
Design and evaluation of software framework that
improves the management of reactive dependencies
in development of object-oriented applications

Mijač, Marko

Doctoral thesis / Disertacija

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:897057

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-13

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:897057
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:6575
https://dabar.srce.hr/islandora/object/foi:6575

FACULTY OF ORGANIZATION AND INFORMATICS

Marko Mijač

DESIGN AND EVALUATION OF SOFTWARE
FRAMEWORK THAT IMPROVES THE

MANAGEMENT OF REACTIVE
DEPENDENCIES IN DEVELOPMENT OF

OBJECT-ORIENTED APPLICATIONS

DOCTORAL THESIS

Varaždin, 2021.

FAKULTET ORGANIZACIJE I INFORMATIKE

Marko Mijač

OBLIKOVANJE I EVALUACIJA
SOFTVERSKOG OKVIRA ZA

UNAPRJEÐENJE UPRAVLJANJA
REAKTIVNIM OVISNOSTIMA U RAZVOJU
OBJEKTNO-ORIJENTIRANIH APLIKACIJA

DOKTORSKI RAD

Varaždin, 2021.

FACULTY OF ORGANIZATION AND INFORMATICS

Marko Mijač

DESIGN AND EVALUATION OF SOFTWARE
FRAMEWORK THAT IMPROVES THE

MANAGEMENT OF REACTIVE
DEPENDENCIES IN DEVELOPMENT OF

OBJECT-ORIENTED APPLICATIONS

DOCTORAL THESIS

Supervisors:

Full Prof. Vjeran Strahonja, PhD

Assoc. Prof. Antonio García-Cabot, PhD

Varaždin, 2021.

ACKNOWLEDGMENTS

While I was writing this thesis, I often tried to imagine what would it be like to

write the final sentence. What would I feel at that, very distant and seemingly out-of-

reach moment? Joy? Thrill? Satisfaction? Pride? Well, it turns out that for me, the

correct answer was relief and gratitude. Before I surrender to piled up and overdue

obligations that are common side effect of the process of writing doctoral thesis, this

whole experience deserves a bit of reflection, and gratitude above all. I owe it to the

people who are in my life, I owe it to myself.

Looking back, the process of writing this thesis was one of those self-discovering

journeys, in which person really becomes aware of his strengths, but even more his

weaknesses and limitations. Battling the constant uncertainty and the barrage of is-

sues that kept coming until the very end of writing thesis, has really put to test both

my abilities and my character. Being able to cope with that required strong motivation

from my part. Luckily, I had the best motivation one could possible have - a family. I

would like to start expressing my gratitude by first thanking my beloved wife Silvija,

who put her own ambitions to hold in order to make us, and keep us a family. I am

also thankful for my children Klara, Jakov and Rafael, who were the cutest distractions

from my daily work and worries. My deepest thanks go to my parents, whose sac-

rifices, support and unconditional love allowed me to become who I am today, both

personally and professionally. Thanks also to my brothers, to whom I knew I could

always count on.

No less gratitude I owe to many people who had important roles in shaping my

thesis and my career in general. First of all, great thanks to my mentors prof. Strahonja

and prof. García-Cabot for being patient and believing in me. Thank you also goes to

my coworkers and friends, especially Zlatko and Boris, who often sought to relieve me

of a lot of our duties and give me enough time to finish my thesis. Finally, to all focus

group and technical action research participants, who invested their personal time and

expertise to help me evaluate results of my thesis - Thank you, I greatly appreciate it.

ABSTRACT

In object-oriented (OO) applications objects collaborate through message passing, which

results in these objects being coupled and mutually dependent. These dependencies can be

of a reactive nature, i.e. such that, for example, change in state of one object, requires other,

(directly or indirectly) dependent objects to update their state. The examples of such reactive

dependencies can be found in various software systems, including rich graphical interfaces,

spreadsheet systems, animation, robotics etc. Unlike the reactive paradigm, OO paradigm lacks

abstractions and mechanisms for management of reactive dependencies. Instead, developers are

left to handle this manually, e.g. by implementing Observer or similar design patterns. However,

for large and complex dependency graphs it takes huge effort to avoid errors, redundancies, and

to understand and maintain dependency graphs.

In this dissertation we address the problem of managing reactive dependencies in OO ap-

plications, by introducing reactive capabilities into OO programming languages in a form of

software framework. We do this by conducting pragmatic, problem solving research called

design science, which advocates building useful artifacts and applying them to problem con-

text. The artifacts we propose and build are the model and instantiation of REFRAME software

framework. All efforts and activities directed at building these artifacts are conducted and doc-

umented with necessary scientific rigor. In first process activity, by analyzing literature and

utilizing personal experience, we explicate the stated problem and challenges it brings, and also

reflect on its causes and effects. Through literature review we were also able to legitimize soft-

ware frameworks as potential solutions for the problem. The second activity started with outlin-

ing the basic characteristics of REFRAME software framework, and then proceeded to create

Software Requirements Specification document with detailed requirements for the framework.

In accordance to these requirements, aforementioned model and instantiation of REFRAME

software framework were designed and implemented. Through evaluation activities that fol-

lowed we provided evidence of software framework’s worth in the context of managing reactive

dependencies. First, by building and testing REFRAME software framework we showed that

such an artifact is technically feasible, that it works under certain assumptions, and that it has

potential to solve or mitigate the stated problem. Demonstration on several illustrative scenarios

provided further support for this. Finally, focus group and technical action research showed that

potential users perceive REFRAME software framework as useful artifact.

PROŠIRENI SAŽETAK

Objektno-orijentirana (OO) paradigma je dominantna paradigma za modeliranje i razvoj

velikih i kompleksnih softverskih sustava. Kao što njeno ime implicira, centralni pojam ove

paradigme je "objekt" - entitet koji učahuruje podatke (atribute, svojstva) i pridruženo ponašanje

(metode) koncepata problemske domene. Objekti u OO aplikaciji med̄usobno surad̄uju kako bi

zajednički ostvarili cilj aplikacije, i na taj način postaju ovisni jedni o drugima. Ovisnosti unutar

i izmed̄u objekata mogu biti okarakterizirane kao reaktivne, tj. takve da, na primjer, promjena

stanja jednog objekta zahtjeva ažuriranje stanja ostalih (izravno ili neizravno) ovisnih objekata.

Drugim riječima, ovisni objekti bi trebali moći prepoznati da se nešto bitno za njih dogodilo, i

reagirati na odgovarajući način. Primjere takvih reaktivnih ovisnosti možemo naći u različitim

softverskim sustavima, kao što su sustavi sa bogatim grafičkim sučeljem, tablični kalkulatori,

animacije, sustavi za modeliranje, razvojna okruženja i sl.

Objektno-orijentirana paradigma izvorno ne sadrži apstrakcije za upravljanje reaktivnim

ovisnostima. Stoga se kao najčešće rješenje koristi Observer - jedan od najpoznatijih uzoraka

dizajna u objektno-orijentiranom programiranju. Njegova svrha "Definirati jedan-prema-više

ovisnost izmed̄u objekata tako da kada jedan objekt promijeni stanje svi ovisni objekti budu o

tome obaviješteni i automatski ažurirani" dobro odgovara ideji reaktivnih ovisnosti. Med̄utim

upotreba ovog uzorka je izvorno zamišljena za odvajanje i sinkroniziranje podataka i grafičkog

sučelja u MVC (engl. Model-View-Controller) arhitekturi. U slučaju kada reaktivne ovisnosti

tvore velike i složene grafove ovisnosti, ovaj pristup zahtjeva ogroman trud da bi se izbjegle

greške i redundancije, te da bi se razumjele i održavale reaktivne ovisnosti. Reaktivno pro-

gramiranje s druge strane izvorno sadrži apstrakcije za upravljanje reaktivnim ovisnostima u

obliku signala i dogad̄aja, med̄utim predstavlja jednu sasvim drugu paradigmu, različitu od OO

programiranja. Stoga je jedan od glavnih pravaca istraživanja u ovom području pomirenje reak-

tivne i OO paradigme.

Ovo istraživanje je motivirano praktičnim problemom upravljanja reaktivnih ovisnosti u

OO aplikacijama, koje se još uvijek dominantno odvija neadekvatnim pristupima, uzrokujući

brojne probleme u kvaliteti, performansama i održavanju takvih aplikacija. Uz to, i pregled

znanstvene literature ukazuje na prisutnost tog problema, kao i na nastojanja znanstvenika da

ponude različite pristupe rješavanju tog problema. Slijedeći trendove istraživačke zajednice, ali

i potreba iz prakse, ovo istraživanje takod̄er ima za cilj približavanje reaktivne i OO paradigme,

I

i to na način da se odred̄eni koncepti i ideje iz reaktivne paradigme ali i iz drugih relevantnih

područja kao što je AOP, ugrade u OO aplikacije i unaprijede rad sa reaktivnim ovisnostima.

Stoga je formalni cilj ovog istraživanja: Unaprijediti i olakšati upravljanje reaktivnim ovis-

nostima u objektno-orijentiranim aplikacijama oblikovanjem i evaluacijom softverskog okvira

REFRAME, koji će omogućiti specificiranje, propagaciju, vizualizaciju i analizu reaktivnih

ovisnosti. U svrhu ostvarenja ovog cilja, postavljeno je glavno istraživačko pitanje (MRQ),

6 sporednih istraživačkih pitanja (RQ1 do RQ6), te jedna hipoteza (H1).

U ovoj disertaciji se bavimo problemom upravljanja reaktivnim ovisnostima u OO aplikaci-

jama na način da uvodimo reaktivne mogućnosti u OO programski jezik u obliku softverskog

okvira. Pri tome se vodimo pragmatičnom, na rješenje usmjerenom istraživačkom paradig-

mom zvanom znanstveno oblikovanje (engl. design science). Za nju je karakteristična izrada

korisnih artefakata i njihova primjena u problemskoj domeni. Kao što je navedeno u samom

cilju, u okviru ove disertacije mi predlažemo i izgrad̄ujemo model i instancu softverskog okvira

REFRAME za upravljanje reaktivnim ovisnostima.

Sam proces znanstvenog oblikovanje je proveden kroz 5 aktivnosti odabranog metodološkog

okvira. Prva aktivnost, je podrazumijevala provod̄enje detaljne analize relevantnih istraživanja,

što je uz iskustvo samog istraživača rezultiralo razjašnjavanjem problema, uključujući pre-

poznavanje izazova koje problem sa sobom nosi, uzroka problema i njegovih posljedica. Nave-

deno, opisano prvenstveno u poglavljima 2 i 4, nam je omogućilo bolje razumijevanje pros-

tora problema, te potvrdu praktične i istraživačke relevantnosti. Uz to, pregled literature na

temu softverskih okvira nam je omogućio potvrdu softverskog okvira kao valjanog kandidata

za rješenje, te sukladno tome početak tranzicije prema prostoru rješenja. Kroz prvu aktivnost

je i odgovoreno na istraživačka pitanja RQ1 i RQ2. Nakon što smo analizirali problem, te

identificirali potencijalno rješenje, mogli smo započeti sa aktivnošću definiranja zahtjeva.

Na početku poglavlja 5 ocrtali smo osnovne budućeg softverskog okvira REFRAME, te smo

osmislili 5 zahtjeva više razine. Ti zahtjevi su zatim detaljizirani u obliku dokumenta Speci-

fikacija zahtjeva za softver (SRS), koji je sadržavao ukupno 34 funkcionalna zahtjeva i 4 ne-

funkcionalna zahtjeva. Na taj način smo izravno odgovorili na istraživačko pitanje RQ3. Na

temelju zahtijeva iz SRS dokumenta, u sklopu treće aktivnosti oblikovani i izrad̄eni su već

spomenuti model i instanca softverskog okvira REFRAME. U poglavlju 6 je detaljno opisana

ova visoko-iterativna aktivnosti, koja je uključivala korake prikupljanja ideja, isprobavanje i oc-

II

jenu tih ideja, i na kraju odabir i implementaciju ideja koju su ocijenjene kao prikladne. Dok

je model softverskog okvira dokumentiran u poglavlju 6, implementacija softverskog okvira

je dostupna na službenom GitHub repozitoriju (https://github.com/MarkoMijac/

REFRAME.git). Dokumentiranjem procesa izrade, ali i karakteristika samog softverskog

okvira, pružili smo vrijedno znanje i iskustvo, i na taj način doprinijeli odgovoru na istraži-

vačko pitanje RQ4.

Znanstvena evaluacija (aktivnosti 4 i 5) je provedena u obliku 4 med̄usobno komplemen-

tarne evaluacijske epizode. U prvoj epizodi, kroz prototipiranje i obilno testiranje (oko 1000 je-

diničnih testova), ponudili smo dokaz da je softverski okvir REFRAME tehnički izvediv (engl.

technical feasibility), i da predstavlja efikasno rješenje za upravljanje reaktivnim ovisnostima

(engl. efficacy). Na taj način je prva epizoda doprinijela odgovoru na istraživačko pitanje

RQ4. Tehnička izvedivost i efikasnost je dodatno potvrd̄ena demonstriranjem uporabe soft-

verskog okvira na 15 ilustrativnih scenarija. I ova epizoda je takod̄er doprinijela odgovoru na

istraživačko pitanje RQ4, ali je uz to i u potpunosti ponudila odgovor na pitanje RQ5. Kako

bismo ponudili dokaz da je izrad̄eni softverski okvir koristan u realnom uvjetima, u sklopu

evaluacijskih epizoda III i IV, provedeno je istraživanje fokus grupom, te tehničko akcijskog

istraživanje. Sudionici obje epizode su bili jasni u ocjeni REFRAME-a kao korisnog za upravl-

janje reaktivnim ovisnostima, što nam je omogućilo da odgovorimo i na posljednje sporedno

istraživačko pitanje (RQ6).

Konačno, odgovaranjem na 6 sporednih istraživačkih pitanja dovelo nas je u poziciju da

ponudimo sljedeći odgovor na glavno istraživačko pitanje: Upravljanje reaktivnim ovisnostima

u razvoju objektno orijentiranih aplikacija možemo unaprijediti oblikovanjem i implementaci-

jom softverskog okvira, koji nudi dedicirane apstrakcije i mehanizme za specificiranje poje-

dinačnih reaktivnih ovisnosti, izradu grafa ovisnosti, te provod̄enje procesa ažuriranja grafa.

Takod̄er, mogućnosti takvog softverskog okvir se mogu obogatiti izradom pratećih alata, koji bi

omogućili analizu i vizualizaciju grafova ovisnosti, te generiranje dijelova ponavljajućeg koda.

S obzirom da smo u disertaciji potvrdili praktičnu i znanstvenu relevantnost postavljenog prob-

lema i izrad̄enog rješenja, te da smo opisani proces proveli rigorozno i uz uporabu znanstvenih

metoda, možemo i potvrditi postavljenu hipotezu H1: Oblikovan i implementiran softverski

okvir (REFRAME) za upravljanje reaktivnim ovisnostima u razvoju objektno-orijentiranih ap-

likacija će ispuniti zahtjeve relevantnosti i rigoroznosti znanstvenog oblikovanja.

III

KEYWORDS

Reactive dependencies, Reactive programming, Object-oriented programming, Software

frameworks, Design science

IV

C O N T E N T S

Acknowledgments .

Contents . V

List of Figures . VIII

List of Tables . XI

1. Introduction . 1
1.1. Problem identification . 1
1.2. Research motivation and contribution . 4
1.3. Research goal and questions . 5
1.4. Methodology overview . 6
1.5. Dissertation structure . 7

2. Literature review . 8
2.1. Managing reactive dependencies . 8

2.1.1. Reactive programming . 8
2.1.2. Event-based programming . 14
2.1.3. Other approaches . 19

2.2. Software frameworks . 22
2.2.1. Software frameworks as a reuse technique 22
2.2.2. Relation with other reuse techniques 25
2.2.3. Types of software frameworks . 28
2.2.4. Software framework structure . 30
2.2.5. Framework-involved processes . 33

3. Method . 42
3.1. Explicate problem . 43
3.2. Define requirements . 43
3.3. Design and develop artifact . 44
3.4. Demonstrate and evaluate artifact . 45

V

4. Explicate Problem . 49
4.1. Define Precisely . 49
4.2. Position and Justify . 51
4.3. Find Root Causes . 51

5. Define Requirements . 55
5.1. Outline artifact . 55
5.2. Elicit requirements (SRS) . 57

5.2.1. Introduction . 57
5.2.2. Overall Description . 59
5.2.3. Specific Requirements . 65

6. Design and develop artifact . 78
6.1. Imagine and brainstorm . 78

6.1.1. Feature 1: Specify reactive dependency 78
6.1.2. Feature 2: Construct dependency graph 84
6.1.3. Feature 3: Perform dependency graph update process 85
6.1.4. Feature 4: Analyze dependency graph 92
6.1.5. Feature 5: Visualize dependency graph 95
6.1.6. Feature 6: Generate boilerplate code 96

6.2. Assess and select . 98
6.2.1. Feature 1: Specify reactive dependency 98
6.2.2. Feature 2: Construct dependency graph 102
6.2.3. Feature 3: Perform dependency graph update process 103
6.2.4. Feature 4: Analyze dependency graph 108
6.2.5. Feature 5: Visualize dependency graph 111
6.2.6. Feature 6: Generate boilerplate code 112

6.3. Sketch and build . 114
6.3.1. ReframeCore . 115

6.3.1.1. Reactive nodes . 115
6.3.1.2. Reactive dependencies and dependency graphs 121
6.3.1.3. Dependency graph update process 123
6.3.1.4. Reactor - a higher level interface for ReframeCore 127

6.3.2. ReframeTools . 130
6.3.2.1. Analyzer tool . 130
6.3.2.2. Visualizer tool . 141
6.3.2.3. Code generation . 144

6.3.3. High-level design of REFRAME . 147
6.4. Justify and reflect . 152

VI

6.4.1. Underlying design principles . 153
6.4.2. Documenting design decisions . 164

7. Artifact Evaluation . 176
7.1. Episode I - Prototyping and testing . 176

7.1.1. Prototyping . 176
7.1.2. Testing . 177

7.2. Episode II - Demonstration . 183
7.2.1. Base demonstration example . 184
7.2.2. Illustrative scenarios . 185

7.3. Episode III - Focus group . 198
7.3.1. Research problem . 198
7.3.2. Sample frame . 199
7.3.3. Moderator . 200
7.3.4. Questioning route . 201
7.3.5. Focus group session . 203
7.3.6. Data analysis . 205
7.3.7. Results . 207

7.4. Episode IV - Technical action research . 213
7.4.1. Research context . 214
7.4.2. Research problem . 214
7.4.3. Research design and validation . 215
7.4.4. Research execution . 221
7.4.5. Data analysis . 222

8. Discussion . 231
8.1. Reflection on the research . 231
8.2. Answering research questions . 232
8.3. Contributions . 238
8.4. Research limitations . 244
8.5. Future research . 245

9. Conclusion . 247

Bibliography . 252

VII

L I S T O F F I G U R E S

Number Figure caption Page

Figure 1. Observer pattern (simple) [61] . 17

Figure 2. Observer pattern (advanced) [61] . 17

Figure 3. Observer pattern (revisited) [46] . 18

Figure 4. Event notification pattern [122] . 18

Figure 5. Propagator pattern [53] . 19

Figure 6. Framework vs other reuse techniques 27

Figure 7. Framework metamodel (code elements), adapted from [118] 33

Figure 8. Design science methodological framework 42

Figure 9. Evaluation strategy . 46

Figure 10. Example of reactive dependencies . 50

Figure 11. Example of more complex dependency graph 50

Figure 12. Problem tree . 52

Figure 13. Solution tree . 54

Figure 14. Framework perspective . 60

Figure 15. Use case diagram describing REFRAME’s features 66

Figure 16. Different DAG representations: a) adjacency matrix, b) incidence matrix

and c) adjacency list . 85

Figure 17. Overall architecture of REFRAME . 115

Figure 18. Essential members of Node class . 117

Figure 19. Hierarchy of reactive nodes . 119

Figure 20. Essential members and associations of NodeFactory class 120

Figure 21. Methods for manipulation of predecessors and successors 122

Figure 22. Essential members of DependencyGraph class 123

Figure 23. Essential members of Scheduler class 124

Figure 24. Scheduling nodes for update . 124

VIII

Figure 25. Strategy pattern in the context of Sorter class 125

Figure 26. Essential members and associations of Updater class 126

Figure 27. Example of object interaction required for performing update 127

Figure 28. Essential members and associations of Reactor class 129

Figure 29. Example of object interaction required for creation of Reactor object . . 130

Figure 30. Client feature residing in REFRAME tools 132

Figure 31. Server feature residing in end-user application 132

Figure 32. Inter-process communication between Analyzer tool and end-user appli-

cation . 133

Figure 33. AnalysisGraph structure and node hierarchy 134

Figure 34. Analysis graph and analysis node factories 135

Figure 35. Node abstraction levels in filtering by affiliation 136

Figure 36. Filtering by affiliation design . 137

Figure 37. Filtering by role and association . 138

Figure 38. Update analysis classes . 140

Figure 39. Analyzer GUI and related classes . 141

Figure 40. Hierarchy of VisualGraph classes . 142

Figure 41. Most important interfaces and classes in Visualizer 143

Figure 42. Fluent interface implementation in REFRAME 145

Figure 43. Implementation of code snippet for Let->Depend statement 148

Figure 44. End-user application perspective . 149

Figure 45. REFRAME Tools perspective . 151

Figure 46. Most important interfaces and classes in ReframeCore 154

Figure 47. Scheduler design with regard to sorting algorithm: a) not conforming to

OCP, b) conforming to OCP . 158

Figure 48. Core interfaces . 162

Figure 49. a) violating Dependency inversion principle, b) conforming to Depen-

dency inversion principle . 163

Figure 50. Test Explorer panel in Visual Studio displaying written automated tests 179

Figure 51. Simple unit test example . 180

Figure 52. Complex unit test example . 182

IX

Figure 53. Code coverage results . 183

Figure 54. Class diagram of base demonstration example 184

Figure 55. Dependency graph of base demonstration example 185

Figure 56. Measurement scale for perceived usefulness (adapted from [41]) 204

X

L I S T O F T A B L E S

Number Table caption Page

Table 1. Useful features of existing design patterns (adapted from Mijač et al.

[107]) . 20

Table 2. Software framework definitions . 24

Table 3. Framework classification [90] . 28

Table 4. Framework development activities as seen by various authors 34

Table 5. Chosen evaluation properties . 46

Table 6. Roles of reactive nodes as represented by abstractions from relevant de-

sign patterns . 82

Table 7. Graph algorithms . 94

Table 8. Specialized graph-drawing solutions 96

Table 9. Code generation techniques in .NET framework and Visual Studio IDE . 97

Table 10. Currently implemented pipe commands 131

Table 11. Filtering by association options . 138

Table 12. REFRAME Components from the end-user application perspective . . . 149

Table 13. Components from REFRAME tools perspective 150

Table 14. Summary of most important design decisions made in REFRAME de-

velopment . 165

Table 15. Focus group participants . 200

Table 16. Focus group questions and topics . 202

Table 17. Final version of template . 206

Table 18. TAR client cycle participants . 217

Table 19. TAR interview questions . 220

Table 20. Final version of template . 223

XI

1. Introduction

The introductory chapter provides overall background for the conducted research. It starts

by brief description of the research problem and the context in which the problem takes place.

Then, the researcher’s motivation is discussed, as well as the potential theoretical and practical

contribution of the research. This is followed by formulation of research goals, questions and

hypotheses, which consequentially defines the scope of the research. After that, overview of the

research methodology is provided, and the structure of the dissertation presented.

1.1. Problem identification

Object-oriented (OO) paradigm is a dominant paradigm for modeling and development of

large and complex software. It originated in 1960s as a response to former paradigm not be-

ing able to cope with ever increasing size and complexity of software systems. As the name

implies, the central abstraction of this paradigm is "object", which encapsulates data (proper-

ties/attributes) and associated behavior (methods) of concepts in problem domain. Not only

does such approach provide better correspondence to human perception of things in its environ-

ment, but it also raises the level of design and source code re-usability.

In OO application each object has its responsibility and is expected to contribute to overall

goal and purpose of application. In this process objects rely on each other and collaborate. This

collaboration usually comes in a form of message passing, i.e. invoking other object’s behavior

(methods) or fetching data of other objects. The result of this collaboration is objects being to

greater or lesser extent coupled and dependent on each other.

Dependencies between objects formed in this manner can sometimes be characterized as

reactive, i.e. such that for example method invoke or data change in one object, automatically

triggers invoke of corresponding method or updates the data in all dependent objects. In other

words, dependent objects will recognize the occurrence of something interesting happening

(event), and they will react accordingly. The examples of such reactive dependencies can be

found in a number of software systems, including rich graphical user interfaces, spreadsheet

systems, animation, modeling, simulation, embedded systems, programming environments, etc.

Perhaps the most prominent example cited in literature and the one that best suits to what we

consider reactive dependencies to be is the mechanism of cells in spreadsheet [27].

1

Object-oriented paradigm lacks native support for managing reactive dependencies [95].

Instead, the well-known Observer [61] design pattern is mostly used as a solution. The stated

intent and overall idea of Observer pattern is to "Define a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and updated auto-

matically" [61]. When looking at its base idea, Observer pattern may seem as a perfect match

for managing reactive dependencies, however, in reality it has a number of shortcomings that

made it heavily criticized as unfit for complex use (e.g. [95], [129]). Interesting statistics in line

with these critics has also been offered by Parent [113] in his presentation at one of the official

Adobe’s conferences. He argued that a 30% of the code in Adobe’s desktop applications is

devoted to event handling logic, while at the same time 50% of all reported bugs are located in

this very code. Even if we do not take these numbers as totally accurate, still at least two facts

can be derived from them. Foremost, we can expect to write a significant amount of boilerplate

code which will be in charge of handling dependencies between objects. This means a signifi-

cant effort will be spent into developing support code, rather than focusing on application’s core

functionality. Also, disproportionately high number of bugs and errors in this part of the code

indicates that managing reactive dependencies is quite difficult and error prone.

Indeed, manually managing large number of reactive dependencies between objects proves

to be a challenging task, since dependencies may form quite large and complex dependency

graphs, very hard to comprehend. A number of issues can arise here, such as failing to react and

update dependent objects (updating too rarely), reacting and updating defensively and redun-

dantly (updating too frequently), updating in wrong order and thus causing the incorrect states

or temporary inconsistencies (so called glitches), inefficient propagation of updates, circular

dependencies causing infinite loops etc. In addition, the adverse impact on overall quality of

software can arise from too much coupling and pollution of business logic with the so called

"boilerplate" code in charge of managing reactive dependencies between objects.

Observer design pattern is actually imperative implementation of the concept of implicit in-

vocation [62]. Due to its limitations, other, "more powerful" design patterns, such as Observer

revisited [46], Event-notification [122] and Propagator [53] pattern have been proposed to re-

place Observer pattern in more complex use cases. While object-oriented paradigm failed to

provide native support for reactive dependencies, other paradigms tried to offer potential solu-

tions. Aspect-oriented programming (AOP) [86], for instance, is focused on separating code in

2

charge of managing reactive dependencies from application’s core functionalities. Proponents

of AOP identified managing reactive dependencies as one of the crosscutting concerns, and pro-

posed improved - "aspectized" versions of Observer pattern (e.g. [149]). Approaches based on

constraint programming (e.g. [30]) specify reactive dependencies as constraints, which under-

lying constraint solver is supposed to maintain consistent. Reactive programming as approach

dedicated for development of reactive systems has provided built-in abstractions and mecha-

nisms to achieve automated management of reactive dependencies. Most of the research in

this paradigm stems from representatives of functional-reactive languages for animation such

as Fran [47], which is why reactive programming has strong functional/declarative flavor as

opposed to imperative style of object-oriented programming. Recent trends, however, acknowl-

edge advantages and disadvantages of both reactive and object-oriented programming, and aim

at reconciling these two paradigms, trying to take the best from each of them. Boix et al [65]

identify two distinct approaches for doing this, one of them taking reactive programming, and

the other object-oriented programming as a base point. Their ROAM framework (experimen-

tal reactive object-oriented framework) implemented in AmbientTalk programming language is

the example of the second approach. Conversely, REScala - reactive programming language

proposed by Salvaneschi et al. [129] is the example of the first approach.

All aforementioned approaches offer certain improvement over the plain Observer design

pattern, however, they also require some compromises to be made. The more sophisticated ver-

sions of Observer pattern collectively offer some good features and ideas, however, no single

design pattern is suitable for handling complex use scenarios, as reported in comparison by

Mijač et al. [107]. Proposed Aspect-oriented versions of Observer pattern offer improvements

in reusability, understandability and maintainability of code by explicitly separating manage-

ment of reactive dependencies as a crosscutting concern and core business logic. However,

both aspectized and non-aspectized design patterns in general offer mainly design reuse and

still place large burden on developer to implement reactive dependencies by following specified

design guidelines. In addition, AOP solutions tend to introduce "magical" code difficult to see

and debug. Reactive programming does offer built-in support for reactive dependencies, how-

ever most of solutions, because of their functional/declarative background, poses a challenge

to OO developers, and may require quite a shift from traditional imperative way of program-

ming. Also, rewriting already existing OO applications to another paradigm may prove to be too

3

difficult and time-consuming. Part of the solutions which are advertised as reactive, do not con-

sider reactive dependencies in a way they are considered in this dissertation, but rather focus

on temporal aspects, and see reactivity as working with continuous streams of data and sig-

nals. Other reactive solutions handle reactive dependencies by introducing frameworks which

require special, adapted compilers. The advantages of such approach include more natural in-

tegration of reactive dependencies into host language, higher level of automation, and overall

better performance. However, this usually comes at the price of being stuck with original au-

thor’s implementation, often done using non-mainstream or experimental technology, with end

solutions offering no or very limited possibility for adaptation. The authors of such solutions

are often individuals or very small teams, so practitioners usually cannot expect too much help

or customer support. We believe that for these reasons proposed reactive solutions find hard to

get out of the academic, laboratory setting to practitioners and real software projects.

1.2. Research motivation and contribution

This research has been motivated by a practical problem of managing reactive dependencies

in object-oriented applications. The author of dissertation has encountered this problem while

for the past almost ten years being actively involved in several projects of developing commer-

cial software applications. The most relevant example is software application "KI Expert Plus",

which is used for calculating thermal properties of residential and non-residential buildings with

the goal of assessing energy efficiency. The size and complexity of particular application do-

main dictated a large number of reactive dependencies between different data and calculation

procedures within software application, thus, making it very difficult to develop, understand

and maintain.

Preliminary literature review showed that this problem has also been recognized by others

in software engineering practice, as well as in scientific community. One of the most obvious

indicators for this is the fact that Observer patterns is perhaps the most well-known pattern

to both practitioners and scientific community. The MVC (Model-View-Controller) and MVC

inspired architectures, whose constituent part is Observer pattern, are de facto a standard for

separating and synchronizing user interface and underlying data. Different paradigms, including

event-driven programming, constraint programming and reactive programming, have addressed

the issue of managing reactive dependencies by proposing solutions such as design patterns,

4

software frameworks, dedicated programming languages etc. Proposed solutions can be placed

within the continuum, starting from more abstract, design solutions such as design patterns,

software architectures and models, to more concrete solutions such as software frameworks and

programming languages.

The contribution of the research in this dissertation encompasses both scientific and practi-

cal aspects. It is reflected in the fact that managing reactive dependencies in OO applications as

a relevant, and non-trivial problem recognized in both scientific community and practice, will

be addressed by building solution in a form of a model and instantiation of software frame-

work. Such software framework will utilize existing design patterns, however, it will not offer

only design guidelines, but also concrete implementation. It will not require compiler modi-

fications, thus, it will be easier to customize and port to another technology. In addition, the

software framework will provide useful tools for generation, visualization and analysis of re-

active dependencies. The scientific contributions reflect in knowledge generation, at first in the

very process of investigating required characteristics of future software framework, specifying

requirements, prototyping, modeling and building the software framework. Then, when built,

the software framework itself as a result of the number of design decisions inherently con-

tains knowledge (embedded knowledge). Lastly, the process of successively applying software

framework to problem context generates knowledge about the problem, solution and the rela-

tionships between them. The most obvious practical contribution can be seen in scenario where

developers use the instantiation of software framework as is, and apply it in order to improve

the management of reactive dependencies in their OO application. Other scenarios may include

developers customizing the software framework to better suit their needs, or building their own

software framework in their chosen technology according to the original or customized model.

1.3. Research goal and questions

The main goal of this dissertation is to: Improve and facilitate the management of reactive

dependencies in object-oriented applications by designing and evaluating REFRAME software

framework, which will allow specification, propagation, visualization, and analysis of reactive

dependencies. In order to achieve this goal following questions are stated:

Main research question:

MRQ: How can we improve the management of reactive dependencies in the development of

5

object-oriented applications?

Research sub-questions:

RQ 1: What makes the management of reactive dependencies in development of object-oriented

applications a challenging task?

RQ 2: What are the means we can use to support development of object-oriented applications

in order to improve the management of reactive dependencies?

RQ 3: What functional and non-functional requirements should REFRAME software frame-

work meet in order to manage reactive dependencies?

RQ 4: What prerequisites, constraints and other factors have to be met in order for REFRAME

software framework to be designed and working?

RQ 5: What are the typical scenarios of managing reactive dependencies that can be used to

evaluate REFRAME software framework?

RQ 6: How does the use of REFRAME software framework affect the management of reactive

dependencies in development of object-oriented applications?

In addition, the following high-level hypothesis is stated:

Hypothesis:

H 1: Designed and implemented software application framework (REFRAME) for manage-

ment of reactive dependencies in development of object-oriented applications will fulfill

both relevance and rigor requirements of design science.

1.4. Methodology overview

With the regard to research being motived by a practical problem, and the nature of final

result of the research (innovative artifact - model and instantiation of software framework),

design science has been chosen as a base research paradigm. Design is a process of creating

applicable solutions for specified problem, and it has long been accepted as research paradigm

in engineering disciplines [116]. Recently, it is also increasingly being used in the field of in-

formation systems [73]. Design science is a pragmatic paradigm with the goal of solving real

6

problems by creating innovative artifacts. According to Hevner et al. [73] these artifacts can

be characterized as: constructs, models, methods or instantiations. The scientific dimension of

design science, other than creating artifacts, also requires generation of new knowledge through

design and application of artifacts. Another determinant of design science is requirement for

systematic approach and rigorous evaluation of the created artifacts. In order to guarantee that

design science is conducted in scientifically rigorous way we will follow the methodological

framework for design science research proposed by Johannesson and Perjons [78]. The frame-

work proposes 5-activity process, with each of the activities using appropriate methods and

techniques.

1.5. Dissertation structure

The remainder of the dissertation starts with the literature review (Chapter two) who’s

purpose is explicating the context around the research problem as well as providing ideas for a

solution. This includes covering topics closely related to handling reactive dependencies, such

as reactive systems, reactive programming, implicit invocation etc. The literature review also

extensively covers software frameworks as an intended means of constructing the solution to

posed problem.

In Chapter three, dissertation continues with the detailed description of its underlying re-

search paradigm, the chosen methodological framework guiding the research, and the five spe-

cific steps through which the research will be conducted.

The main part of the dissertation can be found in chapters four to seven, which sum up the

efforts of individual steps of the methodological framework. Thus, the chapter four explicates

the problem, chapter five defines the requirements for the solution artifact, chapter six presents

design and development activities, and finally demonstration and evaluation steps are jointly

described in chapter seven.

The efforts and results of the dissertation are then discussed in chapter eight and conclu-

sions offered in chapter nine.

7

2. Literature review

Literature review conducted in this dissertation has two main parts. The first part aims at

identifying research which describes key concepts, approaches and paradigms related to manag-

ing reactive dependencies. This is, primarily, required for understanding the research problem

itself and grounding our subsequent findings in existing knowledge base. However, it also pro-

vides us with useful information, ideas and proven practices for constructing the solution (e.g.

domain vocabulary, solution requirements, design and implementation ideas etc.).

The second part of the literature review is more focused on a solution space. It deals with

software frameworks - a type of software artifact and a reuse technique which we propose as a

suitable solution for managing reactive dependencies. Since software frameworks are complex

software systems, whose development differs from traditional software application develop-

ment, a literature review has also been conducted in order to cover the most important aspects

of software frameworks and their development.

2.1. Managing reactive dependencies

The concept of reactive dependencies, defined in previous section, has been recognized

by both academy and industry, and is related to several fields of research. Reactive systems,

reactive programming, event-driven programming, data-flow programming and constraint pro-

gramming are examples of such related research fields. Not all of these fields, however, have the

same motivation and goals, so they do not interpret the "reactivity" in a same way, nor do they

put an emphasis on the same aspects of reactivity. Also, offered solutions differ in approach

and scale, and take different forms, ranging from design patterns, user developed libraries and

frameworks, specialized programming languages and language extensions.

2.1.1. Reactive programming

One natural starting point in researching reactive dependencies, at least from the perspec-

tive of nomenclature, was field of reactive systems. Most papers explicitly mentioning reactive

systems adopt Harel and Pnueli’s [70] notion of reactive system, who aimed at distinguishing

easily-dealt-with systems from difficult systems, i.e. transformational from reactive systems

respectively. According to them, a transformational system accepts inputs, performs required

8

transformations and produces outputs (e.g. compilers, assemblers, expert systems etc). On the

other hand, reactive system is repeatedly prompted by environment, and its role is to continu-

ously respond to external inputs. In other words, reactive system responds or reacts to external

stimuli generated by the user, environment or simply time passing. As examples of reactive sys-

tems Wieringa [156] lists real-time systems, embedded systems, control systems, information

systems, groupware systems, ERP systems, workflow management systems etc. It is evident

that large number of today’s software systems can fully or at least in some parts be recognized

as being reactive.

Considering reactive systems are complex to develop and often have to manage critical

tasks, it is no surprise that majority of papers explicitly mentioning reactive systems were deal-

ing with the formal verification/testing (e.g. [40], [36], [121]) and security issues (e.g. [26]) of

reactive systems. In parallel, a number of specification, modeling and visual techniques, tools

and extensions were proposed to aid reactive system development (e.g. [70], [69], [32], [76],

[160]). Although the research on reactive systems is well established, papers in this subsection

did not entirely correspond to this dissertation’s notion of reactive dependencies. The reactive

dependencies are indeed part of reactive systems and can be related to the notions of external

stimuli, signals, events and reactions, however, the focus of resulted papers was different. Most

papers emphasized or exclusively considered only temporal aspects of reactive systems. On the

other hand, reactive dependencies, as seen in this dissertation, are not taking time dimension

into account, at least not in a sense of providing dedicated time abstractions.

A paradigm suited for development of different kinds of reactive systems, especially real-

time, event-driven and interactive systems, is reactive programming. Bainomugisha et al. [27]

in their extensive survey define it as a paradigm centered around the issues of continuous time-

varying values and propagation of change. These issues are tackled by providing abstractions

able to express and automate flow of time, as well as abstractions for expressing data and com-

putational dependencies. Thus, they identify two distinguishing abstractions offered by reactive

programming languages: behaviors or signals and events.

Behaviors or signals are abstractions which represent continuous time-varying values, i.e.

the time itself, or some function of a time. This makes them targeting temporal aspects of

reactive systems, which are not the subject and focus of this dissertation. Unlike behaviors,

which change continuously over time, events are discrete values. They change at discrete points

9

in time, forming possibly infinite stream of value changes.

Events better relate to our concept of reactive dependencies, however, some distinctions

should be made clear. One important aspect of event handling in reactive programming is

handling event streams (data streams or streams of value changes). This includes performing

operations such as filtering, selecting, combining and transforming streams. However, again,

this is not the subject of this dissertation. Rather, what we tackle is the aforementioned issue

of propagation of change. With this in mind, we see events as these very changes in program’s

state which cause other parts of program’s state to update itself, and thus result in entire cascade

of updates through out the software system. Having this in mind, reactive dependencies, as

proposed in this dissertation, can be viewed as a mechanism for expressing and enforcing this

causal relationship, i.e. the relationship between the part of the program’s state which is being

changed and its dependents. Therefore the topic and issue of reactive dependencies clearly

positions itself within the field of reactive programming.

According to Bainomugisha et al. [27] today’s applications are driven by all sorts of events,

both internal (occurring within the application) and external (occurring in outside environment).

The main task placed in front of application is to react to these events by updating program’s

state and displaying response to user. Unfortunately, manual management of state changes and

data dependencies is complex and error-prone. This is especially true when this is done using

traditional programming techniques such as design patterns, where programmer is required to

manually update all dependent data after some change in state has occurred. Instead of that, re-

active programming aims at embedding the spreadsheet-like model in programming languages,

and automating the update of dependent data using the underlying execution model. The ma-

jor issue here, according to Salvaneschi et al. [129], is to detect changes to input values (i.e.

events) and then decide which cached values need to be invalidated or recomputed. The easi-

est approach would be to invalidate or recompute all cached values whenever any of the input

values are changed. However, efficient but more complex solution would be to analyze actual

dependencies between inputs and outputs, and after a change perform update of only those

outputs that depend on initially changed value.

Before we dig into the solutions offered in the field of reactive programming, we can look at

the simple illustrative example of differences between traditional imperative programming and

reactive programming in terms of managing state changes.

10

Listing 2.1: Difference between imperative and reactive programming

a = 1;

b = 2;

c = a + b; //Imperative: c = 3; Reactive: c = 3;

a = 2; //Imperative: c = 3; Reactive: c = 4;

Lets assume that the part of the program’s state is defined and stored in variables a and b.

The values of these variables can be changed (e.g. by the user). There is also variable c whose

value should be calculated from the values of a and b. This exactly happens in the third line,

i.e. after the variables a and b are set to their values, c is assigned with their sum. As one might

guess, after executing this line of code, the variable c should hold the value of c = 3 in both

imperative and reactive system. However, in line four, the value of variable a changes, and this

is where the difference between imperative and reactive system kicks in. In imperative systems

the variable c would still hold the value of 3 because subsequent change of variable a in no

way affects already evaluated expression in line three. And this is something most traditional

programmers actually expect. In order to update the value of c in imperative system, we would

need to re-evaluate expression stated in line three by manually executing it again. However, in

reactive systems variable c now holds the value of 4, because by specifying expression c = a+b

we instructed runtime engine that c is a function of variables a and b, i.e. that it is dependent

on them. Whenever any of the two variables change, the value of variable c should be updated.

Rather then doing this manually, updating dependent values in reactive programming is left to

underlying reactive engine.

A number of reactive programing languages and language extensions for development of re-

active systems have been proposed over time. Initially, those were representatives of functional-

reactive programming intended for development of highly interactive systems and animations.

Fran (Functional Reactive Animation) [47], for example, is a functional-reactive language im-

plemented as a Haskell extension, intended to aid the construction of interactive multimedia

animations. It provides abstractions for both behaviors and events. Yampa [26] is functional-

reactive language based on Fran, but is specifically adapted for performance critical reactive

systems. FrTime [37] is a functional-reactive language implemented as Scheme language ex-

tension, designed for development of interactive applications. It also provides abstractions for

both behaviors and events. Frappe [39] is functional-reactive library for Java. It defines two Java

11

interfaces with methods for behavior and event abstractions. The concrete classes then have to

implement these interfaces in order to manifest themselves as events or behaviors. Notable

work on reactive programming has also been done by Meyerovich et al. [105] who presented

Flapjax - a reactive programming language for web development implemented as a Javascript

framework. It supports behaviors for describing values that change over time, and event streams

for expressing streams of discrete values.

More recently, reactive programming as a paradigm is increasingly gaining attention from

both academic community and practitioners. Different programming libraries, frameworks and

language extensions are constantly emerging, and big companies such as Facebook, Sound-

Cloud, Trello, GitHub, Microsoft, and Netflix are supporting and using this concept [151]. This

is especially the case for reactive programming dealing with event and data streams. This popu-

larity is understandable if we consider ever increasing requirements for interactive applications,

as well as advances and increase in use of big data, IoT and cloud technologies. Indeed the

recent spread of reactive paradigm to cloud, data-intensive and big-data applications, IoT and

Complex Event Processing is reported by various authors [128], [125], [97]. Partial credit for

popularization of reactive programming goes to The Reactive Manifesto [13]. This initiative

promotes Reactive Systems as (1) responsive - responds in a timely manner, (2) resilient - stays

responsive in the face of failure, (3) elastic - stays responsive under varying workload, and

(4) message driven - relies on asynchronous message-passing. Another related initiative, which

also puts working with streams of data (especially "live" data) to focus is Reactive Streams [14].

Popularization of reactive programming resulted in its ideas also penetrating mainstream

programming languages. One of the most prominent examples of this is ReactiveX - a col-

lection of ongoing open-source projects, which comprise efforts in bringing aspects of reac-

tive programming to different languages [15]. Extensions for mainstream languages gathered

around ReactiveX include extensions for Java, C#, C# Unity, C++, Javascript, Python, Ruby,

JRuby, Groovy, Scala, Clojure, Kotlin, Swift, Netty, and Android, all of them being quite re-

cently developed. They do not operate on continuous time-varying values (behaviors), but are

rather focused on discrete values, i.e. streams (sequences) of events/data called Observables

[15]. ReactiveX provides a number of operators to work with Observables, including operators

for filtering, selecting, transforming, combining, and composing.

The perspective of reactive programming advocated by initiatives such as The Reactive

12

Manifesto and Reactive Streams, is followed by several popular solutions or families of solu-

tions such as ReactiveX. However, as already stated, these solutions are focused on processing

event/data streams, often in a form of real time, "live" data. While this represents very interest-

ing aspect of reactive programming, it is not something we focus on in this dissertation.

Most of the solutions mentioned so far follow the functional/declarative style of program-

ming. Conversely, as reported by [129] and [65], most of today’s software applications are

developed using imperative, object-oriented languages, with the serious doubt of it changing

anytime soon. Reaping the benefits of reactive programming may require transitioning to not

only new technology and programming language, but also to different programming style. This

process may also be accompanied by the need to rewrite and refactor large quantities of existing

imperative code. According to Salvaneschi et al. [129], this might not be something that tra-

ditional object-oriented developers would be inclined to do. The same authors also report that

because of functional flavor, reactive programming may not fit very well with mutable objects;

some computations may not be easily or clearly expressed; and functional style could induce

some performance inefficiencies. Because of declarative style, Salvaneschi and Mezini [130]

also see debugging as an issue in reactive programming, since current debuggers are suited for

imperative programming. They, however, propose methodology for debugging, and also the Re-

active Inspector - debugger tool for reactive programs which focuses on navigating dependency

graph. Schuster and Flanagan [136] admit that reactive libraries can provide data structure such

as signals, which support change propagation. However, they emphasize that this often requires

user code to be lifted onto signals, which involves significant syntactic overhead. This is, for

example, seen in Frappe [39], which in order to use behaviors and events, introduces a lot of

boilerplate code tangled with core business functionality. Margara and Salvaneschi [97] argue

that while existing reactive languages apply sequential computational model, reactive compu-

tations are in many cases independent, and introduction of parallelism could improve overall

performance.

On one hand, we have the lack of native support for reactive programming in object-oriented

languages, and on the other unwillingness to abandon all the benefits of object-orientation in fa-

vor of reactive programming. According to Boix et al. [65], this raises the question of reconcil-

ing reactive programming and object-oriented programming, i.e. combining reactive program-

ming with "encapsulated mutable data structures" (objects). They recognize two fundamentally

13

different ways in which this can be done. The first one is object-oriented reactive programming,

and it assumes starting with reactive concepts as a base, and then introducing object-oriented

features. This approach is also referred to as "objectifying". The second one is reactive object-

oriented programming, which centers on objects as a base technology and introduces reactive

language features. This approach is referred to as "reactifying".

In their paper, Boix et al. [65] took the approach of "reactifying" and presented ROAM

- an experimental reactive object-oriented framework implemented as an extension to Ambi-

entTalk programming language. Schuster and Flanagan [136] also recognized the challenge of

integrating reactive programming with imperative programming. They also opted for "reacti-

fying" approach and introduced the concept of reactive variables which are used for modeling

dependencies and change propagation. In order to facilitate adding reactive variables to im-

perative languages, they provided formal operational semantics. While, it avoids the need for

lifting primitive computations and explicit definition of signals, their approach does not allow

passing reactive variables as values, and also limits their dependents to lexical scope of their

declaration. Frappe [39] is also tied to a traditional OO language (Java), however, besides pro-

ducing a lot of boilerplate code, it also does not prevent the so-called glitches. The creators of

FlapJax [105] claim that the conflict between declarative style exhibited by reactive program-

ming and imperative style is needless. While they do encourage the use of declarative style,

they see FlapJax programs as declarative specification over imperative data. Salvaneschi and

Mezini [129] also made an effort to overcome some limitations of current reactive approaches

and to support development of reactive applications in object-oriented setting. However, they

took "objectifying" approach, and started from functional-reactive and dataflow programming

perspective, Their efforts were directed at integration of object-oriented concepts with REScala

reactive programming language. They based their work around advanced event system found

in EScala [64], and are also influenced by the reactive abstractions found in Scala.React [95].

2.1.2. Event-based programming

Another related field that is being mentioned both in the context of reactive programming

as well as an independent field is event-based programming. Margara and Salvaneschi [97],

for example, recognize even-based programming together with reactive programming as most

prominent approaches for development of reactive applications. Event-based or event-driven

14

programming is a paradigm specifically suited for development of event-based systems. Ac-

cording to Faison [50], a software system can be considered as event-based if its parts are

primarily interacting through event notifications. Similarly, Hinze et al. [74] see event-based

system as a software system in which observed events cause reactions in the system. Most of

today’s software systems, especially with graphical user interfaces, are event-based, as much of

their development is about writing methods which handle occurring events (e.g. mouse click,

key stroke, file downloaded, etc.). Large body of work done in the field of event-based program-

ming is related to distributed systems and the interaction of their constituent parts. Event-based

systems in such environments are usually called publish-subscribe systems. Eugster et al. [48]

tackle this topic and offer thorough report on "many faces of publish-subscribe" systems. Ac-

cording to Hinze et al. [74], event processing has also become the paradigm of choice in many

monitoring and reactive applications. They refer to these systems as sense-respond systems.

The notion of Event is at the core of the event-based paradigm. It can be defined, for

example, as a "detectable condition that can trigger notification" [50], or "significant change

in the state of the universe" [74]. It is important to see that while numerous conditions may

occur both in the system and the system’s environment, it is only detectable conditions that we

consider as events. Also, it is only those detectable conditions that we deem to be potentially

important or significant, that we choose to express interest in. Another, closely related concept,

is the concept of notification. Faison [50] defines it as an "event-triggered signal sent to a

run-time recipient". This signal is usually sent either by (1) transferring data, i.e. making

data available to recipient using some shared resource (e.g. shared memory or network) or (2)

transferring execution control, i.e. calling procedure on the recipient’s side.

When talking about event-based interaction in software systems, Faison [50] describes two

principal roles that are essential in order for this interaction to occur. The first one is the role

of an entity being able to produce or detect event and then send notification. Such entity is

most commonly referred to as event publisher, event producer, event source or just sender. The

second one is the role of an entity being able to receive the notification. Such entity is referred

to as event subscriber, event consumer, event handler, target or receiver. Sending notification

is often called firing the event, while the act of establishing the link between sender and receiver

is called subscription or registration [50]. In a similar manner, Hinze et al. [74] classify parts

of the event-based system into: monitoring component, transmission mechanism and reactive

15

component. While monitoring component and reactive component correspond to event sender

and event receiver roles respectively, transmission mechanisms describes how notifications are

sent and received. If notifications are exchanged directly between sender and receiver, then we

talk about decentralized, point-to-point systems. However, often a separate, third component

is introduced in order to decouple senders and receivers, and route notifications throughout the

system. Such approach is called centralized or middleware approach.

One of the ideas that is at the core of event-based programming is the idea of implicit

invocation. According to Steimann et al. [143] implicit invocation can be considered as both an

architectural style and programming paradigm, and is also known as event driven programming

and publish-subscribe architecture. It has been introduced by Garlan and Notkin [62] and has

been since frequently used to implement inversion of control and achieve loose integration of

objects and components. While in traditional systems components usually interact by explicitly

invoking each other’s methods, implicit invocation relies on events instead. A component,

acting as a sender, can publish one or more events as a means of informing other components

that some significant change happened. Other components, acting as receivers, can express

their interest in these events by subscribing to it. Whenever the sender component triggers

event, all subscribed components execute their own methods which are in charge of handling

that event. In this way the implicit invocation of methods is carried out. Now, instead of sender

component being required to know its receivers, receivers are required to know the sender, thus

the name inversion of control. Notkin et al. [111] state several advantages of implicit over

explicit invocation, e.g. by separating invocation relationship, it makes it easier to add, modify

and integrate new components without the need to change existing components. Garlan and

Shaw [63] in their seminal work also recognize support for reuse and evolution of software as

two most important benefits of implicit invocation.

Implicit invocation and event driven programming are based on imperative implementations

of design patterns such as well-known Observer pattern (Figure 1) [61]. The stated intent and

overall idea of Observer pattern is to "Define a one-to-many dependency between objects so

that when one object changes state, all its dependents are notified and updated automatically"

[61]. The original Observer pattern assumes objects taking the role of Subject (Observable) -

an object whose state change can be observed, or Observer - an object who observes Subject’s

state and updates its state accordingly. That said, implicit invocation implemented through de-

16

sign patterns is at least at conceptual level a natural fit for managing reactive dependencies.

However, solutions based on Observer pattern are often criticized as inadequate. Salvaneschi

and Mezini [129] state that traditional solutions based on Observer pattern have numerous in-

conveniences, but programmers bear them in return for benefits of OO design. Syromiatnikov

and Weyns [145] state that while Observer based synchronization promotes separation of con-

cerns and decoupling, its implicitness makes hard to see and control the effects of notifying

Observers. Maier et al. [95] state that Observer pattern is still a predominant approach in deal-

ing with state changes, but using it is very hard and error-prone. Chaturvedi et al. [33] also

add partial observation, inability for update prioritization and dangling references as Observer

pattern problems.

Figure 1: Observer pattern (simple) [61]

Figure 2: Observer pattern (advanced) [61]

Over time, design patterns similar to Observer have been proposed. Observer pattern revis-

ited (Figure 3) [46] for example improves original Observer pattern by introducing Observer-

17

Figure 3: Observer pattern (revisited) [46]

Figure 4: Event notification pattern [122]

Manager as central entity in charge of managing dependencies between Observer and Observ-

able. This is along the lines of ChangeManager in more advanced version of Observer pattern

(Figure 2) proposed by Gamma et al [61]. In Event-notification pattern (Figure 4) [122], on

the other hand, dependencies are distributed by individual Subjects in dedicated StateChange

objects, which together with EventStub objects allow finer event granulation (i.e. specifying

multiple events per Subject and multiple update methods per Observer). Propagator pattern

(Figure 5) [53] also manages dependencies in distributed manner, however it proposes mecha-

nisms for handling acyclic and cyclic dependency graphs.

Mijač et al. [107] analyzed these patterns and compared their ability to handle complex

cases of event propagation and dependencies between objects. They concluded that while indi-

vidual design patterns exhibit some good features and ideas, no single design pattern is suitable

for handling cases where dependencies between objects form large dependency networks. This

is especially the case with plain Observer pattern, which is indeed usually mentioned in the

context of decoupling user interface implementation and underlying data. E.g. in well-known

MVC architectural pattern, an Observer pattern is used to decouple and synchronize Model,

View and Controller [24], [145].

18

Figure 5: Propagator pattern [53]

In order to address the shortcomings of current Observer pattern implementations in han-

dling complex dependency networks, Mijač et al. [107] identified several useful features of

existing design patterns and proposed they should be combined. These features (see Table 1)

will prove useful for defining requirements for a proposed solution in this dissertation.

2.1.3. Other approaches

Aspect-oriented programming (AOP) has been first described by Kiczales et al. [86] as an

approach to implement design decisions which crosscut system’s basic functionalities. While,

for example, object-oriented programming assigns each class its own concern, proponents of

aspect-oriented programming emphasize that not all concerns should be assigned to one par-

ticular class or one particular component. Rather, some concerns such as exception handling,

managing security, logging etc., crosscut several classes, components, and even layers.

One of these crosscutting concerns, according to proponents of AOP, is managing dependen-

cies between objects through design patterns such as Observer pattern (for example, Tennyson

[149], recognizes data synchronization as a crosscutting concern commonly seen in software de-

sign). However, several drawbacks of traditional implementations of data synchronization and

dependency management using Observer pattern are pointed out. Eales [46] claims that in tra-

ditional Observer pattern implementations concrete classes must implement Subject/Observer

interfaces or inherit abstract classes, while in fact they are not real specializations of Subject

or Observer. Not only does this disrupt natural inheritance hierarchy, but in existing systems

with already established inheritance hierarchy it can be very challenging to introduce this kind

of Observer pattern implementation. Similar is stated by Jicheng et al. [77] as they claim that

Observer pattern features are tangled with object’s core features, obscuring their primary con-

19

Table 1: Useful features of existing design patterns (adapted from Mijač et al. [107])

Feature Description Guideline
Dynamic dependency network Dependencies should be formed and de-

stroyed dynamically, at runtime.
All five patterns apply .

Dual roles Object should be able to take the roles of
both event emitter and event receiver at the
same time.

Subject and Observer should be defined as
class interfaces. Alternatively, see Propaga-
tor role in [53].

Centralized management of depen-
dencies

Centralized (middleware) approach for man-
aging dependencies should be allowed by
providing a dedicated separate component in
charge storing dependencies and managing
update process.

See the role of ChangeManager [61] and
ObserverManager [46].

Arbitrary "Update" method Event should be handled and state updated
by an arbitrary method assigned at runtime
(as opposed to predefined Update method in
original Observer pattern)

See implementation of EventStub objects in
[122].

Multiple exposed events Object should be able to emit multiple differ-
ent events (as opposed to only one in original
Observer pattern)

See implementation of StateChange objects
in [122].

Additional data about emitter or
event

Receiver should receive and/or be able to
fetch data about event emitter or event itself.

Push additional data as parameter, or provide
reference to object containing the data.

Decrease coupling between emit-
ters and receivers

Dependent objects should be decoupled by
employing implicit invocation principle and
by introducing various levels of indirection.

All five patterns employ implicit invoca-
tion. Further indirection can be introduced
through centralized approach for manag-
ing dependencies and EventStub and State-
Change objects in [122].

Handling acyclic graphs Dependencies forming acyclic graph should
be handled in order to ensure proper order
of propagation, and thus avoid redundant up-
dates and glitches.

Apply breadth-first order of propagation or
perform topological sorting od dependency
graph. This is mentioned in [61] and [53].

Handling cyclic graphs Dependencies forming cyclic graph should
be handled in order to prevent infinite loops.

Apply techniques mentioned in [53], such as
graph marking (maintaining the list of vis-
ited objects), topological sorting and "smart
propagation", to break up the loop and avoid
redundant updates.

Performance optimization Where possible, performance optimizations
should be applied in order to prevent or
lower the occurrence of unnecessary and re-
dundant updates.

Apply cut-off [53] propagation step to avoid
unnecessary event firing. Keep dependencies
stored and organized in a way which allows
different analysis of dependency graphs to be
conducted. Handle acyclic and cyclic behav-
iors.

Events composition and filtering It should be possible to form new event by
composing two or more existing events, and
also to apply filters to both event emitting
and receiving.

Ideas for this can be taken from declarative
and reactive approaches (e.g. [95]).

cern. This results in core system’s functionality being more difficult to develop, understand and

maintain. The same thing happens also to code in charge of managing dependencies. On one

hand, it is being scattered all over the system, and on the other it is tangled with the code im-

plementing core functionalities. According to Tennyson [149], with every case of crosscutting

class cohesion decreases while coupling between classes and code scattering increases.

