
Graph Databases - are they really so new

Maleković, Mirko; Rabuzin, Kornelije; Šestak, Martina

Source / Izvornik: International Journal of Advances in Science Engineering and
Technology, 2016, 4, 8 - 12

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:997990

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-30

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:997990
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3475
https://dabar.srce.hr/islandora/object/foi:3475

International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016

Graph Databases – Are They Really so New

8

GRAPH DATABASES – ARE THEY REALLY SO NEW

1MIRKO MALEKOVIC, 2KORNELIJE RABUZIN, 3MARTINA SESTAK

1,2,3Faculty of Organization and Informatics Varaždin, University of Zagreb, Croatia
E-mail: 1mirko.malekovic@foi.hr, 2kornelije.rabuzin@foi.hr, 3msestak2@foi.hr

Abstract- Even though relational databases have been (and still are) the most widely used database solutions for many years,
there were other database solutions in use before the era of relational databases. One of those solutions were network
databases with the underlying network model, whose characteristics will be presented in detail in this paper. The network
model will be compared to the graph data model used by graph databases, the relatively new category of NoSQL databases
with a growing share in the database market. The similarities and differences will be shown through the implementation of a
simple database using network and graph data model.

Keywords- Network data model, graph data model, nodes, relationships, records, sets.

I. INTRODUCTION

The relational databases were introduced by E. G.
Codd in his research papers in 1970s. In those papers
he discussed relational model as the underlying data
model for the relational databases, which was based
on relational algebra and first-order predicate logic.
Since then relational databases gained popularity in
the database industry and kept their advantage for
many years.

However, the idea of storing and
manipulating data in an organized way was present
before relational databases were introduced. Several
options were available to fulfill that purpose [6]:

● ISAM (Indexed Sequential Access Model)

databases (Reflections on Computing)
This category of databases is often referred

to as file-based databases and they represent the early
implementation of the database management system
concept. The ISAM acronym represents a technique
for managing databases using fixed length table
records, indexes and file system locks [7]. ISAM
databases were developed and used by IBM during
the 1960s and their purpose was to provide the means
of sequentially accessing database records in order to
perform simple data processing operations (inserting
and deleting records, searching for records) [2].

An ISAM database consists of several ISAM
files stored on disk, where each file is stored within
one disk cylinder of a predefined size. Due to this
limitation the structure of an ISAM database is static
and inflexible when it comes to inserting new
records, since files must be reblocked and records
within them rewritten when their assigned disk space
is full [2]. This problem becomes even more
challenging as the database size grows, because file
reblocking is a costly operation requiring time,
performance and extra disk space.

Except the aforementioned problem, other
major drawbacks of this database type was their lack
of support for ad hoc queries and the cross
referencing issue when retrieving records from
multiple files [2].

● Hierarchical databases
This type of databases is based on the hierarchical
data model, whose structure can be represented as a
layered tree in which one data table represents the
root of that tree (top layer), and the others represent
tree branches (nodes) emerging from the root of the
tree [3]. Database tables are physically connected via
pointers with a parent-child relationship in a 1:N
ratio, i.e. one parent table can have one or more child
tables, whereas one child table can have only one
parent table.

Fig.1. Hierarchical data model example

[http://www.studytonight.com/dbms/images/hierarchical-
model.jpg]

Since all relationships are established on a

physical level, hierarchical databases perform very
well when it comes to retrieving data from the
database. However, in order to efficiently query the
hierarchical database, one must be familiar with the
entire database structure, because each query starts at
the root table element and continues travelling down
the tree structure until it reaches the target element.

Additionally, a common problem, which
cannot be ignored, is the problem of data redundancy,
which often occurs when implementing more
complex, many-to-many (M:N) relationships between
tables. For instance, given the database model shown
in Fig.1, in order to represent a many-to-many
relationship between the Course and Professor table
(one course can be held by one or more professors,
and one professor can teach one or more courses),

International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016

Graph Databases – Are They Really so New

9

one would have to store duplicate data about that
relationship in both Course and Professor tables for
every professor teaching a given course and every
course held by a given professor. The problem of data
redundancy and the lack of support for complex
relationships tried to be solved by introducing the
next database type: network databases.

