O_HAI 4 Games - D4.1. Case Study 1 - MMORPGs

Schatten, Markus

Other document types / Ostale vrste dokumenata
Publication year / Godina izdavanja: 2021

Permanent link / Trajna poveznica: https://urn.nsk.hr/urm:nbn:hr:211:511672

Rights / Prava: Attribution-NonCommercial 3.0 Unported/Imenovanje-Nekomercijalno 3.0

Download date / Datum preuzimanja: 2024-12-19

Repository / Repozitorij:

]
f SVYEDCILISTE U ZACRERL
FAEKULTET ORGAMIZACIJE I INFORMATIKE B . . _DiAi
o I Az Faculty of Organization and Informatics - Digital
Repository

DIGITALNI AKADEMSKI ARHIVI I REPOZITORILII

https://urn.nsk.hr/urn:nbn:hr:211:511672
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:8188
https://dabar.srce.hr/islandora/object/foi:8188

U_HAICA)Games

Orchestration of Hybrid Atrtificial Intelligence
Methods for Computer Games

Case Study 1 - MMORPGs

This project was funded by the Croatian Science Foundation

Principal investigator:

Markus Schatten

lab

Copyright © 2021 Artificial Intelligence Laboratory

PUBLISHED BY ARTIFICIAL INTELLIGENCE LABORATORY,
FACULTY OF ORGANIZATION AND INFORMATICS, UNIVERSITY OF ZAGREB

HTTP://AI.FOI.HR/OHAI4GAMES

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
Some of the results presented in this deliverable have been published in [48, 62].

Technical Report No. AIL202101 — First release, May 2021, edit September 2022

Document compiled by: Markus Schatten with inputs from other project team members

This work has been supported in full by the Croatian Science Foundation under the project number
1P-2019-04-5824.

http://ai.foi.hr/ohai4games
http://creativecommons.org/licenses/by-nc/3.0

O_HAL
(q)

Games

aghrzz foi @

1 Hrvatska zaklada za znanost ;)3(*5':‘5[‘:3:“'5“5 lab
(Conien’rs
1 Project Description 1
1.1 Abstract 1
1.2 Introduction 1
1.3 Team Members 3
2 MMO IF and Game Engine Implementation 5
2.1 Introduction 5
2.2 Related Work 6
23 Interactive Fiction 6
24 Massively Multiplayer On-line Role Playing Games 7
25 MMO-IF 8
2.6 Implementation Example 9
2.7 Conclusion 11
3 MMORPG botdetection 13
3.1 Introduction 13
3.2 Related Work 14
3.2.1 Types Of BOtS .. . 16
3.3 Requirements 17
3.4 A Conceptual Model 18
3.5 Conclusion 19

Bibliography e 21

O_HAL
(q)

Games

1.1

1.2

hrzz RN KA
E .’l K Lv LTET

ORGANIZACIJE 1
1 ’ Hrvatska zaklada za znanost ~ INFORMATIKE

lab

(l . Project Description

Abstract

Hybrid artificial intelligence (HAI) methods, which can be defined as the orchestration of comple-
mentary heterogeneous both symbolic and statistical Al methods to acquire more precise results,
are omnipresent in contemporary scientific literature. Still, the methodology of developing such
systems is in the most cases ad-hoc and depends from project to project. Computer games have
always been connected to the development of Al. From the earliest chess minmax algorithm
by Claude Shannon in 1949 to the more recent AlphaGo in 2015, computer games provide an
ideal testing environment for Al methods. Similarly, Al has always been an important part of
computer games, which have often been judged by the quality of their Al and praised if they
used an innovative approach. Computer games allow us to test AI methods, not only for fun and
leisure, but also for numerous other fields of human activity through the fields of serious games and
gamification. The project proposes to establish a new framework for the orchestration of hybrid
artificial intelligence methods with a special application to computer games. Therefore an ontology
of hybrid Al methods as well as a meta-model shall be developed that would allow for creating
models (ensembles) of hybrid Al methods. This meta-model would be implemented into a modular
distributed orchestration platform which would be further enriched with a number of modules to be
tested in four gaming related environments: (1) MMORPG games, (2) gamified learning platform,
(3) serious game related to autonomous vehicles and (4) a game for a holographic/volumetric
gaming console which would also be developed during the project.

Intfroduction

The application of HAI which can be defined as the orchestration of heterogeneous artificial
intelligence (AI) methods including both statistical and symbolic approaches in various domains
is omnipresent in current scientific literature. It is largely overlapping with the term hybrid
intelligence (HI) that has been defined as "the combination of complementary heterogeneous
intelligences (...) to create a socio-technological ensemble that is able to overcome the current
limitations of (artificial) intelligence." [20]. HI lies at the intersection of human, collective and

2 Chapter 1. Project Description

artificial intelligence, with the intent of taking the best of each.

There have been numerous studies recently addressing issues related to HAI and HI methods
in a multitude of application domains including but not limited to land-slide prediction [38], drug
testing [13], forecasting crude oil prices [64], prediction of wildfire [31], evaluation of slope
stability [36], modeling of hydro-power dam [9], wind energy resource analysis [24], industry 4.0
and production automation [4], airblast prediction [3], heart disease diagnosis [39] and these are
just a few references from 2018 until the time of writing this proposal. Most of these and such
studies report building HAI systems by combining various Al methods to acquire better and more
precise results. However, when it comes to methodology of the actual orchestration of HAI methods
the usual approach is ad-hoc and depends from project to project. The lack of methodology in
orchestrating HAI shall be addressed in the proposed project.

In a previous project sponsored by the Croatian Science Foundation (Installation Project No.
HRZZ-UIP-2013-11-8537 entitled Large-Scale Multi-Agent Modelling of Massively Multi-Player
On-Line Playing Games - ModeIMMORPG - see [53] for details) a comprehensive methodology for
modelling large-scale intelligent distributed systems has been developed that includes a graphical
modelling tool and code generator (described in [52] and in more detail in [42]). The implemented
toolset allows for modelling complex multi-agent organizations and could be applied to numerous
applications domains [49, 50]. Herein, we would like to apply and incorporate this methodology to
the development of the HAI orchestration platform.

Computer games have always been connected to the development of Al. From the earliest
chess minmax algorithm by Claude Shannon in 1949 to the more recent AlphaGo™ in 2015,
computer games provide an ideal testing environment for Al methods. Similarly, Al has always
been an important part of computer games. Computer games have often been judged by the quality
of their Al and praised if they used an innovative approach like the ghosts in Pacman™ which
had individual personality traits (1980), Creatures™ which used neural networks for character
development (1996), Black & White™ which used the belief-desire-intention (BDI) model (2000),
FE.A.R.™ which used automated planning algorithms (2005) and many others (see [69, pp. 8—15]
for a very detailed overview). Artificial intelligence in games is not only used for non-playing
character (NPC) or opponent implementation, but also for various other parts of games [69, pp.
151-203] including but not limited to generation of content (graphics including levels and maps,
sound, narratives, rules and mechanics or even whole games like the Angelina game-generating
system [17]), player behaviour and experience modeling [69, pp. 203-259], as well as bot
development and automated game testing [69, pp. 91-151]. Due to their complex nature and
endless possibilities of creative design, computer games present us with an excellent opportunity to
study the orchestration of HAI in various scenarios — not only for fun and leisure but also for other
domains in form of serious games and/or gamification.

In the previously mentioned ModeIMMORPG project, we have already used an open source
massively multi-player on-line role-playing game (MMORPG) called The Mana World (TMW)
for which we have implemented a high-level interface to test intelligent agents playing the game.
Additionally a number of connected game quests have been developed for various scenarios which
allowed us to build an automated game testing system [51]. Herein we would like to use this
interface to test orchestrated HAI methods, but also develop other testbeds for the planned platform.

Therefore, the main contribution of the proposed project shall be: (1) a comprehensive frame-
work for the orchestration of hybrid artificial intelligence methods for computer games allowing to
define models of HAI for various purposes, (2) an open source distributed cloud platform that will
allow to implement such models based on existing HAI methods and connect them directly from
game development platforms, (3) a set of best practices in developing HAI ensemble models tested
in at least four specific testbeds described bellow.