The solution to these problems is seen in using aspects. Noda and Kishi [110] use the con-

cept of separation of concerns in order to implement design patterns more flexibly. They argue

that design patterns and core application’s functionality are different concerns and need to be

separated. In his paper Tennyson [149] presents a novel, aspectized variant of Observer pat-

tern with the same intent as original design pattern, but with eliminated or reduced crosscutting

20

concerns. A number of similar variants of Observer pattern based on aspects are proposed, and

demonstrated in AspectJ programming language: [77], [117], [29], [68]. All these implemen-

tations recognize Observer pattern related code as a crosscutting concern. They extract it from

core classes and put it in aspect, keeping core classes not only clean, but completely oblivious

of their role as Subject or Observer.

In order to manage reactive dependencies, some authors used AOP in combination with

other approaches. For example, Axelsen et al. [25] combined AOP features with package

templates - mechanisms for instantiating ordinary but customized package. Such approach was

intended to produce reusable variant of Observer pattern which would minimize the amount

of glue code. Zhuang and Chiba combined the ideas from event-driven programming, aspect-

oriented programming and reactive programming in order to expand event-driven systems to

support reactive programming. They first proposed a prototype of new language extension

DominoJ with a construct named method slot - an abstraction which integrates methods, events

and advices [163], [164]. Then, they expanded DominoJ to ReactiveDominoJ [165], [162]

which automatically infers dependencies and creates bindings between events and handlers,

thus supporting reactive dependencies.

Several other approaches and paradigms have been used to develop reactive systems, espe-

cially real-time systems. Bainomugisha et al. [27] name synchronous programming paradigm

as earliest proposed paradigm, dataflow programming paradigm, and the combination of the

two - synchronous dataflow paradigm. Another approach is constraint programming, which is

a form of declarative programming with the idea of solving problems by declaratively spec-

ifying constraints which must be satisfied in a computer program [22]. The central part of

this approach are constraints, which, according to Freeman-Benson and Borning [57], present

"declarative statements of relations among elements of language’s computational domain...".

Rather than imperatively specifying concrete steps in which the problem will be solved, con-

straints are used to describe the problem and let the underlying solver find the solution. For

example, by defining constraint in a form of e.g. c = a + b we oblige language’s embedded

constraint solver to always maintain that constraint. Whenever any of the elements in constraint

change, other elements have to be updated so the constraint statement remains valid. We can

see that the constraints, as a concept, are closely related to reactive dependencies.

Demetrescu et al. [43] took constraint programming and dataflow programming approach in

21

managing reactive dependencies. They presented a general-purpose framework DC (C++) for

specifying one-way dataflow constraints as an equation of the form y = f(x1, ..., xn). When-

ever any of the variables xi changes, expression on the right side is re-evaluated and assigned

to y. Their approach is based on two key elements: reactive memory locations and constraints.

Freeman-Benson and Borning [57] set a goal to integrate declarative constraints with imper-

ative object-oriented concepts, and directed their efforts into development of Kaleidoscope -

an object-oriented constraint imperative programming language. Similar, but more recent lan-

guage presented also by Borning is Wallingford [30], which again uses constraints to achieve

reactivity between objects’s states.

Similar approach to constraint programming is taken by Heron [72]. He discusses the use of

definitive scripts for maintaining dependencies between values. Definitive scripts contain a list

of definitions describing dependencies between objects in form of t = f(s1, s2, s3, ..., sn), with

t being target variable, s1...sn being source variables, and f being expression for computing

target variable from source variables. Definitive system is in charge of handling definitions and

ensuring target variables are recomputed when any of the source variables change.

2.2. Software frameworks

2.2.1. Software frameworks as a reuse technique

In every aspect of our lives we tend to reuse our personal or someone else’s knowledge, past

experiences, and various artifacts that we found in nature or built by ourselves. This allows

us to better cope with existing and new problems, which are becoming larger and more com-

plex every day. We behave very similar when we are developing software, with one important

difference - the very nature of software, which is non-physical in its core, makes reuse more

capable (although not necessarily easier). That is why, from the very beginnings of software

development, reuse was one of the key forces influencing evolution of software development

approaches, development processes, technologies, programming languages and other aspects of

software development.

Software reuse can be described as the process of using existing software and software

knowledge to construct new software [155]. It can be opportunistic, i.e. applied ad-hoc to

particular situation and usually not planned in advance. More favorable, though, is systematic

22

reuse, i.e. intentional and managed process of creating software artifacts with their reuse in

mind, and reusing these artifacts as many times as possible. Schmidt and Buschmann [134]

emphasize the need for systematic reuse of software models, designs and implementations that

have been already developed and tested in order to increase software productivity and quality.

Various reuse techniques were proposed over time, differing in scale, level of abstraction

and complexity of reused software artifacts [23]. They range from pure implementational ar-

tifacts such as source-code components, to pure design artifacts such as highly abstract archi-

tectures and patterns. One of todays most common reuse techniques, positioned in the middle

of aforementioned implemenational vs design artifact continuum, are software frameworks,

which are at the same time being able to deliver high levels of design and code reuse as well.

With frameworks, reuse is beneficial within individual applications as well as across several

applications [52]. Frameworks are both the most frequently created reuse artifact, and also the

most frequently reused artifact in application development. It is easy to find a large number of

software frameworks of different flavors, created for different domains and purposes, large or

small, commercial, free or open-source. Historically, frameworks originated in the domain of

graphical user interfaces (GUIs), starting with pioneers such as MacApp, X-windows, MFC,

Java Swing and others. Their success inspired and fueled broader adoption of frameworks in

other domains.

Software frameworks today have decisive role in building software systems with ever in-

creasing size and complexity. They are acknowledged by both academy and industry as one

of the most powerful and widespread reuse techniques. No serious development is today done

using bare programming languages, by taking the "reinventing the wheel" approach. Instead,

modern software development is largely framework-based or framework-driven, no matter what

technology is used. One would have a hard time finding non-trivial software application which

does not involve at least one software framework. New software frameworks constantly emerge,

proposed by both researchers and practitioners, with practitioners seeing them as mechanism to

improve their software process and software product, and researchers recognizing them as an

essential software artifact worth researching.

According to Merriem-Webster dictionary [5], framework in general can be defined as "a

basic conceptual structure" or "a skeletal, openwork or structural frame". Similarly, Oxford

dictionary [6] defines framework as "a basic structure underlying a system, concept, or text".

23

These definitions clearly imply framework being a skeleton or a backbone of some kind of

a system, which determines (or at least heavily influences) its base structure and form. Not

surprisingly, when we talk about software frameworks, we talk about backbone of the software

system.

Definitions of software frameworks are numerous. Some of the most commonly found

ones are listed in Table 2. While these definitions are not necessarily in contradiction, they

for sure provide different views and perspectives on software frameworks. We can see that in

these definitions, software frameworks are described using different, but still valid, concepts,

such as: abstract and reusable design and application, reuse technology, customizable system,

application skeleton, semi-defined application etc.

Listed definitions are also giving a brief glimpse on how the software framework could be

structured internally. Here, the influence of object-orientation as an originating technology for

software frameworks is clearly visible as frameworks are described to consist of set of cohesive

design and implementation elements, namely patterns, templates, packages and collaborating

classes.

Table 2: Software framework definitions

Definition Concept Structure Purpose
"set of classes that embodies an abstract design for
solutions to a family of related problems" [81].

Abstract design Set of classes Provides common solu-
tions

"reusable design of all or part of a system that is rep-
resented by a set of abstract classes and the way their
instances interact" [80].

Reusable design Set of abstract classes
and their instances.

Reuses design

"a technology for reifying proven software designs
and implementations, which is capable of reducing
cost and improving quality of software" [51]

Reuse technology - Offers reducing costs and
improving quality.

"system that can be customized, specialized, or ex-
tended to provide more specific, more appropriate, or
slightly different capabilities" [114]

Customizable system - Provides customizable so-
lutions.

"powerful technology for developing and reusing
high-quality middleware and application software"
[134]

Reuse technology - Reuses high quality soft-
ware artifacts.

"application generators that are directly related to spe-
cific domain, i.e. family of related problems" [98]

Application genera-
tors

- Generates solutions for
family of related prob-
lems.

"powerful object-oriented reuse technique that typi-
cally emphasizes the reuse of design patterns and ar-
chitectures" [88]

Reuse technology - Reuses design patterns and
architectures.

"package that contains model elements that specify
a reusable architecture for all or part of the system".
Typically include classes, patterns, or templates. [18]

Package Package with classes,
patterns or templates

Reuses architecture.

"reusable, semi-defined application that can be spe-
cialized to produce custom applications". [23]

Semi-defined applica-
tion

- Produces custom applica-
tions.

"skeleton of an application that can be customized by
application developer". [80]

Application skeleton - Provides customization
capabilities.

"large and abstract applications aimed at particular
domain that can be tailored to suit individual appli-
cations". [31]

Abstract application - Building individual appli-
cations.

"large structure that can be reused as a whole to con-
struct new systems". [31]

Large structure - Construct new systems.

24

While the concepts and structural elements used to describe software frameworks may differ,

there is no ambiguity about their purpose. Software frameworks aim at facilitating development

of end-user applications by providing customizable and extendable design and implementation

solutions.

Another interesting way to view frameworks is through the commonality/variability lenses

[118]. We can say that frameworks aim at capturing commonalities and variabilities of spe-

cific domain, by providing implementation for common elements, and localizing variabilities

at variation points [92]. They act as an extension to base programming languages, by utilizing

commonalities in design and implementation [118]. These commonalities may emerge from the

domain developers work in, development practices they carry out, or applications they develop.

In any case, the choice of commonalities built into the framework and the variabilities enabling

the framework extension determines the reuse potential of the framework.

2.2.2. Relation with other reuse techniques

In order to understand the role and significance of software frameworks, it is important to

position them with regard to other reuse techniques. Reuse techniques differ in several aspects,

but perhaps two of the most important differentiating characteristics are the size/complexity of

reuse technique and the level of abstraction.

There is no doubt that software frameworks fall into large and complex reuse techniques.

Polančič et al. [118] even see software frameworks as the most complex reusable structures,

made up of different design and implementation parts. They add that unlike other reuse tech-

niques, software frameworks aim to reuse larger-grained components and higher-level designs.

Schmidt and Buschmann [134] and Zhang and Kim [161] also emphasize the role of software

frameworks as technique aimed at larger scale reuse.

With regard to level of abstraction, some reuse techniques take the low level approach - by

offering reuse of implementation (code), and other take the high level approach - by offering

reuse of design. Software frameworks take stand in the middle of these approaches, promoting

at the same time both design and implementation reuse [80]. Most will agree, however, that the

very design reuse is the most important thing software frameworks offer.

In research literature, reuse techniques most often compared and associated with software

frameworks are: components, libraries, architectures and design patterns. In contrast with com-

25

pontents, Johnson [80] sees frameworks as more customizable and powerful option, but also

an option with more complex interfaces, which makes frameworks more difficult to learn. Un-

like components, which emphasize code reuse, frameworks tend to reuse both code and design.

Froehlich et al. [60], see frameworks as a solution to larger-grained problems than components.

Class libraries are also large reuse structures, containing a number of individual components.

However, Johnson [80] indicates that frameworks reuse high-level design, while libraries reuse

implementation. Also, in frameworks inner components necessarily collaborate, while in class

libraries this is not the case. Krajnc and Heričko [90] add that frameworks usually do not allow

individual classes to be reused, and they control the flow of application execution (so-called

inversion of control). Sparks et al. [139] differentiate frameworks and libraries by the way

they are reused. When reusing frameworks we need to inherit from framework’s classes and

specialize them by overriding existing methods, or implementing abstract methods. Contrary,

when reusing libraries we usually call functions and pass required parameters.

Design patterns represent common solutions to repeating problems [61]. Compared to soft-

ware frameworks they are smaller, and also more abstract, i.e. they promote pure design reuse,

while frameworks also provide implementation [90]. Because of that, according to Johnson

[80] frameworks tend to be more concrete, easier to reuse, but also less flexible than patterns.

Architectural styles promote pure design reuse on a larger scale than design patterns promote,

however, frameworks again differ with their reuse of implementation.

One additional reuse technique closely related to frameworks are framelets. They are pro-

posed by Pree and Koskimies [120] who describe them as flexible and reusable building blocks

of applications. Unlike frameworks, framelets are small in size (less than 10 classes), they do

not assume to hold main control of execution, and they have clearly defined simple interface.

Although smaller in scale, framelets still share similarities with frameworks, such as that they

too offer software architecture reuse, and implicit invocation principle. However, instead of

complex and large frameworks, authors suggest offering family of related framelets for par-

ticular domain which represent the framework. Frameworks may often be monolithic, while

framelets promote modularity.

Figure 6 graphically depicts relation between frameworks and several related reuse tech-

niques with regard to their size and the level of abstraction. We can see that by offering both

design and code (implementation) reuse, frameworks hold middle ground between predomi-

26

nantly design reuse techniques and code (implementation) reuse techniques.

Figure 6: Framework vs other reuse techniques

In order to achieve larger-scale reuse, software frameworks combine and compose other

reuse techniques and structures of various scale and abstraction level. At first, software frame-

works most certainly prescribe particular software architecture as a large-scale design reuse

technique, and impose it on an end application. Software architecture may be subdivided into

smaller-scale design concepts, i.e. design patterns. In this way, design patterns can be seen

as micro-architectural parts of the framework [161]. Schmidt and Buschmann [134] also see

frameworks as concrete realizations of group of patterns. According to Johnson [80], frame-

works are highly interconnected with design patterns. At first, when developing framework,

developers tend to apply large number of design patterns. Secondly, if applied many times, the

framework itself (i.e. design characteristics the framework promotes) may become a sort of

higher level design pattern. Lastly, the use of framework by developers results in identifying

frequent new problems and solutions, which are often formalized as design patterns.

Design patterns are also often used as a communication medium, i.e. to communicate ideas

between different stakeholders (developers, managers, end-users etc.) in the various stages of

software framework development process. Froehlich et al. [60] emphasize in particular the

role of design patterns as a common vocabulary between framework developers and framework

users. Similarly, Srinivasan [140] sees documenting frameworks as a set of design patterns as

an effective way to achieve good communication between framework developer and framework

user. This is made easier given the fact that both participating sides in this communication are

necessarily software developers.

27

2.2.3. Types of software frameworks

Due to a large number of existing frameworks and their differentiating characteristics, num-

ber of authors attempted to categorize them, guided by different criteria. Krajnc and Heričko

[90] combined these categorizations, and proposed the most extensive 7-criteria classification

presented in Table 3.

Table 3: Framework classification [90]

Criteria Type

Extensibility

Whitebox frameworks
Blackbox frameworks
Graybox frameworks
Glassbox frameworks

Scope

System infrastructure frameworks
Middleware integration frameworks
Domain frameworks
Enterprise frameworks
Business collaboration frameworks

Approach

Object-oriented frameworks
Component frameworks
Service-oriented frameworks
Aspect-oriented frameworks

Standardization
Standardized frameworks
Semi-standardized frameworks
Unstandardized frameworks

Granularity Fine-grained frameworks
Coarse-grained frameworks

License Commercial frameworks
Free frameworks

Format

Logical specification
Physical design
Source code
Binary code

Extensibility tackles the question of how and at what degree can the framework be ex-

tended, i.e. actually be used. The white-box frameworks heavily rely on well-known object-

oriented mechanisms for extension, such as inheritance, overriding and dynamic binding. Such

frameworks are generally harder to use because they expect application developer to under-

stand framework internals and to provide most of the concrete behavior, but are at the same

time easier to develop for framework developers. White-box frameworks are also referred to

as architecture-driven or inheritance-focused frameworks [102]. Black-box frameworks, on the

other hand, use composition as a means to provide extensibility, i.e. they specify interfaces

through which components can be plugged into the framework. This makes them easier to use

given that a lot of concrete behavior is already present and the complexity of framework in-

ternals is hidden. However, this means that they are harder do develop. Mattsson [102] refers

to them as data-driven or composition-driven frameworks. In reality few frameworks can be

characterized as pure white-box or pure black-box frameworks. Rather they combine the char-

28

acteristics of both categories, so, where convenient, part of their features are offered through

e.g. inheritance, and other part of them through composition. It is often the case that the frame-

work starts off as a white-box framework, and then during its lifetime shifts towards black-box

framework. Lastly, the framework is referred to as glass-box framework if its implementation

is available for framework user to see, but not to change.

The scope determines framework’s primary reuse target, i.e. what is framework trying to

reuse. It places frameworks into one of the five categories. System infrastructure frameworks

are usually company’s internal frameworks intended to simplify development of system infras-

tructure. Similarly, middleware integration frameworks are also internal frameworks, but they

are aimed at integrating distributed applications. Domain frameworks capture the expertise of

a particular domain, and do not cover other aspects of applications. Enterprise frameworks

are large frameworks which embody architecture for entire application, and may provide both

infrastructural as well as domain-specific features. Lastly, business collaboration frameworks

as their name implies, aim at supporting development of applications for collaboration of busi-

nesses by integrating their services and exchanging data.

Frameworks can also be classified according to approach used to build them. Object-

oriented paradigm and its reuse mechanisms fueled the emergence of software frameworks,

which became known as object-oriented frameworks. They, in turn, led to emergence of com-

ponent frameworks. Lopes et al. [93] infer that typically object-oriented frameworks are white-

box, and component-oriented frameworks are black-box, although, they do not reject the possi-

bility of other combinations. Service-oriented frameworks are successors of object-oriented and

component frameworks, emphasizing the contractual nature of framework’s behavior. Lastly,

aspect-oriented frameworks aim to utilize features of aspect-oriented paradigm.

Standardization plays major role in acceptance of particular technology, including soft-

ware frameworks. Thus, Krajnc and Heričko [90] identify three levels of framework standard-

ization: (1) standardized frameworks are the ones widely recognized and supported by the inter-

national standards body; (2) semi-standardized frameworks are the ones supported by a group of

important vendors in the field; (3) unstandardized frameworks are the ones defined by the single

vendor. During their lifetime, software frameworks may change the level of standardization.

Granularity indicates the size and complexity of the frameworks. Fine-grained frameworks

are usually small frameworks with small number of closely defined features. On the other hand,

29

coarse-grained frameworks or monolithic frameworks are usually large frameworks, consisting

of large number of features with powerful but complex interfaces. Froehlich et al. [58] note

that both approaches have their benefits and drawbacks, but building fine-grained frameworks

is favorable in most cases due to them being less complex, easier to maintain and more modular.

According to license, frameworks can be regarded as either commercial frameworks or free

frameworks. Commercial frameworks require some form of payment to use the framework and

access other framework related services (e.g. technical support, updates, education etc.). Free

frameworks are, on the other hand, free to use with or without restrictions. When discussing

free frameworks we should also mention open-source frameworks. Not only they are free to

use, but usually their whole source code is available for viewing, changing and extending. As

with standardization, frameworks can also change license model during their lifetime.

Format defines different forms the frameworks can take during each stage of their devel-

opment cycle. Software framework starts as a logical specification, containing descriptions of

features the framework must provide and constraints under which the framework must oper-

ate. Physical design details this specification, including specification of components, classes,

hierarchies, interfaces, methods and other required elements. Lastly, implementation of the

framework results in a source code or binary code of the framework.

2.2.4. Software framework structure

Being one of the reuse techniques, software frameworks in its base revolve around cap-

turing a specific domain’s commonalities and variabilities [94]. They do so by designing and

implementing common domain elements into software framwork, and providing an architecture

which will localize domain variations. Coplien et al. [38] define commonality as an assumption

held uniformly across all objects of a given set, contrary to variability which stands for an as-

sumption held only for a subset of these objects. Both are essential to framework-driven reuse -

commonalities determine the reuse potential of frameworks, and variabilities enable realization

of that potential.

Common parts in frameworks represent invariant parts of the framework domain, the parts

which ideally are going to be reused in as much software applications as possible. They are

often referred to as frozen spots - already coded software pieces to be reused, which provide

architectural backbone, communication, data exchange and synchronization mechanisms [114].

30

Since frameworks need to generate applications for entire domain, they are required to have

some points of flexibility and variability [98]. These points are known as framework’s hot

spots, and they allow common parts of the framework to be reused in different contexts. They

are means of adjusting frameworks to concrete application’s needs [114], means for applica-

tion developers to add their own application-specific code [118]. Two categories of methods

are generally involved in hot spot implementation, namely hook methods and template meth-

ods [133]. Hook methods represent placeholders for variable parts of the framework, an ac-

tual points of adaptation and extension (e.g. abstract methods, parametrized methods, callback

methods, configurations...). Template methods, on the other hand, define abstract behavior and

generic interactions, and they invoke individual hook methods.

Frozen spots as representatives of framework commonalities, and hot spots as representa-

tives of framework variabilities are indispensable part of the framework. They constitute what

is frequently called a kernel [98], central backbone [114], or a core design [31] of the frame-

work. This core part of the framework specifies key abstractions of the domain, and how these

abstractions relate and interact. Implementation-wise, this means that the framework backbone

consists of set of abstract and concrete classes [31]. Frozen spots are largely implemented as

concrete classes, although, in order to support frozen spot hierarchy, some of them may also

be implemented as abstract classes. In either case, classes implementing frozen spots are made

invisible to framework user, i.e. they are not part of the framework’s interfaces. This is because

they are not meant to be tackled by anyone other than framework developer, and even then with

a great caution. On the other hand, hot spots are, according to [31], implemented mostly as an

abstract classes, which are made visible and available to framework users as a part of frame-

work’s interface. It should be noted, however, that inheritance mechanism is not the only way

frameworks implement hot spots. According to Lopes et al. [92], variation points can at least be

classified as white-box (inheritance-based, abstract classes) or black-box (composition-based).

In addition to inheritance, Polančič et al. [118] also list dependency injection, template methods

and closures as a means to implement hot-spots. They mention dynamic binding (also known

as inversion of control and "Hollywood principle") as a base underlying technique implemented

through these mechanisms. This technique assumes that exact code to be executed is determined

at runtime, which allows framework to call applications code. Inversion of control mechanism

is one of the main determinants of software frameworks. As opposed to that, Lopes et al. [92]

31

introduce the notion of call points - framework code which is called by application.

Besides core part of the framework, consisted of frozen spots and hot spots, frameworks

often contain what we call auxiliary part. This part is not essential for basic functioning of

the framework, but instead aims at providing means to empower the framework, speed-up and

facilitate the use of the framework. One of these mechanisms which increase the utility of the

framework are basic components, which are according to [114] mandatory part of the frame-

work. These components are usually built internally by either framework or component devel-

oper. They offer typical and common implementations of hot spots which can be immediately

plugged into framework backbone by framework users. In this way, framework user can build

a large part or even entire application simply by combining and composing framework and its

built-in components. In order to be more usable, frameworks are often accompanied by whole

libraries containing these predefined components. Bosch et al. [31] refer to these libraries as

framework internal increments. Polančič et al. [118] also list framework class libraries as one

of the framework’s most common constituent code elements, which offer concrete predefined

components ready to be used by application developers with little or no modification. If we con-

sider framework backbone to be primary reuse mechanism in frameworks, then accompanying

libraries can be referred as secondary. Auxiliary part of the framework can also offer various

tools [60]. These tools often act as a mediator between framework and its users, by offering

easier access to framework’s features, automating set of tasks, generating pieces of code etc.

This helps framework users to master the framework faster, and to be more productive.

While software frameworks are primarily intended to be reused by framework users, frame-

work developers can also benefit from reuse when developing software frameworks. One way

to do that is by using already existing frameworks and building our own framework on top of

them [81]. Therefore, besides libraries, hot spots and frozen spots as a smaller scale elements,

software frameworks can also contain other, perhaps smaller and more specific frameworks

within. Interesting suggestion comes in a form of framelets [120] - a very small framework (up

to 10 classes) with clearly defined interfaces, which can be one approach to introduce additional

modularity and build frameworks from other frameworks.

The framework elements we mentioned, and their relation to framework and also each other

is shown in the framework metamodel in Figure 7.

32

Figure 7: Framework metamodel (code elements), adapted from [118]

2.2.5. Framework-involved processes

Software reuse in general involves two main processes: building reusable software artifacts,

and repeatedly using (i.e. reusing) these artifacts. The same goes for software frameworks, so

we are going to be interested in the processes of (1) software framework development, and (2)

software framework usage. Bosch et al. [31] see these processes as phases in, what they call,

a framework-centered/framework-based software development. Along with framework devel-

opment and framework usage phase, they also introduce third one - evolution and maintenance

phase, which explicates the process of framework maturing and evolving over time to fit chang-

ing requirements. Because of iterative nature of framework development all three phases are

mutually related and entwined, so it is not easy to discuss them separately. However, for the

sake of clarity, in this section we will present software framework development process and

software framework usage process separately. One the other hand, evolution and maintenance

phase will be considered as an activity within software framework development process.

Software framework development process

Software framework development process is a set of mutually related activities which result

in producing software framework and other accompanying software and non-software artifacts

(specifications, models, tests, tools, documentation etc.). Often terms such as framework design

or framework building are used interchangeably with framework development. In any case,

33

when we talk about overall process of designing/building/developing framework, we actually

talk about framework development in a broader sense. This, however should not be confused

with often used designing/building/developing/implementing framework in a narrow sense. In

a narrow sense, these terms refer to individual activities within framework development process,

which result in creating framework models and/or framework source code implementation. We

will always designate framework development in a broader sense as a process, and framework

development in a narrow sense as an activity.

The commonality/variability abstractions as lenses can offer us a high-level view at the

framework development process. The framework development would first involve specifying

and implementing commonalities, and then specifying variabilities which are going to be imple-

mented and filled-in later, in the framework usage process. For a more detail we turn to general,

software development meta-process. According to Sommerville [137], no matter what software

development process we practice, and what software product we develop, we are involved in

four fundamental activities, namely: software specification, software design and implementa-

tion, software validation and software evolution. We use this generalized view to structure and

describe framework development processes suggested by various authors (see Table 4). Parsons

et al. [114] and Markiewicz and Lucena [98] include also the activities of additional compo-

nents development, and framework instantiation. However, we argue these activities refer to the

process of using frameworks, rather than developing frameworks.

Table 4: Framework development activities as seen by various authors

Meta-activities Parsons et al. [114] Markiewicz and
Lucena [98]

Sparks et al. [139] Bosch et al. [31]

Framework
specification

1. Domain and role
definition

1. Domain analysis 1. Define scenarios and
use cases

1. Domain analysis

Framework
design
and
implementation

2. Backbone development 2. Framework design 2. Design framework 2. Architectural design
3. Basic components
development

- 3. Build framework 3. Framework design

- - - 4. Framework
implementation

- - - 5. Framework document-
ing

Framework
validation

- - 4. Test framework 6. Framework testing

Framework
evolution

- - 5. Deploy framework 7. Framework
maintenance and evolution

- 4. Additional components
development

3. Framework
instantiation

- -

Framework specification

Framework specification activity involves understanding and defining what features and

characteristics the future framework will provide, and under what constraints it will operate.

34

Parsons et al. [114] emphasize the need to identify domain which will be covered by the frame-

work and also the roles the framework users will take. Markiewicz and Lucena [98] recognize

the importance of domain analysis as a way to discover current and future framework require-

ments, and at least partially uncover frozen spots and hot spots of the framework. The results of

domain analysis are according to Bosch et al. [31] packed in a form of domain analysis model,

which contains domain description, concepts, relations and requirements for the framework.

In order to successfully analyze target domain, and extract framework requirements, sev-

eral techniques and resources may be of aid. Domain’s key abstractions and variations may be

identified by utilizing personal experience ([98]), domain experts’ knowledge ([31]), and pre-

viously published experiences and standards ([98], [31]). As a one way of becoming domain

expert, Froehlich et al. [58] advises framework developers to build an application(s) within do-

main. However, domain knowledge is frequently gained also by examining existing applications

within domain ([98], [31], [58]). Johnson and Foote [81] for example find it worthwhile to ex-

amine a nearly-complete projects to see if new abstract classes and frameworks can emerge, and

be reused later. This can be seen as a form of recycling and also cleaning up existing design.

Another technique for analyzing framework’s domain is to identify framework scenarios and

use cases [139], which again helps us gaining insight into framework’s future abstractions and

the ways framework will interact with end-applications. When domain analysis has provided us

with sufficient knowledge about the target domain, its concepts and abstractions, its scope and

vocabulary, framework requirements can be captured and specified. Various techniques from

requirements engineering can be used in this phase.

Main participants in this activity are domain experts, framework developers and application

developers, which in many cases will be the same group of people or individuals.

Framework design and implementation

Software framework design and implementation activity results in distinct but highly related

artifacts, namely design and implementation of the framework. Sparks et al. [139] and Bosch et

al. [31] for example, clearly separate these two activities in their respective framework devel-

opment processes. However, due to their mutual relation and iterative nature, framework design

and implementation are often seen as inseparable and therefore as one activity. For example,

under the term "design", Markiewicz and Lucena [98] imply both design and implementation.

35

For the sake of clarity we will describe design and implementation separately, with the remark

that in practice these steps are indeed often conducted iteratively with no clear boundaries.

Design as an activity involves modeling structural and behavioral characteristics, static and

dynamic properties of the software system. If that system is software framework, then the mod-

eling comes down to defining structure and behavior of common part and variable part of the

framework, i.e. frozen spots and hot spots. Parsons et al. [114] wanted to emphasize that, so

they even named whole design and implementation activity as a backbone development activity.

Framework design starts with architectural design of the framework, where framework devel-

oper, in accordance to domain analysis model and specified requirements from the previous

phase, decides on suitable architectural style and produces top-level design of the framework

[31]. According to Landin et al. [91], architectural design of the framework can be accom-

plished by performing following tasks: (1) refining the analysis object model, (2) assigning

system responsibilities to specific objects, (3) analyzing object collaborations and (4) refining

inheritance hierarchies and collaborations.

Top-level architectural design is further refined in detail design step [31] by adding details

about the structure and behavior of the framework. This involves specifying exact attributes and

methods the framework classes will implement, with regard to characteristics and constraints

of the chosen technology and language. It also implies defining collaborations and relation-

ships between classes in a more precise manner. Special attention is devoted towards modeling

framework’s hot-spots and interfaces. As opposed to an architectural design which focuses

on high level design decisions, detail design step deals with lower level design decisions i.e.

micro-architectural decisions.

Both high and low level framework design will benefit the most from framework develop-

ers’ personal experience in framework design and design of software in general. Additional

knowledge can be further obtained from external experts, existing papers and reports (lessons

learned, best practices, models, guidelines, design patterns, architectural styles, etc.), and also

similar existing frameworks.

While models permeate all activities of software and framework development, design is

perceived as perhaps the most model-intensive phase. Design models tend to be a prescriptive

ones, i.e. they prescribe how the original (framework) should look like and behave when built,

thereby guiding developers through implementation. In this sense, framework implementation

36

can be seen as a process of transferring from design models to a working software framework,

by coding, debugging, and testing framework elements, and integrating them into framework.

While it was at certain level possible (and desirable) to omit technology-specific aspects of

framework development in the previous activities, in implementation activity this is not the

case. Framework implementation resides in concrete technology space, therefore it involves

using particular programming language (e.g. C#, Java, etc.) and tools (IDEs, testing tools,

debugging tools, etc.), and depends on particular runtime environment and platform (.NET,

JRE, etc.).

Framework implementation starts by implementing framework backbone, i.e. abstract and

concrete classes which form frozen-spots and hot-spots. This is followed by implementing in-

dividual components ready to be plugged into the framework’s hot-spots. These components

can then be organized into framework’s internal increments (libraries). Lastly, framework tools

are to be developed in order to mitigate complexities of using framework.

Framework validation

According to Sommerville [137], software testing is intended to do two things: show that

software does what is intended to do (i.e. that it meets its requirements), and to discover soft-

ware defects before it is put to use (i.e. find incorrect or undesirable behavior). The first thing

is referred to as a validation testing and the second one as a defect testing. Both of these are

essential activities in framework development. According to Bosch et al. [31], they determine

whether the framework provides the intended functionalities, and whether it is usable. Sparks

et al. [139] advocate thorough testing and assuring high test coverage of the framework’s code

in order for frameworks to be safe for use in application development.

There are several reasons why framework testing should be rigorously conducted before

framework is put to real use. One of the reasons is that by intentionally reusing the framework,

we are also unintentionally reusing each framework’s defect [139]. As much as catastrophic

a defect in particular end-user application may be, a defect in a framework is reused in each

application using the framework. By being multiplied with each framework reuse, framework

defects usually have much larger impact than individual application errors. Frameworks should

be well tested also because framework users expect to be able to rely on the framework. After

all, one of the key aspects of reuse is avoiding to repeatedly validate the same common software

37

artifacts [134].

In the framework ecosystem there are three distinct points in which defects can occur:

framework, framework-application interface, and application [59]. Framework developers and

testers are responsible for testing framework internals and framework interface towards appli-

cations, while application developers’ responsibility is testing end-application. Sparks et al.

[139] argue framework testing to be much easier in isolation. When the framework is already

applied, any error that occurs may be result of defect in either framework code or application

code. Discerning the real source of the error is usually a hard task [51].

However, according to Froehlich et al. [58] the only true and definitive framework test in-

volves using the framework to build applications. Zhang and Kim [161] agree with that and

report framework testing to often be a byproduct of end-application testing, i.e. by testing end-

applications frameworks are iteratively validated. Testing framework in such way does not have

to necessarily involve building real or complete applications by application developers. Rather,

this can be done by framework developers implementing number of examples of using frame-

work. These examples can vary in size and granularity, and can aim to test entire framework,

particular module within the framework, or only individual hot-spots.

Different methods for testing software are applicable also to framework testing. Internal

framework classes can for example be individually tested in isolation by writing unit tests. In

this way, each application which reuses that framework, also reuses testing. Some integration

testing should also take place during framework development, with to goal to test how internal

framework components integrate, and also to test interfaces between framework and applica-

tion. Hooks, as a part of framework interface, are according to Froehlich et al. [60] important

points of access to the framework, so their evaluation should be among high priority quality ac-

tivities. Integration testing can be conducted by, for example, implementing already mentioned

concrete examples and applications.

Framework evolution

Processes of software development and software evolution (maintenance) were historically

seen as separate processes [137]. While the software development resulted in a working soft-

ware system ready to be used, software evolution focused on adapting and evolving software

systems in order for them to remain working and remain being useful. Modern software de-

38

velopment, however, implies coping with domain and requirements instability, and constant

changes throughout the whole software system lifetime. That is why the boundary between

software development and software evolution is increasingly fading, and, at the beginning two

distinct processes, are increasingly being seen as one.

This is especially the case with frameworks. Most authors see iteration as one of the main

determinants of framework development process. Sparks et al. [139] for example stress that

the framework is deployed in several iterations. Fayad et al. [52] also see iteration as one

of the most common characteristics of framework design process. Froehlich et al. [58] state

that frameworks are not built during a single pass through framework development process, but

rather require iterative and cyclic approach. Because of this iteration, it is often impossible to

discern framework development from framework evolution.

Mattson [102] reports evolution and maintenance of software frameworks can have follow-

ing goals: (1) corrective - bringing framework into more correct state (e.g. fixing failures and

bugs); (2) perfective - improving framework’s overall quality (e.g. performance, maintainabil-

ity, ease of use, etc.); and (3) adaptive - evolving the framework to meet changing requirements

(e.g. introducing new features, changing or removing existing ones).

According to Bosch et al. [31], initial versions of the frameworks tend to be white-box. They

start out small, as a few classes and interfaces generalized from a few applications in the domain.

The framework design changes frequently and inheritance is used as a main mechanism of reuse.

Johnson and Foote [81] see such white-box frameworks as a natural stage in the evolution of

the framework. However, over time, requirements are stabilizing and the framework becomes

more mature. Frequent use scenarios emerge, which results in predefined components being

developed and added to framework library. Inheritance as a reuse mechanism is replaced by

composition, which allows predefined components to be plugged into the framework backbone.

All this leads to framework becoming black-box through gradual evolution.

Software framework usage process

Software framework usage process is a set of mutually related activities which result in pro-

ducing software applications using software frameworks. This process is also often referred to

as framework instantiation or application development (framework-based). Artifacts resulting

from this process are called framework instances, framework specializations or simply applica-

tions. While application development and applications are common terms when talking about

39

software development and software products, they do not reveal the full role of frameworks.

On the other hand, framework instantiation and framework instances as a terms, aim to empha-

size the central role the frameworks often have in application development, and the view on

end-applications as mere realizations and extensions of the framework. The main participants

in the framework usage process are application developers, i.e. framework (re)users, who use

frameworks to develop end-user applications.

Taking the commonality/variability abstractions as lenses to view the framework usage pro-

cess, we can see that this process involves reusing commonalities previously specified and im-

plemented in the framework, and implementing (concretizing) variabilities which are required,

but only specified by the framework. The process of instantiating framework, i.e. building ap-

plication is the process of assigning variabilities with concrete values and programming code.

According to Bosch et al. [31], framework users use already existing core framework design

and framework internal increments (components), and develop application-specific increments

in order to finalize end-user application. Similarly, according to Murray et al. [109], in or-

der to instantiate framework, framework users have to provide concrete components which the

framework expects, and which conform to framework interfaces.

Lopes et al. [92] indicate two fundamentally different forms of framework reuse in framework-

based software development: anticipated reuse and unanticipated reuse. Anticipated reuse

refers to reuse that framework provides through its variation-points, which the framework user

adapts by providing application specific code. This is typical for black-box frameworks. Unan-

ticipated reuse, on the other hand, happens when the framework user wants to make adaptations

which are not part of the framework’s predefined variation-points, i.e. the user must make

changes to framework internals. Since it requires access to framework internals it is typical for

white-box frameworks. While anticipated reuse is natural, intended and aimed to be convenient,

the unanticipated reuse is more problematic. It requires greater knowledge about the framework

internals, it is more error prone, it creates problems in framework evolution and maintenance,

and may sometimes simply not be possible.

Although using frameworks assures high level of reuse when developing software applica-

tions, frameworks may be very large and complex artifacts. This means that, in order to be

productive with the framework, framework user has to spend a lot of time and significant effort

to master the framework. It is therefore natural to seek the means to facilitate the framework

40

usage process and make the framework user productive as soon as possible. Sparks et al. [139]

note that one of the characteristics of reusing frameworks is fairly large amount of what they call

stereotypical code. This code stems from the specific way the application uses framework, and

is usually highly repetitive. This opens possibilities for utilizing code generators to speed up

the application development and framework reuse. Indeed, this is often seen in practice, where,

in order to make the process of using frameworks easier, frameworks are often accompanied

by various tools. Other authors have also recognized the benefits of this approach. Lopes et al.

in [94] and [93], recognize frameworks to be hard to understand and difficult to reuse. They

note that, in order to minimize the effort required to reuse frameworks, application construction

should be guided by tools that aid in framework instantiation, and preferably automate some

of the steps in this process. Froehlich et al. [60] suggest using automation tools which should

aid application developer in using frameworks. Coplien et al. [38] see here the role of software

generators to provide parametrized variability of software. Johnson and Foote [81], associate

software frameworks with toolkits - a collection of high level tools which allow framework users

to interact with the framework in order to configure and construct new applications. Accord-

ing to Van Grup and Bosch [153], composition and configuration of components in black-box

frameworks can be supported by tools and made easier to use the framework.

41

3. Method

With the regard to research being motived by a practical problem, and the nature of final re-

sult of the research (innovative artifact - model and instantiation of software framework), design

science has been chosen as a base research paradigm. Design is a process of creating applicable

solutions for specified problem, and it has long been accepted as research paradigm in engi-

neering disciplines [116]. Recently, it is also increasingly being used in the field of information

systems [73]. Design science is a pragmatic paradigm with the goal of solving real problems by

creating innovative artifacts. According to Hevner et al. [73] these artifacts can be characterized

as: constructs, models, methods or instantiations. The scientific dimension of design science,

other than creating artifacts, also requires generation of new knowledge through design and

application of artifacts. Another determinant of design science is requirement for systematic

approach and rigorous evaluation of the created artifacts. In order to guarantee design science

is conducted in scientifically rigorous way we will follow the methodological framework for

design science research proposed by Johannesson and Perjons [78]. The framework proposes

5-activity process, with each of the activities using appropriate methods and techniques.

Figure 8: Design science methodological framework

42

3.1. Explicate problem

Management of reactive dependencies in object-oriented applications as a problem recog-

nized by both practitioners and researchers will in this activity be clearly defined, placed in a

context and shown as relevant. In order to achieve this, the problem goes through 3 sub activi-

ties. The first one (Define Precisely) is in charge of defining constructs needed for formulating

problem and design space (e.g. the notion of reactive dependency, dependency graph, update

process etc.), defining the problem itself and the scope of the research. In the second sub ac-

tivity (Position and Justify) the problem will be placed in the context of both real scenarios

in practice and relevant research. The third sub activity (Find Root Causes) will utilize the

techniques of root cause analysis in order to systematize the main causes of the problem and

determine which of them can be eliminated or mitigated by the REFRAME.

For the purpose of this activity a detailed literature review will be conducted in the fields of

design patterns, reactive systems, event-driven systems, software frameworks and other related

fields. This activity will provide the answers to the research questions RQ1 and RQ2.

3.2. Define requirements

Explicated and clearly defined problem and its causes are prerequisite for the second activ-

ity. This activity aims at explicitly defining requirements which the artifact (REFRAME) has to

fulfill, and is carried out in two parts. The first sub activity (Outline Artifact) outlines the base

concepts of the future artifact, i.e. what kind of artifact is to be made, what are its most important

characteristics. In our case there are two artifacts: prescriptive model of software framework

(REFRAME) and the instantiation based on this very model. The second sub activity (Elicit

Requirements) involves making the detailed specification of functional and non-functional re-

quirements, which REFRAME needs to meet in order to eliminate or mitigate the causes of the

problem identified in the previous activity. The main sources for requirements will be review of

relevant literature, researcher’s own experience, and the use of different techniques for creative

thinking and prototyping.

While detailed requirements are still to be made, they will most certainly include the fol-

lowing: specification of reactive nodes, specification of reactive dependencies between reactive

nodes, reactive dependencies between reactive nodes with the cardinality many-to-many, build-

43

ing the dependency graph, conducting update process, identification of possible parallel update

etc. In addition to requirements for the core part of the REFRAME framework, requirements

for some helper tools will also be specified. The code generation tool will enable developers

to generate part of the boilerplate code required for managing reactive dependencies. The tool

for visualization will aid developers in perceiving and understanding reactive dependencies by

showing them visually in a form of directed dependency graph. The tool for analysis will also

provide the basis for better understanding reactive dependencies using different graph analysis

techniques. This activity will provide answers to the research question RQ3 by providing the

Software Requirement Specification document.

3.3. Design and develop artifact

In third activity the model and instantiation of REFRAME which meet the specified re-

quirements and eliminate or mitigate identified problem are designed and developed. The first

sub activity (Imagine and Brainstorm) collects the ideas for design and development of arti-

fact. From the perspective of the model and instantiation of REFRAME this primarily refers to

reasoning about structural and behavioral characteristics of the model, architectural decisions,

quality properties (e.g. reusability, maintainability, customizability, performance etc.), imple-

mentation techniques, applied technology and other important characteristics of framework to

be made. In the second sub activity (Assess and Select) collected ideas are assessed, and the

set of ideas is selected as a starting point for design and development of REFRAME. From that

starting point, iteratively, through incremental improvements we come to a satisfactory solu-

tion. In the third sub activity (Sketch and Build) we concretize selected ideas and we build

the prescriptive model of REFRAME by defining its structure (using for example UML class

diagram) and behavior (using for example UML activity, sequence and state diagram). Finally,

based on the model the instantiation of REFRAME is developed in chosen OO technology (e.g.

C# .NET or Java). The fourth sub activity (Justify and Reflect) aims at documenting design de-

cisions, the reasons behind them, considered alternatives and compromises (design rationale).

The whole third activity is characterized by the internal iterative process of reasoning about

possible architectural, technological and implementation options, trying out these possible so-

lutions, and choosing appropriate solutions (prototyping). This activity will provide answers to

research question RQ4.

44

3.4. Demonstrate and evaluate artifact

Evaluation in design science research is a key activity, and has to be carefully planned and

conducted, because it adds the scientific component to design. For that purpose evaluation

strategy for this research has been designed, with its most part being conducted in the fourth

(Demonstrate artifact) and fifth (Evaluate artifact) activity of methodological framework. In

order to rigorously design evaluation strategy, different guidelines and frameworks have been

reviewed and used. The efforts and gained experience in this activity also resulted in our own

high-level guidelines for evaluation in design science [106].

As a base approach for designing evaluation strategy, the framework for evaluation in design

science (FEDS) [154] is used, with its four steps being: (1) explicate the goals of evaluation, (2)

choose the evaluation strategy or strategies, (3) determine the properties to evaluate, (4) design

the individual evaluation episodes.

The goals (1. step) of our evaluation strategy are in accordance with the goals specified by

FEDS framework, which implies scientific rigor to be assured. In the context of this research

this means we need to show that the use of REFRAME improves the management of reactive

dependencies in development of OO applications and that REFRAME is useful in real scenarios.

In addition, we see no special ethical implications regarding evaluation strategy, and we see it

as feasible with regard to resources available to researcher (time, money, participants...).

Out of four main evaluation strategies (2. step) which are proposed by FEDS framework,

we chose Technical Risk & Efficacy as most appropriate base evaluation strategy. The reasons

for this are namely the facts that REFRAME as software framework is large and complex socio-

technical artifact and that the technical aspect is more emphasized. The Technical Risk & Ef-

ficacy strategy emphasizes artificial formative (early) and artificial summative (late) evaluation

in order to establish efficacy of the artifact.

Total of 3 evaluation properties (3. step) have been chosen from the list proposed by Prat

et al. [119] with regard to evaluation goals, the type of the artifact, evaluation strategy and the

representation of these properties in similar studies.

Individual evaluation episodes (4. step) are in line with trajectory of evaluation strategy,

which means that most formative and summative episodes are conducted in artificial setting.

Each evaluation episode pairs the evaluation properties with appropriate evaluation methods.

45

Table 5: Chosen evaluation properties

Property Description
Efficacy Shows the artifact is working and that has potential to solve stated prob-

lem.
Technical
feasibility

Answers the following questions: Is it possible and in which way to de-
sign and develop the artifact? What are the capabilities and constraints
of the artifact? Which technical aspects should be considered? Which
external aspects should be considered (e.g. technology maturity, alter-
natives, community size, popularity, support, tools etc.)?

Usefulness Shows the effect of artifact’s use as perceived by the users.

The process of choosing evaluation methods was guided by taxonomy of evaluation methods in

design science proposed by Prat et al. [119].

Figure 9: Evaluation strategy

Episode I - Prototyping and testing

The first evaluation episode is formative, which means its purpose is obtaining the feedback,

trying out and testing alternative ideas and approaches, and incremental improvement of RE-

FRAME. It is conducted in artificial, laboratory setting, and is suitable for early identification

of technological and efficacy risks. Therefore in this episode technical feasibility and potential

efficacy will be evaluated. Evaluation methods used in this episode include prototyping, testing

and informed argument. Sommerville [137] describes prototyping as building initial version of

software with the purpose of demonstrating concepts, trying out design options, getting addi-

tional information about the problem and possible solutions. The contribution of prototyping in

46

evaluation is acknowledged by numerous authors, e.g. [35], [115], [138] etc.

Testing has two distinct goals [137]: demonstrate that software meets the functional and

non-functional requirements; and to discover errors, incorrect or unwanted behavior, incorrect

results, performance problems etc. As well as prototyping, the testing is also acknowledged

as relevant evaluation method, e.g. [73], [131]. Because of its formative purpose, this evalu-

ation episode is conducted largely during the third activity of the methodological framework.

Consequently, it contributes to answering research question RQ4.

Episode II - Demonstration

The purpose of the second evaluation episode is summative, i.e. it is conducted with the

purpose of assessing overall value and utility of the developed artifact. It is placed within 4.

activity of methodological framework. As well as the first evaluation episode, it is conducted

in artificial, laboratory setting, and it evaluates technical feasibility and efficacy. However,

contrary to the first episode, here the evaluation is done summatively.

The evaluation method bears the same name as the episode - Demonstration, which accord-

ing to Prat et al. [119] is the most frequently used evaluation method in design science. In this

episode we will define several illustrative scenarios for management of reactive dependencies

in development of OO applications. These scenarios will be implemented using REFRAME,

which will demonstrate that the artifact with required characteristics can be built (technical fea-

sibility), and that the artifact has the potential to solve the problem (efficacy). This evaluation

episode contributes to answering research questions RQ4 and RQ5.

Episode III - Focus group

Focus group is one of the most popular qualitative methods. In design science it is frequently

used in the processes of problem explication, requirement specification, and artifact evaluation

[78]. Tremblay et al. [150] in their article adapted focus group method for use in design science

research, and suggested its use for artifact improvement (explorative focus group) and for arti-

fact evaluation (confirmatory focus group). Focus groups have also been proposed as techniques

for requirements elicitation and evaluation in software engineering [89]. In this episode with the

purpose of evaluating REFRAME’s usefulness (research question RQ6) the confirmatory focus

group shall be conducted according to protocol created according to guidelines from [150].

47

Episode IV - Technical action research

Technical action research (TAR) is proposed by Wieringa and Morali [157] as one of the

methods for evaluation of artifacts created through design science. The main intent of TAR is to

transfer the artifact from laboratory setting to practice, and to evaluate the artifact according to

these more realistic conditions. It should be emphasized that in TAR the researcher participates

in 3 logically separated roles: in artifact design and development, in application of artifact on

real problem, and lastly in answering knowledge questions. In the context of this research,

the researcher has the main role in designing and developing REFRAME framework (this is

done prior to TAR within 3rd activity of methodological framework). Application of artifact on

real problem involves using REFRAME to develop few modules of real software application

(KI Expert Plus). Besides researcher, in this step two more KI Expert Plus developers will

participate. After applying REFRAME to develop real software application the researcher will

collect the feedback from participants on their experiences in using REFRAME, its usefulness

and possible improvements. Finally, researcher has a leading role in answering knowledge

questions about REFRAME. Here, the collected qualitative data is analyzed in order to provide

answer to research question RQ6. TAR is going to take place as the final (IV) evaluation episode

within 5. activity of methodological framework. Like the III episode it will also evaluate

usefulness, but in the more realistic conditions. TAR is going to be conducted according to the

protocol created by following the guidelines from [158].

48

4. Explicate Problem

Explication takes place from the very first moment the researcher becomes aware of the

problem. At first, this activity may be implicit in the researcher’s mind, sometimes even un-

consciously. In later stages, explicit and systematic activities are performed in order to better

formulate the problem, and investigate its causes and effects. Large part of the efforts of prob-

lem explication are traditionally captured in Introduction (Chapter 1) and Literature review

(Chapter 2). In this chapter these efforts will be summarized, supplemented and structured to

fit the chosen methodological framework.

4.1. Define Precisely

When developing OO applications software developer creates objects (unit of decomposi-

tion in OO programming) which collaborate in order to realize the purpose of application. As a

result of this collaboration, dependencies between objects are formed. Sometimes these depen-

dencies are of a reactive nature, which means that when one object changes its state or invokes

some method, its dependent objects need to react accordingly by updating their own state or

invoking their own methods.

Simple example of this can be seen in Figure 10. Attribute Z (ClassB) is defined as a

function f of attributes X and Y (ClassA), effectively making Z dependent on its parameters

X and Y . When either X or Y change their values, in order for it to still be valid, we have

to update Z’s value. Dependencies such as the ones between Z and X , and Z and Y we refer

to as reactive dependencies and the attributes X , Y and Z with respect to these dependencies

we refer to as reactive nodes. As presented, reactive nodes may become interconnected with

reactive dependencies and construct graph-like structures called dependency graphs.

Although fairly simple, the example in Figure 10 witnesses how a developer has to carefully

consider what attributes has to update after some change, and also in what order this update has

to be performed. If, for example, attribute X changes its value, we can see from dependency

graph that attributes Z and Q as dependents of X need to be updated. But, since Q is also

dependent on Z it is important to first update attribute Z and only then attribute Q. Otherwise,

Q would be updated with old Z’s value. Also, Q should not be updated twice, i.e. once because

of its dependence on X and once for its dependence on Z. The process of bringing dependency

49

Figure 10: Example of reactive dependencies

graph and all of its affected elements (nodes) into correct state after a change has occurred we

refer to as dependency graph update process.

Object-oriented paradigm does not provide native support for specifying reactive dependen-

cies, forming dependency graphs and performing update process. Instead, it rather relies on

developers manually implementing aforementioned Observer or similar design pattern. This

does not only involve writing a lot of so called "boilerplate" côde in order to enable this kind

of reactive behavior, but it also requires careful construction of dependency graph and man-

ual management of update process. When dependency graphs start becoming larger and more

complex (more reactive nodes and more reactive dependencies), such as the one illustrated in

Figure 11, manual management of reactive dependency graphs proves to be significantly more

challenging, time-consuming and error-prone. At some point, it may become impossible to

understand and manage vast web of interwoven reactive dependencies.

Figure 11: Example of more complex dependency graph

50

4.2. Position and Justify

Management of reactive dependencies has been identified in Introduction (chapter 1) as a

practical problem, relevant to practice the author has been involved in, and also to large number

of existing and yet to be developed OO applications. Literature review in Chapter 2 showed that

a number of design and implementation-level solutions were proposed to tackle some aspect

of the problem. These propositions came from both practitioners and researchers arising from

different backgrounds. Further proof that this problem is pervasive in development of OO appli-

cations and therefore significant for practitioners, is the fact that Observer [61] - design pattern

intended to deal with this particular problem, is one of the most well-known and most repre-

sented OO design patterns. Literature review in Chapter 2 also showed the scientific significance

of this problem, as it is represented as a topic in the research on OO design patterns, event-driven

programming, aspect-oriented programming, reactive programming, constraint programming,

and other similar fields. The stated demonstrates that managing reactive dependencies in OO

applications as a research problem holds both practical and scientific relevance, which is one of

the requirements set by Design science.

4.3. Find Root Causes

In order to model problem space in a more detail, problem tree analysis has been performed

(Figure 12). This allowed us to separate the effects and symptoms of the problem from the

causes of the problem. As a focal problem we specified that the management of reactive depen-

dencies in OO applications is difficult and error-prone. This results in some adverse effects on

the development process, quality of côde and the end product.

Traditional handling reactive dependencies in a form of Observer pattern results in signif-

icant amount of so called "boilerplate" côde which tangles with the core functionalities and

polluting the classes. Furthermore, this may introduce negative impact on overall côde qual-

ity, making the côde harder to maintain and understand, especially for newly introduced team

members. Finally, this may result in worsening the quality of end software product itself.

The difficulty of handling reactive dependencies in OO applications necessarily results in

developers making more errors. Not being able to grasp sheer number of dependencies and

their relation, developers may fail to implement all required updates, which results in objects’

51

Figure 12: Problem tree

state being inconsistent. To avoid this problem, developers may go to another extreme - to act

defensively and implement redundant updates. Over time, these redundant updates tend to ac-

cumulate, which at some point can make the performance problems so severe, the application

may become unusable. One of the frequent issues are so called "glitches" - temporary incon-

sistencies caused by performing updates in a wrong order. This could happen when in example

from Figure 10, we would perform update sequence in following order X− > Q− > Z− > Q

rather than X− > Z− > Q. Another possible issue is occurrence of circular dependencies,

which can cause infinite loops, wrong results and program crashes.

Difficulties in handling reactive dependencies can mean more time is needed for developing

software product, which project management may try to compensate by increasing the efforts

and spending more resources. At worst, project deadlines may be compromised.

After we analyzed the symptoms (effects) of focal problem, it remains to investigate what

exactly causes the problem. We can identify two high level reasons. The first is that reactive de-

pendencies form dependency graphs, which are inherently complex structures with potentially

52

large number of elements and relationships between them. Human brain, due to its natural lim-

itations, simply has hard time comprehending and understanding such structures. When faced

with such problems people resort to the use of different tools and techniques which could help

them to overcome limitations in their cognitive abilities and gain better understanding. Unfortu-

nately, in this case there are no available integrated tools to use, which would support developer

by e.g. visualizing, analyzing and reasoning about dependency graphs. The second high level

reason is that, although the management of reactive dependencies is difficult, error-prone, time

consuming and involves significant amount of "boilerplate" côde, it is still mostly done manu-

ally. This is caused by the lack of dedicated reactive abstractions and mechanisms for specifying

reactive dependencies, forming dependency graphs and appropriately handling update process

of dependency graphs. In addition, the lack of integrated tools and support (e.g. côde genera-

tors, modelers, debuggers, etc.) which would further automatize and facilitate the management

of reactive dependencies also contributes to this undesirable state of affairs.

Now that we obtained firm understanding of the research problem, its effects and causes, we

can start transitioning towards proposed solution. In order to model potential solution space we

will reverse negative statements from a problem tree (Figure 12) and with the resulting positive

statements construct the solution tree (Figure 13).

We can see that the central goal is to see management of reactive dependencies in OO appli-

cations improved. Achieving this goal would cause some positive outcomes. Firstly, it would

result in "cleaner" core classes, easier to maintain and understand, and better overall quality of

côde and the product. Improved process of managing reactive dependencies would also mean

less errors and improved overall development process, leading to decreased development time

and less required resources.

In order to achieve the set goal, we need to offer two fundamental things: make dependency

graphs easier to comprehend, and increase the level of automation in handling reactive depen-

dencies. Part of the solution to help software developers in better understanding dependency

graphs, could involve tools for visualization of reactive dependencies integrated into devel-

opment environment. Additionally, integrated tools for automatic analysis and reasoning on

dependency graphs could also be provided. The second part of the proposed solution could

address automation issue by providing dedicated abstractions for expressing reactive dependen-

cies. Once we have defined abstractions for reactive dependencies, the solution can provide

53

Figure 13: Solution tree

mechanisms for specifying reactive dependencies, building dependency graphs from them, per-

forming update process etc. Providing abstractions and mechanisms for managing reactive

dependencies significantly decreases amount of boilerplate côde involved in this task, however,

further automation may be achieved by providing integrated tools for côde generation.

54

5. Define Requirements

5.1. Outline artifact

In previous chapter (Explicate problem) we analyzed the problem, and more importantly

identified it’s possible causes. This allowed us to reason about possible solution to the problem,

and to identify its general characteristics and concepts. By looking at the solution tree we see

that the solution, i.e. design science artifact to be made, should be based on providing appli-

cation developers with dedicated abstractions and operations to handle reactive dependencies,

accompanied also by a set of tools which facilitate the use of artifact. In this way, domain

knowledge and the problem-solving process engraved into the artifact at design time, is through

this artifact made available to application developers for repeated use (i.e. reuse). As already

stated in previous chapter, one of the software reuse techniques that are fit to represent this kind

of artifacts are software frameworks. They allow capturing abstractions from problem domain,

imposing application design, and providing implementations and tools for developers to use in

application development.

Going back at solution tree we can devise a set of high-level requirements that the framework

should fulfill.

1. Framework shall provide dedicated abstractions for expressing concepts related to reac-

tive dependencies in application development.

2. Framework shall provide built-in mechanisms for performing basic required operations

related to reactive dependencies.

3. Framework shall automate parts of the reactive dependencies’ handling process.

4. Framework shall provide means to visualize reactive dependencies.

5. Framework shall provide aids for analyzing reactive dependencies.

In addition to this high-level statement of what framework is going to offer to application

developers, we can further outline the framework by positioning it in software frameworks’

ecosystem. For this purpose we will utilize framework classification reported in section 2.2.3.

It should be noted, however, that framework’s characteristics do not always take the form of one

particular discrete framework type. Rather, the framework may have characteristics of multiple

types, or may fit somewhere "in between".

