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ABSTRACT 

Classification of face images can be done in various ways. This research uses two-

dimensional photographs of people's faces to detect children in images. Algorithm for 

classification of images into children and adults is developed and existing algorithms 

are analysed. This algorithm will also be used for age estimation. Through analysis of 

the state of the art research on facial landmarks for age estimation and combination with 

changes that occur in human face morphology during growth and aging, facial 

landmarks needed for age classification and estimation of humans are identified. 

Algorithm is based on ratios of Euclidean distances between those landmarks. Based on 

these ratios, children can be detected and age can be estimated. 

  

Keywords: Biometrics, face aging, anthropometric ratios, craniofacial morphology, 

face changes 

 

 

SAŽETAK 

Slike lica mogu biti klasificirane na različite načine. Ovo istraživanje koristi 

dvodimenzionalne fotografije ljudskih lica za detekciju djece na slikama. Kreiran je 

novi algoritam za klasifikaciju fotografija ljudskih lica u dvije grupe, djeca i odrasli. 

Algoritam će se također koristiti za procjenu dobi osoba na slici te će biti analizirani 

postojeći algoritmi. Kroz analizu literature o karakterističnim točkama korištenih u 

procjeni dobi i kombinacijom dobivenih karakterističnih točaka s morfološkim 

promjenama tokom odrastanja i starenja, definirane su karakteristične točke potrebne za 

klasifikaciju i procjenu dobi. Algoritam se bazira na omjerima Euklidskih udaljenosti 

između identificiranih karakterističnih točaka.  

  

Ključne riječi: Biometrija, starenje lica, antropometrijski omjeri, kraniofacijalna 

morfologija, promjene na licu 
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Chapter 1: Introduction 

Age estimation and age classification of humans using their face images are a part 

of a field of biometric.  Biometric systems use bihevioral and physiological 

characteristics to recognize individuals. Soft biometric traits like age, gender, ethnicity, 

height, weight in combination with hard biometric traits can be used to enhance the 

performance of biometric systems. This research concentrates on age classification and 

estimation. 

Age estimation is an important task in classifying face images. It can be defined as 

the determination of the age of the person or his/her age group (Scholarpedia, 2013), 

(Grd, 2013). Human age classification and estimation can be defined in many ways, but 

this research is concerned with the age estimation and classification based on two-

dimensional images of people's faces. Age estimation and classification is done using 

face anthropometry. 

For the purposes of this research definitions of basic terms are given. Age 

classification is used to classify images in those of children and adults. Children are 

defined as people from age 0 to 17 and adults are defined as people from age 18 and 

above. Age estimation in this research is defined as determining the age of a person 

based on biometric features, more precise on the basis of two-dimensional images of 

human face (Scholarpedia, 2013). Facial landmarks can be defined as the standard 

reference points on the face used by scientists to recognize the face, or in this case, 

predict the age of a person (Face and Emotion, 2013). Anthropometry is the science 

dealing with measurements of the size, weight, and proportions of the human body 

(Medical Dictionary, 2015). Therefore, facial anthropometry deals with measurements 

of the size and proportions of human face. 

The aging process affects the structure and appearance of face in many ways. The 

changes that occur are related to facial morphology, and changes in the face texture. 

Some characteristics of facial morphology appear only in people of a certain age and 

change during the aging process (Koruga, Bača and Schatten, 2011). Changes in skin 
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texture usually occur in adulthood. According to Geng, Fu and Smith-Miles (2010) 

changes in the face that occur during aging and growth are: chin becomes more 

prominent, cheeks spread over a larger area, facial characteristics increase and cover the 

interstitial spaces, head falls backwards, reducing the free space on the surface of the 

skull, facial hair becomes thicker and changes color, skin color changes, skin becomes 

thinner, darker, less elastic and more leathery, wrinkles appear, underchin appears, 

cheeks sag and bags under the eyes appear. Based on all these changes, the age of a 

person can be determined. 

The main motivation of this research is to create an algorithm for classification of 

humans into minors and adults, for use in detecting illegal content, especially for 

detection of potential paedophile images. This research will identify the characteristic 

points of the face necessary to classify face images, it will identify the most appropriate 

model for age estimation, private database with normalized facial images will be created 

and a new algorithm for age classification will be developed. Accuracy of the algorithm 

will be calculated and compared with the accuracy of existing algorithms.  

The scientific contribution of this research is as follows: 

 Systematization of knowledge on age classification, 

 Identification of facial landmarks relevant for age classification and estimation, 

 A novel data mining based approach for ratios identification that are important 

for the age classification and estimation processes 

 Creation of a new algorithm for age classification, 

 Evaluation of anthropometric model on a large database. 

In addition to scientific, this research has a social contribution also. Human age 

estimation is widely applicable and has great potential: determining the age of 

immigrants or asylum seekers in situations where there are no documents proving the 

age of the person, for websites where entrance is allowed only for persons over the age 

of 18, in order to improve the system for face recognition (most of them are sensitive to 

changes during aging), searching for missing persons over the years, in human-

computer interaction based on age, for the purpose of predicting a persons aging, in the 

fight against pedophilia (removing images of minors from various portals or personal 
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computers), etc. These are just some of the possible uses of human age estimation, and 

with further development of new technologies, there will be more. 

The second chapter of the thesis gives a literature review of the field of biometric 

age estimation and classification. A systematic review of state of the art research is done 

and an overview of research papers is given. Next, the papers are categorized according 

to face representations model and aging function learning methods. After that, a 

description of the most often used face representation models and aging function 

learning methods, along with their advantages and disadvantages is given. In this 

chapter, changes on human face during growth and aging are identified. Chapter three 

describes the new algorithm for age classification and estimation. The algorithm is 

divided into two parts: face representation and classification. First, facial landmarks 

needed for ratios calculation are identified. These ratios are used for face representation. 

After that, the neural network, more accurately a multi layer perceptron, as a 

classification method is described. Chapter four describes experimental results. This 

chapter is divided into three parts. First part is a description of databases used for 

algorithm training and testing. The second part is performance measurement where the 

hypotheses have been confirmed. The last part of this chapter compares the new 

algorithm results with existing algorithms. Chapter five describes the possible 

applications of the algorithm and in conclusion overview of the research, answers to the 

research questions and confirmed hypotheses are given. 

 

1.1. Objective and Hypotheses 

The main objective of this research is to develop an algorithm for human age 

classification and estimation which can classify humans into minors and adults. This 

new algorithm will be based on the model proposed in this research. 

More specific objectives, to be achieved in order to realize the main objective are:  

 Identify changes on the face that occur during growth and aging  

 Identify facial landmarks necessary for algorithm creation 

 Identify ratios needed for the new algorithm 
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 Create a new age estimation algorithm  

 Compare the new algorithm accuracy with the accuracy of existing algorithms 

Based on the defined goals, the research questions are set: 

RESEARCH QUESTION 1  

What changes occur on human face during growth and aging? 

RESEARCH QUESTION 2  

Which facial landmarks are important for age classification and estimation? 

RESEARCH QUESTION 3  

Which facial ratios are important for age classification and estimation? 

Other than research questions there are two hypothesis: 

HYPOTHESIS 1  

The newly developed algorithm distinguishes children from adults based on facial 

anthropometric ratios with an accuracy of more than 80% when used on the 

publicly available Fg-net database. 

HYPOTHESIS 2  

Usage of different facial anthropometric ratios than those used in existing 

anthropometric model, increases the accuracy of the algorithm when used for age 

estimation.  

 

1.2. Methodology 

This research combines both qualitative and quantitative methods, which means 

that it uses a combined research design. According to Creswell (2008), combined 

research design is useful when neither qualitative nor quantitative approach separately 

are not suitable to best understand the research problem, or when the power of 

qualitative and quantitative research together can offer the best understanding of the 

problem. More specifically, in this study, it is first necessary to identify changes in 

human face during growth and aging, then it is necessary to identify facial landmarks 

needed to describe these changes. Regarding to the applicability of research, this 
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research is an applied research because it relates to the acquisition of new knowledge 

for the purpose of finding practical solutions for immediate application (Tkalec Verčić, 

Sinčić Ćorić and Pološki Vokić, 2010). 

The first step of this research will be a review of scientific literature on human age 

estimation on the basis of two-dimensional images of the face. For this purpose 

following scientific methods will be used (Kulenović and Slišković, 2015):  

 Description is used in the initial phase of this research. It is a simple way of 

describing facts, objects, processes and connections between them without 

scientific interpretation 

 Compilation is overtaking others' results of scientific research, their 

observations, opinions and conclusions.  

 Analysis is the breakdown of complex thought creations to their simpler 

component parts and study each part separately and in relation to other parts.  

 Synthesis is connecting simple creations to complex thought, linking them 

together and parts are connected to each other.  

 Generalization takes individual observations and draws generalized 

conclusions.  

 Specialization takes a general idea and comes up with a new idea, narrower in 

scope and richer in content.  

This is followed by one of the most important steps, and that is collecting data for 

the research. This step is divided into two parts. The first part is listing, analysis and 

acquisition of existing and publicly available databases of face images. The only 

database publicly available and appropriate for this research is Fg-net (Fg-net, 2014) 

face database containing 1002 images of 82 different people with marked age. In 

addition to the aforementioned database private face database will be created. All 

participants whose photos are collected to create this database are informed about the 

purpose for which the images will be used, the personal data protection law, the privacy 

policy on the protection of personal data and they signed the consent for the use of their 

personal data in this research. Once the images are collected, they have to be 

normalized, which means that the images need to be reviewed, all images have to be 

face images, and they have to be larger than the minimum size defined. 
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The next step is to define the differences in the structure of the human face during 

growth and aging. Literature on human face changes will be consulted in this step. To 

this end, the methods of comparison and generalization will be used:  

 Comparison is comparing the same or related facts, phenomena, processes or 

relationships, and establishing their similarities and differences.  

 Generalization derives generalized conclusions from observations in the 

previous step. 

After this, it is easy to define changes on human face during growth and aging and 

facial landmarks relevant for age estimation. The method that will be used for this is 

abstraction. Abstraction is a thought process that separates irrelevant and highlights 

important element or traits of specific objects or phenomena research, or in this case, 

separate the important from the unimportant facial landmarks (Kulenović and Slišković, 

2015). 

After the previous steps, it is necessary to develop an algorithm for age 

classification. The basis of the algorithm are ratios on human face. It needs to be 

determined which face ratios are important. To this end, non-linear correlation will be 

used. Spearman coefficient will determine the correlation between each ratio and human 

age. After that, the algorithm needs to be implemented using programming languages 

(Python). After the implementation of the algorithm, it needs to be tested. There are 

various algorithms for facial landmark detection, but manual detection is still the most 

accurate so manually selected facial landmarks will be used as algorithm input. The 

algorithm gives a class value and age estimate as outputs. To evaluate the classification 

part of the algorithm confusion matrix will be created and accuracy, precision, recall 

and specificity will be calculated. Accuracy is the proportion of the total number of 

predictions that were correct. Precision is the proportion of positive cases that were 

correctly identified. Recall is the proportion of actual positive cases which are correctly 

identified. Specificity is the proportion of negative cases that were correctly identified. 

To evaluate estimation part of the algorithm, the output from the algorithm (estimated 

age) is compared to real age of a person (chronological age). Measures that are 

commonly used in literature to evaluate the performance of the age estimation 

algorithms are Mean Absolute Error (MAE) and Cumulative Score (CS) (Geng, Zhou 
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and Smith-Miles, 2007), (Guo et al., 2008), (Lanitis, Taylor and Cootes, 2002), (Lanitis, 

Draganova and Christodoulou, 2004). MAE is defined as the average absolute error 

between the estimated and chronological age (Guo et al., 2008). CS shows the 

percentage of cases in the test set where the estimated age error is less than the 

threshold. Based on the above measures algorithm accuracy will be assessed. 

At the end of the research, the analysis and interpretation of results will be done, 

and conclusions will be given. For this, various tables and diagrams will be used. 

 

1.3. Ethical Aspects 

In this research, personal data are collected and processed. Collection and 

processing of such data has to be in accordance with the Croatian Law on Personal Data 

Protection (Narodne Novine, 2013).  

During data collection, respondent was aware of the fact that he/she is giving 

personal information, aware of the purpose for which the information is collected, and 

that they can withdraw their data at any time. 

Respondent received a Privacy policy for review, which describes the duration of 

the Privacy policy, all the data collected, the purpose for which the data is collected, and 

whom to contact in case of any questions. In addition to this policy, all participants 

signed a statement of consent, with which they give their consent for use of their 

personal data for this research, and confirm that they received the Privacy policy 

mentioned earlier. Since this research collects personal data of minors, their 

parents/guardians gave consent for the use of their data. 
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Chapter 2: Literature Review 

In order to better position this research, review of existing papers on age estimation 

algorithms is given. 

First algorithm for human age estimation was proposed by Kwon and Lobo (1994). 

They proposed a theory and practical calculation for the age classification of face 

images. Their calculations are based on the craniofacial morphology of the person and 

wrinkle analysis. They distinguish between primary and secondary facial characteristics, 

and during the implementation of the theory they first use the primary characteristics of 

the face (eyes, nose, mouth, chin, top of the head and the left and right ends of the 

head), and then the secondary. From primary characteristic ratios are calculated based 

on which humans are classified into three classes (children, young adults and older 

adults). In the analysis of secondary characteristics wrinkle map is used for detection 

and measurement of wrinkles on the face. By combining the analysis of ratios of the 

primary characteristics and analysis of facial wrinkles, images are classified in the 

above mentioned three classes. 

Horng, Lee and Chen (2001) propose a system which classifies humans into four 

classes: babies, young adults, middle-aged adults and old adults. Facial features are 

obtained using a Sobel edge operator and two back-propagation neural networks are 

used to classify images into age groups. The first neural network uses the geometric 

features to distinguish whether the facial image is a baby. If it is not, then the second 

network uses the wrinkle features to classify the image into one of three adult groups. 

The identification rate achieves the accuracy of 90.52% for the training images and 

81.58% for the test images. 

Lanitis, Draganova and Christodoulou (2004) describe the performance of different 

classifiers for age estimation. Classifiers used are based on quadratic functions, a 

shortest distance classifier and neural network based classifier. They were evaluated 

using single step classification method and hierarchical age estimation approach. 

According to their results, hierarchical age estimation based on quadratic function and 

neural networks achieves better age estimation results. The authors also recognize that 
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for algorithm improvement, fine details of the face need to be taken into consideration 

for age estimation. 

Kalamani and Balasubramanie (2006) apply the fuzzy lattice neural network for age 

classification of humans into six age groups: tiny tots, blooming buds, brimming youth, 

midsummer dreamers, steady goers and senior citizens. Nine features are used for this 

classification, all of them are wrinkle features. The main difference between this 

approach and the earlier ones is that each image belongs to every group with a certain 

degree. The resulting group is the one where the image has a maximum degree. 

Geng, Zhou and Smith-Miles (2007) presented aging pattern subspace (AGES) 

method for age estimation. The basic idea is to model the aging pattern, which is 

defined as a sequence of images sorted chronologically, by constructing a representative 

subspace. The proper aging pattern for a previously unseen face is determined by the 

projection in the subspace that can reconstruct the face image with minimal error, while 

the position of the face image in that aging pattern indicate age. 

Another important research is one by Fu, Xu and Huang (2007) who classify 

existing methods for age estimation into three categories: anthropometric model, aging 

pattern subspace and age regression. They develop a new framework for age estimation 

which integrates three modules: face detection, manifold learning and multiple linear 

regression. Using age manifold a lower-dimensional representation of the image is 

obtained, and age estimation is defined as the problem of multiple linear regression in 

the manifold space. 

Ueki et al. (2008) compare their Class Distance Weighted Locality Preserving 

Projection (CDLPP) method for dimensionality reduction for age estimation with most 

often used methods: Principal Component Analysis (PCA), Locality Preserving 

Projection (LPP) and Locality Preserving Projection with Local Scaling. The method is 

based on the extension of LPP method by adding weights to the data with close class 

labels. 

Zhuang et al. (2008) propose using a patch-based Hidden Markov Model (HMM) 

supervector for face image patches representation. This way, they capture the spatial 
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structure of human faces and loosen the assumption of identical face patch distribution. 

Euclidean distance is used as a similarity measurement. 

Shen and Ji (2008) propose a geometric feature based age classification system. 

This system classifies images into two age groups: babies and adults. They also 

developed an algorithm for eyes, nose and mouth location invariant to pose, background 

and illumination. The problem with this algorithm is that it uses only one ratio (eye-eye 

distance and eye-nose distance), and if a subject looks down or up the algorithm is not 

accurate. 

Ben, Su and Wu (2008) use the fact that different facial regions mature at different 

ages, and use the most significant region for facial age estimation. Their framework 

consists of two steps: age range prediction and usage of selected region in the predicted 

age range to make final age estimation. 

Guo et al. (2008) say that current age estimation approaches are still not good 

enough for practical application. In their paper they present age manifold learning 

scheme for facial aging characteristics extraction, and they design a locally adjusted 

robust regressor for learning and age estimation. Their approach improves the accuracy 

with respect to other methods. The same authors (Guo et al., 2008) propose another 

algorithm for human age estimation based on facial images. The Probabilistic Fusion 

Approach (PFA) framework fuses a regressor and a classifier. It is derived based on the 

conditioned Bayes' rule, and by transforming the Support Vector Regression (SVR) and 

Support Vector Machines (SVM) outputs to probabilities, a serial probabilistic fusion 

scheme has been developed. This method yields better results than all the previous 

methods. 

Suo et al. (2008) say that the key point in age estimation is defining the feature set 

essential to age perception. For that reason, they built a hierarchical face model for faces 

appearing at low, middle and high resolution. 

Qi and Zhang (2009) developed an age classification system that automatically 

separates kid faces from adult faces in real time. The system consists of three steps: face 
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detection, face normalization and age classification. They use Independent Component 

Analysis (ICA) to extract local facial features and SVM to train the age classifier. 

Geng and Smith-Miles (2009) propose an age estimation method based on 

multilinear subspace analysis where the aging images are organized in a third-order 

tensor without pre-assumptions. 

Guo et al. (2009) investigated bio-inspired features for facial age estimation. First 

step is the extraction of biologically inspired features, then feature dimension reduction 

using PCA and statistical learning for age estimation, and the last step is the estimated 

age output using SVM. 

Ricanek et al. (2009) developed the first multi-ethnic age estimator. They used 

Active Appearance Model (AAM) to capture aging features, Least Angle Regression 

(LAR) for dimensionality reduction and SVR for function modeling. The age estimation 

framework consists of five modules: face detection, face encoding, feature selection 

using LAR, model fitting using SVR and age estimation. 

Long (2009) proposes a new framework where age is predicted based on the 

learned metric as opposed to Euclidean distance used in most research. Unlike the 

manifold learning, which is nonlinear, in this framework a full metric is learned and 

expressed as a linear transformation, which makes it easy to project novel data into it. 

Research by Gao and Ai (2009) refers to the use of Gabor filters and fuzzy Linear 

Discriminant Analysis (LDA) method for the classification of humans in four groups: 

baby, child, adult and elderly. The paper gives a mathematical basis of belonging to 

groups. 

Luu et al. (2009) present a new technique for age estimation that combines the 

AAM and SVM to improve the accuracy of age estimation.  

Turaga, Biswas and Chellapa (2010) describe the role of geometric attributes on 

human face, described by a set of facial landmarks for age estimation. They also show 

that the landmark space can be interpreted as a Grassmann manifold. 
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Chen et al. (2010) propose age classification of people based on facial image into 

three groups: children, adults and the elderly. After face detection, face is extracted and 

52 characteristic points are located. These characteristic points are used to build the 

AAM model. Texture characteristics are sent to the SVM to estimate the age group. 

Luu et al. (2010) proposed an age estimation technique that combines holistic and 

local facial features. Holistic features are AAM linear encoding of each face, and local 

features are extracted using Local Ternary Patterns (LTP). They use these features to 

classify faces into one of two age groups. 

Zhang and Yeung (2010) proposed a multi-task warped Gaussian process 

(MTWGP) based on a variant of the Gaussian process called warped gaussian process. 

As authors state, unlike previous age estimation methods which need to specify the 

form of the regression functions or determine many parameters in the functions, the 

form of the regression functions in MTWGP is implicitly defined by the kernel function 

and all its model parameters can be learned from data automatically. 

The most accurate algorithm up to date is the Enhanced Bio-Inspired Features 

(EBIF) by El Dib and El-Saban (2010). They extend the algorithm based on biologically 

inspired features (BIF) by adding fine detailed facial features, automatic initialization 

using Active Shape Model (ASM) and analyzing the complete facial area (including 

forehead). 

Zhai, Qing and Ji-Xiang (2010) use improved non-negative matrix factorization 

algorithm to obtain a linear represenatation of data under non-negativity constrains. 

This algorithm avoids the singularity of within-class scatter matrix, and solves the small 

samples problem of LDA. For age prediction a Radial Basis Function (RBF) neural 

network has been used. 

Duong et al. (2011) propose an advanced approach for age estimation by combining 

global and local characteristics derived from face images. AAM technique is used to 

construct the global characteristics of the face, while the local facial characteristics are 

obtained by Local Binary Patterns (LBP) coding, and SVR is used to train the initial and 

refined aging function. 
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Hajizadeh and Ebrahimnezhad (2011) propose a new algorithm to classify people 

according to age using Histogram of Oriented Gradients (HOG) for description of the 

face. Their method classifies subjects into four different age groups. The system is 

divided into three main parts: pre-processing, feature extraction and classification in the 

age group. 

Lu and Tan (2011) proposed a novel method for age estimation by using multiple 

feature fusion via facial image analysis. They fused shape and texture informatioin of 

the same image by the Canonical Correlation Analysis (CCA). Multiple linear 

regression function with a quadratic model was used for age estimation. 

Selvi and Vani (2011) developed a system for age estimation of a person in three 

steps: face detection, extraction of characteristic points and age estimation. In their 

system age estimation is carried out using Multilinear Principal Component Analysis 

(MPCA). 

Chang, Chen and Hung (2011) propose a new algorithm for age estimation - 

Ordinal Hyperplane Ranking (OHRank). The algorithm design is based on the relative 

order of age information. Each ordinal hyperplane separates all the facial images into 

two groups depending on the relative order and price sensitivity. They convert the age 

estimation problem into a series of K subproblems of binary classifications according to 

the ordering property. 

Zhan, Li and Ogunbona (2011) extend the Non-negative Matrix Factorization 

(NMF) to learn a localized non-overlapping subspace representation for age estimation. 

One individual extended NMF subspace is learned for each age or age group. The age is 

estimated based on its reconstruction error after being projected into the learned age 

subspaces. 

Chen et al. (2011) studied age estimation in a multiethnic environment using 39 

combinations of four feature normalization methods, two simple feature fusion 

methods, two feature selection methods and three face representation methods (Gabor, 

AAM and LBP). The results of the research were that Gabor outperforms AAM and 

LBP with single face representation. 
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Nkengne, Tenenhaus and Fertil (2011) used a Supervised Facial Model (SFM) for 

age estimation. SFM combines shape model and texture model information. These two 

models are combined using Partial Least Squares Regression (PLS-R) to build the SFM. 

Yang et al. (2011) proposed a feature fusion method to estimate the face age via 

SVR. SVR uses global features from AAM and local features from Gabor wavelet 

transformation. First they perform AAM on the image to get global features and shape-

free image, then they do a Gabor wavelet transformation on that shape-free image and 

get Gabor feature representation. They employ PCA to reduce the dimensionality of 

Gabor representation. After that, they did a regression analysis on AAM features and 

Gabor features to estimate the age of a face. 

Luo et al. (2011) in order to improve the accuracy of age estimation, proposed 

applying Multi-Label Learning to the age features. They treat each facial image as an 

example associated with the origin label as well as its neighbouring ages. Their results 

show that this approach outperforms single-label approaches. 

Luu et al. (2011) propose a facial landmarks localization method which is more 

accurate and faster than AAM. Their Contourlet Appearance Model (CAM) doesn't only 

extract global information, but also local texture information using the Nonsubsampled 

Contourlet Transform (NSCT). They apply this model to face age estimation, and get 

more accurate results. 

Liang et al. (2011) base their method on Gradient Location and Orientation 

Histogram (GLOH) descriptor and Multi-task Learning (MTL). They use GLOH to get 

age related local and spatial information, and MTL is used to select the most 

informative GLOH bins for age estimation. The corresponding weights are determined 

by ridge regression. The important thing in this approach is that it decreases the 

computation time because of reduced dimensionality. 

Choi et al. (2011) proposed a new age estimation method combining global and 

local facial features and a hierarchical classifier. They propose a new extraction 

methods for wrinkles and skin and a new hierarchical method for age estimation. 

Region specific Gabor filter is used to extract wrinkle features, and LBP is used to 
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extract skin features. The hierarchical age estimation is designed to overlap the age 

classes to reduce classification errors of the boundary data. 

Guo, Liou and Nguyen (2011) in their research combine shape feature, texture 

feature and frequency feature using Active Shape Model (ASM), Radon transform and 

Discrete Cosine Transform (DCT) to get robust hybrid features for classification. They 

use SVM for hierarchical classification. 

Kohli, Prakash and Gupta (2011) use AAM and ensemble of classifiers for age 

estimation. They extract features from face images using AAM and then ise a global 

classifier to distinguish between child/teen-hood and adulthood, before age estimation. 

After that they use different aging functions to model the aging process. 

Li et al. (2012) propose a new method for age estimation based on ordinal 

discriminative feature learning. The idea is to preserve local manifold structure, but also 

to keep ordinal information among aging faces. They also try to remove redundant 

information from locality information and ordinal information by minimizing nonlinear 

correlation and rank correlation. 

Cao et al. (2012) base their research on the premise that face images from the same 

age vary too much to estimate the age accurately. First step is that rank relationships of 

ages is learned from various face images, then the age is estimated based on those rank 

relationships and the age information of a reference set. They use Gabor features for 

face representation. 