1.3 Team Members

1.3 Team Members

Markus Schatten (Principal investigator)
Head of Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb

Jaime Andres Rincon Arango

Grupo de Tecnologia Informatica e Inteligencia Artificial (GTI-1A),
Departamento de Sistemas Informéticos y Computacion,
Universitat Politecnica de Valencia

Bogdan Okresa Durié¢

Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb

Carlos Carrascosa

Grupo de Tecnologia Informatica e Inteligencia Artificial (GTI-1A),
Departamento de Sistemas Informaticos y Computacion,
Universitat Politécnica de Valéncia

Damir Horvat

Department of Quantitative Methods
Faculty of Organization and Informatics,
University of Zagreb

Vicente Julian

Grupo de Tecnologia Informatica e Inteligencia Artificial (GTI-IA),
Departamento de Sistemas Informéticos y Computacion,
Universitat Politecnica de Valencia

Tomislav Peharda

Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb

Glenn Smith
College of Education,
University of South Florida

Igor Tomici¢

Center for Forensics, Biometrics and Privacy
Faculty of Organization and Informatics,
University of Zagreb

Neven Vrcek

Department of Information Systems Development
Faculty of Organization and Informatics,
University of Zagreb

O_HAL
(q)

Games

Hrvatska zaklada za znanost "‘*“"“‘“'“ lab

(2. MMO IF and Game Engine Implementation

2.1 Introduction

Computer games which have a textual user interface and in which players interact with the game
using text commands are usually called IF, text adventures, gamebooks and even in some cases, if
an additional graphical interface is present, visual novels [27]. Interactive fiction games consist of
narrative worlds often organized in so called rooms which players can explore by using various
commands. The term "room" here is quite broadly defined and can encompass any type of space an
avatar can exist in, including but not limited to actual rooms, houses, caves, open spaces, vehicles,
physical dimensions or even states of mind [1]. These rooms are usually connected through doors
which represent the gateways between spaces. "Doors" are again very broadly defined and can
include various pathways like actual doors, streets, portals, staircases, time machines etc. A lot of
IF games fall into the role-playing game (RPG) genre, but there are exceptions.

On the other hand MMO games which allow for thousands and sometimes even hundreds of
thousands players playing simultaneously, are an interesting contemporary phenomenon due to the
possible mutual interactions between players, especially in the form of organizing their behaviour
to perform certain game-related tasks [52]. Additionally MMORPGs which combine the massive
multiplayer aspect with the RPG genre, provide us with an opportunity to study the possibility
for integrating IF and MMO [51]. IF games in most cases fall into the RPG genre, but there are
exceptions.

In this chapter we present an initial attempt on creating a game engine for MMO IF games. We
base our implementation upon Inform 7' IF which is a declarative programming language for the
development of IF based on natural language. We have developed a Python interface? to the Glulxe
IF interpreter in order to be able to extend Inform 7 capabilities with various Al related methods.
One application example of this interface was using multiagent system (MAS) inside IF games
which has shown very promising characteristics on which we will build upon herein by introducing
a game engine layer that allows interaction and synchronization between players inside the same
narrative world.

! Available here: http://inform7.com/
2 Available here: https://github.com/AILab-FOI/python-glulxe.git

http://inform7.com/
https://github.com/AILab-FOI/python-glulxe.git

2.2

23

6 Chapter 2. MMO IF and Game Engine Implementation

The rest of this chapter is organized as follows: firstly in section 2.2 we provide an overview
of related work. Afterwards in section 2.3 IF games are introduced and described in more detail.
In section 2.4 we give an introduction to MMO games with a special focus on elements that can
and should be part of IF games. In section 2.5 we introduce our game engine layer for MMO IF
games and provide insights into implementation specific details. Then in section 2.6 we provide an
example MMO IF game and discuss other possibilities of implementation. In the end in section 3.5
we draw our conclusions and give guidelines for future research.

Related Work

There are not many papers describing game engines for MMO IF, and up to our best knowledge
there are none using an agent based approach in implementing an MMO IF game engine.

For example, in [32] a persistent system called True Story that has dynamically generated and
contextually linked quests is explored. The implemented game tried to persuade the player to be a
maker of its own story by completing quests and taking non-scripted paths trough a game, thus
creating a unique user experience. The quest generation engine is based on a number of different
constraints such as memories (what the player character did in the past), attributes (what an object
is capable of), actions (what an object can do), layer (relationships established between objects)
and proximity (area in which objects can interfere). Using these constraints, the system generates
quests based on the player character’s values of each constraint and state of the world. They achieve
a system that can generate numerous quests that are specific for a player and its impact in the
game environment. Whilst the implemented game does have elements of the RPG genre and IF,
some elements like communication and interaction between players seem not to be addressed and
the game cannot be considered an actual MMORPG since network play has been left for future
research.

The paper [33] examines the Twine? platform which is and open source platform for developing
interactive fiction. The author compares games made in Twine with mainstream games with focus
on what emotional experience can game produce in player, and among other things, outlines the
capability of Twine for implementing multi-player games. One of the first such games was Naked
Shades*, which was developed for the Ludum Dare gamejam in 2013. Sadly, the game isn’t
available any more, but nevertheless presents some interesting aspects of IF multiplayer games like
how the narrative world is influenced by previous and on-line players.

The authors in their article [18] compare and analyze visual novels that use virtual reality
technology as part of storytelling and enhanced immersion into a story. As they conclude, good
graphics are needed for visual novels to be a good game for using virtual reality; otherwise, the
player will not experience fully immersed in the story. While the games mentioned in the article do
not have MMO elements, some important aspects of MMO IF games are outlined like multi-linear
storytelling and player interaction.

Interactive Fiction

IF games are usually adventure, RPG and other narrative based games written in words in simple
scenarios in which players can create stories through interacting with in game characters, items and
the environment, usually by issuing defined sets of commands in a textual interface [8].

IF narrative worlds besides having "rooms" and "doors" connecting them usually describe
objects or things that are placed in various rooms which can be examined and interacted with. Such
object can for example be:

3 Available here https://twinery.org/
4Description available here http://ludumdare . com/compo/ludum-dare-26/?action=preview&uid=23541

https://twinery.org/
http://ludumdare.com/compo/ludum-dare-26/?action=preview&uid=23541

24

2.4 Massively Multiplayer On-line Role Playing Games 7

* NPCs that the player can communicate with,

* containers that might have other objects within,

edibles that can be consumed,

» wearables that can be used as clothes or equipment, etc.

Inform 7

glulxe P> python-glulxe [&——- pexpect

asyncio f——=$p- MMO-IF

| SPADE

Figure 2.1: Dependency graph of the implemented game engine layer (blue: Python modules;
white: external tools)

As opposed to most computer games focused on graphics, IF is focused on the story and
narrative which makes it an interesting and different medium similarly as printed novels differ
from movies. While some authors consider it a literary genre [72] other argue that due to the users
interaction and other game elements IF works are mostly computer games [29].

Massively Multiplayer On-line Role Playing Games

Role-playing video or computer games (commonly referred to as only role-playing games or RPGs)
are a game genre in which the player controls the actions of some protagonist (or potentially
several party members) in a world which is well defined [15]. A massively multi-player on-line
game (MMOG) is a (computer) game that supports a great number of players playing on-line
simultaneously causing or even fostering interaction among them [45]. Massively multi-player
on-line role playing games are thus a mixture of these two genres allowing players to control the
action of their protagonist (avatar) by interacting with a potentially large user-base on-line [6].
The global market for MMO games is growing rapidly with an estimate of 21.94 Bn €
in 2025 [59]. While the economic importance of MMORPGs is obvious, another aspect is of
equal importance: it allows us to investigate two aspects of large-scale computing - (1) social
interaction of (large numbers of) players through a computing platform as well as (2) the design
and implementation large-scale distributed artificial intelligence (in form of non-player characters —

2.5

8 Chapter 2. MMO IF and Game Engine Implementation

NPCs, mobs — various monsters to be fought, as well as Al players — bots).

