
Integrity constraints in graph databases -
implementation challenges

Šestak, Martina; Rabuzin, Kornelije; Novak, Matija

Source / Izvornik: Proceedings of Central European Conference on Information and
Intelligent Systems, 2016, 2016, 23 - 30

Conference paper / Rad u zborniku

Publication status / Verzija rada: Published version / Objavljena verzija rada (izdavačev
PDF)

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:102684

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-18

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:102684
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3489
https://dabar.srce.hr/islandora/object/foi:3489

Integrity constraints in graph databases – implementation

challenges

Martina Šestak, Kornelije Rabuzin, Matija Novak

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, Varaždin

{msestak2, kornelije.rabuzin, matija.novak}@foi.hr

Abstract. Graph databases are becoming more and

more popular as they represent a good alternative to

relational databases for some problem scenarios.

Searching a graph is sometimes very convenient,

unlike writing complex SQL queries that require a

table to be joined to itself several times. However,

graph databases do not support all the constraints that

are familiar and used in relational databases. In this

paper, we discuss integrity constraints in graph

databases and technical implementation issues that

prevent these constraints from being specified.

Keywords. Graph databases, Neo4j, Gremlin, integrity

constraints, UNIQUE

1 Introduction

Graph databases are becoming more and more popular

as they are constantly being developed and used in

many problem scenarios [Cheng et al., 2008]. Graph

databases store information in nodes and relationships

between nodes. The idea of storing data in nodes and

relationships is relatively new, although the graph

theory is quite old. Social network analysis,

recommendation systems and fraud detection represent

only some applications of graph databases, and in those

scenarios graph databases outperform relational

databases [Robinson et al., 2013]. An example graph

database is given in Fig. 1.

Figure 1. Restaurant recommendation graph database

[Eifrem, Rathle, 2013]

One thing that is still being developed for graph

databases is integrity constraint support.

Garbage In Garbage Out (GIGO) is a well-known

term that describes situations in which low quality data

is stored in a database, and results in the same output.

Integrity constraints can be defined as general

statements and rules that define the set of consistent

database states, changes of states or both [Codd, 1980].

Their purpose is to ensure that data that is to be entered

obeys certain rules and is valid, and that GIGO is

prevented.

When talking about database constraints, we must

first mention column data types, which are also

important because they can prevent certain anomalies.

For example, a string cannot be entered into a column

whose data type is set to date or into a column whose

data type is set to integer. So, proper selection of data

types is important. It is also important to specify the

right length for each column in order to prevent values

that are too long from being stored, etc. After the right

data type has been selected, integrity constraints can be

specified. By using the constraints, one can restrict

possible values that could be entered as column values.

For example, only numbers between 1 and 100 could

be entered in a field.

Once constraints are specified, the database system

has to ensure that all constraints are satisfied and none

are broken. Eventually, some constraints do not have

to be maintained within a transaction and it is possible

that some are broken, but when the transaction ends, all

constraints have to be satisfied [Ibrahim, 2010].

Although constraints are specified and data is

consistent, thereby satisfying the integrity

requirements, this does not have to mean that data is

correct. For example, let us assume that an order was

delivered on the 12th of June, but somebody entered

the 13th of June. Although both values are consistent

and can be stored in a field whose type is set to date,

one of them is not correct and is a result of a mistake.

So constraints will ensure that data is consistent, but

correctness cannot be ensured.

In this paper we discuss integrity constraints in

graph databases. First, we describe integrity constraints

and then we present which constraints are supported in

current graph query languages.

2 Integrity constraints in graph

databases

When talking about constraints, we distinguish:

 Column constraints

 Table constraints

 Database constraints

Column constraints are defined upon a column in a

table. Examples include:

 NOT NULL: prevents a NULL from being entered

into the column

 UNIQUE: ensures that a value is unique (or null, if

possible)

 CHECK: ensures that the value satisfies the

condition that is specified (for example, a value is

between certain values, etc.). In a sense, this

restricts the value of the attribute by allowing only

certain values to be entered.