55

The fact that the framework is novel and that it will be used fairly short amount of time dur-

ing dissertation development, may result in significant changes and extensions to be required

after the dissertation, when more experience in using the framework is gained. In order to al-

low the maturing process of the framework, flexibility needs to be assured, so inheritance as a

white-box extension mechanism will be allowed. However, with ease of use, better productiv-

ity and control over the framework in mind, it can be expected for composition as a black-box

extension mechanisms to be applied where possible. That being said, from the point of exten-

sibility, our framework will have both white-box and black-box characteristics, and could thus

be described as gray-box framework. Although we do not feel that, according to scope criteria,

any of the suggested framework types is perfectly describing what our framework is trying to

reuse, the closest fit in our opinion are the system infrastructure frameworks. They aim at sim-

plifying development of application infrastructure, which we believe a proper management of

reactive dependencies can do. Object-oriented programming will be taken as a lead approach

in building the framework, although some ideas concerned with handling reactive dependencies

will be taken also from other paradigms such as reactive programming and aspect-oriented pro-

gramming. By being a completely novel framework, from the standardization point of view,

our framework can be considered as an unstandardized framework. It will focus on supporting

fairly specific and narrow domain, so in terms of granularity it will be best described as a fine-

grained framework. According to license criteria, our framework will be free to use, and also

open-source for other developers to be able to modify it and extend it. Regarding the format, it

will be available in both binary and source code version. Binary version is aimed at those who

just want to use the framework, while source-code version will be available for those who want

to better grasp the internals of the framework and possibly make adaptations outside of those

possible through white-box and black-box hot spots.

Implemented software frameworks are working systems that can be applied in application

development. Therefore, from the design science point of view, they can be considered as an

instantiation artifact. However, although the framework implementation may be the ultimate

software artifact resulted from framework development process, other artifacts also arise from

this process. Some of them can also be considered as a valid design science artifacts. Such is

the case with design model of the framework, which prescribes, in a higher and more abstract

level, the structure and behavior that the future framework instantiation artifact will posses.

56

Such model corresponds to design science model artifact.

That being said, the main resulting design science artifacts in this dissertation are pre-

scriptive model and instantiation of software framework for managing reactive dependencies

in object-oriented applications. It should be noted however, that there is an unfortunate clash

of terminology in design science and software frameworks literature that should be clarified.

In design science, instantiation is a type of artifact which represents implemented and working

system, so instantiation in this context refers to implemented and working software framework.

In software frameworks literature, however, instantiation is used either as a verb, to refer to a

process of using a framework to build end-user applications, or as a noun to refer to an end-user

application built using the framework. When using this expression in the dissertation, we will

precisely indicate whether we talk about the artifact type or a process.

It is a common practice to give a name to artifacts being built, so in the rest of the dissertation

our framework will be referred to as REFRAME (comming from REactive FRAMEwork).

The next section will bring more detailed requirements that are going to be placed in front of

REFRAME.

5.2. Elicit requirements (SRS)

In previous section we clearly stated that the artifact to be produced will be software frame-

work named REFRAME, and we outlined its base characteristics. This section aims at eliciting

detailed requirements for REFRAME and wrapping them into a specification document. Fol-

lowing subsections follow adapted document structure and practices from IEEE 830-1998 [17],

and represent REFRAME’s Software Requirement Specification (SRS) document.

5.2.1. Introduction

Purpose

This document represents a Software Requirement Specification (SRS) containing elabo-

rate description of required functionalities and characteristics of software framework named

REFRAME. This framework is the target artifact and the final output of the research project

carried out as a design science research. The second activity of the methodological frame-

work [78] we used for conducting design science research deals with defining requirements of

the aforementioned artifact, and the SRS covered in this document is the main output of this

57

activity.

Primarily, the SRS will serve as a central place for researcher to document the core features

and characteristics of the proposed software framework. Then, the SRS will act as a discussion

ground and communication medium for researcher and other stakeholders (mentors, research

committee, and other interested practitioners and researchers) for expressing their opinions and

interest on the proposed features and characteristics, as well as for assessing its originality and

significance. Lastly, the SRS document will serve as a contract which the researcher will need

to fulfill in successive activities in order to deliver the proposed framework. The requirements

in the document will also help in designing test cases in testing phase.

Scope

As outlined in previous section, REFRAME’s scope encompasses providing application

developers with proper abstractions and functionality for handling reactive dependencies in

OO application development. In addition, REFRAME will contain set of tools which will aid

application developers in using the framework.

We can describe reactive dependency as an expression y = f(x), where y and x are values

(usually describing the state of the object), and f (computation or any other sort of transfor-

mation) denotes dependency y has on x. However, what makes f a reactive dependency is the

characteristic that whenever x changes, the value of y as its dependent value must automatically

update in order for dependency to be consistent. By using dedicated abstractions built into the

framework, application developers will be able to implement individual reactive dependencies

found in application domain. However, reactive dependencies in application domains are sel-

dom found as single isolated cases. Rather, they form larger structures with arbitrary number of

reactive dependencies chained together. This is why REFRAME will allow application develop-

ers to chain individual reactive dependencies into larger and possibly very perplexed graph-like

dependency structures, which we refer to as reactive dependency graphs. Mechanisms imple-

mented in the framework will then be in charge of identifying and automating updates in these

dependency graphs in order to ensure their overall consistency. In addition, REFRAME will

be accompanied by three tools in order to facilitate the use of the framework and the process

of handling reactive dependencies. One of the tools will generate parts of boilerplate code in

order to support framework instantiation process and increase the level of automation. The

other two tools will serve as a means to help application developers to understand and visualize

58

dependency graphs, which due to their sheer size and complexity can be hard to grasp. In this

way, proposed framework will provide improvements over currently dominant approaches for

managing reactive dependencies using Observer and other similar design patterns. REFRAME

aims to make the management of reactive dependencies within object-oriented applications eas-

ier, faster, with less code and errors, and more transparent.

For the sake of clarifying REFRAME’s scope, it should be noted that reactive dependencies

as defined above, are similar with signals and events described in areas of reactive programming,

event-driven programming and aspect-oriented programming, as well as with the overall intent

of different design patterns used in object-oriented programming. However, the scope of the

proposed framework is to work with reactive dependencies in object-oriented setting only in

a form of events, by providing improvements over currently dominant approaches inspired by

Observer design pattern. The framework will not consider signals, which are abstractions for

addressing temporal aspects of reactive systems, or working with streams of data/events. Also,

the framework will not consider distributed systems, performance or security critical systems.

Overview

Up until now, we delineated the purpose and the audience of the SRS document itself,

and introduced the scope and base characteristics of the target artifact - software framework

REFRAME. The following, second section of the SRS, provides overall description of the pro-

posed framework, and lays the foundations for defining specific requirements. The third section

details the functional and non-functional requirements for the proposed framework in order to

enable design, development and testing of the framework. Here each requirement is separately

addressed and elaborated.

5.2.2. Overall Description

Product Perspective

REFRAME is a software framework which is going to be built using object-oriented pro-

gramming language, and will necessarily reside in chosen technology’s specific ecosystem.

There are several elements in this ecosystem that REFRAME will relate to and collaborate with,

namely: end-user applications; integrated development environments (IDE); base frameworks,

libraries and services; other custom frameworks and libraries; and runtime environment.

By being software framework, REFRAME’s code and design aspects, as well as its tools

59

will be used during development of end-user applications (design time). The resulting applica-

tions cannot be executed without REFRAME, so they are also bound at run-time. It is therefore

justified to say that most important REFRAME’s interactions are with end-user applications

developed using it. During application development REFRAME’s features and tools are ac-

cessed through IDE, so this is another system REFRAME needs to collaborate and integrate

with. Most OO programming ecosystems include some sort of fundamental frameworks and

libraries, which offer common, general purpose abstractions in order to make a shift from the

bare constructs of OO programming language. REFRAME will reuse abstractions from these

frameworks where possible and appropriate, and add a layer of higher level abstractions for han-

dling reactive dependencies. In addition, REFRAME may reuse other, custom frameworks and

libraries in order to fill the gap left by base frameworks and libraries, or in order to addition-

ally raise the level of abstraction. This can be seen as a REFRAME participating in framework

layering/stackin process.

Both framework and application code is developed and executed on top of runtime environ-

ment, which abstracts low-level operation system services and hardware specifics, and makes

the development process easier. Among many things, runtime environment provides and/or

supports compilers, debuggers, profilers and other tools. Graphical representation of system

interfaces between REFRAME and other mentioned systems in its environment are depicted in

Figure 14.

Figure 14: Framework perspective

60

Primary user interface through which the framework users (i.e. application developers) can

interact with REFRAME is provided by existing IDE. In order for REFRAME’s features and

services to be available, particular application project should reference the framework. After

that, framework user can invoke REFRAME’s core features and services by writing program-

ming statements in IDE. Also through IDE, but in a more visual style, framework user will be

able to interact with REFRAME’s tools (e.g. in order to display parts of dependency graph),

which also have to be beforehand plugged into IDE.

REFRAME is a pure software system, it does not directly involve communication with hard-

ware, and therefore does not specify any hardware interfaces. As with other similar frameworks

and software systems, this part is abstracted by runtime environment and operating system. In

addition, the framework also does not rely on any specific communication interface.

This leaves REFRAME directly interacting with exclusively software systems through soft-

ware interfaces. However, these interfaces are mostly implicit, i.e. they are enabled by the

underlying technology. For example, interaction between REFRAME and IDE is allowed by

the fact that REFRAME is written in technology which IDE understands and is compatible

with. However, while no explicit effort by framework developer needs to be invested for IDE

to support framework’s abstractions, integration of REFRAME’s tools into the IDE will require

explicit attention.

The main activity of the REFRAME happens during runtime of end-user application which

uses it, and depending on the size and complexity of dependency graph some constraints on

primary memory may apply. This can be especially the case if end-user application which

uses REFRAME is deployed on mobile or embedded systems with limited hardware resources.

Secondary memory may be used by REFRAME to store reactive dependency specifications and

other configuration data. However, here we are looking at fairly small amount of data (measured

in kilobytes or megabytes at most), so this should not pose a problem to any modern system.

REFRAME’s perspective shown in Figure 14 is a generic one, fairly ignorant to specific

technology. However, while this might be enough for framework’s conceptual model, which

among other things abstracts some of the technological specifics, framework implementation

is tied to particular technology. We chose .NET programming platform for REFRAME imple-

mentation, due to it being one of the most popular and powerful platforms, as well as it being

the platform the author is most acquainted with. This includes using C# object-oriented pro-

61

gramming language to develop REFRAME through the Visual Studio IDE. REFRAME Tools

are also going to be provided through Visual Studio. .NET platform has a number of huge

frameworks and libraries which are going to be utilized by REFRAME where appropriate and

needed. Runtime environment supporting all this is called common language runtime (CLR).

Finally, end-user applications which are to use REFRAME also have to be developed using

.NET platform in order to be compatible with the framework.

Product Functions

The main REFRAME’s function is to facilitate the handling of reactive dependencies. Thus,

if we take bottom up approach, the first thing REFRAME has to provide is a means to construct

individual reactive dependencies. This would include specifying two important things: two par-

ticipants involved in reactive dependency, and their respective roles in this reactive dependency.

If we were to blindly follow previous descriptions of reactive dependency, suitable participants

in the context of OO paradigm would be properties - class members which capture the state of

the object. However, our intention is to allow methods, i.e. class members which capture the

behavior of the object, to also engage in reactive dependencies. Whatever the type of partici-

pant, its role in reactive dependency determines whether the participant is dependent one, or the

one at which other participant depends on.

When end-user application is run, REFRAME steps-in to process individual reactive depen-

dencies, and ties them to form larger structures - dependency graphs. These can hold arbitrary

number of reactive dependencies. New reactive dependencies can be added and existing re-

moved from dependency graph. Also, when dependency graph changes, REFRAME checks its

validity and existence of possible problems (e.g. circular dependencies), and warns the frame-

work user about them.

Dependency graph is brought to inconsistent state either by change in its structure itself (e.g.

by adding or removing reactive dependencies) or by activating reactive dependency (e.g. when

the change is triggered in participant). REFRAME’s responsibility is then to analyze depen-

dency graph, validate it, and determine dependent participants that are affected by the change.

If dependency graph is valid, the exact order of propagation of changes through the graph, i.e.

exact order of updates of participants, is determined. Update of individual participants affected

by the change is achieved by running operations associated with each participant respectively.

Although abstractions and mechanisms built into REFRAME will offer both design and

62

code reuse, handling reactive dependencies requires writing certain amount of boilerplate code.

Therefore, REFRAME provides a code generator tool, which will generate the stereotypical

parts of this code, in order to speed-up the process. This primarily involves inserting pieces of

code which will be responsible for constructing reactive dependencies, triggering changes and

possibly other infrastructure and configuration code required for handling reactive dependen-

cies.

Since reactive dependencies may form fairly large and complex dependency graphs, frame-

work users may have hard time comprehending and understanding them. In order to aid frame-

work user in understanding complex dependency graphs, REFRAME provides tool for visual-

izing the current state of the entire dependency graph or only some contextual part of it (e.g.

only participants which are dependent on some other participant, or only predecessor partici-

pants which influence some particular dependent participants). Similarly, a tool of analyzing

dependency graphs will offer basis for reasoning about constructed reactive dependencies.

Graphs are a suitable way to express individual reactive dependencies as well as more

complex dependency structures. In mathematics, graph theory studies graphs as a mathematical

structures which model pairs of related objects. We will borrow some concepts from graph

theory to form a vocabulary of constructs for defining framework requirements.

Graph can be defined as an order pair G = (V,E), where V is a set of vertices or nodes, and

E is set of edges or arcs. Each edge e from E associates two vertices x and y from V , so we can

define edge e as a pair of vertices (x, y). Since reactive dependencies do imply direction, edges

e from set E are directed, i.e. the pairs of vertices (x, y) are ordered pairs, where x is called

predecessor and y successor. Therefore, in the context of reactive dependencies we are talking

about directed graphs. When particular REFRAME feature is specified, related definitions and

clarifications of main constructs from REFRAME (e.g. reactive node, reactive dependency,

dependency graph) will be expressed with the help of the concepts from graph theory.

User Characteristics

REFRAME framework is intended to be used by the software developer population when

developing object-oriented end-user applications. While the framework itself requires no partic-

ular education level, developer is expected to have basic skills in software development (writing

code, debugging, using IDEs...), and some experience in framework-based object-oriented pro-

gramming. These are by no means restrictive requirements, after all, most of todays software

63

development has these characteristics. Therefore, we believe REFRAME to be suitable for wide

range of both novice and experienced developers.

Constraints

REFRAME is open to use, modify and extend by interested developers. Its model is de-

signed to suit object-oriented programming paradigm, but offers flexibility in terms of partic-

ular implementation decisions. However, concrete instance of REFRAME is not technology

agnostic but implemented in .NET ecosystem. This places constraints on the use of REFRAME

and mandates end-user applications to match chosen technology. This means that the end-user

application and the instance of REFRAME have to be technology compatible. If this is not

the case, developer needs to either switch the technology of end-user application to the one

REFRAME instance is implemented in, or one needs to re-implement REFRAME’s model in

desired technology. When re-implementing the model it should be noted that availability and

the characteristics of certain implementation options may significantly vary in different tech-

nologies. It is also worth to note, that REFRAME will offer no security or performance war-

ranties, especially in this early stages of development and use, so using it in any kind of critical

applications should be done with utmost caution.

Assumptions and Dependencies

REFRAME assumes the availability of programming language and environment in which

the framework will be used. That said, if parts of the technology REFRAME depends on

changes in a way that affects requirements stated in this document, requirements will have

to adapt. This effectively means that if for example externals of .NET framework and Visual

Studio change, this may affect REFRAME. Also, the requirements for REFRAME will be dis-

cussed with other stakeholders, and the changes may arise in order to satisfy their suggestions.

Apportioning of Requirements

As is the case with other frameworks, and software in general, REFRAME is a dynamic,

ever-changing system. The initial version of the framework, which is a result of this this disser-

tation, is by no means the final version. Arbitrary number of future releases will be the result

of framework’s continuous evolution and maintenance efforts, driven by corrective, perfective

and adaptive goals. Some of the features and characteristics of REFRAME not planned for this

64

version, but considered for future releases, are as follows:

� Tool for debugging reactive dependencies.

� Tool for visual specification and modeling reactive dependencies.

� Additional means of automating the process of handling reactive dependencies (especially

specifying reactive dependencies).

� Additional predefined analyses and visualizations.

� User-created, ad-hoc analyses.

� Support for unit test generation based on reactive dependencies.

5.2.3. Specific Requirements

External Interface Requirements

As is already mentioned in subsection 5.2.2, REFRAME’s external interfaces are mostly

implicit. Main user interface which will provide access to REFRAME’s features is Visual

Studio IDE. Through it, when developing end-user applications, framework user can reference

compiled files containing REFRAME’s components and then proceed to instantiate and invoke

framework features by writing code in IDE’s code editor. REFRAME’s tools will also integrate

into Visual Studio as IDE extensions, and in a more visual style provide framework users ability

to generate parts of boilerplate code, visualize and analyze structure of dependency graphs.

REFRAME’s interfaces with other systems are inflicted by the chosen .NET platform. In-

terface and interaction between REFRAME and end-user application is based on REFRAME’s

compiled files being referenced in end-user application, and REFRAME’s components being

used, configured and customized within end-user application’s code in order to help realize

some of application’s functionalities. The necessary prerequisite for this to be possible, is that

both end-user application and REFRAME are built using .NET platform. The same prerequisite

stands true for REFRAME to be compatible with Visual Studio IDE.

In order for REFRAME’s tools to be tightly integrated with Visual Studio IDE, they have

to be developed as Visual Studio IDE Extensions using Visual Studio SDK (Software Develop-

ment Kit) or some other types of developer aids available in Visual Studio (e.g. code snipets,

quick actions). Extensions are add-ons that allow developers to customize and enhance Visual

65

Studio IDE by adding new features or tools. In our case, the aim is to support the process of

using REFRAME in application development.

The nature of interfaces between REFRAME and .NET frameworks, and any other custom

frameworks and libraries, is similar with the one with end-user applications. However, in this

case, REFRAME references other frameworks’ compiled files and uses their features to realize

some particular functionality. Again, the prerequisite for this is that REFRAME and other

frameworks are .NET compatible.

Other than these mentioned interfaces, REFRAME requires no additional external interac-

tion with other systems. Any possible interaction with hardware or communication protocol

and devices are abstracted by CLR and operating system.

System Features

Figure 15: Use case diagram describing REFRAME’s features

66

Feature 1: Specify reactive dependency

Specifying individual reactive dependencies is REFRAME’s central and fundamental fea-

ture - a prerequisite to all other features. As already described, it allows us to set up a special

association between two participants, where one participant depends and reacts on what is hap-

pening to the other participant.

Before we are able to specify reactive dependencies, we have to specify the construct rep-

resenting the very participants involved in dependencies. We will start by naming these partici-

pants (reactive) nodes, which is consistent with terminology from graph theory.

� Reactive node n is an entity which encapsulates state/behavior of an object designated to

participate in reactive dependencies. It is represented by a node (vertex) in a graph.

Now that we have defined reactive node construct, we can also describe reactive depen-

dency as an association of exactly two different reactive nodes, where one reactive node acts

as a predecessor node (event emitter), while the other takes the role of successor node (event

receiver). Reactive node’s specific role as predecessor or successor node, is relative to its re-

sponsibility in particular reactive dependency. Since reactive node can participate in multiple

reactive dependencies, in different reactive dependencies it can take different specific roles. So

in one reactive dependency it can represent a predecessor node, while in other it can represent

a successor node. The basic constructs related to reactive dependencies are defined as follows:

� Predecessor node is a reactive node p which acts as a predecessor to some other node s

in reactive dependency d. In a graph it is represented as a starting node of an edge e.

� Successor node is a reactive node s which acts as successor to some other node p in

reactive dependency d. In a graph it is represented as an ending node of an edge e.

� Reactive dependency d is an ordered pair (p, s), where p acts as a predecessor node and

s acts as a successor node. Reactive dependency d has a characteristic that whenever pre-

decessor node p changes, successor node s automatically updates. Reactive dependency

is represented by an edge e in a graph. Predecessor node p and successor node s forming

reactive dependency are considered to be adjacent nodes with respect to edge e, and edge

e representing reactive dependency is said to be incident with nodes p and s. Predecessor

node p and successor node s cannot be the same node.

67

� Outgoing reactive dependency of node n is an ordered pair o = (n, s), where n acts as

a predecessor, and s as its successor node.

� Ingoing reactive dependency of node n is an ordered pair i = (p, n), where n acts as a

successor node, and p as its predecessor node.

Associated requirements:
F1-REQ1 Each reactive node shall be uniquely identifiable.

F1-REQ2 Reactive nodes referring to the same state/behavior of the same object are con-

sidered to be the same reactive node.

F1-REQ3 Reactive node shall be able to take the roles of both event emitter and event

receiver at the same time (see Dual roles in Table 1).

F1-REQ4 Multiple reactive nodes can be defined for one target object, allowing finer

granularity (see Arbitrary "Update" method and Multiple exposed events in

Table 1)

F1-REQ5 Reactive node shall be able to encapsulate additional data about event emit-

ter/receiver (see Additional data about emitter or event in Table 1).

F1-REQ6 Individual reactive dependencies shall be specified by providing one predeces-

sor and one successor node.

F1-REQ7 Reactive dependencies with the same respective predecessor and successor re-

active nodes are considered to be the same reactive dependency.

F1-REQ8 Reactive dependency cannot have the same reactive node as both its predeces-

sor and successor node, i.e. direct circular dependencies are not allowed.

68

Feature 2: Construct dependency graph

The ability of reactive node to participate at the same time in multiple reactive dependencies

with different roles, opens up the possibility for interconnecting reactive nodes and chaining

reactive dependencies to form more complex dependency structures - dependency graphs. Since

individual reactive dependencies imply direction, dependency graphs formed out of them can

be considered as directed graphs.

We provide following definition of dependency graph, related concepts and types of reactive

nodes with regard to their position and role in dependency graph:

� Dependency graph is a structure expressed as an ordered pair G = (N,D), where N is

a set of reactive nodes and D is a set of reactive dependencies. Each reactive dependency

d from D associates a pair of reactive nodes (p, s), where p is a predecessor node, and s

is a successor node.

� Valid dependency graph is a graph D containing at least one reactive dependency, and

no cycles appearing in any of the paths through the graph.

Associated requirements:
F2-REQ1 Dependency graph shall be formed by specifying one or more reactive depen-

dencies.

F2-REQ2 Each reactive dependency shall belong to one and only one dependency graph.

F2-REQ3 Dependency graph structure shall be altered during runtime by adding new and

removing existing reactive dependencies.

F2-REQ4 Multiple dependency graphs can be constructed within the same application.

F2-REQ5 Within dependency graph, reactive node shall be able to participate at the same

time in zero or more reactive dependencies as a predecessor node, and in zero

or more reactive dependencies as a successor node.

F2-REQ6 Validity of dependency graph shall be checked and possible problems reported,

whenever graph structure is altered.

69

Feature 3: Perform dependency graph update process

The main goal of handling reactive dependencies is to keep dependency graph, i.e. its re-

active nodes consistent. Inconsistent dependency graph means that at least one, but possibly

more or even all of the graph’s nodes require update. This means that they have out-dated state

that should be updated, or that they are supposed to invoke specified behavior. Typical occur-

rences that bring dependency graph into inconsistent state are: (1) the change in the structure of

dependency graph, i.e. introducing new or removing existing reactive nodes or dependencies,

(2) setting or changing object’s state represented by reactive node, or (3) invoking particular

object’s behavior represented by reactive node. We refer to such occurrences as triggering

change, and this corresponds to terms such as triggering/firing/raising events in the context of

event-driven programming.

� Triggering change is an occurrence of something happening in individual source reactive

node or dependency graph itself, which results in a graph becoming inconsistent and

requiring update.

When dependency graph becomes inconsistent, it is REFRAME’s responsibility to bring it

back to consistent state. We refer to this process as a dependency graph update process, or sim-

ply update process. During this process, inconsistencies have to be resolved in its entirety, but

REFRAME also needs to avoid performing redundant or unnecessary updates of dependency

graph and its individual reactive nodes. This means we have to identify the cause of the graph’s

inconsistency, all reactive nodes that are affected by it, and determine the order in which to

resolve inconsistencies of individual reactive nodes. In doing that, REFRAME has to consider

how to properly handle acyclic and cyclic graph structures.

� Update process is the process of bringing dependency graph into a consistent state by:

(1) determining what caused the inconsistency (i.e. what triggered the change), (2) de-

termining which reactive nodes are affected by the change and have to be updated, (3)

determining the exact order of update, and finally (4) updating each individual node in

that particular order.

� Reactive node update is the process of bringing particular reactive node into a consistent

state by updating its out-dated state or invoking specified behavior.

70

In some cases, it can be possible and also beneficial in terms of performance and/or re-

sponsiveness to update dependency graph in parallel. This, however, heavily depends on the

structure of dependency graph, and the exact reactive nodes that are required to be updated. In

order to enable parallel update process, REFRAME needs to be able to identify groups of reac-

tive nodes that can be updated in parallel, update them in parallel and establish synchronization.

Depending on the structure of dependency graph, and the exact programming logic in end-

user application code, duration of update process can be expected to significantly vary. Also,

the update process controlled and executed by the framework, can fail due to a number of

framework or application related reasons. It is therefore expected of REFRAME to report the

progress and status of ongoing update process, and provide error details in the event of update

process failing.

Associated requirements:
F3-REQ1 Triggering change can be manually invoked at arbitrary points in end-user ap-

plication code.

F3-REQ2 Contextual data related to triggering change shall be provided, including the

cause of inconsistency.

F3-REQ3 The exact reactive nodes of dependency graph that are made inconsistent by

triggering change shall be determined.

F3-REQ4 The exact order in which update of inconsistent reactive nodes is to be per-

formed shall be determined.

F3-REQ5 Redundant and unnecessary updates of dependency graph and its individual

reactive nodes shall be avoided.

F3-REQ6 Acyclic graphs shall be properly handled during update.

F3-REQ7 Cyclic graphs shall be properly handled during update.

F3-REQ8 Update process can be performed sequentially or in parallel.

F3-REQ9 Contextual information about the progress and status of the ongoing update

process shall be provided.

71

Feature 4: Analyze dependency graph

Once constructed, dependency graph can be quite large (contain large number of reac-

tive nodes) and complex (contain large number of reactive dependencies interconnecting these

nodes). One of the goals of REFRAME is to provide tools which would aid comprehension

and understanding of dependency graph’s structure and update process. In order to do that, RE-

FRAME and its tools have to be able to examine runtime state of end-user application, identify

existing dependency graphs and perform different analysis on these graphs and their nodes. In

addition, REFRAME should monitor the update process and report its status.

While showing an entire dependency graphs and all of their reactive nodes can be useful,

due to potential size and complexity of dependency graph, this could hold too much information

for developer to comprehend. Therefore, our analyses will be based on some sort of information

reduction. This reduction can be (1) horizontal - showing one part of the graph and hiding the

other, or (2) vertical - showing dependency graph at different levels of abstraction. An example

of horizontal reduction would be viewing only source reactive nodes, or only predecessors of

certain reactive node. On the other hand, an example of vertical reduction would be aggregated

view of dependency graph, where reactive nodes are classes or components instead of state of

individual objects. Following concepts are important for understanding analyses of dependency

graphs:

� Degree of a reactive node deg(n) represents a number of edges e incident with reactive

node n, i.e. number of edges going in or out of the reactive node. It determines a total

number of reactive dependencies that the reactive node participates in within particular

dependency graph, either as a predecessor or successor.

� In-degree of a reactive node deg−(n) represents a number of edges e going into the

reactive node n, i.e. the number of reactive dependencies d in dependency graph in which

reactive node n acts as a direct successor node.

� Out-degree of a reactive node deg+(n) represents a number of edges e going out of the

reactive node n, i.e. the number of reactive dependencies d in dependency graph in which

reactive node n acts as a direct predecessor node.

� Leaf reactive node represents a reactive node n which has either in-degree deg−(n) = 0

72

or out-degree deg+(n) = 0. In other words it is a node which solely acts either as a

predecessor node or successor node in all reactive dependencies it is involved.

� Source reactive node is a leaf reactive node n with deg−(n) = 0 and deg+(n) > 0. This

means that reactive node n is successor to no other reactive node, but it is a predecessor to

at least one other reactive node. It acts solely as a predecessor in each reactive dependency

it is involved.

Usually, these are reactive nodes which are triggered by occurrence of something hap-

pening (e.g. user enters some data).

� Sink reactive node is a leaf reactive node n with deg−(n) > 0 and deg+(n) = 0. This

means that reactive node is successor to at least one other reactive node, but is not a

predecessor to any reactive node. It acts solely as a successor node in each reactive

dependency it is involved.

Usually, these are reactive nodes which represent final results to be calculated or final

operations to be performed.

� Intermediary reactive node is a reactive node n which unlike leaf reactive node has

both in-degree deg−(n) and out-degree deg+(n) greater than zero. In other words, it is a

node which acts as a predecessor in at least one reactive dependency, and also acts as a

successor in at least one reactive dependency.

These reactive nodes act as a connective tissue of dependency graph, which allows trig-

gering change in source reactive nodes to result in update propagation all the way to sink

reactive nodes.

� Orphan reactive node is a reactive node n with deg(n) = 0. It is a node which is not

involved in any reactive dependency. In the context of managing reactive dependencies,

such node does not have a purpose.

� Direct predecessors of reactive node n are reactive nodes p1, p2, ...pi which are incident

with reactive node n, i.e. for which there is ingoing reactive dependency d = (pi, n).

� Indirect predecessors of reactive node n are reactive nodes p1, p2, ...pi which are not

incident with reactive node n, but a path of predecessors can be formed between n and pi.

73

� Direct successors of reactive node n are reactive nodes s1, s2, ...si which are incident

with reactive node n, i.e. for which there is outgoing reactive dependency d = (n, si).

� Indirect successors of reactive node n are reactive nodes s1, s2, ...si which are not inci-

dent with reactive node n, but a path of successors can be formed between n and si.

� Direct neighbours of reactive node n are reactive nodes g1, g2, ...gi which are incident

with reactive node n, i.e. for which there is ingoing reactive dependency (gi, n) or outgo-

ing reactive dependency (n, gi).

� Indirect neighbours of reactive node n are reactive nodes g1, g2, ...gi which are not inci-

dent with reactive node n, but a path of predecessors or successors can be formed between

n and gi.

A large number of potentially useful analyses can be performed on graph structures, and it

is not possible to list them all as a mandatory requirement in this document. Instead, we provide

list of general requirements which serve as a guide to form specific analyses that are relevant

and useful for understanding dependency graphs.

Associated requirements:
F4-REQ1 Analysis shall be performed in order to identify and obtain basic information

on dependency graphs existing in end-user application during run-time.

F4-REQ2 For each identified dependency graph a list of reactive nodes can be obtained

at the base abstraction level (i.e. state of individual objects).

F4-REQ3 In addition to base abstraction level, aggregated views of dependency graph

shall be provided on a different levels of abstraction (e.g. class-level).

F4-REQ4 For each dependency graph a separate list of graph’s leaf, source, sink, inter-

mediary and orphan reactive nodes can be obtained.

F4-REQ5 For each reactive node a separate list of its (direct and indirect) predecessor,

successor and neighbour reactive nodes can be obtained at different depth level.

F4-REQ6 For each reactive node a separate list of its leaf, source, sink, and intermediary

reactive nodes can be obtained.

F4-REQ7 For each conducted update process basic information can be obtained, includ-

ing: success status, cause, duration and list of involved reactive nodes.

74

Feature 5: Visualize dependency graph

In addition to different analyses, understanding of structures and processes around depen-

dency graph can be further improved by visually presenting parts or entire graph. This can help

developers gain better understanding of how reactive nodes are interconnected, and what paths

through the graph update process will take. Various graph visualizations will be offered in line

with the results of conducted dependency graph analyses.

Associated requirements:
F5-REQ1 Dependency graphs can be visualized in its entirety or in part, relying on the

results of conducted analyses.

F5-REQ2 Update process can be visualized by displaying involved reactive nodes and

basic information about them in the context of update process.

Feature 6: Generate boilerplate code

Using frameworks usually involves writing a fair amount of repetitive and stereotypical

code which is often referred to as boilerplate code. This opens up the possibility to utilize code

generation techniques to, at least partially, remove burden of manually writing such code from

developer itself and generating that code instead. However, specifying detailed requirements for

this feature is not something that can be done without delving into design and implementation

details of the rest of the framework. This is something that makes generating code different

from other features of the framework. While other features of the framework aim at mitigating

domain problems, this feature, instead of adding new domain-related functionality, focuses on

the problems related to framework use. For us to know what exact code should be generated

and how it should be done, we first need to have that code, i.e. we need to have the framework

designed and implemented. Coupling software requirements phase with such details is not

convenient at this point, as we want to remain on a higher level of abstraction and also ignorant

to technological, design and implementational aspects of the framework. However, we can try

to anticipate tasks in using framework which are most likely to be repetitive, and set them as

candidates for generating code. In the context of REFRAME we can expect such repetitive tasks

to be associated with defining large number of reactive nodes and specifying large number of

reactive dependencies. Therefore, these are our primary targets for utilizing code generation.

75

Associated requirements:
F6-REQ1 Writing boilerplate code in charge of defining reactive nodes shall be aided by

code generation.

F6-REQ2 Writing boilerplate code in charge of specifying reactive dependencies shall be

aided by code generation.

Design constraints

Although an effort is placed to make REFRAME’s requirements and model as portable as

possible to other technologies within object-oriented paradigm, REFRAME is essentially im-

plemented framework. Therefore, some design constraints are technology-oriented, i.e. they

stem from using particular technology to develop REFRAME. Specifically, REFRAME is de-

veloped using C# programming language on top of .NET platform and its constituent frame-

works and libraries. Any relevant feature or characteristic that .NET platform or C# program-

ming language posses or lack, do impose some constraints on REFRAME’s design. Similarly,

REFRAME’s tools are to be integrated into Visual Studio IDE, so their design is constrained by

Visual Studio’s extensibility options.

Software system attributes

In addition to a number of functional requirements, specification documents also host other

requirements related to non-functional/quality attributes of software systems and their use. For

example, ISO/IEC 25010 standard for software quality model [11] prescribes eight quality prop-

erties of software system itself, and five characteristics related to its use. Most of these proper-

ties are further decomposed into several quality characteristics, which ends up in this particular

quality model having 40 characteristics in total. While it is certainly desirable for a software

system to manifest as many as possible of such properties and characteristics, this is often not

feasible within limited resources. Therefore, we list subset of these properties that should be

taken into consideration during development of REFRAME. Some of these properties are par-

ticularly relevant to software frameworks in general and some are related to evaluation activity

of design science process in this dissertation.

� Functional suitability - "degree to which a product or system provides functions that

meet stated and implied needs when used under specified conditions" [11]. This refers

to system being (1) functionally complete, (2) functionally correct, and (3) functionally

76

appropriate. The intent of this quality property corresponds in part with efficacy property

from our evaluation activity.

� Maintainability - "degree to which a product or system is composed of discrete compo-

nents such that a change to one component has minimal impact on other components".

This refers to system being (1) modular, (2) reusable, (3) analyzable, (4) modifiable, and

(5) testable.

� Satisfaction - "degree to which user needs are satisfied when a product or system is

used in a specified context of use." This refers to system manifesting (1) usefulness, (2)

trust, (3) pleasure, and (4) comfort. The usefulness quality property corresponds to the

usefulness evaluation property from our evaluation activity.

Associated requirements:
NF-REQ1 REFRAME shall be functionally suitable for managing reactive dependencies

in OO applications.

NF-REQ2 REFRAME shall be maintainable in terms of making possible the natural evo-

lution of the framework, through the processes of correcting, perfecting and

adapting the framework.

NF-REQ3 REFRAME shall be maintainable in terms of making possible the reuse of

framework in different contexts and domains.

NF-REQ4 REFRAME shall be satisfiable in terms of being perceived as useful (by appli-

cation developers) for managing reactive dependencies in OO applications.

77

6. Design and develop artifact

Previous chapter resulted in providing requirements specification for REFRAME. In this

chapter, as the name implies, specified requirements shall be concretized in a form of a pre-

scriptive model and code implementation. The activities in this step are performed back and

forth, in an iterative manner. Realistically capturing the dynamics of iterative thought process is

not something that can easily be done. Throughout this chapter we will try to convey the sense

of iterative process, but in a simplified way in order to not sacrifice the clarity and dissertation

structure. Here we essentially describe ideas on different possible design and implementation

options for specified requirements, assess these options, try out these options, and abandon or

accept them as a part of the solution.

6.1. Imagine and brainstorm

The main goal of this section is to capture the set of main ideas related to possible design and

implementation options for REFRAME. These ideas will be presented with respect to particular

feature stated in SRS document in Chapter 5. Here we will try to restrain from making final

judgments about the presented options and alternatives, and leave that for sections that follow.

6.1.1. Feature 1: Specify reactive dependency

As already stated in SRS document, specifying reactive dependencies is a fundamental fea-

ture of REFRAME. However, in order to be able to specify reactive dependencies, we first

have to discuss their constituent parts - reactive nodes. One of the fundamental questions that

arise here is what can be a reactive node in OO application? What can trigger a change in

OO application, and what should be able to react and respond to that change? In order to an-

swer that, we look at the constituent parts of the object - a fundamental building block of OO

applications. The object, regardless of particular technology, has two distinct parts: state and

behavior. The object’s state is represented by data members (known as fields and attributes),

each capable of holding certain data in accordance to its specified data type. Object’s behavior,

on the other hand, is represented by methods containing programming logic. Depending on the

programming language, other member types may exist, but we will limit our consideration to

aforementioned fields and methods, as they are universal across OO languages.

78

Most literature sources consider reactive dependencies as a means to synchronize objects’

state. Therefore, allowing object’s fields, as representatives of that state, to act as a reactive

node, may seem as obvious thing to do. Application developers would then be able to, for

example, set up reactive dependency between two fields of the same or different objects, and

update the field represented by a successor node whenever the field represented by predecessor

node changes. It should be noted that this requires object fields to be publicly available, which

is in direct conflict with one of the core OO principles - data hiding. Through the use of

encapsulation technique programmers usually declare all fields as private, thus making them

unavailable for everyone to see or change except the owner object. A common way to use

these private fields from outside of the owner object is through public methods called getters

(accessors) and setters (mutators). As their names imply, getters enable us to get the field

value, while setters provide means to set or change it. Through these methods we can employ

arbitrary programming logic to dictate how fields are allowed to be used. This practice is in fact

so common that a lot of programming languages and editors provide direct support to generate

getters and setters, or in some other way facilitate their use. Some programming languages (such

as Java) express getters and setters as any other method, with the prefix get/set in the method

name being an indicator of their special role. While nothing prevents us from implementing

plain getter and setter methods in .NET languages also, there is an alternative in a form of a

special language construct called property. Properties in .NET fall into category of so-called

syntactic sugar features, which offer alternative, presumably better syntax that masks already

existing language features. Properties are just camouflaged getter and setter methods which

can be easily verified by inspecting intermediate language (IL). Therefore, an alternative to

allowing object’s fields to act as a reactive node is using getter and setter methods, or special

constructs such as properties instead.

While the need to support reactive dependencies between objects’ state seems fundamental,

the support for reactive dependencies involving objects’ behavior may not be so apparent. Al-

though the support for constructing reactive dependencies between methods as reactive nodes

would certainly require additional effort, there may be several cases when this would be use-

ful. One of the cases, as we already stated, would be when methods are used as a "proxy" to

represent fields. So, if we already allow getters and setters to act as reactive nodes, it might

not require too much work to allow this for methods in general. Also, even if we chose fields

79

to act as reactive node, in order to update the successor after the predecessor was triggered,

usually some method containing the field’s update logic has to be executed in the background.

Sometimes it might be more convenient to bypass the fields, and just construct reactive nodes

and dependencies from these update methods. Other examples where method reactive nodes

could be useful are cases when instead of updating one particular field, we want to group up-

date multiple fields, but without creating reactive dependency for each field. It can be seen as

a sort of cumulative update. Finally, there are cases when instead of state, we want to focus on

behavioral aspects of the application, and to just schedule arbitrary number of method calls to

do some processing in specific order.

Whatever type of members we choose to allow to act as reactive nodes, we need to offer

appropriate means to express reactive nodes in programming language. One of the approaches

may be to extend the programming language with new features, and develop custom compiler

to support operations with them. For example, we could introduce new built-in keywords and

data types which would be used as a part of declaration statement for data and method mem-

bers. Fairly recent example of this in .NET environment, is introducing new async and await

keywords which are used in the context of asynchronous programming [1].

More conservative approach would be to avoid making changes to compiler and instead ex-

tend the capabilities of language by utilizing existing features. We could, for instance, utilize

meta-programming capabilities of the language, and use meta-data to mark members as reactive

nodes. Meta-attributes (annotations in Java) are extensively used in frameworks to provide ad-

ditional, class level meta-data for different code elements (assemblies, classes, class members

etc.). For example, unit testing frameworks assign special meta-attribute to methods containing

unit tests. This enables testing tools to automate recognition and execution of unit tests. Sim-

ilarly, Entity Framework - Microsoft’s official Object-Oriented Mapping (ORM) framework,

uses meta-attributes for multiple purposes, including: mapping class properties with table at-

tributes, specifying constraints on particular class properties, etc. In order to be able to read

this meta-data, we must turn to meta-programming technique called reflection. Reflection can

be described as an ability of a software application to observe and possibly modify its structure

and behavior [144].

Another possible option is to introduce new ’reactive’ types by inheriting common data

types, and extending them to behave as reactive nodes. Alternatively we can implement reac-

80

tive nodes as a generic, separate class, unaware of the member’s type, and then find a way to

associate it with particular member.

Listing 6.1: Possible ways to express reactive nodes

public reactive int A; //Introducing new keyword ’reactive’

[ReactiveNode] //Using meta-data

public int A;

public ReactiveInt A; //Introducing ’reactive’ data types

public int A; //Introduce standalone classes for reactive nodes

ReactiveNode nodeA = new ReactiveNode("A");

Reactive nodes have no particular purpose other than being constituent parts of reactive de-

pendencies. Each reactive dependency is expressed by exactly one reactive node assigned with

the role of predecessor, and exactly one node assigned with the role of successor. Therefore, in

order to be able to create reactive dependency, it is essential to discuss how reactive node roles

can be represented.

Whenever we come across some issue in OO context, it is always a good idea to consult

existing design patterns, and try to identify relevant ones modeling useful abstractions and rela-

tionships between these abstractions. As reported in Chapter 2 the most famous design pattern

whose idea resembles the idea of reactive dependencies is Observer pattern. However, other

variants of Observer pattern as well as patterns with similar intent do exist. In previous research

[107] we identified and compared five such patterns: simple Observer pattern, advanced Ob-

server pattern, Observer pattern revisited , Event-notification pattern and Propagator pattern.

While analyzed patterns do share common idea and intent, they also differ in some important

aspect and thus offer useful insight into possible design aspects of reactive dependencies.

Table 6 shows how abstractions from these design patterns represent reactive nodes with re-

spect to the role they play in reactive dependency. We can see that reactive nodes with different

roles are predominantly treated as distinct concepts implemented by separate abstractions. For

example, in Observer pattern, reactive nodes with the role of predecessor are represented by

81

Subject class, and the ones with successor role as Observer class. Only in Propagator pattern

are both roles contained within the same abstraction, i.e. with the Propagator class. With re-

gard to implementation mechanisms, reactive node’s roles are usually expressed by inheriting

an abstract class or realizing interface. Here, different combinations can occur: both roles im-

plemented as abstract classes, both roles implemented as interfaces, or one role implemented as

an abstract class and the other as an interface. Although nominally distinguishing the roles of

predecessor (Observable) and successor (Observer), Observer pattern revisited uses base Java

Objects stripped from any behavior specific to reactive node’s roles. Rather, such behavior is

moved to separate (ObserverManager) class. Therefore in this case it is hard to talk about real

inheritance. Event notification pattern is an exception with regard to implementation mecha-

nism. Instead of inheriting abstract class or realizing interface, it uses composition to implement

reactive node’s roles.

Table 6: Roles of reactive nodes as represented by abstractions from relevant design patterns

Pattern Predecessor role Successor role Mechanism
Observer (simple) [61] Subject Observer Inheritance
Observer (advanced) [61] Subject Observer Inheritance
Observer revisited [46] Observable Observer Inheritance
Event notification [122] StateChange EventStub Composition
Propagator [53] Propagator Propagator Inheritance

Other than aforementioned design patterns, some OO languages have already built-in fea-

tures that try to mimic the idea of Observer pattern. For example, .NET languages include

built-in language construct called event, which can be described as a "message sent by an object

to signal the occurrence of an action" [8]. Events as a feature in .NET could be used to imple-

ment reactive nodes. An event, with its ability to inform about a change, would correspond to

the role of a predecessor node. A special method, usually referred to as event handler, which

reacts on this event, would represent successor node. A similar feature is offered also in Java

in a form of events (predecessor nodes) and event listeners (successor nodes) [10], primarily

aimed for use in graphical user interfaces. However, unlike in .NET, implementation of this

feature in Java is closer to design offered by Observer pattern.

Individual reactive dependencies, as we see them, are in fact ordered pairs of one predeces-

sor reactive node and one successor reactive node. One design point to consider is whether we

want to express them as implicit or explicit concepts. If we decide to do it in an implicit manner,

82

we rely on the reactive node abstraction, and treat reactive dependency as just an association

of two reactive node instances. On the other hand, defining reactive dependency as an explicit

concept requires creating separate abstraction. This separate abstraction would encapsulate as-

sociation of two reactive nodes, but would also allow us to capture additional data for reactive

dependencies (e.g. weight, priority). If we take a look at the related design patterns, but also

built-in features in programming languages such as C# and Java, we can see that prevailing

approach is the one seeing reactive dependency as an implicit concept of association of reactive

nodes. In such case, construction of reactive dependencies can be viewed as simply pairing two

reactive nodes, with a clear indication which one takes the predecessor and which one takes the

successor role.

In simple Observer pattern, Event notification pattern and Propagator pattern, this is done

in a way that each predecessor takes charge of managing reactive dependencies in which it

is involved. In order to do that, predecessor declares a collection capable of storing multiple

instances of successor reactive nodes, and provides methods to add (i.e. Attach, Register or

AddDependent) or remove (i.e. Detach, Unregister, RemoveDependent) elements of that col-

lection. In other words, predecessor forms an ordered pair, i.e. reactive dependency, with each

successor node in its collection. Similar situation is also with C# and Java built-in event han-

dling features. In Java, an object implementing Listener interface (successor role) is added to

internal collection of an object with a predecessor role. In C#, in a process called event sub-

scription, a reference to a method (successor role) is added to so called invocation list of an

event (predecessor role). This approach could be characterized as the one described by Hinze

et al. [74] as decentralized approach.

Observer pattern advanced and Observer pattern revisited take a slightly different approach.

In addition to abstractions representing reactive nodes and their two roles, these patterns pre-

scribe additional, central entity in charge of constructing and storing reactive dependencies.

Here, it is the manager class (ChangeManager, ObserverManager) that declares collection

storing ordered pairs of predecessor and successor reactive nodes, and provides operations to

modify that collection. Each pair in these collections represent one reactive dependency. As op-

posed to decentralized approach, this approach could be described as centralized or middleware

approach [74].

83

6.1.2. Feature 2: Construct dependency graph

In addition to expressing individual reactive dependencies, another design point worth con-

sideration is how do we express dependency graph as a set of interrelated reactive dependencies.

Again, a question is whether we need dependency graph as an implicit or an explicit concept.

As we discussed in previous subsection, part of design patterns and built-in language features

propose making predecessor nodes in charge of constructing and storing reactive dependencies

they are involved in. No graph-like abstraction that manages reactive dependencies is pre-

scribed. Rather, reactive dependencies that potentially form a dependency graph are scattered

across individual predecessors. On the other hand, Observer pattern advanced and Observer

pattern revisited do prescribe separate abstraction that is in charge of storing and managing re-

active dependencies. Although this abstraction is referred to as a Manager, its responsibilities

correspond to the ones of dependency graph.

In deciding which approach to take, it is also beneficial to consult options for designing and

implementing graph structures as concepts from graph theory. For example, directed-acyclic

graph (DAG) seems as a data structure fit to represent group of reactive nodes interconnected

with reactive dependencies. Implementation-wise, according to Goodrich and Tamassia [66],

graphs are commonly represented by two data structures, namely: adjacency matrix and ad-

jacency list. Although less commonly, incidence matrix is also mentioned in this context in

developers community and forums.

Adjacency matrix is basically two-dimensional array of size NxN , where N is a number

of nodes in a graph. If A is adjacency matrix, then A[p][s] = 1 indicates that there is reactive

dependency between node p as a predecessor and node s as a successor. Similarly, incidence

matrix is also two-dimensional array, but with size of NxD, where N is number of nodes in

graph and D is number of reactive dependencies. If A is incidence matrix, A[p][d] = −1 indi-

cates that node p acts as a predecessor in reactive dependency d, while A[s][d] = 1 indicates that

node s acts as a successor in reactive dependency d. In adjacency list, each node is associated

with collection (e.g. arrays, lists, hash tables) of its neighboring nodes. A particular node n

may keep track of only collection S of its successors, or collection P of its predecessors, or

both. Of course, mentioned data structures are canonical DAG implementations, often adjusted

in real applications to fit particular use.

84

Figure 16: Different DAG representations: a) adjacency matrix, b) incidence matrix and c)
adjacency list

6.1.3. Feature 3: Perform dependency graph update process

As stated in SRS document, the main goal of handling reactive dependencies is to keep

dependency graph and its reactive nodes consistent, i.e. ensure that all state members are up-to-

date and all methods are invoked when required. The inconsistency arises as a result of a process

we called triggering change which happens when dependency graph structure is changed, or

when particular reactive node triggers change.

A change in the structure of dependency graph happens when reactive nodes are added or

removed from dependency graph, as well as when reactive dependencies are formed or disman-

tled. Here we should carefully consider which of these actions should indeed trigger the change.

For example, when reactive node is just added to dependency graph, it does not participate in

any reactive dependency, and therefore triggering change in that case would make no difference

to other reactive nodes. Similarly, when reactive node is removed from dependency graph, its

reactive dependencies are also removed, so there is no need to trigger the change in all these

cases.

Triggering the update process in case of change in dependency graph structure, may at first

seem fairly straightforward. After all, adding and removing reactive nodes and reactive de-

85

pendencies is conducted by calling dedicated methods of the framework, so raising event or

invoking update process within these methods is a simple thing to do. As this code is part

of the framework, it is in the hands of framework developers, and completely transparent to

framework users. However, in reality, multiple reactive nodes and dependencies are usually

going to be added or removed together in sequence. If we would trigger update each time this

happens, update process would be unnecessarily performed multiple times. In order to back

up this claim, we need to consider the usual points in application runtime, that reactive nodes

and dependencies are most likely to be added or removed: (1) loading data and instantiating

objects during application startup procedure, (2) instantiating and destroying objects as a re-

sponse to user action, (3) destroying objects as a part of application closing procedure. In a first

(application startup) and third case (application closing) it is apparent that due to large number

of objects being instantiated or destroyed, also potentially large number of reactive nodes and

dependencies are going to be simultaneously added or removed. This would cause huge number

of unnecessary updates. Similarly, if an object, which is with its members involved in multiple

reactive dependencies, is instantiated or destroyed as a response to user action, these multiple

reactive nodes and dependencies are going to be added or removed, and again cause multiple

updates.

When we talk about particular reactive nodes triggering change, we talk about cases when

underlying state member changes its value which requires other states to be updated accord-

ingly, or when the particular method is invoked which requires other methods to be invoked too.

Unlike with dependency graph structural changes, the problem here is that regardless of per-

formance and redundancy issues, state members and methods which should trigger the update

process are not part of framework’s code. Instead they are part of application’s code, the code

which simply does not exist at the time of framework development. Because of that, we need

and explicit input from application developer to know which members should behave in this

(reactive) manner and trigger the update process. Full automation of this feature would require

compiler modifications. For example, framework could introduce new language keywords (see

section 6.1.1) to use within member declaration, and compiler would then had to be modified

to understand them. Whenever state member declared in this way would change its value or

when a method member would be invoked, compiler would trigger the update process automat-

ically instead of the application developer. Such compiler-dependent approach is indeed taken

86

by reactive programming languages and some frameworks. Another approach to achieving cer-

tain level of automation in triggering update process is meta-programming. Although it does

not require compiler customizations, its techniques are often interacting with compiler. Var-

ious meta-programming techniques are at different levels supported by various programming

languages. Techniques available specifically for C# programming language include [71]: Re-

flection, Text Template Transformation Toolkit (T4), CodeDOM, Reflection.Emit, Expression

trees, IL Rewriting, Domain specific languages (DSLs), .NET Compiler Platform (Roslyn API),

etc.

As we discussed in Chapter 2, AOP principles have been used to address certain shortcom-

ings of traditional Observer pattern. In AOP context, managing reactive dependencies would

be treated as a cross-cutting concern, and would be extracted from domain classes and placed

into aspects. AOP allows us to specify points in the application code (usually methods) called

JoinPoints, and then use PointCuts to assign Advice to these points in code. The Advice deter-

mines what method is going to be performed when the specified point in code is reached. In the

context of triggering particular reactive node, we could use AOP to insert code (at runtime) that

triggers update process at the end of e.g. property setters and other methods. In order to achieve

that, AOP frameworks rely on frameworks providing code injection capabilities, such as Cecil

[49].

If above mentioned techniques for automating the process of triggering particular reactive

node are not suitable, or are not feasible at this stage, REFRAME could still try to make this as

straightforward for framework user as possible. Using OO techniques to provide clean and clear

interfaces with as much complexities as possible hidden behind them can still be acceptable

solution.

After the occurrence of triggering change, the dependency graph can be characterized as

inconsistent and it should be updated. The first step in achieving that is identifying the very

cause of dependency graph’s inconsistency. In case of graph update process being triggered by

a change in a state or invocation of method this is clear. The source reactive node which caused

the inconsistency is the very reactive node that was triggered. However, in case of changes in

dependency graph structure, a predecessor node of the added or removed reactive dependency

is the one which could qualify for source reactive node.

As we also pointed out, multiple structural changes to dependency graph very often occur

87

simultaneously. Similarly, simultaneous triggering of multiple reactive nodes can also occur,

either programmatically or initiated by the user. Since this would obviously lead to performing

update process multiple times, we may decide to e.g. temporarily disable update process until all

changes are done, and then manually invoke update only once. However in this case, we would

have more than one reactive node that was triggered and it would be more difficult to find out

the exact reactive nodes which are to be updated and in which order it should be performed. The

simple solution for this would be to invoke update process of entire dependency graph. This

would update dependency graph and bring it into consistent state, but it would also perform

unnecessary updates of some parts of dependency graph. Other, more complex solution involves

tracking all reactive nodes that were triggered during the time update was disabled, and then

introducing temporary predecessor to these nodes and triggering it.

When we identify reactive node which triggered the change and acts as an initial node

in update process, we need to determine which reactive nodes are going to be updated, and in

which order. In the context of directed-acyclic graph (DAG) structure (which dependency graph

is based on) this means we have to find topological sorting or topological ordering of the graph

(or the part of the graph). Feiler and Tichy [53] also recognized this as a means to ensure proper

order of updates in their Propagator pattern. Topological sorting of DAG can be defined as a

linear ordering of its vertices such that for every directed edge (u, v) from vertex u to vertex

v, u comes before v in ordering [21]. Translated to the context of REFRAME, this means that

topological sorting will give us a linear ordering of reactive nodes, such that for every reactive

dependency d = (p, s) from predecessor node p to successor node s, p comes before s in update

process. It is important to note that if a directed graph is acyclic (i.e. it does not contains cycles),

it necessarily has at least one, but possibly multiple topological orderings. If there indeed are

multiple topological orderings, all of them are perfectly correct to use in performing update

process.

There are known algorithms in graph theory used for topological sorting, with most com-

monly discussed being Kahn’s algorithm [83], and Tarjan’s algorithm [148]. Kahn’s algorithm

is based on breadth-first search (BFS) algorithm [108] for traversing and searching graph struc-

tures. The baseline idea here is that vertices (nodes) not having incoming edges are safe to be

added to ordering. Therefore, the algorithm starts with finding such vertices, gradually traverses

graph in layers, i.e. immediate neighbors first, and removes the edges to create more vertices

88

without incoming edges.

Listing 6.2: Pseudocode of Kahn’s algorithm

let sorted is List

procedure sort()

let pending is List

foreach vertex V in graph

if V has no incoming edges

add V to pending

endif

endfor

while pending has elements

V = pending.next()

add V to sorted

neighbors = vertices pointed by edges going from V

foreach neighbor in neighbors

E = edge from V to neighbor

remove E from graph

if neighbor has no incoming edges

add neighbor to pending

endif

endfor

endwhile

end

Unlike Kahn’s algorithm, Tarjan’s algorithm is based on depth-first search (DFS) algorithm

for traversing and searching graph structures. This means that, instead of traversing graph in

layers by first processing all immediate neighbors, we process nodes as deep as possible in the

graph structure before we backtrack to the next immediate neighbor. Because of that, Tarjan’s

algorithm gives inversed topological sorting, i.e. the first nodes given by the algorithm should

be the last ones in topological ordering.

89

Listing 6.3: Pseudocode of Tarjan’s algorithm

let sorted is List

let visited is List

procedure Sort()

foreach vertex V in graph

visit(V)

endfor

end

procedure visit(V)

if V is not contained in visited

add V to visited

neighbors = vertices pointed by edges going from V

foreach neighbor in neighbors

visit(neighbor)

endfor

add V to sorted

endif

end

When performed on dependency graph, topological sorting will give us list of graph’s re-

active nodes, linearly ordered in a way they need to be processed (updated). After that, the

simplest way to perform update process is to iterate through the list and update each individual

reactive node. We refer to this as sequential update process. Sometimes, however, we would be

better off by introducing concurrency and parallelism. Depending on the size of graph, and the

complexity of computations associated with updates of individual reactive nodes, graph update

process can be time-consuming. If in such cases update is run in the main thread, together with

Graphical User Interface (GUI), update process will be blocking the thread from performing

any other operations for some significant time, and the application will appear as unresponsive

to the user. In order to make application usable and prevent blocking, we need to perform up-

date process concurrently. This can be done by letting main thread remain in charge of GUI,

and placing update process to new thread. Now, the CPU scheduler is responsible to assign

90

slices of CPU’s time to each thread, effectively making an illusion of update process and GUI

running simultaneously, thus making the application responsive and usable.

While making graph update process run in separate thread may improve usability of the

application, it does not improve the overall performance of the update process. Not only it

may not result in improvement of performance, but update performed concurrently may require

even more time to complete. For example, the time we need to perform graph update process

is roughly equal to sum of times required for update of individual reactive nodes (we will

ignore the overhead introduced by the framework). If the graph update process is performed

in the same thread as GUI, the thread’s portion of CPU’s time is dedicated to update process

solely. When the update starts it will not be interrupted by the GUI operations. However,

if we decide to perform update process concurrently with the GUI, update process will get

interrupted by the GUI operations, and may take more time to complete (CPU scheduler does

thread interleaving in a nondeterministic fashion, so we can not fully anticipate how CPU’s time

is going to be distributed). In any case, the goal of concurrency here is not to offer best update

process performance, but instead to assure usability of application during the update process.

If we want to address performance of graph update process, we need to introduce paral-

lelism, i.e. perform graph update process itself by multiple CPUs or CPU cores at the same

time. In order for this to be possibly, we need to examine topologically ordered sequence of

reactive nodes, and extract at least two subsequences that are independent, and can be run in

parallel. An algorithm that we found as potentially useful in this context is Coffman-Graham’s

[44] algorithm for graph layering. The algorithm assorts graph nodes to layers in a way that

nodes belonging to particular layer are mutually independent, and can therefore be processed in

parallel. It is performed by following these three steps: (1) transitive reduction, (2) topological

ordering and (3) graph layering.