MMO-IF

In the following we shall layout our implementation of the MMO IF game engine layer. The two
main characteristics of MMO that the proposed implementation attempts to achieve are enabling
communication between players and notifying players when another player enters the current room.
Whilst these features are basic for MMO games, using them in an IF environment which is limited
to a text only interface, has its particularities.

Player agent 1

Player 1 <
python-glulxe interface
XMPP messaging

IF game

instance
n Server agent
|
n
n
. .
- XMPP messaging

Player agent N
Winwt/:tput python-glulxe interface
Player N IF game

instance

Figure 2.2: Architecture of interconnected game instances

The communication between players refers to the ability to send a message either privately, to a
single player or broadcast to everyone. To make the experience of communication feel more natural,
a restriction has been put in place that allows players to send their messages only to players that are
located in the same room as the player. To start any type of communication, it is required from
a player to execute it by typing in a special command (in our case the command has to start with
the @ symbol). The format is @player message, where player must be a valid player username
to send the message directly, or everyone to send it to everyone. Obviously, message refers to a
string (which might include white spaces) that is to be previewed to the receiver. On the receiving

2.6

2.6 Implementation Example %

side the agents connected to the MMO server have to monitor communication and react in case a
message is sent to the player in question.

The second implemented MMO characteristic relates to notifying a player when another player
enters the current room. Contrary to the communication which must be executed by players
themselves, notifications about players entering the room are dispatched automatically, every time
a player moves between rooms.

We have used a number of technologies to build the described layer®. The primary technologies
could be narrowed down to Inform 7, Python, and the Extensible Messaging and Presence Protocol
(XMPP) through the Smart Python Agent Development Environment (SPADE)® framework [2, 44].
As the idea is to develop the game engine layer on top of Inform 7, a developer is not required
to add any additional code to its IF game, but only to set up a room structure (which is a usual
requirement for IF games). Figure 2.1 shows the various dependencies. The layer is implemented
in form of a MAS [43] in which individual players are represented as agents (game avatars) which
are aware of their local environment whilst to anticipate the actions of other players in the game
they communicate with a server agents that synchronizes the global state of the game.

To process input or output to the IF game in order to accommodate stated MMO characteristics,
a Python interface has been put in place serving as a layer between a player and the game. By
intercepting the player’s input, the interface is used to check if the input is in a format which would
indicate that a player is attempting to dispatch a message. On the other hand, by intercepting the
game output, the role of the interface is to detect whether a player has changed rooms. On each
room change, the game returns an output saying You entered [name] room where name refers
to the name of the room. That way, by parsing the output, the interface keeps track of the player’s
location.

The XMPP facilitates the communication between players. This is achieved by having a
centralized server agent that is aware of the active players and their locations. The two types of
the XMPP messages that the server reacts to are when a player changes the location, and when a
player wants to send a message. The location change type of the XMPP message is significant as it
is involved in the restriction logic that defines who will be the receivers of a message that the server
dispatches. Furthermore, when the server receives this type of message, it sends a notification to all
players located in the same room as the sender, indicating what player changed its location. The
other type of the XMPP message relates to ability to exchange messages between players. On the
server end, this includes logic to determine who all shall be receivers of the message. Eventually, the
player agent accepts the XMPP messages that the server dispatches, and shows them accordingly
in each player’s interface.

Figure 2.2 gives a visual description of how the described system components are connected,
as well as how the communication is established.

Implementation Example

Below is a basic IF game developed in Inform 7 to support our MMO implementation.

"RoOms" by Tomislav Peharda
Release along with an interpreter.
Release along with a website.

When play begins:
say "You got into the roOm! Try communicating with the other people
< in here with @"

5The full code is vailable here: https://github.com/AILab-F0I/MMO-IF
6Available here: https://spade-mas.readthedocs.io

https://github.com/AILab-FOI/MMO-IF
https://spade-mas.readthedocs.io

10 Chapter 2. MMO IF and Game Engine Implementation

The yellow is a room. The description is "You entered the yellow room.".
The blue is a room. It is east of the yellow. The description is "You
< entered the blue room.".
The green is a room. It is west of the yellow. The description is "You
< entered the green room.".
The red is a room. It is south of the yellow. The description is "You
— entered the the red room.".
The orange is a room. It is north of the yellow. The description is "You
—> entered the orange room.".

When the IF game is started, a player is positioned in one of the available rooms. In our
example, there are five rooms that a player can move between and all of them are named by colors.
By default, a player starts in the yellow room. In each direction, there is a single room available as
shown on figure 2.3.

Orange

Green Yellow Blue

Red

Figure 2.3: IF example game room structure

The proposed MMO-IF implementation can work along with any Inform 7 game without any
adjustments needed. The only requirement that the game must fulfil is that the output format
indicating room change also remains unchanged (example: "You entered the yellow room").

In this example we have chosen to showcase three players, but an arbitrary number of players
could join the game having the adequate game interface. Below are three blocks showing the output
of each player. The players and their corresponding output are in this order tpeharda_agent_alpha,
tpeharda_agent_beta, and tpeharda_agent_omega. The output previews both the use-cases, commu-
nication between players, and notifications when a player enters a room.

tpeharda_agent_alpha
You entered the yellow room.

tpeharda_agent_beta has entered the yellow room.
tpeharda_agent_omega has entered the yellow room.

> go west
You entered the green room.

2.7

2.7 Conclusion 11

tpeharda_agent_beta has entered the green room.
tpeharda_agent_omega has entered the green room.

> Qeveryone hey everyone!

> Q@tpeharda_agent_beta hey beta!

tpeharda_agent_beta
You entered the yellow room.

tpeharda_agent_omega has entered yellow room.

> go west
You entered the green room.

tpeharda_agent_omega has entered the green room.

tpeharda_agent_alpha said: hey everyone!
tpeharda_agent_alpha said: hey beta!

tpeharda_agent_omega
You entered the yellow room.

> go west
You entered the green room.

tpeharda_agent_alpha said: hey everyone!

Player tpeharda_agent_alpha has joined the game before everyone else hence it is notified when
tpeharda_agent_beta and tpeharda_agent_omega joined the same room. The player in question also
dispatches two messages, one directed to everyone with content "hey everyone!", and another one
directed precisely to tpeharda_agent_beta with content "hey beta!". Thus, the other two players
receive a message depending if they are the specified receiver.

Conclusion

In this chapter we have provided a novel game engine layer that introduces MMO to IF games using
a MASs approach. It can be used in any existing IF game developed in Inform 7 without any (or
sporadically minor) adjustments. We have provided an initial implementation of a MMO IF game
to test the implemented layer by using the Inform 7 IF programming language, Python to create an
interface and particularly SPADE for the implementation of agents. Whilst the proof-of-concept
game is simplistic, it shows a promising social interaction and user experience not usually present
in IF games. The MASs approach taken herein allows us to implement numerous Al techniques in
modelling player interaction as outlined in [47].

In the current implementation only communication and player presence are implemented, but
there are many other important features that should be addressed mostly related to synchronization
of the game state, items and in game characters. Such and similar features will be subject to our
future research.

O_HAL
(q)

Games

3.1

hrzz foi

ORGANIZACIJE 1

Hrvatska zaklada za znanost INFORMATIKE

lab

(3. MMORPG bot detection

Introduction

For quite some time, computer games have been part of everyday life for a significant number of
people, and according to a news report published by DFC Intelligence, there were more than 3
billion gamers by the 2020 [21]. Nowadays, almost every computer game provide some sort of
online component; either as comprehensive as playing with other players completely online, or as
simple as providing a scoreboard containing results from other players [66].