 PRIMARY KEY: ensures that the value is NOT

NULL and UNIQUE

 REFERENCES: ensures that the value entered has

to appear as a primary key value of some other (or

the same) table

In some database management systems, like

PostgreSQL, one can also create a domain1 [The

PostgreSQL Global Development Group, 2016]:

CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]
Constraint can be:
[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

A domain is basically a combination of a data type

and a constraint. Once a domain is created, instead of a

data type, a domain is specified for a column and this

is sometimes very convenient.

Table constraints can be used as well because some

constraints cannot be expressed as column constraints.

Therefore, they are defined upon the table. For

example, if a table had a compound primary key

consisting of three columns, then one could not specify

the PRIMARY KEY column constraint in three

columns, as the PRIMARY KEY clause can appear

only once within the table definition. So some

constraints can only be expressed as table, and not for

columns.

1 https://www.postgresql.org/docs/9.6/static/sql-

createdomain.html

Triggers are very interesting as they could be used

to implement more complex constraints involving

more tables (database constraints)

[Decker&Martinenghi, 2009]. Basically, once an event

occurs (like INSERT or UPDATE), a function

(procedure) is activated and several different

statements can be executed as a reaction to the event.

The CREATE TRIGGER2 statement can look

different in other systems, but in PostgreSQL the

syntax is [The PostgreSQL Global Development

Group, 2016]:

CREATE [CONSTRAINT] TRIGGER name { BEFORE |
AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [
INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE PROCEDURE function_name (
arguments)

Now that we know what integrity constraints are, let

us take a look at how they are implemented in graph

databases, and what is supported at this point in time.

Since graph databases are a relatively new category

of NoSQL databases, the data consistency and integrity

constraints area is still not developed in detail and

provides opportunities for further improvements and

studies. Some people even say that the reason for this

is the flexible and evolving schema supported by graph

databases, which makes integrity constraints

implementation more difficult.
[Angles&Gutierrez, 2008] identified several

examples of important integrity constraints in graph

database models:

 Schema-instance consistency

o Prevents incomplete or non-existent

information from being inserted into the

database.

o Implies that the instance should contain only

the entities and relations that were previously

defined in the schema. Thus, each entity can

have only those properties that were specified

for that entity type or a super-type in case of

inheritance.

 Data redundancy

o Decreases the amount of redundant

information stored in the database.

o Can be solved by introducing an operation

that groups entities on the basis of some of

their relations, i.e., creates a unique entity for

each equivalence class of duplicate entities.

 Identity integrity

o Each node in the database is a unique real

world entity and can be identified by either a

2 https://www.postgresql.org/docs/9.6/static/sql-

createtrigger.htm

value (e.g., its ID number) or the values of its

attributes.

o Similar to primary key constraint in relational

databases.

 Referential integrity

o Requires that only existing entities in the

database can be referenced.

o Similar to foreign key constraint in relational

databases.

 Functional dependencies

o Test if an entity determines the value of

another database entity.

In his other article, [Angles, 2012] considered some

additional integrity constraints such as types checking,

verifying uniqueness of properties or relations and

graph pattern constraints.

In the relational data model, we use tables and add

rows to tables. If a value for a column is not defined,

NULL should be used and stored as a cell value. If a

NOT NULL constraint is specified, then the value for

that column has to be specified and NULL cannot be

used. In graph databases, nodes and/or relationships do

not have to have the same number of attributes. So, if

a value is not known or defined, the attribute can be

skipped. But there is also the possibility to specify a

DEFAULT value for such an attribute as well, if it

makes sense in a given context.

3 Graph Database Query

Languages

There are two popular languages that are used for graph

databases: Cypher and Gremlin.

In the next section, we will describe constraints that

these languages support, though we can say that at this

time the support is minimal.