Lu and Tan (2012) propose an ordinary preserving manifold analysis for facial age 

estimation to find a low-dimensional subspace so that the samples with similar label 

values are projected to be as close as possible, and those with different label values as 

far as possible. They applied ordinary preserving manifolds to LDA and Multilinear 

Subspace Analysis (MFA). 

Li et al. (2012) look at age estimation as a problem of distance-based ordinal 

regression, where facial aging trend can be discovered by a learned distance metric. 

Using this metric, both ordinal information of age groups and local geometry structure 

of target neighbourhoods can be preserved. 
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Gao (2012) bases his research on the fact that the high variability of aging patterns 

and the sparsity of available data present challenges for model training. Instead of 

training one global aging function, he trains an individual function for each person 

using a multi-task learning approach. He also proposes a similarity measure for 

clustering these aging functions. This algorithm is called Clustered Multi-task Support 

Vector Regression Machine. 

Weng et al. (2012) propose a Multi-feature Ordinal Ranking (MFOR) method for 

facial age estimation. They formulate the problem of face age estimation as a group of 

ordinal ranking subproblems, and each of these subproblems derives a separating 

hyperplane to divide face instances into two groups: age larger than k and age not larger 

than k. They construct multiple ordinal ranking models, each coresponding to a feature 

set and aggregate them into an age estimator. 

Li, Wang and Zhang (2012) propose a hierarchical framework for age estimation 

using weighted and OHRanked Sparse Representation-based Classification. Because of 

the similar aging features of humans of the same age, Sparse Representation-based 

Classification (SRC) can be used. Adding weights and OHRank improves the results of 

the algorithm. 

Kou, Du and Zhai (2012) combine global and local facial features for age 

estimation. They extract these features by using Discrete Fourier Transform (DFT) and 

PCA.  

Zhang (2012) uses Gaussian Process (GP) and T Process (TP) for age estimation. In 

this method, the form of regression function is defined by kernel function and almost all 

parameters can be learnt automatically from the data using efficient gradient methods. 

Yin and Geng (2012) propose a Conditional Probability Neural Network (CPNN), a 

new label distribution learning algorithm for facial age estimation. CPNN is a three 

layer neural network whose inputs are both the target variable and conditional feature 

vector, and the output is the conditional probability of the target variable given the 

feature vector. 
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Nithyashri and Kulanthaivel (2012) use wavelet transform to extract facial features. 

Then they calculate the Euclidean distances between each of the features. These values 

become inputs into Adaptive Resonance Network (ART). The output of this network is 

the age group (child, adolescence, adult, senior adult). 

Kilinc and Akgul (2013) use the fusion of geometric and texturale features for 

facial age estimation. They first calculate the probability that face image belongs to each 

overlapping age group. After that, an interpolation based technique is used for final age 

estimation. 

Ylioinas et al. (2013) use Kernel Density Estimate (KDE) for facial representation 

and SVR for age estimation. The important aspect of their algorithm is its 

computational lightness and algorithmic simplicity. 

Chao, Liu and Ding (2013) combine distance metric learning and dimensionality 

reduction to explore the connection between facial features and age labels. They exploit 

the intrinsic ordinal relationship among human ages and overcome the data imbalance 

problem. Also, they present an age-oriented local regression to capture the aging 

process. 

Gunay and Nabiyev (2013) propose a method based on Radon features. This 

method consists of four modules: preprocessing, feature extraction with radon 

transform, dimensionality reduction with PCA and age estimation with multiple linear 

regression. 

Hu et al. (2013) propose a new discriminative feature Lie Algebrized Gaussians 

(LAG). They built LAG on Gaussian Mixture Models (GMM) and it can capture the 

aging manifold of an image by preserving the Lie group manifold structure information 

embedded in the feature space. The age estimation is done in two steps. The first step is 

to obtaine an adaptive age group for each image, and the second step is to learn a local 

classifier from selected age classes to determine the final age. 

An overview of state of the art research according to feature extraction method and 

age estimation method can be seen in Table 2.1. Methods used in state of the art age 

classification and estimation algorithms. 
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Table 2.1. Methods used in state of the art age classification and estimation algorithms 

Algorithm Feature extraction method Age estimation method Estimation 

Classification 

(Number of 

classes) 

Kwon and Lobo (1994) Active Contour Model - No Yes (3) 

Horng, Lee and Chen (2001) Sobel Edge Detector 
Back Propagation Neural 

Networks 
No Yes (4) 

Lanitis, Draganova and 

Christodoulou (2004) 
Principal Component Analysis 

Quadratic Function 

Shortest Distance 

Multilayer Perceptron 

Self-Organizing Map 

Yes No 

Kalamani and Balasubramanie 

(2006) 
Sobel Edge Detector Fuzzy Lattice Neural Network No Yes (6) 

Geng, Zhou and Smith-Miles (2007) Active Appearance Model Aging Pattern Subspace Yes No 

Fu, Xu and Huang (2007) Age Manifold Regression Model Fitting Yes No 

Ueki et al. (2008) 
Class Distance Weighted 

Locality Preserving Projection 
K Nearest Neighbours Yes No 

Zhuang et al. (2008) 
Patch-based Hidden Markov 

Model 
Nearest Centroid Classifier Yes No 

Shen and Ji (2008) 
Sobel Edge Detector 

Haar-like Features 

Gaussian Modeling Based 

Classification 
No Yes (2) 

Ben, Su and Wu (2008) Active Appearance Model Linear Aging Function Yes No 

Guo et al. (2008) Age Manifold 
Locally Adjusted Robust 

Regression Function 
Yes No 

Guo et al. (2008) Active Appearance Model 
Support Vector Machine and 

Support Vector Regression 
Yes No 
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Suo et al. (2008) 
Active Appearance Model and 

Hierarchical Face Model 

Age Group Specific Linear 

Regression, Multi-layer 

Perceptron, Support Vector 

Regression and Logistic 

Regression 

Yes No 

Qi and Zhang (2009) 

Independent Component 

Analysis and Principal 

Component Analysis 

Support Vector Machine No Yes (2) 

Geng and Smith-Miles (2009) Active Appearance Model Multilinear Subspace Analysis Yes No 

Guo et al. (2009) Principal Component Analysis 
Support Vector Machine and 

Support Vector Regression 
Yes No 

Ricanek et al. (2009) 
Active Appearance Model and 

Least Angle Regression 
Support Vector Regression Yes No 

Long (2009) Active Appearance Model Metric Learning Yes No 

Gao and Ai (2009) Gabor Feature    

Luu et al. (2009) Active Appearance Model 
Support Vector Machine and 

Support Vector Regression 
Yes No 

Turaga, Biswas and Chellapa (2010) Active Appearance Model 

Support Vector Machine, 

Support Vector Regression and 

Ridge Regression 

Yes No 

Chen et al. (2010)     

Luu et al. (2010) 
Active Appearance Model and 

Local Ternary Patterns 

Support Vector Machine and 

Support Vector Regression 
Yes No 

Zhang and Yeung (2010)  
Multi-Task Warped Gaussian 

Process 
Yes No 

El Dib and Saban (2010) Active Shape Model and Gabor RBF Support Vector Regression Yes No 
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and Support Vector Machine 

Zhai, Qing and Ji-Xiang (2010) 
Improved Non-negative Matrix 

Factorization 
Radial Basis Function Yes No 

Duong et al. (2011) 
Active Appearance Model and 

Local Binary Pattern 
Support Vector Regression Yes No 

Hajizedah and Ebrahimnezhad 

(2011) 

Histogram of Oriented 

Gradients 
K Nearest Neighbour No Yes (4) 

Lu and Tan (2011) 
Manual and Canonical 

Correlation Analysis 
Quadratic Function Yes No 

Selvi and Vani (2011) Gabor Filter 
Multilinear Principal Component 

Analysis 
Yes No 

Chang, Chen and Hung (2011) Active Appearance Model Ordinal Hyperplane Ranking Yes No 

Zhan, Li and Ogunbona (2011) 
Extended Non-negative Matrix 

Factorization 
Coarse to fine Yes Yes (4) 

Chen et al. (2011) 

Gabor, Active Appearance 

Model, Principal Component 

Analysis 

Support Vector Regression Yes No 

Nkengne, Tenenhaus and Fertil 

(2011) 

Partial Least Squares 

Regression 
Supervised Facial Model Yes No 

Yang et al. (2011) 
Active Appearance Model and 

Gabor 
Support Vector Regression Yes No 

Luo et al. (2011) Multi-task Learning 
Multi-label - Support Vector 

Machine 
Yes No 

Luu et al. (2011) Contourlet Appearance Model 

Support Vector Regression and 

Support Vector Machine with 

Radial Basis Function 

Yes No 
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Lian et al. (2011) 
Gradient Location and 

Orientation Histogram 

Support Vector Regression and 

Ridge regressor 
Yes No 

Choi et al. (2011) 
Manual, Gabor and Local 

Binary Pattern 

Support Vector Machine and 

Support Vector Regression 
Yes No 

Guo, Liou and Nguyen (2011) 
Active Shape Model, Radon 

and Discrete Cosine Transform 

Support Vector Machine and 

Support Vector Regression 
Yes No 

Kohli, Prakash and Gupta (2011) Active Appearance Model 
Classifiers based on different 

disimilarities 
Yes No 

Li et al. (2012) 
Preserving Locality and Ordinal 

Information 
Ordinal Hyperplane Ranking Yes Yes (7) 

Cao et al. (2012) Gabor 
Ranking Support Vector 

Machine 
Yes No 

Lu and Tan (2012) 

Linear Discriminant Analysis 

and Multilinear Subspace 

Analysis 

Ordinary Preserving Manifold 

Analysis 
Yes No 

Li et al. (2012) Active Appearance Model 
K Nearest Neighbour Regression 

Model 
Yes No 

Gao (2012) Active Appearance Model 
Multi-task Support Vector 

Regression 
Yes No 

Weng et al. (2012) 
Active Appearance Model and 

Biologicaly Inspired Features 
Multi-feature Ordinal Ranking Yes No 

Li, Wang and Zhang (2012) 

Active Appearance Model, 

Active Shape Model and Local 

Binary Pattern 

Sparse Representation-based 

Classification 
Yes No 

Kou, Du and Zhai (2012) 
Discrete Fourier Transform and 

Principal Component Analysis 
Global and Local Classification Yes No 
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Zhang (2012) Active Appearance Model Gaussian Process and T Process Yes No 

Yin and Geng (2012) Active Appearance Model 
Conditional Probability Neural 

Network 
Yes No 

Nithyashri and Kulanthaivel (2012) Wavelet Transformation Adaptive Resonance Network No Yes (4) 

Kilinc and Akgul (2013) Local Binary Pattern, Gabor AdaBoost Yes No 

Ylioinas et al. (2013) 
Local Binary Pattern Kernel 

Density Estimate 
Support Vector Regression Yes No 

Chao, Liu and Ding (2013) Active Appearance Model 
K Nearest Neighbour - Support 

Vector Regression 
Yes No 

Gunay and Nabiyev (2013) 
Radon and Principal 

Component Analysis 
Multiple Linear Regression Yes No 

Hu et al. (2013) Lie Algebrized Gaussians 
Improved Hierarchical 

Estimation 
Yes No 
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According to literature review, changes in texture of human face (skin changes, 

wrinkles, skin elasticity etc.) are mostly influenced by external factors and are 

individual and change from person to person. Since in this research, global age 

estimation is considered, these changes are not appropriate. Also, in nowadays makeup 

has become an important factor in every day life for most women, and some men which 

influences the age estimation systems based on changes in texture of the face (Chen, 

Dantcheva and Ross, 2014). Other than this, more and more people use plastic surgery, 

botox or some other way to remove wrinkles and aging effects on their faces. This also 

influences age estimation systems. If an age estimation system with good accuracy, 

based only on facial shape changes, was to be developed, it would be a great 

improvement in this field. 

Table 2.2. State of the art papers by sources 

Name of the source 
No. of 

papers 

IC on Automatic Face and Gesture Recognition 2 

IC on Computer Vision and Pattern Recognition 3 

IC on Biometrics: Theory, Applications and 

Systems 
3 

IC on Image Processing 2 

IC on Pattern Recognition 3 

Transactions on Pattern Analysis and Machine 

Intelligence 
1 

IC on Intelligent Computing 4 

Computer Society Conference on Computer 

Vision and Pattern Recognition 
3 

IC on Acoustics, Speech and Signal Processing 4 

IC on Control, Automation, Robotics and Vision 1 

IC on Machine Learning and Cybernetics 1 

IC on Multimedia and Expo 1 

Pattern Recognition 2 

Transactions on Image Processing 1 

Transactions on Systems, Man and Cybernetics 2 

IC on Biometrics 2 

IC on System Science and Engineering 2 

ISNN 2 

Multimedia Tools Application 1 
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Computer and Information Sciences 1 

IC on Advanced Computing 1 

IC on Image Analysis and Processing 1 

IC on Intelligent Systems Design and 

Applications 
1 

IC on Recent Trends in Information Technology 1 

IS on Biomedical Imaging: From Nano to Macro 1 

International Workshop on Multimedia Signal 

Processing 
1 

Iranian Machine Vision and Image Processing 1 

Pacific-Asia Conference on knowledge Discovery 

and Data Mining 
1 

Tamkang Journal of Science and Engineering 1 

IC on Computer Graphics, Imaging and 

Visualization 
1 

Advances in Biometrics 1 

Chinese Conference on Biometric Recognition 4 

International Joint Conference on Computer 

Vision, Imaging and Computer Graphics Theory 

and Applications 

1 

Multimedia Tools and Applications 1 

 

It can be seen in Table 2.2. State of the art papers by sources, that most of the 

papers on age estimation algorithms were published in conference proceedings. The 

conferences are international conferences from different parts of the world, specialized 

in image processing, computer vision and biometrics, which ensures the quality of 

research. Also, the largest number of research on age estimation has been published in 

2011 as can be seen in Table 2.3. State of the art papers by year of publication. 

Table 2.3. State of the art papers by year of publication 

Year of 

publication 

No. of 

papers 

 Year of 

publication 

No. of 

papers 

2013 5  2007 2 

2012 11  2006 1 

2011 15  2004 1 

2010 6  2001 1 

2009 7  1994 1 

2008 7    
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2.1. Aging Face 

Human face goes through different changes during growth and aging. One of the 

changes during a persons aging process is the change in craniofacial morphology (CM). 

Different craniofacial characteristics appear at different age and change during the aging 

process. One of the most important researches in this field is the one conducted by 

Farkas (1994) and Farkas and Munro (1987). Farkas (1994) took measurements from 57 

facial landmarks. There were three kinds of measurements: projective measurements 

(defined as the shortest distance between two landmarks), tangential measurements 

(defined as the distance between two landmarks measured along skin surface) and 

angular measurements. In this research Farkas also identified landmarks that can be 

estimated from photographs of human faces. According to Ramanathan and Chellapa 

(2006) only projective measurements can be estimated accurately using 

photogrammetry of frontal face images. That is the reason this research uses these 

measurements as its basis. 

According to Fu, Guo and Huang (2010) there are two main stages of facial 

changes. First stage is early growth and development of the face. In this stage the face 

size is getting larger during the craniofacial growth. Because of that growth, other facial 

features change also. Forehead slopes back, shrinks and releases spaces on the surface 

of the cranium. Eyes, ears, nose and mouth expand and cover interstitial spaces. Cheeks 

extend to larger areas and the chin becomes more protrusive. In this stage, the skin does 

not change much. The second stage is adult aging, where the most changes are skin 

aging and changes in texture. There are some changes in shape, but not as big as in the 

first stage. 

Many studies related to CM of individuals from different aspects have been 

conducted. One of these studies was conducted by Coleman and Grover (2006) which 

refers to changes in the three-dimensional human face geometry during the aging 

process. Coleman and Grover conducted their research in terms of plastic surgery, in 

order to cancel the results of aging. They have focused on adults and unwanted changes 

on the face during the aging process. Some of the changes they stated, and according to 

which it is possible to discern the age of people are: reduction in the height of the face, 
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increase in the width and depth of the face, and facial features (nose, chin) become more 

distinct. They also divide the face into thirds and claim that human beauty is contained 

in the central part of the face. Ricanek (2008) researched the craniofacial characteristics 

of aging in terms of building more robust systems for face recognition in biometrics. He 

provides an overview of changes in facial structure and soft tissues over the years. 

Geng, Yun and Smith-Miles (2010) in their work on automatic age estimation 

recognize two phases of facial aging. The first phase is the early years, defined as the 

years from birth to adulthood. At this stage, most of the changes are changes in 

craniofacial growth, as shown in Figure 2.1. Head shape changes caused by craniofacial 

growth (Geng, Yun and Smith-Miles, 2010): 

 Beard becomes more prominent 

 Cheeks are spread over a larger area 

 Facial characteristics increase and cover the interstitial spaces 

 Forehead falls backwards, reducing the free space on the surface of the skull 

 

Figure 2.1. Head shape changes caused by craniofacial growth (Geng, Yun and 

Smith-Miles, 2010) 

 

In addition to changes caused by craniofacial growth, minor skin changes occur 

(Geng, Yun and Smith-Miles, 2010): 

 Facial hair become thicker and change color  

 Skin color changes 

The second phase of facial aging recognized by Geng, Yun and Smith-Miles (2010) 

is during adulthood. Adulthood is defined as the time from the end of growth to old age. 

The main changes in this stage are skin changes. The skin becomes thinner, darker, less 
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elastic and more leathery. Also, there are wrinkles, underchin, cheeks sag and bags 

under the eyes appear. But there is also some small craniofacial growth at this stage, 

mainly changes in the shape of the face, but most of craniofacial growth occurs at an 

early age of the individual, which can be seen in Figure 2.2 Craniofacial changes during 

growth and aging from Fg-net database. 

 

Figure 2.2. Craniofacial changes during growth and aging from Fg-net database 

(Fg-net, 2014) 

 

Nakai, Okakura and Arakawa (2010) and Okakura and Arakawa (2011)  define five 

ways in which human face shape changes: the face becomes longer, eyebrow become 

thicker, eyes become thinner, nose becomes longer and ridge sharper and wings of nose 

become wider.  

To summarize all this research, Table 2.4. Face shape changes caused by growth or 

aging, gives an overview of changes during growth and aging. 

Table 2.4. Face shape changes caused by growth or aging 

Paper 
Growth or 

aging 
Change 

Fu, Guo and Huang (2010), 

Geng, Yun and Smith-Miles (2010) 
growth 

Forehead slopes back, shrinks 

and releases spaces on the 

surface of the cranium 

Fu, Guo and Huang (2010), 

Geng, Yun and Smith-Miles (2010) 
growth 

Eyes, ears, nose and mouth 

expand and cover interstitial 

spaces 

Fu, Guo and Huang (2010), 

Geng, Yun and Smith-Miles (2010) 
growth Cheeks extend to larger areas 

Fu, Guo and Huang (2010), 

Geng, Yun and Smith-Miles (2010) 
growth 

Chin becomes more 

protrusive 
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Coleman and Grover (2006)  aging 
Reduction in the height of the 

face 

Coleman and Grover (2006) aging 
Increase in the width and 

depth of the face 

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011)  

growth Face becomes longer 

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011) 

growth Eyebrows become thicker 

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011) 

growth Eyes become thinner 

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011) 

growth Nose becomes longer  

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011) 

growth Ridge becomes sharper 

Nakai, Okakura and Arakawa 

(2010), 

Okakura and Arakawa (2011) 

growth Wings of nose become wider 

 

 

2.2. Types of Age 

According to Geng, Yun and Smith-Miles (2010) there are several types of age: 

 Chronological age is defined as the number of years a person has lived.  

 Appearance age is the age information defined by appearance of the person. 

 Perceived age is defined by people based on the appearance of the person. 

 Estimated age is an age defined by the computer from the way person a looks. 

Appearance age is usually very close to the chronological age. The objective of age 

estimation is that estimated age is as close to chronological or appearance age as 

possible. 
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2.3. Face Representation Models 

There are a large number of different face representation models described in the 

introduction of this chapter. The most important models recognized in literature are 

(Geng, Yun and Smith-Miles, 2010), (Guo, Fu and Huang, 2009), (Fu, Guo and Huang, 

2010), (Guo, 1994): 

 Anthropometric Model, 

 Active Appearance Model, 

 Aging Pattern Subspace, 

 Age Manifold, 

 Biologically-Inspired Models. 

 

2.3.1. Anthropometric Model 

Facial Anthropometry is the science of measuring the size and proportions of the 

human face (Montagu, 1960).  

The main idea of this model is to consult research related to craniofacial growth and 

development. Craniofacial research theory uses a mathematical model for description of 

head from birth to adulthood:  

Θ '= Θ, R' = R (1 + k (1-cosΘ)) (1) 

where Θ is the angle formed by the vertical axis, R is the radius of the head circle, k is a 

parameter which increases with time, and (R ', Θ') circuit growth over time (Alley, 

1998).  

Farkas (1994) gave an overview of facial anthropometry. He defined facial 

anthropometric as measures taken from 57 characteristic points of the face taken over 

years. For age estimation, distances and ratios between characteristic points are 

commonly used, instead of using a mathematical model, because it is difficult to 

measure face profile on the two-dimensional face images (Fu, Guo and Huang, 2010). 
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Computations in this model are based on the craniofacial development theory. 

Changes in the appearance of face caused by growth are sufficient to categorize faces in 

several age groups. This model is suitable for a rough age estimation, but not for 

detailed classification (Fu, Xu and Huang, 2007). This is the main reason why Kwon 

and Lobo (1999) used wrinkle analysis to do the separation between young adults and 

seniors. 

The anthropometric model is based on human face ratios, as shown on Figures 2.3 

to 2.8.   

  

Figure 2.3. Anthropometric ratio 1 on 

human face (Kwon and Lobo, 1999) 

Figure 2.4. Anthropometric ratio 2 on 

human face (Kwon and Lobo, 1999) 

  

  

Figure 2.5. Anthropometric ratio 3 on 

human face (Kwon and Lobo, 1999) 

Figure 2.6. Anthropometric ratio 4 

on human face (Kwon and Lobo, 

1999) 
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Figure 2.7. Anthropometric ratio 5 

on human face (Kwon and Lobo, 

1999) 

Figure 2.8. Anthropometric ratio 6 

on human face (Kwon and Lobo, 

1999) 

 

In practice, anthropometric model can only be used for en face images for 

measuring facial geometry, because the distances and ratios are calculated from two-

dimensional images of individuals that are sensitive to the positions (Fu, Guo and 

Huang, 2010). This model takes into account only geometry of face, without 

information about the texture. 

 

2.3.2. Active Appearance Model 

This model was proposed by Cootes, Edwards and Taylor (1998). Using facial 

images, statistical shape model and intensity model are learned separately. It is an 

algorithm for matching a statistical model of object shape and appearance to a new 

image. They are built during a training phase and by taking advantage of the least 

squares techniques, it can match to new images easily. The active appearance model is 

related to the active shape model. One disadvantage of active shape model is that it only 

uses shape constraints and does not take advantage of all the available information, 

especially the texture across the target object. This can be modeled using an active 

appearance model (Cootes, Edwards and Taylor, 1998). 

In 2002 The AAM has been expanded to facial aging (Lanitis, Taylor and Cootes, 

2002) suggesting an aging function defined by age = f (b), to explain the variation in 

years. Age is the age of a person in the picture, b is a vector containing 50 parameters 

learned from AAM, and f is an aging function. The function defines the relationship 

between person’s age and facial description parameters (Fu, Guo and Huang, 2010). 
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There are different forms of an aging function. Some examples of such functions are: 

quadratic aging function, linear aging function, cubic aging function and other. 

Unlike anthropometric model, AAM is not oriented only to younger people, but 

deals with assessment of the age of people of all ages. It works in a way that takes into 

consideration not only the geometry of human face, but its texture also. In this way the 

age of a person can be estimated more accurately (Fu, Guo and Huang, 2010). 

2.3.3. Aging Pattern Subspace 

Instead of using every face image separately, aging pattern subspace model uses a 

sequence of facial aging images to model the aging process. This model was developed 

by Geng, Zhou and Smith-Miles (2007) and named Aging Pattern Subspace (AGES). 

Aging pattern is defined as a sequence of facial image of a person, sorted by time. 

AGES works in two steps. The first step is a learning step, the second step is the 

age estimation step (Fu, Guo and Huang, 2010). In the first step, PCA is used to obtain 

the subspace representation. The difference from the standard PCA approach is that 

there are probably no images for each year for each aging pattern. So Expectation-

Maximization (EM) is used as a method of iterative learning to minimize error in 

reconstruction. Error while reconstruction is defined as the difference between the 

available images of the face and the face reconstructed images (Fu, Guo and Huang, 

2010). In the second step, the test face image needs to find a pattern of aging that suits 

that image, and the exact position of the year in the sample. Position year returned is the 

estimated age of a person in the test image (Fu, Guo and Huang, 2010). 

To cope with incomplete data, due to difficulties in data collection, the aging 

pattern subspace models the sequence of a person’s aging face images by learning 

subspaces. Age of the person being tested is determined by the projection in the 

subspace that can best reconstruct the face image (Fu, Xu and Huang, 2007). 

Methods based on aging functions view age estimation as a classification problem: 

face images are data, and the goal is the age of a person in the picture. According to 
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Geng, Zhou and Smith-Miles (2007) aging pattern is a sequence of images sorted by 

age. 

The emphasis of this model is the use of facial images of a person at different ages 

to define the aging pattern. 

 

2.3.4. Age Manifold 

Instead of learning the specific aging pattern for each person, it is possible to learn 

the common pattern of aging for more than one person at different ages. For each age, 

more than one facial image is used for age representation. Each person can have several 

face images at one age or in an age range (Fu, Guo and Huang, 2010). Therefore, this 

model is more flexible than AGES model, and it is much easier to collect a larger 

number of samples (facial images) and create a larger database. 

This model uses a manifold embedding technique for learning a low-dimensional 

aging trend for many facial images of the same age. The only requirement of this model 

is that the sample size for learning is large enough so that embedded manifold can be 

taught with statistical sufficiency (Fu and Huang, 2008). 