Considering that games require an input - as in, a user action - and process it in order to provide
a reaction to it in terms of an output, they are prone to exploits [16]. Exploiting a computer game is
more often referred to as cheating [65] and indicates an act where a player obtains some form of an
unfair advantage against the other legitimate players. In competitive games, where the goal may
potentially be to obtain score points, cheating would refer to an illegal action that player performs
to get better points. Some games may incorrectly implement functionalities that cunning players

leverage in their favour. The described type of oversight falls into a group of bugs and glitches [63].

The other type, where a player influences the game-play directly thus obtaining advantage requires
application of different techniques that often include advanced computer science skills.

The more complex a computer game is, the higher number of vulnerabilities it might have. In a
simple 2D snake game [68], the most influencing exploit would be related to score points. Contrary,
in a 3D multi-player first-person shooter (FPS) game [56], a player has much more functionalities
to exploit. That could relate to items a player brings, geo-location, behaviour towards other players
and so on. Besides for numerous game functionalities that may be exploited, there are also several
ways to develop cheats [65]. Some cheats directly affect player capabilities that could, for example,

result in enabling a player to see locations of opponent players that otherwise shall not be visible.

Different kind of cheats for the multi-player type of games are focused on malforming network
requests that are dispatched to the opponent players. That way, a player hypothetically misinforms
its opponents about actions it performs. In MMORPG [57] there is increasing use of bots [58] that
also fall into group of cheating. Bots are primarily used to do simple repeating tasks on behalf of
a human player in order to gain some form of an advantage. As [34] argue, "game bots destroy
the game balance and consume game contents fast. They cause honest users to feel deprived, lose

3.2

14 Chapter 3. MMORPG bot detection

interest and eventually leave the game." Consequentially, this leads to the decrease of the profit in
the gaming industry. Limelight [60] argues that 57% of gamers will not continue to make purchases
or play games on a website that has previously suffered a security breach.

Clearly, computer game producers do not want their games to be exploited, as that could
negatively impact them from different aspects [14]. Therefore, a lot of effort has been put into
securing games as much as possible. In computer games themselves, game producers have been
adding advanced mechanisms to detect if player in any way attempts to change the game-play.
In order to prevent malmorfed network requests, additional focus has been put towards better
communication encryption and advanced identification/authentication techniques [71]. The stated
improvements are dealing directly with hardening the game security. However, a more human-like
type of cheating includes development of bots which are harder to catch as they are developed to
work within the game boundaries, without exploiting them. Therefore, different behaviour analysis
mechanisms [58] are put in place to differentiate a human player from a bot.

Because the modern research is focused on developing bots that seem to be more human in
their behaviours, thus deceiving the passive detection methods as will be argued in the Related
Work section, we propose a method of an active bot detection in the form of an automated Turing
test, where our security bot approaches a player within the game and tries to communicate with it.
The answers of the approached player ("the suspect") would be evaluated, and based on the given
answers (or the lack of the same), our security bot would assess if the "suspect” is a human player,
or an artificial one.

Related Work

As stated previously, cheating in computer games is a large concern for any type of audience [14].
Different parties attempt to take various strategies in order to prevent cheating. S. Ferretti and M.
Roccetti [22] focus on cheating detection of malformed actions in peer-to-peer games. Essentially,
what happens is that players perform actions that do not complete immediately, but instead take
time to resolve. An opponent is informed about the execution of an action including time it took to
perform it. The problem here is that any player may malform an action data that is sent to their
opponent and fake execution times, therefore, influencing the game-play. What authors propose in
order to detect such cheating is to measure the execution time of each available action in the game,
and store it on each players’ end. That way, when players are engaged in a match, an automated
mechanism built in each players’ game engine evaluates the opponent action execution times to
detect potential cheating.

C. Zhao in [71] speaks about a similar problem, but on a more general level. In the article, Zhao
emphasises on the development of cheats that exploit the game and trojans that can be injected to
peers over network. Considering the both listed type of cheating is performed online, the solutions
that are proposed for avoiding the associated risks are based on implementing proper encryption
systems such as the RSA algorithm and/or enhanced identification/authentication mechanisms so
that players could not easily spoof their identity, as well as on higher performance servers and
bandwidth, in order to prevent any unplanned server downtimes, that could open up more space for
additional harm in sense of leveraging network instability.

In [58], authors deal with a type of cheating in MMORPG that introduced bots that play a
game on behalf of a player. Essentially, the bots are designed to do simple repeating tasks, such
as battling NPCs or trading possessed items to gain further advantage. Authors suggests that by
the analysis of bots behaviour, it is possible to detect them. In particular, frequencies of the stated
actions should distinguish human players from bots, as bots tend to perform certain actions much
faster.

Python-based bots that can play a game instead of the human player, by leveraging an unsecured
network protocol, is presented in detail in [61]. These bots use a low-level game interface to connect

3.2 Related Work 15

to the game and control a game character through specifically crafted network packets, and a higher-
level interface for basic reasoning.

A group of authors [35] examine how game logs can potentially be used to track down bots in a
MMORPGs game. Their assumption is that when players and bots engage in a party play, each type
has different goals. A player engages in a party play to complete quests that are otherwise harder to
complete for a single player, while behaviour of bots is geared towards items acquisition. That also
implies that party plays last much longer (even indefinitely) when bots are playing, which is one of
the main indications of bots involvement. Authors propose that the analysis of party play logs that
contain information about game events, especially repetitive player actions, could unveil bots.

Similarly, in [37] research is also geared on unveiling bots in MMORPGs based on the log
analysis. Concrete technique they vouch for is the analysis of player actions from a game log as a
function of the time lag. On a low level, that includes comparison of a human player actions against
bot actions to construct a model with capabilities to detect a bot behaviour.

Depending on a game genre, there are some key actions and characteristics that can be looked
for to distinguish a bot from a human player. In 2008 and 2009 there was a BotPrize competition
[30] organised with a goal to develop a human-like bot. Bots were developed for a FPS game called
Unreal Tournament 4. Judges, whose role was to give their verdict whether a player in a game was a
bot or a human, would analyse behaviour and game-play. Behaviour of bots were not so convincing,
therefore, judges were able to properly classify players. However, based on comments from judges,
what uncovered bots were lack of capabilities to plan their actions as well as inconsistencies in
their intentions, static movements, and aggressive behaviour. As for lack of planning capabilities,
bots would engage into one action and before completing it, move onto another one. Any advanced
planning, that would include applying strategy to combat opponents was fully missing. In terms of
static movements, bots would show signs of not having smooth movements, but rather stiff. Not
only that, at times they would get stuck and were unable to proceed further. Aggressive behaviour
is another indicator that makes it easier to detect bots. More specifically, bots would shoot a lot,
and be very accurate at it. The speed and accuracy can be remedied trivially however; as [30] argue,
"bot that shoots too quickly and accurately is easily identified as non-human, but it is simple to
slow the bot down and make its shots less accurate".

To identify bots, they might be even tested in specifically crafted scenarios. For example,
putting a bot in a location where there are plenty of obstacles would much faster reveal it than
putting it in a location with lots of open space. On a similar note, having a bot battle multiple
opponents at the same time may potentially result in bot resolving the situation in its favour with
greater success comparing to how a human player would perform [30]. Thus to minimise time
required to identify bots, scenarios where bots tend to show weaknesses could be designed with
indications on bot reactions to given scenario.

The primarily approach to detect a bot is by behaviour analysis [58]. Bots can be seen as regular
players with a concrete goal set. Often times, they are developed in such a way that they do not hold
superior capabilities to regular players. Identifying bots depends on a context. In MMORPGs some
bot types are defined to do repeating tasks indefinitely [58] thus to identify them, key indicators to
look for would be how long is a bot engaged in a game (if information is provided) and what sort of
tasks it executes. If a game is taking longer than some chosen time reference point, that could be a
relevant indicator. If a bot does a singular action continuously, such as trading items, that also might
be a relevant indicator. Game events and player actions are usually stored in game logs, therefore,
analysis of game logs can be used to identify them [37]. One of the possible ways to analyse game
state changes is by applying machine learning algorithms, such as Bayesian network approach [70].