3.1 Cypher

Cypher is a declarative, SQL-like query language for

describing patterns in graphs using ASCII-art symbols

[Neo Technology, Inc., 2016A].

It consists of clauses, keywords and

expressions (predicates and functions), some of which

have the same name as in SQL. The main goal and

purpose of using Cypher is to be able to find a specific

graph pattern in a simple and effective way. Writing

Cypher queries is easy and intuitive, which is why

Cypher is suitable to be used by developers,

professionals and users with a basic set of database

knowledge.

Cypher clauses are grouped into several

categories (e.g., general clauses, reading clauses,

writing clauses, etc.). The CREATE clause is used to

insert data to the database. To create a new author with

his own properties in a database, the following Cypher

query would be executed:

CREATE (a:Author {Firstname: ‘Miroslav, Lastname:
‘Krleža})

Conversely, to retrieve all authors from that same

database, the Cypher query would have the following

syntax:

MATCH (a:Author) RETURN a

Cypher is the official query language of the most

popular graph DBMS, Neo4j.

In Neo4j, integrity constraints are created using the

CREATE CONSTRAINT clause and are dropped from

a database by using the DROP CONSTRAINT clause.

Neo4j enables users to define only unique property

constraints, which can be applied only to nodes. Note

that the official Cypher website mentions the property

existence constraint, but at the current time this

constraint cannot be created in a Neo4j database.

The unique property constraint is used to ensure

that all nodes with specific label have a unique value

of some property. For instance, to create a constraint

which ensures that the property “Name” of a node

labelled Genre has a unique value, the following

Cypher query must be executed:

CREATE CONSTRAINT ON (g:Genre) ASSERT g.Name IS
UNIQUE

If a user tries to enter data that violates the defined

integrity constraints, they will receive the

corresponding error message shown in Fig. 2.

Figure 2. Constraint violation error message

3.2 Gremlin

Gremlin is a graph traversal language developed by

Apache Tinkerpop. Gremlin is path-oriented, which

enables it to concisely express the graph traversal

process [Titan by Aurelius, 2016].

A Gremlin query is a chain of operations

and/or functions evaluated from left to right. Each of

these operations represents a step in the graph traversal

process.

Compared to Cypher, Gremlin doesn’t

provide support for any kind of integrity constraints,

which leaves a lot of room for improvement. This

research fits this space, as we show later on.

In the next section, we show how to support

integrity constraints in graph databases.

4 Implementation issues

In this section, we describe implementation issues

regarding the integrity constraint specification in graph

databases. There are basically two approaches for how

to implement constraints: integrated and layered. For

implementation purposes we have chosen the layered

approach, which means that constraints should be

defined within an additional layer. In other words, we

do not change the system’s source code to implement

constraints, which would represent an integrated

approach. A layered approach has both advantages and

disadvantages, but it also imposes certain

implementation issues, as we show below.

To demonstrate integrity constraint implementation

in a Neo4j graph database (in this case we used Neo4j

Community Edition v2.3.5), a web application has

been built first by using Spark, a Java lightweight web

framework. After that, we had to select an approach to

access the Neo4j database in order to execute Gremlin

queries. This is where we encountered some issues,

which we will discuss in detail later on.

Approaches to access Neo4j graph databases can be

grouped into two categories:

1. Using Neo4j plugins; or

2. Using different Java APIs, drivers and native Java

implementations

4.1 Neo4j plugins

This approach includes downloading an archived file

from the plugin website, which contains the plugin

code, configuring the Neo4j Server and deploying

(registering) the downloaded plugin onto the server.

In this approach, two options were tested:

 Neo4j Gremlin plugin [Aurelius, 2016], developed

and maintained by Aurelius; and

 Neo4j Server plugin, open source Neo4j

distribution available on Github.

