Razvoj multiplatformske aplikacije u tehnologiji .NET
MAUI

Tkalcec, Antun

Master's thesis / Diplomski rad
2023

Degree Grantor / Ustanova koja je dodijelila akademski / strucni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveuciliste u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://ur.nsk.hr/urm:nbn:hr:211:178011

Rights / Prava: Attribution-NoDerivs 3.0 Unported/Imenovanje-Bez prerada 3.0

Download date / Datum preuzimanja: 2024-05-10

Repository / Repozitorij:

]
SYEUCILESTE U ZACREBL
o I PARLLLEE ORCANLEACHE LINTOEMA TIEE Faculty of Organization and Informatics - Digital

VARAZDIN

Repository

DIGITALNI AKADEMSKI ARHIVI I REPOZITORLIL

zir.nsk.hr


https://urn.nsk.hr/urn:nbn:hr:211:178011
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:7710
https://repozitorij.unizg.hr/islandora/object/foi:7710
https://dabar.srce.hr/islandora/object/foi:7710

UNIVERSITY OF ZAGREB
FACULTY OF ORGANIZATION AND INFORMATICS
VARAZDIN

Antun Tkalcec

DEVELOPMENT OF A MULTIPLATFORM
APPLICATION IN .NET MAUI
TECHNOLOGY

MASTER'S THESIS

Varazdin, 2023.



UNIVERSITY OF ZAGREB
FACULTY OF ORGANIZATION AND INFORMATICS

VARAZDIN

Antun Tkalcec
JMBAG: 0016136241

Study: Databases and knowledge bases

DEVELOPMENT OF A MULTIPLATFORM APPLICATION IN .NET
MAUI TECHNOLOGY

MASTER'S THESIS

Mentor:

Izv. Prof. dr. sc. Mario Konecki

Varazdin, May 2023.



Antun TkalCec

Statement of originality

| declare my master's thesis as the result of my own work and that, writing it, | did not use
sources that are not specified in it. Ethically suitable and acceptable methods and work
techniques were used in the creation of this thesis.

Confirmed by the author by accepting the FOI-radovi provisions




Summary

The subject of this paper is the development of a multiplatform application in
Microsoft's new technology, .NET MAUI, with a backend built using ASP.NET Core, all with

technologies that developers commonly use to build full-fledged production applications.

The paper first lists and describes tools and technologies that are used in software
development, before taking the reader through the steps of designing a database model,
creating an application backend using ASP.NET Core, designing user interface ideas in
Figma and finally creating a .NET MAUI application.

This paper will demonstrate the capabilities of Microsoft's new technology, .NET
MAUI (Multiplatform Application User Interface) by displaying the particularities of an
application built primarily for Android smartphones, with a backend built using ASP.NET
and the Entity Framework Code-First approach. The paper may serve as a guide to those
readers who are interested in multiplatform application development, Microsoft technologies
or both.

The paper concludes that .NET MAUI may not be the best choice for multiplatform
application development at this time, due to numerous bugs and an unsatisfactory

frequency of updates and bugfixes.

Key words: .NET; software development; multiplatform application; ASP.NET; .NET
MAUI; C#; XAML;



Content

L0} 01 =T o | PP iii
L. INETOTUCTION ...ttt 1
2. ToOols and tECNNOIOGIES .......cooeeeeeeeeee e 2
2.1, MICrOSOft VISUAI STUTIO. .....eeeeiiieiiiitiiieeiieieeeeeet ittt nnnnnnnnnne 2
2.2, MiICIOSOMt SQL SEBIVET ... ittt eeeetee ettt ettt e e e e e et e e e e e st e e e e e st e e e sestnaeeesrans 3
2.3. Microsoft SQL Server Management Studio (SSMS)........coovviiiiiiii e, 4
2 ] | 4
2.5, SOUICERIMBE ...ciieeeiiii ettt e e et e e e e et e e e e e s s e e e e et e e enr b a s s e e aeeeennnn 5
2L TR~ T | o SRR 6
2.7. Backend tools and tEChNOIOGIES. .........uuiiiiiiiiiiiiiiiiiiiie i 7
2.7. 0 ASP.INET GOl ..ttt ettt e ettt e et e e e e e e eeaans 7
2.7.2. Entity FrameWOrK COIE 7 ..o 7