A similar approach involves analysis of the network traffic [10]. A player pragmatically informs
either a server, or its peers about actions it performs. When examining network traffic, the main
focus should be on the execution time and the traffic magnitude. What that means is that a bot

3.2.1

16 Chapter 3. MMORPG bot detection

may potentially inform server or its peers about completion of an action by malmorfing a network
request and modification of execution times [22] so that the execution time takes shorter time than
it originally does.

Besides action execution times and repetitive actions, another aspect that could be analysed is
player movement [41]. Movement is also communicated over different channels either as a network
traffic, in logs or shared exclusively with the server. By extracting waypoints, it is possible to
recognise paths that are repetitive. If a bot always takes the same path between concrete outset
location and a destination, it may indicate that it has calculated the path as the optimal one.

With all the reviewed research body in the domain of bot detection in mind, an automatic bot
detection methods where an artificial system may differentiate between the human and the artificial
player still seems to be in its relative infancy. The use of CAPTCHA tests are considered in [26],
but this brings along the unnatural disruption of the game flow. Others, as mentioned, perform an
analysis of behaviour patterns, such as patterns of movement ([11], [12]), but as previously argued,
behaviours can be adapted to slip through such techniques [30], [55], [54]. Moreover, this year
for the first time on the BotPrize competition, two bots achieved humanness ratings of over 50%,
whereas the human players achieved average humanness ratings of just 40% in the form of a Turing
test which is conducted within this competition [7].

In light of all this bot behavioural advancements towards bot humanness, we propose a method
of an active bot detection in the form of an automated Turing test, where our artificial player
(security bot) approaches the player and tries to communicate with the player. The answers of the
player would be evaluated, and based on the given answers (or the lack of them) our security bot
would assess if the "suspect" is a human player, or an artificial one.

Types of Bots

Capabilities and complexity of bots depend on their purpose which also indicates how challenging
is it to develop them. In this context, bots can be classified in groups based on their level of
advancement. A bot that performs a single repetitive task, such as, writing a message in the chat
can be completely agnostic to its environment, as it requires no input. To develop this type of a bot,
there is no reasoning skills to be involved, therefore, development shall be easy [58].

Bots that require to process the input in order to properly react to an event require reasoning
capabilities to some degree. If they are developed to perform a simple action, such as battling
NPCs or trading items, in order to make an advantage in favour of a player, they need to be able
to recognise patterns that lead them to it. Usually this mean comparison conditions that evaluate
player state and input attributes [35].

A higher degree of reasoning capabilities involve machine learning algorithms [70]. That could
either be utilised to develop complete behaviour of a bot so that it may participate in all actions
provided in a game or to enhance capabilities of performing a single task. One of the possible
approaches to develop behaviour of a bot is by application of Bayesian network. The approach
includes programmatic analysis of attributes that describe different states of a player. The outcome
of the process is a model that is capable to react to state changes in the real-time. In simpler games,
where there is a limited number of actions available, a bot could be specialised to execute only
some of the actions rather than all of them. For example, in Pictionary [67], where the main tasks
consist of properly drawing a suggested item and for opponents to guess them, various computer
vision tools may be facilitated to enhance bots capabilities [5].

Previous types of bots are primarily developed to gain advantage on behalf of a player, however,
they do not put much significance on how easy or hard is it to detect them [30]. Human-like bots
do not only intend to be precise in their actions, but the goal of this type of bots is also to replicate
human behaviour as much as possible, so that opponents and detection mechanisms have hard
time detecting them [55]. In an FPS game that was discussed previously, that implies smooth

3.3

3.3 Requirements 17

movements, planning capabilities and environment awareness. To develop a bot with such degree of
advancement, it is likely that sole application of machine learning algorithms may not be sufficient
thus requiring manual adjustments of bot behaviour.

In this chapter, we have assumed "the worst case" scenario, where a bot is advanced to the level
that it can imitate human behaviour - both in playing the game and in conversational capabilities -
based on the currently available research and their limitations.

Requirements

The model proposed within this chapter relies on a game API through which we could infiltrate
our security bot into the game, and on the game chatting platforms, through which our bot can
communicate with other players. The game API on which this model partly relies is based on the
work presented in [46], which currently supports one MMORPG game (The Mana World). In order
to be able to distinguish the legit human player from an artificial one, our security bot needs to
be equipped with the ability to perform a form of a Turing test to a suspect player. Because of
this, we tried to identify types of questions that a more advanced Al bot playing the game would
fail to answer correctly. In most cases, bots are designed to perform specific actions, and rarely
are equipped with advanced chat capabilities; such bots are programmed to do only a few certain
things, and can easily be detected by starting a simple, general-topic conversations with them. For
example, a security bot can ask a simple questions like "what is the colour of the clear sky?", or
"give me any number that is not the result of adding two plus two", and even a simple response to
the "Hello" can yield results if there is no answer, as the real players are obliged to answer to the
security bot. In this work, we anticipate the "worst case scenario”, i.e. a bot that can imitate human
chat responses.

A group of authors have summarised passive and active bot detection methods, and more
significantly for our work, strategies for actively interrogating suspected chatbots [40].

As for the passive detection, authors analyse message size and inter-message delays in order to
successfully distinguish humans from bots. According to [25], in contrast to most bots, human inter-
message delays (times between sequential message transmissions) “appeared to follow a distinct
power law distribution, and human message sizes seemed to follow an exponential distribution
(with A = 0.034)”. As for the active detection, authors list possible strategies detailed in several
other papers. We have initially dismissed a few of them (questions with very informative answers,
keyword targeting, evasiveness, using rating games, using ambiguous questions) as such tactics
either do not seem feasible for the implementation of our security bot because of the automated
nature of the proposed interrogation method, whereas these tactics would require a more complex
answer analysis and reasoning, or they might be too intrusive for the game play, breaking the game
flow and irritating human players.

Other listed tactics proved to be more useful for our security bot, such as:

* Challenging the syntactic engine, which include questions based on elementary logic (for
example: “if New York is north of Atlanta, is Atlanta south of New York?”’), common typing
shortcuts (for example: “do u like to go 2 dinner b4 going to ¢ a movie?”), using figures of
speech or slang, and requesting enumerations to simple questions (for example: “name three
things you can do with a ball”).

 Using so called “URL questions” (Understanding, Reasoning, and Learning), where the idea
is to probe basic human intelligence. Examples are listed as follows.

UNDERSTANDING: “What shape is a door?”’; “What happens to an ice cube in a hot drink?”
REASONING: “Altogether, how many feet do four cats have?”; “What does the letter M
look like upside down?”;

LEARNING: “What comes next after Al, B2, C3,...?7”; “PLEASE IMITATE MY TYPING
STYLE!!!!”

34

18 Chapter 3. MMORPG bot detection

The bots would answer these questions nonsensically, evade or ignore the questions according
to [23].

» Using sub-cognitive questions, which rely on the “internal, physical, and/or personal-
historical experiences of human beings”, which computer lacks. In [19], authors suggest
questions aimed at physical structure and not on the higher-level cognition, but on the low-
level sensations and perceptions, for example: “What happens to your clothes if you fall into
a pool?”; “If you touch a hot pan, what does it feel like?”

» Using a guessing game based on internal human experiences. For example: “Would you like
to play a game? Then try to guess what I‘m thinking of..." We than provide a series of hints,
such as: "It digests food"; "It sometimes aches"; "Most people cannot pat their head and rub
this at the same time” (the answer is stomach). According to [19], bots should fail a Turing
Test based on such questions, because again the lack of common human experiences.

» Using a guessing game on general and common sense knowledge. For example, the "suspect"
would have to guess what is being hinted at: "You play this game with a black and white ball,
your feet, 2 nets, and 11 players on each team" (the answer is soccer). Or "You use this to talk
to people, you hold it in your hand, and you dial numbers on it" (the answer is telephone).

» Using emotional-based questions. For example: “How would you feel if you won the lottery”;
“Can you describe how you would feel if you were fired from your job for no obvious reason?”