In both cases, we received error messages when

trying to compile plugin code through Maven (a project

management tool for Java projects), so this approach

was not very effective because we did not manage to

successfully connect to the database. Also, these

plugins are script-based, which means they are

supposed to execute Gremlin scripts on the server,

which is not the functionality we were looking for.

4.2 Java APIs, drivers and native

implementations

This approach requires less manual work from the

developer, but it has many variations and API versions,

so a significant effort needs to be made to find the best

API while considering different vendors and API

version compatibility.

3 https://github.com/tinkerpop/gremlin/wiki

More options were tested in this approach,

which are discussed in the following subsections.

4.2.1 Tinkerpop Gremlin v2.6.0

As indicated on the official API website3, this API

represents an outdated version of the Tinkerpop

framework (Tinkerpop 3 is the currently used version).

Tinkerpop4 is a graph computing framework licensed

under Apache, which can be used for both graph

databases and graph analytic systems.

The API can be used in both Java and Groovy

implementations, but the documentation is mainly

written for Groovy, so it has not been very helpful in

our test case. The API was included into the project as

a Maven dependency with the following syntax:

<dependency>
 <groupId>com.tinkerpop.gremlin</groupId>
 <artifactId>gremlin-*</artifactId>
 <version>2.6.0</version>
</dependency>

Unfortunately, as shown in Fig. 3, no such

dependency could be found in the central Maven

repository, so we gave up this option.

Figure 3. Error message when importing Maven

dependency

4.2.2 Tinkerpop Gremlin Java

implementation

Like the previous option, this API also hosts an

outdated version of the Tinkerpop framework and

Gremlin language documentation [Tinkerpop, 2016].

This is why it is possible to only create a TinkerGraph,

which is a reference to a Blueprints graph, the generic

graph API contained in the Tinkerpop2 version of the

framework.

This API was included in the project as a

Maven dependency using the following syntax:
<dependency>
 <groupId>com.tinkerpop.gremlin</groupId>
 <artifactId>gremlin-java</artifactId>
 <version>2.7.0-SNAPSHOT</version>
</dependency>

After successfully importing the dependency, we

were able to successfully connect to the database by

using the following code:

Graph g = TinkerGraphFactory.createTinkerGraph();

4 http://tinkerpop.apache.org/

Note that the TinkerGraph default graph structure

contains some predefined vertices and edges, but it is

possible to add new and custom vertices and edges.

The API provides two ways to execute Gremlin

queries:

 Using the GremlinPipeline chaining/combinator

approach, which represents a simple way of

defining Gremlin-style graph traversals; and

 Directly by using two available classes

(GremlinGroovyScriptEngine and

GremlinGroovyScriptEngineFactory), which are

useful when using the Gremlin virtual machine

from within Java applications.

In our case, we tested the first, GremlinPipeline,

approach and managed to successfully create a new

vertex in the database by executing the following code

snippet:

GremlinPipeline pipe = new GremlinPipeline();

Vertex v = db.addVertex(null);

v.setProperty("Label", u.getLabel());
v.setProperty("Firstname", u.getFirstname());
v.setProperty("Lastname", u.getLastname());

pipe.start(db.addVertex(v));

The result of this code is a new node with three

properties, which has been added to the TinkerGraph

(Fig. 4).

Figure 4. List of properties of the newly created node

However, even though this option has proven to be

successful when it comes to connecting to the database

and executing Gremlin queries, it did not allow us to

create a Neo4jGraph, which is what we needed in our

case. Therefore, since TinkerGraph is an in-memory

graph (the database is not saved in a permanent file on

a disk), when using this option, we were not able to

visualize the results of the executed queries, so we also

gave up this option.