Concurrency mechanisms are common features of modern OO programming languages. In

.NET ecosystem these have been present from the very beginnings, although significantly evolv-

ing in time. Significant number of technologies are at disposal to developers when developing

concurrent applications in .NET. They can be broadly categorized as: asynchronous program-

ming, multithreaded programming and parallel programming. Asynchronous programming has

two distinct goals: (1) maintain responsiveness of user interface, and (2) enable scalability

of server side applications [34]. In achieving these goals, asynchronous programming tries to

91

mimic concurrency, i.e. dealing with multiple tasks at once, but, if possible, without introducing

additional threads. There are three different patterns we can resort to when doing asynchronous

programming: (1) Task-based asynchronous pattern (TAP), (2) Event-based asynchronous pat-

tern (EAP) and (3) Asynchronous programming model (APM) [19]. On the other hand, mul-

tithreaded programming, as the name implies, aims at enabling concurrency using multiple

threads. Through System.Threading namespace it offers mechanisms and abstractions such as

Thread, ThreadPool, BackgroundWorker, Semaphore and others for creating, starting and can-

celing threads, performing synchronization between threads etc. Finally, parallel programming

extends the concept of multithreading by trying to take advantage of multiprocessor or multi-

core systems to run more than one thread simultaneously. Cleary [34] reports on two forms

of parallelism we can encounter: (1) data parallelism (simultaneously processing a number of

independent pieces of data) and (2) task parallelism (simultaneously processing a number of

independent pieces of work). Both forms of parallelism are supported in .NET through the use

of dedicated libraries such as Parallel LINQ (PLINQ) or Task Parallel Library (TPL) [20].

6.1.4. Feature 4: Analyze dependency graph

The base goal of performing analyses on dependency graphs is to facilitate developers’

understanding and comprehension of dependency graph structure and the update process. The

pivotal questions that arise here are (1) what particular analyses can contribute to this goal, and

(2) how can they be made an integral part of the framework?

The main source for defining relevant analyses is researcher’s experience in developing

end-user applications with reactive dependencies. Some of these analyses were suggested as

requirements in Define Requirements chapter 5. For example, for each existing dependency

graph we should be able to obtain its basic properties, such as total number of nodes, number

of nodes playing particular role (e.g. source node), number of defined reactive nodes and de-

pendencies, graph density, etc. These properties can help us gain quick insight into structural

aspects of dependency graph, such as size and density.

A more detailed information on dependency graph can be provided by listing all reactive

nodes contained in the graph, along with information associated with these nodes (such as name,

type and degree). Since we are, at some particular moment, rarely interested in all reactive

nodes, it is useful to enable developers to fetch only subset of graph’s nodes (i.e. horizontal

92

reduction). One of the criteria for defining these subsets that is relevant for the context of

reactive dependencies, can be the role of reactive node. So, for example, by fetching only

graph’s source nodes we can find out what are the input parameters of some calculation model.

Similarly, by fetching orphan nodes we can search for unnecessary parameters or the ones

which are mistakenly left completely unconnected with others. Additionally, we should be able

to fetch subsets of nodes which are in some manner related to particular node in a graph. For

example, by fetching source nodes of some particular node, we can see which input parameters

directly or indirectly influence our node of interest.

Since dependency graphs are basically acyclic directed graphs, a wide variety of existing

algorithms written for these data structures can apply. Therefore, it is also useful to examine

well-know algorithms traditionally used in graph theory and supported disciplines such as social

network analysis (SNA). However, not all of these algorithms are meaningful and suitable in

the context of analyzing dependency graphs with reactive dependencies. While conducting

full-scale scientific analysis of graph and network algorithms was not planned to be conducted

within this dissertation, we will briefly go through widely known categories and representatives

of these algorithms (see Table 7).

Since reactive nodes represent a pair consisted of runtime object and its member (e.g. prop-

erty), dependency graphs can be quite large structures. Therefore, it could be useful for users

to be able to view dependency graph on a different levels of abstraction (vertical reduction).

For example, instead of original dependency graph, set on an object-member level of abstrac-

tion, we could be interested in seeing aggregated graph version showing dependencies between

objects or classes. In this sense we identified 6 levels of abstraction that can be implemented:

(1) object-member level, (2) object level, (3) class-member level, (4) class level, (5) namespace

level, and (6) assembly level. These abstraction levels could be combined with above mentioned

analyses producing significant number of different analyses.

In addition to analyzing dependency graph structure, analysis of performed update process

can be extremely useful. This does not only include listing reactive nodes which took part in up-

date process, but also reporting underlying cause of update, whether the update was successful

or not, update duration, state changes caused by update, etc.

93

Table 7: Graph algorithms

Algorithm Description
Graph traversing algorithms Allow traversing nodes in graph or tree structures, which makes them

useful for different goals (searching, sorting, finding paths etc.). Well-

known representatives are Breadth-first search (BFS) and Depth-first

search (DFS) algorithms.

Cycle detection algorithms Allow us to detect the existence of cycles in graph, i.e. to determine

whether there is a path p which starts and ends at the same vertex v.

Topological sorting algorithms Allow us to obtain list of graph nodes in which node is always ordered

before all of its successor nodes and after all of its predecessor nodes.

Tarjan’s and Kahn’s topological sorting algorithms are common repre-

sentatives.

Spanning tree algorithms Allow us to find subgraph S of graph G which contains all the ver-

tices of graph G but with minimum number of edges required to stay

connected. A minimum spanning tree extends the definition towards

weighted graphs and assumes also minimum possible total edge weight.

Shortest path algorithms Allow us to find a shortest path between two vertices.

Maximum-flow algorithms Allow us to find maximum possible flow rate between vertex denoted as

source and vertex denoted as sink in a weighted graph. The well-known

representative is a Ford-Fulkerson’s algorithm.

Graph connectivity algorithms Allow us to inspect connectivity of graph and its nodes. A number

of algorithms with different goals can be listed in this category, such

as: checking if there is a path between two vertices, finding all paths

between two vertices, determining strongly connected graphs or graph

components, finding non-reachable nodes, etc.

Centrality measures Allow us to identify most important (central) vertices within a graph,

with importance being defined differently depending on the problem

we’re analyzing. Some of the commonly used centrality measures are:

(1) Degree centrality, (2) Closeness centrality and (3) Betweenness cen-

trality. Degree centrality refers to determining the degree of the node,

i.e. the number of its immediate neighbours. Closeness centrality aims

at calculating topological distance between node and all other nodes.

Betweenness centrality is based on calculating the number of times a

node finds itself on the shortest path between two other nodes.

The analyses we choose to implement aim at helping application developers to better un-

derstand complex dependency graphs. While they can certainly be very useful, these analyses

do not represent the core aspect of the framework, but rather have the supporting role. Nev-

ertheless, they have to be integrated into the framework. One of the common ways to do that,

would be to offer analysis functionality as a framework tool, which can be optionally used by

94

application developers. This tool could be in a form of extension of the Visual Studio IDE,

standalone application, or a combination.

In order to perform any kind of analysis, we have to obtain the data. In the context of

REFRAME this means we have to provide our analyses with the state of dependency graphs

(all its reactive nodes and dependencies) at any time during end-user application runtime. The

way we can do that depends on whether the analysis tool is integrated and operated from end-

user application, whether it is integrated into IDE, or whether it is a standalone application. It

includes options such as: (1) directly accessing runtime state of end-user application, (2) shared

memory/file and (3) inter-process communication, etc.

6.1.5. Feature 5: Visualize dependency graph

As its name implies, this feature extends the framework by offering visual representation of

dependency graphs in a form of Visualizer tool. Some of the early questions for this feature that

were contemplated during initial conceptualizations and prototyping sessions, were: (1) how do

we feed Visualizer with dependency graph data, and (2) what exact technology will be used for

drawing graphs.

With regard to providing the dependency graph data to Visualizer, the situation is very sim-

ilar to providing the data to Analyzer. On one side we have dependency graph data sitting in

end-user application’s runtime, and on the opposite side we have a tool tasked to perform some

operations on that data. Solution for exchanging data between these two parties will probably

be applicable for both Analyzer and Visualizer. Visualizer should also be able to display results

of Analyzer tool, therefore data exchange should be also possible between two tools. Lastly,

we want to keep Visualizer focused solely on its core responsibility (visualizing), and avoid

any programming logic which would manipulate externally obtained data. This will allow us

to decouple Visualizer as much as possible from other parts of the framework, and preserve the

possibility of replacing visualization technology and implementation specifics.

Once the process of obtaining dependency graph data is decided, a question of choosing

visualization technology arises. We considered taking following fundamental approaches: (1)

using general low-level drawing libraries, or (2) using specialized graph-drawing libraries. Both

options may have their advantages. For example, using low-level libraries may allow one to be

more flexible, build a solution tailored to its specific needs, and also avoid being dependent

95

on some third-party solution. On the other hand, using third-party solutions may significantly

speed-up the development, require less resources and offer richer feature set.

The representative of the first approach is the set of .NET’s libraries that can be found in

System.Drawing namespace. These libraries allow us to utilize GDI+ (Graphical Device Inter-

face) to draw different kinds of shapes in windows applications. On the other hand, there are

quite a few specialized graph-drawing libraries, available for different programming languages

and different environments (both web and desktop). However, in Table 8 we list several promi-

nent solutions that could be used in .NET environment. In next section, these solutions will

be further examined and compared by taking into account following aspects: maturity, active

maintenance, ease of use, viewer availability and license.

Table 8: Specialized graph-drawing solutions

Library Description
yFiles.NET Commercial library for .NET Windows Forms, which allows creating

and viewing graphs.

GraphViz Open-source draph-drawing library written for C programming-

language. There is no recent compatible viewer for Windows operating

system.

QuikGraph Open-source graph-drawing library for .NET, successor of deprecated

QuickGraph. There is no dedicated graph viewer.

MSAGL Open-source graph-drawing library for .NET. It also provides viewer.

DGML XML-based file format (Directed Graph Markup Language) for speci-

fying directed graphs. There is .NET library which can be used to create

DGML graphs, and also an integrated viewer for Visual Studio IDE.

Graph# Open-source graph layout framework for .NET. Includes GUI control

for WPF applications.

6.1.6. Feature 6: Generate boilerplate code

In chapter 5 we presented code generation feature as a way to, at least partially, remove

the burden of manually writing framework-related boilerplate code. As a specific requirements

we offered to provide code generation for two places where we anticipated most of the code

repetition would happen, namely: (1) defining reactive nodes, and (2) specifying reactive de-

pendencies. Since the code generation naturally relies on the code it is supposed to generate,

in the early phases of REFRAME development we were not able to set the definitive course

96

of action in this matter. Rather, we had to wait to see how the core APIs of the framework

will end-up looking, and how will the framework be used. However, we used this early phase

to investigate technological possibilities and options for code generation in .NET environment.

In this way we would be ready to choose appropriate code generation solution when the core

APIs are ready. In addition, we would also be aware of what can and what cannot be done, and

use this information to perhaps shape the framework in a way which would enable us to utilize

code generation more easily. Table 9 lists most prominent code generation techniques that are

available in .NET environment and Visual Studio IDE. In next section, these techniques will be

further examined and possibly tried-out in order to see which one would fit best to our needs.

Table 9: Code generation techniques in .NET framework and Visual Studio IDE

Technique Description
Text Template Transformation

Toolkit (T4)

T4 templates use a mixture of fixed text blocks and control logic to gen-

erate text string or a file at design or run time. The resulting, generated

text can be text of any kind, including source code.

CodeDOM CodeDOM is a collection of classes which represent common types of

source code elements, which can be used to generate source code.

Reflection.Emit Reflection.Emit is a collection of classes that allow compiler or tool to

emit meta-data and IL (Intermediate Language) at run time.

Expression trees Expression trees are another way to generate code in .NET, but without

having to dive into IL. It allows developers to use tree-like data struc-

tures to represent and generate code.

IL Rewritting IL Rewriting refers to the process of altering already compiled IL code,

stored in an assembly.

Domain-specific languages (DSLs) DSLs are created on top of general purpose languages in order to spe-

cialize for particular problem domain.

.NET Compiler platform (Roslyn

API)

Allows developers to access information generated in different phases

of compiler pipeline. This means that it can be used to analyze and

make modifications to source code, analyze semantic model, work with

the project structure etc.

Code snippets Visual Studio IDE feature that allows us to define small blocks of

reusable code which can be easily inserted into code file.

Quick actions Visual Studio IDE feature that allows us to refactor, generate or modify

source code.

97

6.2. Assess and select

In this section we aim at assessing design and implementation ideas that were generated

in section 6.1, and selecting those ideas that are not only promising adequate results but are

also feasible to implement. In practice, this involved searching through both scientific and

professional literature, and also prototyping and trying out different options. These efforts will

be categorized according to requirement feature stated in SRS document.

6.2.1. Feature 1: Specify reactive dependency

As discussed in previous section, when it comes down to question what data members are

we going to allow to act as reactive nodes, we can identify two approaches. The first, direct

approach, is to allow traditional data members, such as fields, to act as reactive nodes. The

second, indirect approach, is to represent fields with "proxy" method members, and allow them

to act as reactive nodes. These "proxies" usually come in a form of getter and setter methods,

or some of the language-specific syntax alternatives such as .NET properties.

We mentioned that first approach has some adverse effects in a form of breaking data hiding

principle. This is in fact serious implication, because data hiding is performed in order to

keep the complexity of system under control, and also to prevent unintentional or intentional

malicious changes. Since we are reluctant to force developers break basic principles of OO

programming in favor of using REFRAME, second approach seems preferable. Although both

are acceptable solutions, the question of whether to use getter and setter methods, or properties

to represent fields still remains. One possible disadvantage of getter and setter methods may

be the fact that they are methods and they clearly look like methods. While developers are

perfectly aware of their "proxy" role, the impression of working with methods when we actually

want to work with data members, still remains. Properties, on the other hand, also do the job of

protecting fields, but at the same time allow developers to retain the sense of working with real

data members, i.e. state. Therefore, we will take advantage of the fact that REFRAME is being

developed in C# .NET, and choose properties as data members for reactive nodes. It should

be noted, however, that in other programming languages which do not provide properties as a

feature, we can still resort to using fields or getter and setter methods.

In previous section we presented several arguments and scenarios where allowing method

members to be used as a base for reactive nodes may be beneficial. This includes using methods

98

as proxies to data members, using methods to accumulate multiple state updates, or scheduling

methods as some form of task processing. Unlike with data members, with method members

there are no proxies, but only one, direct approach. Therefore, as suggested in requirement

specification, we will also allow method members to act as reactive nodes.

Extending programming language by adding new features and keywords, and implementing

custom compiler supporting them would certainly provide developers with smoother experience

in handling reactive nodes. However, implementing custom compiler is complex undertaking,

and is seldom justified. Framework users who would try to adapt or extend such low-level

framework would face much larger challenge than if the framework would be at higher level.

Using custom compilers also means that we diverged from official compiler, which begs the

question of keeping compiler updated. It can also be argued that such extension of the standard

language constructs may result in language syntax becoming over-saturated over time. How-

ever, instead of implementing full-scale custom compiler, in one of the prototyping iterations

we tried-out .NET compiler platform SDK (Roslyn APIs) [12], as possibly useful tool. Pro-

vided APIs allow developers to access information generated in different phases of compiler

pipeline. This means we can use it to analyze and make modifications to source code, analyze

semantic model, work with the project structure etc. Unfortunately, .NET Compiler Platform

SDK does not provide a way to extend the compiler. However, the features it does provide may

be of great use in framework development, especially for developing tools which accompany

the framework.

As previously discussed, meta-attributes are frequently used in frameworks to provide addi-

tional (meta) data for code elements. In one of the prototyping iterations we attempted to apply

them to explicitly designate the role of reactive node for class members and classes themselves.

However, we found meta-attributes not suitable for this particular purpose. Meta-attributes

are usually very simple classes, with small number of members, if any. On the other hand,

even in the early phase of REFRAME development it was quite obvious that reactive node is

not going to be a trivial class, but will surely have several state members and accompanying

methods. Passing large number of parameters to meta-attribute to fill its state is fairly cum-

bersome. A more important reason is the fact that meta-attributes operate on a class level, i.e.

they are assigned to a class not an object. This means that it was not possible to associate

different parameter values for different objects of the same class. However, even though this

99

particular technique did not come to life, trying it out spurred ideas on possible uses of other

meta-programming techniques, such as reflection.

One of the usual ways frameworks extend language capabilities, is by offering new abstrac-

tions in a form of classes to express certain domain concepts. This does not require compiler

modifications, and guaranties more developers will be able to understand the framework and

adapt it if required. It also means that, unlike with meta-attributes, we are able to have a sepa-

rate instance of reactive node for each object and its member. Therefore we chose to implement

reactive nodes simply as new classes. However, since reactive dependencies and related fea-

tures are not built into the programming language itself, this approach certainly involves more

boilerplate code in end-user application.

Implementing reactive node classes in a form of reactive types, which inherit or aggregate

common types and extend them with reactive behavior, was also one of the ideas. However,

there is very large number of built-in types, and it is inconvenient to extend them all. And even if

we managed to do this, there are still custom classes created by application developers which we

cannot anticipate. This approach might work only if we wanted to introduce reactive behavior

for a fixed and limited data types. Instead, we wanted to have more general solution, i.e. reactive

nodes being able to support members of any type. Therefore, we chose to implement reactive

nodes unaware of the underlying member type.

As discussed before, in order for reactive dependencies to be able to form acyclic graphs,

individual reactive nodes have to be able to play both predecessor and successor roles. Not be-

ing able to do that would be a serious limitation. Whether listed design patterns express reactive

node’s roles as one or two separate abstractions is in direct relation to this issue. For example, if

predecessor and successor roles are expressed as separate abstract classes, no concrete class can

be both predecessor and successor (due to lack of support for multiple inheritance). Such design

decision would obviously prevent us from meeting aforementioned requirement. Alternative de-

sign, frequently applied in such cases, could involve exposing one or both reactive node’s roles

as interfaces. Now the class representing reactive node can implement both interfaces (or in-

terface and abstract class) and thus support both predecessor and successor roles. Choosing to

implement at least one of the roles as an abstract class offers us possibility to reuse implemen-

tation common to specific role. However, as discussed in Chapter 2, concrete classes inheriting

roles as abstract classes are not real specializations, i.e. there is no real is-a relationship. Such

100

inheritance would then disrupt natural class hierarchy, or it may be very hard to introduce into

already existing hierarchy. On the other hand, we may choose to represent both reactive node’s

roles as interfaces, which seriously limits implementation reuse. Another approach to this is

offered by Observer revisited pattern. As already discussed, the classes implementing prede-

cessor role (Observable) and successor role (Observer) are treated and manipulated as base

(Java) objects, and the implementation in charge of handling reactive dependencies is delegated

to another class. In this way we would avoid artificial inheritance and would gain additional

flexibility, but the question of how to enforce proper behavior of these plain objects would still

remain. That being said, we argue that the best solution to support reactive node having both

roles, is to implement both roles as one abstraction. This in fact means that abstraction for re-

active node in general is sufficient, and we do not need separate abstractions for reactive node’s

roles. This is in line with the design proposed in Propagator pattern.

Now, the question whether we are going to use inheritance or composition also has some

important implications with regard to level of granularity at which we can define reactive nodes.

Design proposed in all three versions of Observer pattern, and in Propagator pattern as well, re-

lies on inheritance and treats whole domain object as one reactive node. That is in contrast

with our fundamental premise - that reactive nodes can be defined at the level of object’s indi-

vidual state and behavior, i.e. properties and methods. One of the possible solution that were

considered was to parametrize reactive nodes. So, for example, while entire object would be

considered as only one reactive node, additional parameter would be passed along this reactive

node indicating exact member that was triggered, or that has to be updated. However, although

this approach would introduce finer granularity in triggering and updating individual reactive

nodes, it would alter the notion of reactive node and make it difficult to construct and manage

dependency graphs. A potentially fitting design idea is proposed in Event notification pattern.

Here a composition is used to allow any class to have arbitrary number of StateChange mem-

bers, which take the role of predecessors, and also arbitrary number of EventStub members

with the role of successors. This allows controlling the level of granulation at which reactive

nodes are specified. The downside is that StateChange and EventStub are separate classes, so

we would have to join them into one as in Propagator pattern.

The idea behind .NET events is very similar to idea of Event notification pattern. Since

events are just another type of class members in .NET, for particular class we can declare as

101

many events as we want. Similarly, event handlers are methods, so naturally there can be ar-

bitrary number of them also. That means that we can have multiple predecessor nodes and

multiple successor nodes for each object, and thus control the level of granulation. One of the

problems of .NET events is fair amount of boilerplate code. For each predecessor node we

have to implement additional class member of type event, and for each successor node we have

to implement event handler method. In addition, as with Event notification pattern, important

downside is that events as representatives of predecessor role and a handler methods as repre-

sentatives of successor role are separate concepts. Java event model combines the shortcomings

of Observer pattern and .NET events, and is also not suitable for expressing predecessor and

successor roles in REFRAME.

Although reactive dependencies are key concept in REFRAME, at this point we will not

express them as an explicit, separate abstraction. Rather, we are going to express them as an

association of two reactive nodes. Such view of reactive dependencies as a concept determined

by ordered pairs of reactive nodes is firmly grounded in graph theory. This is further justified by

the fact that no additional data is planned to be associated with individual reactive dependencies.

6.2.2. Feature 2: Construct dependency graph

Contrary to reactive dependencies, with dependency graph we advocate the use of explicit

abstraction. There are several reasons for this. Firstly, in REFRAME we want to allow coex-

istence of multiple dependency graphs. This implies there is a need to uniquely identify each

dependency graph. Also, there are other possible members describing the state of dependency

graph, that may be required. Apart of the dependency graph state, there is whole range of

behavior related to constructing, storing, fetching and updating reactive dependencies that nat-

urally fits into dependency graph abstraction. In addition, most implementations of directed

acyclic graph have graph as an abstraction. With regard to related design patterns, this means

that we side with design options proposing a manager abstraction as a central entity in charge

of dependencies. They present it as a more advisable option when dealing with complex and

large dependency graph. This is also an option that Hinze et al. [74] describes as centralized or

middleware approach.

While all three mentioned data structures used for implementing DAGs can successfully

support basic DAG operations, we find the idea of adjusted list as the most fitting option in our

102

context. For example, adjacency matrix is cumbersome when there is a need to dynamically

add or remove nodes from graph - something that frequently happens in REFRAME usage

scenarios. Also, adjacency matrix stores information about dependencies for each possible

combination of existing nodes, although, in reality dependencies exist for only small subset of

these combinations. Some search and traversing operations, such as finding nodes associated

with particular node, also require more processing in adjacency matrix. Finally, in adjacency

matrix we use indexes to refer to particular reactive nodes, which is not natural when nodes

are implemented as full-scale objects. Incidence matrix shares shortcomings of the adjacency

matrix, with addition of being more efficient in terms of space in case of sparse graphs, but also

being less efficient in terms of performance. Generally speaking, matrix structures are seen as

inefficient in terms of space for all except the most dense graphs. Adjacency list, on the other

hand, is more space efficient, can better support adding new nodes to graph dynamically, and is

better suited to work with nodes as full-scale objects. In order to allow easier traversal through

the graph, each reactive node will contain separate collections of its predecessor nodes as well

as successor nodes.

6.2.3. Feature 3: Perform dependency graph update process

When we talk about performing graph update process, the first thing we need to determine is

whether the triggering change will be invoked automatically by the framework or manually by

the application developer. In case of dependency graph structural changes, triggering change

automatically when reactive nodes and dependencies are added or removed poses as a most

transparent and straightforward option from the perspective of application developer. However,

as we mentioned in subsection 6.1.3, most of the time this would lead to huge number of unnec-

essary updates performed. Unfortunately, since the code invoking dependency graph structural

changes is application code authored by application developers, framework cannot automati-

cally guess or anticipate how many of these changes will be simultaneously introduced. This

part of the application code is fairly arbitrary, and even if we would set framework to somehow

analyze application code, it would be extremely hard for REFRAME to infer what part of the

application code makes a coherent unit after which update process should be performed. So, in

order to prevent redundant updates from happening, it makes more sense in this case to request

application developer to explicitly invoke update process.

103

Triggering change due to state member change or a method invocation suffers from some

of the same issues as the triggering change due to graph structural changes. For example,

state changes and method invocations are also part of the application code, which framework

cannot easily interfere with to make automatic invocations of graph update. Compiler-based

approaches could possibly achieve that, but we decided not to side with these approaches be-

cause we want to be dependent solely on official compiler. Alternative is to insert (inject) code

that triggers change into application code where state members are changed or methods are

invoked. The simplest way from framework developer’s point of view is to leave that for ap-

plication developer to do manually. As far as this feature is concerned we will opt for this

strategy. However, unlike in the case of graph structural changes, application code in charge of

state member changes or method invocations will most likely be more uniform. For example,

code that triggers change due to state change may be inserted as last line of code in property

setter. Analogously, triggering change due to method invocation may be inserted as a last line

of code in invoked method. This opens up possibility to automatically add these lines of code,

either during design time or (post) compile time. We will consider using these options when

describing feature related to code generation tool.

In order to identify what parts of dependency graph are inconsistent and have to be updated

we have to find source reactive node. As we discussed, in case of triggering individual reac-

tive node due to state change or method invocation, the situation is clear - the source node is

reactive node being triggered. However, in cases where graph inconsistency cannot be reduced

to single source reactive node (multiple structural changes, multiple reactive node’s triggering

simultaneously), REFRAME will provide two techniques in order to prevent multiple updates:

(1) updating entire dependency graph, (2) introducing temporary source node. The first tech-

nique is fairly straightforward, and contains following steps: (1) suspend graph update process,

(2) make changes that would originally cause performing update process multiple times, (3)

resume graph update process, (4) perform update process of the entire dependency graph. This

technique will likely result in some parts of the graph updating unnecessarily, however, depend-

ing on the size of graph and extent of changes previously done, this may not be a large part of

graph. Sometimes, however, we have multiple source reactive nodes, but their combined effect

does not justify updating entire, potentially large dependency graph. In such cases the second,

more complex technique may be better option. Since tracking parts of the graph influenced by

104

multiple source reactive nodes is very complex, we will reduce it to a case with one source re-

active node. This will be done by introducing temporary source reactive node as a predecessor

to all source reactive nodes.

Listing 6.4: Introducing temporary source reactive node

let G is dependency graph

let sourceNodes is List of triggered nodes

procedure PerformUpdate()

let T is temporary node

add T to G

foreach node in sourceNodes

add dependency from T to node

endfor

PerformUpdate(temporaryNode)

foreach node in sourceNodes

remove dependency from T to node

endfor

remove T from G

end

Determining the nodes which have to be updated and the exact order in which this should

happen requires performing topological sorting (ordering) of the dependency graph. Depending

on the situation, topological sorting algorithm will need to be capable of sorting entire graph

or only part of the graph which is directly or indirectly dependent on one or more source re-

active nodes. As we discussed, two algorithms are commonly used for topological sorting,

namely: Kahn’s algorithm and Tarjan’s algorithm. We found both algorithms to be suitable

in the context of REFRAME, with their subtle differences being associated with underlying

traversal algorithms (BFS and DFS respectively). Their advantages and disadvantages tend to

manifest with regard to particular structural properties of dependency graphs. Since there is no

particular dependency graph type that we can say will dominate in REFRAME use, it is hard to

argue which algorithm will be better for REFRAME. Therefore, we choose to implement Tar-

jan’s algorithm based on DFS traversal algorithm as a default topological sorting algorithm in

REFRAME. However, the framework will be designed in a way to allow alternative algorithms

105

to be implemented and plugged in instead of default one.

In order to implement parallel graph update process, we analyzed and adapted Coffman-

Graham’s algorithm in one of the prototyping sessions. Transitive reduction, as a first step of

the algorithm, aims at removing transitive dependencies from the graph in order to minimize the

graph’s width. In the algorithm, the width corresponds to number of processors in multiproces-

sor systems assigned to processing the nodes. However, we will omit this step, since nodes are

going to be processed in threads, and underlying CPU scheduler will decide how these threads

are going to be assigned to CPU cores. Also, we do not want to alter original graph because

dependencies between nodes carry important semantics. The second step is topological sorting,

and this is something we already have to implement regardless of parallelization. Therefore,

idea in the third step (graph layering) of the Coffman-Graham’s algorithm is the only thing we

will apply in order to enable parallelization.

Graph layering divides graph into arbitrary number of layers, with each layer containing at

least one, but usually more than one node. Nodes belonging to the same layer are independent,

and can therefore be processed in parallel. When all nodes from one layer are processed, we

can proceed with the next layer, up until all layers are processed.

Listing 6.5: Pseudocode of graph layering algorithm (third step of Coffman-Graham’s

algorithm)

let sortedNodes is topologically sorted List of nodes

procedure AssignLayers()

foreach node in sortedNodes

predecessors = get predecessors of the current node

if predecessors is empty

assign node with layer = 1

else

maxLayer = determine maximal layer of predecessors

assign node with layer = maxLayer + 1

endif

endfor

end

106

With regard to performance, parallelization of graph update process should be used with

caution, because, while it will result in performance increases in some cases, in other cases

may make performance event worse than with sequential update process. For example, let say

we have dependency graph with nodes n1, n2, n3, ..., nN , and time required for updating each

individual node being t1, t2, t3, ..., tn respectively. If we would perform entire graph update

process sequentially, the total amount time required would equal T =
∑N

i=1 ti, i.e. the sum of

all update times of individual nodes. In case of parallel update, however, when individual nodes

are assorted to layers l1, l2, l3, ...lM , the time required would equal T =
∑M

j=1max(t)j , i.e. the

sum of update times of longest individual nodes for each layer. If the total number of layers is

significantly less than total number of nodes (M < N) it is reasonable to expect performance

improvement. However, this improvement can easily be annulled or even surpassed with the

overhead costs resulting from spawning and managing threads. Also, the number of nodes

in layer that can be simultaneously processed depends on the number of CPU cores. If the

number of nodes in particular layer exceeds the number of CPU cores, it will require more than

max(t) time to process that layer. Situation may vary depending on many factors, however, the

general rule would be that if the update processes of individual reactive nodes are performance-

intensive, then it makes sense to try-out the parallel update process. Otherwise, overhead costs

of dealing with threads will probably be higher than potential performance improvements.

Responsiveness of user interface, as one of the goals of asynchronous programming, aligns

well with features we want to have in REFRAME. As we already discussed, performing graph

update process may take some time, and it is important not the block the main thread and make

GUI unresponsive. In .NET asynchronous programming, this is ideally done without using ad-

ditional threads to separate GUI processing from performing lengthy asynchronous operation.

However, this is possible only when asynchronous operation is I/O bound operation, i.e. when

it is handled by external system (e.g. operation system, network device, web service, human

user etc.). In case the asynchronous operation is CPU bound, i.e. there is no waiting for external

system to respond, we have to resort to using additional threads if we want to assure respon-

siveness. This exactly is the case in REFRAME, since operations contained in update process

are expected to be CPU bound. Therefore, in cases where the goal is to ensure responsiveness

of end user application, REFRAME will offer execution of update process in separate thread to

avoid blocking the GUI thread. With regard to patterns of asynchronous programming, as we

107

have reported, three patterns are in use. However, official .NET documentation describes EAP

and APM as legacy patterns, and advises the use of Task-based asynchronous pattern (TAP) for

new applications [19]. Traditional abstractions (e.g. Thread) for multithreaded programming

that can be found in System.Threading namespace are nowadays considered to be low-level

abstractions. Official .NET documentation advises against their use, and instead recommends

using higher-level abstractions such as Task, available in Task Parallel Library.

The overall graph update process in REFRAME consists of a number of update processes

of individual reactive nodes, that should be executed in proper order. Each of these node update

processes can be seen as a separate task. Therefore, in REFRAME we are concerned with task

parallelism, while data parallelism is out of the framework’s scope. In .NET, task parallelism

is supported by Task Parallel Library set around Task class. Primary benefits TPL brings is:

(1) more efficient and scalable use of system resources, and (2) more programmatic control

than it is possible by using lower-level Thread abstractions [19]. This includes utilization of

existing threads from ThreadPool instead of creating new ones, algorithms for load balancing,

and rich set of Task-supporting APIs. These benefits allow TPL to form not only the basis

of parallel programming, but also multithreaded and asynchronous programming (TAP). As a

comprehensive solution, TPL library will be used in REFRAME.

6.2.4. Feature 4: Analyze dependency graph

As discussed in Imagine and Brainstorm section, there is a large number of algorithms with

different goals that can be used to analyze graph structures. Some of these algorithms are clearly

useful for analyzing dependency graphs in the context of REFRAME. Some, however, would

not produce meaningful results, or their suitability should yet be determined subsequently after

some time spent using the framework. Therefore, in this initial version of the framework (in

accordance to requirements set in SRS) we will include subset of analyses which we consider

to be suitable for the context of reactive dependencies. A framework will also be designed in a

way to be easily extended with other analyses.

The process of analyzing structure of obtained dependency graph will start by choosing one

of the 6 abstraction levels at which we want to analyze the graph (vertical reduction). After that,

complete graph at chosen level can be listed, or we can decide to fetch only a subset of graph

nodes (horizontal reduction). Following mechanisms for defining graph subset are chosen to be

108

implemented: (1) filtering by affiliation, (2) filtering by role, and (3) filtering by association.

Filtering by affiliation is closely related to graph abstraction levels, and assumes being able to

show only reactive nodes which belong to some particular parent node. For example, if we

choose to list dependency graph on an object-member abstraction level, we can choose to list

only reactive nodes that belong to some particular assembly, namespace, class or an object.

Filtering by role assumes being able to show only reactive nodes with some particular role in

a graph (e.g. graph’s source nodes). Finally, filtering by association enables us to list reactive

nodes which are associated with some particular node of interest. In this way we can fetch all

of node’s predecessors, successors and neighbors, or only part of them (e.g. predecessors which

are source nodes). Since these mechanism can be combined, a fair number of different analyses

can be produced.

With regard to graph algorithms shown in Table 7 we can see that some of them we already

intend to use. For example, Graph traversing algorithms and topological sorting algorithms are

key for assuring proper order of updating individual reactive nodes within REFRAME’s update

process. This is also the case with cycle detection algorithms which help us assure dependency

graph is kept acyclic. On the other hand, spanning tree algorithms are intended to be used

on undirected graphs or directed multigraphs, while dependency graphs are directed acyclic

graphs. A spanning tree devised from dependency graph would have compromised structure

in terms of missing reactive dependencies, so it would not only be useless but also misleading.

Similar situation is also with maximum-flow algorithms, which only make sense for weighed

graphs. Shortest path algorithms can be run on dependency graphs, however, at this point we

do not see how these would be meaningfully interpreted. Therefore, we will omit them from

this version of framework.

In case of connectivity algorithms, for example, checking and finding paths between vertices

would allow us to see if two reactive nodes are directly or indirectly dependent. Furthermore,

algorithm for finding non-reachable nodes would allow us to find orphan nodes. On the other

hand, algorithms for determining strongly connected graphs or components are not useful in the

context of REFRAME. These algorithms try to find path between each pair of vertices in a graph

or a component, which in REFRAME’s directed acyclic graph will practically never be the

case. Together with connectivity algorithms, centrality measures bear the largest relevance to

REFRAME’s dependency graphs. They may be useful for finding the most influential reactive

109

nodes in the graph (e.g. parameter which is central to some particular calculation model).

In this version of framework we will implement degree centrality measures as they are most

straightforward for users to understand and interpret.

Aforementioned analyses are going to be made available for application developers in a form

of framework’s accompanying tool. The first idea for this tool was to be completely integrated

into IDE as an Visual Studio Extension [16]. However, after a few prototyping sessions, several

problems became evident, most important being: (1) very difficult development of tool’s GUI in

a form of extension, and (2) extension’s inability to access runtime state of end-user application.

In an attempt to resolve problems with GUI development, we decided to use traditional

Windows Forms for tool’s user interface development. Visual Studio Extension would then only

be used as a means to invoke analysis tool from Visual Studio IDE. This should not only be

removing restrictions on GUI development, but it should also make easier to transition analysis

tool to standalone external tool, easily used also by end-users.

Accessing runtime state of end-user application which is needed for obtaining dependency

graph data on which analyses would be performed, proved to be a bigger problem. We dis-

missed the option of executing our tool within end-user application very early in development

phase. Instead, we opted for external tool, independent of end-user application. This is because

we did not want to require application developers to alter the end-application code just to be able

to run our tool. After a few prototyping sessions, it became apparent that with Visual Studio

Extension we cannot access a runtime state of running application. One of the potential solu-

tions that arose, was to utilize IDE’s own debugger to inspect the runtime state. However, after

making reasonable effort, no suitable APIs capable of providing that were found in debugger.

In addition, we also considered implementing our own custom debugger, but after examining

fairly scarce documentation for customizing debugger, we realized this would require too much

effort with uncertain results.

At this point we were stuck with a problem of being required to inspect runtime state of

end-user application from a tool which is run in a completely separate process. Therefore, the

next option to try-out in prototyping session was inter-process communication (IPC). IPC can

be achieved in a number of different ways, ranging from simple file sharing to using Windows

Communication Foundation (WCF) framework. Sharing dependency graph data as a file was

not an option, as it would require invoking some kind of export feature from the end-user appli-

110

cation and then importing data into analysis tool. This would mean altering end-user applica-

tion’s code, and also possible performance issues in case of large dependency graphs. Although

WCF is a suitable solution, it is a whole framework, and we wanted to avoid additional depen-

dencies. Instead, we decided to use Named Pipes [9] as a fast, reliable and compact solution

for achieving IPC in a client-server style. Unlike WCF, Named Pipes are part of standard Sys-

tem.Core assembly, so no additional assemblies are required. In this configuration, end-user

application would act as server, and would respond to requests sent by analysis tool which took

the role of a client. Exchanged requests and responses will use XML format.

6.2.5. Feature 5: Visualize dependency graph

In section 6.1 we concluded that both Analyzer and Visualizer tool share the same issues

related to obtaining dependency graph data from end-user application’s runtime. This opened-

up the possibility for these tools to also share the same solution. As discussed in the section

devoted to Analyzer tool, we opted for inter-process communication implemented using Named

Pipes as a solution. However, instead of both Analyzer and Visualizer tool communicating via

pipes with end-user application, it seemed reasonable to make only Analyzer do that. Analyzer

would then be in charge of storing dependency graph data in an appropriate data structure (on

a tool’s side) and performing different analyses. On the other hand, Visualizer would only need

to take data from the Analyzer and display it. Whether this data represents original ("intact")

dependency graph, or a result from one of analyses, to Visualizer this would make no difference.

In this way we have a possibility to make Visualizer highly decoupled component, which is easy

to maintain and even replace.

With regard to chosen technology, although it may seem as a legitimate option, using low-

level drawing libraries such as the ones found in .NET’s System.Drawing namespace, proved to

be inadequate. While the drawing of individual shapes is not particularly problematic, drawing

graphs comes with a whole set of issues, a lot of which were the subject of thorough scientific

work in the last several decades. The example of such complex issues is determining the lay-

out of nodes and edges which ensures proper readability and comprehension of graph. Since

resolving such low-level issues falls out of the scope of this dissertation, it makes more sense to

search for existing graph-drawing library and focus on specifics of visualization in REFRAME.

As hinted in previous section, solutions listed in Table 8 were examined and compared. In

111

the end we decided to go for DGML option, as it proved to be a stable and mature solution, of-

fering most of the things we required out-of-the-box, and for free. Building graphs with DGML

was fairly straightforward thanks to included .NET library (Microsoft.VisualStudio.GraphModel

namespace), while viewing graphs was possible using Visual Studio’s built-in graph editor. Us-

ing other mentioned solutions would also be a viable option, but we would have to carefully

weigh-in some of the adverse aspects. For example, yFiles.NET is a very able and feature-rich

library, however we did not want to make REFRAME (open-source) dependent on commer-

cial solution. On the other hand, while being open-source solutions, GraphViz and QuikGraph

did not offer a dedicated graph viewer. Finally, MSAGL and Graph# offered a complete set

of features, however it seams they are no longer actively developed and maintained. Never-

theless, choosing DGML as a graph visualization technology is not a definitive and immutable

decision. Depending on the future needs of the framework, we may want to replace it with

technology which would require more effort to adapt, but would also offer more flexibility and

more features.

6.2.6. Feature 6: Generate boilerplate code

In this section we discuss how individual code generation techniques (listed in 6.1) respond

to exact needs for code generation in REFRAME. In order to do that, we had to know how

REFRAME’s core APIs are going to look like from the perspective of application developer

(framework user). This is why activities described in this section were carried out a bit latter,

i.e. after core features were already designed. The prototyping sessions in which we tried-out

the REFRAME’s core APIs showed that (as we anticipated) most of the repetitive boilerplate

code deals with: (1) defining reactive nodes, (2) specifying reactive dependencies between

them, but also (3) triggering change. Code statements which perform these tasks are added by

application developer at appropriate places in existing code structures (classes). This means

that if we want to support these tasks by code generation, we have to make possible to inject

arbitrary code into existing classes at appropriate places (e.g. existing method or setter bodies).

While number of code generation techniques such as T4 templates, CodeDom, Reflec-

tion.Emit and Expresion trees do allow us to generate code (design, compile or even runtime),

non of these techniques are particularly suitable for changing content of existing code. Code

injection, on the other hand, is possible through IL rewriting (at runtime) and through .NET

112

Compiler platform (at design time). IL rewriting is usually done using specialized third-party

libraries due to extreme complexity and the lack of direct support in .NET framework. One of

the widely used mature libraries that supports code injection, and that also happens to be free

is Cecil [49]. In examining Cecil’s code injection features, several observations were acquired:

(1) By using Cecil, we are introducing additional, third-party library, and make our framework

depend on it, (2) using Cecil to generate reactive nodes and reactive dependencies would not

be justified since we would have to define dependency graph in some other way (e.g. through

XML specification or through GUI), (3) injecting triggering change statement could be a viable

option but it is questionable if this is worth introducing the whole framework, (4) code injec-

tion results in creation of new version of assembly which cannot be reloaded at runtime, (5)

debugging process can be impaired due to difference between source code and IL.

Runtime code injection as a feature in .NET compiler APIs has been requested by developers

in .NET community for quite some time. But although the public discussions (visible on the

project’s GitHub pages) are still ongoing, no implementation of the feature is at sight. However,

as mentioned, .NET compiler APIs allow developers to manipulate syntax trees of existing

source code, including injecting arbitrary lines of code into properties or methods. We managed

to try this out during one of the prototyping sessions. The positive side of .NET compiler APIs

is that we stick with the official .NET APIs and a product which has been constantly evolving.

Also, altering syntax trees results in altering source code, so there is no "hidden" statements

like in the case of IL rewriting which could impair the process of debugging. However, in order

to inject code in charge of specifying reactive nodes and dependencies, and triggering change,

application developers would have to provide required information in some other way.

One of the ways we tried to provide this information is using meta-attributes. During one of

the prototyping sessions we assigned custom meta-attributes to properties we wanted to inject

with triggering change statement. Then, using .NET compiler APIs, syntax tree of the class

is analyzed and all properties decorated with this particular meta-attribute were injected with

required code. While this approach showed potential, the process of assigning meta-attribute

to class members was no easier than adding the very code we wanted to inject. The similar

situation was also with generating code statements in charge of specifying reactive nodes and

dependencies. In our prototyping sessions we considered using XML-based structure for spec-

ifying meta-data required for generation of reactive nodes and dependencies. However, even

113

using GUI tool which we created for specifying this meta-data, required the same or more ef-

fort as manually adding the code we wanted to generate.

The decision we made after trying out different options, was to (at least in this iteration)

abandon the "heavy-weight" solutions and start with something simpler. The first step would be

to try simplifying framework’s APIs in order to make framework easier to use and code more

readable. This will be done by creating DSL layer on top of REFRAME’s core APIs. DSLs

are frequently used for this, e.g. by extending existing languages in order to better support and

express concepts for a specific problem domain. In the second step, we would offer option

to generate the skeleton of individual code statements, in which application developers would

fill-in the variable parts. For this we considered utilizing Visual Studio’s code snippets or quick

actions features. After trying both options, we found code snippets to be more convenient as

they offered everything we needed and were also much easier to implement.

Despite choosing combination of DSL and code snippets as a solution for code generation

for this iteration of framework, we remain open for future alternative solutions. We are particu-

larly interested in new and developing technologies which constantly emerge in .NET Compiler

API, such as source generators (still a preview option at the time of writing).

6.3. Sketch and build

In this section we utilize SRS document, as well as ideas collected and selected in previous

sections, in order to design and implement REFRAME. Features 1, 2 and 3 from SRS docu-

ment deal with the "core" part of the framework, i.e. programming abstractions and operations

required to allow developers to express reactive dependencies and perform update process in

end-user application. This part of the framework is absolutely essential and at the same time

sufficient for framework to be usable, so we refer to it as ReframeCore. The efforts in designing

and implementing ReframeCore will occupy the first part of this section. On the other hand,

features 4, 5, and 6 deal with the part of the framework which is optional for use, and aims at

increasing productivity and comprehension in working with reactive dependencies. This second

part of the framework is referred as ReframeTools, and consists of auxiliary tools for analyzing

and visualizing dependency graphs, as well as generating parts of boilerplate code. The efforts

in designing and implementing this part of the framework will be described in second part of

this section. Finally, in the third part of this section, we will distance ourselves from the de-

114

tailed design aspects and take a high-level perspective in describing overall architecture of the

framework.

Figure 17 shows conceptual architecture of REFRAME and its surroundings. We can see

that REFRAME consists of two related parts: (1) ReframeCore and (2) ReframeTools. When de-

veloping end-user applications with reactive dependencies, developers can use abstractions and

mechanisms of ReframeCore to express reactive nodes, reactive dependencies and dependency

graphs. This requires end-user application to hold a reference to ReframeCore. Optionally, ap-

plication developers can also use ReframeTools to enhance the use of ReframeCore in terms of

analyzing and visualizing dependency graphs, and generating part of the boilerplate code.

Figure 17: Overall architecture of REFRAME

6.3.1. ReframeCore

6.3.1.1. Reactive nodes

Reactive node is a strong and fundamental concept in REFRAME’s problem domain. It

is used as a building block for expressing other concepts such as reactive dependencies and

dependency graphs. Therefore, it is reasonable to model it as an explicit abstraction in solution

space. We begin this by assigning a class Node to represent reactive node, and then continue

describing desired characteristics of reactive nodes by adding state and behavior to this class.

As we will see, iterative refinement will result in forming node hierarchy.

115

One of the things that are evident from SRS document is that reactive node needs to point

at the class member it represents, for example by adding a dedicated property to Node class

which would refer to a class member. This can be done by: (1) storing member name (i.e.

method name or property name) as a text string, or (2) using meta-programming techniques

to store meta-data member representations, such as PropertyInfo, MethodInfo, or MemberInfo

objects in .NET, obtained through reflection. In order for REFRAME’s core design to be more

general and more easily applicable to different technologies, we will try to favor technology-

agnostic design decisions. In this case, it means that we will store only plain member names

in MemberName property. Reflection is indeed going to be used to fetch other meta-data when

required, however, this functionality is going to be placed in helper library classes, in order to

keep core classes "clean".

In addition to a member, reactive node also has to point at the exact instance of a class

owning that member. This will be implemented through OwnerObject property. One of the

questions that arose in this context was the declaring type of the OwnerObject property. The

possible options included: (1) using .NET base Object type, (2) introducing new "reactive"

type, or (3) using .NET generic types. Prototyping sessions showed that by introducing new

"reactive" type we would interfere with class hierarchies of business objects implemented by

application developers. Using generics also proved to be impractical, and also not necessary.

Therefore, again we opted for simple, and most general solution of using .NET base Object type

to store owner object.

With regard to reference to owner object, there was one additional issue related to resource

deallocation that should be mentioned. When you create and instance of an object in .NET in

a conventional manner, we say that application holds a strong reference to an object. Strong

references have an implication that as long as there is even one strong reference to it, an object

cannot be collected by garbage collector. This means that if we would pass strong references

of owner objects to reactive nodes, the existence of reactive nodes would prevent deallocation

of their respective owner objects. Even in the case of removing all strong references from

application’s code, the strong references might still be existent in framework’s code. Solving

this issue from end-application’s code would place too much burden on application developers,

since it would require checking for references in reactive nodes whenever an object is removed

in application. Doing that on the framework’s code side is also not possible since we are not

116

able to obtain information on the exact number of strong references to particular object. The

remaining option was to use so-called weak references instead of strong references to hold an

owner object in reactive nodes. The weak references still provide access to an object, however

their defining characteristic is that they do not prevent garbage collector from collecting objects.

This means that if strong references of an object are removed from application, weak references

in reactive nodes are not going to get in a way of garbage collector.

Figure 18: Essential members of Node class

Another important aspect of reactive nodes relevant to manipulation of individual reactive

nodes, understanding of reactive dependencies and dependency graphs, and performing correct

update process, is being able to uniquely identify reactive node. When we identify or compare

objects in OO setting, we usually do this by examining references of these objects. For example,

two objects, a and b, are equal if their references are the same, i.e. their references point to the

same location in memory. With reactive nodes this is not the case. We can easily make several

separate instances of Node class, and as long they refer to the same owner object and the same

member, they are to be seen as the same reactive node. There are ways in C# programming

language to override default implementations of equality operator "==" (performs reference

comparison in case of reference types) and Equals method (performs value comparison) in order

to alter comparison rules for certain types. However, instead of that, we will assign reactive node

with explicit and unique identifier. This identifier would then be used to differentiate between

different reactive nodes during usual operations within REFRAME, but also as a handle to

fetch reactive nodes from dependency graphs. Having explicit identifier can also be useful as

a human-readable reference to reactive node in logging, reporting, and other tools. Therefore,

we need to add another property called Identifier to Node class, and also assure it being really

unique for reactive nodes referring to the same owner object and member. This was done

by automatically generating identifier based on combination of hash values of OwnerObject

reference and MemberName.

117

Listing 6.6: Generating identifier for reactive nodes

protected uint GenerateIdentifier(object owner, string member)

{

uint id = 0;

if (owner != null && member != "")

{

id = (uint)(owner.GetHashCode() ^ member.GetHashCode());

}

return id;

}

Finally, each node should be capable of invoking arbitrary behavior on OwnerObject, which

would make individual reactive node update during overall, dependency graph update process.

To make this very convenient, Node class will provide parameterless Update method, which

returns no result (i.e. void). Invoking this method will make individual reactive node updated.

While this makes interface of Node class clean and simple, the Update method is just a proxy

method of a real OwnerObject’s method that is actually executing in the background. In order

to store that real method we can use .NET constructs called delegates, which can be described

as types that hold a reference to a method. In particular, we are going to use the Action delegate,

which encapsulates a method with no parameters and no return value.

Of course, not all reactive nodes need to have specified update Action. For example, source

reactive nodes (as described in SRS document) act as a triggering point of dependency graph,

and are likely to be "updated" by e.g. user entering some data. On the other hand, intermediary

and sink reactive nodes depend on source reactive nodes and other intermediary nodes, and need

to have update Action defined in order to be updated.

Since reactive nodes were aimed to represent different types of members (properties and

methods) and also different types of owner objects (singular objects and collections), differences

started to appear in design and implementation between these node variations. This was first

attempted to address by introducing Type field in a Node class. However, since differences in

implementation continued to emerge, a class hierarchy was introduced in order to handle these

differences using polymorphism.

It is important to note that the ending hierarchy (see Figure 19) was a result of several iter-

118

ations. In each iteration multiple design decisions and multiple refactorings were applied. For

example, initial version of class hierarchy was introduced by performing Replace Type Code

with Subclasses [56] refactoring. This resulted in creating new classes, with all of them inher-

iting the base Node class. PropertyNode and MethodNode represented reactive node referring

to singular owner object and a property or method member respectively. On the other hand,

CollectionPropertyNode and CollectionMethodNode referred to their counterparts with collec-

tion owner object. In order to reuse common implementation from CollectionPropertyNode and

CollectionMethodNode, we applied Extract Superclass [56] and introduced new CollectionN-

ode superclass. Since the sole purpose of both Node and CollectionNode class was to reuse

common implementation by their subclasses, they were declared as abstract classes.

In order to further decrease coupling between classes representing reactive nodes and other

parts of the ReframeCore, INode and ICollection node interfaces were introduced. The idea be-

hind this is that no class (other than their immediate child classes) should know about existence

of concrete or abstract reactive node classes. Instead, all interaction with reactive nodes is going

to be conducted through the INode or ICollectionNode interfaces. This is in line with gener-

ally accepted Dependency Inversion Principle (DIP), postulated by Martin [99]. In practice,

dependencies directed solely to INode and ICollectionNode interfaces mean that we can rewrite

node hierarchy as we see fit, by e.g. replacing implementations of existing reactive nodes, or by

introducing new reactive node subclasses.

Figure 19: Hierarchy of reactive nodes

119

While in the rest of the framework code and the application code we can store reactive node

references in variables of interface type INode, there is one more thing that hampers total de-

coupling of reactive node classes from other parts of the code. In the process of instantiating

reactive nodes we still need to specify which exact concrete class we want to instantiate. Al-

though there is no way to completely avoid this, there are solutions which tend to minimize

the effect. For example, Gamma et al. [61] propose creational patterns as a category of de-

sign patterns which try to abstract the process of class instantiation. They attempt this by: (1)

encapsulating knowledge on the exact concrete class which is to be instantiated, and (2) en-

capsulating knowledge on how exactly the instantiation is conducted. To put it another way,

instead of scattering instantiation logic and coupling concrete reactive node classes to all the

places in code which need to instantiate them, we localize this logic and make one part of the

code responsible for it. This additionally reduces coupling and also improves code quality in

terms of maintainability, understandability, reusability etc.

Figure 20: Essential members and associations of NodeFactory class

In order to achieve this, we applied a variant of Abstract Factory [61] design pattern. This

is also suggested by Martin [99], as he claims that one of the coding practices emerged from

Dependecy Inversion Principle ("Don’t refer to volatile concrete classes"), puts constraints on

creation of objects and enforces the use of Abstract Factories. Here, Abstract factory is repre-

sented by an abstract class NodeFactory, which implements two overloads of the public method

120

CreateNode (see Figure 20). This method prescribes simple algorithm for creating reactive

nodes whose main steps involve invocation of abstract methods. Method CreateNode in fact

represents a Template Method [61] design pattern, and captures commonality which all node

factories should adhere. Abstract methods, on the other hand, have to be implemented by con-

crete subclasses, and represent a way to introduce variability in the process of creating reactive

nodes.

While abstract factory class is useful for specifying commonalities in reactive node creation

process and also specifying points where variability can occur, we still need concrete factory

class to do the real work. REFRAME provides class StandardNodeFactory - a concrete factory

able to create currently supported types of reactive nodes. Extending reactive nodes creation

process can be done either by implementing new concrete class from abstract factory class, or by

extending StandardNodeFactory. As with reactive node hierarchy, we introduced INodeFactory

interface through which other parts of ReframeCore can interact with node factory objects.

6.3.1.2. Reactive dependencies and dependency graphs

Although they are central concept in REFRAME, reactive dependencies are not modeled as

an explicit abstraction. This is because we are not associating with reactive dependencies any

information other than which reactive nodes are constituting them. Therefore, instead of explicit

abstraction, reactive dependency is implicitly expressed as an association of two reactive nodes

- predecessor and successor. If the need would arise to associate additional information to

reactive dependencies, then they would need to be represented by an explicit abstraction. In this

case, core algorithms (such as sorting, scheduling and update algorithms) would require certain

adjustments.

While REFRAME is going to have a central entity representing dependency graph, indi-

vidual reactive dependencies are not going to be centrally stored, but rather distributed across

individual reactive nodes. Each reactive node will keep record of reactive dependencies it is

involved with, either as predecessor or successor. This is implemented by each reactive node

maintaining two separate lists of reactive nodes - the Predecessors list depicting its predecessor

nodes, and the Successors list depicting its successor nodes. Outgoing reactive dependencies

of reactive node n can then be described by an ordered pair (n, s), where n is a current node

(acting as a predecessor), and s is any reactive node from n’s Successors list. Similarly, ingoing

reactive dependencies of reactive node n can be described as an ordered pair (p, n) where p is

121

any reactive node from n’s Predecessors list, and n is a current node (acting as a successor).

Maintaining two separate lists does require more memory space due to each reactive depen-

dency being represented twice (in predecessor node’s list of successor nodes, and successor

node’s list of predecessor nodes). However, this is beneficial to performance, because instead

of traversing all possible reactive dependencies for a given reactive node, we can directly assess

all of its immediate neighbors. Other than Predecessors and Successors lists, reactive nodes

through INode interface expose methods for basic manipulation of these lists (see Figure 21).

Figure 21: Methods for manipulation of predecessors and successors

Since most of what REFRAME is doing revolves around dependency graphs, they are the

most important higher level concept in REFRAME, and therefore require special attention to

design them. They will appear as an explicit abstraction, i.e. class DependencyGraph. Being

the central concept of the framework creates a natural tendency for DependencyGraph class

to become overloaded with functionalities, starting with graph instantiation process, managing

the graph structure, scheduling and performing updates, providing update progress information

etc. Such large concentration of functionalities within individual class makes the class "know

too much" and "do to much", which is generally considered harmful, especially in terms of

understandability and maintainability. In literature, such classes are often referred to as "god

classes" or "monster classes". Prominent authors such as Fowler [56] and Martin [100] label this

phenomenon as "large classes" and "too much information" respectively, and consider it to be

a bad smell in code. Since "god classes" fairly frequently emerge in code, lot of principles and

practices are aimed at preventing and eliminating them, such as Single Responsibility Principle

(SRP) popularized by Martin [99]. As a part of SRP guidance, several refactorings documented

by Fowler [56] were applied in order to eliminate "large class" bad smell, namely: Extract

Class, Extract Subclass and Extract Interface refactorings.

These efforts eventually led to a decomposition of one huge responsibility initially attributed

122

to DependencyGraph class, into several smaller-scale and more cohesive responsibilities. The

one natural responsibility left for DependencyGraph class was to manage the graph structure.

Firstly, it involves providing appropriate data structures for storing the graph, i.e. for storing

the very reactive nodes which constitute dependency graph. As we previously discussed, we

identified adjacency list as an appropriate data structure for this. On an implementational level,

reactive nodes constituting dependency graph are stored in Nodes collection in Dependency-

Graph class. However, reactive dependencies are distributed and kept within their respective

reactive nodes, i.e. in their aforementioned Predecessors and Successors lists. This means that

adjacency list containing dependency graph spans two classes - DependencyGraph and Node.

In addition to providing data structure for storing graph, DependencyGraph class also pro-

vides a set of basic methods for manipulating graph structure (see Figure 22). This structure

is shaped by adding reactive nodes to dependency graph and forming reactive dependencies

between them.

Figure 22: Essential members of DependencyGraph class

6.3.1.3. Dependency graph update process

Major responsibility that was seceded from DependencyGraph was performing dependency

graph update. Successive attempts to model dependency graph update resulted in further de-

composition of this responsibility (in accordance to SRP [99]). From this effort, two main steps

of update process emerged, namely: (1) determining update schedule, and (2) performing the

update. Although mutually related, both of these steps were recognized as separate respon-

sibilities, and therefore modeled as separate abstractions. This resulted in two new classes,

conveniently named: (1) Scheduler, and (2) Updater.

Determining update schedule refers to the issue of finding out which nodes from the graph

are required to be updated, and also in which order is this going to happen. And this is ex-

123

actly what Scheduler class is doing. The complexities of determining the update schedule are

hidden behind two overloads of the method GetNodesForUpdate (see Figure 23). For a given

dependency graph, the first method overload returns collection of all reactive nodes from the

graph, sorted in order they should be updated. The second method overload offers determining

the partial update schedule, and for a given initial node it returns properly ordered collection of

only those reactive nodes that are directly or indirectly dependent on the initial node.