2.8. Frontend tools and tECNNOIOGIES ..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiie bbb eeeeaeeeeenee 9

P2 < 70 S T |3 - U PPPPPPRTRR 9
2.8.2. XAML . et aeaaans 10
2.8.3. INET MAUL ... ettt et e e e e eeeans 12

T AN o] o] [Tot= 1[0 TN o [T NPT 13
4. Best practices, patterns and important terms ... 15
4.1, ClE@n AICNITECIUIE ... ..uiiiiiiiiiitiei e 15
4.2, REPOSITONY PALIEITI. ...ttt 17
4.3. Data TranSTer ODJECTES .......uuuuuuuuiuiiiiiiiiiiiiiiiiiiiiie bbb abbbbbeeeeeaenannnnes 17
4.4. Model-View-ViewModel-Service Pattern...............uuuuuuuuumuiiiiiiiiiiiiiiiiiinniiieeeeneeeennneens 18
5. Backend deVEeIOPMENL ... ..o e ettt a e e e e 19
5.1. Database MOdeliNg ........oooiiimiiiie e e e enaee 19
5.2. Creating a database............uuiiiiiii e 20
5.3, CreatiNg @ AP ... . e arra 24



LT T N VY AN £ 1< g (o2 110 ] o TP 27

5.3.2. Handling HTTP FEQUESES .......ouiiiiei it e et e e e e e e e 29
5.3.2.1. Error Nandling.....c.coooeiiiiiiiiiii e 32

6. Frontend deVEIOPMENT ... ..o e e e e e e e e e e e e ar e aaes 33
6.1. Designing a USEr INTEITACE.......ccoieiiieeeeice e e e e e e eaaees 33
6.2. BUIldING @ USEI INTEITACE.........uiiiiiiiiiieieeiieee et neennnennnne 39
6.2.1. FIrStStartUDPVIEW ... 39
6.2.2. SEAMINGVIBW ... 43
B.2.2. 1. APPSNEIL ..ot 44

B.2.3. REGISIEIVIEW ... ittt e e e e e e e e et a e e e e e e e arraa s 44
B.2.4. SIGNINVIBW ...t e e e e et e e e e e e e e e et s e e e e e e eearaaa s 46
6.2.5. HOMEBVIBW.....iiiiiiiiiee ettt e e e e e e e e e 47
6.2.5.1. WeakRefereNCEMESSENQET ........coeeeiiiiei et 47
6.2.5.2. Retrieving [0Cation data............c.ooeviiiiiiiiie e 49

6.2.6. PrOfiEVIBW ... 50
6.2.7. Cre@ateEVENTIVIEW ... 52
6.2.8. FriendsView and FriendSLIStVIEW.........coooieiiiieeeeeeeeeeeeeeeee e 54
6.2.9. EVENIDELAIISVIEW ... 54

7. Comparison With WINAOWS VEISION ........ccoiiiiiiiiiiiiii et 56
8. Author's opinion 0N .NET MAUI .....ouiii e 59
S o] o [od (011 o o FR PP PP P PP PP TPPPPPPPP 60
RS0 U] {07 T PP PP 61
0= T T3P 63
F = T 1 1 T=T ) SSEPPPPPPP 65



1.Introduction

When developing an application, a lot of time is usually spent adapting the business
logic and the user interface (Ul) to each platform — such as Android, iOS, Windows, Web and
macOS. In situations where developers do not have the time to use specific frameworks or
technologies to build the same application for each platform, technologies like Microsoft's new
.NET MAUI can be useful.

.NET MAUI stands for .NET Multiplatform Application User Interface, and it allows the
developer to seamlessly target devices of most platforms. MAUI abstracts the latest
technologies for building native apps on popular platforms into one common framework. This
means that developers can build applications that ,look and feel like the native platforms® from

a single codebase [1].

This paper will display the power of .NET MAUI by taking the reader through the
necessary steps of building a multiplatform application and its backend, starting by designing
the database model, building a database using Entity Framework's Code-First approach,
creating an API using ASP.NET Core and finally building the user interface using .NET MAUI

and XAML. The paper will also show some difficulties, bugs and weaknesses of MAUI.

The first part of this paper will present the technologies that will be used in the creation
of the multiplatform application and its backend APIs, relying mostly on cited sources. In the
main part of the paper, some techniques that will be shown are taken from accrued experience
of the author. This paper assumes the reader has some experience and knowledge of C#,
XAML, REST APIs and object-oriented programming in general, as well as terms such as

inheritance.