2.3.5. Biologically-Inspired Models 

One of the most accurate age estimation algorithms to date is the EBIF algorithm 

based on biologically inspired models. The idea for biologically inspired model (BIF) 

came from human vision system. It showed good results in object recognition, so Guo et 

al. (2009) adapted this model to human age estimation based on face images. In object 

category recognition, prototypes are randomly selected from learning images and stored 

for template matching in S2 units (Guo, 1994). Guo et al. (2009) found that these 

features from pre-learned prototypes do not do well in age estimation, so they proposed 

a new model that has S1 and C1 units and a STD operation in C1 feature extraction 

(Guo, 1994). 
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BIF can deal with small changes in rotation, scale and image translation, so it is 

good to combine BIFs with manifold learning which is sensitive to image alignment 

(Guo, 1994). 

 

2.3.6. Discussion 

Each of the described models has its advantages and disadvantages. The overview 

of these characteristics can be seen in Table 2.5. Advantages and disadvantages of face 

representation models.  

Table 2.5. Advantages and disadvantages of face representation models 

Model Advantages Disadvantages 

Anthropometric Model 

Useful for age group 

classification 

Useful for younger people 

age estimation 

Considers shape only 

Sensitive to head poses 

Active Appearance 

Model 

Considers shape and texture 

Deals with any age 

Robust against head poses 

Has problems with 

incomplete data 

Aging Pattern Subspace Copes with incomplete data 

Learning aging pattern for 

each person separatly 

Hard to collect sufficent 

data 

Age Manifold 
More flexible 

Easier to collect data 

Sensitive to image 

alignment 

Biologically Inspired 

Model 

Deals with changes in 

rotation, scale and alignment 
 

 

Since anthropometric model is the only model that separates facial texture from 

facial ratios and is specialized in age classification of young people, this model is 

chosen for facial representation. Also, anthropometric model has not yet been evaluated 

on a large database so this is another contribution to the field of age estimation. 
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2.4. Aging Function Learning Methods 

All of the research on age estimation can be grouped in (Guo et al., 2009): 

multiclass classification problem, regression problem and hybrid approach as a 

combination of these two (Figure 2.9. Classification of aging function learning method).  

 

Figure 2.9. Classification of aging function learning methods 

 

2.4.1. Classification 

If age estimation is viewed as a classification problem each age label is treated as a 

single class (Fu, Guo and Huang, 2010). There are a large number of classifiers used in 

age estimation (Guo, 1994), (Choi et al., 2011): 

 Artificial Neural Networks 

 Support Vector Machines 

 Nearest Neighbour 

 Quadratic function 

 Fuzzy Linear Discriminant Analysis 

 Hierarchical estimation 

 Support Vector Regression 

 Multilayer Perceptron 
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Some of the researchers who have studied the problem of age estimation as a 

classification problem are Lanitis, Draganova and Christodoulou (2004), Guo et al. 

(2008), Ueki, Hayashida and Kobayashi (2006) and many other.  

Age classification can further be divided into three approaches (Choi et al., 2011): 

Classification into age groups, single-level age estimation or hierarchical age etimation.  

Age group classification is an approach that roughly estimates the age group. It is 

suitable for coarse classification, but it is not so good for detailed age estimation. 

Single-level and hierarchical age estimation focus on a detailed assessment of the age. 

Single-level age estimation finds age label in full dataset using a single estimator (Choi 

et al., 2011). Hierarchical age estimate is rough-fine method for finding age labels in a 

smaller data set. First, age group in which an image belongs to is estimated. Then, based 

on the age group, detailed age is estimated. It improves the performance by considering 

the differences of age feature values according to age group. If there is an error in age 

group estimation step it transfers to detailed age estimation step (Choi et al., 2011). 

2.4.2. Regression 

There is another way in which age estimation can be observed. Age is a sequential 

set of values and the age estimation can be viewed as a regression problem (Fu, Guo 

and Huang, 2010).  

Regressors used for age estimation (Guo, 1994): 

 Quadratic Function 

 Multiple Linear Regressor 

 Support Vector Regression 

 Semi-definite Programming Technique 

 Expectation-Maximization 

 Robust Multi-instance Regression 

 Least Angle Regression 
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Age estimation as a regression problem has been researched by Lanitis, Draganova 

and Christodoulou (2004), Fu, Xu and Huang (2007), Yan et al. (2007), Zhou et al. 

(2005), Ni, Song and Yan (2009) and other. 

 

2.4.3. Hybrid 

The third view is a hybrid approach. This approach raises the question of which of 

the above approaches is better to estimate the age (Fu, Guo and Huang, 2010). Some of 

the researchers compared the above approaches on multiple databases. For example, 

Guo et al. (2008) concluded that SVM performs better on YGA database, and SVR 

performs better on Fg-net database. So there is no universal conclusion which is better 

because it depends on the database used. 
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Chapter 3: New Algorithm for Age 

Classification 

 

There are a lot of problems in age classification and estimation and this is why it's 

such a challenging field of research. One major problem is the lack of quality images, 

and since the research involves minors, there is a problem of collecting photographs of 

minors. Other constraint is the correct facial landmark determination. There are various 

algorithms for facial landmark detection, but manual detection is still the most accurate. 

All of the algorithms in previous research have two basic steps: feature extraction 

and classification. In the newly developed algorithm in this research, facial landmarks 

are manually selected and they serve as an input to the algorithm. Classification in the 

algorithm is done using multilayer perceptron. An overview of the algorithm is shown 

as a block diagram in Figure 3.1. Block diagram of the new algorithm. 

 

Figure 3.1. Block diagram of the new algorithm 

 

 

3.1. Face Representation 

As explained in previous chapters, there are many face representation models used 

in literature. This research uses anthropometric model as a starting point. Next chapters 
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describe facial landmarks and ratios used for age classification and estimation in this 

algorithm. 

3.1.1. Facial Landmarks 

In order to calculate the ratios on human face, important facial landmarks need to 

be selected. Next six images show facial landmarks used for age estimation by different 

authors (Figure 3.2. to Figure 3.7.). 

 

Figure 3.2. Landmark points as identified by Kleinberg and Siebert (2012) 
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Figure 3.3. Landmark points as identified by Takimoto et al. (2007) 

 

 

Figure 3.4. Landmark points as identified by Txia and Huang (2009) 
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Figure 3.5. Landmark points as identified by Ramanathan and Chellapa (2006) 

 

 

Figure 3.6. Landmark points as identified by Kostinger et al. (2011) 
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Figure 3.7. Landmark points as identified by Izadpanhi and Toygar (2012) 

 

Based on literature analysed, 57 facial landmark points are defined. From all 

landmarks used in previous researches, landmarks used at least two times are selected as 

relevant in this research. All of these landmark points are shown in Figure 3.8. All 

landmark points as identified in literature. The abbreviations of the landmarks and their 

names are shown in Table 3.1. Landmark points identified in literature 
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Figure 3.8. All landmark points as identified in literature 

 

Table 3.1. Landmark points identified in literature 

No. Abbreviation Description 

1 HH Highest point of the head 

2 MFL Middle point of the forhead (left) 

3 PHL Most protruded point of the head (left) 

4 MPL Midpoint between PHL and LAML 

5 LAML Most lateral point at the angle of the mandible (left) 

6 PMTL Protrusion of the mental tubercle (left) 

7 LMLC Lowest point in the midline on the lower border of the chin 

8 PMTR Protrusion of the mental tubercle (right) 

9 LAMR Most lateral point at the angle of the mandible (right) 

10 MLP Midpoint between LAMR and PHR 
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11 PHR Most protruded point of the head (right) 

12 MFR Middle point of the forhead (right) 

13 LEBL Most lateral point of the eyebrow (left) 

14 HUMEL Highest point on the upper margin of the midline portion of the 

eyebrow (left) 

15 MBHML Midpoint between HUMEL and MHEL (left) 

16 MHEL Medial hinge of the eyebrow (left) 

17 LEL Lateral hinge of the eyelid (left) 

18 HEL Highest point of the eyelid (left) 

19 MPEL Middle point of the eye (left) 

20 LMLEL Lowest point in the middle of the margin of the lower eyelid (left) 

21 MEL Medial hinge of the eyelid (left) 

22 LPMEL Lowest point in the middle of eyesocket (left) 

23 MNS Midpoint of the nasofrontal suture 

24 FMN Point of the nose where forhead meets the nose 

25 MHER Medial hinge of the eyebrow (right) 

26 MBHMR Midpoint between HUMER and MHER (right) 

27 HUMER Highest point on the upper margin of the midline portion of the 

eyebrow (right) 

28 LEBR Most lateral point of the eyebrow (right) 

29 LER Lateral hinge of the eyelid (right) 

30 HER Highest point of the eyelid (right) 

31 MPER Middle point of the eye (right) 

32 LMLER Lowest point in the middle of the margin of lower eyelid (right) 

33 MER Medial hinge of the eyelid (right) 

34 LPMER Lowest point in the middle of eyesocket (right) 

35 NB Nose bridge 

36 MBNP Midpoint between NB and PNT 

37 MUNAL Most upper point of the nasal ala (left) 

38 MUNAR Most upper point of the nasal ala (right) 

39 MNAOL Medial point of the nasal ala outer margin (left) 

40 PNT Most protruded point of the nasal tip 

41 MNAOR Medial point of the nasal ala outer margin (right) 

42 LNAL Most lateral point of the nasal ala (left) 

43 LNAR Most lateral point of the nasal ala (right) 

44 LNL Most lateral point of the nose (left) 

45 LNAIL Lowest lateral point of the nasal ala inner margin(left) 

46 INTUL Most inner point between the nose tip and upper lip 

47 LNAIR Lowest lateral point of the nasal ala inner margin(right) 

48 LNR Most lateral point of the nose (right) 

49 HULR Highest point of the upper lip (right) 
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50 MVUL The midpoint of the vermilion border of the upper lip 

51 HULL Highest point of the upper lip (left) 

52 LULML Most lateral point where the upper and the lower lip meet (left) 

53 MULLM Midline point where upper and lower lip meet 

54 LULMR Most lateral point where the upper and the lower lip meet (right) 

55 MLLL Midpoint of the lower margin of the lower lip 

56 MPLL Midpoint of the pogonion and lower lip 

57 AC Most anterior point of the chin 

 

If changes that happen during facial growth and aging are taken into consideration, 

some of these landmarks can be ommited. The second step of purification occurs and 

new set of landmarks is defined (Figure 3.9. Landmark points used in this research and 

Table 3.2. Landmark points used in this research). 

 

Figure 3.9. Landmark points used in this research 

 

 



46 

 

Table 3.2. Landmark points used in this research 

No. Abbreviation Description 

1 HH Highest point of the head 

2 MFL Middle point of the forhead (left) 

3 PHL Most protruded point of the head (left) 

5 LAML Most lateral point at the angle of the mandible (left) 

7 LMLC Lowest point in the midline on the lower border of the chin 

9 LAMR Most lateral point at the angle of the mandible (right) 

11 PHR Most protruded point of the head (right) 

12 MFR Middle point of the forhead (right) 

17 LEL Lateral hinge of the eyelid (left) 

18 HEL Highest point of the eyelid (left) 

20 LMLEL Lowest point in the middle of the margin of the lower eyelid (left) 

21 MEL Medial hinge of the eyelid (left) 

24 FMN Point of the nose where forhead meets the nose 

29 LER Lateral hinge of the eyelid (right) 

30 HER Highest point of the eyelid (right) 

32 LMLER Lowest point in the middle of the margin of lower eyelid (right) 

33 MER Medial hinge of the eyelid (right) 

40 PNT Most protruded point of the nasal tip 

43 LNAR Most lateral point of the nasal ala (right) 

46 INTUL Most inner point between the nose tip and upper lip 

49 HULR Highest point of the upper lip (right) 

51 HULL Highest point of the upper lip (left) 

53 MULLM Midline point where upper and lower lip meet 

54 LULMR Most lateral point where the upper and the lower lip meet (right) 

55 MLLL Midpoint of the lower margin of the lower lip 

56 MPLL Midpoint of the pogonion and lower lip 

 

In the end, there are 26 facial landmarks used in this research. As it was mentioned 

earlier, facial landmarks are detected manually. To this end, a Python script that records 

mouse click positions was created. 

 

Landmark_anotation.py 

import os 

import Tkinter 

import Image, ImageTk 

 

root=Tkinter.Tk() 

def button_click_exit_mainloop (event): 

    event.widget.quit() 
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    logfile=open("landmarks.csv", "a") 

    logfile.write("\n") 

 

def callback(event): 

    logfile=open("landmarks.csv", "a") 

    logfile.write(str(event.x)) 

    logfile.write(";") 

    logfile.write(str(event.y)) 

    logfile.write(";") 

 

root.bind("<Button-2>", button_click_exit_mainloop) 

root.bind("<Button-1>", callback) 

root.geometry('+%d+%d' % (200,200)) 

dirlist=os.listdir(".") 

old_label_image=None 

for f in dirlist: 

 try: 

  logfile=open("landmarks.csv", "a") 

  logfile.write(str(f)) 

  images=Image.open(f) 

  root.geometry('%dx%d' % (images.size[0],images.size[1])) 

  tkpi=ImageTk.PhotoImage(images) 

  label_image=Tkinter.Label(root, image=tkpi) 

  label_image.place(x=0,y=0,width=images.size[0],height=images.size[1]) 

  root.title(f) 

  if old_label_image is not None: 

   old_label_image.destroy() 

  old_label_image=label_image 

  root.mainloop() 

 except: 

  pass 

logfile.close("landmarks.csv") 

 

Input to the script is an image, and output is a file with coordinates of selected 

landmarks (landmarks.csv). This file is later saved as fg-net_coordinates.xlsx. 

 

3.1.2. Ratios 

After defining facial landmarks important for age estimation, important ratios need 

to be defined. In this research, important ratios are defined based on statistical analysis 

of correlation between all ratios on human face and age of a person.  

In order to define these ratios, Euclidean distances between specific landmarks need 

to be calculated using the formula for Euclidean distance (2). 

If A and B are points in two-dimensional space with coordinates (x1, y1) and (x2, y2) 

respectively, Euclidean distance between those two points is defined as 
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𝑑(𝐴, 𝐵) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2.   (2) 

All possible distances between facial landmarks (dn) are calculated using the 

formula for number of diagonals of an n sided polygon and adding the number of sides 

of a polygon (Artrea, 2015): 

𝑑𝑛 =
𝑛(𝑛−3)

2
+ 𝑛  (3) 

There are 325 possible distances on human face based on previously determined 

facial landmarks. 

 

Next step is to define ratios important for age estimation. First, all possible ratios 

are calculated. Number of ratios is calculated by: 

𝑁𝑃𝑅 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑅𝑎𝑡𝑖𝑜𝑠) = (𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
 (4) 

where n is the number of elements (in this case 325) and r is number of classes (in this 

case 2). 

Ratios are calculated using Python. Excel table with landmark position is given to 

the Python script and excel table with all possible ratios is the output. Distances.py 

script calculates distances between landmarks from fg-net_coordinates.xlsx. 

 

Distances.py 

from xlrd import open_workbook 

from xlwt import Workbook 

import math 

 

wb = open_workbook('fg-net_coordinates.xlsx') 

sheet=wb.sheet_by_index(0) 

coordinates=[0]*52 

distance=0 

for row in range(2,sheet.nrows): 

 for col in range(3,sheet.ncols): 

  coordinates[col-3]=sheet.cell(row,col).value 

 print coordinates 

 for i in range(0,len(coordinates),2): 

  for j in range(0,len(coordinates),2): 

   if j>i: 
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    distance=math.sqrt(((coordinates[j]-coordinates[i])*(coordinates[j]-

coordinates[i]))+((coordinates[j+1]-coordinates[i+1])*(coordinates[j+1]-coordinates[i+1]))) 

    logfile=open("distances.csv", "a") 

    logfile.write(str(distance) + ";") 

    logfile.close() 

 logfile=open("distances.csv", "a") 

 logfile.write("\n") 

 logfile.close() 

 

Ratios.py script calculates the ratios from distances given in distances.xlsx. 

 

Ratios.py 

from xlrd import open_workbook 

from xlwt import Workbook 

import math 

 

wb = open_workbook('distances.xlsx') 

sheet=wb.sheet_by_index(1) 

distances=[0]*326 

ratio=0 

 

for row in range(2,sheet.nrows): 

 for col in range(1,sheet.ncols): 

  distances[col-1]=float(sheet.cell(row,col).value) 

 print distances 

 for i in range(0,30): 

  for j in range(0,len(distances)): 

   if j>i: 

    ratio=distances[i]/distances[j] 

    logfile=open("ratios.csv", "a") 

    logfile.write(str(ratio) + ";") 

    logfile.close() 

 logfile=open("ratios.csv", "a") 

 logfile.write("\n") 

 logfile.close() 

 

The number of ratios is 52650. It is obvious that this is too large a number to do 

computations with, so only the important ratios need to be selected. These ratios are 

defined by using correlation between ratios and age of a person. First, scatter matrices 

are plotted (Figure 3.10. Correlation between years and ratio d(MFL,LAML)/d(MFL, 

MFR) and Figure 3.11. Correlation between years and ratio d(MFL,PHR)/d(PHL, 

LAML)) using IBM SPSS Statistics software. It can be seen that correlation between 

ratios and age is non-linear.  
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Figure 3.10. Correlation between years and ratio d(MFL,LAML)/d(MFL, MFR) 

 

 

 

Figure 3.11. Correlation between years and ratio d(MFL,PHR)/d(PHL, LAML) 

 

In order to calculate the correlation between ratios and age, Spearman coefficient is 

used. 
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Table 3.3. Spearman coefficients 

Ratio 
Spearman 

coefficient 
  Ratio 

Spearman 

coefficient 

d(MFL, LAML)/d(MFL,PHR) 0.653   d(LMLC,LMLEL)/d(LEL,LMLER) 0.614 

d(MFL, LAML)/d(MLF,MFR)  0.669   d(LMLC,LMLEL)/d(LEL,MER) 0.609 

d(MFL, LAML)/d(PHL,PHR) 0.612   d(LMLC,LMLEL)/d(HEL,LER) 0.653 

d(MFL, LAML)/d(PHL,MFR) 0.639   d(LMLC,LMLEL)/d(HEL,HER) 0.628 

d(MFL,LMLC)/d(MFL,MFR) 0.627   d(LMLC,LMLEL)/d(HEL,LMLER) 0.620 

d(MFL,PHR)/d(LMLC,LMLEL) 0.609   d(LMLC,LMLEL)/d(LMLEL,LER) 0.631 

d(MFL,PHR)/d(LAMR,PHR) 0.630   d(LMLC,LMLEL)/d(LMLEL,HER) 0.616 

d(MFL,PHR)/d(LAMR,MFR) 0.641   d(LMLC,LMLEL)/d(MEL,LER) 0.666 

d(MFL,PHR)/d(PHL,LAML) 0.667   d(LMLC,LMLEL)/d(MEL,HER) 0.629 

d(MFL,MFR)/d(LMLC,LMLEL) 0.634   d(LMLC,LMLEL)/d(MEL,LMLER) 0.611 

d(MFL,MFR)/d(LMLC,MEL) 0.608   d(LMLC,MEL)/d(LEL,LER) 0.617 

d(MFL,MFR)/d(LAMR,PHR) 0.648   d(LMLC,MEL)/d(LEL,HER) 0.608 

d(MFL,MFR)/d(LAMR,MFR) 0.667   d(LMLC,MEL)/d(HEL,LER) 0.613 

d(MFL,MFR)/d(PHR,MFR) 0.659   d(LMLC,MEL)/d(MEL,LER) 0.629 

d(MFL,MFR)/d(PHL,LAML) 0.682   d(LMLC,MEL)/d(MEL,HER) 0.600 

d(MFL,MFR)/d(LMLC,PHR) 0.623   d(LMLC,LER)/d(LEL,HER) 0.610 

d(MFL,MFR)/d(LMLC,MFR) 0.625   d(LMLC,HER)/d(LEL,HER) 0.610 

d(PHL,LAML)/d(PHL,PHR) 0.629   d(LMLC,LMLER)/d(LEL,LER) 0.619 

d(PHL,LAML)/d(PHL,MFR) 0.656   d(LMLC,LMLER)/d(LEL,HER) 0.637 

d(PHL,PHR)/d(LAMR,MFR) 0.606   d(LMLC,LMLER)/d(LEL,LMLER) 0.620 

d(PHL,MFR)/d(LAMR,MFR) 0.641   d(LMLC,LMLER)/d(LEL,MER) 0.627 

d(LMLC,LEL)/d(LEL,LER) 0.626   d(LMLC,LMLER)/d(HEL,HER) 0.606 

d(LMLC,LEL)/d(LEL,HER) 0.602   d(LMLC,LMLER)/d(LMLEL,HER) 0.601 

d(LMLC,LEL)/d(HEL,LER) 0.625   d(LMLC,LMLER)/d(MEL,LER) 0.605 

d(LMLC,LEL)/d(LMLEL,LER) 0.601   d(LMLC,LMLER)/d(MEL,HER) 0.618 

d(LMLC,LEL)/d(MEL,LER) 0.633   d(LMLC,MER)/d(LEL,LER) 0.614 

d(LMLC,HEL)/d(LEL,LER) 0.608   d(LMLC,MER)/d(LEL,HER) 0.623 

d(LMLC,HEL)/d(HEL,LER) 0.609   d(LMLC,MER)/d(LEL,LMLER) 0.605 

d(LMLC,HEL)/d(MEL,LER) 0.609   d(LMLC,MER)/d(LEL,MER) 0.610 

d(LMLC,LMLEL)/d(LEL,LER) 0.646   d(LMLC,MER)/d(MEL,LER) 0.605 

d(LMLC,LMLEL)/d(LEL,HER) 0.630   d(LMLC,MER)/d(MEL,HER) 0.606 

 

After calculation of Spearman coefficient, only 62 ratios with high correlation are 

selected for further calculation. Other ratios have medium or low correlation. The 

selected ratios and their correlation coefficient can be seen in Table 3.3. Spearman 

coefficients. 
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3.2. Classification 

Classification in the algorithm is done with neural networks. More precisely, multi 

layer perceptron is used. Classification is done in IBM SPSS Statistics software. 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the structure of the information processing system. 

The system is composed of a large number of highly interconnected processing 

elements (neurones) working in unison to solve specific problems (Neural Networks, 

2015). 

The most common type of artificial neural network consists of three layers of units 

(Neural Networks, 2015): 

 Input unit represents the raw information that is fed into the network. 

 Each hidden unit is determined by the activities of the input units and the 

weights on the connections between the input and the hidden units. 

 Output units depend on the activity of the hidden units and the weights 

between the hidden and output units. 

Dependent variable in this research is variable Class. This variable is predicted 

using 62 covariates (ratios defined in previous chapter). Covariates are rescaled using 

Standardized method. The distribution mean and standard deviation for each feature 

need to be calculated. Than the mean is substracted from each covariate and values of 

each feature are divided by its standard deviation: 

𝑥′ =
𝑥−𝑚𝑒𝑎𝑛

𝑠
 (5) 

Where x is a starting covariate value, x’ is a new covariate value, mean is a distribution 

mean value and s is the standard deviation of distribution. 

 

*Multilayer Perceptron Network. 

MLP Class (MLEVEL=N) WITH @100178 @2730 @2731 @2754 @30116 @3050 @30117 @3150 

@3197 @31116 @31117 @31136 @5054 @54117 @98177 @98193 @98222 @99177 @100177 

@100179 @100180 @100193 @100194 @100195 @100208 @100222 @100223 @100224 @101177 

@101222 @105177 
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@105178 @105179 @105180 @106177 @106178 @106180 @2753 @2831 @30100 @3196 @31100 

@31101 @5053 @53117 @98178 @98208 @99193 @99222 @100209 @101178 @101193 @101223 

@103178 @104178 @105194 @105209 @105222 @105223 @106179 @106222 @106223 

 /RESCALE COVARIATE=STANDARDIZED 

  /PARTITION  TRAINING=7  TESTING=3  HOLDOUT=0 

  /ARCHITECTURE   AUTOMATIC=YES (MINUNITS=1 MAXUNITS=50) 

  /CRITERIA TRAINING=BATCH OPTIMIZATION=SCALEDCONJUGATE 

LAMBDAINITIAL=0.0000005 SIGMAINITIAL=0.00005 INTERVALCENTER=0 

INTERVALOFFSET=0.5 MEMSIZE=1000 

  /PRINT CPS NETWORKINFO SUMMARY CLASSIFICATION SOLUTION IMPORTANCE 

  /PLOT NETWORK ROC GAIN LIFT PREDICTED 

  /SAVE PREDVAL 

  /STOPPINGRULES ERRORSTEPS= 1 (DATA=AUTO) TRAININGTIMER=ON (MAXTIME=15) 

MAXEPOCHS=AUTO ERRORCHANGE=1.0E-4 ERRORRATIO=0.0010 

 /MISSING USERMISSING=EXCLUDE . 
 

 

In order to train the neural network, 70% (689) of cases are used. The other 30% (313) 

are used for testing. The cases were assigned randomly. All the cases were valid and 

none were excluded (Table 3.4. MLP case processing summary). 

Table 3.4. MLP case processing summary 

 N Percent 

Sample 
Training 689 68,8% 

Testing 313 31,2% 

Valid 1002 100,0% 

Excluded 0  

Total 1002  

 

The network has 62 units in the inpute layer. There is only one hidden layer with 8 

units. Output layer has 2 units. Activation function for hidden layers is Hyperbolic 

tangent. This function is defined as the ratio between the hyperbolic sine and the cosine 

functions or expanded as the ratio of the half‐difference and half‐sum of two 

exponential functions in the points x and –x as follows (Karlik and Olgac, 2010): 

tanh(𝑥) =
sinh (𝑥)

cosh (𝑥)
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥  (6) 

Activation function for output layer is softmax (Shimodaira, 2015): 

𝑦𝑘 =
exp (𝑎𝑘)

∑ 𝑒𝑥𝑝𝑎𝑙𝑙
, 𝑎𝑘 = ∑ 𝑤𝑘𝑖

𝑑
𝑖=0 𝑥𝑖  (7) 
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According to Karlik and Olgac (2010) hyperbolic tangent function has better 

recognition accuracy than other functions. The same results have been obtained in this 

research (Table 3.5. MLP information). 