Figure 23: Essential members of Scheduler class

In order to provide scheduling functionality offered through GetNodesForUpdate method, a

few things are happening internally in the class. This includes making temporary adjustments

to graph (such as redirecting reactive dependencies), topologically sorting dependency graph,

assigning update-related metadata to reactive nodes and logging update schedule for testing and

reporting purposes. Again, the question of treating some of these sub-functionalities as separate

responsibilities arise.

Figure 24: Scheduling nodes for update

Logging, for example, has been traditionally considered as a cross-cutting concern, which

should be removed from core behavior. Indeed, logging implementation was extracted to a

NodeLog class, not only to separate responsibilities, but also to enable the reuse of logging

functionality in other parts of the code. Topological sorting is another functionality which can

qualify as a separate responsibility. However, there is an additional reason why it would be

convenient to move topological sorting to a separate class. As we already discussed, topolog-

ical sorting, as a fundamental part of determining the update schedule, can be implemented

using different variants of algorithms. While we opted for Tarjan’s [148] algorithm based on

124

Depth-first search, we also emphasized the importance of being able to easily replace that with

some other algorithm (such as Kahn’s [83] algorithm based on Breadth-first search). This sce-

nario is a textbook example of a well-known Strategy pattern. According to Gamma et al. [61]

Strategy’s intent is to "Define family of algorithms, encapsulate each one, and make them in-

terchangeable...". As one of the applications of the pattern, authors also mentioned "... need

for different variants of algorithm... reflecting different space/time trade-offs...". Therefore,

in order to separate topological sorting from scheduling responsibility, and also to make algo-

rithms interchangeable, we implement the Strategy pattern (see Figure 25). The Strategy role is

represented by ISorter interface, which was implemented by DFS_Sorter acting as a Concrete

strategy role. Lastly, the Context role is played by Scheduler class. Since Scheduler is cou-

pled only to ISorter interface, any future Concrete strategies implementing that interface can be

interchangeably used by the Scheduler.

Figure 25: Strategy pattern in the context of Sorter class

When we determined the update schedule, i.e. which exact nodes have to be updated, and

in what particular order, the very update of these nodes can be executed. This responsibility

has been assigned to an Updater class (see Figure 26), and it involves configuring update op-

tions, performing the actual update, and tracking, logging and reporting update status. The

configuration options include: (1) choosing update strategy, (2) suspending update (methods

SuspendUpdate and ResumeUpdate), and (3) enabling logging of updated nodes. Update strat-

egy provides three options for performing update process, namely: (1) Synchronous (default),

(2) Asynchronous, and (3) Parallel. The very update process is issued by invoking one of the

overloads of PerformUpdate method. The first overload performs update process on the en-

tire dependency graph, while other overloads provide different ways to specify initial node and

perform update process of only part of the graph.

125

Figure 26: Essential members and associations of Updater class

When performed synchronously, update process is executed in a sequence with other steps

of the calling application code, usually within the same thread. Updating individual reactive

nodes within the update process is also done in sequence, one reactive node after another. This

is a reasonable option if the update process is not a lengthy one, and it does not disrupt respon-

siveness of the end-user application. It is also a right option when the application developer

wants to manage concurrency strategy by himself within the end-user application. However,

in case of lengthy update process running in the main thread, a synchronous option will re-

sult in main thread being blocked and GUI being unresponsive. This can be avoided by using

asynchronous option, in which update process is performed in separate thread, rather than on

the GUI thread. This prevents GUI thread from being blocked and achieves responsiveness of

end-user application, even in cases of lengthy update process. Finally, parallel update process,

aims at improving overall performance of graph update process, by utilizing multiple threads

to update independent individual reactive nodes in parallel. It is important to emphasize, that

all that the application developer needs to do to switch from one update strategy to another, is

to change the Strategy property of the Updater instance. This makes it very easy to experiment

how end-user application is influenced by different update strategies, without making any actual

changes to application code.

For implementation of both asynchronous and parallel update process we lean on .NET

official Task Parallel Library and its core concept represented by Task class. While the Task

represents concept on a higher level of abstraction than the class Thread, making implementa-

tion of concurrency strategies easier to achieve, we still needed to specify how update schedule

will be parallelized. In previous section, we discussed Coffman-Graham’s [44] algorithm for

graph layering, and how its third step can be used to form layers of reactive nodes. This par-

ticular step was in fact implemented in a Scheduler class by assigning each scheduled reactive

126

nodes with the number of the layer it belongs to. What remained for Updater to do was to fetch

one layer at the time, and since its reactive nodes were mutually independent, execute them in

parallel.

Figure 27: Example of object interaction required for performing update

As discussed in previous section, suspending and resuming update is a mechanism for opti-

mizing the number of update processes which are performed in cases of e.g. multiple structural

changes or multiple reactive nodes triggering simultaneously. The implementation includes

SuspendUpdate and ResumeUpdate methods, which application developer can use to wrap ap-

plication code that would otherwise result in multiple update processes. Any attempt to perform

graph update between invocations of SuspendUpdate and ResumeUpdate methods is going to

be ignored.

6.3.1.4. Reactor - a higher level interface for ReframeCore

Decomposing ReframeCore into a number of classes, with each of them being in charge of

their own distinct responsibility, helps managing frameworks complexity and makes the frame-

work easier to understand, maintain, reuse and extend. However, this may come at cost of

making framework more challenging to use, as application developers necessarily have to deal

with more instances of different classes, and manage relationships and interaction between these

instances. This can result in a steep learning curve, and discourage potential framework users

from giving framework a try. What we want instead, can be described by well-known quote

from computer scientist Alan Kay, which states "Make simple things simple, and complex things

possible". Translated to a REFRAME context, this means we want to provide simpler way for

127

application developers to interact with the core features of the framework, especially in simple

and common usage scenarios. For more complex and less frequent scenarios, we want applica-

tion developers to still be able to utilize all the power of dealing with individual components of

the framework and even extend and customize them.

One of the common solutions for providing unified, higher-level interface in order to sim-

plify use of some complex system is a Facade [61] design pattern. According to Gamma et al.

[61], simplified view of the complex system provided by Facade tends to be good enough for

most clients. It abstracts the structural details of the system, and shields users from unnecessary

details. However, Facade does not encapsulate the details in a sense that it makes them unavail-

able to application developers. All of the individual components are still accessible for those

application developers who need them.

In one of earlier iterations, one of the idea was to make DependencyGraph take the role of

Facade. However, this would result in increase coupling between DependencyGraph class and

classes such as Updater, Scheduler and Sorter. Therefore, instead, we introduced additional

class which would serve as a Facade, and we named it Reactor. As it is common for Facade

classes, Reactor does not implement any particular programming logic itself. Rather, Reactor

instance only forwards the method calls to instances of other classes, in this case Dependen-

cyGraph and Updater directly, and Scheduler and DFS_Sorter indirectly. In this way Reactor

becomes a simple gateway through which application developers can manipulate structure of

underlying dependency graph (e.g. add and remove nodes and dependencies, fetch nodes etc.)

and perform graph update without being required to bother with the underlying details. It is

interesting to note that design of Reactor class (and the use of Facade pattern in general) con-

tradicts the SRP principle, however, this is done knowingly, and with a clear purpose.

Since Reactor represents a facade for an arbitrary configuration of DependencyGraph, Up-

dater, Scheduler, and DFS_Sorter instances, one of the design decision that have to be made is

where should we put the responsibility of constructing Reactor instances and setting up these

configurations. During application runtime, it may well be opportune to have multiple different

configurations, i.e. multiple different Reactor instances, which are going to be used at multiple

places throughout the application code. Therefore, in addition to handling construction logic,

we also need a way of keeping track of constructed reactors and accessing particular reactor.

The simplest option from framework developer’s perspective would be to trust application

128

developers with this. Application developers would use Reactor’s parametrized constructors

to set up particular configuration. They would also assure that created Reactor instances are

globally accessible, either as individual variables or in some sort of collection, so that they can

be used where needed. However, instead of relying entirely on application developers to handle

this, we want REFRAME to provide consistent way of doing this. In order ot achieve it, we need

to have three goals in mind: (1) encapsulating knowledge with regard to Reactor construction

logic, (2) keeping track of constructed Reactor instances, (3) assuring global access to already

constructed Reactor instances.

Encapsulation of construction logic is a trait of creational design patterns such as already

mentioned Abstract Factory pattern [61]. As opposed to constructor methods of Reactor class

we find placing complex construction logic into separate class as a more reasonable option.

However, at this point we do not see the need for flexibility offered by a full-scale abstract

factory. If the framework use should indicate otherwise, design can be changed afterwards.

Keeping track of Reactor instances and assuring their global access aligns well with Registry

pattern [54]. According to Fowler Registry pattern describes "a well known object that other

objects can use to find common objects and services" [54]. That being said, in REFRAME, we

will introduce a separate class named ReactorRegistry, which will adopt the factory and registry

roles. While the registry role is explicit in both the implementation and the naming of the class,

factory role is more implicit, i.e. it does assume responsibility of constructing Reactor instances

but without full-scale abstract factory implementation. Therefore, application developers can

use ReactorRegistry class for creating new and obtaining existing, already "registered" Reactor

instances.

Figure 28: Essential members and associations of Reactor class

As both stated in our third goal, and the Fowler’s definition of Registry pattern, instance of

ReactorRegistry should be globally accessible in application code. However, it also makes sense

129

for only one instance of ReactorRegistry class to exist. Both of these requirements can be met

by either proclaiming the class as static, or by implementing Singleton design pattern [61]. The

rationale behind using static class is that static classes cannot be instantiated, so the class itself

emulates the notion of only one object existing. Each member of a static class is also static,

and is conveniently accessible directly from the globally accessible class itself. On the other

hand, Singleton’s intent, as defined by Gamma et al. [61], is to "ensure a class has one instance,

and provide a global point of access to it". It involves creating non-static class, but artificially

limits the ability for creating more than one instance of a class by hiding the constructor. This

one instance is available through static property or a method of Singleton class. In this way

it also becomes globally accessible. With regard to ReactorRegistry implementation we prefer

the Singleton implementation, since it is more flexible than static class implementation. For

example, contrary to static classes, Singleton class can implement interfaces, it can be derived

from (and therefore extended), it can be passed around as a parameter etc.

Figure 29: Example of object interaction required for creation of Reactor object

6.3.2. ReframeTools

6.3.2.1. Analyzer tool

Obtaining dependency graph data

Before going into design and implementation details related to analyzing dependency graphs,

it is reasonable to discuss how the Analyzer tool will obtain the very data it is supposed to work

with. In previous sections of this chapter we concluded that dependency graph data originally

resides in end-user application, which is executed in a separate process. Getting hold of this

130

data by Analyzer tool meant we need to establish inter-process communication between end-

application and Analyzer tool. As we previously announced, our solution will take a form of

well-known client-server architectural pattern with the goal of abstracting the communication

details related to underlying named pipes technology.

The client role, played by the Analyzer tool, assumes performing two usual tasks: (1) re-

questing dependency graph data by sending command to a server, and (2) receiving a raw XML

response. The Figure 30 shows abstractions required for carrying out these tasks. The PipeCom-

mand allows us to specify the command name, optional parameters, and the identifier of the

component that is supposed to handle the command on the server. Since all communication

via pipes is done by exchanging textual data between client and server, PipeCommand has Se-

rialize method, which translates command data into XML content. The PipeClient abstract

class handles the general, low-level mechanics of using pipes to send a command to a server,

and receive the response. On the other hand, concrete class ReframePipeClient defines and

sends REFRAME-specific commands, which are exposed in a form of GetRegisteredReactors,

GetReactor, and GetUpdateInfo methods.

Table 10: Currently implemented pipe commands

Method Command Handler Description
GetRegisteredReactors ExportRegisteredReactors CoreHandler Requests the list of reactors registered

in end-user application.

GetReactor ExportReactor CoreHandler Requests details (including entire de-

pendency graph) of particular reactor.

GetUpdateInfo ExportUpdateInfo CoreHandler Requests information related to per-

formed update process in particular re-

actor.

The server role in our inter-process communication is played by end-user application. Its

primary role is to respond to client’s commands by sending requested data. This is achieved

by server being able to: (1) understand client’s commands, and (2) send runtime dependency

graph state as XML content. The Figure 31 shows design perspective of the server role. The

PipeServer abstract class is in charge of low-level mechanics dealing with server status and

the use of pipes to establish communication with a client. The concrete ReframePipeClient is

only left to initialize specific handlers which are going to handle particular commands coming

131

Figure 30: Client feature residing in REFRAME tools

from a client. A handler can be any class conforming to ICommandHandler interface, i.e.

having an Identifier and a HandleCommand method. Potentially reusable parts of handler’s

implementation (including mandatory Identifer and HandleCommand) are placed into abstract

CommandHandler class. The concrete CoreHandler class was only required to implement

abstract method GetExporter responsible for delegating XML export process to any component

conforming to IExporter interface. Since we wanted CoreHandler to be able to respond to

three aforementioned client’s commands (sent by ReframePipeClient), we paired each of the

commands with appropriate concrete realization of IExporter, namely XmlReactorsExporter,

XmlReactorDetailExporter, or XmlUpdateInfoExporter.

Figure 31: Server feature residing in end-user application

The chronology of entire inter-process communication between Analyzer tool and end-user

application is depicted in Figure 32. On the left side we see the client role played by Analyzer

tool, which requests the data from the server. On the right side we can see the server, residing

in end-user application, which packs the reactor data in a form of XML content, and sends it

to the client. It is worth to mention, that although the server functionality falls into end-user

132

application, the entire functionality is already implemented as a part of REFRAME framework.

The only thing that application developer is required to do in order to enable the server, is to

reference needed server assemblies and call the StartServer method.

Figure 32: Inter-process communication between Analyzer tool and end-user application

Creating analysis graphs and nodes

Since dependency graph data which server packed and sent to a client is in a form of XML,

we decided to parse this content into an explicit graph-like structure in order to make manipu-

lation and analysis easier. Although initially considered, the idea of simply reusing Dependen-

cyGraph and node hierarchy from core part of REFRAME was abandoned due to differences

that arose (especially ones in node hierarchy and their structure). Since the reuse benefit was

also not particularly large, it seemed a better option to leave analysis and core graph structures

separate in order to avoid possible clashes in the future. Additionally, this would allow An-

alyzer and Visualizer to also be used with alternative implementations of the core framework

features. Indeed, as long as the server-side provides properly formed XML document, Analyzer

and Visualizer will do their job.

This separation was realized by introducing the concepts of analysis graph and analysis

node. When looking at Figure 33 we can see that to a large extent these concepts imitate

basic graph-enabling data structures that can also be seen in REFRAME core. For example,

133

AnalysisGraph provides a means to store and manipulate graph nodes, while AnalysisNode

allow us to represent characteristics of individual nodes and realize dependencies between them.

Unlike in REFRAME core, however, here the node hierarchy is not driven by the need to capture

different class members (e.g. property, method) that the node represents. Rather, the hierarchy

is introduced to handle specifics of six different abstraction levels (vertical reduction) that the

analysis graph and nodes can be at. However, after several iterations of refactoring, analysis

nodes ended up having specifics related to these abstractions levels, while analysis graph did

not. This resulted in having one concrete analysis node class for each abstraction level, and only

one general class (i.e. AnalysisGraph) for analysis graph. So for example, for a class-member

level of abstraction we would have an instance of AnalysisGraph with assigned ClassMember

to AnalysisLevel property, and any number of ClassMemberAnalysisNode instances contained

in Nodes property.

Figure 33: AnalysisGraph structure and node hierarchy

Following the good practices employed when designing core part of the framework, details

of concrete implementations of analysis graph and nodes are also hidden behind interfaces,

namely IAnalysisGraph and IAnalysisNode. In order to ensure no client class references di-

rectly any of the concrete classes, even in the process of analysis graph and nodes instantiation,

134

an abstract factory pattern was applied. Besides sheer decoupling from client classes, there was

another very important reason in support of introducing factories in this particular case. With

factories, we were able to separate responsibility of creating graph and nodes from Analysis-

Graph and AnalysisNode classes. This creation process was very demanding, since it involved:

(1) parsing possibly large XML content obtained from end-user application, (2) extracting nec-

essary data from it and (3) constructing the graph and nodes. Finally, by allocating all dealings

with XML content to factory classes, we also made analysis graph and nodes independent of

the underlying data transfer technology, effectively making the framework more modular. In

Figure 34 we can see AnalysisGraphFactory abstract class, which sets up the general steps for

creating any IAnalysisGraph compatible graph through its CreateGraph template method. The

creation of nodes, however, is delegated to accompanying AnalysisNodeFactory abstract class.

Naturally, a creation process for each concrete analysis graph and node, is implemented by con-

crete factories. For example, AnalysisGraph at an assembly level and AssemblyAnalysisNode

instances are created using AssemblyAnalysisGraphFactory and AssemblyAnalysisNodeFactory

respectively.

Figure 34: Analysis graph and analysis node factories

Graph structure analysis

As we discussed in previous subsection, a raw XML content obtained from end-user ap-

plication contains all the data related to runtime dependency graph. Since this runtime graph

is always at the object-member level, we found it convenient to offer application developer an

option to alter the level of abstraction when analyzing and displaying the graph. Vertical reduc-

tion was realized through the use of factory and node hierarchies, with each of the abstraction

135

levels handled by its own concrete factory and node class. For example, original XML graph

data obtained by ReframePipeClient can be passed to concrete AssemblyAnalysisGraphFactory,

which will result in creating analysis graph at an assembly-level of abstraction containing nodes

of AssemblyAnalysisNode type.

When we have AnalysisGraph at desired level of abstraction, we can decide to list the en-

tire graph, i.e. all of its nodes, or only a subset (horizontal reduction). In previous section we

discussed three different filtering mechanisms that are going to be available to choose from.

The first, filtering by affiliation, is tightly related to analysis graph abstraction levels. It enables

application developer to list only those nodes from graph that have a child-parent relationship

with a given node. As can be seen in Figure 35, at the lowest level of this child-parent hierarchy

is ObjectMemberAnalysisNode node, whose parent is an ObjectAnalysisNode. ObjectAnaly-

sisNode on the other hand has ClassAnalysisNode as its parent, and so on. What this implies

is that when we have analysis graph at certain level of abstraction, we can filter its nodes with

regard to affiliation to all of their direct and indirect parent nodes. For example, if we have

an analysis graph at an assembly or namespace level of abstraction, we are not going to have

any filtering options since its nodes are at the top of the child-parent hierarchy (i.e. they do no

have a parent). The other extreme would be a graph at an object-member level of abstraction,

whose nodes can be filtered by ObjectAnalysisNode, ClassAnalysisNode, NamespaceAnaly-

sisNode and AssemblyAnalysisNode nodes, i.e. all of its direct and indirect parents.

Figure 35: Node abstraction levels in filtering by affiliation

136

Filtering by affiliation is designed as shown in Figure 36. We can see two interacting hi-

erarchies, the left one depicting graphical user interface classes, and the right one the classes

with filtering logic itself. Depending on the analysis graph level of abstraction, the concrete

GUI form is displayed with its concrete AnalysisFilter handling all the filtering logic. Parent

classes FrmAnalysisFilter and AnalysisFilter allowed us to not only reuse part of the code, but

also to hide implementation specifics, effectively enabling AnalysisController to operate with

any current and future filtering by affiliation implementation.

Figure 36: Filtering by affiliation design

Filtering by role as a second mechanism for horizontal reduction, can also be applied at

analysis graph of any level of abstraction. Currently, there are total of 5 filtering options avail-

able for this category, showing graph’s: (1) source nodes, (2) sink nodes, (3) leaf nodes, (4)

orphan nodes and (5) intermediary nodes. These options are self-explanatory and in line with

definitions provided in chapter 5. User selecting these options through the graphical interface

(represented by FrmAnalysisView class hierarchy), results in invoking appropriate method in

AnalysisController. This in turn leads to executing the very filtering implementation, located in

Analyzer class (Figure 37).

Finally, filtering by association aims at displaying analysis nodes associated in different

ways with chosen analysis node. There are total of 9 filtering options at our disposal, listed

and described in Table 11. As with filtering by role options, these options are also available to

user through FrmAnalysisView hierarchy. The user’s selection is handled by AnalysisController,

while the filtering itself is handled by Analyzer class (see Figure 37).

137

Figure 37: Filtering by role and association

Table 11: Filtering by association options

Filtering option Description
Show predecessors for node Shows all (direct and indirect) predecessors of a given node at desired

depth level. It can be useful in showing us what reactive nodes does

our given node depend on. Note: Depth level of 1 indicates only direct

predecessors will be shown, level 2 indicates direct predecessors and

their direct predecessors will be shown, and so on.

Show successors for node Shows all (direct and indirect) successors of a given node at desired

depth level. It can be useful in showing us what reactive nodes depend

on our given node.

Show neighbors for node Shows all (direct and indirect) neighbors (both predecessors and succes-

sors) of a given node at desired depth level. It can be useful in showing

us what reactive nodes depend on, or are depended on by given node.

Show source nodes for node Shows all nodes which have a source node role in a graph, and which

have a path between them and a given node. This can show us, for

example, what input parameters does a given node depend on.

Show sink nodes for node Shows all nodes which have a sink node role in a graph, and which have

a path between them and a given node. This can show us, for example,

what output parameters or results depend on a given node.

Show leaf nodes for node Shows all nodes which have a leaf node role in a graph, and which have

a path between them and a given node. This can show us, for example,

what input and output parameters are associated with a given node.

Show intermediary nodes for node Shows all nodes which have an intermediary node role in a graph, and

which have a path between them and a given node. This can show us

what non-input and non-output parameters in a graph are associated

with a given node.

138

Table Table 11 – Filtering by association options

Filtering option Description
Show intermediary predecessors for

node

Shows all nodes which have an intermediary node role in a graph, and

are predecessors of a given node. This can show us what non-input

predecessors are associated with a given node.

Show intermediary successors for

node

Shows all nodes which have an intermediary node role in a graph, and

are successors of a given node. This can show us what non-output suc-

cessors are associated with a given node.

Update process analysis

When designing update process analysis one of the things we tried was to fit update analy-

sis classes into existing Analyzer tool infrastructure. We were able to achieve that by treating

results of the update process (i.e. the list of updated nodes) as any other analysis graph. This

allowed us to reuse common design and implementation located in AnalysisGraph and Analy-

sisNode hierarchies, while specifics related to update process were handled in UpdateAnalysis-

Graph and UpdateAnalysisNode concrete classes. As can be seen in Figure 38, these specifics

predominantly include additional properties describing different aspects of update process.

UpdateAnalysisGraph was assigned with properties containing general information about

update process. Perhaps the most important information is whether the update process was

successful or not. If the update process was unsuccessful, additional information about the

node which failed is provided. Furthermore, UpdateAnalysisGraph also contains information

about the cause of the update, which can be either that (1) complete update was requested, or

that (2) update was triggered by individual node. In the latter case, additional information about

the triggered node is provided, including previous and current value. Finally, in order to be

able to assess update process performance, information on update start-time, finish-time and

duration is also available. In order to decouple UpdateAnalysisGraph from its clients, all of

these update-related properties are exposed through IUpdateGraph interface.

Properties assigned to UpdateAnalysisNode contain node-specific update information. For

example, UpdateOrder allow us to reconstruct the order in which the nodes are updated. Cur-

rentValue and PreviousValue make it possible to assess whether some particular parameter did

change as a result of update process. Finally, UpdateStartedAt, UpdateCompletedAt, and Up-

dateDuration can be used to examine performance of individual nodes. As with UpdateAnaly-

sisGraph, node’s update-related properties are also accessed through IUpdateNode interface.

139

Figure 38: Update analysis classes

In addition to fitting update graph and node classes into AnalysisGraph and AnalysisNode

hierarchies, their creation process was assigned to factory classes as well, namely: UpdateAnal-

ysisGraphFactory and UpdateAnalysisNodeFactory. This again allowed us to restrict the use of

concrete analysis graph and node classes only to factory classes, while the client classes depend

on interfaces.

Analyzer tool GUI

The final important thing to discuss with regard to Analyzer tool is its graphical user inter-

face. In previous sections we already mentioned that we chose Windows Forms technology due

to its flexibility and familiarity from both developers’ and users’ perspective. As can be seen

in Figure 39, class design for Analyzer GUI is fairly simple. The entry point for REFRAME

Tools is FrmRegisteredReactors form, which, as its name implies, displays the list of registered

reactors. The form itself contains only the code responsible for displaying elements of graphical

interface and simple event handler methods. Entire process of getting raw data for registered

reactors, parsing the data into appropriate data structures and displaying the data is coordinated

and handled by RegisteredReactorsController class. As we have seen previously in this section,

140

the responsibility of finding registered reactors and providing raw XML data from end-user

application is taken by ReframePipeClient class.

By selecting one of the offered reactors listed in FrmRegisteredReactors form, we can pro-

ceed to other forms. For example, choosing options from Graph structure analysis menu will

take us to forms from the FrmAnalysisView hierarchy. On the other hand, choosing Update

process analysis option will result in displaying FrmUpdateProcessInfo form. Class design in

these cases replicates the one with FrmRegisteredReactors form. Again, we have forms contain-

ing only the code relevant for graphical user interface, while the controllers delegate individual

steps of the business logic to different components and coordinate the whole process.

Figure 39: Analyzer GUI and related classes

6.3.2.2. Visualizer tool

Visualizer tool has a sole purpose to visually present dependency graph data obtained from

Analyzer tool. In simple terms, this means putting the Analyzer data into DGML file, and then

opening that file in Visual Studio’s DGML viewer. Despite apparent simplicity, a fair number

of classes were involved in this task, each having its own responsibility.

The first thing we wanted to address was translating the graph data forwarded in a form

of IAnalysisGraph structure into a DGML compatible graph structure (Graph class found in

Microsoft.VisualStudio.GraphModel namespace). This turned-out to be a non-trivial task, so

141

we assigned this responsibility to a new VisualGraphDGML class. However, it quickly became

apparent that this IAnalysisGraph->DGML graph translation significantly varied depending on

the analysis level of provided IAnalysisGraph. The obvious solution to handle this variability

was to mimic the hierarchy under IAnalysisGraph. If we take a look at Figure 40, we can

see that VisualGraphDGML class became an abstract class holding reused implementation,

with the most notable part being template method named CreateGraph. This method specifies

simple algorithm of four fixed steps for creating the graph: (1) adding custom properties which

reflects particular graph’s data attributes, (2) adding nodes to a graph, (3) adding dependencies

to graph, and (4) and painting the graph. These steps are implemented as either abstract or

virtual methods, so that six concrete classes can agree on the default implementation or offer

their own.

In addition to this hierarchy, an IVisualGraph interface was introduced in order to avoid

potential client classes being coupled to implementation details. One of such details is Graph

class, which closely related to DGML visualization technology. Since we wanted to leave

our options open to replace current with some other visualization technology, IVisualGraph

prescribes technology-neutral SerializeGraph method. This method only requires from concrete

classes to serialize the graph into textual representation, with no mention of particular format

whatsoever.

Figure 40: Hierarchy of VisualGraph classes

In order to open serialized graph in DGML Viewer, we have to save graph’s in-memory

textual representation into a file. This responsibility can be assigned to any class implement-

142

ing IGraphFileCreator interface (see Figure 41). Its sole mandatory method is CreateNewFile

which is obliged to take any graph implementing IVisualGraph interface and save it to a file.

This allows us to replace implementation details related to output file, such as naming, exten-

sion, format, location etc., without rest of the framework being aware of that. So far, the only

realization of this interface is a DGMLFileCreator which holds the concrete implementation for

creating .dgml files.

As with representation of graph hierarchies in ReframeCore and Analyzer, here in Visualizer

we also wanted to further eliminate dependencies on concrete VisualGraphDGML classes that

would arise in graph instantiation process. Like before, we employed abstract factory pattern,

which resulted in hierarchy of factory classes, with each concrete VisualGraphDGML class hav-

ing its own concrete factory. In Figure 41 we can see the example of interaction between the

roles of "abstract factory" and a "product" played by IVisualGraphFactory and IVisualGraph

respectively, and their concrete counterparts AssemblyGraphFactoryDGML and AssemblyVi-

sualGraphDGML. The same relationship can be depicted for all other levels of analysis (e.g.

namespace level, class level etc).

Figure 41: Most important interfaces and classes in Visualizer

The class responsible for orchestrating the whole visualization process is VisualizationCon-

troller (see Figure 41). Its Visualize method takes the list of nodes which represent the result

of performed analysis, uses this nodes to create the IVisualGraph, prompts user for any visu-

alization options, saves the graph into a file, and finally opens the file in a dedicated viewer.

While performing this process, VisualizationController delegates important steps to factory and

file creator objects, which were provided using dependency injection technique. In addition to

143

separation of concerns, the intent here was to make VisualizationController class resistant to

changes introduced in concrete IVisualGraph realizations and chosen visualization technology.

6.3.2.3. Code generation

Making REFRAME’s APIs clean and simple was one of the design goals from the very

beginning. In addition to overall efforts in framework design, the most explicit contribution to

this goal was offering the access to common framework features through IReactor interface (an

example of Facade pattern). However, as a first, preparational step to offering code generation

in REFRAME, we invested effort to additionally simplify most repetitive tasks by building

small DSL layer on top of IReactor interface.

One of the ways to create DSLs in .NET environment is using Boo [2] programming lan-

guage. However, after examining this technology, it became apparent that effort required for

creating full-scale DSL would not be justified in the context of REFRAME due to its fairly

small number of domain concepts. Instead, equally fitting but more lightweight approach called

fluent interface syntax [55] proved to be a better option. Fluent interface tries to imitate the

look and feel of working with DSLs, and enables code to be read similar to natural language. A

number of frameworks, inside and outside of .NET use fluent interfaces to increase readability

and ease of use (e.g. Entity Framework).

Implementation-wise, fluent interfaces assumes adjusting the naming of the methods and

allowing method chaining. Since we did not want to alter the code part of the framework

for fluent interface implementation, we used a special technique called Extension methods [7],

which allowed us to extend REFRAME’s APIs without changing its original classes. This

technique is frequently used when adding new functionality to existing libraries and frameworks

(e.g. LINQ operators in .NET) in order to prevent problems caused by changing frameworks

APIs. It includes implementing static class with static methods which are then at compile time

associated with the classes we want to extend.

In listing 6.7 we demonstrate the idea behind fluent interface in the context of REFRAME.

The first part shows very simple scenario where we used IReactor interface to add three reactive

nodes and then establish two reactive dependencies between them. The second part uses fluent

interface to do the exact same thing, but in an abbreviated and more readable form. The whole

fluent statement can be read like this: use reactor instance to let some reactive node depend on

some other reactive node(s).

144

Listing 6.7: Adding reactive dependencies with Reactor and fluent interface

//Using reactor object directly

var node1 = reactor.AddNode(objA, nameof(objA.PA1));

var node2 = reactor.AddNode(objB, nameof(objB.PB1));

var node3 = reactor.AddNode(objC, nameof(objC.PC1));

reactor.AddDependency(node2, node1);

reactor.AddDependency(node3, node1);

//Using Fluent interface

reactor.Let(()=>objA.PA1).DependOn(()=>objB.PB1, ()=>objC.PC1);

As can be seen in Figure 42, fluent interface implementation is located in ReactorExtension

class, which offers three distinct methods: (1) Let, (2) DependOn, and (3) Update. While

Let and DependOn methods are always paired together to replace the use of AddNode and

AddDependency methods, Update method is used separately as an alternative to PerformUpdate

method.

Figure 42: Fluent interface implementation in REFRAME

Behind a bit complex signature, Let method essentially allows us to specify the successor

node for reactive dependency. Apart from implicit IReactor parameter, it accepts one parame-

ter - a lambda expression pointing at the exact property or method member which represents a

reactive node. Using lambda expression for this purpose allows us to utilize code completion

features of the IDE, and reduce the risk of type errors and the issues with subsequent renam-

ings. Behind the scenes, Let method deconstructs provided lambda expression and extracts the

145

information about the owner object and the class member. These are then used to create reactive

node and add it to dependency graph.

The method chaining is realized through TransferParameter object, which is returned by

Let method and accepted as an implicit parameter by DependOn method. Through Transfer-

Parameter (inspired by Data Transfer Object pattern [54]) we pass active Reactor instance and

successor reactive node to DependOn method. In addition, DependOn method also accepts one

or more lambda expressions pointing at members which will represent reactive nodes. After

constructing predecessor nodes from provided lambda expressions, DependOn method now has

everything it needs to establish reactive dependencies.

The Update method from fluent interface wraps reactor’s PerformUpdate method. In order

to simplify the method call, we used the fact that the Update is usually going to be invoked

within the object and member which define the triggering node. This means that, while we

always have to specify reactor instance, the owner object parameter can be replaced with this

keyword. Also, in order to avoid the need to explicitly pass the member name, we can decorate

this parameter with CallerMemberName meta-attribute. By doing this, we instructed compiler

to automatically pass the name of called property or a method.

Listing 6.8: Triggering change with Reactor and fluent interface

//Using reactor object directly

reactor.PerformUpdate(this, nameof(PA1));

//Using Fluent interface

reactor.Update(this);

After we additionally simplified framework’s APIs that are going to be used repetitively,

in the next step we can approach the very code generation. As we pointed out in the previous

section, we will be using code snippets to generate parts of the repetitive code. In order to

do that we have to determine what part of the framework APIs statements is fixed and can be

reused through code generation, and what part is variable and needs to be filled-in manually

by application developer. If we, for example, take a look at the Let->DependOn method pair,

we can identify three points of variability, namely: (1) the instance of reactor, (2) successor

reactive node, and (3) one or more predecessor nodes. That means that the code snippet for Let-

146

>DependOn statement will generate the skeleton of the statement with default values for these

variability points, but will allow us to easily fill-in our own values. Listing 6.9 shows these

variability points (surrounded by curly brackets) for code statements we supported by code

snippets. We can see that we provided code snippets for 3 frequently repeated code statements:

GetReactor, Let->Depend, and Update. These snippets are easily invoked by typing in refget,

refdep, and refup shortcuts respectively.

Listing 6.9: Variability points in fluent interfaces

//GetReactor statement

var {reactor} = ReactorRegistry.Instance.GetReactor({"default"});

//Let->Depend statement

{reactor}.Let(()=>{successor}).DependOn(()=>{predecessor1},...);

//Update statement

{reactor}.Update(this);

The code snippet implementation is actually a XML-based specification, which consists of

a header and snippet definition. The header contains snippet’s meta-data such as title, author,

description and shortcut. On the other hand, snippet definition contains the template describ-

ing the code statement which will be generated and the description of replacement parameters

(variability points). The example of snippet implementation for Let->Depend code statement is

shown in Figure 43.

6.3.3. High-level design of REFRAME

In order to understand high-level design of REFRAME we will show how the framework is

partitioned into components (.dll libraries), and how these components are mutually related. We

will start by examining end-user application perspective of design (see Figure 44), by showing

components which application will require in order to access features of the framework. There

are total of three different framework use models to chose from. The first, and the most basic

use model assumes using only two components from REFRAME, namely: ReframeCore and

ReframeBaseExceptions. These are mandatory components which allow end-user application

to access all essential features of REFRAME, i.e. to construct dependency graphs and perform

147

Figure 43: Implementation of code snippet for Let->Depend statement

update process.

The second use model introduces optional ReframeFluentAPI component, which as its name

implies contains implementation of Fluent interface. This allows us to, in addition to traditional

imperative style, also use alternative, more declarative approach when specifying individual

reactive dependencies between nodes.

Finally, the third use model is only relevant if we want to use REFRAME tools. It allows

us to setup inter-process communication between end-user application and REFRAME tools.

By introducing IPCServer, ReframeServer and ReframeExporter components, we can start the

server in end-user application which will respond to requests from the Analyzer tool (client) and

send dependency graph data. Since integration of server components into end-user application

and starting the server is a trivial task, application developers can switch to and from this use

model very easily.

148

Figure 44: End-user application perspective

Table 12: REFRAME Components from the end-user application perspective

Component Description
ReframeCore The core component of the framework which enables

end-user application to construct dependency graphs and

perform update process. It contains abstractions repre-

senting members of reactive node hierarchy, dependency

graph, update, scheduler, reactor and other essential parts

of the framework.

ReframeBaseExceptions Contains the definition of the root REFRAME exception

which is inherited by specific exceptions in other compo-

nents.

ReframeFluentAPI Contains classes with extension methods which allow us

to use reactor in a declarative style.

IPCServer Contains interfaces and abstract classes with reusable part

of the server side of inter-process communication.

149

Table Table 12 – REFRAME Components from the end-user application perspective

Component Description
ReframeServer Contains concrete classes with REFRAME-specific im-

plementation of the server side of inter-process commu-

nication.

ReframeExporter Contains classes responsible for exporting dependency

graph data and update process data in a form of XML

content.

The second perspective on the use of REFRAME is relevant only if we want to use RE-

FRAME tools. As can be seen in Figure 45, the starting point of REFRAME tools is Refram-

eToolsGUI component. This component defines joint graphical user interface, through which

application developer can access tools’ features. In order to fetch dependency graph data from

end-user application, REFRAME tools need to play the client role in inter-process communica-

tion. This is accomplished using IPCClient and ReframeClient components. ReframeAnalyzer

component is responsible for interpreting fetched data and performing different analyses, while

ReframeVisualizer and VisualizerDGML are in charge of visualizing the results of these analy-

ses.

Table 13: Components from REFRAME tools perspective

Component Description
ReframeToolsGUI Contains graphical user interface classes and coordinates

the rest of the components.

IPCClient Contains interfaces and abstract classes with reusable part

of the client side of inter-process communication.

ReframeClient Contains concrete classes with REFRAME-specific im-

plementation of the client side of inter-process communi-

cation.

IPCServer Contains interfaces and abstract classes with reusable part

of the server side of inter-process communication.

ReframeAnalyzer Contains abstractions representing members of analysis

graph and analysis node hierarchies, factories for creating

graph and node objects, filter specifications, analysis and

metrics implementations, and other parts related to graph

and update analysis.

ReframeBaseExceptions Contains the definition of the root REFRAME exception

which is inherited by specific exceptions in other compo-

nents.

150

Table Table 13 – Components from REFRAME tools perspective

Component Description
ReframeImporter Contains utility classes which interpret XML content

fetched from end-user application.

ReframeVisualizer Contains interfaces and abstract classes with reusable and

technology-independent part of the visualizer implemen-

tation.

VisualizerDGML Contains concrete classes implementing visualizer using

DGML technology.

Figure 45: REFRAME Tools perspective

It is worth to mention that the current layout of components is the result of multiple refac-

toring sessions, in which responsibilities were transferred between classes, and classes were

transferred between components. The primary goal was to mold components into logically

consistent units and reduce coupling between them. Low coupling between components pro-

motes modularity, and makes replacing whole components possible with minimal changes to

other parts of framework. In addition, this allows us to use components selectively, and import

into our project only the ones we really use.

Direction of coupling should also be such to make components with core domain function-

ality as stable as possible, i.e. with minimal number of dependencies towards other components.

In this way, the only reason to change core domain components would be the very change in

some aspects of domain.

The effects of such design can be seen in throughout REFRAME. For example, in Figure 44,

151

we can se how ReframeCore component, which contains the most important part of the frame-

work, is coupled only to ReframeBaseExceptions component. Since ReframeBaseExceptions

component contains only the most general REFRAME exception specification, it is unlikely

to change. This not only makes ReframeCore very stable component, but it also allows the

first use model from end-user application perspective. ReframeFluentAPI component depends

only on stable ReframeCore and ReframeBaseExceptions, which means it will change only if

core domain concepts change or in case we want alter something in the fluent syntax. At the

same time, the component has no incoming dependencies from framework components, which

makes it easy to replace. Finally, in case of components implementing server-side of inter-

process communication (ReframeServer and ReframeExporter), we can provide replacement

components without any effect to other components in framework.

Similar situation can be seen in Figure 45. For example, changes to tool’s graphical user in-

terface in no way affect the rest of the framework. Replacing components implementing client-

side of inter-process communication will require only changes to ReframeToolsGUI which co-

ordinates the interaction between tool’s components. ReframeAnalyzer does have incoming

dependency from ReframeVisualizer, which implies visualizer components may be affected by

the change in analyzer component or by its replacement. However, this dependency is at the

level of interface specification and not concrete implementation, which means ReframeVisual-

izer will not be affected by mere implementation changes. Lastly, while dependency graphs

are currently visualized using DGML technology, this can be changed by replacing Visualiz-

erDGML component with alternative implementation, and calling this new implementation in

ReframeToolsGUI.

6.4. Justify and reflect

In this section we will look back at efforts made in design and implementation of RE-

FRAME, and summarize and rehearse the most important ones. Up until now, we discussed

these efforts in the context of individual aspects of ReframeCore and ReframeTools, such as

structural and behavioral characteristics of classes, relationships between classes, and their

placement into components. While we tried to elaborate these decisions on the spot by placing

them in the context of established good practices and design patterns, in the first part of this

section we will cover the general design principles which underlined the whole design process.

152

The second part of this section, however, will document and elaborate REFRAME’s design

rationale by listing most important design decisions.

6.4.1. Underlying design principles

A lot of different principles have been proposed as guidelines and inspiration for design

rationale. One of the most commonly used sets of such design principles are best known under

acronym SOLID. As is the case with most principles, patterns and practices in software devel-

opment, SOLID design principles are not the work of one author, rather, their underlying ideas

have been evolving for years, alongside the software development practice itself. However, they

are most famously organized, reported and advocated by Martin in several of his books (such

as [99]).

Before discussing the implications of each of the five SOLID design principles on RE-

FRAME design, it should be noted that they are not meant to be applied in a large upfront

design activity. Rather, they represent a lens through which we continually and critically ob-

serve our design in each development and maintenance iteration. It is equally important to view

SOLID principles as really the principles, and not the strict rules we must adhere to at all cost.

Indeed, finding the right balance between, often contradictory and opposing requirements, prin-

ciples and constraints, may just be one of the most difficult things about software design. The

five principles are not addressing discrete issues, but tend to work as a whole. Therefore, design

decisions made in order to comply to one design principle, often result in complying to other

design principles as well. Sometimes, however, they can also contradict each other.

SOLID principles are fairly general which allows them to be applicable to a wide range of

domains and problems in software design. This, however, has unfortunate consequence of them

being somewhat vague and open to various (mis)interpretations. Indeed, even brief analysis

of developer forums show many requests for clarification of these principles and also many

attempts in offering one. Sadly, offered clarifications often demonstrate the same vagueness

as the principles themselves, and also often contradict one another. This is why, in addition to

reporting how each of the principles was applied to REFRAME design, we also offered brief

clarification of the principles. The intention was not to repeat what can be found in different

books, blogs, forums or lecture materials, but rather to clarify interpretation we adopted, which

is necessary to understand underlying rationale for design decisions that were made.

153

Figure 46: Most important interfaces and classes in ReframeCore

Single Responsibility Principle (SRP)

The first of the SOLID principles, Single Responsibility Principle (SRP) advocates one re-

sponsibility per class, i.e. one reason to change the class. This principle is inspired by similar

principle called Separation of Concerns (allegedly introduced by Dijsktra), and the concepts

of coupling and cohesion. The main idea is very reasonable - by isolating responsibilities we

lower the coupling between classes and increase the internal cohesion within the classes, which

altogether leads to increase in software quality.

While there is no exact recipe which guaranties framework design to be aligned with SRP,

this was one of the guiding principles in our design process. We analyzed in advance the

functionalities that had to be implemented in order to meet the requirements, and identified

cohesive groups of functionalities that could potentially qualify as responsibilities. Identified

responsibilities were throughout the development in several iterations refined and re-assigned to

other existing or new classes. Throughout that process different refactorings [56] were applied

154

in order for code to adhere more to SRP.

In Figure 19 and Figure 46 we can see an example showing how the overall responsibility

of ReframeCore to handle reactive dependencies is decomposed into a number of classes, each

being assigned with a smaller, more cohesive responsibility. So, for example, the responsibili-

ties of providing proper data structure for storing and manipulating reactive dependencies were

assigned to DependencyGraph class and a hierarchy of Node classes. The range of responsi-

bilities related to assuring consistency of dependency graphs, i.e. updating them, were divided

across Updater, Scheduler and Sorter classes. Responsibility for bringing these components to-

gether, and exposing unified interface fell on the Reactor class. Finally, complexities involved

in the process of creating reactive nodes and reactors were handled by NodeFactory and Reac-

torRegistry classes. There are of course also additional utility and helper classes which took

over some part of the overall framework’s responsibility. For example, Reflector is a static class

representing a small library of methods, which facilitates the use of reflection in REFRAME by

raising the level of abstraction.

Similar responsibility assignment efforts (see Figure 30 to Figure 42) also took place in

ReframeTools. For example, dependency graph and node representations in Analyzer and Visu-

alizer tool imitate the ones in ReframeCore. Whenever the creation process involved non-trivial

tasks, this was seen as separate responsibility and specialized factory classes were introduced.

Message and data exchange between end-user application and ReframeTools has been handled

by a set of classes, with each having its own distinct role and responsibility. We have, for

example, PipeClient responsible for sending a command, PipeServer listening for incoming

commands, CommandHandler handling the command, and Exporter creating XML response.

Furthermore, tasks such as performing analyses, visualizing graph, painting graph, creating

graph file, displaying GUI forms, and others are all assigned to their own classes or even class

hierarchies.

Although very simple in definition, SRP is often viewed differently by individuals in soft-

ware development community. While the notion of a class being responsible for only one thing

is agreeable to most, it is the understanding of what is to be considered a responsibility or a rea-

son to change that is not so clear. This is why applying SRP has to be accompanied by applying

common sense, because going into either of the extremes in determining granulation of respon-

sibilities will have adverse effects on software design. On one hand, too large responsibility will

155

result in so-called "god classes" which impede the understandability and maintainability of soft-

ware. On the other hand, treating each and every small functionality as a separate responsibility

will result in flood of trivial classes, which could clutter overall design and break encapsulation.

In fact, we should not only think about how many reasons for change has particular class, but

also how many classes have to be modified in order to introduce simple change. In designing

REFRAME we tried to find a middle ground between these extremes, and anticipate the main

lines across which the reasons for change could come. That being said, the feedback from more

extensive use of the framework may result in the need for refactoring current responsibilities,

which is in line with the iterative perspective on applying SOLID principles.

Open-Closed Principle (OCP)

Martin [99] attributes the Open-closed principle (OCP) to Bertrand Meyer, another one of

the classic authors, who stated that "a software artifact should be open for extension, but closed

for modification" [104]. To put it another way, this means that we should be able to extend the

behavior of the framework without modifying existing, already tested and working behavior.

The antagonism of the opposing forces in this principle is evident even in the very naming

of the principle. How can something be both open and close? Indeed, as Martin and Martin

[101] in their book say, OCP represents an ideal which cannot be achieved in its entirety. No

matter how "closed" we design a class to be, there can always be a change we did not or could

not anticipate, and which will require a modification of a class. Also, attempting to conform to

OCP by anticipating in advance every, even remotely possible change and guarding against it,

can prove to be extremely expensive and wasteful. However, OCP is a goal towards we should

go and try to approach it as close as it makes sense. In reality, this means first closing the design

against the changes that are most likely to occur and have the most adverse impact. Going

further than that in early phases of development may be counterproductive, therefore it might

be reasonable to wait and let the experience in use drive the need for design refactoring. Martin

and Martin describe this as a "fool me once" attitude [101], which prevents us from introducing

too much needless complexity into our design.

One of the main characteristics of OCP is that it enables us to add new behavior without it

causing a cascade of changes all throughout the code. This proves to be extremely beneficial

in terms of maintaining and adapting software to ever changing requirements, which makes an

essence of what "soft" in software really means. While this makes OCP important for design of

156

software in general, it is especially relevant for software frameworks. For example, by applying

OCP, framework developers benefit by framework being able to more easily evolve during its

lifetime. Also, changing framework’s existing classes by framework developers may cause

code of any number of applications using the framework to become incompatible, broken and

incorrect. What is even worse, framework developers and application developers may not even

be aware of the issue before a lot of damage is done. From the perspective of application

developers "closedness" allows framework to provide common and fixed parts of the design

and implementation which can be reused. It can be even formally enforced if the framework is

made blackbox. On the other hand, "openness" provides variability points of the framework,

i.e. means to reuse design and implementation by extending the framework.

The principal underlying mechanism for achieving OCP is an abstraction. Software sys-

tems that conform to OCP are inevitably more abstract, i.e. they have higher number of abstract

classes and interfaces. Whether it is introduced as an abstract class or interface, abstraction pro-

vides fixed design contract by specifying mandatory methods to be implemented. In addition,

it also supports variability by omitting optional methods and concrete implementations, which

is then deferred to a wide range of possible concrete classes.

In order to make a claim that REFRAME conforms to OCP at a sufficient extent, lets look for

example at the class diagram in Figure 46. It shows core classes of the framework, the change

of which could pose particularly large issue. What is easily noticeable, is that the system in

the diagram contains proportionally large number of abstract classes and interfaces. Indeed,

most of the concrete classes implement their respective interfaces. In order to show concrete

example of OCP in action, lets examine the relationship and interaction of e.g. Scheduler and

DFS_Sorter classes. The Scheduler, which is responsible for determining the update schedule

for dependency graph, has to be provided with implementation of topological sorting algorithm.

A variant of such algorithm, based on depth-first search, is implemented in DFS_Sorter class.

Lets say, for the sake of discussion, that the Scheduler holds a direct reference to DFS_Sorter.

If we would want to enable Scheduler to use some other topological sorting algorithm, such

as e.g. Kahn’s algorithm, in addition to implementing new class (e.g. Kahns_Sorter) holding

the new algorithm, we would also need to modify the existing Scheduler class (and perhaps

also some other classes), because it only knows how to use DFS_Sorter. This implies that the

Scheduler does not conform to Open-closed principle, since in order to extend it to be able to

157

use different sorting algorithm, we have to modify it.

Scheduler can be made to conform with OCP by applying e.g. Strategy pattern. We first

introduce abstraction, i.e. we extract the interface ISorter, which represents a family of al-

gorithms, and which all existing and future concrete implementations of topological sorting

algorithm must adhere to. Now, instead of Scheduler knowing, and thus depending on concrete

classes, Scheduler holds reference to an instance of ISorter. This makes concrete implementa-

tion of topological sorting interchangeable in Scheduler, i.e. it makes it possible to change what

sorting algorithm will be used without changing the Scheduler itself.

Similar claims of compliance with OCP can also be made for other classes across RE-

FRAME. For example, in Figure 20 we can see how Abstract Factory pattern is used to man-

age instantiations of various types of reactive nodes. The abstract class NodeFactory imple-

ments CreateNode method which invokes abstract methods DetermineNodeType and CreateN-

odeForType. The CreateNode method represent a Template method pattern, a fixed part of the

abstraction. On the other hand, methods DetermineNodeType and CreateNodeForType repre-

sent points of variability, and require from concrete factories, such as StandardNodeFactory, to

provide implementations. In this way, NodeFactory class is able to be coupled only to INode

reactive node generic interface, and to remain ignorant of any current or future concrete im-

plementations of that interface. For example, if we would like to extend the system by adding

new reactive node types, and also new concrete factory in charge of instantiating them, abstract

NodeFactory would not need to change. Abstract node factory also has implications to De-

pendencyGraph class (see Figure 46). Since DependencyGraph is coupled to abstract instead

of concrete factory, it can also be seen as closed to change with regard to extending system

with new concrete factories and nodes. Similar effect with abstract factories is also achieved in

Analyzer (see Figure 34) and Visualizer tools (see Figure 41).

Figure 47: Scheduler design with regard to sorting algorithm: a) not conforming to OCP, b)
conforming to OCP

158

Liskov Substitution Principle (LSP)

Liskov Substitution Principle (LSP) was initially about addressing the issue of forming

proper inheritance hierarchies, i.e. it presented a guide for the use of inheritance. Later, it was

extended to also address the proper use of interfaces. The principle was originally proposed by

Barbara Liskov, however, Martin and Martin [101] offered refined and more concise definition

for the principle: "Subtypes must be substitutable for their base types". What this means is that

client classes which depend on the base class or an interface, have the right to assume that these

can be substituted by any other class deriving from the base class or implementing interface,

without compromising the expected behavior.

The underlying intent of the LSP is to assure that the client class will not have to change

because of new derived class or interface implementation emerged, i.e. client class can remain

unaware of the changes in class hierarchy. This makes LSP closely related to OCP. Indeed,

violations of LSP are often just a symptom of disguised OCP violations. Some of the most

frequent and obvious examples of LSP violations include: (1) forcing inheritance where it is

not appropriate, (2) relying on downcasting and "type sniffing" instead of taking advantage of

polymorphism, (3) degenerating methods - overriding methods in order to remove expected

behavior implemented in a base class, (4) throwing new exceptions in derived classes, etc.

In order to check REFRAME for LSP compliance, the framework classes were re-examined

for above mentioned symptoms of LSP violation. For example, existing hierarchies, such as

node, graph, filter, exporter, GUI forms and other hierarchies have been critically assessed for

its appropriateness. It has been concluded that all of them are sound hierarchies and represent

real "is-a" class associations. The usage of derived classes from these hierarchies was analyzed

in order to find and remove occurrences of downcasting or "type sniffing". Few occurrences

that were found were resolved by applying "replace type code with subclasses" and "replace

conditional by polymorphism" refactorings [56]. Derived class methods which override abstract

or virtual methods from base class are examined for possible degeneration, but non was found.

Finally, with regard to not throwing new exceptions in derived classes, this was secured by

introducing REFRAME’s own exception hierarchy. All the exceptions thrown in REFRAME’s

classes are inheriting ReframeException as a root exception class. Therefore, even if the more

specific exception was thrown in the derived classes, the client class can handle it as a root

ReframeException.

159

As with other principles, apart from keeping an eye on potential violations of principle, one

should also be cautious not to over-design the system in the early stages, or be caught in design

paralysis. Therefore, it is often reasonable to deal with the most obvious LSP violations early

on, and defer dealing with other, not so obvious violations, until the issues requiring intervention

appear.

Interface Segregation Principle (ISP)

As the name implies, Interface segregation principle (ISP) deals with design of the inter-

faces. It emphasizes the need to fight "fat interfaces" and interface pollution in software design.

The obvious symptoms that suggest this might be needed is large number of public members

and apparent lack of cohesion between them. Martin and Martin [101] formulated the principle

as follows: "Clients should not be forced to depend on methods they do not use". The key no-

tions from this formulation that is necessary to understand the principle is the notion of client.

As is evident from the very formulation and also from the examples provided by the authors of

the principle, a client is a class which uses methods of some other - server class and therefore

depends on it. If the interface of the server class contains multiple methods with low cohesion

between them (i.e. "fat interface"), it is probable that the client classes will only use subset of

the server’s interface methods. However, although the client classes are only interested in meth-

ods they explicitly use, they are dependent on changes of all methods of the server’s interface.

What ISP suggests in order to avoid this unnecessary dependence is that the server’s interface

should be partitioned in a way which allows client classes to only use and depend on methods

they really need.

There is another very common interpretation of ISP that should be mentioned, because it

is not only frequently found in various web sources, but also in books dealing with software

design. According to this interpretation ISP aims to prevent having large interfaces which de-

rived classes only partially implement, and leave number of methods unimplemented (e.g. by

throwing NotImplementedException). However, while applying ISP would certainly contribute

to prevention of such scenarios, it seems that this interpretation departs from original intent to

tailor interfaces according to needs of client class. Instead it enters the area of assessing appro-

priateness of inheritance hierarchy which is intent of Liskov principle (LSP). In this section we

will stick with the Martin’s [101] original interpretation of ISP.

The mutual, strong association of the SOLID principles is especially evident when talk-

160

ing about ISP. If you, for example, tend to apply SRP in your design efforts and come close

to classes with single and distinct responsibility, the chance of your design producing classes

with "fat interfaces" significantly decreases. Similarly, applying LSP to have well-thought in-

heritance hierarchies also contributes in clean interface situation. However, design of the class

which already has only one responsibility may still benefit from critically assessing its interface

through the lens of ISP. This is because in the context of ISP we talk about role interfaces which

are of smaller granulation than the responsibility. Also, role interfaces place a strong emphasis

on the perspective and the needs of client classes.

As an example, lets look at the ISP compliance in the context of ReframeCore, although

similar can be claimed also for ReframeTools. Figure 46 shows classes and interfaces at a con-

ceptual level, and what is evident is that most classes implement their respective interfaces.

Subset of these interfaces is shown in Figure 48 along with property, event and method mem-

bers they specify. Even the cursory glance at the diagram reveals that ISorter, IScheduler and

INodeFactory interfaces are very simple. Indeed, thanks to predominantly SRP, efforts in keep-

ing the design clean allowed us to form almost trivial interfaces - exposing single (although

overloaded) method. INode, IUpdater and IDependencyGraph interfaces are somewhat larger,

so their members were examined to determine who their clients are, and also to determine if

some of the members do not fit together with other members (low cohesion). This resulted in

some new interfaces (see Figure 46), namely: ITimeInfoProvider and ILoggable, in which we

moved certain utility members responsible for logging update progress. For remaining members

we determined that they form fairly cohesive units. For example, IDependencyGraph interface

prescribes cohesive set of methods required for managing the structure of dependency graph.

Similarly, IUpdater interface requires implementation of members focused on performing, sus-

pending and monitoring very update process. Finally, INode interface prescribes fundamental

responsibilities of the reactive node, namely: reactive node identification, maintaining depen-

dencies with other reactive nodes, and updating reactive node. Analysis of the client usage of

interface members revealed that interface members are used by multiple clients, which raised

the question of further interface segregation. There were several reasons we decided not to

do that at this point. For example, additional interfaces would make framework design more

complicated, and at this point it is not apparent if that is worth sacrificing. Indeed, even Martin

[101] advises to take care to not overdo when exercising this principle. Also, the line separating

161

interface members according to their clients was not that straight and clear. Some members, for

example, were used by multiple clients. Further segregation of interfaces in our case would re-

quire casting the same object from one interface type to another. Alternatively, explicit casting

could be avoided by passing the same object multiple times as argument of different interface

type, (Martin [101] calls this polyadic form of interface), however, by practicing this we would

increase the size of method signatures.

Figure 48: Core interfaces

The last interface we are going to discuss is IReactor interface. Since this is the biggest

and arguably the least cohesive interface, it should raise the alarm from the perspective of ISP.

However, the argument for IReactor interface remaining organized this way is the same as with

SRP. IReactor interface simply plays the role of facade to a more complex underlying system,

which makes it a deliberate "fat interface".

Dependency Inversion Principle (DIP)

Dependency inversion principle [99] aims at making software systems more flexible by

organizing source code dependencies in a way that they point only to abstractions. The ratio-

nale behind this is that abstractions (e.g. abstract classes or interfaces) are consisted of mostly

method specifications, which makes them more stable than concrete classes entirely consisted

162

of the often volatile implementation details. If the source code of a client class depends exclu-

sively on abstractions, we can vary the details of the concrete implementations without affecting

the client class. In such way we minimize and localize the effects that the changes will impose

on the system, thus making the system easier to change. Of course, at some point we have

to reference concrete classes. However, we should take care to minimize the number of such

places in source code, and also make sure to minimize the volatility of these concrete classes.

We already demonstrated exercising DIP in such scenarios when we were discussing reactive

node hierarchy and the process of creating concrete reactive node objects (Abstract Factory

pattern).