The author has chosen .NET MAUI for his Master's thesis because technologies like
these are very valuable in today's job market, as well as because of a general interest in

Microsoft development technologies.



2. Tools and technologies

This chapter will list and describe tools and technologies that will be used during

development of the multiplatform application.

2.1. Microsoft Visual Studio

All of the code for the application's frontend and backend will be written inside of a
technology called Microsoft Visual Studio. , The Visual Studio IDE is a creative launching pad
that you can use to edit, debug, and build code, and then publish an app.“ [2]

Microsoft offers Visual Studio in several versions:
1. Community —the free version, which will be used for development throughout this paper

(specifically VS Community 2022)

2. Professional — paid, for developers working on commercial projects, adding more
advanced capabilities
3. Enterprise — paid, for large-scale enterprise development teams and complex projects

Image 1. Microsoft Visual Studio logo, Source:

https://commons.wikimedia.org/wiki/File:Visual _Studio_lcon_2022.svg



Image 2. Microsoft Visual Studio's User Interface with tabs open, Source: author screenshot

2.2. Microsoft SQL Server

The database for the application will be setup locally, meaning a local database server
is required. Microsoft's SQL Server will be used for this purpose. Microsoft SQL Server is a
relational database management system, or RDBMS for short, and is a powerful and widely

used database platform. It provides an environment for managing and storing data.

Microsoft®

SQL Server

Image 3. Microsoft SQL Server logo, Source: https://www.commvault.com/supported-

technologies/microsoft/sql



2.3. Microsoft SQL Server Management Studio (SSMS)

Microsoft's SQL Server is only an environment for storing data. To work with the data,
another of Microsoft's technologies will be used. SQL Server Management Studio, or SSMS
for short, ,is an integrated environment for managing any SQL infrastructure...“ and ,provides
tools to configure, monitor, and administer instances of SQL Server and databases [3]. It is
available in a multitude of languages, such as Chinese, English, French, German, lItalian,
Japanese and others. SSMS can be used to query and manage databases locally and in the
cloud, but the cloud is out of scope for this paper. Everything to do with this application will be
done locally.

SSMS will be used during the development of the multiplatform application in multiple
ways. For instance, the database model diagram will be created in SSMS and shown in a

future chapter.

)
v N

Image 4. Microsoft SQL Server Management Studio logo, Source:

https://stackshare.io/microsoft-sql-server-management-studio

2.4. Git

In order to store code in a remote location, which allows developers to collaborate on
projects, a version control system such as Git is used. Though the application will be created
by one developer on a single machine, Git will still be used to commit and push code changes
to a GitHub repository. All of the code can be found by clicking the GitHub link at the end of
this paper.

Using Git, developers can simultaneously develop features or fix bugs by using
branches. One of the key features is its ability to track and manage changes by detecting
differences between versions of code. Ultimately, Git is a core tool for any developer, and the

reader is hereby encouraged to read more about this industry standard technology [4].



o1t

Image 5. Git logo, Source: https://commons.wikimedia.org/wiki/File:Git-logo.svg

2.5. Sourcetree

Git alone does not have a nice-to-look-at graphical user interface, but is rather (mostly)
a command line tool. Sourcetree is a free Git client and a graphical user interface for Git that

allows developers to manage and visualize repositories and code changes [5].

Image 6. Sourcetree logo, Source: https://iconduck.com/icons/94916/sourcetree



Q File Edit View Repository Actions Tools Help
SportSpark x + -

'WORKSPACE

File Status 0 [T e 2052023 1902
o @master 103 origin/master n/HEAD  add Croatian localization 28 svi atkalcec <antun2, 3b720d5

Search

BRANCHES

O master

TAGS

REMOTES

Image 7. Sourcetree User Interface, Source: author screenshot

Image 7. shows Sourcetree's user interface, where the multiplatform application's

commits and branches can be seen.

2.6. adb

adb or Android Debug Bridge ,is a versatile command-line tool that lets you
communicate with a device.“ [6] Given that the multiplatform application will be a primarily
Android mobile application, adb is used to connect the phone to the localhost API. Put simply,
starting the API project within Visual Studio runs the API locally, but the phone cannot send
HTTP requests to it without using a tool such as adb. The API running on localhost will have a
port, which needs to be used in the following command-line command:

adb reverse tcp:port tcp:port

Once the Android phone is connected via USB cable to the PC the API is running on
and this command is used, the phone will successfully send HTTP requests to the locally
running API. This means the API will send back JSON files containing data that is displayed

on the application's frontend.