4.2.3 Tinkerpop Gremlin v3.0.1-

INCUBATING

The third version of Tinkerpop, graph computing

framework, includes some changes compared to

Tinkerpop2. Various Tinkerpop projects (Blueprints

5 http://tinkerpop.apache.org/docs/3.1.0-

incubating/#_tinkerpop3

for graph model structure definition, Pipes for graph

traversal, Frames for traversal, Furnace for vertex

computing and Rexster as a Gremlin server) have been

merged to a general term called Gremlin5 [Tinkerpop,

2015]. Also, some syntax changes were made in terms

of writing Gremlin queries, i.e., the traditional Java

getters and setters have been replaced by Gremlin-

Groovy syntax, which is a special Gremlin language

variant.

The framework is composed of two parts:

 Components for graph structure definition, such as

Graph, Element (Vertex and Edge) and Property

interfaces and classes; and

 Components for traversal process definition, such

as TraversalSource and GraphComputer interfaces

and classes.

In this version, a new graph traversal concept

called Traverser has been introduced. Traverser

enables the steps in the graph traversal process to

remain stateless, but it also keeps track of the entire

traversal metadata.

This API was included in our project as a Maven

dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>gremlin-core</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

Like in the previous option, this API supports only

the in-memory TinkerGraph, which can be created by

executing the following code:

Graph graph = TinkerGraph.open();

After creating the graph, the API provides methods

for creating vertices and edges:

Vertex marko = graph.addVertex(T.label, "person",
T.id, 1, "name", "marko", "age", 29);
Vertex vadas = graph.addVertex(T.label, "person",
T.id, 2, "name", "vadas", "age", 27);

marko.addEdge("knows", vadas, T.id, 7,
"weight", 0.5f);

When testing this option, we stumbled upon an

issue when trying to create the TinkerGraph according

to the official API documentation - the compiled

dependency did not contain the TinkerGraph class, so

it was not possible to use this API properly.

4.2.4 Tinkerpop Neo4j-Gremlin

This module6 was developed under the Apache2

license and references only the Neo4j API without its

implementation, so the implementation API needs to

be added as a separate dependency [Tinkerpop, 2015].

Also, this module does not include the Gremlin

Console or Gremlin Server.

6 http://tinkerpop.apache.org/docs/3.1.0-

incubating/#neo4j-gremlin

We included this module in our project as a

Maven dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>neo4j-gremlin</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

// Neo4j implementation API
<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-tinkerpop-api-mpl</artifactId>
 <version>0.1-2.2</version>
</dependency>

Unlike previously mentioned APIs, this module

supports the Neo4jGraph, which can be created by

calling the open() method implemented in the

Neo4jGraph class. The method receives the Neo4j

database directory path as an argument.

Graph graph = Neo4jGraph.open('/tmp/neo4j')

After successfully connecting to the database, we

managed to add a vertex to the database by executing

the following code snippet:

Vertex v = db.addVertex(u.getLabel());
v.property("Label", u.getLabel());
v.property("Firstname", u.getFirstname());
v.property("Lastname", u.getLastname());

One of the advantages of this option is the

possibility of using the Neo4j web interface, which

provides us with an overview of the current database

structure, as shown in Figure 5.

Figure 5. Overview of created nodes in the database

After creating vertices and edges, the graph

database can be traversed by calling the traversal()

method contained in the graph object:

g = graph.traversal()

g.V().hasLabel('User').values('Firstname')

This option has proved to be successful in terms of

both functionality (we were able to access the Neo4j

database and execute Gremlin queries) and graph

database visualization (we can see all changes made in

the Neo4j web interface).

4.2.5 Tinkerpop Gremlin driver for Java

7 http://tinkerpop.apache.org/docs/3.1.0-

incubating/#_connecting_via_java

This driver7 represents a reference client for Java-based

applications, which enables applications to send

requests to a Gremlin Server and receive results

[Tinkerpop, 2015].

