪→

warpedImage = cv2.warpPerspective(image, transformMatrix,

image.shape[:2][::-1], flags=cv2.INTER_LINEAR)↪→

return warpedImage

def extractLaneLinesFromSChannel(self, warpedImage):

# Convert to HSL

hslImage = cv2.cvtColor(warpedImage, cv2.COLOR_BGR2HLS)

# Split the image into three variables by the channels

hChannel, lChannel, sChannel = cv2.split(hslImage)

# Threshold the S channel image to select only the lines

lowerThreshold = 65

higherThreshold = 255

# Threshold the image, keeping only the pixels/values that are between lower

and higher threshold↪→

returnValue, binaryThresholdedImage =

cv2.threshold(sChannel,lowerThreshold,higherThreshold,cv2.THRESH_BINARY)↪→

# Since this is a binary image, we'll convert it to a 3-channel image so

OpenCV can use it↪→

thresholdedImage = cv2.cvtColor(binaryThresholdedImage, cv2.COLOR_GRAY2RGB)

return thresholdedImage

def processImage(self, image):

one_byte_scale = 1.0 / 255.0

warpedImage = self.warpImage(image)

warpedImage =

cv2.normalize(warpedImage,None,0,255,cv2.NORM_MINMAX,cv2.CV_8U)↪→

thresholdedImage = self.extractLaneLinesFromSChannel(warpedImage)

return np.array(thresholdedImage).astype(np.float32) * one_byte_scale
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5.2. Model implementation

def oriModel(inputShape, numberOfBehaviourInputs):

# Dropout rate

keep_prob = 0.9

rate = 1 - keep_prob

# Input layers

imageInput = Input(shape=inputShape, name='imageInput')

laneInput = Input(shape=inputShape, name='laneInput')

behaviourInput = Input(shape=(numberOfBehaviourInputs,), name="behaviourInput")

# Input image convnet

x = imageInput

x = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_imageInput_1")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_imageInput_2")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_imageInput_3")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_4")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_imageInput_5")(x)

x = LeakyReLU()(x)

x = Dropout(rate)(x)

x = Flatten(name="flattenedx")(x)

x = Dense(100)(x)

x = Dropout(rate)(x)

# Preprocessed lane image input convnet

y = laneInput

y = Conv2D(24, (5,5), strides=(2,2), name="Conv2D_laneInput_1")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(32, (5,5), strides=(2,2), name="Conv2D_laneInput_2")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (5,5), strides=(2,2), name="Conv2D_laneInput_3")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_4")(y)

y = LeakyReLU()(y)

y = Dropout(rate)(y)

y = Conv2D(64, (3,3), strides=(1,1), name="Conv2D_laneInput_5")(y)

y = LeakyReLU()(y)

y = Flatten(name="flattenedy")(y)

y = Dense(100)(y)
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y = Dropout(rate)(y)

# Behavioural net

z = behaviourInput

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

z = Dense(numberOfBehaviourInputs * 2, activation='relu')(z)

# Concatenated final convnet

c = Concatenate(axis=1)([x, y])

c = Dense(100, activation='relu')(c)

o = Concatenate(axis=1)([z, c])

o = Dense(100, activation='relu')(o)

o = Dense(50, activation='relu')(o)

# Output layers

steering_out = Dense(1, activation='linear', name='steering_out')(o)

throttle_out = Dense(1, activation='linear', name='throttle_out')(o)

model = Model(inputs=[imageInput, laneInput, behaviourInput],

outputs=[steering_out, throttle_out])↪→

return model
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