2.7. Backend tools and technologies

An application's backend serves as a bridge between the frontend, or user interface,
which is what the user can see, and the database where all the data is stored. Many
technologies, frameworks and programming languages may be used to create backends. This
paper will focus on C# and ASP.NET, along with Entity Framework Core, both of which will

now be described.

2.7.1. ASP.NET Core

As per Microsoft documentation, ,ASP.NET Core is a cross-platform, high-
performance, open-source framework for building modern, cloud-enabled, Internet-connected
apps.” [7] It is suitable for a wide range of applications, from small websites to large enterprise
systems. Furthermore, it is the successor to the older ASP.NET framework, and provides the
following benefits and more [7]:

1. Open-source and community-focused

2. Built-in dependency injection

3. Alightweight, high-performance and modular HTTP request pipeline
4

Simplifies modern web development

ASP.NET Core offers features to build web APls and web apps, along with technologies
such as Razor Pages and Blazor and patterns such as MVC (Model-View-Controller).

However, this paper will only focus on building an API for the application using ASP.NET Core.

ASP.NET

(ere

Image 8. ASP.NET Core logo, Source: https://www.azureblue.io/tag/asp-net-core/

2.7.2. Entity Framework Core 7

As per Microsoft documentation, ,Entity Framework (EF) Core is a lightweight,
extensible, open source and cross-platform version of the popular Entity Framework data
access technology.“ It is an ORM (object-relational mapper), which means developers can

7



work with a database using .NET objects and mostly eliminates the need to write SQL code to
retrieve rows from a database table or tables. However, it cannot create stored procedures,
one of which will later be required to retrieve events based on location and a user's chosen
radius. That stored procedure will be created using SQL, and it will be called using a mix of
Entity Framework Core 7 and SQL. If the reader wishes to view the stored procedure's creation
and implementation, they are hereby encouraged to check the application's code on GitHub.

EF Core 7 is a NuGet package, which means it is installed to a project inside of Visual
Studio using the NuGet Package Manager or the .NET Core CLI.

Entity Framework

(ere

Image 9. Entity Framework Core logo, Source: https://codeopinion.com/porting-to-entity-

framework-core/

EF Core supports two development approaches:
1. Code-First
2. Database-First
The application's backend will be using the Code-First approach. An integral part of EF is the
DbContext class, which ,represents a session with the database and can be used to query
and save instances of entities to a database.” [9] The next building block of EF Core are

entities. The code below displays the Event entity, and the DbContext class which references
it.
[Table ("Event") ]
public class Event : BaseEntity
{
[Required]
[StringLength (50) ]
public string Title { get; set; }

[Required]



[StringLength (150) ]

public string Description { get; set; }

#endregion

}

public class SportSparkDBContext : DbContext

{

public DbSet<Event> Events { get; set; }

As a reminder, the complete code of these classes and more may be found using the
GitHub link at the end of this paper. As one can see, the class shown inherits from DbContext,
and one of its properties is DbSet<Event> Events. The Event entity has an annotation,
[Table (,Event™) ] which, along with the aforementioned property, lets EF know that it must
create a database table named ,Event” with properties defined inside the Event class. The way
to create this database table, and others, is using so called migrations, which will be covered

in a later chapter. Database creation will also be covered in more detall in a later chapter.

2.8. Frontend tools and technologies

The frontend encompasses the development of anything the user can see, or what
happens inside of the user's device. Before coding XAML code to create a user interface inside
.NET MAUI, mockups will be created using Figma. XAML and .NET MAUI itself will also be
described in the following subchapters.

2.8.1. Figma

Figma is a modern interface design tool to create user interfaces for all sorts of
applications, ranging from web to desktop to mobile. It was first released in 2016, and offers

seamless collaboration between designers. [10]



» Figma

Image 10. Figma logo, Source: https://www.stickpng.com/img/icons-logos-emaijis/tech-

companies/figma-logo

For this application's development, Figma will merely be used to brainstorm Ul design
ideas. Figma offers many more features and tools, but they are out of scope for this paper.
The Figma-created mockups will be shown in a later chapter.