We included this driver in our project as a Maven

dependency by using the following syntax:

<dependency>
 <groupId>org.apache.tinkerpop</groupId>
 <artifactId>gremlin-driver</artifactId>
 <version>3.1.0-incubating</version>
</dependency>

In order to connect to the database and send

Gremlin queries to the Gremlin Server, it is necessary

to open a new reference to localhost and create a new

client, that will be responsible for sending

queries/requests and receiving the results. By

executing the following code, a new Client instance is

created:

Cluster cluster = Cluster.open();
Client client = cluster.connect();

After executing this code, we received an error

message (RuntimeException). As a result, we were not

able to successfully connect to the database, so we gave

up this option.

4.2.6 Neo4j Java driver

Neo4j Java driver8 is the official driver supported by

Neo4j [Neo Technology, Inc., 2016B]. The driver

enables users to connect to a Neo4j graph database by

using the standard Neo4j binary protocol - Bolt.

The driver was included in our project as a Maven

dependency by using the following syntax:

<dependency>
 <groupId>org.neo4j.driver</groupId>
 <artifactId>neo4j-java-driver</artifactId>
 <version>1.0.3</version>
</dependency>

The connection to the database is then established

by creating a new session in the Driver instance:

Driver driver = GraphDatabase.driver(

"bolt://localhost", AuthTokens.basic(

"neo4j", "neo4j"));

Session session = driver.session();

After creating the session, all queries were executed

within that session by calling the run() method and

passing the Cypher query as an argument:

session.run("CREATE(u:User

{Firstname:'Ivan',Lastname:'Horvat'})");

However, in our test case we received an error

message when trying to connect to the database, as

shown in Fig. 6.

8 https://neo4j.com/developer/java/

Figure 6. Error message when trying to connect to

Neo4j database using Gremlin driver

We were not able to connect to the Neo4j database

because of some security issues (probably because we

were trying to connect to an HTTPS graph database

server, instead of plain HTTP). This issue required

some time and effort (changing server and project

configurations), but we still were unable to resolve this

issue.

Also, Neo4j Java driver does not provide support

for executing Gremlin queries, which is necessary for

our research goals, so we gave up this option.

4.2.7 Java Core API

The Java Core API can be used in combination with

Traversal API to interact with the Neo4j graph

database [Haines, 2015].

Before using this API, we must include the

appropriate Neo4j dependency version through Maven:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j</artifactId>
 <version>2.3.5 </version>
</dependency>

The primary interface for that is the

GraphDatabaseService, which contains methods for

creating and querying nodes and relationships in the

database.

In this case, an embedded Neo4j database was used,

but creating a new database using

GraphDatabaseFactory allows us to specify the path

where all database files will be stored:

GraphDatabaseService graphDB = new

GraphDatabaseFactory().newEmbeddedDatabase("p

ath/to/database/files");

After successfully connecting to the Neo4j

database, we can call various methods for creating and

querying nodes and relationships in the database. Note

that all database operations are executed within a

transaction:

try(Transaction t = db.beginTx()){
 Node node =

db.createNode(NodeController.Labels.USER);
 node.setProperty("Label", u.getLabel());
 node.setProperty("Firstname",

u.getFirstname());
 node.setProperty("Lastname",

u.getLastname());
 ResourceIterator<Node> vertices =

db.findNodes(NodeController.Labels.USER);

 while(vertices.hasNext()){
 Node user = vertices.next();
 System.err.println("\nUser: " +

user.getProperty("Firstname") + " " +

user.getProperty("Lastname") + "\n");
 }
 t.success();
}

By executing this code snippet it is possible to

create new nodes in the database (specifically, nodes

labelled User) and to retrieve all users from the

database, as shown in Fig. 7.

Figure 7. Result of creating two nodes using Java

Core API

Since this option supports interaction with the

Neo4j graph database, the results of all operations can

be viewed through the Neo4j web interface.

However, even though we successfully tested this

option and it met our requirements, some methods we

used are deprecated (e.g. newEmbeddedDatabase() for

creating a new database instance), and the queries are

executed through the Cypher query language, so we

gave up this option.