Another demonstration of the effects of DIP can be seen in Figure 49. In the example a),

which shows the violation of the principle, one of the issues is that we have direct dependen-

cies between concrete classes, namely Updater, Scheduler and DFS_Sorter. This surely has an

adverse effect on the flexibility of the system, since any change affects the client classes. How-

ever, additional issue is the direction of dependencies. We can see that, for example, Updater

class which handles higher-level update process, depends on classes Scheduler and DFS_Sorter,

which are in charge of the details of that process. Since the details are more likely to change,

such direction of dependencies is undesirable. The example b) shows how this is resolved by in-

troducing abstraction (interfaces). The client class becomes dependent on the interface instead

of on the concrete server class. On the other hand, server class implements the interface. By

making both client and server concrete classes dependent on the abstraction, we removed orig-

inal dependency between them. With regard to the notion of "inversion", in examples showing

only classes it may not be apparent that the inversion indeed took place. However, if we would

imagine packaging the client class and the introduced interface into one component, and the

server class into another component, it would be obvious that the inversion was achieved.

Figure 49: a) violating Dependency inversion principle, b) conforming to Dependency
inversion principle

163

If we take a look at the Figure 46, we can see the broader picture of exercising Dependency

inversion principle. None of the concrete classes depends on any other concrete class. Rather,

the dependencies are specified at the level of abstractions. The dotted line which encircles part

of the diagram represents the so-called architectural boundary. Martin [99] introduced it to

separate the abstract part of the system (abstract classes and interfaces) which defines all the

high-level rules and policies, from the concrete part containing the implementation details. In

order to be in accordance to DIP, all dependencies which cross the architectural boundary have

to point towards the abstract part of the system. As can be seen from the diagram, this is exactly

the case. By depending only on the abstractions, we can easily change the implementation

details without affecting high-level rules and policies. We can customize the system to fit our

needs by introducing alternative concrete implementations of different classes, such as Updater,

DependencyGraph, Reactor etc. As long as these new concrete classes conform to agreed

interfaces, the rest of the system will not mind. This makes it a lot easier to reuse the system,

which is why DIP is particularly important in the context of framework design. Additional

benefit is that these different implementations can be used interchangeably at runtime.

6.4.2. Documenting design decisions

After discussing general underlying principles which steered our design efforts, in this sub-

section we will reflect on concrete design decisions which resulted from these efforts. During

development of non-trivial piece of software, a developer may make hundreds of design deci-

sions. These can refer to issues on a various levels of abstraction, such as: implementation level,

micro-architecture level, or grand-scale architecture level. Each of the decisions are influenced

by multiple factors, including available alternatives to chose from, prerequisites that have to

be met, and constraints that narrow down our options. Hopefully, most of these decisions will

prove to be correct, and end up in main development line. However, design decisions very often

do not produce expected results, especially in novel domains where there is a lot of exploratory

prototyping involved. In such cases design decisions and the resulting prototypes are abandoned

and other candidate solutions take over.

Capturing each and every one of these right and wrong decisions is not feasible in a limited

time frame of development project. This is why usually a subset containing most important

design decisions is documented. Through the previous three sections of chapter 6 we tried to

164

describe the chronology of REFRAME development and elaborate important design decisions

that had to be made along the way. In this section, however, we are going to briefly summarize

these decisions.

Table 14: Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
1. What is going to

be regarded as reac-

tive node in OO ap-

plication?

Decision: Reactive node is going to be regarded as a state (data) or behavior member, and

the object on which that member is called. For a state member we chose .NET property

language construct, which enforces data hiding and retains a sense of working with data

members. This is consistent with requirements for the framework and similar approaches

(e.g. design patterns such as Observer), and it also allows us sufficiently low level of

granulation. For a behavior member we chose traditional methods.

Considered alternatives: Reactive node could be regarded as only a state member or

only a behavior member. From the implementation perspective, fields or explicit get-

ter/setter methods could be used instead of properties. In terms of granulation, reactive

node could have been modeled at the level of object, like in Observer pattern.

Prerequisites: There needs to be a way to explicitly refer to members of an object (e.g.

through reflection capabilities).

Constraints: State members of complex types (e.g. arrays, collections) could require

specific, more challenging implementation. Methods employed as update methods for

state members, or as standalone reactive nodes should not return value, or accept param-

eters. Data exchange between methods needs to be handled some other way. Otherwise,

the implementation of reactive node becomes cumbersome.

2. What language

constructs shall be

used to express reac-

tive nodes?

Decision: Framework will introduce standalone abstractions, as it fits well to our needs,

and is the most commonly used option of extending programming language with frame-

works.

Considered alternatives: Introducing a new keyword into programming language; uti-

lizing meta-data to decorate class members; and Introducing ’reactive’ data types.

Prerequisites: Depending on the option for expressing reactive nodes, some extension

capabilities of programming language could be required, e.g. access to compiler modifi-

cations, meta-programming techniques, etc.

Constraints: Some of the options may not be possible within particular programming

language. Extending the language with new keyword would require implementation of

custom compiler, which is complex undertaking, more challenging to extend by frame-

work user, and also results in diverging from official compiler. Utilizing meta-data is

inadequate as the meta-attributes operate on a class-level and are too simplistic. Introduc-

ing ’reactive’ data types would require inheriting large number of data types, and would

seriously challenge the use of framework in existing end-user applications.

165

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
3. How are reactive

nodes roles going to

be represented?

Decision: Both roles are contained within one abstraction, which means reactive node

can be at the same time both predecessor and successor.

Considered alternatives: Instead of representing both roles with one abstraction, roles

could be represented by separate abstractions (as in Observer pattern). Implementation of

roles can vary by having various combinations of interfaces and abstract classes.

Prerequisites: Reactive nodes have to be able to form acyclic dependency graph, there-

fore they have to support both roles at the same time.

Constraints: In single-inheritance languages implementing roles as separate classes

would prevent reactive node to play both predecessor and successor roles at the same

time, making it impossible to form acyclic graph. Introducing roles as separate interfaces

may prevent code reuse.

4. What will be the

basis of determining

reactive node’s iden-

tity?

Decision: A unique identifier was generated based on the hash values of owner object

and member.

Considered alternatives: Skipping explicit identifier, and instead identifying reactive

node directly by their object and member; Identifying reactive nodes by their reference.

Prerequisites: No particular prerequisites were identified.

Constraints: Since multiple instances of reactive nodes could refer to the same owner

object-member pair, it is not possible to guarantee uniqueness in identify reactive nodes

by their reference.

5. How will we

make framework

extensible in terms

of adding new node

types and customiz-

ing implementation

of existing ones?

Decision: Reactive node hierarchy is introduced with top elements being INode interface

and Node abstract class. Framework can be extended with new node types or alternative

implementations of existing ones by providing concrete classes which derive from these

top elements.

Considered alternatives: Using composition instead of inheritance to handle variations

in different node implementations.

Prerequisites: No particular prerequisites were identified.

Constraints: Inheritance hierarchies may become too large and rigid. On the other hand,

with composition we have to re-implement all methods in derived type, even the ones

which only forward the calls.

6. How are we

going to decouple

concrete implemen-

tations of different

reactive node types

from the rest of the

framework?

Decision: Concrete implementations of different reactive node types have to conform to

INode interface, through which all reactive node instances are accessed in the rest of the

framework. The sole exception to this is the reactive node creation process, in which

concrete classes have to be explicitly mentioned. However, in order to localize the effects

of dependencies resulted from creation process, we introduced the role of NodeFactory

(inspired by AbstractFactory design pattern).

Considered alternatives: Using alternative design patterns (such as Builder or Factory

Method) for localizing dependencies resulted from creation process.

Prerequisites: No particular prerequisites were identified.

Constraints: It can result in a complex design.

166

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
7. How are reactive

dependencies going

to be represented?

Decision: Reactive dependency is going to be represented implicitly (with no dedicated

abstraction) as an association of two reactive nodes - predecessor and successor.

Considered alternatives: Representing reactive dependency explicitly, by a dedicated

abstraction.

Prerequisites: No particular prerequisites were identified.

Constraints: Representing reactive dependency implicitly, prevents additional data (e.g.

weight, priority) to be assigned to reactive dependency. On the other hand, using ex-

plicit, dedicated abstraction may require adjusting dependency graph data structure and

accompanying algorithms.

8. What data struc-

ture will be used to

hold reactive nodes

interconnected with

reactive dependen-

cies?

Decision: Directed-acyclic graph (DAG), implemented as an adjacency list, will be used

as a proven data structure capable of expressing the nature of reactive nodes intercon-

nected by reactive dependencies. When implementing dependency graph, we followed a

centralized (middleware) approach, which means there is a dedicated abstraction repre-

senting dependency graph. At the same time we dispersed reactive dependencies across

individual reactive nodes, so all nodes have information about their immediate predeces-

sors and successors (due to better performance).

Considered alternatives: Instead of adjacency list, one can use adjacency matrix or in-

cidence matrix to implement dependency graph. Also, in case of adjacency list, nodes do

not have to point at both their predecessors and successors.

Prerequisites: Data structure should be able to efficiently hold a graph with a large num-

ber (thousands) of reactive nodes. It should allow dynamically adding and removing of

reactive nodes and dependencies, as well as searching and sorting (topological) nodes.

Constraints: Matrix structures are not so space efficient as adjacency lists. They also

have performance problems in terms of dynamically adding or removing their elements.

In adjacency list implementation, when reactive node points at both its predecessors and

successors, it introduces additional memory footprint for the sake of performance.

9. How is it going to

be determined which

reactive nodes have

to be updated and in

which order?

Decision: Since reactive dependencies form an acyclic graph, exact nodes to be updated

and the order in which this is done to avoid redundancy and inconsistency, is determined

by performing topological sorting of the graph. A Tarjan’s algorithm based on depth-first

search (DFS) traversal algorithm is used.

Considered alternatives: Instead of Tarjan’s algorithm, other topological sorting algo-

rithms can be used, such as Kahn’s algorithm based ond breadth-first search (BFS) algo-

rithm

Prerequisites: Reactive nodes have to be stored in a data-structure which allows topo-

logical sorting to be performed. Reactive nodes with their dependencies have to form an

acyclic graph.

Constraints: Original topological sorting algorithms are not capable of handling cyclic

dependencies. Therefore, if there is a possibility for them to occur, algorithms have to be

adapted to recognize them, and handle them appropriately.

167

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
10. How will we

handle the case when

there are multiple

causes for update

process?

Decision: In order to prevent multiple update processes in a short time frame as a result

of multiple successive triggerings of change, two mechanisms are offered in REFRAME:

(1) temporarily suspend update process, and then update entire graph, (2) temporarily

suspend update process, and then introduce temporary source node to update only what is

necessary.

Considered alternatives: No alternatives have been considered.

Prerequisites: No particular prerequisites are identified.

Constraints: Performing update of entire graph may involve unnecessary updating of

large number of nodes. Also, the user has to manually decide if and what prevention

strategy he wants to employ.

11. How are we go-

ing to ensure inter-

changeability of sort-

ing algorithms?

Decision: In order to ensure framework user can plug-in its own version of topological

sorting algorithm without affecting other parts of framework, we used well-known Strat-

egy pattern.

Considered alternatives: Using Template method pattern instead of Strategy pattern.

Using constructs offered directly by programming language (e.g. Func<> or Action<>

delegate types in C#).

Prerequisites: No particular prerequisites are identified.

Constraints: Template method is based on inheritance, so it would not be possible to

change sorting algorithms at runtime. Strategy can introduce additional complexity to

software design.

12. How are we

going to ensure re-

sponsiveness of end-

user application dur-

ing update process?

Decision: REFRAME will allow framework user to execute update process in a asyn-

chronous manner - in a different thread than the GUI. The implementation will be based

on .NET Task Parallel Library (TPL) and its core Task class.

Considered alternatives: Using lower level threading mechanisms such as Thread class.

Prerequisites: Programming environment needs to support multithreading.

Constraints: Using lower level threading mechanisms may involve significant effort,

and may be considered as obsolete. On the other hand, using higher-level frameworks or

libraries such as TPL makes REFRAME dependent on more resources.

13. How are we go-

ing to enable paral-

lel execution of up-

date process?

Decision: Coffman-Graham’s graph layering algorithm is used to form layers in which

reactive nodes are independent and can be updated in parallel. The execution is based on

.NET Task Parallel Library.

Considered alternatives: No alternative algorithms were found.

Prerequisites: Acyclic graph contains reactive nodes which are independent of each

other, and can be separately updated.

Constraints: Increase in performance by executing update process in parallel cannot be

guaranteed. It depends on the graph structure, and how performance intensive is updating

individual nodes. In some cases, overhead costs of dealing with threads could be higher

than performance gains.

168

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
14. How will we en-

sure that objects ref-

erenced in reactive

nodes can be deallo-

cated in application

code?

Decision: We use .NET language construct called weak reference, which provides access

to object but does not prevent garbage collector from collecting the object if there are no

strong references left.

Considered alternatives: Rely solely on application developer to handle deallocation of

reactive nodes when objects in application are removed.

Prerequisites: Programming language has to support the concept of weak references.

Constraints: Some programming environments may not support the concept of weak

references.

15. How will we sim-

plify interaction with

core features of the

framework in com-

mon scenarios?

Decision: We introduced higher level interface - Reactor, which is an implementation of

Facade design pattern.

Considered alternatives: No alternatives were considered.

Prerequisites: No particular prerequisites were identified.

Constraints: While Reactor abstracts some of the structural details of the system in order

to simplify basic usage scenarios, it may discourage user from using advanced options. In

addition, there is a risk for Reactor to become a "god" class.

How will we keep

track of Reactor

instances and reuse

them throughout the

end-user application?

16.

Decision: We introduced ReactorRegistry class (inspired by Registry design pattern)

which is in charge of creating and fetching Reactor instances. Implementation of Reac-

torRegistry is also based on Singleton design pattern, so only one instance of it is globally

available.

Considered alternatives: Leave application developers to manually implement these fea-

tures.

Prerequisites: No particular prerequisites were identified.

Constraints: No particular constraints were identified.

17. What algo-

rithms could be use-

ful for analyzing de-

pendency graphs?

Decision: The graphs that we used and found useful were: graph traversing algorithms,

topological sorting algorithms, cycle detection algorithms, connectivity algorithms, and

algorithms for calculating Centrality measures

Considered alternatives: Depending on the application domain, any algorithm which

operates on graph structure might be useful.

Prerequisites: Algorithm must be able to perform on a acyclic directed graph and on a

particular data structure representing that graph.

Constraints: Algorithms operating, for example, on undirected graphs, or weighted

graphs are not applicable to REFRAME.

18. How to meaning-

fully reduce the num-

ber of nodes in de-

pendency graph anal-

ysis?

Decision: Through analyzer tool we offer two kinds of reductions: (1) vertical - allows

viewing dependency graph on different levels of abstraction, and (2) horizontal - fetching

subset of available nodes according to some criteria (filtering).

Considered alternatives: No alternatives were considered.

Prerequisites: Analyzer tool needs to gain access to runtime information about depen-

dency graph in order to perform analysis.

Constraints: Large number of different options for reducing the number of nodes may

be confusing for user, and hard to interpret.

169

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
19. At what lev-

els of abstraction can

dependency graph be

viewed?

Decision: We propose 6 levels of abstraction, namely: (1) object-member level (original,

most detailed level), (2) object level, (3) class-member level, (4) class level, (5) names-

pace level, and (6) assembly level.

Considered alternatives: No additional meaningful levels of abstraction were identified.

Prerequisites: Analyzer tool needs to gain access to runtime information about depen-

dency graph and its reactive nodes on an object-member level.

Constraints: In large graphs, lower levels of abstraction (e.g. object-member level) may

result in huge amount of information. This could be hard to process by tools or users if

additional (e.g. filtering) mechanisms are not used to reduce the amount of information.

20. What criteria can

be used when fetch-

ing subset of depen-

dency graph nodes?

Decision: We proposed and implemented three criteria: (1) filtering by affiliation - filters

nodes with regard to their affiliation with higher-level nodes, (2) filtering by role - filters

nodes with regard to their role in dependency graph, and (3) filtering by association -

filters nodes with regard to their association with other, same-level nodes.

Considered alternatives: A feature to search reactive nodes by their identifier, owner,

or some other criteria could be useful. A user could be allowed to save chosen filters for

future use.

Prerequisites: No particular prerequisites were identified.

Constraints: Some combinations of different filters are not very useful and cannot be

meaningfully interpreted.

21. How can RE-

FRAME tools be

made an integral part

of the framework?

Decision: We implemented GUI and tool’s logic in a traditional desktop application style.

However, the tool is run as a Visual Studio extension. In this way we utilized flexibility

of traditional desktop GUI, but also left possibilities for stronger association with Visual

Studio IDE.

Considered alternatives: Implementing tool as IDE extension (e.g. Visual Studio Ex-

tension), or IDE independent standalone tool.

Prerequisites: Chosen IDE has to offer extension capabilities.

Constraints: Due to limitations and issues in VS Extension technology, with pure IDE

extension we were unable to access runtime state of end-user application, and also the

GUI development was very crude and limited. With standalone tool we cut all ties with

IDE and lose potentially useful mechanisms for IDE and REFRAME tools interaction.

170

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
22. How can An-

alyzer tool fetch de-

pendency graph data

from end-user appli-

cation runtime?

Decision: In order to avoid executing both end-user application and REFRAME tools in

the same process, we had to find a way to fetch runtime data from one process to an-

other. We decided to use Named Pipes as it is a fast and reliable technology, and it offer

everything we required without the need to introduce additional libraries. Named pipes

allowed us to model exchange between Analyzer tool and end-user application in a form

of client-server communication. Analyzer tool (client) can send a command requesting

data, and the end-user application (server) would respond with data in XML form.

Considered alternatives: Different technological solutions exists for implementing inter-

process communication, ranging from simple file sharing to using dedicated frameworks

such as WCF.

Prerequisites: Used technology has to support some means of inter-process communica-

tions.

Constraints: Inter-process communication may require significant amount of code on

both client and server side. It can be hard to debug.

23. How to represent

dependency graph

data in Analyzer

tool?

Decision: In order to decouple Analyzer tool from the core part of the framework, we

implemented separate (although similar) classes to express graph and node structures. In

this way core and Analyzer graph structures can evolve separately, without impeding each

other. This allows Analyzer to be used even in completely different context.

Considered alternatives: Reusing Dependency graph and Node hierarchy from core part

of REFRAME.

Prerequisites: No particular prerequisites were identified.

Constraints: Reusing existing structures from core part of the framework are problematic

due to differences in hierarchy and structure of dependency graph and nodes, as well as

in domain logic. On the other hand, implementing separate structures may lead to code

duplication.

24. How do we feed

Visualizer tool with

dependency graph

data?

Decision: We used Analyzer tool as a provider of dependency graph data to Visualizer

tool. This was justified because there was already an established IPC between Analyzer

tool and end-user application, and also the natural input to Visualizer were different anal-

yses provided by Analyzer tool.

Considered alternatives: Establishing separate IPC directly between Visualizer and end-

user application.

Prerequisites: No particular prerequisites were identified.

Constraints: Using Analyzer tool as a graph data provider for Visualizer tool makes

these two tools coupled, and prevents Visualizer to be used without the Analyzer.

171

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
25. How to represent

dependency graph

data in Visualizer

tool?

Decision: Here we applied the same reasoning as in Analyzer tool. Although the base

graph-node representation is similar throughout the REFRAME, there are important dif-

ferences in structure and methods, and also in purpose of classes. Therefore, Visualizer

tool also got its own separate data structures for representing dependency graph and nodes

for the purpose of visualizing them.

Considered alternatives: Reusing Dependency graph and Node hierarchy from core part

of REFRAME.

Prerequisites: No particular prerequisites were identified.

Constraints: Reusing existing structures from core part of the framework are problem-

atic due to differences in hierarchy and structure of dependency graph and nodes, as well

as in domain logic. On the other hand, implementing separate structures may lead to code

duplication.

26. What visualiza-

tion technologies can

we use to draw de-

pendency graphs?

Decision: We decided to use DGML - one of the available specialized graph drawing

libraries. It was compatible in terms of technology, stable, mature, easy to use, had avail-

able viewer, and it was free.

Alternatives: Two fundamental approaches were considered: (1) using general, low-level

drawing libraries (such as .NET’s System.Drawing namespace), or (2) using specialized,

graph drawing libraries (such as yFiles.NET, DGML, Graph# etc.).

Prerequisites: Used technology has to provide either low-level drawing capabilities or

specialized libraries.

Constraints:
Using low-level drawing libraries involves dealing with very complex issues related to

graph drawing, such as determining the layout of the graph. On the other hand, special-

ized graph drawing solutions may not be available in every programming language. In

addition, existing solutions may have various disadvantages, such as being hard to use,

lacking graph viewer, not being open-source or free, etc.

27. How can we

make Visualizer flex-

ible in terms of visu-

alization technology?

Decision: In order to make visualization technology easily replaceable, client classes use

Visualizer’s classes through exposed interfaces. As long as these interfaces are respected,

concrete implementation and technology may vary. In addition, interfaces and concrete

classes are kept in separate components, therefore, in order to replace concrete implemen-

tation, we just have to reference new component and initialize instances.

Alternatives: No alternatives were considered.

Prerequisites: No particular prerequisites were identified.

Constraints: Such flexibility may result in complex design.

172

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
28. What parts of

code should be sub-

ject of code genera-

tion in REFRAME?

Decision: Code generation will receive the largest benefit from code statements which are

frequently repeated. In the context of using REFRAME these are primarily statements in

charge of (1) defining reactive nodes and (2) specifying reactive dependencies, but fair

amount of repetition can also be expected when (3) triggering changes, and (4) fetching

reactor instances.

Alternatives: Introducing code generation also for other code statements involved with

REFRAME.

Prerequisites: There is a code repetition that cannot be avoided in some other way.

Constraints: Only a fixed part of the code statements are generated, and the developer

still has to manually insert variable part.

29. How to increase

code readability for

most frequently used

framework features?

Decision: In addition to keeping interfaces clean, we offered alternative syntax for setting

up reactive dependencies in a more declarative style, similar to natural language. In order

to do that we used fluent interface syntax approach, which can be described as lightweight

DSL.

Alternatives: Offer clean imperative interfaces in combination with one or more Facade

pattern implementations.

Prerequisites: Techniques necessary to implement fluent interfaces should be available

(e.g. extension methods).

Constraints: Declarative style employed by fluent interface may not suit all developers.

Also, fluent interface may not fit well with some features.

30. What code gener-

ation techniques are

suitable for use in

the context of RE-

FRAME?

Decision: We decided to abandon heavyweight code generation approaches, and use

something simple but still effective. After simplifying reactor’s interface and introducing

fluent syntax, Visual Studio’s code snippets were used to generate parts of the repetitive

code.

Considered alternatives: A number of code generation techniques are available in .NET

ecosystem, such as: T4 templates, CodeDOM, IL Rewriting, Roslyn API, Code snippets,

Quick actions, and other.

Prerequisites: Chosen code generation techniques should be able to alter existing code

(code injection).

Constraints: Although there are number of code generation techniques available in .NET

ecosystem, most of them are not suitable for changing the existing code. Even those that

make the code injection possible either at design or runtime (e.g. IL Rewriting or .NET

Compiler API), still require from us to specify what exact statements should be gener-

ated. In the context of REFRAME, it was not particularly more convenient to specify this

information rather than writing the target code statement itself.

173

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
31. How to make

REFRAME modular

at the level of compo-

nents?

Decision: Through the series of refactorings, which included transferring responsibilities

between classes and classes between components, framework components were molded

into logically consistent units with low coupling. This allows application developers to

use only components which are essential for framework functionalities they need, and

also to introduce new or replace existing components with relative ease.

Alternatives: No alternatives were considered.

Prerequisites: No particular prerequisites were identified.

Constraints: Requires a lot of experience, effort and experimenting to get things done

right. The interaction between modules may be complex, and could require thorough

documentation.

32. How is the over-

all responsibility of

the framework going

to be divided among

individual classes?

Decision: Throughout the iterations of framework development Single responsibility

principle was one of the guiding principles in assigning portions of framework’s over-

all functionality to individual classes. This involved constant deliberation about coupling

and cohesion of framework’s constituent parts, and often resulted in performing different

refactorings.

Considered alternatives: Separation of concerns, High cohesion - Low coupling princi-

ple, Information Expert principle (GRASP), etc.

Prerequisites: No particular prerequisites were identified.

Constraints: Aforementioned principles can be fairly general, which makes them some-

what vague and open to various (mis)interpretations. Very often, fixating on particu-

lar principle can bring adverse effects to software design. Also, different principles can

sometimes act as opposing forces and contradict each other.

33. How to make

sure the framework

is able to evolve and

be extended in a safe

manner?

Decision: One of the principles that we took as a guide for this goal was Open-closed

principle. Being closed for modification for REFRAME meant that we have to provide

fixed, invariant part of the framework in a form of interfaces and abstract classes. On

the other hand, being open for extension meant these abstractions have to allow sufficient

variability, such as framework user being able to provide new concrete implementations

or configure existing ones. In addition to OCP, Liskov substitution principle was also

important for this goal, especially for the purpose of evaluating appropriateness of class

hierarchies.

Considered alternatives: Polymorphism principle (GRASP).

Prerequisites: No particular prerequisites were identified.

Constraints: The same as in design issue number 32.

34. How to provide

clean design of inter-

faces?

Decision: In order to prevent occurrence of "fat interfaces" and interface pollution we ap-

plied Interface segregation principle. This was done by continuously assessing cohesion

of interface members, examining interfaces from the perspective of the roles they play

towards client classes. A result of this was applying refactorings to further decompose

the elements of the framework, which represented a natural continuation of the process

started by applying Single responsibility principle.

Considered alternatives: Single responsibility principle.

Prerequisites: No particular prerequisites were identified.

Constraints: The same as in design issue number 32.

174

Table Table 14 – Summary of most important design decisions made in REFRAME development

Design issue Decision elaboration
35. How to make

framework more

flexible?

Decision: In order to make framework flexible. i.e. easy to change, we applied Depen-

dency inversion principle. This meant allowing dependencies only towards most stable

parts of the system - abstract classes and interfaces, and not the volatile concrete imple-

mentations. A result of this is client classes being unaffected by changes in implementa-

tion details. Visually, effects of DIP can be described by architectural boundary line.

Considered alternatives: Hollywood principle, Inversion of control.

Prerequisites: No particular prerequisites were identified.

Constraints: The same as in design issue number 32.

175

7. Artifact Evaluation

7.1. Episode I - Prototyping and testing

As described in chapter 3, the first evaluation episode was conducted in the formative period

of the framework, intertwined with activities of design and development. The goal was to

obtain feedback that would guide further development of the framework. Here we used two

evaluation techniques: prototyping and testing. The main purpose of prototyping was to assess

technical feasibility of various aspects of the framework, i.e. to try out and compare different

technologies, design and implementation options. Testing, on the other hand, was more focused

on demonstrating efficacy by showing that individual parts and a framework as a whole are

working and can be used to solve a problem.

7.1.1. Prototyping

Prototyping was very tightly integrated into the framework development process, so it was

extensively used in Design and develop phase of this dissertation. The ultimate results of pro-

totyping were most directly visible in the very design and implementation of the framework.

Since these were discussed and elaborated in detail in chapter 6, in this section we will only

reflect on our general experiences in conducting prototyping.

Major prototyping sessions usually occurred when we faced significant uncertainty in deci-

sion making, especially if these decisions resulted in large-scale and long-lasting effects. Exam-

ples of such major prototyping sessions include: trying out different solutions for asynchronous

and parallel update process; trying out different meta-programming techniques which could be

used for automating dependency management and code generation; finding an adequate way

to establish communication and data exchange between end-user application and REFRAME

tools; comparing different graph visualization technologies; exploring extension capabilities of

Visual Studio IDE, etc. Since all of these prototypes were exploratory, there was no point in

writing production-quality code and wasting time integrating each one of them with the rest

of the framework. Rather, prototypes were created as separate solutions/projects, which were

easily discarded after the session was done (so-called throwaway prototypes). The most im-

portant things these prototyping sessions showed us was: (1) what design and implementation

options are feasible, and (2) what are the general steps to realize these options. Direct reuse of

176

programming code was rarely the case.

We used prototyping also during Sketch and build activity when we wanted to try out differ-

ent options for making smaller-scale design and implementation decisions. Due to their more

limited scope and dependence on the rest of the framework, these prototypes were developed

integrally with the framework. In these cases we used git version control capabilities to support

throwing away or accepting the prototype. For example, each prototype had its own separate

development branch (or more of them), which enabled us to experiment without the fear of

breaking main development branch. In case the prototype proved to be unsuccessful, its branch

was easily discarded and we could go back to main development branch. Otherwise, if the pro-

totype proved to be successful, we could choose to merge the branch into main development

branch. There was also a compromise solution, which enabled us to choose only subset of

changes from prototype branch to be included, i.e. the so-called cherry-picking. In any case, if

proved successful, these prototyping sessions resulted in direct reuse of design and implemen-

tation. The examples of such smaller-scale prototyping sessions include trying out different

refactorings to increase the code quality.

7.1.2. Testing

Software testing is an activity in software process which, according to Sommerville [137]

has two distinct goals: (1) demonstrating that software meets the requirements of its stakehold-

ers, and (2) discovering incorrect or undesirable behavior. These two goals align well with

the efficacy evaluation property. Indeed, we can argue that the software which meets its stake-

holder’s requirements with no major defects, can be considered as a working artifact with a

potential to solve a problem pointed-out by stakeholders.

While testing is essential activity in general software development, it is particularly impor-

tant in software framework development. This is because application developers expect to be

able to rely on the framework and focus on testing application code. A bug in a framework

would spread through-out all end-user applications which use the framework, thus potentially

becoming much more devastating than the bug in application code. We discussed this in de-

tail in section 2.2 of literature review where we covered the topic of software frameworks and

framework-involved processes.

Traditionally, testing was often depicted as a separate activity within the software develop-

177

ment process, conducted summatively after the software was developed. However, the advent

of agile software processes emphasized the need to introduce testing as early as possible, which

shifted a lot of the testing efforts towards the code development activity. By interleaving it with

implementation, testing was awarded a more active, formative role in shaping design and imple-

mentation of the software, which is especially relevant for this evaluation episode. One of the

agile practices which enabled this to happen was test-driven development (TDD) [28]. While

intensive testing during development activities was not particularly revolutionary, the idea of

testing-first introduced by TDD was. It assumed software developers (not testers) first writing

tests and only then writing programming code that satisfies these tests. As much as this seemed

counter-intuitive, agile proponents boasted numerous benefits of this approach, including: in-

troducing discipline in writing tests, providing greater test coverage, and increasing design and

code quality.

The primary automated testing technique which we were relying on in this evaluation episode

is unit testing. This technique is a usual starting point in testing process and also the foundation

of test-driven development. Osherove [112] in his popular and influencing book compiled the

following definition: "A unit test is an automated piece of code that invokes the method or class

being tested, and then checks some assumptions about the logical behavior of that method or a

class". In addition to just stating what unit test is, Osherove also found it necessary to empha-

size what good unit test is, so he extended his definition with the following: "Unit test is almost

always written using a unit-testing framework. It can be written easily and runs quickly. It is

fully automated, trustworthy, readable and maintainable".

In addition to its usual benefits, unit testing is very important in the context of this disserta-

tion for two reasons. The first reason is related to the nature of how frameworks are used. We

know that framework users, i.e. application developers, use software frameworks by writing

code which, for example, instantiates framework’s classes, inherits them, invokes their behav-

ior and method members, etc. This means that, unlike in end-user applications, the framework’s

"user interface" is a set of available classes and their exposed members. The important impli-

cation here is that, besides testing for correctness of particular framework’s feature, unit tests

simulate the instances of framework use. Indeed, the code invoking some method from the

framework’s API, is the same, regardless of whether it is written by framework user as a part of

application code, or it is written by framework developer as a part of unit test. This allowed us

178

to see framework through the eyes of potential users, which led to optimizations and fine-tuning

of framework’s interface with the goal of making it easier to use.

The second reason why we chose unit testing as a suitable testing technique in our context

is related to evaluation process. If we take a look at how unit tests are conducted, we can see

certain resemblance with laboratory experiments. Like experiments, unit tests also test assump-

tions we have about some system or phenomenon. By testing only small part of the system in

isolation from other parts, unit tests create controlled environment. Finally, invoking method

under test and asserting the outcome, can be seen as applying the treatment and observing the

response. Therefore, we can see testing in this evaluation episode as conducting a set of large

number of small-scale experiments on the framework.

During the course of REFRAME development around one thousand automated tests were

written using MSTest unit testing framework. These tests were organized and run with the help

of Test Explorer tool which is integrated with Visual Studio. As can be expected, due to their

size and complexity, core part of REFRAME and Analyzer tool were the subject of most tests

(see Figure 50). Depending on whether we intended to write production code from start or we

just wanted to do some prototyping, we applied test-first or test-after approach respectively.

Whatever we decided to do first, we tried to write both framework code and tests within the

short time-frame.

Figure 50: Test Explorer panel in Visual Studio displaying written automated tests

Some of the reasons for such extensive testing we already elaborated when we discussed the

perils of bugs in frameworks. However, there were some additional reasons for increasing the

number of tests that are worth mentioning here. One of them is the fact that with frameworks

it is harder to define the so-called testing boundary. For example, in end-user applications the

programming code is usually under control of its authors, and is executed in a fairly predictable

179

manner by the user interacting with graphical user interface. In such cases, we can establish

a boundary around parts of the code for which we can reasonably assume will work properly,

and that any serious problems will be discovered by tests of larger granulation (e.g. end-to-end

tests). On the other hand, with frameworks it is almost impossible to make such assumptions, as

it is much harder to anticipate how application developers will use the framework. Thus, when

testing REFRAME it was important to separately test each part of the code.

In Figure 51 we can see a simple example of unit test testing specific behavior manifested by

individual method. One of the things that are visible from the very start are naming conventions,

which play important role in organizing large number of unit tests. The very test class name, and

test method name provide necessary information to quickly understand what the test is about,

without the need to examine its code. The example unit test shown in Figure 51 is located

in PropertyNodeTests class, which tells us that it tests some behavior of PropertyNode class.

The very test method name follows the MethodUnderTest_Scenario_ExpectedBehavior [112]

naming convention, which provides information on what method is tested, what exact scenario

is tested, and what behavior we expect from the method under test. Again, in this example,

we test the HasSameIdentifier method in scenario in which we have two nodes pointing at the

same object-member pair. We can recall that in chapter 6 it was declared that we consider two

reactive nodes to be identical if they point at the same object-member pair. Therefore, this unit

test expects method under test to return true, i.e. that the two nodes have the same identifier.

Figure 51: Simple unit test example

180

If we take a look at the method body of unit test we can notice that it is structured according

to well-known 3A (Arrange, Act, Assert) pattern [112]. The arrange part is in charge of creating

a test scenario and preparing everything needed for a test to be performed. In our example, this

involved creating two reactive nodes pointing at the same object-member pair. The second, act

part performs the very test and captures the result, i.e. it executes HasSameIdentifier method.

Finally, the assert part compares whether the outcome of the test is what we expected, i.e.

whether the value returned from HasSameIdentifier method is true.

Unit test shown in Figure 51 is a simple one, as are many other tests we wrote for RE-

FRAME. However, due to a complex domain, some test scenarios we wanted to cover also

ended up being complex. Although all of our unit tests always aimed at testing only one

method, in order to set-up a complex scenario multiple objects and method invocations were

required in arrange part of the test. In extreme cases we even had to create a small infrastruc-

ture (utility methods and data structures) for defining test scenarios and asserting them. Such

complex tests are, for example, written for PerformUpdate method of Update class. Testing

this method involved constructing multiple differently structured dependency graphs, perform-

ing update process on them, and asserting whether correct nodes are updated in a correct order.

In Figure 52 we can see an example of unit test for PerformUpdate method, where the test

case involved constructing dependency graph with eight nodes, and performing update after a

change in one of the nodes. In order to reuse test code and increase maintainability of unit tests,

construction of dependency graph was done in separate method (CreateTestCase1). In this way,

we were able to write other unit tests based on this dependency graph structure. Finally, we

built a special log class (NodeLog) which enabled us to log reactive nodes in a specific order.

The actualLog object was result of the update process and reflected the actual order in which

reactive nodes were updated. On the other hand, expectedLog was manually constructed by us,

and it reflected what we expected correct update process would look like. Asserting whether

these two log objects are equal tells us if the test passes or fails.

Individual unit tests such as the ones shown in Figure 51 and Figure 52 only guarantee

that a small piece o framework’s code works in a specific scenario. However, when we ensure

proper code coverage with hundreds of unit tests, we significantly increase the evidence that the

framework works as a whole and that it can be used to solve a problem. In this way, testing

contributes to the evaluation of framework’s efficacy.

181

Figure 52: Complex unit test example

Although the code coverage metric is not perfect, and certainly not sufficient to characterize

software as error-free, it is reasonable to assume that high code coverage will result in fewer

errors. The exact percentage of code covered by tests that is considered sufficient is still the

subject of ongoing debates. However, in literature and among practitioners most recommenda-

tions range from 80% up to 100%, which we also tried to achieve in the context of REFRAME.

We calculated code coverage using Visual Studio’s internal analyzer tool. The calculation is

based on block measure, which official documentation for Visual Studio defines as a "piece of

code with exactly one entry and one exit point" [3]. In Figure 53 we see that the overall code

coverage for entire framework is 95,27%, while the coverage of individual components ranged

between 91% and 100%. Since all of these numbers are at the upper half of recommended

values, we can conclude that the framework is sufficiently covered with tests.

182

Figure 53: Code coverage results

7.2. Episode II - Demonstration

In the evaluation Episode I we evaluated technical feasibility and efficacy of the frame-

work in a formative manner. This was done during the very REFRAME development, with

evaluation’s main intent being to provide feedback to influence further development, corrective

activities and eventually completion of REFRAME. In the evaluation Episode II we stick to the

evaluation of technical feasibility and efficacy, however, this time we do it summatively. This

means that the Episode II is the first episode conducted during official evaluation activities, i.e.

after REFRAME was developed. The intent here was an overall assessment of REFRAME in

order to reach conclusions about its worth.

The evaluation method we used in this episode is demonstration, which is the most fre-

quently used evaluation method in design science [119]. We will define several illustrative sce-

narios showing the use of REFRAME in the context of managing reactive dependencies in OO

applications. This will demonstrate that we were able to build REFRAME through several iter-

ations of design and implementation steps (technical feasibility), but also that REFRAME holds

features and characteristics required to solve the problem of managing reactive dependencies

(efficacy). By being the first evaluation episode after REFRAME is developed, demonstration is

an early summative evaluation, and it will be conducted in artificial environment with fictional

example of reactive dependencies. As such, it will represent the basis for conducting more

naturalistic evaluation in third and fourth evaluation episodes.

183

7.2.1. Base demonstration example

In order to demonstrate different illustrative scenarios of REFRAME use, we first have to

devise demonstration example on which these scenarios will be conducted. Since this is early

summative evaluation, the example will be based on a simple fictional software application in

need of managing reactive dependencies. We will simplify the application in terms of size,

structure, business logic, and other aspects that are not directly related to handling reactive

dependencies. However, the dependency graph resulted from created reactive dependencies

will be complex enough to illustrate the advantages of using REFRAME to manage them.

Figure 54: Class diagram of base demonstration example

As shown in Figure 54, demonstration example contains ten fictional classes arranged in four

assemblies/namespaces. In addition to showing class members, we adjusted the class diagram

to show that some members are a result of manipulating one or more other members, thus

becoming dependent on them. For example, member P of class Eta is some kind of a function

f of members O (class Eta), H (class Delta), L (class Epsilon), and W (class Iota). Each

of these members, together with their respective owner objects (i.e. object-member pairs), will

represent a reactive node in dependency graph (red nodes in Figure 55). These reactive nodes

will also be mutually interrelated and form four reactive dependencies which can be described

by the following ordered pairs: (O,P), (W,P), (H,P), (L, P).

For the sake of clarity, for each class shown in Figure 54 we created one instance, which

resulted in total of 10 objects. Paired with their members, these objects formed total of 26

184

reactive nodes interconnected with 28 reactive dependencies. In Figure 55 we can see that even

dependency graph of such limited size is complex enough to require significant effort to manage

it manually using traditional solutions such as Observer pattern. Not only we would have hard

time constructing dependency graph, but we would also need a lot of time to manually analyze

and visualize the graph. As we will see, with REFRAME these tasks are going to be much

easier to perform.

Figure 55: Dependency graph of base demonstration example

7.2.2. Illustrative scenarios

Scenario 1

� Title: Creating and registering new reactor object with identifier "default".

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll and Re-

frameBaseExceptions.dll.

� Main scenario rollout: New reactor object with identifier "default" is created and regis-

tered in ReactorRegistry in order to be available for further use.

185

� Alternative scenarios: Failing to provide reactor identifier, or attempting to create reac-

tor with existing identifier will result in ReactorException exception. Also, other over-

loads of CreateReactor method can be used to inject dependencies.

Scenario 2

� Title: Getting existing reactor object with identifier "default" from registry.
� Prerequisites:

• Import following components in end-user application: ReframeCore.dll and Re-

frameBaseExceptions.dll.
• Reactor with specified identifier exists in ReactorRegistry.

� Main scenario rollout: Existing reactor object with identifier "default" is fetched from

registry.

� Alternative scenarios: Given no reactor with specified identifier exists in registry, a

ReactorException is thrown. Also, a GetOrCreate method can be used if we want to

create reactor in case it is not found in registry.

Scenario 3

� Title: Specifying reactive dependencies.
� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor is fetched from ReactorRegistry.
• Eta has instances of Delta, Epsilon and Iota classes in scope.

� Main scenario rollout: After fetching reactor, in Eta class Let− > DependOn fluent

syntax is used to add reactive nodes and specify four reactive dependencies. In all four

dependencies, P is a successor which depends on four of its predecessors, i.e. O, W , H ,

L.

186

� Alternative scenarios:

Given an attempt to specify already existing reactive dependency, the framework will

throw ReactiveDependencyException.

Given an attempt to create direct cycle between two nodes, i.e. make them both a pre-

decessor and successor of each other, the framework will throw ReactiveDependencyEx-

ception.

Scenario 4

� Title: Performing update process of entire dependency graph.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor containing dependency graph shown in Figure 55 is fetched from

ReactorRegistry.

� Main scenario rollout: PerformUpdate method is called on fetched reactor, and all of

the 26 reactive nodes contained in dependency graph are updated synchronously.

The order in which reactive nodes are updated is following:

� Alternative scenarios: Given a problem occurs during update process (e.g. exception

in application code), framework will throw a GraphUpdateException. Additional update

process and error information is available through UpdateInfo and UpdateError objects.

187

Scenario 5

� Title: Performing update process as a result of triggering change in object’s state.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor containing dependency graph shown in Figure 55 is fetched from

ReactorRegistry.

� Main scenario rollout: Using fetched reactor, a change is triggered in a setter of property

A (class Alfa) using reactor.Update method. This resulted in only few of the graph’s nodes

being updated.

� Alternative scenarios: In case of MethodNode, update process can be started as a result

of invoking a method. Following example shows how we a reactive dependency be-

tween method node representing DetermineCalculationProcedure method (predecessor)

and property node representing P property is created. Update process is started at the end

of the method.

Scenario 6

� Title: Performing update process asynchronously.

� Prerequisites:

188

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor is fetched from ReactorRegistry.

� Main scenario rollout: In the reactor’s updater object, the UpdateStrategy is set to Asyn-

chronous. Now, calling the PerformUpdate method results in update process being exe-

cuted in separate thread, thus preventing GUI thread to be blocked.

� Alternative scenarios: As in Scenario 4, in case of a problem during update process,

framework will throw a GraphUpdateException. Additional update process and error

information is available through UpdateInfo and UpdateError objects.

Scenario 7

� Title: Performing update process in parallel.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor is fetched from ReactorRegistry.

� Main scenario rollout: In the reactor’s updater object, the UpdateStrategy is set to Paral-

lel. Now, calling the PerformUpdate method results in update process which forms layers

of independent reactive nodes. Layers are updated one at a time, while reactive nodes

within the layer are updated in parallel.

� Alternative scenarios: As in Scenario 4, in case of a problem during update process,

framework will throw a GraphUpdateException. Additional update process and error

information is available through UpdateInfo and UpdateError objects.

Scenario 8

� Title: Reporting the progress and status of the ongoing update process.

� Prerequisites:

189

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor is fetched from ReactorRegistry.

� Main scenario rollout: End-application code subscribes to events UpdateStarted, Up-

dateCompleted, and UpdateFailed.

Event handler methods are defined which contain arbitrary code handling the events (e.g.

informing user, refreshing GUI, etc.)

� Alternative scenarios: In case of asynchronous or parallel update process, cross-thread

calls need to be prevented when, for example, refreshing GUI.

Scenario 9

� Title: Informing about cycle formed in dependency graph.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll and ReframeFluentAPI.dll.
• Existing reactor is fetched from ReactorRegistry.

� Main scenario rollout: Update process was started on a graph which contains cycles.

190

This resulted in CyclicReactiveDependencyException.

� Alternative scenarios: -

Scenario 10

� Title: Displaying the list of registered reactors.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in end-user application.

� Main scenario rollout:REFRAME Tools are invoked, and a graphical user interface ap-

peared showing the list of registered reactors in end-user application. For each registered

reactor a detailed data about its structure can be displayed.

� Alternative scenarios: If no end-user application is running with ReframePipeServer

started, REFRAME tools inform user they are unable to fetch reactors from end-user

application.

191

Scenario 11

� Title: Displaying the list of reactive nodes at different levels of abstraction.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in End-user application.

� Main scenario rollout: After selecting registered reactor, available menu offers six levels

at which reactive nodes can be shown, e.g. object-member level. List of nodes are then

displayed in a table with data available at chosen level of abstraction.

� Alternative scenarios: Prior to displaying list of reactive nodes, it is possible to filter

them with regard to their affiliation with higher-level nodes (filtering by affiliation). For

example, we can decide to display only nodes coming from certain assembly.

192

Scenario 12

� Title: Displaying reactive nodes with different roles in dependency graph.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in End-user application.

� Main scenario rollout: After selecting registered reactor and a level of abstraction, it is

possible to show only reactive nodes with particular role (filtering by role) in a depen-

dency graph, e.g. source nodes.

193

� Alternative scenarios: Prior to displaying list of reactive nodes, it is possible to filter

them with regard to their affiliation with higher-level nodes (filter by affiliation).

Scenario 13

� Title: Displaying reactive nodes associated with selected node.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in End-user application.

� Main scenario rollout: After any list of reactive nodes is displayed, and any reactive

node is selected, it is possible to display reactive nodes which are in various ways associ-

ated with selected node (filtering by association).

� Alternative scenarios: Prior to displaying list of reactive nodes, it is possible to filter

them with regard to their affiliation with higher-level nodes (filter by affiliation). Also,

when displaying selected node’s predecessors, successors and neighbors, it is possible to

choose the depth level. For example, when showing predecessors, level 1 would show

only selected node’s direct predecessors; level 2 would show selected node’s direct pre-

decessors and their direct predecessors, and so forth.

194

Scenario 14

� Title: Displaying information about last performed update process.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in End-user application.

� Main scenario rollout: After selecting registered reactor we can show information about

the latest update process. Here we can see information about the overall update process,

such as update status, cause, duration, error, etc. Also, we can see the list of all reactive

nodes which participated in the update process. In addition to usual information about

reactive nodes, for each node we can see the duration of update, as well as whether the

update resulted in a value change.

� Alternative scenarios: In case of failed update process, user can obtain error informa-

tion.

195

Scenario 15

� Title: Visualizing the list of reactive nodes.

� Prerequisites:

• Import following components in end-user application: ReframeCore.dll, Reframe-

BaseExceptions.dll, ReframeFluentAPI.dll, ReframeExporter.dll, ReframeServer.dll,

and IPCServer.dll.
• End-user application with reactors registered in ReactorRegistry is up and running.
• ReframePipeServer is started in End-user application.

� Main scenario rollout: After displaying any list of reactive nodes we can visualize it in

a form of DGML graph shown in Visual Studio’s DGML Viewer.

� Alternative scenarios: Prior to displaying the graph, we can choose whether we want to

group displayed nodes at certain level or not.

196

197

7.3. Episode III - Focus group

Focus group is one of the most popular qualitative methods, which tries to cover particu-

lar topic in even greater depth than individual interviews by allowing multiple participants to

interact and discuss. Within design science, focus group is frequently used in various stages

of research, including problem explication, requirement specification, and artifact evaluation

[78]. Similarly, the value of focus group in requirements elicitation and evaluation in the field

of software engineering is also seen by Kontio et al. [89]. Tremblay at al. [150] adapted the

traditional focus group method for the use in design science projects. According to them, this

method can be used to achieve two goals: (1) artifact improvement - in this case we talk about

explorative focus group, and (2) artifact evaluation - a confirmatory focus group.

By being part of evaluation activity within design science project, i.e. one of the summative

evaluation episodes, our focus group can be characterized as confirmatory. Our aim is to per-

form evaluation of the framework’s usefulness by first time stepping outside of the laboratory

setting, and showing the framework to outside users. This introduces small, albeit important

step towards evaluation in realistic conditions in practice. In addition, focus group is expected

to result in valuable ideas for future improvements and extensions.

In the remainder of this section, we describe the process of conducting confirmatory focus

group by following the guidelines offered in [150] and [89].

7.3.1. Research problem

REFRAME software framework (new design science artifact) has been designed, developed,

tested and demonstrated on illustrative scenarios as a potential solution for management of

reactive dependencies. However, there is still no proof that REFRAME will be perceived as

useful by developers. Therefore, by conducting focus group we aim to evaluate framework’s

usefulness and in this way answer research question RQ6: How does the use of REFRAME

affect the management of reactive dependencies in development of object-oriented applications?

This aligns with the general goal of confirmatory focus groups, i.e. demonstrating the utility of

artifact design in the application field.

198

7.3.2. Sample frame

According to Tremblay et al. [150], in this step it is necessary to define (1) how many focus

group sessions to conduct, (2) how many participants will focus group have, and (3) what type

of participants are to be recruited. With regard to the number of focus group sessions, as a part

of the third evaluation episode we will conduct one focus group session. It is important to point

out that Tremblay et al. [150] do suggest conducting at least two focus groups, as only one may

be insufficient as a sole argument in favor of artifact’s value. However, since this is only one out

of four evaluation episodes, and the usefulness is also assessed in the next evaluation episode,

we argue one focus group to be sufficient in this particular case.

As per the number of participants in focus group session, Kontio et al. [89] report this to

vary between 3 to 12 participants. Tremblay et al. [150] emphasize that having more than 6

participants in focus group conducted within design science research may be tricky, as the topic

is often more complex than in traditional focus groups. We will follow that advice and keep

the number of participants at 6 maximum. Thus, total of 10 potential participants were invited

to participate in focus group, out of which 6 initially accepted and 4 declined the invitation.

This was satisfactory response, as we did not need to reject or put on hold any of the applicants

to be within the limit of 6 participants. Also, we felt relatively safe in the event of one or

two applicants drop out at the last moment. Unfortunately, this is exactly what happened, as

at the last moment two of the applicants had to drop out due to sudden but urgent family and

work-related matters. This left us with still satisfactory number of 4 participants.

The end users of REFRAME framework are software developers, so potential focus group

participants included individuals from both academic community and practice which are ac-

tively involved in the processes of software applications development. The general prerequisites

for participation included relevant knowledge and experience in the field of software engineer-

ing and object-oriented programming, and at least some experience in .NET or Java technology.

Each of the 4 applicants satisfy these requirements by having a formal education (master de-

grees) in the field of informatics, where they successfully completed several courses related to

software development. After their formal education, participants also gained between 3 and 8

years of relevant experience. Another, more specific requirement, was for participants to be

acquainted with the problem of reactive dependencies, which is addressed by REFRAME. With

regard to this, two participants had large experience as they were involved in development of

199

KI Expert Plus software for a significant time (more than 6 months). The remaining two partic-

ipants had no experience with such extreme examples of managing reactive dependencies, but

were acquainted with problem in terms of related design patterns (e.g. Observer pattern), or

their language specific implementations (e.g .NET and Java event mechanisms).

Table 15: Focus group participants

Participant Qualifications
Participant 1 He holds a master degree in Information and Software Engineering at

Faculty of Organization and Informatics. During his master degree stud-

ies he was involved in different software development projects, includ-

ing the project of developing KI Expert Plus software application. He

currently holds the position of Hybris Java Developer in ecx.io Croatia

d.o.o. where he works for the past five years.

Participant 2 He holds a master degree in Information and Software Engineering at

Faculty of Organization and Informatics. For the past eight years he was

working as a software developer for IN2 d.o.o. on the project of devel-

oping software for magistrates court. As of recently he is working for

Omega Sofware d.o.o. as a backend developer and BizTalk specialist.

He was also involved in development of KI Expert Plus application.

Participant 3 He holds a master degree in Information and Software Engineering at

Faculty of Organization and Informatics. For two years he worked as

a teaching assistant at Faculty of Organization and Informatics (De-

partment of Information Systems Development). During that time he

worked as a project associate on IRI Hyper - User Experience of the

Future project, where he was developing both frontend and backend

part of the chatbot system. Currently he holds a position of middle Java

developer at Ingemark d.o.o.

Participant 4 He holds a master degree at Business Systems Organization at Faculty

of Organization and Informatics. For the past three years he worked

in King ICT d.o.o. and Ars Futura d.o.o. software companies on the

jobs related to automated testing and development using wide range of

technologies. He currently works at Ars Futura d.o.o., and holds the

nominal position of QA/DevOps Engineer, but his usual activities also

involve development using Ruby on Rails.

7.3.3. Moderator

Focus group moderator should necessarily have a deep understanding of the discussed topic,

including both the research problem, as well as proposed solution. REFRAME as a framework,

200

is full of technical details related to chosen technologies, design and implementation decisions.

Unfortunately, at this stage, other than the researcher himself there is no other person who is

sufficiently acquainted with the framework. This makes the researcher the best candidate for

moderating the focus group, despite the threat of possibly introducing personal bias. Accord-

ing to Tremblay et al. [150], the moderator should also have a wide range of interpersonal

and communication skills, ranging from ability to communicate clearly and include others into

discussion, to having sense of humor. While it is hard for anyone to claim having such traits,

the researcher’s usual activities of researching, collaborating and teaching, also demand a lot

of these traits to be demonstrated. That being said, the researcher will take the role of the

moderator.

7.3.4. Questioning route

Planning of the focus group involved creating ordered checklist of tasks to be performed.

The very focus group session will start with some administrative and technical details related to

focus group. This includes reminding participants about the focus group goal, their voluntary

participation, the fact that the session will be recorded for the purpose of data analysis, and

finally the fact that their names will not be contained anywhere in the report. Also, at this point

the participants will briefly introduce themselves.

The first major task in conducting the focus group is to ensure participants are adequately

familiarized with the research problem and the proposed solution. While, as we already pointed

out, some participants do have practical knowledge of the underlying problem, with other par-

ticipants this is more of a theoretical knowledge. In addition, because of REFRAME being a

novel artifact, none of the participants are familiarized with its features and design. This is why

it is necessary to educate the participants prior to starting the discussion part of the focus group.

The education will be conducted in two parts, and it involves presenting the original research

problem of managing reactive dependencies, as well as the user features and design aspects of

the REFRAME as proposed solution. Firstly, in a week before focus group is held, participants

are going to receive 20-minute video lecture which should introduce them to the research prob-

lem of managing reactive dependencies. The second part of education will be done after initial

introduction within the focus group session, in which the first 45-minutes will be reserved for a

presentation on REFRAME as a proposed solution.

201

After the presentation, a discussion will take place moderated by the researcher. Since the

focus group has a clear and pragmatic goal, i.e. assessment of REFRAME usefulness, the

discussion will be guided with the help of previously defined set of questions (see Table 16).

These questions reflect the problems and goals of the design artifact seen through the lenses

of the research goal and research question addressed in this evaluation episode. However, they

primarily serve as conversation starters and motivation mechanisms, and not to prevent an open

discussion. In terms of steering the discussion, the researcher will intervene only in case of

prolonged digression from discussion goal, or to motivate inactive participants. This, however,

will be done in a discrete and subtle manner in order to not offend or discourage the participants.

Table 16: Focus group questions and topics

Question (topic)
1. How do you perceive presented problem related to managing reactive dependencies?

Do you see it as a relevant for practice and worth addressing?

2. Can you think of any particular software systems (or types of software systems) which

manifest this problem (e.g., spreadsheets, GUI, animations, games, reactive systems,

event-driven systems)?

3. At what point managing reactive dependencies becomes a problem in OO? What con-

tributes most to the problem?

4. What are the most serious symptoms/effects of this problem?

5. Can you imagine how would the ideal solution for managing reactive dependencies in

OO look like? What features and characteristics would it have?

6. Do you find frameworks to be a suitable artifact type for this kind of a problem? Is

there a better type of software artifact for this (specific programming language, domain

specific language, design pattern, architecture, libraries, components, tool)?

7. Are concepts from graph theory (node, edges, acyclic directed graph) suitable for ex-

pressing interrelated reactive dependencies? Can you think of any suitable alternative

representations?

8. What do you think about the way how reactive dependencies are specified in RE-

FRAME? Is the Fluent API syntax in a form of Let->Depend straightforward enough?

9. Are code snippets appropriate tool for generating parts of boilerplate code? Can you

see any benefits? Can you think of any other way to support specifying reactive de-

pendencies, either through the code or visually?

10. Do you think visual representation in a form of graph can increase the ability to com-

prehend and understand the relationships that reactive dependencies form? Can you

think of an example where application developer or an end-user would benefit from

this kind of visualization? Can you think of any alternative which would increase

comprehension and understandability of reactive dependencies?

202

Table Table 16 – Focus group questions and topics

Question (topic)
11. What about the issue of graph size in terms of e.g. visualization? At the original level

of abstraction dependency graph could potentially hold thousands of nodes. Tools

usually struggle to show such number of elements. But even if we ignore this fact,

how does a human user benefit from being presented with such large structure? How

to solve this problem?

12. Do you think REFRAME Analysis tool provides enough capabilities for a user to

reduce the number of displayed nodes and dependencies, and focus on the things of

interest at particular moment (horizontal/vertical reduction).

13. Is there any existing feature/characteristic of the core part of the framework, or its ac-

companied tools (Visualizer, Analyzer, Generator) that you find (1) particularly use-

ful; (2) is missing and should be introduced; or (3) should be removed or significantly

altered.

14. How extensible and customizable do you find the framework? What do you think

are the most important and probable points of extension and customization in RE-

FRAME?

15. Do you think underlying framework model can be utilized for alternative implemen-

tation in some other programming language?

After the official time for discussion runs out, the researcher will wait for appropriate mo-

ment and inform the participants. The participants will then be asked to directly assess the use-

fulness of REFRAME using a 7-point Likert’s measurement scale (see Figure 56) for perceived

usefulness provided by Davis in his popular Technology acceptance model (TAM) [41]. Since

the scale itself contains concepts such as performance, productivity, effectiveness and useful,

which may be differently understood by the participants, explanations for each of these con-

cepts were also provided. Finally, upon finishing the questionnaire, the researcher will kindly

thank participants for their time and effort, and inform them they are free to go.

7.3.5. Focus group session

Originally, the focus group was intended to be held in person in one of the faculty’s labo-

ratories. However, with regard to the situation related to Coronavirus (SARS-CoV-2) outbreak

and the introduced epidemiological measures, it was decided to conduct focus group as an on-

line meeting using Skype platform. All of the participants are frequently using such platforms

for business meetings and collaboration, so this was not a new thing for them.

The focus group started at the appointed time, and all of the four applicants showed up. At

203

Figure 56: Measurement scale for perceived usefulness (adapted from [41])

the beginning the moderator (researcher) greeted the participants, ensured that everyone’s audio

and video equipment is working, and reminded participants that their participation is voluntary

and that the session will be recorded for the sole purpose of transcribing the discussion. After

that, the participants were introduced to focus group goal, and were briefly presented with the

overall agenda.

This was followed by 45 minute presentation on REFRAME as a proposed solution, in

which the moderator covered essential aspects of both use and design/implementation of the

framework. Participants had no questions either during or after presentation, and they explicitly

confirmed that the presentation was clear and understandable.