● Network databases

Network databases and their underlying
network model were introduced soon after the
hierarchical databases and represented the more
progressive option for implementing complex
relationships between tables as opposed to their
database predecessor. Their characteristics will be
discussed in detail in the following chapter.

Hierarchical and network databases have
been used for some years, but after E. G. Codd
introduced the relational model, the number of their
users decreased significantly. One of the reasons for
this change was the simplicity of the relational model,
which could easily be understood by both users and
database designers. The relational model introduced
that the users are not required to be familiar with
details regarding the physical implementation of the
database, i.e. all relational model complexity is
hidden from the users. Since then, the era of
relational databases began and is still ongoing,
because the relational database management systems
still have the largest share in the database market.

However, during the last decade the
enormous growth of data size and complexity led to
the development of new generation of databases
assembled under the name of NoSQL databases. One
of the database types in this category are graph
databases.

Graph databases represent the next
generation of databases with the ability to model
complex relationships between database entities [8].
Their characteristics will be further discussed in the
chapters to come. The strong support for complex
relationships provided by the underlying graph data
model has made them a very popular solution during
the last few years for modelling social networks,
fraud detection and many other problems.

The properties of graph databases should
inevitably remind us of some properties of network
databases, so in this paper we plan to further discuss
their similarities and differences followed by an
implementation of a sample database in both selected
network and graph DBMSs. First we will give an
overview of network databases, then we will discuss
graph databases and compare them to network
databases.

II. NETWORK DATABASES

As we already discussed, network databases and their
underlying network data model were developed in the
late 1960s as an improved alternative to the

hierarchical databases and as an attempt to impose a
database standard at that time [1]. Similar to the
hierarchical model, the network model is also
structured as an inverted tree with owner-member
relationship.

The network data model stores all data in
record types and their fields stored in data files on
disk. Records are connected with set relationships
between them, which are also stored in data files [9].
Each owner element stores a physical link to its
member elements, which is a more flexible solution
for data access as opposed to the hierarchical data
access always starting at the tree root element.

The network data model was developed in
two variants [2]:

1. Simple network data model, which supports
one (owner) to many (member) relationships
between records represents the next
evolutionary step from hierarchical databases,
because it introduced the possibility that one
child element has multiple parent elements.
Network databases based on this model allow
set relationships to be implemented by directly
connecting records via pointers or by using
indexes. However, many-to-many relationships
can be implemented by introducing a
composite record between two records, which
enables them to be connected via two one-to-
many set relationships.

2. Complex network data model supports direct
many-to-many relationships (without
unnecessary composite records). However,
with this data model there is no possibility of
storing relationship data, because there is no
composite record, i.e. no place to store that
data.

The network data model of our sample

database is shown in Fig. 2. The model consists of
five records and four set relationships. Most records
are connected with one-to-many set relationships (for
instance, an author wrote one or more books), except
the many-to-many relationship between User and
Book records. This problem is solved by adding a
composite record called Borrowing between those
records, so in the end we built a simple network data
model.

Fig.2. Network data model of sample database

International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016

Graph Databases – Are They Really so New

10

In order to implement this network data
model, one can use Raima Database Manager (RDM)
developed by Raima Inc., a product which provides
APIs, tools and other utilities for database
management. It supports both relational and network
data model.