 

Table 3.5. MLP information 

 
Number of Unitsa 62 

Rescaling Method for Covariates Standardized 

Hidden Layer(s) 

Number of Hidden Layers 1 

Number of Units in Hidden Layer 1a 8 

Activation Function 
Hyperbolic 

tangent 

Output Layer 

Dependent Variables 1 Manje 

Number of Units 2 

Activation Function Softmax 

Error Function Cross-entropy 

 

The results of the trained neural network can be seen in Table 3.6. Trained MLP 

results. 

 

Table 3.6. Trained MLP results 

Sample Observed Predicted 

1 2 Percent Correct 

Training 

1 373 68 84,6% 

2 53 195 78,6% 

Overall Percent 61,8% 38,2% 82,4% 

Testing 

1 164 35 82,4% 

2 31 83 72,8% 

Overall Percent 62,3% 37,7% 78,9% 
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Chapter 4: Experimental Results 

 

This chapter shows the results got after testing the algorithm on various datasets. 

First part of the chapter describes datasets used, and the second part of the chapter gives 

performance measurements. 

 

4.1. Datasets 

In order to create an accurate algorithm for age classification, appropriate datasets 

for training and testing are required. There is only one publicly available dataset that 

can be used for this research (Fg-net) (Lanitis, 2008) and it is described in detail. In 

order to develop a more accurate algorithm, a private database with facial images is 

created for algorithm training. 

 

4.1.1. Public Databases 

There is a large number of databases available for human age estimation research: 

Fg-net Aging Database (Fg-net, 2014), MORPH Database (Morph, 2014), YGA 

Database (Fu and Huang, 2008), WIT-DB Database (Ueki, Hayashida and Kobayashi, 

2006), AI&R Asian Face Database (Fu and Zheng, 2006), Burt's Caucasian Face 

Database (Burt and Perrett, 1995), LHI Face Database (Yao, Yang and Zhu, 2007), 

HOIP Face Database (Nakano and Fukumi, 2005), Iranian Face Database (Bastanfard, 

Nik and Deshibi, 2007), Gallagher's Web-Collected Database (Gallagher and Chen, 

2008), Ni's Web-Collected Database (Ni, Song and Yan, 2009) and PAL database (Pal 

database, 2014). An overview of these databases can be seen in Table 4.1. Face age 

databases. 

Some of these databases are not appropriate for this research. YGA, WIT-DB, 

AI&R, and LHI database are databases of Asian subjects, and population for this 

research is caucasians. HOIP database has age labels distributed in 10 groups with five 

year intervals and Gallagher's Web-collected database has age labels in seven 
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categories, which is not accurate enough. Burt's Caucasian Face Database and MORPH 

database have subjects aged respectively, between 20 and 62 and between 16 and 77, 

which is not the age range interesting for this research. 

The only two databases appropriate for this research are Fg-net database and Ni's 

web collected database. 

Table 4.1. Face age databases 

Database name 
No. of 

subjects 

No. of 

images 
Age Race Labels 

Fg-net 82 1002 0-69 Caucasoid 70 categories 

MORPH Public 

Release 
13000 55000 16-77 

Caucasoid, 

Negroid 

and 

Mongoloid 

62 categories 

YGA 1600 8000 0-93 Mongoloid - 

WIT-DB 5500 12008 3-85 Mongoloid 11 categories 

AI&R 17 34 22-61 Mongoloid - 

BURT'S 147 147 20-62 Caucasoid - 

LHI 8000 8000 9-89 Mongoloid - 

HOIP 300 306600 15-64 - 10 categories 

IRANIAN 616 3600 2-85 Mongoloid - 

GALLAGHER'S N/A 28231 - - 7 categories 

NI'S - 219892 1-80 - - 

PAL 575 - 18-93 

Caucasoid, 

Negroid 

and 

Mongoloid 

- 

 

Only Fg-net database will be used for algorithm testing because the majority of 

state of the art research use this database (Table 4.2. Face age database by number of 

papers). Ni's database will not be used for testing because there are no results to 

compare the algorithm with. 
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Table 4.2. Face age databases by number of papers 

Database No. of papers 

Fg-net 60 

MORPH 16 

PAL 9 

Private databases 17 

Other 20 

 

The Fg-net (Face and Gesture Recognition Research Network) ageing database (Fg-

net, 2014) is a publicly available ageing database that has been extensively used for 

evaluation by researchers. The database is composed of 1,002 images of 82 subjects. 

There are 607 images of male subjects and 395 images of female subjects from 34 

female subjects and 48 male subjects (Table 4.3. Subjects and images by sex in Fg-net 

database) in the age range 0–69 years (Ricanek et al.). 

Table 4.3. Subjects and images by sex in Fg-net database 

 Number of subjects Number of images 

Female 34 395 

Male 48 607 

Total 82 1002 

 

The database predominantly includes images in the age range 0–18 years. The 

images are manually annotated with 68-landmark features and include information on 

image size, age, gender, presence of facial hair and eyeglasses, horizontal pose, and 

vertical pose. Many of the images are scanned from photographs and these images 

exhibit common noise errors associated with old photographs (Ricanek et al.). 

Most subjects provided from 10 to 13 images of themselves, 6 subjects provided 

less than 10 images, and 20 subjects provided more than 13 images (Table 4.4. Images 

per person in Fg-net database). 
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Table 4.4. Images per person in Fg-net database 

 6 8 9 10 11 12 13 14 15 16 18 

Male 1 3 1 7 8 7 11 6 1 3 0 

Female 0 0 1 3 7 7 6 3 3 3 1 

Total 1 3 2 10 15 14 17 9 4 6 1 

 

Regarding number of images per age, the largest number of images is of age of 18, 

the smallest number is of age 46 and above. Some ages don’t have images associated 

with them (age 56, 57 59, 64, 65, 66 and 68) (Table 4.5. Images per age in Fg-net 

database). 

Table 4.5. Images per age in Fg-net database 

Age 
Number 

of images 
 Age 

Number 

of images 
 Age 

Number 

of images 
 Age 

Number 

of images 

0 43  16 37  32 4  48 3 

1 27  17 28  33 9  49 3 

2 39  18 47  34 8  50 2 

3 42  19 23  35 11  51 3 

4 42  20 20  36 8  52 3 

5 40  21 16  37 3  53 2 

6 41  22 17  38 5  54 2 

7 41  23 22  39 6  55 2 

8 31  24 9  40 9  58 1 

9 25  25 17  41 6  60 1 

10 40  26 11  42 5  61 3 

11 33  27 11  43 4  62 1 

12 37  28 12  44 4  63 1 

13 32  29 9  45 7  67 1 

14 32  30 19  46 3  69 1 

15 30  31 6  47 2    

 

4.1.2. Private Database 

Apart from the databases described in the previous chapter, private database for this 

research has been created. This database will be used for testing of the algorithm. 
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Since personal data is collected and used in this research, collection and processing 

of such data must be in accordance with the Croatian Law on Personal Data Protection. 

Some of the basic concepts recognized by this Law are (Narodne Novine, 2013): 

 Personal information is any information relating to an identified natural person 

or a natural person who can be identified (respondent); a person who can be 

identified is the person whose identity can be determined directly or indirectly, 

in particular on the basis of one or more factors specific to his/her physical, 

physiological, mental, economic, cultural or social identity. 

 Personal data processing is any operation or set of operations which is 

performed upon personal data, whether or not by automatic means, such as 

collection, recording, organization, storage, adaptation or alteration, retrieval, 

consultation, use, disclosure by transmission, dissemination or otherwise made 

available, alignment or combination, blocking, erasure or destruction, and the 

implementation of logical, mathematical and other operations on the data. 

 Personal data collection is each set of personal data available by specific 

criteria, whether centralized, decentralized or dispersed on a functional or 

geographical basis and irrespective of whether it is contained in computer 

databases or other technical aids or manually. 

 Personal data collection director is natural or legal person, public or other body 

which determines the purposes and means of processing personal data. Once 

the purpose and method of treatment is prescribed by law, the same law also 

determines the personal data collection director. 

 User is a natural or legal person, public or other body which may use personal 

data to perform regular activities within its statutory activity. 

 Subjects consent is freely given and specific manifestation of the will of the 

subjects with which he/she expresses consent to the processing of their 

personal data for specific purposes. 

During data collection, respondent was aware of the fact that he/she is giving 

personal information, aware of the purpose for which the information is collected, and 

that they can withdraw their data at any time. 
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Respondent received a Privacy policy for review, which describes the duration of 

the Privacy policy, all the data collected, the purpose for which the data is collected, and 

whom to contact in case of any questions. In addition to this policy, all participants 

signed a statement of consent, with which they give their consent to use their personal 

data for this research, and confirm that they received for review the Privacy policy 

mentioned earlier. Since this research collects personal data of minors, their 

parents/guardians gave consent for the use of these data. 

Images were collected during two years. Subjects were asked to provide images of 

themselves from childhood to adulthood. Every subject had to provide a minimum of 4 

images.Images of all subjects have been collect according to Privacy policy described 

earlier, and all subjects signed the Declaration of conformity with which they stated that 

their images may be used for this research. 

The basic information collected is shown in Table 4.6. Information collected for the 

private database.  

Table 4.6. Information collected for the private database 

Field Field definition 

ID Identifier of the subject 

IM_ID Image identifier 

IM_AGE Age of subject in image 

DOB Date of birth 

DOA Date of Acquisition 

Gender Male or female 

 

During data collection, images of 287 subjects have been collected, 151 female and 

136 male subjects (Table 4.7. Subjects per sex collected for the private database). In 

total, 1655 images have been collected. 

Table 4.7. Subjects per sex collected for the private database 

 Number of subjects 

Female 151 

Male 136 

Total 287 
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The subjects were asked to provide a minimum of four images. Most of the subjects 

provided five images, but some of them provided more than eleven (Table 4.8. Images 

per person collected for the private database). Only six subjects provided a minimum of 

four images. 

Table 4.8. Images per person collected for the private database 

 4 5 6 7 8 9 10 11+ 

Male 6 101 9 12 5 2 1 0 

Female 0 112 15 11 3 2 7 1 

Total 6 213 24 33 8 4 8 1 

 

Regarding number of images per age, the largest number of images is of age of 

twenty, the smallest number is of age 21 and above. All other age have similar number 

of images (Table 4.9. Images per age collected for the private database). 

Table 4.9. Images per age collected for the private database 

Age 
Number of 

images 
 Age 

Number of 

images 
 Age 

Number of 

images 

0 21  9 67  18 87 

1 81  10 77  19 74 

2 131  11 48  20 136 

3 78  12 87  21 1 

4 56  13 49  22 8 

5 73  14 93  23 3 

6 84  15 56  24 2 

7 99  16 113  25 4 

8 55  17 72    

 

All of the images provided cannot be used for age classification and estimation. 

Some of the images are of low quality, some have face images from different angles and 

some have bad lighting. So selection of these images needs to be done. The next step 

was to crop only faces from the images. After that, images with at least 100 pixels width 

and height were selected. After this selection 867 images from 242 subjects are left and 

788 images have been left out (Table 4.10. Subjects per sex left in the private database 

after preprocessing).  
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Table 4.10. Subjects per sex left in the private database after preprocessing 

 Number of subjects left 

Female 121 

Male 121 

Total 242 

 

Regarding number of images per age, the largest number of images is still of age of 

twenty and the smallest number is of age 21 and above (Table 4.11. Images per age left 

in the private database after preprocessing). 

Table 4.11. Images per age left in the private database after preprocessing 

Age 
Number of 

images 
 Age 

Number of 

images 
 Age 

Number of 

images 

0 11  9 43  18 50 

1 54  10 54  19 43 

2 51  11 26  20 65 

3 47  12 28  21 1 

4 25  13 15  22 3 

5 47  14 41  23 0 

6 40  15 43  24 0 

7 59  16 59  25 2 

8 31  17 29    

 

In order to apply the algorithm to this database, positions of characteristic points 

need to be determined. The positions are selected manually using a script explained 

earlier.  

4.2. Performance Measurement 

The performance is evaluated in two parts. First, the performance evaluation of 

classification algorithm is done. Next, the performance evaluation of age estimation 

algorithm is done. Fg-net database and private database are used for testing. 

4.2.1. Age Classification 

In order to asses the performance of the classifier different measures are used. 

Confusion matrix will be created and accuracy, precision, recall and specificity will be 
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calculated. Confusion matrix (Kohavi and Provost, 1998) contains information about 

actual and predicted classifications done by a classification system. Performance of such 

systems is commonly evaluated using the data in the matrix. The confusion matrix 

shows how algorithm makes predictions. The rows correspond to the actual class of the 

data. The columns correspond to the predicted values. The value of each of element in 

the matrix is the number of predictions made with the class corresponding to the column 

for examples with the correct value as represented by the row (Table 4.12. General 

confusion matrix (Lecture Notes, 2015)). The diagonal elements show the number of 

correct classifications made for each class, and the off-diagonal elements show the 

errors made (Lecture Notes, 2015).  

Table 4.12. General confusion matrix (Lecture Notes, 2015) 

 
Predicted 

Class 1 Class 2 

Actual 
Class 1 TP FN 

Class 2 FP TN 

 

True positives (TP) is the number of correct predictions that an instance is positive. 

True negative (TN) is the number of correct predictions that an instance is negative. 

False positives (FP) is the number of incorrect predictions that an instance is positive. 

False negatives (FN) is the number of incorrect predictions that an instance is negative 

(Lecture Notes, 2015). 

Accuracy is the proportion of the total number of predictions that were correct 

(Lecture Notes, 2015): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁
∗ 100%  (8) 

It is actually a measure of how often the classifier is correct.  

Precision is the proportion of positive cases that were correctly identified: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100%  (9) 
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Recall is the proportion of actual positive cases which are correctly identified 

(Lecture Notes, 2015): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100%  (10) 

Specificity is the proportion of negative cases that were correctly identified 

(Lecture Notes, 2015): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
∗ 100%  (11) 

If the algorithm is applied to samples from Fg-net database, confusion matrix is 

created based on results of the algorithm (Appendix A) and is as shown in Table 4.13. 

Confusion matrix for the new algorithm tested on the Fg-net database. 

Table 4.13. Confusion matrix for the new algorithm tested on the Fg-net database 

 
Predicted 

Child Adult 

Actual 
Child 537 103 

Adult 84 278 

 

The child in this case is defined as a person from age of 0 to age 17. A person from 

age of 18 and above is defined as an adult. 

The value of TP is 537, TN is 278, FP is 84 and FN is 103. Using these values, 

accuracy, precision, recall and specificity are calculated. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
∗ 100% =

537 + 278

1002
∗ 100% = 81.34% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% =

537

537 + 84
∗ 100% = 86.47% 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100% =

537

537 + 103
∗ 100% = 83.91% 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
∗ 100% =

278

84 + 278
∗ 100% = 76.80% 
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The overall accuracy is 81.34% which confirms the first hypothesis: 

HYPOTHESIS 1 

The newly developed algorithm distinguishes children from adults based on facial 

anthropometric ratios with an accuracy of more than 80% when used on the 

publicly available Fg-net database. 

Table 4.14. Classification accuracy of the new algorithm by age tested on the Fg-

net database gives a detailed accuracy for each age. The accuracy decreases when 

nearing the age 17 which is a threshold for classification. This is logical, because 17 is 

the threshold age, and closer the age of a person gets to the threshold, the accuracy 

decreases.  

Table 4.14. Classification accuracy of the new algorithm by age tested on the Fg-net 

database 

Age 
No. of 

photos 

Correctly 

classified 

Wrongly 

classified 

Accuracy 

(%) 

0 43 43 0 100.00 

1 27 26 1 96.30 

2 39 38 1 97.44 

3 42 42 0 100.00 

4 42 36 6 85.71 

5 40 39 1 97.50 

6 41 40 1 97.56 

7 41 38 3 92.68 

8 31 29 2 93.55 

9 25 20 5 80.00 

10 40 36 4 90.00 

11 33 28 5 84.85 

12 37 30 7 81.08 

13 32 22 10 68.75 

14 32 23 9 71.88 

15 30 19 11 63.33 

16 37 15 22 40.54 

17 28 13 15 46.43 

18 47 36 11 76.60 

19 23 17 6 73.91 

20 20 13 7 65.00 

21 16 13 3 81.25 
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22 17 11 6 64.71 

23 22 16 6 72.73 

24 9 8 1 88.89 

25 17 13 4 76.47 

26 11 8 3 72.73 

27 11 8 3 72.73 

28 12 11 1 91.67 

29 9 9 0 100.00 

30 19 14 5 73.68 

31 6 5 1 83.33 

32 4 3 1 75.00 

33 9 5 4 55.56 

34 8 6 2 75.00 

35 11 10 1 90.91 

36 8 6 2 75.00 

37 3 2 1 66.67 

38 5 5 0 100.00 

39 6 4 2 66.67 

40 9 7 2 77.78 

41 6 4 2 66.67 

42 5 3 2 60.00 

43 4 3 1 75.00 

44 4 4 0 100.00 

45 7 5 2 71.43 

46 3 1 2 33.33 

47 2 1 1 50.00 

48 3 2 1 66.67 

49 3 3 0 100.00 

50 2 2 0 100.00 

51 3 3 0 100.00 

52 3 3 0 100.00 

53 2 1 1 50.00 

54 2 2 0 100.00 

55 2 2 0 100.00 

58 1 1 0 100.00 

60 1 1 0 100.00 

61 3 3 0 100.00 

62 1 1 0 100.00 

63 1 1 0 100.00 

67 1 1 0 100.00 

69 1 1 0 100.00 
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4.2.2. Age Estimation 

One of the important aspescts of age estimation problem is finding the best metric 

for assesing the performance of age estimation algorithm. Two metrics most often used 

in literature for quantifying the performance of age estimation algorithms are mean 

absolute error (MAE) and cumulative score (CS) (Geng, Zhou and Smith-Miles, 2007). 

The MAE is defined as the average of the absolute errors between the estimated age 

labels and the cronological age labels (Fu, Guo and Huang, 2010) 

𝑀𝐴𝐸 =
𝑆𝐴𝐸

𝑁
=

∑ |𝑥𝑖−𝑥̂𝑖|𝑁
𝑖=1

𝑁
   (12) 

where xi is the cronological age, 𝑥̂𝑖 is the estimated age, SAE is the sum of the absolute 

errors and N is the number of test images (Hamilton, 1994). 

MAE has two other variations: MAE per age and MAE per decade. Both of these 

variations will be used in this research. MAE per age measures the mean absolute error 

at each age, and MAE per decade computes mean absolute error for every ten years 

(Guo, 2012).  

The CS metric is defined as the proportion of test images such that the absolute 

error is not higher than an integer j: 

𝐶𝑆(𝑗) =
𝑁𝑒≤𝑗

𝑁𝑥
∗ 100%   (13) 

where Ne≤j is the number of test images on which the absolute error in age estimation is 

within j years (Turaga, Biswas and Chellapa, 2010), (Chen et al., 2011).  

New algorithm tested on Fg-net database 

When algorithm is used on Fg-net database the general MAE is 6.67. Other than 

general MAE measure, MAE per age and MAE per decade are also important measures. 

Table 4.15. MAE per age results of the new algorithm tested on the Fg-net database 

gives an overview of MAE per age. The results of MAE per age measure are consistent 
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with theories given in literature that say that anthropometric ratios are more accurate for 

younger ages. All the algorithm results for Fg-net database can be seen in Appendix A. 

Table 4.15. MAE per age results of the new algorithm tested on the Fg-net database 

Age 
No.of 

images 

MAE 

per age 
 Age 

No.of 

images 

MAE 

per age 

0 43 3.81  32 4 10.00 

1 27 3.11  33 9 12.89 

2 39 3.82  34 8 14.63 

3 42 3.62  35 11 12.00 

4 42 6.05  36 8 13.25 

5 40 4.95  37 3 18.33 

6 41 4.37  38 5 14.80 

7 41 4.46  39 6 18.33 

8 31 4.52  40 9 17.44 

9 25 4.72  41 6 22.00 

10 40 4.75  42 5 18.00 

11 33 4.94  43 4 17.50 

12 37 5.30  44 4 19.75 

13 32 5.31  45 7 25.29 

14 32 5.31  46 3 24.67 

15 30 4.90  47 2 20.00 

16 37 5.89  48 3 26.33 

17 28 4.43  49 3 25.67 

18 47 4.91  50 2 27.50 

19 23 5.57  51 3 26.00 

20 20 4.15  52 3 27.67 

21 16 3.56  53 2 30.00 

22 17 5.41  54 2 32.50 

23 22 4.64  55 2 29.00 

24 9 3.00  58 1 29.00 

25 17 3.94  60 1 39.00 

26 11 5.00  61 3 34.00 

27 11 6.91  62 1 40.00 

28 12 5.33  63 1 36.00 

29 9 6.56  67 1 38.00 

30 19 8.95  69 1 36.00 

31 6 5.67     
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An overview of MAE per decade is given in Table 4.16. MAE per decade results of 

the new algorithm tested on the Fg-net database. The acceptable MAE per decade is for 

first three decades, whereas the MAE per decade for ages 30 and above is too large.  

Table 4.16. MAE per decade results of the new algorithm tested on the Fg-net 

database 

Age 

range 

No. of 

images 

MAE per 

decade 

0-9 371 4.37 

10-19 339 5.12 

20-29 144 4.74 

30-39 79 12.08 

40-49 46 21.20 

50-59 15 28.53 

60-69 8 36.38 

 

The other measure used in most of the literature on age estimation is cumulative 

score. 

Cumulative score for error levels of 0 to 20 is shown in Table 4.17. CS results of 

the new algorithm tested on the Fg-net database and Figure 4.10. Cumulative score 

curve of the new algorithm tested on the Fg-net database 

Table 4.17. CS results of the new algorithm tested on the Fg-net database 

Error 

level 

No. of 

samples 

Cumulative 

score (CS) 
 

Error 

level 

No. of 

samples 

Cumulative 

score (CS) 

0 66 6.59  11 26  

1 116 18.16  12 18  

2 115   13 16  

3 104   14 15  

4 90   15 12 90.12 

5 91 58.08  16 11  

6 68   17 10  

7 50   18 7  

8 41   19 9  

9 36   20 4 94.21 

10 39 81.44     
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Figure 4.10. Cumulative score curve of the new algorithm tested on the Fg-net 

database 

 

These results will be compared with the results of age estimation using an 

anthropometric model on Fg-netdatabase. 

Anthropometric model tested on Fg-net database 

In order to compare the existing algorithm with the anthropometric model, the 

anthropometric model has to be evaluated on the Fg-net database. 

The six ratios used in anthropometric model are different ratios than those used in 

the new algorithm (Table 4.18. Face ratios used in anthropometric model). 

Table 4.18. Face ratios used in anthropometric model 

Ratio name Ratio formula 

Ratio 1  LEYE-REYE/EYE-NOSE 

Ratio 2  LEYE-REYE/EYE-LIP 

Ratio 3  EYE-NOSE/EYE-CHIN 

Ratio 4  EYE-NOSE/EYE-LIP 

Ratio 5  LEYE-REYE/EYE-CHIN 

Ratio 6 THEAD-CHIN/EYE-CHIN 
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The general MAE for anthropometric model is 7.03. Compared with MAE for the 

new algorithm where MAE is 6.67, it can be seen that ratios in the new algorithm give 

better results. All the anthropometric model results for Fg-net database can be seen in 

Appendix B. 

Table 4.19. Comparison of MAE per age results of the new algorithm and 

anthropometric model tested on the Fg-net database shows the values of MAE per age 

of anthropometric model (AM) in comparison to MAE per age of the new algorithm. In 

most cases, MAE per age of the new algorithm is better than MAE per age of AM. The 

cases where MAE per age of AM is better than MAE per age of the new algorithm are 

for age of 45 and above, where the number of samples is small. 

Table 4.19. Comparison of MAE per age results of the new algorithm and 

anthropometric model tested on the Fg-net database 

Age 
No.of 

images 

MAE 

new 

algorithm 

MAE 

AM 
 Age 

No.of 

images 

MAE 

new 

algorithm 

MAE 

AM 

0 43 3.81 4.02  32 4 10.00 19.00 

1 27 3.11 5.44  33 9 12.89 19.22 

2 39 3.82 6.92  34 8 14.63 20.25 

3 42 3.62 6.48  35 11 12.00 24.82 

4 42 6.05 10.48  36 8 13.25 24.13 

5 40 4.95 10.03  37 3 18.33 20.67 

6 41 4.37 10.02  38 5 14.80 23.60 

7 41 4.46 12.56  39 6 18.33 21.50 

8 31 4.52 11.00  40 9 17.44 25.78 

9 25 4.72 14.60  41 6 22.00 23.00 

10 40 4.75 16.00  42 5 18.00 22.40 

11 33 4.94 16.09  43 4 17.50 23.75 

12 37 5.30 16.16  44 4 19.75 21.75 

13 32 5.31 17.06  45 7 25.29 22.14 

14 32 5.31 18.78  46 3 24.67 21.00 

15 30 4.90 19.30  47 2 20.00 19.50 

16 37 5.89 20.00  48 3 26.33 22.00 

17 28 4.43 19.50  49 3 25.67 24.67 

18 47 4.91 19.98  50 2 27.50 19.50 

19 23 5.57 20.87  51 3 26.00 27.00 

20 20 4.15 20.55  52 3 27.67 22.00 
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21 16 3.56 20.81  53 2 30.00 22.50 

22 17 5.41 19.47  54 2 32.50 15.00 

23 22 4.64 22.50  55 2 29.00 25.50 

24 9 3.00 22.33  58 1 29.00 29.00 

25 17 3.94 22.41  60 1 39.00 39.00 

26 11 5.00 22.00  61 3 34.00 23.67 

27 11 6.91 20.45  62 1 40.00 40.00 

28 12 5.33 20.67  63 1 36.00 36.00 

29 9 6.56 26.33  67 1 38.00 38.00 

30 19 8.95 22.53  69 1 36.00 36.00 

31 6 5.67 24.67      

 

In MAE per decade table, the MAE per decade of anthropometric model is better in 

cases where there is a small number of samples (Table 4.20. Comparison of MAE per 

decade results of the new algorithm and anthropometric model tested on the Fg-net 

database). 