After that, the moderator opened another presentation with the questions intended to drive

the discussion. During this part, the moderator first called out the individual participants as

a signal for him speak. However, soon this was not needed anymore, as it became evident

that participants have experience in online meetings and their technical limitations, and they

spontaneously discussed the topic one at the time. The moderator only called out the participant

in a discrete and subtle way, if the participant did not provide his opinion by himself. The

overall atmosphere was relaxed from the beginning, and there was no sign of hesitation from

the participants’ part. The discussion lasted total of 90 minutes, after which the moderator

thanked the participants, and kindly asked them to fill-out a simple questionnaire. The entire

204

focus group session went smoothly, with no communication or technical issues.

7.3.6. Data analysis

In order to perform data analysis, we used template analysis method, which was proposed

by King [87] for thematically analyzing qualitative data collected through interviews and focus

groups. The idea is to develop a coding template which represents a summary of meaningfully

organized themes that were identified as important by the researcher. This template is then used

to interpret qualitative data obtained by the focus group. Template analysis method prescribes

following steps: (1) Define a priori themes and codes, (2) transcribe focus group, (3) carry out

initial coding, (4) produce initial template, (5) develop your template, and (6) interpret data set

according to produced template.

As prescribed by template analysis method, we started by defining a small set of a priori

themes (step 1), which in our case represented high level categories of possible perceptions that

could be related to REFRAME usefulness. This initial set consisted of following themes: (1)

problem relevance, (2) positive impression, (3) negative impression and (4) framework evolu-

tion. The problem relevance intends to show perception of participants related to whether the

problem addressed by REFRAME is relevant or not. Surely, even the most technically advanced

and perfected software systems cannot boast about their usefulness if they address trivial, or

non-existent problem. The positive impression is high level theme which intends to encompass

all perceptions which view the REFRAME in a positive light, and thus possibly characterize it

as useful. In a similar way negative impression does this for all negative perceptions which can

possibly affect framework usefulness in an adverse manner. Negative impression theme may

represent also suggestions for performing corrective and perfective activities on framework,

such as improving the ease of use of existing features. Framework evolution theme, however,

represents those comments which contain adaptive suggestions for improvements which were

outside of the scope of initially proposed set of requirements, or features which were simply

too extensive to be covered in this phase of framework development. Not only these themes do

not necessarily bear negative connotation with regard to framework usefulness, but they often

indicate the capability of framework to be extended and be useful in additional ways. Finally,

both negative impression and framework evolution themes hold valuable ideas for overall im-

provement of the framework.

205

After defining a priori themes, we proceed to transcribe the audio/video recording of the dis-

cussion held in focus group (step 2). At first we considered using transcription tools, however,

in the end we performed transcription process manually. This was primarily because the discus-

sion was not especially long (90 minutes), and even the automatic transcription would require

re-watching entire discussion and proof-checking the generated content. It was our estimation

that the entire process would last roughly the same amount of time. A result of transcription

was 10-pages of textual content ready for analysis.

Table 17: Final version of template

Theme
1. Problem relevance
1.1. Problem presence

1.2. Problem complexity

2. Positive impression
2.1. General positive remark

2.2. Possible use case

2.3. Useful characteristic/feature

3. Negative impression
3.1. Feature needs improvement

3.2. Feature needs to be added

4. Framework evolution

The coding process (steps 3 to 5) involved several iterations of assigning theme codes, re-

reading transcription, and modifying codes. During initial coding, high-level a priori themes

were confirmed as appropriate, and entered initial template. After that, problem relevance,

positive impression and negative impression themes from initial template became theme cate-

gories, with their own lower level themes. It required several iterations of inserting, removing

and changing these lower level themes to finally have the final version of the template. This

template is then used for data interpretation and writing up the findings (step 6). These can be

found in the next subsection.

206

7.3.7. Results

Problem relevance

In order to infer about the problem relevance, we first searched for parts of conversation

in which participants showed whether they perceive the problem of managing reactive depen-

dencies as a real problem present in practice (problem presence). The two participants which

had an experience with working on KI Expert Plus application development immediately rec-

ognized this software application as a clear example of the problem. "KI Expert Plus is quite

specific because, you know, like 90% of things revolve around: you enter some data - some other

data changes." Besides that, participants did not experience the problem of managing reactive

dependencies at that scale. They tried, however, to think of possible domains in which that

problem could be present. For example, one participant made following observation: "Yes, we

had KI Expert Plus in which we had a lot of calculation procedures, however there is whole lot

of other domains rich with calculation procedures which could be implemented." In this context,

bookkeeping and student record keeping often done in spreadsheet software were mentioned as

possible domains with reactive dependencies. Other examples given by participants described

dependencies between business processes, microservices, data import, but we did not qualify

them as reactive dependencies.

Participants in general perceived the problem of managing reactive dependencies as quite

complex problem (problem complexity). They were also sure they never encountered as com-

plex example as the one presented in KI Expert Plus application. "I’m trying to remember

whether I needed something like that... But they were all simpler dependencies, which we

managed to handle using events, listeners..."; "I’m thinking, but, I too did not have a problem

with such extensive dependency graph". The participants also discussed underlying reasons

why handling reactive dependencies might be hard, and listed the very size and complexity of

dependency graph to be decisive factors. "I think if you accidentally fail to specify some depen-

dency in large graph it would be nearly impossible to find an error. You can debug application

for a three days until you finally find you are missing one dependency and this is why you are

getting wrong results."; "I think it depends on graph complexity. To certain degree you can

handle it manually, however after some point it becomes too large and then... you struggle."

207

Positive impression

Throughout discussion, participants frequently expressed positive impressions about the

REFRAME framework in a various way. Some of these impressions were general positive

statements in which participants pointed out that the framework would be useful in software

systems such as KI Expert Plus, or simply that they find some aspect of the framework as fine

and have no objections (general positive remark). "From the perspective of KI Expert Plus I

see it as a real lifesaver."; "... well, for KI Expert Plus it would really mean a lot."

Participants also acknowledged a number of specific use cases in which the framework

could be useful (possible use cases). For example, because it is a framework, and not a special-

purpose programming language, REFRAME was perceived as good for use in both new and

legacy systems. "I think a framework is a good way to go... it is easier to fit it into existing

project."; "... you can use it to refactor legacy solutions, but also to create new solutions from

scratch." Since the underlying model used in REFRAME is based on directed acyclic graph

(DAG), participants recognized potential use cases in systems which naturally represent their

dependencies in such way. They perceived REFRAME as useful in such cases, especially for

overall understanding of dependencies in graph, performing analyses and visualizations, and

debugging. "In reality, when you only have class diagram, it often is not enough, a lot of

details is left in developer’s mind. Here (in REFRAME) graph tells you everything that hap-

pens under to hood. It is also readable by non-developers... even the "layman" can read it."

Another interesting idea that came up while discussing possible use cases was to utilize meta-

data about reactive dependencies in terms of software testing, especially unit testing. Perhaps

graph data can be used to generate parts of testing code, generate list of test cases, or analyze

testing coverage. "Well, that could be possible (use REFRAME with the purpose of testing).

You know what are your inputs and outputs, and what to expect." In addition to REFRAME

as an instantiation artifact (framework implementation), the model artifact (framework design)

was also perceived as useful for framework re-implementation in alternative programming lan-

guages. However, discussion also brought up the question whether some design decisions and

mechanisms used in .NET implementation can be easily replicated in other languages. "These

diagrams (REFRAME model) are always useful. I for sure would not be trying to figure out all

from scratch."; "Yes the diagrams would make things easier, however particular programming

language (its characteristics and options) might make things harder."

208

Finally, with regard to positive impressions, participants identified several specific charac-

teristics and features of the framework as being useful (useful characteristic/features). The

most praised feature of the framework, repeatedly mentioned in different parts of the discussion,

was graph visualization. This does not come as a surprise, because as we previously showed,

it was the very size and complexity of graph that participants perceived as decisive factor in

making this problem hard to deal with. And visualizing complex structures is one of the best

way to aid their understanding. "In general, I find the graph suitable for visualization, its very

clear."; "The graph is self-explanatory, you don’t need to be an expert."; "In one of our company

projects we visualized processes and steps of one of our entities in a similar way. It was the

easiest way for both developers and the users."; "In my opinion this is one of the features that is

very clear and necessary. If you want to see detailed dependencies, it is much more useful than

associations between classes in UML class diagram." Of course, graph visualization offered

by REFRAME would not be possible if not for other, underlying features of the framework.

For example, without core part of the framework, which allows developers to specify reactive

dependencies, we would not even have anything to visualize. With regard to specifying reactive

dependencies, one of the features participants acknowledged as useful was fluent syntax. "Yes,

it is simple and easy to understand."; "I like how you can put dependencies in one method, and

have them in one place... I can quickly see how complex is that class in terms of reactive de-

pendencies." The participants also found code snippets as an appropriate way for generating the

code in charge of specifying reactive dependencies. "Well, doing stuff in GUI is slow. Whenever

you need to use mouse and click on things, its really slow. And code snippets is a common thing

in Visual Studio, it speeds things up." While core part of the framework makes visualization

possible, it is the filtering options offered by graph analysis features that increase the useful-

ness of graph visualization. From the discussion, it seemed that participants were very aware

of that. "To me it seems that (using graph analysis tool) we can reach all desired graph nodes

and visualizations. At this moment I wouldn’t say that any option is missing."; "Yes, there is a

bunch of options, everything is covered."; "At every moment you can see graph state, how much

nodes you have, and their values. It is easier to understand the results... before that, debugging

was harder. In any case I did not expect values were going to be displayed in real time." Due to

being a framework, participants perceived REFRAME as an extensible and customizable soft-

ware artifact, which is useful when you need to make adjustments to cover specific needs of

209

application domain. At the same time, the participants saw the framework as a more concrete

and immediately applicable software artifact, unlike some more abstract techniques (such as

design patterns). "I see design patterns as something that is fairly abstract, there is a lot of

implementation involved before you have something concrete from that... DSLs are good if you

create the solution from scratch, and it is questionable how much customization you can do.

But in this way, with framework, you are flexible."; "I think it is good that the framework has a

lot of extension points, because you never what extensions are going to be needed."

Negative impression

Besides positive comments about the framework usefulness, participants raised several con-

cerns about certain existing features, as well as about features that are lacking. We argue,

however, that these "negative impressions" do not diminish the usefulness of the framework in

a significant way. In most cases these are minor issues which when resolved would improve

the ease of use of the framework. Also, most of the features that participants initially requested

to be added, were actually found to already be possible as a combination of existing features.

This, in fact, stands as a testament of framework’s extensibility and completeness.

With the respect to features that were identified as the ones needing improvement (feature

needs improvement), we start with the core part of the framework. During the discussion,

some participants were rethinking the way reactive dependencies are specified and update pro-

cess triggered. For example, one participant raised the question whether it would be better to

keep reactive dependency specifications separately from the code (e.g. in json files). "... maybe

it would be good to use some kind of configurations for specifying reactive dependencies, and

keep them somewhere outside of the code in a form of annotations, json..." While this proposal

aims at making code generation easier, making this possible would be very hard as the reactive

dependencies are formed at runtime, and are bound to particular runtime objects and values. An-

other participant made similar proposal by wondering whether the code for triggering updates

(reactor.Update(this)) can be replaced by annotations. The problem again, is that annotations

are static (bound to a class) features, and the annotation specification would not contain any

less amount of code than the current way of triggering updates. The syntax simplification of

Let->Depend command was also suggested. "I don’t know if there is a way to avoid using these

brackets... with that we could perhaps avoid the need for code snippets." This suggestion is

being seriously considered and different ways of simplifying the syntax are being looked for,

210

however limitations of the host programming language currently do not allow this particular im-

provement. Finally, the suggestion came for better support for circular dependencies. "With the

framework you only aim at implementing dependencies such that there is an input and a final

output. However, sometimes these go into circles... inputs are also outputs, e.g. in animations."

This is a valid point, as currently, circular dependencies are recognized by the framework, and

the developer is only warned about them. One of the future, priority improvements will def-

initely go in direction of enabling framework to perform update even if circular dependencies

exist.

In addition to suggested improvements in the context of core framework features, there were

also some remarks with regard to framework tools. For example, some participants found the

listing of reactive nodes in a table form (within Analyzer tool) as somewhat cumbersome and

not very clear. "Tables in Analyzer which show the list of nodes are not clear. They are good

when you know exactly what you are looking for, but examining dependencies in this way is very

hard." Although the Visualizer tool is aimed at solving this problem, this is still a valid point,

and improvements in this regard are planned in the future. Also, suggestion came to better

integrate the Analyzer and Visualizer tool. "One thing for improvement of user experience is

that everything becomes the part of the same interactive user interface." This is another valid

point, however, as we previously mentioned, we still have not been able to find a good-quality

open-source .NET component for graph display.

All of the features that were suggested to be added to a framework referred to options in

Analyzer and Visualizer tools (feature needs to be added). For example, participants found

following features necessary: automatic graph layouts, interactive graph with zoom in/out op-

tions, showing graph update paths, graph node coloring, and graph node grouping. As previ-

ously indicated, during discussion it turned out that all of these features (with the exception of

graph coloring) were in fact already present, and the user simply needs to chose right combina-

tion of options available in Analyzer and Visualizer tools. However, further discussion revealed

that while there is huge number of options and their combinations, users will usually be using

only a small number of them. Therefore, a suggestion was placed to make these commonly

used features more accessible by creating an options shortcut system in REFRAME tools. This

system would offer: (1) predefined list of useful option combinations, (2) list of option combi-

nations frequently used by the user, and (3) list of custom option combinations created by the

211

user. Along with graph coloring feature, options shortcut system was also added to a priority

list of future developments.

Framework evolution

Framework evolution theme encompass suggestions for extending and upgrading the frame-

work in a way which was outside of the planned scope of the dissertation. However, these

suggestions hold valuable ideas for future developments. Most of the suggestions went in the

direction of supporting multiple platforms and multiple programming languages. "One of the

limitations is support for only .NET platform."; "Core part of the framework, as well as Visu-

alizer and Analyzer tools should be implemented in more programming languages and support

more platforms." While supporting other programming languages is currently not planned in a

near future, there is a plan to implement a .NET Core version of the framework, which would

make the framework cross-platform (Windows, Linux, MacOS).

One of the suggestions was also about support for debugging of reactive dependencies. "I

think it would be easier if we could analyze nodes also in terms of debugging...". This is an

interesting suggestion, as some of the scientific efforts in the field of reactive programming

are directed towards developing better debugging support. Also, if we recall from the previous

chapter, one of the solutions for accessing runtime state of end-user application that we con-

sidered was debugger. Therefore, this suggestions is definitely the one to seriously consider

dealing with in a near future, as it holds potential for both practical and scientific contributions.

The next suggestion that also has a scientific potential is using UML diagrams as an alternative

way to visualize reactive dependencies, or some aspect of them. In addition to analyzing exist-

ing UML diagrams and seeing which of them could be useful for representing characteristics

of reactive dependencies, one possible research direction would be to develop UML profile for

reactive dependencies.

The last two suggestions were related to utilizing framework capabilities in terms of gener-

ating tests and documentation for end-user application. "... because you know what your inputs

are, and also what you expect. So it would be good to have covered certain scenarios with

unit tests."; "Perhaps i would not be bad if we could generate some part of documentation, be-

cause the framework knows methods in which the processing takes place, as well as attributes

used." Both of these suggestions are very interesting, and are taken into consideration for future

development.

212

7.4. Episode IV - Technical action research

Observational research methods demand from researcher to refrain from interaction with the

object under study, thus making the researcher a passive observer. As opposed to that, action

research necessarily requires intervention in order to not only gain knowledge, but also to im-

prove the state of the "world". This makes action research compatible with the problem-solving

nature of the design science itself. Traditional action research is problem-driven, which means

that the researcher teams with the client to solve a practical problem relevant to that client, as

well as to devise new knowledge during that process. Technical action research (TAR), on the

other hand is artifact-driven, i.e. it uses artifact to help a client with some particular problem,

and during that process evaluates the artifact itself and learns about its effects in practice. In-

deed, Wieringa and Morali [157] present TAR as one of the methods for evaluation of artifacts

created through design science.

TAR can be seen as one of the last steps in the process of transferring the artifact from

idealized conditions in laboratory to realistic conditions in practice [158]. This view is directly

reflected in our evaluation strategy (see Figure 9), which starts with pure artificial evaluation

episodes (I and II), continues with episode III (focus group) with a touch of reality in a form

of external participants, and finally scales up to more realistic conditions (real users and real

problems) in episode IV (TAR).

According to Wieringa and Morali [158], during TAR we can differentiate three cycles, in

all of which the researcher plays distinct and separate role. In the first cycle, called design

cycle, the researcher takes part in designing and developing an artifact aimed at improving the

class of problems. In addition to building artifact, evaluation of artifact in laboratory setting

is also done here. In this dissertation, design cycle would correspond to the overall 5-activity

design science process. In the second cycle, called empirical research cycle, researcher aims

at answering knowledge questions about the artifact’s interaction with the problem context. In

this dissertation, empirical research cycle corresponds to designing technical action research in

evaluation episode IV. Finally, in third cycle, called client cycle, the researcher uses artifact to

improve a particular problem for particular client. In this dissertation, this corresponds to the

very execution of TAR designed in episode IV.

In the remainder of this section, we describe the process of conducting TAR research (em-

213

pirical and client cycle) guided by the checklist from [158], and present the obtained results.

7.4.1. Research context

The first thing we want to define when designing TAR is the knowledge goal to be achieve

by conducting TAR. Knowledge goal defines what we want to know about the treatment, i.e.

what exactly about the artifact we want to validate by placing it into a problem context. In

this particular TAR we specify the following knowledge goal: To investigate whether the RE-

FRAME application framework, as a newly designed design science artifact, is perceived as

useful in practice by potential users. Aside from knowledge goal, TAR also requires stating the

improvement goal, which is none other than the goal of the treatment, i.e. designed artifact.

Therefore, we reiterate the goal of REFRAME as improvement goal: Improve and facilitate the

management of reactive dependencies in object-oriented applications.

Finally, describing TAR’s context necessarily includes stating the current knowledge about

the artifact and its use. Since this TAR is an inner engineering cycle within higher-level cy-

cle (design science project), current knowledge is already stated in previous chapters. This

includes thorough literature review, structural and behavioral characteristics of designed and

developed artifact, and feedback obtained from the first three evaluation episodes. In first eval-

uation episode individual aspects of artifact are tested, in the second one the basic features are

demonstrated on illustrative scenarios, and finally feedback on potential usefulness of artifact is

obtained in third episode. Here we also take account of researcher’s own experience and knowl-

edge obtained while being involved in development of real object-oriented software application

with large and complex reactive dependency graph.

7.4.2. Research problem

When defining research problem TAR demands conceptual framework of the artifact to be

stated. Conceptual framework can be described as a set of definitions of concepts [158]. These

concepts correspond to notion of constructs in design science, which are used to specify and

communicate artifact’s structure, surrounding environment and interactions, as well as related

research questions. Constructs from artifact’s conceptual framework are formally defined and

mutually associated in chapter 5, and include: reactive node, reactive dependency, dependency

graph, update process, etc.

214

Knowledge questions are validation questions which ask about effects of transferring arti-

fact into a real world. Since TAR is a lower-level cycle conducted within design science project,

its knowledge question corresponds to evaluation of usefulness evaluation property as defined

in design science project. Therefore, the knowledge question can be reiterated as design sci-

ence research question RQ6: How does the use of REFRAME affect the management of reactive

dependencies in development of object-oriented applications?

Population of interest in TAR can be described as a combination of artifact (or artifact vari-

ants) and the contexts in which the artifact is used. We define our population as any individual

programmer, team or a company which would use REFRAME (as is or customized) to handle

complex dependency graphs when developing object-oriented applications.

7.4.3. Research design and validation

Objects of study

After we defined the population of interest, we need to acquire particular elements of the

population to be our objects of study. An object of study is a particular context in which

the artifact will be used, i.e. the client to which we apply REFRAME during the client cycle

of TAR. REFRAME software framework will be applied within the project of developing KI

Expert Plus, which is a real software application continuously developed and maintained for

15 years by the team from Faculty of Organization and Informatics, Varaždin in cooperation

with the company Knauf Insulation Ltd. and other experts from the field of construction and

mechanical engineering. KI Expert Plus is one of the official software applications which are

used by hundreds of professionals in Croatia and Bosnia and Herzegovina for designing energy

characteristics of buildings and their technical systems.

In order to acquire the client and perform successful TAR, there has to be a mutual trust

between the researcher and a client, which often needs years to develop. In our case, the re-

searcher was involved in the development of aforementioned software applications for many

years, so there was mutual trust between all TAR participants. Also, the researcher did not only

have the knowledge of the project’s development process and software artifacts, but he also had

access to code repositories and other required resources.

REFRAME framework had not been in any way customized to be used in KI Expert Plus

application. This is because REFRAME is in its early versions, and besides evaluation of use-

215

fulness, it is intention of this TAR to provide feedback on both general and KI Expert Plus

specific requirements for improvements and adjustments.

One of the potential threats to generalization of TAR’s results happens when the researcher

who developed the artifact is also the one who is applying the artifact in the client cycle. This

is because the researcher, due to its knowledge and expertise, may be using the artifact in a

way no other person could. Since we did not want to loose researcher’s own observations on

using REFRAME, but we also wanted to address this threat, in addition to researcher two more

KI Expert+ members were chosen to participate in TAR. The second important threat is with

regard to other TAR participants giving feedback in a socially desirable way, in order to please

or support the researcher. In an attempt to mitigate this threat, instead of choosing currently

active KI Expert Plus team members, we chose the former project members to participate. This

still provided us with participants acquainted with the project, but at the same time decreased

the chance of participants being obligated to provide desirable opinions. That being said, there

are threats to generalization that are still valid, such as the fact that TAR was applied on only one

client/project, and also that the researcher itself was the one that interpreted obtained feedback.

Sampling

During TAR, two client cycles were performed on KI Expert Plus application. In the first

client cycle, the researcher himself replaced existing mechanism for handling reactive depen-

dencies with REFRAME in one of the KI Expert Plus modules. In addition to previously stated

knowledge goal, this cycle also aimed at: (1) gaining working knowledge and experience with

REFRAME, (2) refining resources and teaching materials for the second client cycle, and (3)

discovering critical shortcomings or bugs and resolving them before second client cycle. In

the second client cycle, two of the former KI Expert Plus team members were each assigned

with one existing software module, in which they replaced old mechanism for handling reactive

dependencies with REFRAME.

TAR client cycles were conducted with the help of former KI Expert Plus members, who

performed their assigned tasks on a separate development branch. Therefore, there was no real

risk to the usual ongoing activities of the KI Expert Plus project, regardless of the outcome of

TAR. However, in case REFRAME proved to be useful artifact, there would be a potential to

improve both the development process as well as the KI Expert Plus product. That being said,

from the perspective of KI Expert Plus project, taking part in TAR could only be beneficial.

216

From the perspective of TAR, the participation of KI Expert Plus was important because this

was a good and a real case of object-oriented software with numerous reactive dependencies

forming complex graphs. Not only was the KI Expert Plus application relevant in this aspect,

but it strongly emphasized the characteristics of the population of software applications we

wanted to generalize over. However, we could argue that this application represent an upper

borderline example from the perspective of dependency graph complexity. For more complex

applications in this sense, instead of REFRAME, recommended solutions would probably be

in the sphere of specialized programming languages outside of OO paradigm. On the other

extreme, in software application with very simple dependency graphs, using REFRAME could

be considered as overkill (although the framework itself is fairly unobtrusive). In addition to

KI Expert Plus being a representative sample for target population of software application,

all client cycle participants (see Table 18) are software developers which allows us to make

required generalizations.

Table 18: TAR client cycle participants

Participant Qualifications
Researcher He graduated at Faculty of Organization and Informatics, and is cur-

rently pursuing a PhD. He works as a teaching assistant at the same fac-

ulty on courses related to software engineering. His research interests

are also directed towards software development in general, especially

software reuse techniques such as frameworks and design patterns. For

past more than ten years, the researcher was continuously and actively

involved in development of various software systems, including KI Ex-

pert Plus.

Developer 1 He holds a master degree in Databases and Knowledge Bases at Faculty

of Organization and Informatics. For the past seven years he worked as

software developer in multiple companies and organizations, such as:

Evolva d.o.o., Faculty of Organization and Informatics, and Mobilisis

d.o.o. He was also involved in development of KI Expert Plus appli-

cation. Currently, he holds the position of Senior .NET Engineer at

Mobilisis d.o.o.

Developer 2 He holds a master degree in Information and Software Engineering at

Faculty of Organization and Informatics. During his master degree stud-

ies he was involved in different software development projects, includ-

ing the project of developing KI Expert Plus software application. He

currently holds the position of Hybris Java Developer in ecx.io Croatia

d.o.o. where he works for the past five years.

217

Treatment design

The problem of KI Expert Plus software application development includes complex and

dynamic domains of construction, engineering, thermodynamics and energy efficiency, which

results in great number of domain concepts and mutually dependent calculations. These mu-

tual dependencies are implemented in a form of event-delegate mechanism based on Observer

design pattern. Managing these dependencies in such way proved to be extremely demanding,

error-prone and hard to comprehend.

Given the problems in development of KI Expert Plus software provided initial motivation

for this research, REFRAME’s characteristics largely coincide with the needs of KI Expert

Plus. Thus, the artifact itself was not customized in any way for the purpose of performing

this TAR. However, some alterations were made to KI Expert Plus application. For example,

application was stripped from several modules which were not necessary for the module TAR

participants were assigned with. This was done in order to avoid distributing entire application

code to external parties, but also to avoid unnecessary compilation and loading large number

of modules. In addition, since the modules chosen for TAR were legacy modules, some code

refactoring was done in order to equate design and coding style with the more recent modules.

This was one of the additional benefits KI Expert+ project received from participation in TAR.

Prior to performing client cycle (applying REFRAME), the researcher prepared necessary

resources and teaching materials. These included: (1) GitHub repository for each TAR par-

ticipant, which contained KI Expert Plus application code (including assigned module); (2)

archive (.zip) file containing all REFRAME elements (.dll components, Reframe Tool, code

snipets, and brief instructions for use); (3) introductory presentation; (4) 30-minute video in-

structions on how to start using REFRAME with KI Expert Plus. Participants were required to

have Visual Studio Community installed (free version) and GitHub account made. Other than

their personal computers, no hardware equipment was required.

Since the artifact was experimental, not yet tested in realistic setting, a plan was made for

researcher to use REFRAME in one KI Expert Plus module as a part of first client cycle. After

that, any critical shortcomings that appeared would be addressed before moving on to the second

client cycle. Duration of the first cycle (not including corrective activities on REFRAME and

refinement of materials) was estimated at one week.

In the second cycle, with two remaining TAR participants it was agreed to try-out RE-

218

FRAME by each participant using it in one KI Expert Plus module. Duration of the second

cycle was (together with participants) estimated at 3 weeks, taking care not to overload the par-

ticipants and make their usual responsibilities suffer. The second cycle begins with 60-minute

presentation in which participants will be familiarized with the underlying research problem,

REFRAME as an offered solution, their tasks, and other general information about participa-

tion in TAR. After presentation, participants will be given tasks, as well as necessary resources

and materials. Also, when requested by participants, multiple meetings and possibly pair pro-

gramming sessions were planned to be held in order to help them learn the framework and

resolve potential issues.

Measurement design

In the first client cycle, during which the researcher himself applies the treatment, the re-

searcher will keep a log about his own experience on using REFRAME. Together with code

repositories of KI Expert Plus modules implemented using REFRAME, researcher’s log will

provide a valuable source of information for further discussion of framework’s usefulness. Since

the researcher himself is in charge of it, this cycle will offer only discussion points, without

making definitive judgments about the usefulness of the framework.

In the second client cycle, researcher will continuously be in touch with other two partici-

pants, either through online meetings or peer programming sessions, and will also keep a log

of notable topics that arise in these interactions. At the end of the second client cycle, the re-

searcher will conduct a 30-minute open-ended interview with each of the two other participants,

in which he will gather their experiences and impressions on using REFRAME. This will pro-

vide us valuable information not only about the usefulness of the framework, but also about

possible improvements and future developments.

The interview will be guided by a set of predefined questions which are aimed at motivating

participant to express his thoughts and experiences with REFRAME, as well as ideas for future

development. However, the interview will not be constrained by these questions, and both

researcher and participant will be allowed to address other concerns that may arise during the

interview.

219

Table 19: TAR interview questions

Question
1. How hard was for you to initially set-up the framework for use in end-user application?

Is the required effort appropriate?

2. How useful to you was the core part of the framework in terms of specifying individual

reactive dependencies, forming dependency graph and keeping graph updated?

3. Were APIs of the core part of the framework easy to understand and use?

4. Did you find any aspect of core part of the framework as inadequate or missing?

5. What would you suggest for improving or extending the core part of the framework?

6. How useful for you was the Analyzer tool in terms of helping you understand depen-

dency graphs?

7. Was Analyzer tool easy to use?

8. Did you find any aspect of the Analyzer tool as inadequate or missing?

9. What would you suggest for improving or extending the Analyzer tool?

10. How useful for you was the Visualizer tool in terms of helping you understand depen-

dency graphs?

11. Was Visualizer easy to use?

12. Did you find any aspect of Visualizer tool as inadequate or missing?

13. What would you suggest for improving or extending the Visualizer tool?

14. How useful for you were code generation capabilities offered by the framework (code

snippets)?

15. Was code generation easy to use?

16. Did you find any aspect of code generation as inadequate or missing?

17. What would you suggest for improving or extending code generation capabilities of

the framework?

Inference design

Inference in TAR will be conducted according to descriptive inference method, similar as

it has been done in episode III. It starts with data preparation step, which includes transcrip-

tion of audio/video recording of interview with two developers after they implement requested

modules. After that, in data interpretation step, transcribed text is going to be interpreted using

template analysis, in the same way it has been done in episode III. In addition to transcribed text

analyzed using template analysis, we will also examine other data source for potentially useful

information, such as: personal notes of the researcher, log from source code repository, and the

source code itself.

220

7.4.4. Research execution

After the extensive testing of the framework which is conducted in evaluation episode II, we

started with the first TAR client cycle from episode IV in parallel with episode III. As planned

and explained in TAR research design, this cycle was performed by the researcher itself with

the goal of testing REFRAME on a real life application and preparing resources for the second

client cycle. In order to do this, in one of the modules of KI Expert Plus, the researcher replaced

the event-delegate mechanisms used for managing reactive dependencies with the mechanisms

offered by REFRAME. This involved performing several technical tasks, including: prepara-

tion of stripped down KI Expert Plus application, matching REFRAME and KI Expert Plus

versions, setting up version control repositories, building a deployable REFRAME, etc. During

the implementation itself, the researcher kept notes about required steps and other important in-

sights that would be valuable for preparing the second client cycle. The first cycle also revealed

a few bugs and necessary adjustments, which were not obvious in previously limited use, or

were simply result of switching to production environment.

After resolving identified shortcomings, and refining the documentation and teaching mate-

rials, the second client cycle was able to begin. First, an 60 minute online meeting using Skype

platform was organized, and the two developers were briefed about the problem of managing

reactive dependencies, proposed solution, and the nature of their involvement in the context of

TAR. The meeting was recorded to serve as a part of overall documentation. After the meet-

ing, developers were sent the remaining of the required resources: (1) link to their own GitHub

repository containing the code of KI Expert Plus application, (2) the sample KI Expert Plus

project, (3) 30-minute video tutorial for using REFRAME, and (4) documentation for the KI

Expert Plus module that developers need to implement.

Participants were initially given 3 weeks to accomplish the assignment, however, due to their

personal and professional obligations, this was prolonged to 5 weeks. During this time, partici-

pants and the researcher had multiple online interactions, sometimes initiated by the participants

and sometimes by the researcher. In these interactions, the participants usually requested clar-

ifications or help with some particular issue, and briefed the researcher about their progress.

Since two participants had different modules to implement, and their dynamic of working on

this task was different, they did not finish at the same time. Therefore, an interview with the

participant who finished first was conducted, and the collected data from this interview was

221

used to draft preliminary themes for the template analysis. After the second participant finished

his assignment, the interview with him was conducted, and we were able to fully proceed to the

next step - data analysis.

The interviews themselves were conducted in an online environment (using Skype plat-

form), as per recommendations related to behaving during Coronavirus (SARS-CoV-2) out-

break. However, this posed no problem as all involved participants were frequent users of online

meeting and collaboration tools. Before officially starting the interview, participants were no-

tified that the session will be recorder for the sole purpose of transcribing the interview. While

being focused on its goal, interviews were conducted in an informal and relaxed atmosphere.

Both participants looked comfortable answering the motivational questions, and often, on their

own initiative, jumped back and forth between the questions when they remembered something

important. The questions were deliberately formulated and asked in a way to allow them to

express their hones opinion, without feeling that there are things they are allowed to say, and

some other things they are not. Both participants showed no hesitance in their answers, even

the ones containing critique.

7.4.5. Data analysis

In previous evaluation episode (III) participants were asked to evaluate the framework based

on researcher’s demonstration of the problem and REFRAME as a solution. Although their

opinions were informed ones, they were for the most part theoretical, as they did not have

practical experience with the framework. Contrary, in this evaluation episode (IV) participants

were given a task to use REFRAME, therefore, their evaluation was focused on a solution and it

was based on practical experience. Aside from these differences, evaluation episode III and IV

have a lot of in common, especially in terms of data analysis. Both evaluation episodes have the

same goal, and they use similar methods (group discussion and interview) to collect opinions

from participants. The consequence of this is that both evaluation episodes result in qualitative

data of similar structure and meaning. This allowed us to again perform data analysis using

template analysis method [87] by following 6 steps: (1) Define a priori themes and codes, (2)

transcribe focus group, (3) carry out initial coding, (4) produce initial template, (5) develop

your template, and (6) interpret data set according to produced template.

During the step 1, instead of inventing a priori themes from scratch, we reused themes from

222

focus group. We left out, however, problem relevance theme, because interviews in this evalua-

tion episode were entirely focused on a solution. Therefore, set of a priori themes consisted of:

(1) positive impression, (2) negative impression, and (3) framework evolution. Chosen themes

retained their original meaning set out in the previous episode. Positive impression encom-

passes all perceptions which directly or indirectly characterize REFAME as useful. In a similar

way negative impression classifies perceptions which could oppose REFRAME’s usefulness.

Finally, framework evolution represented those statements which suggest useful improvements

which were not planned for this phase.

After we defined a priori themes, we proceed to step 2 and transcribed TAR interviews.

The duration of each of the two interviews was approximately 40 minutes, therefore total of 80

minutes were manually transcribed. This resulted in 7 pages of relevant textual content ready

for further analysis.

Table 20: Final version of template

Theme
1. Positive impression
1.1. General

1.2. Initial setup

1.3. REFRAME Core

1.4. Analyzer

1.5. Visualizer

1.6. Generator

2. Negative impression
2.1. REFRAME Core

2.2. Analyzer

2.3. Visualizer

3. Framework evolution
3.1. General

3.2. REFRAME Core

3.3. Analyzer

3.4. Generator

Initial coding (step 3) confirmed a priori themes as suitable and they entered initial template as

theme categories (step 4). The comments within these categories were further assorted (step 5)

with regard to the part of the framework they referred to, i.e. REFRAME Core, Analyzer, Visu-

alizer, and Generator. The underlying idea was to be able to discern contribution (as perceived

223

by users) of each major framework part in the overall usefulness of the framework. However,

since not all comments fit these themes, a new, General theme was introduced. Finally, in the

next iteration, few of these General comments were assigned with Initial setup theme, as they

explained how participants viewed the process of initially setting up and configuring the frame-

work. The final template was then used for data interpretation and writing up the findings (step

6).

Positive impression

Although we restrain ourselves from making quantitative claims while analyzing qualitative

data, it is necessary to say that both interviews resonated in a positive way with regard to RE-

FRAME. This was not only reflected in the amount of positive comments, and the points these

comments were trying to make, but also with general attitude and nonverbal communication.

When asked about usefulness of the framework in general, with taking into consideration

their previous experience in managing reactive dependencies using events in KI Expert Plus

application, both participants resolutely expressed satisfaction with REFRAME in this regard.

"Developer 1: Using REFRAME on such large systems definitively makes sense. With events it

is easy to get lost... you have to go through a lot of code to find what you need."; "Developer 2:

Using it in our case, I think the improvements would be manifold: it would be easier to write a

code, one would produce less bugs, GUI refresh happens only once, it is easier to debug..."

With respect to more specific topics, the interview started of with discussing how hard was

to install and make initial setup of the framework. This was important to address, as the

framework itself may be useful, but very complex installation and setup can dissuade potential

users from giving it a chance. However, participants were again clear in stating they had no

problems whatsoever in making REFRAME and its accompanying tools work. This can be

attributed partly to fairly simple setup procedure, but also to clear video instructions participants

received. "Developer 2: Well it was quite simple to put this together in terms of framework...

just had to add dlls to project, and that was it. Also running the tools worked the same way,

without any additional configurations... I just needed to run the tool."; "Developer 1: It was as

simple as it can be, fetch dlls, reference them... I don’t think it goes simpler than that. Without

instructions I would not be able to run tools, but with instructions I did it all in my first try."

After discussing initial setup of the framework, we proceeded to address the essential and

the most important part of the framework - the features of REFRAME Core. The participants

224

recognized a lot of benefits these features bring to a table. For example, the fact that REFRAME

handles what has to be updated and in which order, was very appreciated. "Developer 1: So,

that core part is definitively an improvement over what we were using so far (.NET events). It is

evident that the core part takes care of updating the right thing at the right time."; Furthermore,

the option to keep the code in charge of specifying reactive dependencies at one place in class

was also well received. This makes sense as it prevents code scattering, and also makes reactive

dependencies more readable and understandable from the code itself. "Developer 2: To me,

the core part was useful because I could add most of the code related to managing reactive

dependencies in one method... I could easily examine the class and see if I specified reactive

dependencies correctly... There is no scrolling and searching, one method contains 90% of

important information for this class.". The core part of the framework also helped participants

to reduce the time required for managing reactive dependencies, and also to increase the quality

of code. "Developer 1: With regard to the time required to make code react to changes, I think

we spent more time with our old way of doing that... this includes also more time for testing and

debugging. With REFRAME, however, I specified reactive dependencies, and made the changes

reflect in GUI, and that was all, it worked! All in all, it was easy to use, it was intuitive, and

it resulted in more stable code." The final thing participants explicitly acknowledged related to

REFRAME Core, was the straightforward way in which e.g. GUI can track changes resulted

from update process. "Developer 1: I think that this UpdateCompleted event is definitely worth

to have, because you want to be notified when that happens. Because, one of the things that

was bothering us before, in old system, was that events were triggered multiple times, and every

time the GUI was refreshing, and that often caused application to stop responding."

While Analyzer tool is extremely important, as it allow us to reduce the number of nodes

and focus only on particular part of the graph, it seems that participants saw it as a sort of pre-

step to Visualizer tool, rather than a separate, standalone tool. This might be the case because

Visualizer always takes input from the Analyzer and is in fact run from the Analyzer. Also, it

was evident that participants favored more the visual representation in a form of graph, rather

then in a form of nodes listed in a table. However, in general, the participants acknowledged the

role of Analyzer in the toolset. "Developer 1: The Visualizer in a combination with Analyzer

and its filtering capabilities... it is powerful stuff. Especially when you have such a complex

software."; "Developer 2: I managed to find my way around Analyzer... the tool pretty much

225

delivers what it needs to deliver. I don’t see that anything is missing." Aside from these gen-

eral remarks, participants also mentioned some specific options that were useful to them, for

example node sorting. "Developer 2: It was nice to be able to sort graph nodes in a table, for

example alphabetically, to quickly find my way around a bunch of nodes."; Also, during a more

in-depth discussion about mechanics and filtering capabilities of Analyzer tool, developers ex-

pressed their awe in what actually Analyzer can do. "Developer 2: If it is, as you say, possible

to list even the instances of some particular class, and I can choose what exact instance I want

to focus on,... then, that is really awesome."

As already mentioned, Visualizer was the tool which was most attractive to participants.

When asked about it, participants were very clear that Visualizer was very useful, and they im-

mediately offered a concrete example. "Developer 1: Well, it was quite useful. After I specified

reactive dependencies, I couldn’t wait to run Analyzer and Visualizer, and see what actually

happened behind the scenes. I mean, it provides additional insight into a situation... that is the

best thing for me. And also, it is nicely presented in a visual sense, you can zoom in, zoom out,

reposition nodes..."; "Developer 2: When I was trying out the Analyzer, I wanted to see what

are inputs and what are outputs. And not until I went to visualize it did I understand that three

classes from my example have the same final outputs... This was not evident before because the

classes had the same parent class." One of the participants raised a question whether the visual-

ized graphs can be saved for future use, and was pleased to see that they can be saved, and also

manually altered. Finally, the participants expressed no major problems in using Visualizer, and

they found its current features to be adequate. "Developer 2: Yeah, with Visual Studio the graph

was visualized with no problems..."; "Developer 1: I don’t see that there should be anything

different here."

Finally, participants also found a code Generator to be useful and easy to use tool. "Devel-

oper 1: Code snippets were very useful. I mean, the clipboard is always an alternative, but I

would rather use code snippets. And I use them on a daily basis. The code snippet Let->Depend

is definitively useful, especially because you can use TAB key to walk from one property to an-

other. Without further ado, that is very useful."; "Developer 2: Well, they definitively make code

writing faster, they are useful. I have a habit of copying line of code and then changing parts of

it... but, this is faster. And they also reduce the possibility of making type errors. They are not

hard to add, so if there is a line of code which is frequently written, then it makes sense to use

226

them."

Negative impression

During interviews participants raised several concerns related to framework use or its fea-

tures, and made comments which represent a direct or indirect critique. We have taken these

concerns and critiques very seriously, and some are going to be addressed in the framework’s

next release. However, with some of them we are unfortunately constrained with technological

limitations. Nonetheless, we argue that raised concerns are not severe to the point that they

would annul the usefulness of the framework. Even the participants themselves often empha-

sized that.

With regard to REFRAME Core features, the thing that participants found the most prob-

lematic is the fact that despite many improvements framework offered, they still had to write

certain amount of code to specify reactive dependencies and trigger update process. "Developer

2: I was a bit disappointed with C# syntax, as it did not offer a more readable solution for spec-

ifying reactive dependencies, so there would be no brackets in Let->Depend statements. But I

understand this is more the limitation of programming language, and less of the framework." As

the participant correctly noticed, this was the only syntax in host programming language which

allowed us to pass both owner object and the property as one code element. Considering how

much is accomplished by Let->Depend statement, we find this to be acceptable trade-off. "De-

veloper 1: It is true that there is some manual work to be done until you write these lines of code,

but there is no silver bullet, you have to define reactive dependencies somehow." Again, we did

consider alternative ways for specifying reactive dependencies, including doing that through

GUI. However, this did not turn out to be any less time consuming, and it was definitely less

flexible. "Developer 1: You know that part when you have to manually invoke update process in

input properties... well it would be great if this would not be necessary, but its not too much of

a problem." While this critique is perfectly valid, we were unable to avoid these lines of code.

During framework development we tried several approaches, however, concerns arose regard-

ing framework performance. That being said, we still are actively searching for a solution to

this. "Developer 1: Also, it would be great if we would not have to manually invoke refreshing

of graphical interface when the update process is completed. I don’t know if that is possible?"

This can in part be done using the binding capabilities of .NET UI controls. However, we

still need to bind certain control with e.g. property it represents. Doing that either through a

227

graphical user interface or programmatically is not particularly easier than just responding to

REFRAME’s UpdateCompleted event. Also, not all UI controls are bindable, so there has to

be a convenient way to manually signal GUI to refresh itself. Another critique that could be

read from participants’ responses was the fact that prior to using framework one needs to con-

sult instructions and documentation. On one hand, this critique is understandable because, it

is known that developers are not fond of studying the documentation, and like to jump right in

and start using the framework. "Developer 2: Well, if I went and started using the framework,

as I usually do, without reading the documentation, I would probably need some time to think

things through." However, as much as we try to hide complexity of the framework and make its

use straightforward, there is always a learning curve. In our case, watching 30 minute demon-

stration video provided enough information for participants to accomplish their task. We argue

this to be reasonable amount of time required to be acquainted with some framework.

A dominant issue related to Analyzer which was revealed during interviews, was the fact

that participants only in part acknowledged the importance and capabilities of Analyzer. There

are several reasons for this. First of all, the Analyzer indeed has large number of available

options and combinations of these options, which makes it hard to understand. Participants

recognized that, and suggested these options to be better organized and documented in order to

make them easier to understand. "Developer 1: I suggest Analyzer’s GUI to be improved, to

reduce the number of windows popping up. Also, it would be useful to have a help documenta-

tion, because it is not easy to understand what each of the numerous options represent." This

is certainly a valid critique, therefore GUI usability improvements, as well as additional user

documentation is planned for the next release. One of the things that was also clearly evident

was the fact that participants favored the visual graph representation, rather than tabular view

of graph nodes offered by Analyzer, and thus were more focused on Visualizer. "Developer 1:

I didn’t use Analyzer too much, I was more interested in graph visualization. That was enough

for me." ; "Developer 2: When I was trying out the Analyzer, I wanted to see what are inputs and

what are outputs. And not until I went to visualize it did I understand that three classes from my

example have the same final outputs... This was not evident before because the classes had the

same parent class." Although the exact purpose of Visualizer was to provide visual experience

which Analyzer simply could not, aforementioned GUI improvements and better documenta-

tion should make Analyzer more attractive to users. Finally, one of the participants reported

228

minor bug related to filtering options not being automatically refreshed in certain cases. This

was also put to a list of issues to be solved for the next release.

Finally, with regard to Visualizer, participants had no particular concerns other than report-

ing a minor bug which caused wrong name of a node group to be displayed. This issue is also

set to be resolved for the next release.

Framework evolution

As opposed to negative impression, this theme describes suggestions for improvement which

were not motivated by raised concerns or identified deficiencies. Rather, these suggestions were

result of brainstorming process intended to generate ideas which would improve and extend the

framework outside of its current boundaries. In order to do this, participants were encouraged

to be open to new ideas and views, and even throw wild guesses. As a consequence, not all

of the suggestions are applicable. For example, in the context of REFRAME Core, one of

the participants suggested reactive dependencies to be specified between class-member pairs,

rather then between object-member pairs. "Developer 2: We are currently specifying reactive

dependency by pairing the property of one object with the property of another object. Maybe

these dependencies could be defined in a way to not depend on the instance, but on the class."

The participant and the researcher engaged in discussion in which it became apparent that this

would not produce desirable result. The researcher gave a traditional example of Order and Or-

derDetails class. Although these two classes are associated with each other, that does not mean

all instances of Order class are associated with all instances of OrderDetail class. Specifying

reactive dependencies at a class-member level would mean that, in this particular example, all

orders would depend on all order details, which is incorrect.

One of the suggestions that was applicable, was the general suggestion to offer framework

implementations for more programming languages (also suggested in focus group). As we

mentioned in focus group, in the near future we only plan to realize .NET Core version of the

framework. However, since this is an open-source framework, support for other programming

languages could come from the community.

With regard to Analyzer, there was a suggestion to mimic the Watch feature of Visual Studio

debugger. "Developer 2: This reminds me of debugger in Visual Studio, where you can watch

the values of some variables over time. Maybe in Analyzer we can mark nodes in some way,

which would make them at the fixed position while we analyze some calculations..." This is an

229

interesting suggestion made in line of supporting debugging process of system with reactive

dependencies. It is something we are going to take into consideration for future development of

the framework.

Finally, suggestion related to both Visualizer and Generator capabilities came in a form of

enriching graph visualizations, so that changes to visualized graph are reflected in source code.

"Developer 2: Maybe one idea, that... by changing visualized graph we can modify code."

This model-driven style of working with reactive dependencies is certainly a worthwhile idea,

however, because of various conceptual and technical challenges it will require further research

and prototyping to determine its feasibility.

230

8. Discussion

8.1. Reflection on the research

In this dissertation, we have been addressing the problem of managing reactive dependencies

in OO applications. Since OO paradigm lacks native support for expressing and managing reac-

tive dependencies, developers are left to handle this manually, e.g. by implementing Observer

or similar design patterns. However, in even slightly more complex scenarios such approach re-

quires a huge effort to avoid errors, redundancies, and to understand and maintain dependency

graphs. The practical relevance of this problem is witnessed by the researcher himself from

his own experience in developing software systems, but it is also evident in professional litera-

ture, developer forums, and other relevant information sources used and authored by software

developers. In addition, the literature review conducted within this dissertation also showed

that the stated problem has scientific relevance, and that it has been frequently investigated by

researchers within multiple paradigms, including object-oriented and reactive paradigm.

Trying to solve or mitigate a problem that is both practically and scientifically relevant also

requires contributions to both practice and science. Practice can be supported in dealing with

the problem, for example, by creating an artifact that removes the problem or some part of it,

lessens its effects, or enhances our capabilities to cope with it. On the other hand, science is

contributed by generating new knowledge in the process of analyzing the problem, creating an

artifact (solution), and using the artifact in a problem domain. Such highly pragmatic research

efforts, directed to problem-solving and artifact-building, required equally pragmatic research

paradigm to guide them. We found this guidance in a form of design science paradigm.

Guided by design science, we set-off to mitigate the stated problem by building an artifact

that would offer abstractions and mechanisms used to support various tasks related to manag-

ing reactive dependencies. Through research and careful consideration, we identified software

framework as a type of software artifact suitable for this purpose. Further analysis of the prob-

lem and existing solutions gave us an insight into what characteristics and features such soft-

ware framework should exhibit, and allowed us to form a requirement specification document.

In accordance to set requirements, a REFRAME software framework was designed (model ar-

tifact), and implemented in C# programming language (instantiation artifact). By building and

testing REFRAME software framework we demonstrated that an artifact aimed at improving

231

the management of reactive dependencies is technically feasible, that it works under certain

assumptions, and that it has potential to solve or mitigate the stated problem. Evaluation efforts

that followed provided further evidence for this, and, in addition, also showed that potential

users perceive REFRAME as useful artifact in the context of managing reactive dependencies.

8.2. Answering research questions

While in previous section we briefly reflected on the overall design science research process

and its key results, in this section we describe how these results contribute to answering each of

the six research questions.

RQ1 What makes the management of reactive dependencies in development of object-

oriented applications a challenging task?

The first research question (RQ1) is addressed in detail within the Explicate problem activ-

ity. This activity is formally described in chapter 4, however, in a broader sense, this activity

also encompasses efforts in reviewing existing literature, analyzing problem domain, and uti-

lizing researcher’s own experiences - all presented in chapters 1 and 2.

The main reason why managing reactive dependencies is a challenging task in general, is

the mere fact that relationships in applications modeled by reactive dependencies may be nu-

merous and interwoven. These reactive dependencies may form inherently complex graph-like

structures called dependency graphs. The sheer size and complexity of these dependency graphs

challenge the human brain capacity and capability to understand and reason about their struc-

ture and dynamics. Unfortunately, OO paradigm in particular lacks means to overcome these

limitations. There are no built-in abstractions to express reactive dependencies, nor are there

mechanisms to manage structure of dependency graph and their updating process. In addition,

there are also no integrated tools which would support and automate basic operations, or provide

visualization, analysis and reasoning aids in the context of reactive dependencies. Instead, in

OO context, developers are usually left with manually handling reactive dependencies, often in

an ad-hoc manner, by implementing Observer or similar design pattern. This, however, requires

writing large amount of boilerplate côde which tangles with application’s core functionality,

and often distorts natural inheritance hierarchies. Even more, since no proper abstractions and

mechanisms are available, such côde represents fairly low-level take on reactive dependencies.

232

This means that developer spends a lot of time and effort handling reactive dependencies instead

of focusing on core functionality. After some time, an application becomes very hard to main-

tain, because any change in côde that could possibly require structural changes in dependency

graph, requires detailed analysis of the current state, and the impact that the change would or

would not have. Since analyzing dependency graph is all done manually, it becomes increas-

ingly time-consuming to do it. Even if we are to invest required time, analyzing dependency

graph would, due to its size and complexity, still be error-prone, and we would frequently miss

important information.

There are several issues that frequently occur in this context. For example, one can due to

mistake or defensive coding specify the same reactive dependency multiple times, which will

result in performing update process redundantly. Redundant updates, or even updates that are

unnecessary in the first place, also happen when there is a lack of mechanism which determines

what elements of dependency graph should be updated and in what particular order. Other than

performance issues, updating redundantly and in a wrong order may result in temporary (so

called glitches) or even permanent inconsistencies and invalid results. One other issue that can

happen while building dependency graph is the existence of circular dependencies, which can

cause infinite loops and result in throwing exceptions. Aggravating circumstance is that circular

dependency may manifest itself only if certain, very specific conditions occur. If dependency

graph is not built correctly, application may also fail at performing updates which are indeed

necessary, and again cause invalid results.

RQ2 What are the means we can use to support development of object-oriented applica-

tions in order to improve the management of reactive dependencies?

The second research question (RQ2) is also covered in detail within the Explicate problem

activity, which as we already stated encompasses chapter 4, but also chapters 1 and 2.

We certainly cannot take away inherent complexity that characterizes structure and dynam-

ics of graphs formed by reactive dependencies. However, we can amplify our capability to

tackle this complexity by offering different means to aid the process of managing reactive de-

pendencies in OO applications. Essentially, we want to design a solution in which we would

localize as much of the complexities related to managing reactive dependencies as possible

and support different operations with reactive dependencies. Then, application developer could

reuse that solution when developing individual applications, and to a large extent be free from

233

the details of managing reactive dependencies.

Such solution should at first try to increase the level of abstraction in working with reactive

dependencies, by offering dedicated abstractions for key concepts from the problem domain.

It should provide support for specifying individual reactive dependencies, forming dependency

graphs from them, and performing update process. Parts of these operations may also be auto-

mated through built-in tools.

Besides supporting basic operations with reactive dependencies, a solution should provide

additional tools that would help application developers in comprehending and better understand-

ing structure and dynamics of dependency graphs. For example, visual tools and techniques

have been frequently used to help developers better understand complex systems and complex

interactions between elements of the systems. Specifically, graph-like structures have been of-

ten represented visually in mathematics and computing. Also, tools for analysis and reasoning

about dependency graph can help discover patterns and in-depth characteristics of the graph.

As extensively covered in section 2.2, software frameworks are one of the most popular

reuse techniques that offer both the reuse of design and implementation. They traditionally

extract and capture common domain abstractions, and allow them to be reused and extended

in developing multiple different applications. In order to further enrich software frameworks

and facilitate their use, they are often accompanied by built-in tools. Therefore, in the con-

text of managing reactive dependencies, development of OO applications can be supported by

providing software framework which contains dedicated abstractions for reactive dependencies,

enables basic operations with these abstractions, and offers useful built-in tools.

RQ3 What functional and non-functional requirements should REFRAME software frame-

work meet in order to manage reactive dependencies?

While within Explicate problem activity we analyzed the problem domain and peeked into

solution space, within Define requirements activity covered in chapter 5 we take a firm step

toward specifying future solution, and in this way address the research question number three

(RQ3).

Firstly, the base concepts and characteristics of the artifact are outlined. This involved

confirming software framework as a suitable artifact, and positioning the framework within

software framework’s ecosystem. Also, from the perspective of design science research, the

future software framework was set to be built in a form of both model and instantiation artifacts.

234

Finally set of five high-level requirements were specified to serve as a base for elaborating more

detailed requirements.

These detailed requirements, in their entirety formalized as Software Requirements Speci-

fication document - SRS (section 5.2), are offering direct answer to RQ3. The SRS document

starts answering the RQ3 by describing fundamental aspects of the future framework, such as

its purpose, scope, environment, and users. It also serves as a place to define and elaborate

fundamental domain constructs (e.g. reactive node, reactive dependency, dependency graph,

update process, etc.) which form a vocabulary necessary to discuss both problem and solution.

Finally, and most importantly, SRS prescribes total of 34 functional requirements assorted into

6 features, and 4 non-functional requirements.

RQ4 What prerequisites, constraints and other factors have to be met in order for RE-

FRAME software framework to be designed and working?

Research question number four (RQ4) is primarily addressed by efforts in Design and de-

velop activity of design science process, described in detail in chapter 6. During this activity, de-

sign and implementation ideas were gathered, described, tried out, assessed, and implemented.

This resulted in a large number of design decisions being documented and elaborated. Eval-

uation Episode I - Prototyping and testing (section 7.1), due to its formative nature, overlaps

with Design and develop activity, and therefore also contributed to answering RQ4. Through

prototyping, this evaluation episode had major role in trying out alternative ideas and in this

way has heavily influenced design decisions. Similarly, testing not only provided evidence that

individual parts of the framework are functioning correctly, but it also (by writing testable code)

significantly influenced framework design. Finally, Episode II (section 7.2) with its summative

demonstration can also be considered to have contributed to answering RQ4, as it provided

evidence (in a form of scenarios) that the framework works as a whole.

In order to design working piece of software, developers face numerous challenges that they

have to respond to. Prerequisites have to be met, constraints have to be circumvented or adjusted

to, alternative options have to be compared and the best fitting one chosen, available resources

and stakeholder preferences have to be considered, etc. All of this places huge number of

design and implementation decisions in front of developers. Some of these decisions are known

a priori, or they can be anticipated with a reasonable certainty, which gives us a chance to better

prepare. However, some of these decisions emerge only during the design and development

235

activities, and can impair the overall process or have adverse effects on the artifact itself. This

stands true also for REFRAME software framework. During its design and develop activity,

numerous design and implementation decisions were made, influenced by set of prerequisites

and constraints, available alternatives and other factors. While these decisions are discussed

and documented throughout entire chapter 6, the 35 most important and impactful ones are

summarized in Table 14. By doing this, we provided valuable experience for future similar

endeavors, and in this way answered the research question RQ4.

RQ5 What are the typical scenarios of managing reactive dependencies that can be used

to evaluate REFRAME software framework?

In addition to contribution in answering RQ4, the main purpose of evaluation Episode II was

to answer research question RQ5. This was done by identifying and describing 15 illustrative

scenarios of REFRAME use (see section 7.2), which demonstrated most important features of

the framework. Although these 15 scenarios do not cover all the details of what the framework

can offer, they were sufficient to demonstrate that REFRAME supports the entire process of

managing reactive dependencies, ranging from specifying reactive dependencies and ensuring

the dependency graph is properly updated, to performing various graph analyses and visualiza-

tions.

RQ6 How does the use of REFRAME software framework affect the management of re-

active dependencies in development of object-oriented applications?

Evaluation episodes I and II, previously mentioned regarding their role in answering re-

search questions RQ4 and RQ5 showed that the framework for managing reactive dependen-

cies, such as REFRAME, is technically feasible and can work for a range of scenarios. However,

one thing that was still missing, was the proof that such framework would be useful to its users

(application developers) when applied to realistic scenarios. This issue is formally stated in

research question RQ6, and is addressed by joint contributions of evaluation episodes III and

IV.

Evaluation Episode III (section 7.3), in which we conducted confirmatory focus group, rep-

resented the first time the framework stepped outside of the laboratory setting. The aim was

to present focus group participants (4 software developers) with the problem of managing re-

active dependencies, and the REFRAME framework as a solution to that problem. Through

a discussion motivated and steered by the predefined questioning route, a data is gathered on

236

how these participants perceived REFRAME framework in terms of its usefulness. Template

analysis of the focus group discussion transcript showed that participants perceived the problem

of managing reactive dependencies as a relevant problem, and REFRAME as a useful solution

to that problem. Most of the raised concerns were related to minor issues, which did not dimin-

ish the overall positive impression. In addition, focus group resulted in several suggestions for

useful extensions of the framework, which indicates that the framework has a good potential.