2.8.2. XAML

XAML stands for Extensible Application Markup Language, and is a ,declarative
language that's based on XML.“ [11] It allows developers to build rich and interactive
applications while separating the Ul design from the application logic. XAML is quite similar to
HTML or XML, while the underlying functionality and behavior are implemented in the code-
behind using C#. XAML also supports data binding, which allows Ul elements to be connected
to data sources, enabling automatic updates and synchronization. This will be crucial to this
application's development, and is one of the foundations of the Model-View-ViewModel-
Service pattern which will be discussed later. Developers may create interfaces using tags and
attributes, instead of writing code to create and position Ul elements. These tags and attributes
may be very simple, but designing a complex interface quickly becomes quite complicated.
The following code is an example of a, relatively to other views, simple view inside of the

multiplatform application's final design.

<?xml version="1.0" encoding="utf-8" 2>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:skia="clr-

namespace:SkiaSharp.Extended.UI.Controls;assembly=SkiaSharp.Extended.UI"

xmlns:viewModels="clr-namespace:SportSpark.ViewModels"

10



x:Class="SportSpark.Views.StartingView"
Shell.NavBarIsVisible="False"
x:DataType="viewModels:StartingViewModel">

<Grid RowDefinitions="1.5%*, *, 0.5%, *"  ColumnDefinitions="%*, xn

Margin="0, 30, 0, 0" RowSpacing="30">
<Border BackgroundColor="{StaticResource SportSparkLightGreen}"

HorizontalOptions="CenterAndExpand" StrokeThickness="0"

Margin="15, 0" Grid.RowSpan="1" Grid.Row="0"
Grid.ColumnSpan="2">
<Border.StrokeShape>
<RoundRectangle CornerRadius="30"/>
</Border.StrokeShape>

<skia:SKLottieView Source="manonphone.json"

IsAnimationEnabled="True" RepeatCount="-1" Padding="20"/>
</Border>

<Label Text="{Binding Language [Discover]}" FontSize="32"

Grid.Row="1" TextColor="Black"

HorizontalOptions="CenterAndExpand"

HorizontalTextAlignment="Center" Grid.ColumnSpan="2" FontAttributes="Bold"
Shadow="{StaticResource DefaultShadow}" Margin="20"/>
<Label Text="{Binding Language[Explore]}" FontSize="15" Grid.Row="2"

Grid.ColumnSpan="2" TextColor="Black"

HorizontalOptions="CenterAndExpand" HorizontalTextAlignment="Center"
Shadow="{StaticResource DefaultShadow}" Margin="25, 5"/>

<Button Text="{Binding Language[SignIn]}" FontAttributes="Bold"

FontSize="28" BackgroundColor="{StaticResource SportSparkDarkBlue}"

Grid.Row="3" HeightRequest="70" Margin="15, o"

TextColor="White" Shadow="{StaticResource DefaultShadow}"

CornerRadius="30" Grid.ColumnSpan="2" Command="{Binding

SignInCommand}"/>
</Grid>

</ContentPage>

11



The code displays tags such as Button, and attributes such as CornerRadius.
Furthermore, it displays the aforementioned data binding, as well as defining namespaces that
can be used inside of the XAML page. Other views inside of the multiplatform application will

reach over 200 lines of XAML code.

2.8.3. .NET MAUI

As per Microsoft documentation, ,,.NET Multi-platform App Ul (NET MAUI) is a cross-
platform framework for creating native mobile and desktop apps with C# and XAML.“ [12] .NET
MAUI is open-source and developers may use it to create apps that run on mobile (Android,
i0S), macOS and Windows from a single shared code-base. It is the evolution of
Xamarin.Forms, and entered General Availability in 2022.

MAUI provides a framework for building the Uls for mobile and desktop apps, unifying
»2Android, iOS, macOS and Windows APIs into a single API that allows a write-once run-
anywhere developer experience.“ [12] As building apps for iOS and macOS requires a Mac
computer, this paper will focus on the Android side of .NET MAUI, while displaying the Ul
difference between Android and Windows at the end of this paper.

In .NET MAUI, the Ul is built using a collection of controls that are used to display data,
initiate actions, indicate activity and so on. It also provides [12]:

1. Multiple page types

2. Data binding

3. Handler customization

4. APIs for accessing native device features, such as GPS, accelerometer, battery and
network...

5. A single project system (different from Xamarin.Forms, MAUI's predecessor)

Hot reload, allowing XAML modification while the app is running, which means the

developer may make Ul changes and tweaks without restarting the application

This paper will not demonstrate all of the capabilities of .NET MAUI, but the ones

required to create this particular application.