Table 4.20. Comparison of MAE per decade results of the new algorithm and 

anthropometric model tested on the Fg-net database 

Age 

range 

No. of 

images 

MAE 

new algorithm 

MAE 

AM 

0-9 371 4.37 8.99 

10-19 339 5.12 18.29 

20-29 144 4.74 21.56 

30-39 79 12.08 22.30 

40-49 46 21.20 23.07 

50-59 15 28.53 22.47 

60-69 8 36.38 25.38 

 

If the cumulative score measure for both algorithms is compared, the cumulative 

score of the new algorithm is better on every error level. Most importantly, cumulative 

score for error level 0 is 6.59 for the new algorithm and 0 for anthropometric model. 

This means that anthropometric model predicts the correct age in 0 cases and the new 

algorithm predicts the correct age in 66 cases. The comparison of cumulative score 

curves can be seen in Figure 4.11. Comparison of cumulative score curves of the new 

algorithm and anthropometric model tested on the Fg-net database. 
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Table 4.21. Comparison of CS results of the new algorithm and anthropometric 

model tested on the Fg-net database 

Error level 

No. of 

samples 

New 

algorithm 

Cumulative 

score (CS) 

new 

algorithm 

No. of 

samples 

AM 

Cumulative 

score (CS) 

AM 

0 66 6.59 0 0.00 

1 182 18.16 1 0.10 

5 582 58.08 155 15.47 

10 816 81.44 289 28.84 

15 903 90.12 439 43.81 

20 944 94.21 653 65.17 

 

 

Figure 4.11. Comparison of cumulative score curves of the new algorithm and 

anthropometric model tested on the Fg-net database 

 

These results confirm the second hypothesis: 

HYPOTHESIS 2  

Usage of different facial anthropometric ratios than those used in existing 

anthropometric model, increases the accuracy of the algorithm when used for age 

estimation. 
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Private database 

As addition to this research, a private database of images is created. If the new 

algorithm is applied on this database, MAE is 3.25. All the algorithm results for private 

database can be seen in Appendix C. 

MAE per age and MAE per decade values can be seen in Table 4.22. MAE per age 

results of the new algorithm tested on the private database and Table 4.23. MAE per 

decade results of the new algorithm tested on the private database. The results are 

similar to results where algorithm was tested on Fg-net database. 

Table 4.22. MAE per age results of the new algorithm tested on the private database 

Age 
No.of 

images 
MAE  Age 

No.of 

images 
MAE 

0 11 3.55  13 15 2.00 

1 54 2.33  14 41 2.10 

2 51 2.12  15 43 2.35 

3 47 3.13  16 59 2.36 

4 25 3.08  17 29 2.86 

5 47 4.19  18 50 3.94 

6 40 3.53  19 43 4.84 

7 59 3.71  20 65 5.25 

8 31 3.52  21 1 7.00 

9 43 2.37  22 3 7.00 

10 54 3.07  23 0 - 

11 26 3.12  24 0 - 

12 28 2.52  25 2 9.50 

 

 

Table 4.23. MAE per decade results of the new algorithm tested on the private 

database 

Age 

range 

No. of 

images 
MAE 

0-9 408 3.10 

10-19 388 2.99 

20-29 71 5.46 

 

The cumulative score values are listed in Table 4.24. CS results of the new 

algorithm tested on the private database. These values are better than values got 
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when algorithm was tested on the Fg-net database. The reason for that is that the 

private database was preprocessed, and all images from different angles and with 

bad resolution were excluded from the database. Also, the private databse has 

images from age 0 to 25 which makes estimation and classification easier. The 

resulting curve can be seen in Figure 4.12. Cumulative score curve of the new 

algorithm tested on the private database. 

Table 4.24. CS results of the new algorithm tested on the private database 

Error 

level 

No. of 

samples 

Cumulative 

score (CS)  

0 93 10.73 

1 262 30.22 

5 700 80.74 

10 859 99.08 

15 867 100.00 

20 867 100.00 

 

 

 
 

Figure 4.12. Cumulative score curve of the new algorithm tested on the private 

database 
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4.3. Comparison with State of the Art Algorithms 

In order to position this algorithm in state of the art research, comparison with 

existing age classification and age estimation algorithms is done. Table 4.25. Current 

research results for age classification shows the current research results for age 

classification. 

Table 4.25. Current research results for age classification 

Algorithm Database used Classes Accuracy 

Mohan, Kumar and 

Krishna (2010)  

Part of Fg-netand 

500 face images 

from Google 

images 

16-25, 26-35, 36-

45, 46-55, 56-65, 

66-75, 76-85 

 

Fg-net– 94.1% 

Google images – 

90.8% 

Kwon and Lobo 

(1999)  
47 images 

Babies, young 

adults and senior 

adults 

Not reported 

Horng, Lee and 

Chen (2001)  
230 images 

0-2, 3-39, 40-59, 

60+ 
81.58% 

Nithyashri and 

Kulanthaivel (2012)  
Fg-net 

0-12, 13-18, 19-59, 

60+ 
94.28% 

Zhou, Miller and 

Zhang (2011)  

Fg-net 

MORPH 
Youths and adults 

76% 

86% 

Zhan, Li and 

Ogunbona (2011)  

Fg-net 

MORPH 

4 groups (0-19, 20-

29, 30-39, 40-69) 

2 groups (0-10, 

11+) 

2 groups (0-14, 

15+) 

2 groups (0-18, 

19+) 

2 groups (0-20, 

21+) 

2 groups (0-30, 

31+) 

60.9% 

 

87.1% 

 

85.9% 

 

85.3% 

 

84.0% 

 

86.3% 

Qi and Zhang 

(2009) 
7443 images Kids and adults 90.46% 

Hajizadeh and 

Ebrahimnezhad 

(2011) 

Iranian Face 

Database 

0-15, 16-30, 31-50, 

50+ 
87.03% 

Li et al. (2012)  5080 images from 0-2, 3-7, 8-12, 13- 48.5% 
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Flickr 19, 20-36, 37-65, 

66+ 

Kalamani and 

Balasubramanie 

(2006) 

250 images 
0-2, 3-12, 13-24, 

25-40, 41-55, 56+ 
95% 

Shen and Ji (2008) 179 images Baby and adult 49.72% 

Ramesha, Raja and 

Patnaik (2010) 
58 images 0-30, 30-40, 40+ 89.65% 

Gunay and Nabiyev 

(2008) 

FERET +350 

images 

10+-5, 20+-5, 30+-

5, 40+-5, 50+-5, 

60+-5 

80% 

 

As it can be seen from Table 4.25. Current research results for age classification, 

none of the algorithms divide samples in children (age 0 to 17) and adults (age 18 and 

above). The most similar algorithms that divide samples in two classes and have testing 

results on Fg-net database are listed in Table 4.26. Research results for age 

classification comparable to this research. The most accurate algorithm is by Zhan and 

Ogunbona (2011) where the closest class definition is for class 1 (age 0 to 18) and class 

2 (age 19 and above). The accuracy of that algorithm is 85.30%. If the algorithm from 

this research is tested on the same classes, its accuracy is 79.90%. But if the algorithm 

from this research is tested on the four classes defined in algorithm by Zhan and 

Ogunbona, the algorithm from this research has an accuracy of 71.80%, as opposed to 

Zhan and Ogunbone algorithm accuracy which is 60.90%. 

Table 4.26. Research results for age classification comparable to this research 

Algorithm Database used Classes Accuracy 

Zhou, Miller and 

Zhang (2011) 
Fg-net Youths and adults 76% 

Zhan, Li and 

Ogunbona (2011) 

Fg-net  

MORPH 

4 groups (0-19, 20-

29, 30-39, 40-69) 

2 groups (0-10, 

11+) 

2 groups (0-14, 

15+) 

2 groups (0-18, 

19+) 

2 groups (0-20, 

60.9% 

 

87.1% 

 

85.9% 

 

85.3% 

 

84.0% 
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21+) 

2 groups (0-30, 

31+) 

 

86.3% 

 

If the algorithm is tested for age estimation, the result is MAE of 6.67, and CS(0) of 

6.59%, CS(1) of 18.16%, CS(5) of 58.08383234%, CS(10) of 81.44%, CS(15) of 

90.12% and CS(20) of 94.21%. 

The MAE and CS results of the state of the art algorithms can be seen in Table 

4.27. Current research results for age estimation. 

Table 4.27. Current research results for age estimation 

Algorithm Abbreviation MAE CS (1) CS (5) CS (10) 

El Dib and Saban (2010) EBIF 3.17 58 82 90 

Lian et al. (2011) MTGLOH 3.44 20 78 97 

Chao, Liu and Ding (2013) LSL-AOR 4.11 -  -   - 

Luu et al. (2011) CAM 4.12 23 74 90 

Weng et al. (2012) MFOR 4.25 36 75 88 

Li, Wang and Zhang 

(2012) 

Weighte 

OHRanked 4.32 30 74 90 

Luu et al. (2009) HIE 4.33  -  -  - 

Kohli, Prakash and Gupta 

(2011) ECDC 4.35 -  -   - 

Gao (2012) CMTSVR 4.37 34 76 90 

Chang, Chen and Hung 

(2011) OHRank 4.48 38 74 88 

Li et al. (2012) LDMR 4.51 -   - -  

Hu et al. (2013) LAGF 4.54 41 75 88 

Choi et al. (2011) HC 4.66 33 73 87 

Chen et al. (2013) CA 4.67 -  75 -  

Duong et al. (2011) GLFF 4.74 -  -  -  

Yin and Geng (2012) CPNN 4.76 33 75 88 

Guo et al. (2009) BIF 4.77 20 68 90 

Li et al. (2012) PLO 4.82 33 72 92 

Zhang and Yeung (2010) MTWGP 4.83 10 34 54 

Qin et al. (2007) MHR 4.87 30 64 82 

Xiao et al. (2009) mKNN 4.93 25 75 85 

Zhang and  Yeung (2010) WGP 4.95 31 72 88 

Guo et al. (2008) PFA 4.97 28 75 88 
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Luo et al. (2011) 

ML-

SVM+BIF 5.04 -   - -  

Kilinc and Akgul (2013) OAG 5.05  -  - -  

Guo et al. (2008) LARR 5.07 26 68 88 

Long (2009) 

Metric 

Learning + 

GPR 5.08 20 67 87 

Ylioinas et al. (2013) LBPKDE 5.09 -  -    

Zhang (2012) TP 5.23 28 68 88 

Chang, Chen and Hung 

(2010) RED-SVM 5.24 26 60 78 

Yan et al. (2007) BM 5.33 18 64 85 

Yan et al. (2007) RUN2 5.33 19 65 88 

Geng and Smith-Miles 

(2009) MSA 5.36  - -  -  

Luo et al. (2011) 

ML-

SVM+LGBP 5.37 -   -  - 

Zhang and Yeung (2010) GP 5.39 26 64 88 

Selvi and Vani (2011) MPCA 5.41  -  -  - 

Kou, Du and Zhai (2012) Global+Local 5.72  -  -  - 

Luo et al. (2011) 

ML-

SVM+PCA 5.73  - -  -  

Lu and Tan (2012) FSTI 5.75 14 58 84 

Yan et al. (2007) RUN1 5.78 26 68 86 

Guo et al. (2008) SVR 5.91 22 69 89 

Suo et al. (2008) AO graph 5.97  -  - -  

Geng, Zhou and Smith-

Miles (2007) KAGES 6.18 28 63 80 

Gunay and Nabiyev 

(2013) Radon 6.18  -  - -  

Lanitis, Draganova and 

Christodoulou (2004) QM 6.55 13 49 76 

Luu et al. (2011) AAM 6.77 -   - -  

Geng, Zhou and Smith-

Miles (2007) AGES 6.77 26 64 84 

Ju and Wang (2009)  LFR 6.85  -  -  - 

Lanitis, Draganova and 

Christodoulou (2004) MLP 6.98 9 32 59 

Dahlan, Mashohor, and 

Mumtazah (2013) SGF 7.15  -  - -  

Guo et al. (2008) SVM 7.25 28 62 78 
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Zhai, Qing and Ji-Xiang 

(2010) INMF 7.26 12 53 78 

Lanitis, Taylor and (1999) WAS 8.06 10 40 78 

Geng, Zhou and Zhang 

(2006)  HumanA 8.13  -  - -  

Ju and Wang (2009) C4.5 9.34 18 48 68 

Ju and Wang (2009) BP 11.85 12 34 56 

Lanitis, Draganova and 

Christodoulou (2004) AAS 14.83 8 35 52 

 

If the algorithms are compared by MAE, there are many algorithm that yield better 

results than the algorithm from this research (Table 4.28. Comparison of state of the art 

research results for age estimation with the new algorithm results), but the difference is 

that they all take into consideration not only facial anthropometry, but also wrinkles and 

skin changes, all of which can be changed with a little makeup or corrective surgery. 

Table 4.28. Comparison of state of the art research results for age estimation with 

the new algorithm results 

Abbreviation MAE  Abbreviation MAE 

EBIF 3.17  RED-SVM 5.24 

MTGLOH 3.44  BM 5.33 

LSL-AOR 4.11  RUN2 5.33 

CAM 4.12  MSA 5.36 

MFOR 4.25  ML-SVM+LGBP 5.37 

Weighte OHRanked 4.32  GP 5.39 

HIE 4.33  MPCA 5.41 

ECDC 4.35  Global+Local 5.72 

CMTSVR 4.37  ML-SVM+PCA 5.73 

OHRank 4.48  FSTI 5.75 

LDMR 4.51  RUN1 5.78 

LAGF 4.54  SVR 5.91 

HC 4.66  AO graph 5.97 

CA 4.67  KAGES 6.18 

GLFF 4.74  Radon 6.18 

CPNN 4.76  QM 6.55 

BIF 4.77  New algorithm 6.67 

PLO 4.82  AAM 6.77 
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MTWGP 4.83  AGES 6.77 

MHR 4.87  LFR 6.85 

mKNN 4.93  MLP 6.98 

WGP 4.95  SGF 7.15 

PFA 4.97  SVM 7.25 

ML-SVM+BIF 5.04  INMF 7.26 

OAG 5.05  WAS 8.06 

LARR 5.07  HumanA 8.13 

Metric Learning + GPR 5.08  C4.5 9.34 

LBPKDE 5.09  BP 11.85 

TP 5.23  AAS 14.83 

 

According to cumulative score values, the new algorithm falls somewhere in the 

middle of state of the art algorithms. The results of state of the art algorithms have been 

taken from published papers and have not been verified. In some of the algorithms, all 

images from Fg-net database haven’t been used, so this increases their accuracy. The 

quality of some images from Fg-net database is not appropriate for computer vision, 

biometric recognition and age estimation (Figure 4.4. Example of image from Fg-net 

database not appropriate for age estimation). 

 

Figure 4.4. Example of images from Fg-net database not appropriate for age estimation 
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Chapter 5: Application 

 

Application of age estimation can be divided into several groups. Fu, Guo and 

Huang (2010) distinguish between applications of age estimation in: forensic art, 

electronic customer relationship management (eCRM), security control and surveillance 

monitoring, biometrics, entertainment and cosmetology.  

In forensic art, age estimation is used mostly as age progression for suspects, 

victims and lost person identification (Mancusi). Age progression can predict a person's 

appearance accross age and thus help in finding missing individuals (Ramanathan, 

Chellapa and Biswas, 2009). Another problem, described by Schmeling et al. (2006), is 

the problem of age estimation of unaccompanied minors. The problem arises when 

foreigners entering the country have no documents for their date of birth. They often 

make false statements about their age as to avoid being criminaly prosecuted. Current 

practice is to physicaly examine imigrants, radiographic examination of the hand, 

radiographic examination of the clavicles and dental examination (Schmeling, 2006). 

Physical examination includes anthropometric measures such as height, weight, type of 

constitution and visible signs of sexual maturity. All of the above mentioned measures 

and practices are intrusive and require experts. One other solution for the problem of 

unaccompanied minors is the use of computer algorithm that will determine their age 

based on photographs of their face. There is also a growing problem of 

pedopornography. With Internet expansion, the problem of child pornography has 

increased and experts need to evaluate images of victims (Cattaneo et al., 2009). Age 

estimation can be used to determine the age of victims in images.  

Reponen and Tapio (2003) give the definition of eCRM: „The eCRM or electronic 

customer relationship management encompasses all the CRM functions with the use of 

the net environment i.e., intranet, extranet and internet. Electronic CRM concerns all 

forms of managing relationships with customers making use of information technology 

(IT). ECRM is enterprises using IT to integrate internal organization resources and 

external "marketing" strategies to understand and fulfill their customers’ needs. 

Comparing with traditional CRM, the integrated informatioyn for eCRM 
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intraorganizational collaboration can be more efficient for communication with 

customers. Age estimation in eCRM is used as a part of gathering information about 

customers to establish customer relations. Different age groups have different needs and 

preferences and that is where age estimation can be used (Fu, Guo and Huang, 2010). 

The most widely spread usage of age estimation is in security control and 

surveillance monitoring. It can stop minors from entering bars and to prevent underage 

drinking. It can also prevent minors from buying toobacco products from vending 

machines. Age estimation can also prevent older people from entering some rides in 

amusement parks. Another very important thing is using age estimation for denying 

minors access to web sites for adults (Guo et al., 2008), (Lanitis, Draganova and 

Christodoulou, 2004), (Ramanathan, Chellapa and Biswas, 2009). Secure internet access 

control is closely related with human computer interaction. Age estimation can be used 

to determine the age of users to adjust the type of interaction to their age (Lanitis, 

Draganova and Christodoulou, 2004). Game levels could be adjusted according to 

user’s age. 

In biometrics, age estimation is used as a soft biometric characteristic to improve 

the performance of biometric systems. It can improve robustness of face recognition 

systems to time gap (Wang et al., 2006), (Lanitis, 2009) and the task of periodically 

updating large face databases with recent images could be skipped (Ramanathan, 

Chellapa and Biswas, 2009), (Lanitis, Draganova and Christodoulou, 2004), (Patterson 

et al., 2007).  

Entertainment and cosmetology are other areas where age estimation is used. Very 

common effects in movies are aging and rejuvenating of actors, where age estimation 

and progression are utilized (Blanz and Vetter, 1999). Another usage of age estimation 

is in age-based retrieval of face images from different databases that can be used for 

creating e-photoalbums by age-range (Lanitis, Draganova and Christodoulou, 2004). 

People have the tendency to want to look younger. Important thing in looking 

younger is rejuvenating of the face. Age estimation helps to predict the rejuvenating 

results (Fu et al., 2004).  
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Chapter 6: Conclusion 

 

Human age classification and estimation from facial images is a growing field of 

research. Face images contain various information and this research uses two-

dimensional face images to classify images to those from children (age 0 to 17) or 

adults (age 18 and above). Other than this, the research uses face images to estimate the 

age of a person. 

The main objective of this research was to develop an algorithm for human age 

classification and estimation which can classify humans into children and adults. This 

new algorithm is based on the model proposed in this research. More specific objectives 

identified to achieve the main objective are to identify changes on the face that occur 

during growth and aging, to identify facial landmarks necessary for algorithm creation, 

to identify ratios needed to create a new age classification and estimation algorithm and 

to compare the new algorithm accuracy with the accuracy of existing algorithms. 

This research gives answers to the three research questions defined at the beginning 

of this research. 

What changes occur on human face during growth and aging? 

Analysis of the state of the art research on facial changes during growth and aging 

gives an answer to this question. To this end, scientific methods of description, 

compilation, analysis, synthesis, generalization and specialization are used. The answer 

to this research question is given in Table 2.4. Face shape changes caused by growth or 

aging in Chapter 2.1. Aging Face. 

Which facial landmarks are important for age classification and estimation? 

In Chapter 3.1.1. Facial Landmarks, analysis of state of the art research on facial 

landmarks used for age classification and estimation is given. First, all of the state of the 

art algorithms are analysed and an overview of landmarks used in those algorithms is 

given. After that, landmarks that appear at least twice are selected. Selected landmarks 

are combined with changes that happen on human face during growth and aging, and a 
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set of 26 landmarks used in this research is identified. These landmarks can be seen in 

Table 3.2. Landmark points used in this research. 

Which facial ratios are important for age classification and estimation? 

The answer to the last research question identified is given in Chapter 3.1.2. Ratios. 

First, all Euclidean distances between 26 facial landmarks identified are calculated. 

There are 325 possible distances. After that, all ratios between those distances are 

calculated. The number of possible ratios is 52650. This is too large a number to do 

classification with, so the number needs to be reduced. The correlation between every 

ratio and age is nonlinear, so Spearman coefficient is calculated. Only ratios that have 

high correlation coefficient are used for age classification and estimation. This leaves 62 

ratios. The answer to this research question is given in Table 3.3. Spearman coefficients. 

Other than research questions there are two hypothesis that need to be confirmed. 

The newly developed algorithm distinguishes children from adults based on 

facial anthropometric ratios with an accuracy of more than 80% when used on the 

publicly available Fg-net database. 

The newly developed algorithm uses Multi Layer Perceptron for classification. The 

62 ratios identified as an answer to the third research question are used as a basis for the 

algorithm. Algorithm performance measurements used to test the classification part of 

the algorithm are explained in Chapter 4.2.1. Age Classification. The accuracy of the 

algorithm is 81.38% which confirms the first hypothesis. The table with complete 

results can be seen in Appendix A. 

Usage of different facial anthropometric ratios than those used in existing 

anthropometric model, increases the accuracy of the algorithm when used for age 

estimation. 

In order to compare the results of the ratios from the new algorithm with the results 

of anthropometric model ratios for age estimation, the anthropometric model needs to 

be tested on the same database (Fg-net). The MAE value of the new algorithm tested on 

the Fg-net database is 6.67. The MAE value of the anthropometric model tested on the 

Fg-net database is 7.03. CS values of the new algorithm for error levels 0, 1, 5, 10, 15 

and 20  are as follows: CS(0)=6.59%, CS(1)=18.16%, CS(5)=58.08%, CS(10)=81.44%, 



86 

 

CS(15)=90.12% and CS(20)=94.21%. CS values of the anthropometric model for error 

levels 0, 1, 5, 10, 15 and 20  are as follows: CS(0)=0%, CS(1)=0.10%, CS(5)=15.47%, 

CS(10)= 28.84%, CS(15)= 43.81% and CS(20)= 65.17%. These values confirm the 

second hypothesis. The table with complete results can be seen in Appendix B. 

The scientific contribution of this research has been explained in Introduction and 

can be seen in systematization of knowledge on age classification and estimation, 

identification of facial landmarks relevant for age classification and estimation, using 

data mining to identify ratios important for age classification and estimation, creation of 

a new algorithm for age classification and evaluation of anthropometric model on a 

large database. 

Other than scientific, this research has a social contribution also: determining the 

age of immigrants or asylum seekers in situations where there are no documents proving 

the age of the person, for websites where entrance is allowed only for persons older than 

age of 18, in order to improve the system for face recognition (most of them are 

sensitive to changes during aging), searching for missing persons over the years, in 

human-computer interaction based on age, for the purpose of predicting a persons aging, 

in the fight against pedophilia (removing images of minors from various portals or 

personal computers), etc. The possible application of this research is described in detail 

in Chapter 5 Application. 