An RDM database consists of the following
elements [9]:

● Database dictionary, which stores the
information about how database is organized
and its content

● Data files, which contain one or more
database record types

● Key files, which contain records’ key fields
and are used for indexing

● Vardata files, which contain data about
variable length fields
Data can be modeled with its Data

Definition Language (DDL) in a simple text file with
the following sample structure:
database booksnetwork
{
data file datfile = "booksnetworkdb.dat" contains
author, user, book, genre, borrowing;
key file[1024] keyfile1 = "books.k01" contains
author_id;
record author
{
 unique key int author_id;

varchar a_firstname[50];
 varchar a_lastname[100];
}
record book
{
 unique key int book_id;
 varchar title[100];
 int year_published;
}
set wrote
{
 order last;
 owner author;
 member book;
}
}

III. GRAPH DATABASES

Graph databases are a database type that is gaining
the most research interest lately, as they can be used
to model and store data in different problem domains
in which other databases fail to ensure persistent and
real time performances. For example, social network
analysis is a scenario in which nodes and
relationships between nodes represent an excellent
choice to implement “friend of a friend (of a friend)
concept”. At the same time, relational databases
could have problems with finding friends on the

second and upper levels, as queries become more and
more complex as well as time-consuming.

Graph databases are commonly based on the
property graph data model, in which data is stored in
nodes with a specific label and relationships of a
specific type between nodes, and each node and
relationship can have its attributes. Since each node
contains a physical link to its neighbors it is
connected with (this concept is called index-free
adjacency), the graph data model supports both one-
to-many and many-to-many relationships, which can
be implemented directly without creating additional
composite nodes or the risk of losing node or
relationship data.

The property graph data model of our sample
database is shown in Fig. 3 and consists of four nodes
(Author, Book, User, Genre) and three types of
relationships (WROTE, BORROWED, PART_OF).

Fig.3. Graph data model of sample database

Basically, two main query languages are

used for graph databases, Cypher and Gremlin. They
both have some advantages and disadvantages.
Cypher is a SQL-like query language based on graph
pattern matching, so it is widely used and
comprehensive for users and database designers. On
the other side, Gremlin is a graph traversal and
expressive language which is able to perform more
complex graph traversals, because the entire process
is divided into a chain of operations (called steps)
whose results, unlike Cypher’s, do not require
additional value conversions [4]. Their performances
in retrieving data are quite similar and they both
outperform SQL.

We used the Neo4j database to implement
the graph data model we created. Neo4j DBMS
(Database Management System) is the representative
of the graph databases group because it is currently
the most widely used graph DBMS on the database
market. Even though Neo4j supports queries written
in both Cypher and Gremlin language, officially its
standard query language is Cypher. For instance, to
create the new WROTE relationship between Author
and Book nodes in our database the following Cypher
query was executed:

International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016

Graph Databases – Are They Really so New

11

CREATE (a:Author{Firstname:'William',
Lastname:'Shakespeare'})-[w:WROTE]->(b:Book
{Title:'Romeo and Juliet', YearPublished:'1595'})’})

The result of this query is shown in Fig. 4.

Fig.4. Result of creating a relationship between two nodes in

Neo4j database

Since the graph databases are a relatively new
category of NoSQL databases, there are still many
areas and issues to be researched and solved. One of
these areas are integrity constraints. At this point
Neo4j provides support only for the node uniqueness
constraint, which is used to ensure that there are no
duplicate nodes in the database. On the other side,
Gremlin does not provide support for any kind of
database constraints.

IV. NETWORK AND GRAPH DATABASES – A
COMPARISON

Unlike hierarchical databases that have problems with
many to many relationships, such relationships can
easily be represented in graph databases. They can
also be represented in network database by using the
complex network data model at the expense of
completeness of information. However, it is
recommended to use one-to-many relationships by
creating composite records.

Both network and graph databases are used to
represent complex relationships between entities,
which is one of their advantages, as is their good
performance with query execution due to the fact that
all database entities are connected directly to each
other via pointers.

However, it is worth accenting the price for
achieving this advantage. Clearly, the physical
independence is ruined or reduced. When so often
using the word ‘implementation’ regarding any data
model, and the users need to know the
implementation details, we have the right to say
‘what we have here is nothing of the physical
independence. All of these problems were the main
Codd’s motivation for developing the relational
model.

The concept of nodes and relationships in
graph databases is very similar to records and set
relationships in network databases.