» Using intentional misspellings. For example: "Doo yuo knowe whut thyme it iz?"; "ha+ is
yOre 8irthday?"; "Whhat iss yerr favvorite memmorie?" "Can you raed these wrods taht I‘ve
tyepd?"

Following these tactics we can extract a significant set of questions that our security bot can
use, and most of them could have a relatively simple answers which could be verified by simple
if-then logic and regular expressions with practically no need for more advanced reasoning, making
the automated Turing test more feasible.

A Conceptual Model

The proposed model relies on the work presented within the [46], implementing so called lower
and higher-level game interfaces for playing the game with artificial players.

The "lower-level interface" presented in the chapter enables the emulation of a legitimate game
client connecting to the server and playing the game. It does this by re-creating and manipulating
network packets being sent between the game server and the client, where the game server could
not differentiate between the packets sent by the Python script from those sent by the legitimate
game client [61].

The idea is to imitate the actions of the real human player. By following this idea further, the
artificial security bots could be infiltrated within computer games through such interfaces. The
reasoning and autonomy of such an security bot could be implemented within the "higher-level
interface" [46], which builds upon the lower-level by introducing an agent template implemented
in SPADE [28]. Authors have implemented a STRIPS-based planning system in Prolog, and an
agent knowledge base implemented using the SPADE knowledge-base system for SWI Prolog,
which could be refitted for different use-cases - for example, for new types of agents that may
require a different Al method, such as machine learning. There is a constant interaction between
the two interfaces; low-level interface is providing higher-level agent with actionable behaviours
such as navigation, NPC conversation handling, fight handling, party management, etc. The agent
autonomy is based on the belief-desire-intention (BDI) model, where the agent initially senses the
environment, updates it’s knowledge base, chooses a goal to accomplish, generates a plan for this
particular goal and then starts executing it.

Since the focus of our proposed security bot is on other players using potentially illegal activities,
the sensing part of the BDI would include observing the actions of other players, and upon detecting

3.5

3.5 Conclusion 19

Higher-Level Interface

SPADE planning system
. agent . agent behaviours
implementation

template knowledge base

Lower-Level interface

Gameplay functions

‘ Movement | Sensing é
E

‘ Attack | | Trade E
L

Equip item E

@)

Network protocol

Figure 3.1: A possible architecture for an agent-based security bot model [46]

the potential illegal action, the bot would set the goal to locate the player in question, approach it,
and test it for being either human player or artificial one in some form of the reverse Turing test.
In order for this to work, the security bot would need more detailed insight into the in-game data
- other player locations, actions, statistics, and other metadata, depending on the game itself, in
order to passively identify suspicious behaviours. This part may be implemented with any of the
aforementioned methods for detecting game bots. On the other hand, the security bot may also
randomly pick players and "interrogate"” them. The approached "suspect” must be able to identify
the security bot as such, because every player would be obliged to respond to the security bot,
otherwise risk being kicked out of the game.

Should the security bot identify the suspect as the game cheating bot, it could report it to the
game administrator, or autonomously ban the player from the game. Should the suspect pass the
test and prove itself to be human, the security bot departs and goes back to the loop of wandering,
sensing and detecting illegal activities, and randomly approaching players.

The game administrators would have a simple interface for upgrading their security bots with
new questions and tests in order to have the possibility to be ahead of the game bot designers which
could in time download all the challenges and hard code the answers into their bots.

Conclusion

The existing body of research is abundant with passive bot detection tactics, analysing game logs,
network traffic, bot behaviours and patterns, action execution times, message size and inter-message
delays in communication, and other relevant indicators, but rarely the literature answers the question:
what if more advanced, human-like cheating bot passes through all these mechanisms and remains

20 Chapter 3. MMORPG bot detection

Moving Possible illegal activity detected Approaching
Sensing OR Random encounter the suspect

Suspect responds

appropriately
Performing Suspect does not respond OR Notifying game admin
Turing test Suspect does not respond appropriately AND/OR
Removing the player
Additional test required

Figure 3.2: A high level concept of the security bot model

within the game undetected? The security bot model proposed within this chapter is an active
in-game mechanism that would aim to detect and prevent illegal artificial players or scripts from
playing the game, should those get by other security mechanisms. It would use a pool of carefully
designed questions to conduct a form of an automated Turing test on players with a sole purpose of
distinguishing a legit human player from an artificial one. Depending on its designed autonomy,
a security bot might report an illegal player, or even permanently remove it from the game. The
research so far includes the conceptual model of such a mechanism, with feasible implementation
methods through previously developed MMORPG game interfaces which would enable the security
bot to login to the game and play it as a regular player, tactics to be included in the development of
the question database, and a higher-level interface which would enable the security bot with basic
reasoning and planning capabilities. Further research will include the full implementation of such a
bot and proof of concept on a single computer game, with the aim of detecting other bots within the
game and measuring its efficiency comparing with the existing passive detection methods that were
previously implemented.

O_HAL
(q)

Games

hrzz RN KA
E .’l K Lv LTET

ORGANIZACIJE 1
1 ’ Hrvatska zaklada za znanost ~ INFORMATIKE

lab

(Bibliogrqphy

[1]
(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

Jim Aikin. “The Inform 7 Handbook™. In: (2009) (cited on page 5).

Estefania Argente et al. “Supporting agent organizations”. In: International Central and
Eastern European Conference on Multi-Agent Systems. Springer. 2007, pages 236-245 (cited
on page 9).

Danial Jahed Armaghani et al. “Airblast prediction through a hybrid genetic algorithm-ANN
model”. In: Neural Computing and Applications 29.9 (2018), pages 619-629 (cited on
page 2).

Aydin Azizi. “Hybrid artificial intelligence optimization technique”. In: Applications of
Artificial Intelligence Techniques in Industry 4.0. Springer, 2019, pages 27-47 (cited on
page 2).

Giorgia Baroffio, Luca Galli, and Piero Fraternali. “Designing bots in games with a purpose”.

In: IEEE Symposium on Computational Intelligence and Games. Volume 2015. IEEE, 2015
(cited on page 16).

Roberta Biolcati, Virginia Pupi, and Giacomo Mancini. “Massively Multiplayer Online Role-
Playing Game (MMORPG) Player Profiles: Exploring Player’s Motives Predicting Internet
Addiction Disorder”. In: International Journal of High Risk Behaviors and Addiction 10.1
(2021) (cited on page 7).

BotPrize authors. BotPrize Humanness results. [Online; accessed 13-June-2021]. 2021. URL:
https://botprize.org/results/ (cited on page 16).

Mary Ann Buckles. “Interactive fiction: The computer storygame" Adventure"”. PhD thesis.
University of California, San Diego, 1985 (cited on page 6).

Kien-Trinh Thi Bui et al. “A novel hybrid artificial intelligent approach based on neural fuzzy
inference model and particle swarm optimization for horizontal displacement modeling of
hydropower dam”. In: Neural Computing and Applications 29.12 (2018), pages 1495-1506
(cited on page 2).

https://botprize.org/results/

22

Chapter 3. MMORPG bot detection

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

K.-T. Chen et al. “Identifying MMORPG Bots: A Traffic Analysis Approach”. In: EURASIP
Journal on Advances in Signal Processing volume (2009) (cited on page 15).

Kuan-Ta Chen and Li-Wen Hong. “User identification based on game-play activity patterns’.
In: Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for
games. 2007, pages 7-12 (cited on page 16).

Kuan-Ta Chen et al. “Identifying MMORPG bots: A traffic analysis approach”. In: EURASIP
Journal on Advances in Signal Processing 2009 (2008), pages 1-22 (cited on page 16).

Wei Chen et al. “Novel hybrid artificial intelligence approach of bivariate statistical-methods-
based kernel logistic regression classifier for landslide susceptibility modeling”. In: Bulletin
of Engineering Geology and the Environment (2018), pages 1-23 (cited on page 2).

Y.-C. Chen et al. “Online gaming cheating and security issue”. In: International Conference
on Information Technology: Coding and Computing (ITCC”05) - Volume I1. 2007, pages 518—
523 (cited on page 14).