12



3. Application idea

The very first thing one needs before developing an application is an idea. The
application that will be built throughout this paper is one that serves as a tool to find sports
events in the user's vicinity. The idea is, therefore, to give users a quick and easy way to find
sports events they might be interested in inside of a certain square kilometer radius. The user
starts by creating an account and signing into the application. Furthermore, they may choose
to complete their profile with a picture or some information about themselves. On the same
profile page, they may create new events. The most important part of this setup process will
be specifying a radius inside which they want to see other users' sports events.

Another way to see sports events, other than seeing the nearest one, is to add ,friends®.
If a user's ,friend” creates an event, the user may visit the friend's profile and view their events,
even if those events are outside of the radius in which they wish to see them. Users create
events by specifying the following data:

¢ Event location — where the event will take place, in the form of latitude & longitude

e Event privacy — who can see the event; an event may be public, private or visible to
selected friends

¢ Event repetition type — does the event takes place only once, daily, weekly...

e Event duration — how long the event will last, in hours

o Event price — an event may have an entry fee

¢ Eventtime —when the event takes place (time of day)

¢ Number of participants — how many people the event is meant for

¢ Event type — of which sport the event is

To combat the creating of fake events, a rating system will be put in place. Users can
rate event organizers, and a bad rating may deter potentially interested users from signing up
to their events. This system would be especially useful for repeating events. A gamification of
sorts could be implemented. Users can check an event creator's profile, thus seeing their rating
and deciding if commiting their time to that creator's event is worthwhile.

To monetize an app like this, there would be a free version with ads and a paid version
with no ads. Users would have a choice to bump their events (increase their visibility for a short
time) by paying a small fee. However, monetization will not be implemented into the application
as part of this paper.

The application might also target video game events. To achieve this feature, there
would not be a location requirement, because these events would be played online. For

13



example, an event that specifies a roleplay match of a certain war-simulation video game,
where players would go out of their way to play the game in a way that would simulate real
wartime tactics and combat. Usually, these types of events are organized by way of online
communities like YouTube communities or on platforms like Discord. This feature would
simplify the process of organizing these events.

Marketing a primarily mobile app like this can be done in multiple ways. For free, the
app could be marketed through posts on platforms such as Facebook or Discord groups,
Twitter and other social networks. Another way is to make deals with sport organizations or
clubs, where they would use the app to organize events and therefore, with time, have a higher
number of participants in their events.

Ultimately, not all of these ideas will be implemented in the final application. The
purpose of this paper is to demonstrate the aforementioned technologies, not to create a real-
world consumer-facing mobile application.

Having all this information in mind, SportSpark will be the application's name.

14



4.Best practices, patterns and important terms

This chapter will describe some of the best practices, patterns and important terms that

all developers aiming to create an application such as this should be aware of.

4.1. Clean Architecture

As per Microsoft documentation, Clean Architecture has gone by multiple names over
the years. Hexagonal Architecture, Ports-and-Adapters and Onion Architecture are some of
the older names, and they all describe putting the business logic and application model at the
center of the application [13].

Clean Architecture Layers (Onion view)

User Interface
Controllers View Models

Domain Services

Interfaces

Entities

Application Core External Dependencies

Image 11. Clean Architecture diagram, Source: https://learn.microsoft.com/en-

us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures

Image 11 shows the layers of Clean Architecture, where one can see that infrastructure
and implementation details depend on the Application Core, in which our Interfaces and
Entities reside. In the Infrastructure layer, one can see 'Repositories’ and 'Implementation
Services'. These are implementations of abstractions, or interfaces, in the Application Core.
The User Inteface layer should not know about the implementation types residing in the

Infrastructure layer and only works with interfaces and entities defined in the Application Core.