To build our sample database we used the
RDM solution for network databases and Neo4j
graph database. In the first case, the database
structure is created in the beginning in only one step
by defining its structure with the syntax of the DDL

inside a simple text file and compiling that file. We
can say that the database schema is fixed and must be
known in advance, because each change in the
schema requires the text file with its definition to be
entirely recompiled. On the other side, when it comes
to graph databases, the database structure is built
dynamically by creating concrete nodes and
relationships in the database by executing Cypher or
Gremlin queries. Graph databases as a category of
NoSQL databases are schema-less, so the query
languages have no built-in support (commands) for
managing the database structure.

Additionally, network databases provide no
support for ad hoc queries, so the RDM C++ API
generated a fixed set of methods to be executed
against the database (creating and retrieving records
and their keys etc.). Conversely, graph query
languages offer a wide set of clauses, which can be
used to build complex or custom queries in real time.

As already discussed, network databases have
not developed the concept of integrity constraints and
have no support for ensuring the database integrity,
while the same issue still needs to be further
developed and researched in graph databases.

CONCLUSIONS

In this paper we have made a comparison of network
databases used before relational databases and graph
databases, a category of NoSQL databases with a
growing popularity on the database market. As we
have discussed, network and graph databases (their
underlying data models) share some similarities
(importance of connection between entities, concept
of nodes and relationships, ability to model complex
relationships, direct links between nodes), but they
also have some differences (unlike network
databases, graph databases can implement many-to-
many relationships without the third, “dummy”, node,
and support ad hoc queries etc.).

All these facts say that the network model, in
the right sense, did not exist. Some authors tried to
make something in that area, but only partially. The
same thing, for now, can be said for the graph data
model. Therefore, if we wanted to be correct, we
would have said ‘the incomplete network data model’
and the ’incomplete graph data model’. All the time
we have to have in mind that the physical
independence is reduced or destroyed.

The implementation approach also varies, as
we have shown when implementing a sample
database with both technologies.

REFERENCES

[1] C. Coronel, and S. Morns, “Database Systems: Design,
Implementation, & Management”, Course Technology,
vol. 11, pp. 39-45, 2014.

[2] J. L. Harrington, “Relational Database Design Clearly
Explained”, Morgan Kaufmann, vol. 2, pp. 50-71, 2002.

[3] M. J. Hernandez, “Database Design for Mere Mortals”,
Addison-Wesley Professional, vol. 2, pp. , 2003.

International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-4, Oct.-2016

Graph Databases – Are They Really so New

12

[4] F. Holzschuher, and R. Peinl, “Performance optimization
for querying social network data”, 2014, Workshop
proceedings of the EDBT/ICDT 2014 Joint
ConferenceAthens, URL: http://ceur-ws.org/Vol-
1133/paper-38.pdf [accessed August 17, 2016]

[5] G. O’Regan, “Introduction to the History of Computing: A
Computing History Primer”, Springer, vol. 1, pp. 276-278,
2016.

[6] A. Tatnall, “Reflections on the History of Computing”,
Springer-Verlag Berlin Heidelberg, vol.1, pp.119-120,
2012.

[7] R. L. Bague, “Explore the differences between ISAM and
relational databases”, 2004, URL:
http://www.techrepublic.com/article/explore-the-
differences-between-isam-and-relational-databases/
[accessed August 17, 2016]

[8] Neo4j documentation, “From Relational to Neo4j”, URL:
https://neo4j.com/developer/graph-db-vs-rdbms/ [accessed
August 17, 2016]

[9] W. Warren, “Raima Database Manager v12.0 Architecture
and Features”, 2013, URL: http://raima.com/wp-
content/uploads/RDM-v12-Technical-Whitepaper-.pdf
[accessed August 17, 2016]

[10] C. Bachman, "The Programmer as Navigator", 1973,
ACM Turing Award lecture, Communications of the
ACM, vol. 16, no. 11, November 1973. (pdf)

[11] C. Bachman, “Implementation Techniques for Data
Structure Sets”, 1974, Data Base Management Systems.

[12] K. Rabuzin, M. Šestak, and M. Novak (in press), “Integrity
constraints in graph databases”, 2016, 27thCentral
European Conference on Information and Intelligent
Systems Proceedings.