These interpretations were also backed up by results from small questionnaire based on Tech-

nology acceptance model. On a 7-point Likert’s scale, all participants either strongly agreed or

agreed that using REFRAME would enable them to manage reactive dependencies: (Q1) more

quickly, (Q2) with improved performance, (Q3) with increased productivity, (Q4) with en-

hanced effectiveness, and (Q5) easier. Lastly, all participants strongly agreed that REFRAME

is useful for managing reactive dependencies (Q6).

Evaluation Episode IV (section 7.4) had the same goal as the Episode III. However, this

time, instead of just being presented with the problem and REFRAME as a solution, researcher

himself and two external software developers actively used the framework as a part of technical

action research (TAR). During a few weeks, each of the three TAR participants familiarized

themselves with REFRAME framework and used it to manage reactive dependencies in one

of the modules of real software application KI Expert Plus. The fact that participants were

able to successfully accomplish that, provides a first evidence of REFRAME’s usefulness in

real applications. Further evidence about framework’s usefulness was obtained by conducting

a post-implementation interview with each of the two external developers. During interviews

a range of predefined topics were raised, with some of them directly questioning usefulness

of individual parts of framework, and others doing that more subtly. As with focus group,

template analysis was performed on transcripts of conducted interviews. The analysis showed

that positive impressions directed in favor of framework usefulness prevailed during interviews.

When asked about usefulness of the framework, participants expressed both general satisfac-

tion, as well as satisfaction with a range of specific REFRAME features that were useful to

them during development. The reported benefits of using the framework included easier and

faster development, fewer errors in code, easier debugging, and increased understandability of

dependencies. On the other hand, reported concerns were not particularly severe, especially not

to the point of annulling the usefulness of the framework. Even participants themselves explic-

237

itly acknowledged that for some of these concerns. In addition, some concerns were the result

of technological limitations, or they were the part of usual experience related to framework use

in general. The two minor bugs which were reported do not prevent normal functioning of the

framework. Nonetheless, they are going to be resolved in the next release. Finally, sugges-

tions for framework evolution provide evidence that the potential of REFRAME is not fully

exhausted, and that both research and development activities are possible in the future.

All this being said, evidence gathered in evaluation episodes III (focus group) and IV (TAR)

allows us to answer research question RQ6 and state that the use of REFRAME positively af-

fects the management of reactive dependencies in development of object-oriented applications.

8.3. Contributions

Design science is a pragmatic, problem-solving paradigm. Researchers involved in design

science projects (such as this dissertation), are not only theorizing about the existing phenomena

in the world, but are actively and purposefully changing the world. They do this by creating

an artifact which solves (or at least mitigates) practical problem, and also by generating new

knowledge related to that artifact and its use. Therefore, by being a representative of design

science research, this dissertation contributes to both practice and scientific community.

Practical contributions

In order to claim practical contributions of the dissertation and its outputs, we first need to

discuss the practical relevance of the problem, and then offer the evidence on whether and how

that problem can be solved or mitigated. With regard to relevance, the problem of managing

reactive dependencies was at first encountered by the researcher himself while participating in

development of software application KI Expert Plus. After examining professional literature,

developer forums, and other available information resources, it became evident that the problem

was, to a greater or lesser extent, present also in other software applications. Indeed, several

design patterns were found, including one of the most well-known patterns - Observer, that were

intended to deal with this problem. Since design patterns by their definition aim at addressing

common problems, this was a clear indication of the problem prevalence in OO applications.

This is additionally supported by the fact that mainstream OO programming languages such as

C# and Java, even include dedicated language constructs that mimic the intent of these design

238

patterns. More details supporting the problem’s practical relevance can be found in Introduction

(chapter 1), Literature review (chapter 2), and Explicate problem (chapter 4) chapters. Finally,

the problem’s relevance to practice was confirmed during evaluation episodes III and IV, in

which participants of focus group and technical action research confirmed both the presence of

the problem as well as significant undesirable effects it produces during software development.

Most design science contributions fall into category of improvements, i.e. new or substan-

tially enhanced artifacts which provide improvement of some undesirable state of affair. This

is because the problems addressed by design science have characteristics of so-called wicked

problems, which Johannesson and Perjons [78] describe as problems difficult to solve due to

incomplete knowledge and complexity in general. Therefore, efforts addressing such prob-

lems usually come in a form of incremental improvements and problem mitigation, rather than

definitive solutions. Such is the case with this dissertation. The practitioners involved in soft-

ware development can use several dissertation outputs to mitigate the problem of managing

reactive dependencies. At the highest level of abstraction, SRS document presented in chapter

5 can be used as a basis for creating new software requirement specification. Alternatively, SRS

document can be used in its original form to support design and implementation of new soft-

ware framework for managing reactive dependencies. Furthermore, the model of REFRAME

software framework, extensively elaborated in chapter 6, can be customized or used as-is, to of-

fer a completely new implementation of the framework. Finally, and this is the most likely case,

software developers will take the source code or binary version of REFRAME implementation,

and with or without customization use it in application development.

The evidence that REFRAME is a functioning solution and that it is capable of mitigating

the problem, is provided by evaluation episodes I and II. In these episodes, the correctness of

individual fragments of framework functionality is demonstrated using unit testing, while most

important features as a whole are demonstrated by implementing and documenting illustrative

scenarios. Furthermore, evidence that REFRAME is mitigating the problem in real conditions,

was provided by evaluation episodes III and IV, in which representatives of target user popula-

tion (software developers) perceived the framework as useful.

239

Knowledge contributions

In order to systematically describe concrete knowledge contributions of this dissertation, it

is useful to assort contributions with regard to what type and form of knowledge they represent.

According to Johannesson and Perjons [78], knowledge type describes the purpose for which

knowledge can be used, and they roughly distinguish between: (1) definitional, (2) descriptive,

(3) explanatory, (4) predictive, and (5) prescriptive knowledge. While this dissertation contains

definitional knowledge (e.g. concepts and definitions needed to communicate about problem

and solution space), descriptive knowledge (e.g. statements describing the characteristics of the

problem and solution), and explanatory knowledge (e.g. root-cause analysis), the most impor-

tant contribution comes in a form of prescriptive knowledge. Firstly, SRS document, presented

in chapter 5, prescribes what kind of solution we need and what features should it posses in

order to be able to manage reactive dependencies. Secondly, framework design and implemen-

tation decisions, presented in chapter 6, prescribe what behavioral and structural characteristics

should this solution have in order to be realized and be able to address the problem. Finally,

as we will see in the next paragraph, implemented and working software systems, such as RE-

FRAME software framework, also contains prescriptive knowledge.

According to Johannesson and Perjons [78], the knowledge form describes where and in

which shape can knowledge be found. From this perspective, we can regard knowledge as

either: (1) explicit, (2) embodied, or (3) embedded knowledge. Aforementioned prescriptive

knowledge related to documented framework requirements, and design and implementation

aspects, can be characterized as an explicit knowledge, as it is explicitly presented (chapters 5

and 6) in a form of text, code and diagrams. However, not all knowledge can be explicated in

this way, and even for the one that can be explicated we can expect some level of information

loss. This is what makes design science research very important, as one of its distinguishing

features are contributions in a form of implicit knowledge, embedded in the built artifact itself.

For example, design aspects described in chapter 6 represent an explicated prescriptive model

of the framework. However, model in any form is an abstract, simplified representation of the

original. REFRAME implementation is a working artifact that necessarily embeds this model,

extends it and adds numerous details on top of it, and is therefore a vital contribution of design

science research. By studying it we can reveal knowledge about both problem and solution,

we can extract architectures, patterns, best practices, rules of thumb, algorithms, etc. Finally,

240

the very use of REFRAME in the problem context, such as one described in dissertation’s

evaluation activities, leads to new insights.

As can be seen, one of the distinguishing characteristics of design science is creation of ar-

tifacts, which in addition to their practical purpose also carry knowledge contributions. Design

science artifacts are usually classified as either: constructs, models, methods or instantiations

[73]. Constructs are small artifacts, used to express concepts and definitions that are necessary

to communicate about the problem and solution. They are typical representatives of defini-

tional knowledge in design science research. In this dissertation, constructs that are necessary

to speak about the problem and solution are listed during Explicate problem (chapter 4) and

Define requirements activities (chapter 5). Models can be seen as abstracted representations

of structural and behavioral characteristics of possible solutions to a problem. While, in ac-

cordance with their purpose, they are often categorized as descriptive, explanatory, predictive

or prescriptive, Johannesson and Perjons [78] emphasize that only prescriptive models qualify

to serve as a design science artifact. In this dissertation, a prescriptive model of REFRAME

software framework is documented and elaborated in chapter 6. It contains both structural and

behavioral aspects of the framework, as well as design rationale describing possible alternatives

and argumentation for numerous design decisions. Like models, methods also offer prescrip-

tive knowledge by defining procedures for accomplishing some task. They range from more

formalized types such as algorithms, to informal ones such as guidelines and best practices.

In this dissertation we did not offer such artifacts. Finally, instantiations are functioning sys-

tems, which can be used in practice and are representatives of embedded knowledge. In this

dissertation we offered an instantiation artifact in a form of REFRAME - a working software

framework. REFRAME embeds the knowledge about the problem and solution related to man-

aging reactive dependencies, and can be used in practice to mitigate the problem.

Artifact types that can be found in this dissertation, i.e. constructs, model and instantiation

of REFRAME software framework, are not unrelated artifacts. On the contrary, they are stacked

on top of each other. Constructs that define concepts such as reactive node, reactive dependency,

update process, etc., form a foundation of building blocks for defining REFRAME model. That

model then serves as a blueprint for implementing REFRAME instantiation artifact. However,

this association does not go only one way, because instantiation also affects artifacts on a lower

level of artifact stack. Indeed, as March et al. [96] report, by building instantiation artifacts, we

241

operationalize constructs, models and methods they contain, thus demonstrating their feasibility

and effectiveness. This should be considered in the context of our evaluation activities, because,

by evaluating REFRAME instantiation, we also provided a confirmation for its underlying arti-

facts.

Although it should involve practical contributions, the backbone of design science research

has to be scientific one, i.e. knowledge contributions. Thus, as opposed to pure design, design

science research required the fulfillment of three additional requirements [78]: (1) rigorous

research methods should be used to generate new knowledge, (2) this new knowledge should be

well-founded and original, i.e. it should be put into a relation with already existing knowledge,

and (3) research results should be explicitly communicated to practitioners and researchers.

The first requirement was fulfilled by choosing and following rigorous methodological

framework for design science research [78]. Within individual steps prescribed by this method-

ological framework, various research methods were applied, including literature review, pro-

totyping, modeling, and analysis. However, as befits design science research, scientifically

most rigorous step was evaluation. Using FEDS framework [154] as a guide, we first designed

evaluation strategy suitable for the type of artifact we were building. Each evaluation episode

within this strategy was assigned with proven, and for that particular purpose, frequently used

research methods. Therefore, a testing, demonstration, focus group, technical action research,

and template analysis joined previously mentioned research methods.

In order to fulfill the second requirement, we have to relate efforts done in this disserta-

tion with efforts described in existing literature. Conducted literature review shows the prob-

lem of managing reactive dependencies being approached and addressed by several different

paradigms. Although heavily criticized, Implicit invocation and Event-driven programming

based on Observer pattern is still a dominant way of managing reactive dependencies in OO

paradigm. Some improvements over the plain Observer pattern can be achieved using more

advanced design patterns (such as Propagator [53]), or some aspectized versions of Observer

(e.g. [149]). Indeed some of REFRAME’s design characteristics are inspired by these design

patterns. However, as was reported by Mijač et al. [107], no single pattern was capable enough

to address the problem of managing reactive dependencies in more complex cases. Our vision

of solution to that problem, surpassed these design patterns in both reuse scale and abstrac-

tion level. Indeed, design patterns were simply too small to capture design aspects of entire

242

solution we wanted to offer. Also, design patterns only reuse design, which leaves a lot of im-

plementation effort for developers if they want to have a working solution. This precisely was

the reason why we opted for software frameworks - a popular large-scale software artifact that

allows the reuse of both design and implementation. As opposed to OO paradigm, solutions

from reactive programming paradigm can offer already built-in support for reactive dependen-

cies. However, due to functional/declarative background the paradigm shift can be a challenge

to OO developers. Even if developers would decide to sacrifice benefits of OO paradigm for the

sake of easier management of reactive dependencies, there is still a question of already existing

OO applications and the effort required to rewrite them in a new programming language and

a new paradigm. On the other hand, one of the very goals of REFRAME framework was to

provide a non-intrusive way to manage reactive dependencies in existing applications, which

was demonstrated during TAR on KI Expert Plus application.

As Boix et al [65] reported, in an attempt to get the best from reactive and OO paradigm,

some start with reactive programming as a base point and proceed to introduce OO features

(e.g. [129]), while others start with OO programming and introduce reactive features (e.g.

[65]). REFRAME follows the second approach, as we started from traditional OO programming

language, and extended its capabilities for managing reactive dependencies by implementing

software framework. Other proposed solutions that attempt at reconciling these two paradigms

usually come in a form of special reactive programming languages, or frameworks with custom

compilers. As opposed to REFRAME, such solutions due to their own, special compilers do

offer tighter and more natural integration of reactive dependencies into a host programming

language, which may result in higher-level automation and better performance. However, these

solutions are not very flexible in terms of possibility to adapt and extend them to suit specific

needs. Conversely, as a part of this dissertation’s contribution, we not only offer flexible and

open-source implementation of the framework, but we also offer a detailed framework model

and requirement specification which can be used to implement custom frameworks. In addition,

while other available solutions offer only the core engine for managing reactive dependencies,

REFRAME’s significant contributions are its accompanying tools for analysis and visualization

of dependency graphs. Due to a clean internal design and clean APIs, new tools that utilize

existing REFRAME features can be made.

As per third requirement for design science, communication towards practitioners will take

243

place through official GitHub repository of the framework. Through this repository, develop-

ers will foremost be able to fetch source code and binary versions of REFRAME, and access

framework documentation. However, they will also be able to actively participate in framework

development, e.g. by reporting issues and offering their improvements. With regard to com-

munication with researchers, aside from this dissertation being available at Faculty’s repository,

dissertation content is also planned to be published in a form of several conference and journal

papers.

8.4. Research limitations

Design science paradigm and the chosen methodological framework fit well with the prob-

lem addressed by this dissertation, as well as with the proposed solution. However, while

conducting individual activities, several limitations can be recognized with regard to research

design and the execution. In this section we systematically report these limitations with respect

to activity of the chosen methodological framework.

Literature review conducted within this dissertation was thorough and extensive, however,

it was not done in a form of systematic literature review. Therefore, there is a chance that some

important aspects were not taken into consideration during explicate problem activity. Also,

this activity is influenced by researcher’s own rich experience in practice, which might introduce

a bias in terms of understanding and interpreting the problem.

Define requirements activity mirrors the limitations of explicate problem activity. Require-

ments were gathered and chosen from relevant literature and researcher’s personal experience,

which again might cause omission of potentially important requirements, and result in incom-

plete requirements specification. Although requirements were discussed in informal conversa-

tions with co-workers, no external experts were formally used in either gathering or evaluating

them.

With regard to design and develop artifact activity, one of the limitations is the choice of

technology (C# .NET) used to implement REFRAME framework. While reasonable effort was

made to make implementational aspects of the framework applicable in OO setting in general,

some parts of implementation might require significantly different approach in other technolo-

gies. Also, since design and development was done iteratively, these technology-specific imple-

mentational aspects could have penetrated design as well, and thus made us move away from

244

abstract and technology-agnostic design. Finally, several practical limitations of the framework

were hinted during evaluation activities, including: cumbersome syntax for specifying reactive

dependencies, still a lot of boilerplate code is needed, Analyzer tool GUI not being well orga-

nized, scarce documentation, etc. As announced, some of these practical limitations are going

to be addressed by upcoming framework releases.

Evaluation activities were extensive, and were conducted in accordance with specifically

developed research strategy containing four evaluation episodes. Each evaluation episode has

its own strengths which complement and enforce the strengths of other episodes. However,

they also have limitations with regard to used methods or the way these methods were executed.

In episode I, we used unit testing to evaluate efficacy of the framework. While with almost

a thousand tests we achieved high code coverage, this metric alone cannot guarantee that the

framework performs well as a whole. These limitations are partly mitigated in episode II,

which used 15 illustrative scenarios to demonstrate framework on a more coarse-grained level.

However, due to framework complexity and number of features, these 15 scenarios were able

to cover only most essential framework features. In episode III we conducted focus group to

evaluate usefulness of the framework. One limitation related to focus group was the fact that

participants only had theoretical knowledge about the framework (i.e. through video materials

and presentation). This may have resulted in limited understanding of the framework, and less

reliable evaluation. Also there was a possibility for bias because the researcher himself moder-

ated focus group, and interpreted results. Finally, through technical action research, episode IV

addressed some of the limitation concerns stated for episode III. It enforced the evaluation of

usefulness by having participants actively use the framework in a development of real software

application. However, since the framework was applied only on one software application, this

might pose as a limiting factor in terms of generalizability.

8.5. Future research

While this dissertation describes the process and state of development for initial version of

REFRAME software framework, developing software frameworks is an ongoing process. We

can classify future efforts with regard to whether they result in practical or knowledge con-

tributions. In this way we can distinguish between practical, combined, and research efforts.

Practical efforts involve routine development activities, which do not require research, nor they

245

result in knowledge contributions. The examples of planned practical efforts include: (1) cor-

recting already reported and yet to be discovered bugs, (2) improving graphical user experience

in Analyzer tool, (3) increase the number of available analyses, (4) better integration between

Analyzer and Visualizer, (5) making framework cross-platform, (6) implementing alternative

visualizing technology, etc.

The combined efforts involve development activities which significantly increase the prac-

tical worth of the framework, but due to overall complexity and novelty of the improvement,

also offer knowledge contributions. Such efforts would be typical instances of design science

research. These may include researching and developing: (1) custom debugger for REFRAME,

(2) syntax enhancement and code generation capabilities using advanced meta-programming

capabilities (e.g. .NET compiler API), (3) unit test and documentation generator on the basis of

dependency graph, (4) Visualizer based on UML, (5) Visualizer able to generate code, etc.

Finally, purely research efforts refer to those activities, which do not alter REFRAME itself,

but rather investigate its quality attributes and effects of its use. For example, some of possible

future research includes: (1) performance evaluation, (2) investigation of its influence on code

quality (e.g. testability), (3) demonstrations of its potential use in different applications, (4)

comparisons with alternative solutions, (5) design patterns and good practices, (6) interaction

with other common frameworks, etc.

246

9. Conclusion

This dissertation addresses the problem of managing reactive dependencies in OO applica-

tions. The initial motivation for this topic came from practice, i.e. researcher’s personal in-

volvement in development of real software applications. One of these applications represented

a problem domain characterized by numerous calculation procedures and mutually dependent

calculation parameters. Dependencies between those parameters were reactive, i.e. changing

the value of one parameter had to result in updating the values of all (directly or indirectly)

dependent parameters. Large number of these mutually dependent calculation parameters had

a potential to form large graph-like structures, difficult to understand and maintain.

With all the benefits that OO technology offers, it lacks native support for managing reac-

tive dependencies. Most well-known solution applied in such cases is manual implementation

of Observer pattern, which is no match to any scenario of managing reactive dependencies,

other than the most basic ones. Therefore, the need arose to build more advanced solution

for OO setting. Design science, as a problem-solving research paradigm, was suitable option to

systematically guide our efforts in achieving both practical and scientific relevance. REFRAME

software framework for managing reactive dependencies, as well as other, more abstract devel-

opment artifacts (e.g. framework model and framework requirements), were direct practical

contributions. Scientific contributions, as customary in design science research, came in a form

of explicated or embedded prescriptive knowledge. The explicated form was represented by

model design science artifact, which contained REFRAME’s requirements, elaboration of de-

sign and implementation decisions, and behavioral and structural characteristics of the frame-

work. On the other hand, embedded knowledge is represented by instantiation design science

artifact, i.e. implementation of REFRAME software framework. More formally, scientific con-

tributions were in dissertation addressed by stating and answering one main research question

(MRQ), six sub-questions (RQ1 - RQ6), and one high-level hypothesis (H1).

In accordance to chosen methodological framework for conducting design science research,

the first activity conducted within design science research was problem explication. Although

the efforts of this activity were summarized in chapter 4, Literature review (chapter 2) is also

implicit part of this activity. The first part of literature review (section 2.1) was focused on

problem space, i.e. topic of managing reactive dependencies. It provided us with the evidence

247

of stated problem being relevant for both practice and scientific community. Indeed managing

reactive dependencies was in focus of multiple different practical solutions, ranging from de-

sign patterns to specialized programming languages. Similarly, numerous research papers in

various fields (e.g. reactive programming, event-driven programming, OO design patterns, etc.)

were found dealing with this topic. Analyzing literature and personal experience allowed us to

broaden our understanding of the problem and the challenges it brings, as well as to reason about

its causes and effects. In this way we answered research question RQ1. Following that (also in

chapter 4), we were able to transition from problem space to solution space, supported by exten-

sive literature review on software frameworks (section 2.2). This helped us legitimize software

frameworks as a type of artifact nominally suitable for addressing the stated problem, and in

this way answered research question RQ2. Overall, activity Explicate problem contributed to

knowledge related to both managing reactive dependencies and software frameworks.

Having analyzed the causes of the stated problem, and the ways the prospective solution

could attend to them, we laid the foundations for the next design science activity - Define re-

quirements for the solution. At the beginning of chapter 5 we outlined the basic characteristics

of REFRAME as a framework and as a design science artifact, and we also devised a set of five

high-level requirements. We then proceeded to specify detailed requirements, which resulted

in Software Requirements Specification document - SRS (section 5.2) containing 34 functional

requirements and 4 non-functional requirements. This provided the direct answer to research

question RQ3.

In accordance with requirements specified in SRS document, aforementioned REFRAME

model and instantiation artifacts were designed and implemented during Design and develop

artifact activity. Chapter 6 contains elaborate description of this iterative activity, including the

steps of gathering ideas, trying and assessing them, and finally selecting and implementing the

most suitable ones. While the model artifact is documented within chapter 6, the instantiation

artifact is available in a form of binary files or source code files at REFRAME’s GitHub reposi-

tory (https://github.com/MarkoMijac/REFRAME.git). By documenting both the

process of building the solution and the solution itself, we provided valuable experience and in

this way contributed to answering research question RQ4.

Finally, evaluation activity was conducted in a form of 4 mutually complementary evalua-

tion episodes. In episode I, through prototyping and exhaustive unit testing (almost 1000 tests)

248

we provided evidence that REFRAME software framework is technically feasible, and that it

represents a functioning solution for managing reactive dependencies (efficacy). Technical fea-

sibility and efficacy are further supported in episode II, by implementing and demonstrating 15

common scenarios of REFRAME use. In addition, both episodes I and II contribute to answer-

ing research question RQ4, while episode II fully answers research question RQ5. In order to

provide evidence of REFRAME’s usefulness in real context, during episodes III and IV we con-

ducted focus group and technical action research respectively. Participants of both focus group

and technical action research were resolute in declaring REFRAME as useful for managing

reactive dependencies. In this way we answered research question RQ6. In addition, discus-

sion with participants also yielded critiques and suggestions which are important for further

improvement of REFRAME.

Given that we already addressed six research sub-questions (in Discussion chapter in detail,

and also briefly in this chapter), we can now restate and answer the main research question

(MRQ): "How can we improve the management of reactive dependencies in the development of

object-oriented applications?". The management of reactive dependencies in development of

object-oriented applications can be improved by designing and implementing software frame-

work, which provides dedicated abstractions and mechanisms for specifying individual reactive

dependencies, constructing dependency graphs, and performing graph update process. Such

framework can be further enriched by accompanying tools, which would provide means to ana-

lyze and visualize dependency graphs, and in this way support understanding of the underlying

dependency graph as well as its individual parts. Finally, accompanying tool for code generation

can improve and speed-up the writing of boilerplate code.

In this dissertation we were able to design, implement and evaluate such solution in a form

of REFRAME software framework. We also elaborately documented both the process and the

solution. Therefore, we can determine that dissertation’s main goal "Improve and facilitate the

management of reactive dependencies in object-oriented applications by designing and evaluat-

ing REFRAME software framework, which will allow specification, propagation, visualization,

and analysis of reactive dependencies" is accomplished.

In addition to already confirmed practical and scientific relevance of the problem and pro-

posed solution, the very process of design science research described in this dissertation was a

rigorous one. Indeed, designing, developing, and evaluating REFRAME software framework

249

was guided by 5-activity methodological framework for conducting design science research.

Within each activity appropriate and proven methods were used to achieve its set outcomes.

This was especially true for evaluation activity, which has decisive role in making design sci-

ence research a scientific research. With this in mind, a specialized framework for evaluation in

design science was used to form rigorous evaluation strategy. This strategy involved conducting

4 complementary evaluation episodes which helped gradually transform REFRAME software

framework into a functioning and useful solution. This allows us to confirm hypothesis H1:

"Designed and implemented software application framework (REFRAME) for management of

reactive dependencies in development of object-oriented applications will fulfill both relevance

and rigor requirements of design science."

250

.

Bibliography

[1] Asynchronous programming in C#.

https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/async/.

[2] Boo programming language.

https://boo-language.github.io/.

[3] Code coverage testing - Visual Studio.

https://docs.microsoft.com/en-us/visualstudio/test/

using-code-coverage-to-determine-how-much-code-is-being-tested.

[4] Covariance and Contravariance (C#).

https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/covariance-contravariance/.

[5] Definition of FRAMEWORK.

https://www.merriam-webster.com/dictionary/framework.

[6] Definition of FRAMEWORK.

https://en.oxforddictionaries.com/definition/framework.

[7] Extension Methods - C# Programming Guide.

https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/classes-and-structs/extension-methods.

[8] Handling and Raising Events.

https://docs.microsoft.com/en-us/dotnet/standard/events/.

[9] How to: Use Named Pipes for Network Interprocess Communication.

https://docs.microsoft.com/en-us/dotnet/standard/io/

how-to-use-named-pipes-for-network-interprocess-communication.

252

[10] Introduction to Event Listeners (The Java Tutorials > Creating a GUI With JFC/Swing >

Writing Event Listeners).

https://docs.oracle.com/javase/tutorial/uiswing/events/

intro.html.

[11] ISO/IEC 25010:2011.

https://www.iso.org/cms/render/live/en/sites/isoorg/

contents/data/standard/03/57/35733.html.

[12] The .NET Compiler Platform SDK (Roslyn APIs).

https://docs.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/.

[13] The Reactive Manifesto.

http://www.reactivemanifesto.org/.

[14] Reactive Streams.

http://www.reactive-streams.org/.

[15] ReactiveX.

http://reactivex.io/.

[16] Starting to Develop Visual Studio Extensions - Visual Studio.

https://docs.microsoft.com/en-us/visualstudio/

extensibility/starting-to-develop-visual-studio-extensions.

[17] 830-1998 - IEEE Recommended Practice for Software Requirements Specifications,

1998.

http://ieeexplore.ieee.org/servlet/opac?punumber=5841.

[18] Unified Modeling Language. Object Management Group (OMG), 2017.

[19] Asynchronous programming patterns, 2018.

https://docs.microsoft.com/en-us/dotnet/standard/

asynchronous-programming-patterns/.

[20] Parallel Programming in .NET, 2018.

https://docs.microsoft.com/en-us/dotnet/standard/

parallel-programming/.

253

[21] Topological sorting, 2019.

https://en.wikipedia.org/w/index.php?title=Topological_

sorting&oldid=917759838.

[22] Abdennadher, S. and Fruhwirth, T. Essentials of Constraint Programming. Springer,

Berlin ; New York, ISBN 978-3-540-67623-2.

[23] Aguiar, A. and David, G. Patterns for Effectively Documenting Frameworks. In Noble,

J., Johnson, R., Avgeriou, P., Harrison, N. B., and Zdun, U., editors, Transactions on

Pattern Languages of Programming II, volume 6510. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011. ISBN 978-3-642-19431-3 978-3-642-19432-0.

[24] Avgeriou, P. and Zdun, U., Avgeriou, Paris and Zdun, Uwe, 2005, Architectural Patterns

Revisited - A Pattern Language. In Proceedings of 10th European Conference on Pattern

Languages of Programs (EuroPlop 2005).

[25] Axelsen, E. W., Sorensen, F., and Krogdahl, S., Axelsen, Eyvind W. and Sorensen,

Fredrik and Krogdahl, Stein, 2009, A reusable observer pattern implementation using

package templates, organization.

[26] Backes, M., Pfitzmann, B., and Waidner, M. A General Composition Theorem for Secure

Reactive Systems. In Goos, G., Hartmanis, J., van Leeuwen, J., and Naor, M., editors,

Theory of Cryptography, volume 2951. Springer Berlin Heidelberg, Berlin, Heidelberg,

2004. ISBN 978-3-540-21000-9 978-3-540-24638-1.

[27] Bainomugisha, E., Carreton, A. L., Cutsem, T. v., Mostinckx, S., and Meuter, W. d. A

survey on reactive programming. ACM Computing Surveys, ISSN 03600300.

[28] Beck, K. Test-driven development: by example. Addison-Wesley Professional, 2003.

[29] Borella, J., Borella, J., 2003, The observer design pattern using aspect oriented program-

ming. In Proc. of the 2nd Nordic Conference on Pattern Languages of Programs.

[30] Borning, A., Borning, Alan, 2016, Wallingford: toward a constraint reactive program-

ming language, organization.

254

[31] Bosch Jan, Molin Peter, Mattson Michael, and Bengtsson PerOlof. Object-Oriented

Frameworks - Problems & Experiences. Research 9/97, University of Karlskrona/Ron-

neby, Karlskrona, 1997.

[32] Boussinot, F. Reactive C: An extension of C to program reactive systems. Software:

Practice and Experience, ISSN 00380644, 1097024X.

[33] Chaturvedi, A. and T.V., P. Ontology - Driven Observer Pattern. In New Trends in

Databases and Information Systems, volume 241. Springer International Publishing,

Cham, 2014. ISBN 978-3-319-01862-1 978-3-319-01863-8.

[34] Cleary, S. Concurrency in C# Cookbook. O’Reilly Media, Beijing ; Sebastopol, CA,

ISBN 978-1-4493-6756-5.

[35] Cleven, A., Gubler, P., and Huner, K. M., Cleven, Anne and Gubler, Philipp and Huner,

Kai M., 2009, Design Alternatives for the Evaluation of Design Science Research Arti-

facts. In Proceedings of the 4th International Conference on Design Science Research in

Information Systems and Technology, DESRIST ’09, organization.

[36] Constant, C., Jeron, T., Marchand, H., and Rusu, V. Integrating formal verification and

conformance testing for reactive systems. IEEE Transactions on Software Engineering,

ISSN 0098-5589.

[37] Cooper, G. H. and Krishnamurthi, S. Embedding Dynamic Dataflow in a Call-by-Value

Language. In Programming Languages and Systems, volume 3924. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-33095-0 978-3-540-33096-7.

[38] Coplien, J., Hoffman, D., and Weiss, D. Commonality and variability in software engi-

neering. IEEE software, 15(6):37–45, 1998.

[39] Courtney, A. Frappe: Functional Reactive Programming in Java. In Practical Aspects of

Declarative Languages, volume 1990. Springer Berlin Heidelberg, Berlin, Heidelberg,

2001. ISBN 978-3-540-41768-2 978-3-540-45241-6.

[40] Dams, D., Gerth, R., and Grumberg, O. Abstract interpretation of reactive systems. ACM

Transactions on Programming Languages and Systems, ISSN 01640925.

255

[41] Davis, F. D. Perceived usefulness, perceived ease of use, and user acceptance of infor-

mation technology. MIS quarterly, 1989.

[42] Della, L. and Clark, D., Della, Lew and Clark, David, 1998, From interface to persis-

tence: a framework for business oriented applications. In Technology of Object-Oriented

Languages, 1998. TOOLS 28. Proceedings.

[43] Demetrescu, C., Finocchi, I., and Ribichini, A., Demetrescu, Camil and Finocchi, Irene

and Ribichini, Andrea, 2011, Reactive imperative programming with dataflow con-

straints. In Proceedings of the 2011 ACM international conference on Object oriented

programming systems languages and applications, organization.

[44] di Battista, G., Eades, P., and Tamassia, R. Layered drawings of digraphs. In Graph

Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[45] Drechsler, J., Salvaneschi, G., Mogk, R., and Mezini, M., Drechsler, Joscha and Sal-

vaneschi, Guido and Mogk, Ragnar and Mezini, Mira, 2014, Distributed REScala: An

Update Algorithm for Distributed Reactive Programming. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA ’14, organization.

[46] Eales, A., Eales, Andrew, 2005, The Observer Pattern Revisited.

[47] Elliott, C. and Hudak, P., Elliott, Conal and Hudak, Paul, 1997, Functional Reactive

Animation. In Proceedings of the Second ACM SIGPLAN International Conference on

Functional Programming, ICFP ’97, organization.

[48] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. The Many Faces of

Publish/Subscribe. ACM Computing Surveys,

[49] Evain, J. Cecil.net, 2019.

https://github.com/jbevain/cecil.

[50] Faison, T. Event-Based Programming. Apress, 2006. ISBN 978-1-59059-643-2. DOI:

10.1007/978-1-4302-0156-4.

[51] Fayad, M. and Schmidt, D. C. Object-oriented application frameworks. Communications

of the ACM, ISSN 00010782.

256

[52] Fayad, M., Schmidt, D. C., and Johnson, R. E., editors. Building application frameworks:

object-oriented foundations of framework design. Wiley, New York, 1999. ISBN 978-0-

471-24875-0.

[53] Feiler, P. and Tichy, W., Feiler, Peter and Tichy, Walter, 1997, Propagator: A family of

patterns. In Technology of Object-Oriented Languages and Systems, organization.

[54] Fowler, M. Patterns of enterprise application architecture. Addison-Wesley Longman

Publishing Co., Inc., 2002.

[55] Fowler, M. Fluent interface, 2005.

https://martinfowler.com/bliki/FluentInterface.html.

[56] Fowler, M. Refactoring: improving the design of existing code. Addison-Wesley Profes-

sional, 2018.

[57] Freeman-Benson, B. N. and Borning, A. Integrating constraints with an object-oriented

language. In ECOOP ’92 European Conference on Object-Oriented Programming, num-

ber 615 in Lecture Notes in Computer Science. ISBN 978-3-540-55668-8 978-3-540-

47268-1.

[58] Froehlich, G., Hoover, H. J., Liu, L., and Sorenson, P. Designing object-oriented frame-

works. S. Zamir, editor, Handbook of Object-Oriented Technology, 1997.

[59] Froehlich, G., Hoover, H. J., Liu, L., and Sorenson, P. Using object-oriented frameworks.

Handbook of Object-Oriented Technology, 1998.

[60] Froehlich, G., Hoover, H. J., Liu, L., and Sorenson, P., Froehlich, Gary and Hoover, H

James and Liu, Ling and Sorenson, Paul, 1997, Hooking into object-oriented application

frameworks. In Proceedings of the 19th international conference on Software engineer-

ing.

[61] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1 edition, 1995.

[62] Garlan, D. and Notkin, D. Formalizing design spaces: Implicit invocation mechanisms.

In Goos, G., Hartmanis, J., Prehn, S., and Toetenel, W. J., editors, VDM’91 Formal

257

Software Development Methods, volume 551. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 1991. ISBN 978-3-540-54834-8 978-3-540-46449-5.

[63] Garlan, D. and Shaw, M. An introduction to software architecture. In Advances in

software engineering and knowledge engineering. World Scientific, 1993.

[64] Gasiunas, V., Satabin, L., Mezini, M., Nunez, A., and Noye, J., Gasiunas, Vaidas and

Satabin, Lucas and Mezini, Mira and Nunez, Angel and Noye, Jacques, 2011, EScala:

Modular Event-driven Object Interactions in Scala. In Proceedings of the Tenth Interna-

tional Conference on Aspect-oriented Software Development, AOSD ’11, organization.

[65] Gonzalez Boix, E., Pinte, K., Van de Water, S., and De Meuter, W., Gonzalez Boix, Elisa

and Pinte, Kevin and Van de Water, Simon and De Meuter, Wolfgang, 2013, Object-

oriented Reactive Programming is Not Reactive Object-oriented Programming. In Pro-

ceedings of the 1st Workshop on Reactivity, Events, and Modularity.

[66] Goodrich, M. T. and Tamassia, R. Algorithm design and applications. Wiley Publishing,

2014.

[67] Hall, G. M. Adaptive Code: Agile coding with design patterns and SOLID principles.

Microsoft Press, 2017.

[68] Hannemann, J. and Kiczales, G. Design pattern implementation in Java and aspectJ.

ACM SIGPLAN Notices, ISSN 03621340.

[69] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-

Trauring, A., and Trakhtenbrot, M. STATEMATE: a working environment for the de-

velopment of complex reactive systems. IEEE Transactions on Software Engineering,

ISSN 00985589.

[70] Harel, D. and Pnueli, A. On the Development of Reactive Systems. In Logics and Models

of Concurrent Systems. Springer Berlin Heidelberg, 1985.

[71] Hazzard, K. and Bock, J. Metaprogramming in .NET. Manning, New York, 2013.

[72] Heron, T. Programming with Dependency. Master Degree, Univesity of Warwick, 2002.

258

[73] Hevner, A. R., March, S. T., Park, J., and Ram, S. Design science in information systems

research. MIS Quarterly, 28(1):75–105, 2004.

[74] Hinze, A., Sachs, K., and Buchmann, A., Hinze, Annika and Sachs, Kai and Buchmann,

Alejandro, 2009, Event-based Applications and Enabling Technologies. In Proceedings

of the Third ACM International Conference on Distributed Event-Based Systems, DEBS

’09, organization.

[75] Hudak, P., Courtney, A., Nilsson, H., and Peterson, J. Arrows, Robots, and Functional

Reactive Programming. In Goos, G., Hartmanis, J., van Leeuwen, J., Jeuring, J., and

Jones, S. L. P., editors, Advanced Functional Programming, volume 2638. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-40132-2 978-3-540-

44833-4.

[76] Jarvinen, H., Kurki-Suonio, R., Sakkinen, M., and Systa, K., Jarvinen, H. and Kurki-

Suonio, R. and Sakkinen, M. and Systa, K., 1990, Object-oriented specification of reac-

tive systems, organization.

[77] Jicheng, L., Hui, Y., and Yabo, W., Jicheng, Liu and Hui, Yin and Yabo, Wang, 2010,

A novel implementation of observer pattern by aspect based on Java annotation. In

Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International

Conference on, volume 1, organization.

[78] Johannesson, P. and Perjons, E. An introduction to design science. 2014. ISBN 978-3-

319-10632-8 3-319-10632-5 3-319-10631-7 978-3-319-10631-1.

[79] Johnson, R. E., Johnson, Ralph E, 1992, Documenting frameworks using patterns. In

ACM Sigplan Notices, volume 27.

[80] Johnson, R. E. Frameworks=(components+ patterns). Communications of the ACM, 40

(10):39–42, 1997.

[81] Johnson, R. E. and Foote, B. Designing reusable classes. Journal of object-oriented

programming, 1(2):22–35, 1988.

[82] Johnson, R. J2ee development frameworks. Computer, 38(1):107–110, 2005.

259

[83] Kahn, A. B. Topological Sorting of Large Networks. Commun. ACM, ISSN 0001-0782.

[84] Kelleher, C. and Levkowitz, H., Reactive data visualizations.

[85] Khamis, A. and Abdelmonem, A. The unified software development process and frame-

work development. Doğuş Üniversitesi Dergisi, 3(1):109–122, 2011.

[86] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and

Irwin, J. Aspect-oriented programming. In ECOOP’97 - Object-Oriented Programming,

number 1241 in Lecture Notes in Computer Science. ISBN 978-3-540-63089-0 978-3-

540-69127-3.

[87] King, N. Using templates in the thematic analysis oftext. Essential guide to qualitative

methods in organizational research, 2004.

[88] Kobryn, C. Modeling components and frameworks with UML. Communications of the

ACM, ISSN 00010782.

[89] Kontio, J., Lehtola, L., and Bragge, J., Kontio, J. and Lehtola, L. and Bragge, J., 2004,

Using the focus group method in software engineering: obtaining practitioner and user

experiences, organization.

[90] Krajnc, A. and Hericko, M. Classification of object-oriented frameworks, volume 2.

IEEE, 2003.

[91] Landin, N., Niklasson, A., Bosson, G., and Regnell, B. Development of object-oriented

frameworks. Department of Communication System. Lund Institute of Technology, Lund

University. Lund, Sweden, 1995.

[92] Lopes, S., Tavares, A., Monteiro, J., and Silva, C., Sergio Lopes and Adriano Tavares and

Joao Monteiro and Carlos Silva, 2006, Describing framework static structure: promoting

interfaces with uml annotations. In In Proc. of the 11 th International Workshop on

Component-Oriented Programming of the 20 th ECOOP.

[93] Lopes, S. F., Afonso, F., Tavares, A., and Monteiro, J., Lopes, Sérgio F and Afonso,

Francisco and Tavares, Adriano and Monteiro, João, 2009, Framework characteristics-a

starting point for addressing reuse difficulties. In 2009 Fourth International Conference

on Software Engineering Advances.

260

[94] Lopes, S. F., Tavares, A., Silva, C., and Monteiro, J. L., Lopes, Sérgio F and Tavares, AC

and Silva, CA and Monteiro, João L, 2005, Application development by reusing object-

oriented frameworks. In Computer as a Tool, 2005. EUROCON 2005. The International

Conference on, volume 1.

[95] Maier, I., Rompf, T., and Odersky, M. Deprecating the observer pattern. Technical

report EPFL-REPORT-148043, Ecole Polytechnique Federale de Lausanne, Lausanne,

Switzerland, 2010.

[96] March, S. T. and Smith, G. F. Design and natural science research on information tech-

nology. Decision support systems, 15(4):251–266, 1995.

[97] Margara, A. and Salvaneschi, G., Margara, A. and Salvaneschi, G., 2013, Ways to react:

Comparing reactive languages and complex event processing. In Proceedings of the 1st

Workshop on Reactivity, Events, and Modularity.

[98] Markiewicz, M. E. and de Lucena, C. J. P. Object oriented framework development.

Crossroads, ISSN 15284972.

[99] Martin, R. Clean architecture. Prentice Hall, 2017.

[100] Martin, R. C. Clean code: a handbook of agile software craftsmanship. Pearson Educa-

tion, 2009.

[101] Martin, R. C. and Martin, M. Agile principles, patterns, and practices in C# (Robert C.

Martin). Prentice Hall PTR, 2006.

[102] Mattsson, M. Object-oriented frameworks. Licentiate thesis, 1996.

[103] Mattsson, M., Bosch, J., and Fayad, M. E. Framework integration problems, causes,

solutions. Communications of the ACM, 42(10):80–87, 1999.

[104] Meyer, B. Object-oriented software construction, volume 2. Prentice hall New York,

1988.

[105] Meyerovich, L. A., Guha, A., Baskin, J., Cooper, G. H., Greenberg, M., Bromfield, A.,

and Krishnamurthi, S., Meyerovich, Leo A. and Guha, Arjun and Baskin, Jacob and

Cooper, Gregory H. and Greenberg, Michael and Bromfield, Aleks and Krishnamurthi,

261

Shriram, 2009, Flapjax: A Programming Language for Ajax Applications. In Proceed-

ings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’09, organization.

[106] Mijač, M., Mijač, Marko, 2019, Evaluation of design science instantiation artifacts in

software engineering research. In Central European Conference on Information and

Intelligent Systems.

[107] Mijač, M., Kermek, D., and Stapić, Z., Complex propagation of events - Design pattern

comparison. In Proceedings of 23rd International Conference on Information System

Development.

[108] Moore, E. F., Moore, Edward F, 1959, The shortest path through a maze. In Proc. Int.

Symp. Switching Theory, 1959.

[109] Murray, L., Carrington, D., and Strooper, P., Murray, Leesa and Carrington, David and

Strooper, Paul, 2004, An approach to specifying software frameworks. In Proceedings

of the 27th Australasian Conference on Computer Science - Volume 26, ACSC ’04, or-

ganization.

[110] Noda, N. and Kishi, T., Noda, Natsuko and Kishi, Tomoji, 2001, Implementing Design

Patterns Using Advanced Separation of Concerns. In In: OOPSLA 2001 Workshop on

AsoC in OOS (2001.

[111] Notkin, D., Garland, D., Griswold, W. G., and Sullivan, K. Adding implicit invocation to

languages: Three approaches. In Nishio, S. and Yonezawa, A., editors, Object Technolo-

gies for Advanced Software, number 742 in Lecture Notes in Computer Science. ISBN

978-3-540-57342-5 978-3-540-48075-4.

[112] Osherove, R. The Art of Unit Testing: With Examples in. Net. Manning Publications Co.,

2009.

[113] Parent, S. A Possible Future of Software Development, 2007.

[114] Parsons, D., Rashid, A., Speck, A., and Telea, A., Parsons, D. and Rashid, A. and Speck,

A. and Telea, A., 1999, A "framework" for object oriented frameworks design, organi-

zation.

262

[115] Peffers, K., Rothenberger, M., Tuunanen, T., and Vaezi, R. Design Science Research

Evaluation. In Peffers, K., Rothenberger, M., and Kuechler, B., editors, Design Science

Research in Information Systems. Advances in Theory and Practice, Lecture Notes in

Computer Science.

[116] Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. A Design Science

Research Methodology for Information Systems Research. Journal of Management In-

formation Systems, ISSN 0742-1222.

[117] Piveta Kessler, E. and Zancanella, L. C. Observer pattern using aspect-oriented program-

ming. Scientific Literature Digital Library, 2003.

[118] Polančič, G., Horvat, R. V., and Rozman, I. Improving object-oriented frameworks by

considering the characteristics of constituent elements. Journal of Information Science

and Engineering, 25:1067–1085, 2009.

[119] Prat, N., Comyn-Wattiau, I., and Akoka, J. A Taxonomy of Evaluation Methods for

Information Systems Artifacts. Journal of Management Information Systems, ISSN

0742-1222, 1557-928X.

[120] Pree, W. and Koskimies, K. Framelets - small and loosely coupled frameworks. ACM

Computing Surveys (CSUR), 32(1es):6, 2000.

[121] Raymond, P., Nicollin, X., Halbwachs, N., and Weber, D., Raymond, P. and Nicollin,

X. and Halbwachs, N. and Weber, D., 1998, Automatic testing of reactive systems,

organization.

[122] Riehle, D., Riehle, Dirk, 1996, The Event Notification Pattern - Integrating Implicit

Invocation with Object-Orientation.

[123] Riehle, D. and Gross, T. Role model based framework design and integration. ACM

SIGPLAN Notices, ISSN 03621340.

[124] Roberts, D. and Johnson, R., Don Roberts and Ralph Johnson, 1996, Evolving frame-

works: A pattern language for developing object-oriented frameworks. In Proceedings

of the Third Conference on Pattern Languages and Programming, organization.

263

[125] Salvaneschi, G., Margara, A., and Tamburrelli, G., Salvaneschi, G. and Margara, A. and

Tamburrelli, G., 2015, Reactive Programming: A Walkthrough. In 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering (ICSE), volume 2.

[126] Salvaneschi, G., Amann, S., Proksch, S., and Mezini, M., Salvaneschi, Guido and

Amann, Sven and Proksch, Sebastian and Mezini, Mira, 2014, An empirical study on

program comprehension with reactive programming. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering, organiza-

tion.

[127] Salvaneschi, G., Drechsler, J., and Mezini, M. Towards Distributed Reactive Program-

ming. In Nicola, R. D. and Julien, C., editors, Coordination Models and Languages,

number 7890 in Lecture Notes in Computer Science. ISBN 978-3-642-38492-9 978-3-

642-38493-6.

[128] Salvaneschi, G., Eugster, P., and Mezini, M. Programming with Implicit Flows. IEEE

Software, ISSN 0740-7459.

[129] Salvaneschi, G. and Mezini, M., Salvaneschi, Guido and Mezini, Mira, 2013, Reac-

tive Behavior in Object-oriented Applications: An Analysis and a Research Roadmap,

organization.

[130] Salvaneschi, G. and Mezini, M., Salvaneschi, Guido and Mezini, Mira, 2016, Debug-

ging for reactive programming. In Proceedings of the 38th International Conference on

Software Engineering, organization.

[131] Samuel-Ojo, O., Olfman, L., Reinen, L. A., Flenner, A., Oglesby, D. D., and Funning,

G. J. Design Methodology for Construction of Mapping Applications. In Design Sci-

ence at the Intersection of Physical and Virtual Design, volume 7939. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013.

[132] Sanada, Y. and Adams, R. Representing design patterns and frameworks in uml - towards

a comprehensive approach. Journal of Object Technology, 1(2):143–154, 2002.

264

[133] Santos, A. L., Lopes, A., and Koskimies, K., Santos, André L and Lopes, Antónia and

Koskimies, Kai, 2007, Framework specialization aspects. In Proceedings of the 6th

international conference on Aspect-oriented software development.

[134] Schmidt, D. C. and Buschmann, F., Schmidt, Douglas C. and Buschmann, Frank, 2003,

Patterns, frameworks, and middleware: Their synergistic relationships. In Proceedings

of the 25th International Conference on Software Engineering, ICSE ’03, organization.

[135] Schmidt, D. C., Gokhale, A., and Natarajan, B. Leveraging application frameworks.

Queue, 2(5):66, 2004.

[136] Schuster, C. and Flanagan, C., Schuster, Christopher and Flanagan, Cormac, 2016, Re-

active programming with reactive variables, organization.

[137] Sommerville, I. Software engineering. Pearson, Boston, 9th ed edition, 2011. ISBN

978-0-13-703515-1 978-0-13-705346-9.

[138] Sonnenberg, C. and vom Brocke, J. Evaluation patterns for design science research

artefacts. In Practical Aspects of Design Science. Springer.

[139] Sparks, S., Benner, K., and Faris, C. Managing object oriented framework reuse. Com-

puter, 29(9):52–61, 1996.

[140] Srinivasan, S. Design patterns in object-oriented frameworks. Computer, 32(2):24–32,

1999.

[141] Srinivasan, S. and Vergo, J., Srinivasan, Savitha and Vergo, John, 1998, Object oriented

reuse: experience in developing a framework for speech recognition applications. In

Proceedings of the 20th international conference on Software engineering.

[142] Stanojević, V., Vlajić, S., Milić, M., and Ognjanović, M., Stanojević, Vojislav and Vlajić,

Siniša and Milić, Miloš and Ognjanović, Marina, 2011, Guidelines for framework devel-

opment process. In Software Engineering Conference in Russia (CEE-SECR), 2011 7th

Central and Eastern European.

[143] Steimann, F., Pawlitzki, T., Apel, S., and Kastner, C. Types and modularity for implicit

invocation with implicit announcement. ACM Transactions on Software Engineering and

Methodology, ISSN 1049331X.

265

[144] Štuikys, V. and Damaševičius, R. Taxonomy of fundamental concepts of meta-

programming. In Meta-Programming and Model-Driven Meta-Program Development.

Springer, 2013.

[145] Syromiatnikov, A. and Weyns, D., A Journey through the Land of Model-View-Design

Patterns. In 2014 IEEE/IFIP Conference on Software Architecture (WICSA).

[146] Szyperski, C., Gruntz, D., and Murer, S. Component software: beyond object-oriented

programming. Addison-Wesley Component software series. Addison-Wesley, London,

2nd ed edition, 1998. ISBN 978-0-321-75302-1. OCLC: 838151413.

[147] Taligent. Building object-oriented frameworks. Technical report, IBM, 1994.

[148] Tarjan, R. E. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):

171–185, 1976. ISSN 0001-5903, 1432-0525.

[149] Tennyson, M. F., A study of the data synchronization concern in the Observer design

pattern, organization.

[150] Tremblay, M., Hevner, A., and Berndt, D. Focus Groups for Artifact Refinement and

Evaluation in Design Research. Communications of the Association for Information Sys-

tems, ISSN 1529-3181.

[151] Tsvetinov, N. Learning Reactive Programming with Java 8. Packt Publishing Ltd, 2015.

[152] van den Broecke, J. A. and Coplien, J. O. Using design patterns to build a framework for

multimedia networking. Bell Labs Technical Journal, 2(1):166–187, 1997.

[153] van Gurp, J. and Bosch, J. Design, implementation and evolution of object oriented

frameworks: concepts and guidelines. Software: Practice and Experience, ISSN 0038-

0644, 1097-024X.

[154] Venable, J., Pries-Heje, J., and Baskerville, R. FEDS: a Framework for Evaluation in

Design Science Research. European Journal of Information Systems, 2014. ISSN 0960-

085X.

[155] W.B. Frakes and Kyo Kang. Software reuse research: status and future. IEEE Transac-

tions on Software Engineering, ISSN 0098-5589. SCHOLAR.

266

[156] Wieringa, R. Design methods for reactive systems: Yourdan, Statemate, and the UML.

Morgan Kaufmann Publishers, Boston, 2003. ISBN 978-1-55860-755-2.

[157] Wieringa, R. and Morali, A. Technical Action Research as a Validation Method in In-

formation Systems Design Science. In Peffers, K., Rothenberger, M., and Kuechler, B.,

editors, Design Science Research in Information Systems. Advances in Theory and Prac-

tice, number 7286 in Lecture Notes in Computer Science. Springer Berlin Heidelberg,

2012. ISBN 978-3-642-29862-2 978-3-642-29863-9.

[158] Wieringa, R. J. Technical Action Research. In Design Science Methodology for Informa-

tion Systems and Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg,

2014. ISBN 978-3-662-43838-1 978-3-662-43839-8. DOI: 10.1007/978-3-662-43839-

8_19.

[159] Yixing, X. and Yaowu, C., Yixing, Xia and Yaowu, Chen, 2007, A component-based

framework for embedded digital instrumentation software with design patterns. In Soft-

ware Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-

ing, 2007. SNPD 2007. Eighth ACIS International Conference on, volume 2.

[160] Zanarini, D., Jaskelioff, M., and Russo, A., Precise Enforcement of Confidentiality for

Reactive Systems, organization.

[161] Zhang, W. and Kim, M., Zhang, Wusheng and Kim, Mik, 2005, Application frameworks

technology in theory and practice’. In Proceedings of the Fifth International Conference

on Electronic Business.

[162] Zhuang, Y. Y. and Chiba, S. Expanding Event Systems to Support Signals by Enabling

the Automation of Handler Bindings. Journal of Information Processing, 24(4):620–634,

2016. ISSN 1882-6652.

[163] Zhuang, Y. and Chiba, S., Zhuang, YungYu and Chiba, Shigeru, 2012, Supporting meth-

ods and events by an integrated abstraction, organization.

[164] Zhuang, Y. and Chiba, S. Method Slots: Supporting Methods, Events, and Advices by a

Single Language Construct. In Transactions on Aspect-Oriented Software Development

267

XI, volume 8400. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-

642-55098-0 978-3-642-55099-7.

[165] Zhuang, Y. and Chiba, S., Enabling the Automation of Handler Bindings in Event-Driven

Programming. In Computer Software and Applications Conference, organization.

268

Curriculum vitae

Marko Mijač was born on the 30th of October 1985. He graduated at Faculty of Organization

and Informatics, University of Zagreb, where he currently works as a teaching assistant. He is

the member of Department for Information Systems Development, and is involved in teaching

of Software engineering, Business Information Systems, and Geographical Information Sys-

tems courses. Before joining the faculty, he worked as a software developer on developing

production information system in Boxmark Leather d.o.o., as well as on other smaller projects.

Also, during his work at the faculty, he participated in numerous projects, such as: Develop-

ment and maintenance of KI Expert Plus software; MEDINFO - Curriculum Development for

Interdisciplinary Postgraduate Specialist Study in Medical Informatics; IRI Hyper, User Experi-

ence of the Future - Smart Specialization and Contemporary Communication and Collaboration

Technology, and others.

His area of interest is a broad field of software engineering and information systems devel-

opment. In particular, he is interested in software frameworks, software architectures, design

patterns, and other forms of code and design reuse. He has authored numerous scientific and

professional papers.

LIST OF PUBLICATIONS

[1] Mijač, M., García-Cabot, A., Strahonja, V. (2021). Reactor design pattern. TEM Journal,

10(1) (Accepted for publication)

[2] Stapić, Z., Lechner, N. H., & Mijač, M. (2020). Software engineering knowledge transfer

channels between university and medical device industry: a gap analysis. Fachtagung des

GI-Fachbereichs Softwaretechnik 24.-28. Februar 2020 Innsbruck, Austria, 183.

[3] Mijač, M. (2019). Evaluation of Design Science instantiation artifacts in Software engi-

neering research. In Central European Conference on Information and Intelligent Systems

(pp. 313-321). Faculty of Organization and Informatics Varazdin.

[4] Mijač, M., Picek, R., & Andročec, D. (2019). Determinants of ERP Systems as a Large-

Scale Reuse Approach. In MATEC Web of Conferences (Vol. 292, p. 03007). EDP

Sciences.

[5] Andročec, D., Picek, R., & Mijač, M. (2018). The ontologically based model for the

integration of the IoT and Cloud ERP services. In Proceedings of the 8th International

Conference on Cloud Computing and Services Science (pp. 481-488).

[6] Mijač, M., Andročec, D., & Picek, R. (2017). Smart city services driven by IoT: A

systematic review. Journal of Economic and Social Development, 4(2), 40-50.

[7] Picek, R., Mijač, M., & Andročec, D. (2017). Acceptance of Cloud ERP systems in Croa-

tian companies: Analysis of key drivers and barriers. Economic and Social Development:

Book of Proceedings, 513-522.

[8] Stapić, Z., Mijač, M., & Strahonja, V. (2016, May). Methodologies for development of

mobile applications. In 2016 39th International Convention on Information and Commu-

nication Technology, Electronics and Microelectronics (MIPRO) (pp. 688-692). IEEE.

[9] Picek, R., Mijač, M., & Andročec, D. (2015). Use of business information systems in

Croatian companies. Economic and Social Development: Book of Proceedings, 154.

[10] Mijač, M., & Stapić, Z. (2015, September). Reusability metrics of software components:

survey. In Proceedings of the 26th Central European Conference on Information and

Intelligent Systems (pp. 221-231).

[11] Tepavac I., Valjevac K., Kliba S., and Mijač M. (2015). Version Control Systems, Tools

and Best Practices: Case Git CASE 27, Zagreb

[12] Šimić D., Deželić G., Vondra P., Jovanović M., Mijač M., Hercigonja-Szekeres M.,

Božikov J., Kern J. (2015). "Medicinska informatika - Kvalifikacije i zanimanja", Faculty

of Organization and Informatics, Varaždin (Book chapter)

[13] Mijač, M., Kermek, D., & Stapić, Z. (2014). Complex Propagation of Events: Design

Patterns Comparison. In Proceedings of the 23rd International Conference on Information

Systems Development (ISD2014 Croatia) (p. 306).

[14] Alen, H., Macan, D. A., Antolović, Z., Tomaš, B., & Mijač, M. (2014). Image pattern

recognition using mobile devices. Razvoj poslovnih i informacijskih sustava CASE 26,

107.

270

[15] Mijač, M., Picek, R., & Stapić, Z. (2013). Cloud ERP System Customization Challenges.

In Central European Conference on Information and Intelligent Systems.

[16] Stapić, Z., Mijač, M., & Tomaš, B. (2013). Monetizing Mobile Applications. Razvoj

poslovnih i informacijskih sustava CASE 25, 61.

[17] Šaško, Z., Mijač, M., Stapić, Z., Domínguez Díaz, A., & Saenz de Navarrete Royo,

J. (2012). Windows Phone 7 Applications development using Windows Azure Cloud.

Razvoj poslovnih i informacijskih sustava CASE 24.

[18] Mijač M. (2009). Razvoj aplikacije za veleprodajno poslovanje, koja se oslanja na objektno-

relacijsku bazu podataka, Faculty of Organization and Informatics (Graduate thesis)

271