After testing all given options, we decided to use

Tinkerpop’s Neo4j-Gremlin API combined with its

Gremlin Java implementation for our research

purposes. At this time we have managed to implement

the UNIQUE integrity constraint in Gremlin. Even

though that constraint is currently functional, it

requires some additional testing, so the details

regarding integrity constraints implementation will be

discussed and published in future research papers.

5 Conclusion

Integrity constraints are very important in databases as

they prevent bad data from being entered and stored

into a database. However, graph databases do not

support all the constraints that we use in relational

databases. Because of that, we examined different

types of constraints in Gremlin. As it turned out,

support for various constraints in graph databases was

minimal.

Then, we decided to implement several new

constraint types in a graph database, but

implementation issues occurred, as demonstrated

above.

In the end, we successfully connected to the graph

database and we implemented an additional layer that

supported one new constraint type that was still not

supported in graph databases. In our future papers, we

plan to present how we implemented the UNIQUE

constraint and to implement new constraint types as

well.

References

Angles, R. (2012). A Comparison of Current Graph

Database Models. Proceedings of the 28th IEEE

International Conference on Data Engeneering

Workshops (ICDEW) (pp. 171-178). The Institute

of Electrical and Electronics Engineers, Inc.

Angles, R., Gutierrez, C. (2008). Survey of Graph

Database Models. ACM Computing Surveys,

40(1).

Aurelius (2016). Neo4j-gremlin-plugin. Retrieved

17.07.2016. from

https://github.com/thinkaurelius/neo4j-gremlin-

plugin

Codd, E.F. (1980). Data models in database

management. Proceedings of the 1980 Workshop

on Data abstraction, Databases and Conceptual

Modeling (pp. 112-114). ACM Press

Cheng, J., Ke, Y., Ng, W. (2008). Efficient Query

Processing on Graph Databases. ACM

Transactions on Database Systems, 34(1), pp 1-

44.

Decker, H., Martinenghi, D. (2009). Database

Integrity Checking. IGI Global.

Eifrem, E., Rathle, P. (2013). The most important part

of Facebook Graph Search is “Graph”. Retrieved

17.7.2016. from https://neo4j.com/blog/why-the-

most-important-part-of-facebook-graph-search-is-

graph/

Gremlin Plugin (2015). Retrieved 17.07.2016. from

https://github.com/neo4j-contrib/gremlin-plugin

Haines, S. (2015). Programming Neo4j with Java.

Retrieved 17.7.2016. from

http://www.informit.com/articles/article.aspx?p=2

415371.

Ibrahim, H. (2010). Integrity Constraints Checking in

a Distributed Database. IGI Global.

Neo Technology, Inc. (2016A). Cypher Query

Language – About Cypher. Retrieved 17.7.2016.

from https://neo4j.com/developer/cypher-query-

language/#_about_cypher

Neo Technology, Inc. (2016B). Neo4j Java driver.

Retrieved 17.07.2016. from

https://neo4j.com/developer/java/.

The PostgreSQL Global Development Group (2016).

PostgreSQL 9.6beta2 Documentation. Retrieved

17.07.2016. from

https://www.postgresql.org/docs/9.6/static/index.h

html

Robinson, I., Webber, J., Eifrem, E. (2013). Graph

Databases. Sebastopol, USA: O’Reilly Media.

Tinkerpop – Apache Software Foundation (2015).

TinkerPop3 Documentation. Retrieved 17.7.2016.

from http://tinkerpop.apache.org/docs/3.1.0-

incubating/

Tinkerpop - Apache Software Foundation (2016).

Using Gremlin through Java. Retrieved

17.7.2016. from

https://github.com/tinkerpop/gremlin/wiki/Using-

Gremlin-through-Java.

Titan by Aurelius (2016). Chapter 6. Gremlin Query

Language. Retrieved 17.7.2016. from

http://s3.thinkaurelius.com/docs/titan/0.5.4/gremli

n.html