Sawyer Collins and Selma Sabanovié. “" What Does Your Robot Do?" A Tabletop Role-
Playing Game to Support Robot Design”. In: 2021 30th IEEE International Conference on
Robot & Human Interactive Communication (RO-MAN). IEEE. 2021, pages 1097-1102
(cited on page 7).

Benjamin D. Cone et al. “A video game for cyber security training and awareness”. In:
Computers & Security (2007), pages 6372 (cited on page 13).

Michael Cook, Simon Colton, and Azalea Raad. “Inferring Design Constraints From Game
Ruleset Analysis”. In: 2018 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE. 2018, pages 1-8 (cited on page 2).

Rebecca Crawford and Yuanyuan Chen. “From hypertext to hyperdimension Neptunia: The
future of VR visual novels: The potentials of new technologies for branching-path narrative
games”. In: 2017 23rd International Conference on Virtual System Multimedia (VSMM).
2017, pages 1-7. DOT: 10.1109/VSMM.2017.8346298 (cited on page 6).

Jamie Cullen. “Imitation versus communication: Testing for human-like intelligence”. In:
Minds and Machines 19.2 (2009), pages 237-254 (cited on page 18).

Dominik Dellermann et al. “Hybrid intelligence”. In: Business & Information Systems
Engineering (2019), pages 1-7 (cited on page 1).

DFC Intelligence authors. Global Video Game Consumer Segmentation. [Online; accessed 10-
June-2021]. 2021. URL: https://www.dfcint.com/product/video-game-consumer-
segmentation-2/ (cited on page 13).

Stefano Ferretti and Marco Roccetti. “Game Time Modelling for Cheating Detection in
P2PMOGs: a Case Study with a Fast Rate Cheat”. In: The 5th Workshop on Network &
System SUpport for Games 2006 - NETGAMES 2006 (2006) (cited on pages 14, 16).

RM French. “Subcognitive probing: Hard questions for the Turing Test”. In: Proceedings
of the Tenth Annual Cognitive Science Society Conference. 1988, pages 361-367 (cited on
page 18).

Tonglin Fu and Chen Wang. “A hybrid wind speed forecasting method and wind energy
resource analysis based on a swarm intelligence optimization algorithm and an artificial
intelligence model”. In: Sustainability 10.11 (2018), page 3913 (cited on page 2).

Steven Gianvecchio et al. “Measurement and Classification of Humans and Bots in Internet
Chat.” In: USENIX security symposium. 2008, pages 155-170 (cited on page 17).

https://doi.org/10.1109/VSMM.2017.8346298
https://www.dfcint.com/product/video-game-consumer-segmentation-2/
https://www.dfcint.com/product/video-game-consumer-segmentation-2/

3.5 Conclusion 23

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Philippe Golle and Nicolas Ducheneaut. “Preventing bots from playing online games”. In:
Computers in Entertainment (CIE) 3.3 (2005), pages 3-3 (cited on page 16).

Mercedes Gomez-Albarran et al. “Authoring and playing interactive fiction with conventional
web technologies”. In: Multimedia Tools and Applications (2021), pages 1-43 (cited on
page 5).

Miguel Escriva Gregori, Javier Palanca Cdmara, and Gustavo Aranda Bada. “A jabber-based
multi-agent system platform”. In: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems. 20006, pages 1282—1284 (cited on page 18).

Matthew Hausknecht et al. “Interactive fiction games: A colossal adventure”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Volume 34. 05. 2020, pages 7903-7910
(cited on page 7).

Philip Hingston. “A new design for a turing test for bots”. In: Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games. IEEE. 2010, pages 345-350 (cited
on pages 15, 16).

Abolfazl Jaafari et al. “Hybrid artificial intelligence models based on a neuro-fuzzy system
and metaheuristic optimization algorithms for spatial prediction of wildfire probability”. In:
Agricultural and Forest Meteorology 266 (2019), pages 198-207 (cited on page 2).

Scott Brodie James Pita Brian Magerko. “True story: dynamically generated, contextually
linked quests in persistent systems”. In: Future Play '07: Proceedings of the 2007 conference
on Future Play (November 2007), pages 145151 (cited on page 6).

Friedhoff Jane. “Untangling Twine: A Platform Study”. In: DiGRA ’13 - Proceedings of
the 2013 DiGRA International Conference: DeFragging Game Studies. Aug. 2014. ISBN:
ISSN 2342-9666. URL: http://www.digra.org/wp- content /uploads/digital-
library/paper_67.compressed.pdf (cited on page 6).

Ah Reum Kang, Huy Kang Kim, and Jiyoung Woo. “Chatting pattern based game BOT
detection: do they talk like us?” In: KSII Transactions on Internet and Information Systems
(TIIS) 6.11 (2012), pages 2866-2879 (cited on page 13).

Reum Kang et al. “Online game bot detection based on party-play log analysis”. In: Com-
puters & Mathematics with Applications (2013), pages 1384-1395 (cited on pages 15,
16).

Mohammadreza Koopialipoor et al. “Applying various hybrid intelligent systems to evaluate
and predict slope stability under static and dynamic conditions”. In: Soft Computing (2018),
pages 1-17 (cited on page 2).

Eunjo Lee et al. “You Are a Game Bot!: Uncovering Game Bots in MMORPGs via Self-
similarity in the Wild”. In: The 5th Workshop on Network & System SUpport for Games
2006 - NETGAMES 2006 (2016) (cited on page 15).

Mengshan Li et al. “Prediction of pKa values for neutral and basic drugs based on hybrid
artificial intelligence methods”. In: Scientific reports 8.1 (2018), page 3991 (cited on page 2).

Gunasekaran Manogaran, R Varatharajan, and MK Priyan. “Hybrid recommendation system
for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy
inference system”. In: Multimedia tools and applications 77.4 (2018), pages 4379-4399
(cited on page 2).

John P MclIntire, Lindsey K Mclntire, and Paul R Havig. “Methods for chatbot detection in
distributed text-based communications”. In: 2010 International Symposium on Collaborative
Technologies and Systems. IEEE. 2010, pages 463—472 (cited on page 17).

http://www.digra.org/wp-content/uploads/digital-library/paper_67.compressed.pdf
http://www.digra.org/wp-content/uploads/digital-library/paper_67.compressed.pdf

24

Chapter 3. MMORPG bot detection

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Stefan Mitterhofer et al. “Server-side Bot Detection in Massive Multiplayer Online Games”.
In: IEEFE Security and Privacy Magazine (2009) (cited on page 16).

Bogdan Okresa Durié. “Organizational Modeling of Large-Scale Multi-Agent Systems with
Application to Computer Games”. PhD thesis. Faculty of Organization and Informatics,
University of Zagreb, 2018 (cited on page 2).

Bogdan Okresa Duri¢ et al. “MAMbOS: A new Ontology Approach for Modelling and
Managing Intelligent Virtual Environments Based on Multi-Agent Systems”. In: Journal of
Ambient Intelligence and Humanized Computing (2018) (cited on page 9).

Javier Palanca et al. “SPADE 3: Supporting the New Generation of Multi-Agent Systems”.
In: IEEE Access 8 (2020), pages 182537-182549 (cited on page 9).

Lisa Raith et al. “Massively Multiplayer Online Games and Well-Being: A Systematic
Literature Review”. In: Frontiers in Psychology 12 (2021), page 2369 (cited on page 7).

Markus Schatten, Bogdan Okresa Duri¢, and Igor Tomici¢. “Towards an Application Pro-
gramming Interface for Automated Testing of Artificial Intelligence Agents in Massively
Multi-Player On-Line Role-Playing Games”. In: Central European Conference on Infor-
mation and Intelligent Systems. Faculty of Organization and Informatics Varazdin. 2018,
pages 11-15 (cited on pages 17-19).

Markus Schatten, Bogdan Okresa Purié, and Tomislav Peharda. “An Agent-based Game
Engine Layer for Interactive Fiction™. In: International conference on practical applications
of agents and multi-agent systems. Springer. 2021, (in print) (cited on page 11).