Future work will concentrate on improving the algorithm for both classification and 

estimation. The facial landmarks in this research have been marked manualy. Future 

research will deal with automatic landmark detection and incorporating it in this 

algorithm. The private database will be extended and algorithm training will be done on 

a larger sample. Other than that, application of the algorithm will be further researched 

and algorithm will be modified to adhere to different fields of application. 
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APPENDIX A New algorithm results for Fg-net database 
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ID 

Real 
Age 

Real 
Class 

Estimated 
Class 

Estimated 
Age 

 

Image 
ID 

Real 
Age 

Real 
Class 

Estimated 
Class 
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Image 
ID 

Real 
Age 

Real 
Class 

Estimated 
Class 

Estimated 
Age 

13_0 0 1 1 1 
 

66_8 8 1 1 14 
 

45_18 18 2 2 24 
15_0 0 1 1 0 

 
70_8 8 1 1 3 

 
46_18 18 2 2 21 

19_0 0 1 1 5 
 

73_8 8 1 1 13 
 

47_18 18 2 2 21 
22_0 0 1 1 3 

 
74_8 8 1 1 6 

 
48_18 18 2 2 21 

23_0 0 1 1 5 
 

75_8 8 1 1 3 
 

5_18 18 2 2 19 
24_0 0 1 1 7 

 
76_8 8 1 1 7 

 
50_18 18 2 2 29 

25_0 0 1 1 2 

 

77_8 8 1 1 7 

 

51_18 18 2 2 26 
26_0 0 1 1 1 

 
78_8 8 1 2 22 

 
52_18 18 2 2 19 

30_0 0 1 1 8 
 

79_8 8 1 1 13 
 

53_18 18 2 2 25 
31_0 0 1 1 4 

 
8_8 8 1 1 11 

 
54_18 18 2 2 26 

35_0 0 1 1 8 
 

80_8 8 1 1 18 
 

57_18 18 2 2 23 
36_0 0 1 1 0 

 
81_8 8 1 1 9 

 
61_18 18 2 2 26 

37_0 0 1 1 2 
 

10_9 9 1 2 17 
 

62_18 18 2 2 23 
38_0 0 1 1 0 

 
15_9 9 1 1 16 

 
63_18 18 2 2 28 

40_0 0 1 1 9 

 

23_9 9 1 1 8 

 

7_18 18 2 2 24 
41_0 0 1 1 4 

 
31_9 9 1 2 23 

 
71_18 18 2 1 13 

42_0 0 1 1 0 
 

35_9 9 1 1 10 
 

8_18 18 2 2 24 
43_0 0 1 1 0 

 
37_9 9 1 1 10 

 
82_18 18 2 2 27 

46_0 0 1 1 0 
 

40_9 9 1 1 19 
 

9_18 18 2 1 16 
48_0 0 1 1 1 

 
41_9 9 1 1 16 

 
1_19 19 2 2 29 

50_0 0 1 1 0 
 

47_9 9 1 1 14 
 

13_19 19 2 1 16 
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51_0 0 1 1 4 
 

48_9 9 1 1 16 
 

15_19 19 2 1 14 
53_0 0 1 1 15 

 
54_9 9 1 2 22 

 
16_19 19 2 2 21 

54_0 0 1 1 13 
 

63_9 9 1 2 20 
 

17_19 19 2 2 26 
57_0 0 1 1 3 

 
65_9 9 1 1 8 

 
24_19 19 2 2 22 

58_0 0 1 1 13 
 

66_9 9 1 1 16 
 

25_19 19 2 2 24 
63_0 0 1 1 2 

 

68_9 9 1 2 11 

 

26_19 19 2 2 22 
66_0 0 1 1 4 

 
69_9 9 1 1 16 

 
31_19 19 2 2 28 

68_0 0 1 1 6 
 

70_9 9 1 1 10 
 

36_19 19 2 2 21 
69_0 0 1 1 1 

 
73_9 9 1 1 7 

 
37_19 19 2 1 16 

70_0 0 1 1 0 
 

74_9 9 1 1 7 
 

39_19 19 2 1 13 
71_0 0 1 1 2 

 
76_9 9 1 1 9 

 
4_19 19 2 2 17 

73_0 0 1 1 11 
 

77_9 9 1 1 10 
 

40_19 19 2 2 30 
74_0 0 1 1 0 

 
78_9 9 1 1 15 

 
41_19 19 2 1 12 

75_0 0 1 1 4 

 

79_9 9 1 1 9 

 

43_19 19 2 2 20 
76_0 0 1 1 1 

 
80_9 9 1 1 13 

 
45_19 19 2 2 24 

77_0 0 1 1 0 
 

9_9 9 1 1 9 
 

52_19 19 2 2 29 
78_0 0 1 1 9 

 
1_10 10 1 1 16 

 
54_19 19 2 2 31 

79_0 0 1 1 2 
 

10_10 10 1 1 5 
 

60_19 19 2 1 9 
80_0 0 1 1 5 

 
15_10 10 1 1 6 

 
61_19 19 2 2 21 

81_0 0 1 1 3 
 

16_10 10 1 1 9 
 

64_19 19 2 2 27 
82_0 0 1 1 1 

 
24_10 10 1 1 15 

 
72_19 19 2 2 17 

9_0 0 1 1 5 

 

29_10 10 1 1 16 

 

11_20 20 2 2 27 

10_1 1 1 1 1 
 

30_10 10 1 1 21 
 

2_20 20 2 2 23 
15_1 1 1 1 0 

 
32_10 10 1 1 11 

 
20_20 20 2 1 15 

16_1 1 1 1 0 
 

33_10 10 1 1 12 
 

21_20 20 2 2 26 
29_1 1 1 1 12 

 
38_10 10 1 1 7 

 
22_20 20 2 1 12 

35_1 1 1 1 2 
 

39_10 10 1 1 8 
 

27_20 20 2 2 20 
36_1 1 1 1 3 

 
40_10 10 1 1 11 

 
28_20 20 2 2 22 
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37_1 1 1 1 2 
 

42_10 10 1 1 16 
 

29_20 20 2 2 21 
38_1 1 1 1 0 

 
43_10 10 1 1 14 

 
3_20 20 2 2 22 

42_1 1 1 1 6 
 

46_10 10 1 1 8 
 

30_20 20 2 1 20 
44_1 1 1 1 0 

 
48_10 10 1 1 7 

 
32_20 20 2 1 13 

46_1 1 1 1 6 
 

49_10 10 1 1 11 
 

36_20 20 2 1 22 
53_1 1 1 1 6 

 

50_10 10 1 2 21 

 

41_20 20 2 1 13 
56_1 1 1 1 0 

 
52_10 10 1 2 20 

 
42_20 20 2 2 22 

58_1 1 1 2 21 
 

53_10 10 1 1 12 
 

46_20 20 2 2 25 
64_1 1 1 1 2 

 
54_10 10 1 1 17 

 
47_20 20 2 1 15 

7_1 1 1 1 0 
 

56_10 10 1 1 10 
 

52_20 20 2 2 24 
70_1 1 1 1 6 

 
58_10 10 1 1 18 

 
60_20 20 2 2 28 

73_1 1 1 1 4 
 

60_10 10 1 1 9 
 

63_20 20 2 2 23 
74_1 1 1 1 2 

 
61_10 10 1 2 22 

 
82_20 20 2 2 26 

75_1 1 1 1 2 

 

64_10 10 1 2 26 

 

12_21 21 2 1 20 
76_1 1 1 1 2 

 
65_10 10 1 1 15 

 
13_21 21 2 2 12 

77_1 1 1 1 4 
 

66_10 10 1 1 21 
 

2_21 21 2 2 22 
78_1 1 1 1 6 

 
68_10 10 1 1 13 

 
23_21 21 2 2 27 

79_1 1 1 1 3 
 

68_10 10 1 1 4 
 

33_21 21 2 2 15 
80_1 1 1 1 5 

 
69_10 10 1 1 19 

 
34_21 21 2 2 21 

81_1 1 1 1 0 
 

71_10 10 1 1 15 
 

35_21 21 2 2 21 
9_1 1 1 1 0 

 
74_10 10 1 1 8 

 
38_21 21 2 2 19 

1_2 2 1 1 0 

 

75_10 10 1 1 10 

 

4_21 21 2 2 23 

11_2 2 1 1 0 
 

76_10 10 1 1 10 
 

40_21 21 2 2 26 
20_2 2 1 1 19 

 
77_10 10 1 1 11 

 
41_21 21 2 1 14 

26_2 2 1 1 3 
 

78_10 10 1 1 19 
 

44_21 21 2 2 23 
27_2 2 1 1 8 

 
79_10 10 1 1 10 

 
67_21 21 2 1 17 

31_2 2 1 1 2 
 

80_10 10 1 1 15 
 

72_21 21 2 2 18 
33_2 2 1 1 0 

 
81_10 10 1 1 14 

 
8_21 21 2 2 17 
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34_2 2 1 1 6 
 

11_11 11 1 1 14 
 

82_21 21 2 2 26 
37_2 2 1 1 6 

 
18_11 11 1 2 22 

 
1_22 22 2 2 33 

39_2 2 1 1 3 
 

20_11 11 1 1 19 
 

14_22 22 2 2 17 
40_2 2 1 1 5 

 
21_11 11 1 2 14 

 
17_22 22 2 2 26 

41_2 2 1 1 0 
 

22_11 11 1 1 13 
 

18_22 22 2 1 11 
46_2 2 1 1 3 

 

26_11 11 1 1 18 

 

20_22 22 2 2 28 
51_2 2 1 1 3 

 
27_11 11 1 1 10 

 
23_22 22 2 2 22 

52_2 2 1 1 6 
 

29_11 11 1 1 17 
 

25_22 22 2 1 16 
53_2 2 1 1 7 

 
31_11 11 1 1 22 

 
27_22 22 2 2 22 

54_2 2 1 2 25 
 

34_11 11 1 2 23 
 

29_22 22 2 2 27 
56_2 2 1 1 4 

 
36_11 11 1 1 10 

 
50_22 22 2 2 22 

58_2 2 1 1 5 
 

37_11 11 1 1 11 
 

55_22 22 2 1 13 
59_2 2 1 1 10 

 
38_11 11 1 1 15 

 
63_22 22 2 2 25 

59_2 2 1 1 8 

 

39_11 11 1 1 10 

 

7_22 22 2 2 21 
60_2 2 1 1 2 

 
47_11 11 1 1 14 

 
71_22 22 2 1 12 

63_2 2 1 1 2 
 

48_11 11 1 1 7 
 

82_22 22 2 2 27 
65_2 2 1 1 1 

 
53_11 11 1 1 6 

 
9_22 22 2 1 14 

65_2 2 1 1 1 
 

54_11 11 1 2 19 
 

9_22 22 2 1 14 
66_2 2 1 1 2 

 
60_11 11 1 1 15 

 
12_23 23 2 2 21 

66_2 2 1 1 10 
 

65_11 11 1 1 22 
 

13_23 23 2 1 8 
69_2 2 1 1 6 

 
66_11 11 1 1 19 

 
19_23 23 2 2 20 

70_2 2 1 1 5 

 

68_11 11 1 1 19 

 

2_23 23 2 2 16 

72_2 2 1 1 1 
 

69_11 11 1 1 7 
 

21_23 23 2 2 29 
73_2 2 1 1 7 

 
72_11 11 1 1 13 

 
22_23 23 2 1 14 

74_2 2 1 1 7 
 

73_11 11 1 1 11 
 

24_23 23 2 2 26 
75_2 2 1 1 0 

 
74_11 11 1 1 7 

 
25_23 23 2 1 16 

76_2 2 1 1 4 
 

75_11 11 1 1 13 
 

29_23 23 2 2 27 
77_2 2 1 1 5 

 
76_11 11 1 1 10 

 
3_23 23 2 2 28 
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78_2 2 1 1 10 
 

77_11 11 1 1 12 
 

30_23 23 2 2 24 
79_2 2 1 1 4 

 
78_11 11 1 1 18 

 
35_23 23 2 2 22 

80_2 2 1 1 2 
 

79_11 11 1 1 6 
 

35_23 23 2 2 24 
81_2 2 1 1 9 

 
81_11 11 1 1 20 

 
38_23 23 2 2 28 

14_3 3 1 1 0 
 

9_11 11 1 2 18 
 

43_23 23 2 2 17 
15_3 3 1 1 3 

 

10_12 12 1 1 0 

 

47_23 23 2 1 19 
16_3 3 1 1 3 

 
12_12 12 1 1 6 

 
55_23 23 2 1 21 

19_3 3 1 1 13 
 

14_12 12 1 1 7 
 

57_23 23 2 2 21 
2_3 3 1 1 12 

 
15_12 12 1 1 11 

 
67_23 23 2 2 26 

21_3 3 1 1 7 
 

16_12 12 1 1 16 
 

7_23 23 2 2 18 
23_3 3 1 1 6 

 
17_12 12 1 1 15 

 
71_23 23 2 1 14 

25_3 3 1 1 7 
 

19_12 12 1 2 24 
 

82_23 23 2 2 25 
31_3 3 1 1 4 

 
2_12 12 1 1 19 

 
12_24 24 2 2 19 

35_3 3 1 1 5 

 

25_12 12 1 2 20 

 

20_24 24 2 2 23 
36_3 3 1 1 6 

 
31_12 12 1 1 22 

 
32_24 24 2 2 22 

38_3 3 1 1 1 
 

35_12 12 1 1 6 
 

41_24 24 2 1 20 
40_3 3 1 1 19 

 
40_12 12 1 2 23 

 
42_24 24 2 2 21 

40_3 3 1 1 10 
 

42_12 12 1 1 16 
 

5_24 24 2 2 19 
43_3 3 1 1 0 

 
45_12 12 1 1 14 

 
51_24 24 2 2 27 

44_3 3 1 1 0 
 

46_12 12 1 1 14 
 

6_24 24 2 2 27 
45_3 3 1 1 5 

 
47_12 12 1 1 14 

 
71_24 24 2 2 23 

50_3 3 1 1 0 

 

49_12 12 1 1 24 

 

12_25 25 2 1 19 

53_3 3 1 1 4 
 

51_12 12 1 2 20 
 

13_25 25 2 2 21 
56_3 3 1 1 6 

 
53_12 12 1 1 13 

 
18_25 25 2 2 22 

58_3 3 1 1 13 
 

54_12 12 1 1 15 
 

22_25 25 2 1 23 
59_3 3 1 1 12 

 
55_12 12 1 1 12 

 
23_25 25 2 2 24 

62_3 3 1 1 9 
 

56_12 12 1 1 7 
 

24_25 25 2 2 25 
64_3 3 1 1 3 

 
57_12 12 1 1 5 

 
27_25 25 2 1 17 
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65_3 3 1 1 2 
 

59_12 12 1 1 18 
 

3_25 25 2 2 31 
65_3 3 1 1 6 

 
60_12 12 1 2 15 

 
33_25 25 2 1 11 

66_3 3 1 1 1 
 

65_12 12 1 1 10 
 

34_25 25 2 2 27 
68_3 3 1 1 5 

 
68_12 12 1 1 11 

 
44_25 25 2 2 22 

69_3 3 1 1 0 
 

70_12 12 1 1 9 
 

45_25 25 2 2 26 
70_3 3 1 1 6 

 

73_12 12 1 1 10 

 

57_25 25 2 2 24 
73_3 3 1 1 2 

 
74_12 12 1 1 7 

 
61_25 25 2 2 26 

74_3 3 1 1 1 
 

76_12 12 1 1 8 
 

63_25 25 2 2 25 
75_3 3 1 1 4 

 
77_12 12 1 1 12 

 
72_25 25 2 2 13 

76_3 3 1 1 3 
 

78_12 12 1 1 19 
 

82_25 25 2 2 28 
77_3 3 1 1 7 

 
79_12 12 1 1 16 

 
12_26 26 2 2 26 

78_3 3 1 1 6 
 

8_12 12 1 2 23 
 

17_26 26 2 2 30 
79_3 3 1 1 9 

 
80_12 12 1 2 24 

 
2_26 26 2 2 23 

8_3 3 1 1 0 

 

81_12 12 1 1 17 

 

20_26 26 2 2 23 
80_3 3 1 1 8 

 
11_13 13 1 1 18 

 
22_26 26 2 2 23 

81_3 3 1 1 7 
 

20_13 13 1 2 24 
 

28_26 26 2 1 18 
82_3 3 1 1 5 

 
26_13 13 1 1 11 

 
30_26 26 2 2 25 

9_3 3 1 1 6 
 

27_13 13 1 1 14 
 

4_26 26 2 2 21 
10_4 4 1 1 6 

 
29_13 13 1 1 12 

 
61_26 26 2 2 23 

12_4 4 1 2 21 
 

32_13 13 1 1 18 
 

67_26 26 2 1 15 
15_4 4 1 1 8 

 
34_13 13 1 2 23 

 
7_26 26 2 1 12 

16_4 4 1 1 0 

 

36_13 13 1 1 18 

 

11_27 27 2 2 26 

2_4 4 1 1 12 
 

37_13 13 1 1 8 
 

12_27 27 2 2 21 
20_4 4 1 1 3 

 
38_13 13 1 1 6 

 
19_27 27 2 1 14 

26_4 4 1 1 8 
 

39_13 13 1 1 12 
 

21_27 27 2 2 26 
29_4 4 1 2 22 

 
41_13 13 1 1 6 

 
22_27 27 2 2 23 

30_4 4 1 1 18 
 

43_13 13 1 1 11 
 

43_27 27 2 2 29 
31_4 4 1 1 1 

 
44_13 13 1 2 22 

 
47_27 27 2 2 18 
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34_4 4 1 1 10 
 

47_13 13 1 1 9 
 

48_27 27 2 2 24 
37_4 4 1 1 11 

 
52_13 13 1 2 23 

 
71_27 27 2 1 10 

38_4 4 1 1 14 
 

53_13 13 1 1 12 
 

72_27 27 2 1 8 
41_4 4 1 1 1 

 
54_13 13 1 1 10 

 
82_27 27 2 2 26 

42_4 4 1 1 12 
 

58_13 13 1 1 20 
 

1_28 28 2 2 31 
43_4 4 1 1 10 

 

65_13 13 1 2 23 

 

18_28 28 2 1 7 
46_4 4 1 1 5 

 
68_13 13 1 2 23 

 
22_28 28 2 2 24 

49_4 4 1 1 7 
 

69_13 13 1 2 18 
 

24_28 28 2 2 31 
52_4 4 1 1 2 

 
72_13 13 1 1 13 

 
25_28 28 2 2 24 

53_4 4 1 1 5 
 

73_13 13 1 1 9 
 

28_28 28 2 2 18 
54_4 4 1 2 21 

 
74_13 13 1 1 8 

 
32_28 28 2 2 22 

55_4 4 1 1 13 
 

76_13 13 1 1 8 
 

4_28 28 2 2 26 
56_4 4 1 1 4 

 
77_13 13 1 1 14 

 
42_28 28 2 2 24 

58_4 4 1 1 18 

 

78_13 13 1 2 20 

 

45_28 28 2 2 25 
59_4 4 1 2 20 

 
79_13 13 1 1 18 

 
6_28 28 2 2 28 

60_4 4 1 1 16 
 

8_13 13 1 2 23 
 

67_28 28 2 2 24 
61_4 4 1 1 2 

 
80_13 13 1 2 23 

 
1_29 29 2 2 32 

63_4 4 1 1 8 
 

9_13 13 1 1 11 
 

17_29 29 2 2 22 
64_4 4 1 2 19 

 
1_14 14 1 2 22 

 
18_29 29 2 2 26 

65_4 4 1 1 5 
 

11_14 14 1 1 20 
 

2_29 29 2 2 25 
66_4 4 1 1 6 

 
12_14 14 1 1 9 

 
23_29 29 2 2 19 

67_4 4 1 1 6 

 

14_14 14 1 1 12 

 

29_29 29 2 2 24 

68_4 4 1 1 7 
 

15_14 14 1 1 12 
 

61_29 29 2 2 24 
69_4 4 1 1 10 

 
16_14 14 1 2 23 

 
72_29 29 2 2 22 

73_4 4 1 1 6 
 

22_14 14 1 2 27 
 

8_29 29 2 2 14 
74_4 4 1 1 0 

 
23_14 14 1 1 19 

 
11_30 30 2 2 24 

76_4 4 1 1 6 
 

28_14 14 1 1 20 
 

12_30 30 2 2 12 
77_4 4 1 1 2 

 
31_14 14 1 1 21 

 
13_30 30 2 2 30 
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78_4 4 1 1 8 
 

33_14 14 1 1 16 
 

14_30 30 2 1 10 
79_4 4 1 1 2 

 
35_14 14 1 1 14 

 
19_30 30 2 1 11 

80_4 4 1 1 9 
 

38_14 14 1 1 11 
 

20_30 30 2 2 24 
81_4 4 1 2 12 

 
40_14 14 1 1 21 

 
21_30 30 2 2 22 

1_5 5 1 1 7 
 

42_14 14 1 2 20 
 

22_30 30 2 1 17 
10_5 5 1 1 4 

 

46_14 14 1 2 23 

 

24_30 30 2 2 24 
11_5 5 1 1 7 

 
50_14 14 1 2 25 

 
27_30 30 2 1 21 

15_5 5 1 1 7 
 

51_14 14 1 1 20 
 

33_30 30 2 2 21 
16_5 5 1 1 4 

 
52_14 14 1 2 25 

 
34_30 30 2 2 26 

17_5 5 1 1 12 
 

55_14 14 1 1 14 
 

4_30 30 2 1 9 
19_5 5 1 1 19 

 
59_14 14 1 2 23 

 
48_30 30 2 2 24 

2_5 5 1 1 17 
 

67_14 14 1 1 19 
 

5_30 30 2 2 27 
21_5 5 1 1 11 

 
68_14 14 1 1 9 

 
61_30 30 2 2 25 

23_5 5 1 1 20 

 

70_14 14 1 1 11 

 

62_30 30 2 2 27 
24_5 5 1 1 5 

 
72_14 14 1 2 14 

 
67_30 30 2 2 25 

29_5 5 1 1 15 
 

73_14 14 1 1 18 
 

8_30 30 2 2 21 
30_5 5 1 1 11 

 
74_14 14 1 1 21 

 
2_31 31 2 1 19 

33_5 5 1 1 7 
 

76_14 14 1 1 18 
 

29_31 31 2 2 28 
35_5 5 1 1 2 

 
77_14 14 1 1 15 

 
5_31 31 2 2 28 

36_5 5 1 1 9 
 

78_14 14 1 1 15 
 

6_31 31 2 2 29 
38_5 5 1 1 11 

 
80_14 14 1 1 21 

 
8_31 31 2 2 21 

39_5 5 1 1 13 

 

9_14 14 1 1 8 

 

82_31 31 2 2 27 

40_5 5 1 1 9 
 

10_15 15 1 1 10 
 

12_32 32 2 1 18 
42_5 5 1 1 1 

 
11_15 15 1 1 15 

 
17_32 32 2 2 16 

43_5 5 1 1 0 
 

15_15 15 1 1 15 
 

45_32 32 2 2 26 
44_5 5 1 1 17 

 
17_15 15 1 2 24 

 
61_32 32 2 2 28 

47_5 5 1 1 18 
 

19_15 15 1 1 16 
 

1_33 33 2 2 29 
49_5 5 1 1 8 

 
2_15 15 1 1 17 

 
18_33 33 2 1 17 
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51_5 5 1 1 9 
 

25_15 15 1 2 25 
 

29_33 33 2 2 24 
55_5 5 1 1 7 

 
26_15 15 1 1 9 

 
32_33 33 2 1 16 

57_5 5 1 1 11 
 

31_15 15 1 2 27 
 

47_33 33 2 2 12 
58_5 5 1 2 21 

 
32_15 15 1 2 24 

 
48_33 33 2 1 13 

60_5 5 1 1 5 
 

34_15 15 1 2 26 
 

63_33 33 2 2 30 
69_5 5 1 1 6 

 

36_15 15 1 1 17 

 

67_33 33 2 1 20 
70_5 5 1 1 8 

 
39_15 15 1 1 14 

 
8_33 33 2 2 20 

73_5 5 1 1 7 
 

43_15 15 1 1 17 
 

11_34 34 2 2 25 
74_5 5 1 1 4 

 
44_15 15 1 2 18 

 
12_34 34 2 1 5 

75_5 5 1 1 10 
 

47_15 15 1 1 17 
 

13_34 34 2 1 19 
76_5 5 1 1 7 

 
48_15 15 1 2 23 

 
18_34 34 2 2 16 

78_5 5 1 1 4 
 

49_15 15 1 1 21 
 

25_34 34 2 2 24 
79_5 5 1 1 1 

 
51_15 15 1 1 12 

 
28_34 34 2 2 16 

80_5 5 1 1 10 

 

53_15 15 1 2 21 

 

38_34 34 2 2 22 
81_5 5 1 1 8 

 
56_15 15 1 2 22 

 
72_34 34 2 2 28 

9_5 5 1 1 4 
 

58_15 15 1 2 21 
 

21_35 35 2 2 25 
10_6 6 1 1 4 

 
61_15 15 1 1 19 

 
28_35 35 2 2 25 

18_6 6 1 1 10 
 

62_15 15 1 2 25 
 

3_35 35 2 2 28 
21_6 6 1 1 9 

 
64_15 15 1 1 13 

 
32_35 35 2 2 22 

26_6 6 1 1 17 
 

73_15 15 1 1 21 
 

33_35 35 2 2 21 
31_6 6 1 1 12 

 
74_15 15 1 1 17 

 
34_35 35 2 2 21 

32_6 6 1 1 7 

 

76_15 15 1 1 21 

 

39_35 35 2 1 14 

36_6 6 1 1 15 
 

77_15 15 1 1 15 
 

5_35 35 2 2 28 
37_6 6 1 1 6 

 
78_15 15 1 1 21 

 
62_35 35 2 2 25 

40_6 6 1 1 12 
 

1_16 16 1 2 23 
 

71_35 35 2 2 25 
41_6 6 1 1 8 

 
10_16 16 1 1 14 

 
8_35 35 2 2 19 

42_6 6 1 1 3 
 

13_16 16 1 1 11 
 

12_36 36 2 1 15 
45_6 6 1 1 5 

 
14_16 16 1 1 11 

 
14_36 36 2 2 21 
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46_6 6 1 1 11 
 

16_16 16 1 1 16 
 

17_36 36 2 2 29 
47_6 6 1 1 15 

 
18_16 16 1 2 26 

 
18_36 36 2 2 22 

49_6 6 1 1 3 
 

2_16 16 1 2 23 
 

2_36 36 2 2 23 
50_6 6 1 1 8 

 
20_16 16 1 1 15 

 
20_36 36 2 2 21 

53_6 6 1 1 10 
 

21_16 16 1 2 25 
 

27_36 36 2 1 19 
54_6 6 1 1 13 

 

22_16 16 1 2 24 

 

6_36 36 2 2 32 
55_6 6 1 1 8 

 
23_16 16 1 2 27 

 
28_37 37 2 1 16 

56_6 6 1 1 10 
 

27_16 16 1 2 21 
 

4_37 37 2 2 19 
57_6 6 1 1 10 

 
28_16 16 1 1 13 

 
7_37 37 2 2 21 

58_6 6 1 1 16 
 

29_16 16 1 2 27 
 

17_38 38 2 2 27 
59_6 6 1 1 10 

 
30_16 16 1 2 25 

 
2_38 38 2 2 17 

60_6 6 1 1 2 
 

31_16 16 1 2 22 
 

3_38 38 2 2 25 
61_6 6 1 2 20 

 
34_16 16 1 2 27 

 
62_38 38 2 2 25 

65_6 6 1 1 9 

 

35_16 16 1 1 16 

 

7_38 38 2 2 22 
65_6 6 1 1 6 

 
39_16 16 1 2 17 

 
21_39 39 2 2 25 

66_6 6 1 1 7 
 

40_16 16 1 2 25 
 

25_39 39 2 2 20 
66_6 6 1 1 9 

 
46_16 16 1 1 21 

 
33_39 39 2 1 17 

69_6 6 1 1 10 
 

48_16 16 1 2 23 
 

34_39 39 2 2 24 
70_6 6 1 1 4 

 
49_16 16 1 2 24 

 
67_39 39 2 1 16 

73_6 6 1 1 7 
 

50_16 16 1 2 14 
 

7_39 39 2 2 22 
74_6 6 1 1 3 

 
51_16 16 1 2 21 

 
1_40 40 2 1 23 

75_6 6 1 1 5 

 

52_16 16 1 2 28 

 