Markus Schatten, Tomislav Peharda, and Juraj Rasonja. “A Game Engine Layer for the
Implementation of Massively Multiplayer On-line Interactive Fiction”. In: Central European
Conference on Information and Intelligent Systems. Faculty of Organization and Informatics
Varazdin. 2021, pages 11-16 (cited on page 2).

Markus Schatten, Jurica Seva, and Igor Tomi¢i¢. “A roadmap for scalable agent organizations
in the internet of everything”. In: Journal of Systems and Software 115 (2016), pages 31-41
(cited on page 2).

Markus Schatten, Igor Tomici¢, and Bogdan Okresa Duri¢. “A review on application domains
of large-scale multiagent systems”. In: Central european conference on information and
intelligent systems. 2017 (cited on page 2).

Markus Schatten et al. “Agents as bots—an initial attempt towards model-driven mmorpg
gameplay”. In: International conference on practical applications of agents and multi-agent
systems. Springer. 2017, pages 246-258 (cited on pages 2, 5).

Markus Schatten et al. “Automated MMORPG Testing—An Agent-Based Approach”. In: In-
ternational conference on practical applications of agents and multi-agent systems. Springer.
2017, pages 359-363 (cited on pages 2, 5).

Markus Schatten et al. “Large-Scale Multi-Agent Modelling of Massively Multi-Player On-
Line Role-Playing Games—A Summary”. In: Central European Conference on Information
and Intelligent Systems. 2017 (cited on page 2).

Jacob Schrum, Igor V Karpov, and Risto Miikkulainen. “UT, 2: Human-like behavior via
neuroevolution of combat behavior and replay of human traces”. In: 2011 IEEE Conference
on Computational Intelligence and Games (CIG’11). IEEE. 2011, pages 329-336 (cited on
page 16).

Bhuman Soni and Philip Hingston. “Bots trained to play like a human are more fun”. In:
2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence). IEEE. 2008, pages 363-369 (cited on page 16).

3.5 Conclusion 25

[56] technopedia contributors. First Person Shooter (FPS). [Online; accessed 10-June-2021]. 2021.
URL: https://www.techopedia.com/definition/241/first-person-shooter-
fps (cited on page 13).

[57] technopedia contributors. Massively Multiplayer Online Role-Playing Game (MMORPG).
[Online; accessed 11-June-2021]. 2021. URL: https://www.techopedia.com/definition/
1919 /massively - multiplayer - online - role - playing - game - mmorpg (cited on
page 13).

[58] R. Thawonmas, Y. Kashifuji, and K.-T Chen. “"Detection of MMORPG bots based on
behaviour analysis”. In: Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology. ACE. 2008, pages 91-94 (cited on pages 13-16).

[59] The Insight Partners. MMO Games Market to 2025 - Global Analysis and Forecast by Genre,
Platform and Revenue Model. 2021. URL: https://www.theinsightpartners. com/
reports/mmo-games-market (cited on page 7).

[60] The State of Online Gaming - 2018. URL: https://www.limelight.com/resources/
white - paper/state- of - online - gaming-2018/. (accessed: 23.02.2019) (cited on
page 14).

[61] Igor Tomici¢, Petra Grd, and Markus Schatten. “Reverse engineering of the MMORPG client
protocol”. In: 2019 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). IEEE. 2019, pages 1099-1104
(cited on pages 14, 18).

[62] Igor Tomicié, Tomislav Peharda, and Andrija Bernik. “An Active Game Bot Detection with
Security Bots”. In: Central European Conference on Information and Intelligent Systems.
Faculty of Organization and Informatics Varazdin. 2021, pages 25-31 (cited on page 2).

[63] David Velasco and Daniel Delgado. Gaming dictionary for newbies. [Online; accessed
10-June-2021]. 2021. URL: https://www.megainteresting.com/techno/gallery/
gaming-dictionary-for-newbies-771573460415/1 (cited on page 13).

[64] Minggang Wang et al. “A novel hybrid method of forecasting crude oil prices using complex
network science and artificial intelligence algorithms”. In: Applied energy 220 (2018),
pages 480—495 (cited on page 2).

[65] Wikipedia contributors. Cheating in video games — Wikipedia, The Free Encyclopedia.
[Online; accessed 14-June-2021]. 2021. URL: https://en.wikipedia.org/w/index.
php?title=Cheating_in_video_games&oldid=1024175185 (cited on page 13).

[66] Wikipedia contributors. Online game — Wikipedia, The Free Encyclopedia. [Online; accessed
14-June-2021]. 2021. URL: https ://en . wikipedia . org/w/index . php?title=
Online_game&0ldid=1020769453 (cited on page 13).

[67] Wikipedia contributors. Pictionary — Wikipedia, The Free Encyclopedia. [Online; accessed
14-June-2021]. 2021. URL: https://en. wikipedia . org/w/index . php7title=
Pictionary&oldid=1023653082 (cited on page 16).

[68] Wikipedia contributors. Snake (video game genre) — Wikipedia, The Free Encyclopedia.
[Online; accessed 14-June-2021]. 2021. URL: https://en.wikipedia.org/w/index.
php?title=Snake_(video_game_genre)&oldid=1028120569 (cited on page 13).

[69] Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games. Volume 2.
Springer, 2018 (cited on page 2).

[70] S.F Yeung and John C.S. Lui. “Dynamic Bayesian approach for detecthing cheats in multi-
player online games”. In: Multimedia Systems (2008), pages 221-236 (cited on pages 15,
16).

https://www.techopedia.com/definition/241/first-person-shooter-fps
https://www.techopedia.com/definition/241/first-person-shooter-fps
https://www.techopedia.com/definition/1919/massively-multiplayer-online-role-playing-game-mmorpg
https://www.techopedia.com/definition/1919/massively-multiplayer-online-role-playing-game-mmorpg
https://www.theinsightpartners.com/reports/mmo-games-market
https://www.theinsightpartners.com/reports/mmo-games-market
https://www.limelight.com/resources/white-paper/state-of-online-gaming-2018/
https://www.limelight.com/resources/white-paper/state-of-online-gaming-2018/
https://www.megainteresting.com/techno/gallery/gaming-dictionary-for-newbies-771573460415/1
https://www.megainteresting.com/techno/gallery/gaming-dictionary-for-newbies-771573460415/1
https://en.wikipedia.org/w/index.php?title=Cheating_in_video_games&oldid=1024175185
https://en.wikipedia.org/w/index.php?title=Cheating_in_video_games&oldid=1024175185
https://en.wikipedia.org/w/index.php?title=Online_game&oldid=1020769453
https://en.wikipedia.org/w/index.php?title=Online_game&oldid=1020769453
https://en.wikipedia.org/w/index.php?title=Pictionary&oldid=1023653082
https://en.wikipedia.org/w/index.php?title=Pictionary&oldid=1023653082
https://en.wikipedia.org/w/index.php?title=Snake_(video_game_genre)&oldid=1028120569
https://en.wikipedia.org/w/index.php?title=Snake_(video_game_genre)&oldid=1028120569

26

Chapter 3. MMORPG bot detection

[71]

[72]

Chen Zhao. “Cyber Security Issues in Online Games”. In: AIP Conference Proceedings
1955. 2018 (cited on page 14).

Richard Ziegfeld. “Interactive fiction: A new literary genre?” In: New Literary History 20.2
(1989), pages 341-372 (cited on page 7).

	1 Project Description
	1.1 Abstract
	1.2 Introduction
	1.3 Team Members

	2 MMO IF and Game Engine Implementation
	2.1 Introduction
	2.2 Related Work
	2.3 Interactive Fiction
	2.4 Massively Multiplayer On-line Role Playing Games
	2.5 MMO-IF
	2.6 Implementation Example
	2.7 Conclusion

	3 MMORPG bot detection
	3.1 Introduction
	3.2 Related Work
	3.2.1 Types of Bots

	3.3 Requirements
	3.4 A Conceptual Model
	3.5 Conclusion

	Bibliography