11_40 40 2 2 26 

76_6 6 1 1 7 
 

54_16 16 1 2 24 
 

14_40 40 2 1 14 
77_6 6 1 1 9 

 
57_16 16 1 2 22 

 
32_40 40 2 2 25 

78_6 6 1 1 21 
 

59_16 16 1 1 19 
 

4_40 40 2 2 24 
79_6 6 1 1 11 

 
62_16 16 1 1 12 

 
45_40 40 2 2 21 

8_6 6 1 1 9 
 

73_16 16 1 1 11 
 

5_40 40 2 2 18 
80_6 6 1 1 10 

 
76_16 16 1 1 12 

 
6_40 40 2 2 30 
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81_6 6 1 1 16 
 

77_16 16 1 1 11 
 

71_40 40 2 2 22 
10_7 7 1 1 7 

 
8_16 16 1 2 22 

 
13_41 41 2 1 14 

10_7 7 1 1 2 
 

82_16 16 1 2 26 
 

27_41 41 2 2 19 
11_7 7 1 1 6 

 
9_16 16 1 1 10 

 
28_41 41 2 1 15 

12_7 7 1 1 7 
 

9_16 16 1 1 14 
 

62_41 41 2 2 22 
15_7 7 1 1 11 

 

11_17 17 1 1 18 

 

72_41 41 2 2 22 
16_7 7 1 1 11 

 
15_17 17 1 1 16 

 
8_41 41 2 2 22 

17_7 7 1 1 5 
 

16_17 17 1 2 24 
 

11_42 42 2 2 25 
19_7 7 1 1 14 

 
17_17 17 1 1 30 

 
14_42 42 2 1 16 

2_7 7 1 2 16 
 

24_17 17 1 2 24 
 

17_42 42 2 2 32 
22_7 7 1 1 10 

 
26_17 17 1 1 16 

 
6_42 42 2 2 30 

23_7 7 1 1 12 
 

30_17 17 1 2 27 
 

71_42 42 2 1 17 
24_7 7 1 1 19 

 
36_17 17 1 1 21 

 
1_43 43 2 2 30 

25_7 7 1 1 11 

 

37_17 17 1 1 18 

 

1_43 43 2 2 33 
26_7 7 1 1 8 

 
38_17 17 1 1 18 

 
45_43 43 2 2 27 

30_7 7 1 1 17 
 

39_17 17 1 2 23 
 

71_43 43 2 1 12 
31_7 7 1 1 11 

 
43_17 17 1 2 19 

 
13_44 44 2 2 31 

35_7 7 1 1 7 
 

44_17 17 1 2 17 
 

33_44 44 2 2 21 
39_7 7 1 1 11 

 
45_17 17 1 2 22 

 
34_44 44 2 2 22 

40_7 7 1 1 9 
 

46_17 17 1 1 16 
 

71_44 44 2 2 23 
44_7 7 1 1 13 

 
48_17 17 1 1 16 

 
39_45 45 2 2 25 

49_7 7 1 1 12 

 

49_17 17 1 2 20 

 

47_45 45 2 2 26 

52_7 7 1 1 15 
 

51_17 17 1 2 20 
 

5_45 45 2 2 23 
57_7 7 1 1 11 

 
52_17 17 1 2 26 

 
62_45 45 2 1 14 

59_7 7 1 1 11 
 

54_17 17 1 2 23 
 

7_45 45 2 2 15 
60_7 7 1 2 22 

 
57_17 17 1 2 26 

 
71_45 45 2 2 20 

61_7 7 1 1 10 
 

58_17 17 1 1 11 
 

72_45 45 2 1 15 
65_7 7 1 1 9 

 
60_17 17 1 2 25 

 
28_46 46 2 1 17 
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65_7 7 1 1 11 
 

61_17 17 1 2 21 
 

48_46 46 2 1 18 
66_7 7 1 1 10 

 
67_17 17 1 1 10 

 
6_46 46 2 2 29 

69_7 7 1 1 5 
 

72_17 17 1 1 12 
 

3_47 47 2 2 33 
70_7 7 1 1 6 

 
76_17 17 1 1 15 

 
62_47 47 2 1 21 

72_7 7 1 1 7 
 

8_17 17 1 2 18 
 

4_48 48 2 2 26 
73_7 7 1 1 7 

 

1_18 18 2 2 25 

 

45_48 48 2 2 17 
74_7 7 1 1 12 

 
10_18 18 2 1 9 

 
5_48 48 2 1 22 

75_7 7 1 1 5 
 

12_18 18 2 1 11 
 

3_49 49 2 2 30 
76_7 7 1 1 6 

 
13_18 18 2 1 22 

 
48_49 49 2 2 19 

77_7 7 1 1 16 
 

14_18 18 2 1 16 
 

5_49 49 2 2 21 
78_7 7 1 2 25 

 
16_18 18 2 2 26 

 
39_50 50 2 2 25 

79_7 7 1 1 12 
 

18_18 18 2 2 18 
 

48_50 50 2 2 20 
80_7 7 1 1 13 

 
19_18 18 2 2 21 

 
3_51 51 2 2 25 

81_7 7 1 1 10 

 

2_18 18 2 2 26 

 

4_51 51 2 2 21 
1_8 8 1 1 11 

 
20_18 18 2 2 22 

 
6_51 51 2 2 29 

13_8 8 1 1 16 
 

21_18 18 2 2 23 
 

39_52 52 2 2 22 
16_8 8 1 1 8 

 
22_18 18 2 1 17 

 
48_52 52 2 2 28 

20_8 8 1 1 4 
 

23_18 18 2 2 13 
 

5_52 52 2 2 23 
32_8 8 1 1 6 

 
24_18 18 2 2 28 

 
4_53 53 2 2 26 

35_8 8 1 2 16 
 

25_18 18 2 1 16 
 

62_53 53 2 1 20 
36_8 8 1 1 10 

 
26_18 18 2 2 21 

 
48_54 54 2 2 23 

37_8 8 1 1 6 

 

27_18 18 2 2 22 

 

62_54 54 2 2 20 

38_8 8 1 1 7 
 

28_18 18 2 1 14 
 

47_55 55 2 2 24 
42_8 8 1 1 16 

 
3_18 18 2 2 30 

 
6_55 55 2 2 28 

45_8 8 1 1 10 
 

30_18 18 2 1 21 
 

3_58 58 2 2 29 
46_8 8 1 1 19 

 
32_18 18 2 2 24 

 
3_60 60 2 2 21 

49_8 8 1 1 16 
 

33_18 18 2 2 21 
 

3_61 61 2 2 24 
51_8 8 1 1 10 

 
34_18 18 2 2 20 

 
5_61 61 2 2 31 
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53_8 8 1 1 12 
 

35_18 18 2 2 20 
 

6_61 61 2 2 26 
55_8 8 1 1 3 

 
36_18 18 2 2 21 

 
4_62 62 2 2 22 

60_8 8 1 1 13 
 

37_18 18 2 1 18 
 

4_63 63 2 2 27 
63_8 8 1 1 12 

 
42_18 18 2 2 16 

 
6_67 67 2 2 29 

65_8 8 1 1 11 
 

44_18 18 2 2 23 
 

6_69 69 2 2 33 
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APPENDIX B Anthropometric model results for Fg-net database 
 

Image 
ID 

Actual 
Age 

Estimated 
Age  

Image 
ID 

Actual 
Age 

Estimated 
Age  

Image 
ID 

Actual 
Age 

Estimated 
Age  

Image 
ID 

Actual 
Age 

Estimated 
Age 

9_0 0 3 
 

54_6 6 8 
 

65_13 13 31 
 

18_22 22 16 

13_0 0 3 
 

55_6 6 17 
 

68_13 13 22 
 

20_22 22 22 
15_0 0 3 

 
56_6 6 11 

 
69_13 13 21 

 
23_22 22 24 

19_0 0 3 
 

57_6 6 9 
 

72_13 13 23 
 

25_22 22 16 
22_0 0 3 

 
58_6 6 14 

 
73_13 13 17 

 
27_22 22 24 

23_0 0 3 
 

59_6 6 11 
 

74_13 13 11 
 

29_22 22 23 
24_0 0 3 

 
60_6 6 0 

 
76_13 13 9 

 
50_22 22 21 

25_0 0 4 
 

61_6 6 12 
 

77_13 13 11 
 

55_22 22 12 
26_0 0 3 

 
65_6 6 9 

 
78_13 13 25 

 
63_22 22 17 

30_0 0 8 
 

65_6 6 6 
 

79_13 13 15 
 

71_22 22 15 
31_0 0 3 

 
66_6 6 4 

 
80_13 13 26 

 
82_22 22 29 

35_0 0 4 
 

66_6 6 13 
 

1_14 14 21 
 

2_23 23 27 
36_0 0 5 

 
69_6 6 13 

 
9_14 14 10 

 
3_23 23 35 

37_0 0 3 
 

70_6 6 5 
 

11_14 14 18 
 

7_23 23 13 
38_0 0 2 

 
73_6 6 7 

 
12_14 14 9 

 
12_23 23 35 

40_0 0 10 
 

74_6 6 6 
 

14_14 14 16 
 

13_23 23 13 
41_0 0 3 

 
75_6 6 4 

 
15_14 14 9 

 
19_23 23 26 

42_0 0 3 
 

76_6 6 5 
 

16_14 14 26 
 

21_23 23 26 
43_0 0 3 

 
77_6 6 5 

 
22_14 14 24 

 
22_23 23 18 

46_0 0 3 
 

78_6 6 22 
 

23_14 14 20 
 

24_23 23 24 
48_0 0 4 

 
79_6 6 6 

 
28_14 14 20 

 
25_23 23 21 

50_0 0 3 
 

80_6 6 5 
 

31_14 14 21 
 

29_23 23 24 
51_0 0 3 

 
81_6 6 9 

 
33_14 14 8 

 
30_23 23 22 
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53_0 0 8 
 

2_7 7 10 
 

35_14 14 17 
 

35_23 23 28 
54_0 0 6 

 
10_7 7 5 

 
38_14 14 23 

 
35_23 23 23 

57_0 0 3 
 

10_7 7 5 
 

40_14 14 18 
 

38_23 23 19 
58_0 0 14 

 
11_7 7 9 

 
42_14 14 18 

 
43_23 23 26 

63_0 0 5 
 

12_7 7 5 
 

46_14 14 21 
 

47_23 23 10 
66_0 0 3 

 
15_7 7 8 

 
50_14 14 28 

 
55_23 23 24 

68_0 0 4 
 

16_7 7 15 
 

51_14 14 22 
 

57_23 23 17 
69_0 0 3 

 
17_7 7 7 

 
52_14 14 29 

 
67_23 23 23 

70_0 0 3 
 

19_7 7 14 
 

55_14 14 22 
 

71_23 23 19 
71_0 0 8 

 
22_7 7 18 

 
59_14 14 25 

 
82_23 23 22 

73_0 0 3 
 

23_7 7 19 
 

67_14 14 22 
 

5_24 24 19 
74_0 0 3 

 
24_7 7 9 

 
68_14 14 9 

 
6_24 24 26 

75_0 0 3 
 

25_7 7 14 
 

70_14 14 19 
 

12_24 24 23 
76_0 0 3 

 
26_7 7 15 

 
72_14 14 17 

 
20_24 24 23 

77_0 0 3 
 

30_7 7 17 
 

73_14 14 22 
 

32_24 24 16 
78_0 0 3 

 
31_7 7 13 

 
74_14 14 22 

 
41_24 24 19 

79_0 0 3 
 

35_7 7 12 
 

76_14 14 16 
 

42_24 24 26 
80_0 0 4 

 
39_7 7 20 

 
77_14 14 18 

 
51_24 24 30 

81_0 0 3 
 

40_7 7 9 
 

78_14 14 10 
 

71_24 24 19 
82_0 0 3 

 
44_7 7 22 

 
80_14 14 21 

 
3_25 25 35 

7_1 1 3 
 

49_7 7 14 
 

2_15 15 19 
 

12_25 25 21 
9_1 1 3 

 
52_7 7 22 

 
10_15 15 18 

 
13_25 25 20 

10_1 1 3 
 

57_7 7 19 
 

11_15 15 20 
 

18_25 25 26 
15_1 1 3 

 
59_7 7 20 

 
15_15 15 18 

 
22_25 25 16 

16_1 1 5 
 

60_7 7 23 
 

17_15 15 24 
 

23_25 25 22 
29_1 1 13 

 
61_7 7 10 

 
19_15 15 18 

 
24_25 25 25 

35_1 1 3 
 

65_7 7 8 
 

25_15 15 19 
 

27_25 25 28 
36_1 1 5 

 
65_7 7 11 

 
26_15 15 16 

 
33_25 25 8 
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37_1 1 4 
 

66_7 7 22 
 

31_15 15 22 
 

34_25 25 28 
38_1 1 8 

 
69_7 7 6 

 
32_15 15 15 

 
44_25 25 24 

42_1 1 3 
 

70_7 7 14 
 

34_15 15 24 
 

45_25 25 26 
44_1 1 3 

 
72_7 7 11 

 
36_15 15 14 

 
57_25 25 19 

46_1 1 15 
 

73_7 7 5 
 

39_15 15 14 
 

61_25 25 16 
53_1 1 8 

 
74_7 7 8 

 
43_15 15 19 

 
63_25 25 20 

56_1 1 3 
 

75_7 7 7 
 

44_15 15 23 
 

72_25 25 21 
58_1 1 22 

 
76_7 7 4 

 
47_15 15 10 

 
82_25 25 26 

64_1 1 4 
 

77_7 7 14 
 

48_15 15 23 
 

2_26 26 25 
70_1 1 4 

 
78_7 7 20 

 
49_15 15 21 

 
4_26 26 25 

73_1 1 4 
 

79_7 7 10 
 

51_15 15 16 
 

7_26 26 16 
74_1 1 3 

 
80_7 7 13 

 
53_15 15 22 

 
12_26 26 22 

75_1 1 4 
 

81_7 7 8 
 

56_15 15 21 
 

17_26 26 22 
76_1 1 3 

 
1_8 8 7 

 
58_15 15 16 

 
20_26 26 26 

77_1 1 3 
 

8_8 8 13 
 

61_15 15 20 
 

22_26 26 21 
78_1 1 3 

 
13_8 8 6 

 
62_15 15 23 

 
28_26 26 23 

79_1 1 8 
 

16_8 8 7 
 

64_15 15 22 
 

30_26 26 23 
80_1 1 4 

 
20_8 8 4 

 
73_15 15 12 

 
61_26 26 20 

81_1 1 3 
 

32_8 8 9 
 

74_15 15 26 
 

67_26 26 19 
1_2 2 3 

 
35_8 8 13 

 
76_15 15 23 

 
11_27 27 28 

11_2 2 3 
 

36_8 8 18 
 

77_15 15 21 
 

12_27 27 18 
20_2 2 8 

 
37_8 8 5 

 
78_15 15 20 

 
19_27 27 25 

26_2 2 5 
 

38_8 8 10 
 

1_16 16 22 
 

21_27 27 23 
27_2 2 14 

 
42_8 8 22 

 
2_16 16 25 

 
22_27 27 23 

31_2 2 9 
 

45_8 8 6 
 

8_16 16 19 
 

43_27 27 24 
33_2 2 3 

 
46_8 8 18 

 
9_16 16 8 

 
47_27 27 9 

34_2 2 3 
 

49_8 8 17 
 

9_16 16 12 
 

48_27 27 21 
37_2 2 2 

 
51_8 8 13 

 
10_16 16 21 

 
71_27 27 11 
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39_2 2 8 
 

53_8 8 20 
 

13_16 16 18 
 

72_27 27 18 
40_2 2 9 

 
55_8 8 5 

 
14_16 16 21 

 
82_27 27 25 

41_2 2 3 
 

60_8 8 19 
 

16_16 16 23 
 

1_28 28 28 
46_2 2 7 

 
63_8 8 22 

 
18_16 16 26 

 
4_28 28 23 

51_2 2 7 
 

65_8 8 7 
 

20_16 16 19 
 

6_28 28 23 
52_2 2 4 

 
66_8 8 13 

 
21_16 16 24 

 
18_28 28 4 

53_2 2 5 
 

70_8 8 3 
 

22_16 16 22 
 

22_28 28 19 
54_2 2 27 

 
73_8 8 7 

 
23_16 16 19 

 
24_28 28 24 

56_2 2 5 
 

74_8 8 7 
 

27_16 16 27 
 

25_28 28 20 
58_2 2 7 

 
75_8 8 8 

 
28_16 16 12 

 
28_28 28 16 

59_2 2 15 
 

76_8 8 4 
 

29_16 16 17 
 

32_28 28 20 
59_2 2 10 

 
77_8 8 7 

 
30_16 16 25 

 
42_28 28 25 

60_2 2 8 
 

78_8 8 17 
 

31_16 16 20 
 

45_28 28 28 
63_2 2 6 

 
79_8 8 6 

 
34_16 16 24 

 
67_28 28 18 

65_2 2 3 
 

80_8 8 17 
 

35_16 16 12 
 

1_29 29 32 
65_2 2 3 

 
81_8 8 11 

 
39_16 16 22 

 
2_29 29 28 

66_2 2 5 
 

9_9 9 5 
 

40_16 16 23 
 

8_29 29 32 
66_2 2 10 

 
10_9 9 19 

 
46_16 16 24 

 
17_29 29 17 

69_2 2 12 
 

15_9 9 18 
 

48_16 16 25 
 

18_29 29 27 
70_2 2 4 

 
23_9 9 17 

 
49_16 16 22 

 
23_29 29 25 

72_2 2 7 
 

31_9 9 21 
 

50_16 16 15 
 

29_29 29 28 
73_2 2 8 

 
35_9 9 18 

 
51_16 16 21 

 
61_29 29 19 

74_2 2 5 
 

37_9 9 15 
 

52_16 16 26 
 

72_29 29 29 
75_2 2 4 

 
40_9 9 15 

 
54_16 16 25 

 
4_30 30 12 

76_2 2 3 
 

41_9 9 15 
 

57_16 16 22 
 

5_30 30 24 
77_2 2 3 

 
47_9 9 13 

 
59_16 16 19 

 
8_30 30 26 

78_2 2 11 
 

48_9 9 15 
 

62_16 16 5 
 

11_30 30 24 
79_2 2 7 

 
54_9 9 28 

 
73_16 16 20 

 
12_30 30 22 
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80_2 2 4 
 

63_9 9 23 
 

76_16 16 13 
 

13_30 30 24 
81_2 2 10 

 
65_9 9 9 

 
77_16 16 20 

 
14_30 30 20 

2_3 3 12 
 

66_9 9 23 
 

82_16 16 22 
 

19_30 30 15 
8_3 3 3 

 
68_9 9 8 

 
8_17 17 16 

 
20_30 30 28 

9_3 3 5 
 

69_9 9 20 
 

11_17 17 15 
 

21_30 30 23 
14_3 3 3 

 
70_9 9 11 

 
15_17 17 24 

 
22_30 30 10 

15_3 3 4 
 

73_9 9 8 
 

16_17 17 24 
 

24_30 30 26 
16_3 3 9 

 
74_9 9 8 

 
17_17 17 18 

 
27_30 30 26 

19_3 3 3 
 

76_9 9 8 
 

24_17 17 23 
 

33_30 30 22 
21_3 3 5 

 
77_9 9 13 

 
26_17 17 17 

 
34_30 30 30 

23_3 3 3 
 

78_9 9 14 
 

30_17 17 20 
 

48_30 30 19 
25_3 3 12 

 
79_9 9 10 

 
36_17 17 18 

 
61_30 30 22 

31_3 3 5 
 

80_9 9 11 
 

37_17 17 18 
 

62_30 30 31 
35_3 3 3 

 
1_10 10 15 

 
38_17 17 22 

 
67_30 30 24 

36_3 3 6 
 

10_10 10 3 
 

39_17 17 25 
 

2_31 31 25 
38_3 3 8 

 
15_10 10 10 

 
43_17 17 13 

 
5_31 31 25 

40_3 3 19 
 

16_10 10 11 
 

44_17 17 20 
 

6_31 31 23 
40_3 3 14 

 
24_10 10 22 

 
45_17 17 23 

 
8_31 31 23 

43_3 3 5 
 

29_10 10 13 
 

46_17 17 23 
 

29_31 31 22 
44_3 3 5 

 
30_10 10 15 

 
48_17 17 15 

 
82_31 31 30 

45_3 3 4 
 

32_10 10 15 
 

49_17 17 20 
 

12_32 32 17 
50_3 3 6 

 
33_10 10 13 

 
51_17 17 21 

 
17_32 32 19 

53_3 3 6 
 

38_10 10 14 
 

52_17 17 26 
 

45_32 32 26 
56_3 3 6 

 
39_10 10 14 

 
54_17 17 20 

 
61_32 32 14 

58_3 3 18 
 

40_10 10 20 
 

57_17 17 20 
 

1_33 33 26 
59_3 3 13 

 
42_10 10 22 

 
58_17 17 17 

 
8_33 33 19 

62_3 3 12 
 

43_10 10 17 
 

60_17 17 13 
 

18_33 33 12 
64_3 3 8 

 
46_10 10 9 

 
61_17 17 21 

 
29_33 33 22 
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65_3 3 4 
 

48_10 10 11 
 

67_17 17 19 
 

32_33 33 21 
65_3 3 6 

 
49_10 10 18 

 
72_17 17 19 

 
47_33 33 20 

66_3 3 6 
 

50_10 10 27 
 

76_17 17 16 
 

48_33 33 10 
68_3 3 4 

 
52_10 10 22 

 
1_18 18 24 

 
63_33 33 21 

69_3 3 5 
 

53_10 10 20 
 

2_18 18 22 
 

67_33 33 22 
70_3 3 4 

 
54_10 10 14 

 
3_18 18 30 

 
11_34 34 26 

73_3 3 5 
 

56_10 10 20 
 

5_18 18 24 
 

12_34 34 15 
74_3 3 8 

 
58_10 10 19 

 
7_18 18 17 

 
13_34 34 16 

75_3 3 5 
 

60_10 10 7 
 

8_18 18 23 
 

18_34 34 17 
76_3 3 3 

 
61_10 10 34 

 
9_18 18 16 

 
25_34 34 20 

77_3 3 4 
 

64_10 10 25 
 

10_18 18 7 
 

28_34 34 17 
78_3 3 4 

 
65_10 10 22 

 
12_18 18 13 

 
38_34 34 23 

79_3 3 4 
 

66_10 10 19 
 

13_18 18 17 
 

72_34 34 28 
80_3 3 3 

 
68_10 10 11 

 
14_18 18 22 

 
3_35 35 36 

81_3 3 5 
 

68_10 10 6 
 

16_18 18 25 
 

5_35 35 23 
82_3 3 5 

 
69_10 10 24 

 
18_18 18 17 

 
8_35 35 21 

2_4 4 18 
 

71_10 10 23 
 

19_18 18 25 
 

21_35 35 23 
10_4 4 4 

 
74_10 10 12 

 
20_18 18 19 

 
28_35 35 32 

12_4 4 15 
 

75_10 10 14 
 

21_18 18 23 
 

32_35 35 19 
15_4 4 5 

 
76_10 10 6 

 
22_18 18 11 

 
33_35 35 23 

16_4 4 1 
 

77_10 10 11 
 

23_18 18 13 
 

34_35 35 23 
20_4 4 4 

 
78_10 10 24 

 
24_18 18 22 

 
39_35 35 16 

26_4 4 9 
 

79_10 10 12 
 

25_18 18 11 
 

62_35 35 30 
29_4 4 21 

 
80_10 10 7 

 
26_18 18 26 

 
71_35 35 27 

30_4 4 24 
 

81_10 10 19 
 

27_18 18 23 
 

2_36 36 28 
31_4 4 4 

 
9_11 11 4 

 
28_18 18 14 

 
6_36 36 32 

34_4 4 4 
 

11_11 11 11 
 

30_18 18 22 
 

12_36 36 16 
37_4 4 8 

 
18_11 11 24 

 
32_18 18 12 

 
14_36 36 26 
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38_4 4 13 
 

20_11 11 28 
 

33_18 18 21 
 

17_36 36 25 
41_4 4 7 

 
21_11 11 20 

 
34_18 18 22 

 
18_36 36 20 

42_4 4 15 
 

22_11 11 9 
 

35_18 18 22 
 

20_36 36 21 
43_4 4 22 

 
26_11 11 17 

 
36_18 18 20 

 
27_36 36 25 

46_4 4 12 
 

27_11 11 15 
 

37_18 18 11 
 

4_37 37 26 
49_4 4 11 

 
29_11 11 23 

 
42_18 18 21 

 
7_37 37 21 

52_4 4 8 
 

31_11 11 22 
 

44_18 18 24 
 

28_37 37 15 
53_4 4 14 

 
34_11 11 22 

 
45_18 18 24 

 
2_38 38 20 

54_4 4 21 
 

36_11 11 8 
 

46_18 18 17 
 

3_38 38 36 
55_4 4 6 

 
37_11 11 18 

 
47_18 18 17 

 
7_38 38 19 

56_4 4 8 
 

38_11 11 19 
 

48_18 18 19 
 

17_38 38 23 
58_4 4 22 

 
39_11 11 16 

 
50_18 18 25 

 
62_38 38 20 

59_4 4 19 
 

47_11 11 16 
 

51_18 18 28 
 

7_39 39 19 
60_4 4 20 

 
48_11 11 6 

 
52_18 18 25 

 
21_39 39 24 

61_4 4 4 
 

53_11 11 13 
 

53_18 18 25 
 

25_39 39 21 
63_4 4 5 

 
54_11 11 19 

 
54_18 18 21 

 
33_39 39 15 

64_4 4 20 
 

60_11 11 20 
 

57_18 18 17 
 

34_39 39 32 
65_4 4 3 

 
65_11 11 14 

 
61_18 18 20 

 
67_39 39 18 

66_4 4 9 
 

66_11 11 15 
 

62_18 18 22 
 

1_40 40 27 
67_4 4 7 

 
68_11 11 21 

 
63_18 18 22 

 
4_40 40 27 

68_4 4 5 
 

69_11 11 15 
 

71_18 18 13 
 

5_40 40 16 
69_4 4 7 

 
72_11 11 11 

 
82_18 18 25 

 
6_40 40 24 

73_4 4 6 
 

73_11 11 20 
 

1_19 19 24 
 

11_40 40 22 
74_4 4 3 

 
74_11 11 13 

 
4_19 19 22 

 
14_40 40 31 

76_4 4 5 
 

75_11 11 14 
 

13_19 19 18 
 

32_40 40 24 
77_4 4 4 

 
76_11 11 13 

 
15_19 19 19 

 
45_40 40 33 

78_4 4 18 
 

77_11 11 6 
 

16_19 19 22 
 

71_40 40 28 
79_4 4 7 

 
78_11 11 23 

 
17_19 19 21 

 
8_41 41 22 
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80_4 4 9 
 

79_11 11 11 
 

24_19 19 23 
 

13_41 41 18 
81_4 4 13 

 
81_11 11 25 

 
25_19 19 22 

 
27_41 41 24 

1_5 5 4 
 

2_12 12 20 
 

26_19 19 26 
 

28_41 41 21 
2_5 5 12 

 
8_12 12 20 

 
31_19 19 24 

 
62_41 41 26 

9_5 5 5 
 

10_12 12 12 
 

36_19 19 21 
 

72_41 41 27 
10_5 5 4 

 
12_12 12 15 

 
37_19 19 16 

 
6_42 42 14 

11_5 5 6 
 

14_12 12 18 
 

39_19 19 18 
 

11_42 42 32 
15_5 5 4 

 
15_12 12 10 

 
40_19 19 23 

 
14_42 42 23 

16_5 5 10 
 

16_12 12 20 
 

41_19 19 11 
 

17_42 42 22 
17_5 5 14 

 
17_12 12 17 

 
43_19 19 21 

 
71_42 42 21 

19_5 5 19 
 

19_12 12 21 
 

45_19 19 20 
 

1_43 43 27 
21_5 5 7 

 
25_12 12 23 

 
52_19 19 23 

 
1_43 43 26 

23_5 5 19 
 

31_12 12 20 
 

54_19 19 28 
 

45_43 43 26 
24_5 5 5 

 
35_12 12 5 

 
60_19 19 18 

 
71_43 43 16 

29_5 5 15 
 

40_12 12 23 
 

61_19 19 14 
 

13_44 44 26 
30_5 5 16 

 
42_12 12 22 

 
64_19 19 24 

 
33_44 44 16 

33_5 5 5 
 

45_12 12 15 
 

72_19 19 22 
 

34_44 44 24 
35_5 5 9 

 
46_12 12 21 

 
2_20 20 24 

 
71_44 44 21 

36_5 5 17 
 

47_12 12 6 
 

3_20 20 30 
 

5_45 45 23 
38_5 5 14 

 
49_12 12 21 

 
11_20 20 23 

 
7_45 45 17 

39_5 5 15 
 

51_12 12 19 
 

20_20 20 11 
 

39_45 45 23 
40_5 5 22 

 
53_12 12 21 

 
21_20 20 22 

 
47_45 45 15 

42_5 5 8 
 

54_12 12 20 
 

22_20 20 7 
 

62_45 45 21 
43_5 5 3 

 
55_12 12 21 

 
27_20 20 27 

 
71_45 45 22 

44_5 5 23 
 

56_12 12 8 
 

28_20 20 18 
 

72_45 45 34 
47_5 5 17 

 
57_12 12 12 

 
29_20 20 26 

 
6_46 46 26 

49_5 5 4 
 

59_12 12 15 
 

30_20 20 20 
 

28_46 46 18 
51_5 5 6 

 
60_12 12 14 

 
32_20 20 16 

 
48_46 46 19 
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55_5 5 19 
 

65_12 12 14 
 

36_20 20 22 
 

3_47 47 21 
57_5 5 12 

 
68_12 12 15 

 
41_20 20 19 

 
62_47 47 18 

58_5 5 20 
 

70_12 12 12 
 

42_20 20 22 
 

4_48 48 25 
60_5 5 10 

 
73_12 12 19 

 
46_20 20 20 

 
5_48 48 21 

69_5 5 6 
 

74_12 12 16 
 

47_20 20 20 
 

45_48 48 20 
70_5 5 11 

 
76_12 12 7 

 
52_20 20 25 

 
3_49 49 28 

73_5 5 5 
 

77_12 12 17 
 

60_20 20 15 
 

5_49 49 28 
74_5 5 4 

 
78_12 12 16 

 
63_20 20 22 

 
48_49 49 18 

75_5 5 5 
 

79_12 12 12 
 

82_20 20 22 
 

39_50 50 25 
76_5 5 4 

 
80_12 12 18 

 
2_21 21 27 

 
48_50 50 14 

78_5 5 5 
 

81_12 12 13 
 

4_21 21 17 
 

3_51 51 30 
79_5 5 6 

 
8_13 13 22 

 
8_21 21 24 

 
4_51 51 25 

80_5 5 6 
 

9_13 13 17 
 

12_21 21 22 
 

6_51 51 26 
81_5 5 5 

 
11_13 13 19 

 
13_21 21 8 

 
5_52 52 22 

8_6 6 10 
 

20_13 13 15 
 

23_21 21 23 
 

39_52 52 20 
10_6 6 4 

 
26_13 13 19 

 
33_21 21 17 

 
48_52 52 24 

18_6 6 9 
 

27_13 13 21 
 

34_21 21 23 
 

4_53 53 27 
21_6 6 13 

 
29_13 13 15 

 
35_21 21 22 

 
62_53 53 18 

26_6 6 18 
 

32_13 13 10 
 

38_21 21 23 
 

48_54 54 13 
31_6 6 23 

 
34_13 13 28 

 
40_21 21 23 

 
62_54 54 17 

32_6 6 6 
 

36_13 13 22 
 

41_21 21 18 
 

6_55 55 32 
36_6 6 13 

 
37_13 13 6 

 
44_21 21 18 

 
47_55 55 19 

37_6 6 5 
 

38_13 13 11 
 

67_21 21 21 
 

3_58 58 25 
40_6 6 16 

 
39_13 13 16 

 
72_21 21 28 

 
3_60 60 30 

41_6 6 7 
 

41_13 13 11 
 

82_21 21 19 
 

3_61 61 35 
42_6 6 7 

 
43_13 13 12 

 
1_22 22 21 

 
5_61 61 20 

45_6 6 11 
 

44_13 13 22 
 

7_22 22 23 
 

6_61 61 16 
46_6 6 13 

 
47_13 13 9 

 
9_22 22 16 

 
4_62 62 20 
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47_6 6 14 
 

52_13 13 22 
 

9_22 22 10 
 

4_63 63 26 
49_6 6 4 

 
53_13 13 19 

 
14_22 22 24 

 
6_67 67 25 

50_6 6 18 
 

54_13 13 4 
 

17_22 22 18 
 

6_69 69 31 
53_6 6 20 

 
58_13 13 15 
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APPENDIX C New algorithm results for Private database 
 

Image 
ID 

Actual 
Age 

Estimated 
Age  

Image 
ID 

Actual 
Age 

Estimated 
Age 

 Image 
ID 

Actual 
Age 

Estimated 
Age 

 Image 
ID 

Actual 
Age 

Estimated 
Age 

006_00 0 2 
 

138_05 5 14  134_10 10 13  147_16 16 17 

010_00 0 3 
 

141_05 5 3  135_10 10 14  151_16 16 17 

142_00 0 2 
 

150_05 5 10  138_10 10 15  157_16 16 14 

144_00 0 3 
 

151_05 5 9  140_10 10 13  165_16 16 12 

175_00 0 2 
 

167_05 5 11  143_10 10 9  167_16 16 16 

177_00 0 3 
 

169_05 5 5  144_10 10 14  170_16 16 15 

178_00 0 11 
 

172_05 5 14  154_10 10 16  172_16 16 16 

179_00 0 6 
 

175_05 5 12  164_10 10 8  179_16 16 13 

206_00 0 4 
 

176_05 5 9  166_10 10 8  183_16 16 17 

210_00 0 1 
 

178_05 5 8  175_10 10 10  189_16 16 16 

249_00 0 2 
 

185_05 5 6  177_10 10 14  202_16 16 12 

005_01 1 5 
 

199_05 5 10  180_10 10 16  203_16 16 16 

011_01 1 4 
 

200_05 5 4  184_10 10 8  207_16 16 16 

012_01 1 4 
 

202_05 5 7  189_10 10 17  209_16 16 17 

021_01 1 0 
 

234_05 5 8  199_10 10 11  222_16 16 12 

025_01 1 2 
 

247_05 5 5  200_10 10 12  225_16 16 13 

026_01 1 3 
 

251_05 5 12  206_10 10 10  229_16 16 12 

044_01 1 5 
 

252_05 5 3  209_10 10 12  234_16 16 18 

048_01 1 2 
 

003_06 6 10  210_10 10 12  239_16 16 8 

049_01 1 1 
 

006_06 6 8  215_10 10 15  242_16 16 7 

052_01 1 3 
 

007_06 6 6  224_10 10 9  244_16 16 15 

053_01 1 6 
 

009_06 6 8  235_10 10 13  248_16 16 15 
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055_01 1 2 
 

013_06 6 8  239_10 10 4  252_16 16 15 

058_01 1 3 
 

021_06 6 11  240_10 10 12  002_17 17 11 

069_01 1 4 
 

025_06 6 3  242_10 10 15  007_17 17 11 

071_01 1 1 
 

040_06 6 15  243_10 10 8  024_17 17 16 

075_01 1 5 
 

043_06 6 12  251_10 10 10  028_17 17 17 

077_01 1 4 
 

048_06 6 13  252_10 10 14  032_17 17 17 

078_01 1 2 
 

049_06 6 15  008_11 11 8  036_17 17 12 

090_01 1 2 
 

056_06 6 12  039_11 11 11  050_17 17 16 

099_01 1 3 
 

063_06 6 12  050_11 11 12  051_17 17 15 

102_01. 1 2 
 

065_06 6 7  060_11 11 8  053_17 17 14 

103_01 1 2 
 

085_06 6 8  071_11 11 14  074_17 17 11 

104_01 1 6 
 

086_06 6 9  072_11 11 9  081_17 17 17 

114_01 1 4 
 

103_06 6 8  086_11 11 15  082_17 17 14 

115_01 1 2 
 

112_06 6 9  119_11 11 11  098_17 17 16 

119_01 1 5 
 

127_06 6 2  130_11 11 17  103_17 17 14 

120_01 1 1 
 

144_06 6 7  132_11 11 10  118_17 17 14 

121_01 1 2 
 

145_06 6 9  136_11 11 16  127_17 17 11 

123_01 1 1 
 

149_06 6 2  142_11 11 15  129_17 17 13 

124_01 1 3 
 

150_06 6 9  149_11 11 15  134_17 17 14 

132_01 1 2 
 

158_06 6 5  150_11 11 15  139_17 17 11 

137_01 1 2 
 

177_06 6 14  155_11 11 8  142_17 17 17 

138_01 1 5 
 

178_06 6 16  157_11 11 12  144_17 17 17 

144_01 1 3 
 

187_06 6 10  165_11 11 10  149_17 17 17 

164_01 1 3 
 

191_06 6 9  173_11 11 4  187_17 17 17 

168_01 1 2 
 

192_06 6 4  177_11 11 9  212_17 17 17 

169_01 1 2 
 

194_06 6 2  185_11 11 8  224_17 17 10 

172_01 1 4 
 

201_06 6 10  213_11 11 17  225_17 17 7 

174_01 1 2 
 

210_06 6 4  214_11 11 12  228_17 17 15 
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181_01 1 8 
 

211_06 6 7  228_11 11 14  235_17 17 12 

187_01 1 4 
 

224_06 6 2  229_11 11 16  252_17 17 17 

189_01 1 5 
 

226_06 6 4  236_11 11 5  005_18 18 16 

198_01 1 2 
 

241_06 6 4  237_11 11 12  006_18 18 15 

201_01 1 3 
 

242_06 6 3  002_12 12 15  021_18 18 13 

202_01 1 2 
 

245_06 6 5  003_12 12 8  023_18 18 11 

203_01 1 2 
 

250_06 6 5  027_12 12 15  024_18 18 17 

208_01 1 10 
 

253_06 6 8  041_12 12 14  028_18 18 18 

210_01 1 0 
 

001_07 7 17  049_12 12 13  030_18 18 16 

218_01 1 8 
 

002_07 7 7  052_12 12 10  039_18 18 13 

234_01 1 2 
 

014_07 7 7  068_12 12 9  041_18 18 14 

237_01 1 2 
 

022_07 7 9  073_12 12 16  043_18 18 14 

239_01 1 6 
 

026_07 7 17  074_12 12 14  046_18 18 15 

251_01 1 2 
 

027_07 7 9  082_12 12 12  049_18 18 16 

252_01 1 6 
 

034_07 7 7  095_12 12 15  052_18 18 14 

003_02 2 8 
 

035_07 7 10  105_12 12 12  059_18 18 14 

009_02 2 8 
 

039_07 7 5  117_12 12 13  066_18 18 18 

019_02 2 2 
 

042_07 7 16  123_12 12 8  070_18 18 16 

020_02 2 7 
 

048_07 7 12  124_12 12 17  071_18 18 12 

022_02 2 2 
 

055_07 7 10  139_12 12 10  078_18 18 17 

023_02 2 2 
 

057_07 7 9  148_12 12 17  079_18 18 17 

025_02 2 2 
 

066_07 7 16  160_12 12 13  090_18 18 12 

028_02 2 8 
 

070_07 7 7  162_12 12 17  091_18 18 12 

029_02 2 2 
 

072_07 7 11  170_12 12 10  098_18 18 15 

032_02 2 10 
 

073_07 7 12  174_12 12 15  116_18 18 16 

036_02 2 4 
 

076_07 7 17  195_12 12 12  120_18 18 13 

037_02 2 2 
 

084_07 7 12  208_12 12 17  126_18 18 11 

042_02 2 3 
 

091_07 7 6  212_12 12 12  131_18 18 9 
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047_02 2 1 
 

092_07 7 13  238_12 12 16  132_18 18 7 

049_02 2 6 
 

094_07 7 9  241_12 12 14  141_18 18 12 

059_02 2 3 
 

095_07 7 10  244_12 12 17  155_18 18 17 

065_02 2 2 
 

097_07 7 15  250_12 12 11  157_18 18 17 

067_02 2 6 
 

114_07 7 13  009_13 13 15  158_18 18 13 

081_02 2 4 
 

115_07 7 12  028_13 13 16  159_18 18 14 

084_02 2 3 
 

126_07 7 5  032_13 13 17  165_18 18 16 

086_02 2 5 
 

132_07 7 7  049_13 13 11  166_18 18 15 

097_02 2 3 
 

137_07 7 13  051_13 13 14  168_18 18 10 

102_02 2 5 
 

140_07 7 11  078_13 13 15  176_18 18 17 

109_02 2 3 
 

142_07 7 11  114_13 13 17  177_18 18 12 

111_02 2 2 
 

144_07 7 6  115_13 13 15  179_18 18 11 

112_02 2 10 
 

152_07 7 3  127_13 13 10  182_18 18 16 

113_02 2 4 
 

154_07 7 10  175_13 13 12  184_18 18 17 

117_02 2 11 
 

157_07 7 5  177_13 13 13  185_18 18 10 

118_02 2 2 
 

159_07 7 8  182_13 13 13  191_18 18 7 

128_02 2 6 
 

161_07 7 12  202_13 13 11  204_18 18 17 

129_02 2 5 
 

164_07 7 10  206_13 13 14  209_18 18 15 

130_02 2 9 
 

165_07 7 7  207_13 13 10  213_18 18 17 

143_02 2 4 
 

177_07 7 8  007_14 14 8  222_18 18 16 

148_02 2 3 
 

181_07 7 3  024_14 14 7  226_18 18 15 

149_02 2 2 
 

183_07 7 6  035_14 14 16  229_18 18 11 

157_02 2 2 
 

184_07 7 5  036_14 14 16  237_18 18 15 

176_02 2 4 
 

195_07 7 10  038_14 14 11  241_18 18 12 

179_02 2 1 
 

196_07 7 10  043_14 14 14  017_19 19 16 

192_02 2 2 
 

200_07 7 2  049_14 14 16  020_19 19 13 

200_02 2 5 
 

201_07 7 11  061_14 14 11  023_19 19 12 

203_02 2 2 
 

205_07 7 15  069_14 14 14  024_19 19 17 
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207_02 2 7 
 

206_07 7 11  071_14 14 12  034_19 19 18 

215_02 2 4 
 

207_07 7 16  072_14 14 15  042_19 19 18 

224_02 2 2 
 

208_07 7 16  085_14 14 14  048_19 19 12 

225_02 2 1 
 

209_07 7 6  096_14 14 15  049_19 19 17 

233_02 2 2 
 

215_07 7 7  104_14 14 16  064_19 19 7 

241_02 2 2 
 

218_07 7 5  106_14 14 14  068_19 19 15 

243_02 2 2 
 

229_07 7 9  123_14 14 10  072_19 19 17 

246_02 2 2 
 

236_07 7 11  130_14 14 14  075_19 19 17 

247_02 2 4 
 

238_07 7 14  133_14 14 16  082_19 19 17 

253_02 2 3 
 

239_07 7 9  134_14 14 13  085_19 19 15 

009_03 3 11 
 

249_07 7 8  135_14 14 15  089_19 19 11 

014_03 3 2 
 

003_08 8 7  136_14 14 15  093_19 19 14 

023_03 3 2 
 

019_08 8 2  141_14 14 13  096_19 19 13 

031_03 3 4 
 

024_08 8 3  147_14 14 16  097_19 19 14 

039_03 3 8 
 

048_08 8 14  151_14 14 11  099_19 19 13 

040_03 3 6 
 

049_08 8 14  158_14 14 14  100_19 19 13 

043_03 3 6 
 

050_08 8 9  159_14 14 6  103_19 19 13 

049_03 3 6 
 

052_08 8 13  166_14 14 13  125_19 19 16 

054_03 3 8 
 

068_08 8 14  177_14 14 17  130_19 19 17 

064_03 3 2 
 

069_08 8 13  181_14 14 12  136_19 19 17 

066_03 3 6 
 

081_08 8 7  184_14 14 15  144_19 19 15 

070_03 3 2 
 

089_08 8 8  194_14 14 17  150_19 19 14 

072_03 3 5 
 

099_08 8 9  197_14 14 14  154_19 19 15 

073_03 3 0 
 

115_08 8 9  203_14 14 16  162_19 19 17 

075_03 3 5 
 

117_08 8 13  205_14 14 17  167_19 19 12 

076_03 3 11 
 

120_08 8 8  210_14 14 17  170_19 19 15 

086_03 3 8 
 

121_08 8 8  211_14 14 15  171_19 19 11 

092_03 3 10 
 

135_08 8 15  212_14 14 15  173_19 19 16 
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093_03 3 2 
 

139_08 8 7  213_14 14 17  181_19 19 10 

094_03 3 2 
 

144_08 8 15  218_14 14 12  188_19 19 17 

095_03 3 2 
 

153_08 8 10  219_14 14 14  194_19 19 13 

099_03 3 3 
 

156_08 8 7  224_14 14 7  210_19 19 15 

114_03 3 3 
 

160_08 8 12  019_15 15 14  214_19 19 13 

125_03 3 6 
 

174_08 8 15  023_15 15 14  223_19 19 16 

133_03 3 7 
 

177_08 8 11  024_15 15 13  225_19 19 11 

136_03 3 4 
 

178_08 8 12  028_15 15 15  234_19 19 11 

140_03 3 6 
 

189_08 8 13  044_15 15 10  239_19 19 14 

144_03 3 2 
 

205_08 8 14  048_15 15 17  248_19 19 14 

147_03 3 2 
 

212_08 8 12  053_15 15 10  250_19 19 8 

150_03 3 6 
 

222_08 8 14  054_15 15 15  003_20 20 17 

151_03 3 6 
 

227_08 8 10  058_15 15 16  004_20 20 17 

152_03 3 5 
 

243_08 8 7  062_15 15 2  011_20 20 14 

154_03 3 13 
 

004_09 9 10  063_15 15 16  015_20 20 6 

158_03 3 5 
 

005_09 9 15  064_15 15 10  023_20 20 14 

165_03 3 5 
 

006_09 9 11  066_15 15 17  024_20 20 14 

166_03 3 2 
 

013_09 9 13  073_15 15 15  025_20 20 15 

169_03 3 9 
 

018_09 9 10  090_15 15 16  028_20 20 18 

170_03 3 7 
 

023_09 9 11  092_15 15 15  037_20 20 18 

200_03 3 2 
 

025_09 9 9  093_15 15 13  038_20 20 16 

203_03 3 15 
 

026_09 9 15  095_15 15 15  040_20 20 14 

212_03 3 5 
 

031_09 9 11  099_15 15 13  045_20 20 15 

213_03 3 9 
 

036_09 9 9  129_15 15 15  047_20 20 15 

229_03 3 6 
 

038_09 9 9  131_15 15 10  048_20 20 15 

236_03 3 4 
 

043_09 9 12  132_15 15 15  052_20 20 12 

240_03 3 5 
 

044_09 9 11  138_15 15 18  054_20 20 17 

244_03 3 5 
 

048_09 9 13  152_15 15 11  056_20 20 16 
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254_03 3 9 
 

049_09 9 13  153_15 15 11  065_20 20 10 

002_04 4 3 
 

078_09 9 14  155_15 15 12  067_20 20 14 

004_04 4 12 
 

086_09 9 11  162_15 15 14  069_20 20 15 

008_04 4 8 
 

131_09 9 8  164_15 15 13  077_20 20 11 

023_04 4 6 
 

141_09 9 10  168_15 15 10  083_20 20 15 

035_04 4 4 
 

144_09 9 12  169_15 15 15  087_20 20 16 

039_04 4 7 
 

150_09 9 16  180_15 15 13  090_20 20 16 

041_04 4 3 
 

151_09 9 12  185_15 15 12  092_20 20 17 

044_04 4 9 
 

158_09 9 11  188_15 15 14  094_20 20 17 

046_04 4 5 
 

159_09 9 9  200_15 15 16  095_20 20 14 

048_04 4 9 
 

171_09 9 12  208_15 15 17  099_20 20 17 

052_04 4 9 
 

173_09 9 9  209_15 15 12  105_20 20 16 

055_04 4 9 
 

177_09 9 10  228_15 15 12  122_20 20 15 

068_04 4 4 
 

178_09 9 10  236_15 15 17  123_20 20 12 

114_04 4 2 
 

181_09 9 8  238_15 15 17  135_20 20 16 

115_04 4 5 
 

182_09 9 8  241_15 15 11  137_20 20 16 

121_04 4 3 
 

188_09 9 12  243_15 15 11  144_20 20 14 

126_04 4 9 
 

202_09 9 10  245_15 15 17  145_20 20 11 

153_04 4 9 
 

209_09 9 11  251_15 15 13  147_20 20 16 

160_04 4 8 
 

211_09 9 8  003_16 16 13  149_20 20 18 

161_04 4 5 
 

218_09 9 3  004_16 16 17  151_20 20 14 

197_04 4 10 
 

219_09 9 13  005_16 16 17  152_20 20 10 

209_04 4 2 
 

226_09 9 11  006_16 16 15  163_20 20 16 

219_04 4 8 
 

234_09 9 11  013_16 16 16  164_20 20 13 

230_04 4 5 
 

245_09 9 9  015_16 16 9  169_20 20 14 

238_04 4 9 
 

246_09 9 8  016_16 16 13  178_20 20 16 

005_05 5 13 
 

247_09 9 15  017_16 16 14  180_20 20 11 

010_05 5 12 
 

248_09 9 11  018_16 16 14  183_20 20 16 
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011_05 5 7 
 

249_09 9 5  021_16 16 13  189_20 20 15 

018_05 5 7 
 

001_10 10 13  025_16 16 8  190_20 20 14 

023_05 5 10 
 

009_10 10 11  026_16 16 12  201_20 20 17 

025_05 5 10 
 

017_10 10 10  027_16 16 18  205_20 20 17 

028_05 5 13 
 

019_10 10 4  030_16 16 11  208_20 20 17 

032_05 5 12 
 

021_10 10 12  034_16 16 15  209_20 20 16 

036_05 5 4 
 

028_10 10 15  037_16 16 17  215_20 20 16 

042_05 5 9 
 

034_10 10 11  045_16 16 10  216_20 20 14 

048_05 5 9 
 

038_10 10 11  052_16 16 15  220_20 20 11 

049_05 5 13 
 

049_10 10 15  068_16 16 13  230_20 20 13 

052_05 5 3 
 

054_10 10 16  069_16 16 13  232_20 20 16 

059_05 5 13 
 

058_10 10 11  076_16 16 17  238_20 20 17 

064_05 5 7 
 

059_10 10 13  077_16 16 13  240_20 20 17 

067_05 5 12 
 

063_10 10 17  082_16 16 17  241_20 20 11 

074_05 5 11 
 

064_10 10 6  083_16 16 14  242_20 20 13 

077_05 5 6 
 

066_10 10 14  101_16 16 17  243_20 20 14 

080_05 5 4 
 

067_10 10 15  115_16 16 17  244_20 20 15 

086_05 5 4 
 

070_10 10 8  116_16 16 17  247_20 20 17 

113_05 5 10 
 

077_10 10 4  118_16 16 15  252_20 20 16 

118_05 5 12 
 

079_10 10 9  124_16 16 17  253_20 20 14 

122_05 5 8 
 

084_10 10 16  125_16 16 18  197_21 21 14 

123_05 5 2 
 

094_10 10 11  126_16 16 8  028_22 22 16 

124_05 5 13 
 

113_10 10 10  130_16 16 16  086_22 22 15 

125_05 5 9 
 

116_10 10 12  137_16 16 17  195_22 22 14 

129_05 5 8 
 

125_10 10 14  139_16 16 12  004_25 25 15 

130_05 5 10 
 

129_10 10 11  140_16 16 14  182_25 25 16 

133_05 5 5 
 

133_10 10 15  143_16 16 18     
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