15



& 3 Solution 'SportSpark’ (3 of 5 projects)
4 [0 SportSparkAPI

P En.#':._| SportSparkAP]

EX SportSparkCore

b & [c#] SportSparkCorelibrary

BEX SportSparkCoreSharedLibrary

b & [c#] SportSparkCoreSharedLibrary
BEX SportSparkinfrastructure

b & [ SportSparkinfrastructurelibrary
BEX SportSparkUl

P & [c#] SportSpark

Image 12. Clean Architecture implementation in Visual Studio, Source: author screenshot

Image 12 shows the implementation of Clean Architecture in Visual Studio. Folders for
the APl (where Controllers reside), the Application Core, Application Core Shared,
Infrastructure and the Ul projects are created. The projects inside of the folders are, in this

case, .NET MAUI class libraries.

a 3 Solution 'SportSpark' (5 of 5 projects)
parkAP|
SparkAPI
onnected 5
#8 Dependencies
& 3@ Properties
& Bl ActionFilters

arelibrary
» & Dependencies
I & Bl Entities
P & Bl Enums
& @l Interfaces
I & Bl Platforms
SharedLibrary
SportSpar eSharedLibrary
I &4 Dependencies
I & Bl Authentication
P a Bl DTOs
I & Bl Platforms
rtSparkinfrastructure
] SportSparkinfrastructureLibrany
B #gF Dependencies
a Bl Authentication

b &l S
4 [ SportSparkUl
I &[G SportSpark

Image 13. Folders inside of Clean Architecture projects, Source: author screenshot

16



Inside the projects, one can see folders for aforementioned Interfaces, Entities,
Services and Repositories. Furthermore, the Application Core also houses Enums. The
Infrastructure layer has everything to do with the application's database, along with Helper
classes and the implementations of repository interfaces and service interfaces. The
Application Core Shared library houses Data Transfer Objects, which will be described in a
later chapter, and classes for Authentication. The Shared library exists because Data Transfer

Objects and Authentication classes are used by both the Ul and the backend.

4.2. Repository pattern

As was mentioned in the previous chapter, Clean Architecture defines interfaces for
Service and Repository classes. The repositories are part of the Repository pattern, which is
a design pattern that allows developers to have a cleaner separation of code. A repository is a
class that implements an interface, and is used to retrieve data from the database using an
ORM (Object Relational Mapping) such as Entity Framework Core [14].

The Repository pattern is implemented in SportSpark in the following way: Controllers
use Services, where all business logic is located, and which in turn use Repositories, which do
naught but retrieve data from the database. To summarize, Repository pattern mediates data
from and to the Domain and Data Access Layers [14]. Repositories define methods that are
called from inside Services, and serve to retrieve, update or create data in the application
database. API Controllers do not know about repositories. They merely use Services, which in
turn use repositories, and return the returned values from the Service they call (in the case of

a GET operation, for instance).

4.3. Data Transfer Objects

A Data Transfer Object or DTO is an object that carries data between application layers.
Applications usually rely on a system of HTTP requests and calls to an API. Returning
unprocessed entities from a database to the Ul layer is a bad idea, as that might expose
sensitive data [15]. For example, the User.cs class in SportSpark has a password property,
because each user has a password in the database. Even though this password is hashed
during user account creation, sending it to the frontend (especially when user 1 visits user 2's
profile) is bad practice. HTTP request results may be intercepted, and sensitive data may be
exposed to malicious users this way.

Data Transfer Objects serve to fix or alleviate this problem. A UserDTO will, in this
example, opt to 'ignore’ the password property from the User entity class during the mapping

of User.cs to UserDTO.cs. A future chapter will go further into mapping these objects.
17



4.4. Model-View-ViewModel-Service pattern

.NET MAUI documentation describes a Model-View-ViewModel pattern, which consists
of three core components: the model, the view, and the view model [16]. Typically, .NET MAUI
involves creating a user interface using XAML, then using the code-behind to add code to work
with the user interface. This leads to maintenance issues and tight coupling of Ul and business
logic, as well as difficulty of Unit Testing code [16]. MVVM helps separate Ul and business
logic, and is a best practice pattern that any developer using .NET MAUI should be aware of.

SportSpark goes one step further, using the MVVMS pattern, which adds a Service
component to MVVM. In MVVMS, the View defines the structure, layout and appearance of
the Ul, using XAML and some code-behind (animations and such, not business logic). The
ViewModel exists to house the business logic of the Ul, implementing properties and
commands which can be bound to using Bindings in XAML. In MVVMS, the ViewModel of each
View should not know about the business logic of making and sending HTTP requests.
Therefore, SportSpark defines a RestService class, which defines methods that are called from
the ViewModels. RestService also implements a single instance of the HttpClient object,
whereas it would need to be instantiated multiple times within multiple ViewModels, if not for
RestService.

To summarize, MVVMS means that the View contains XAML where properties such as
a Label's Text are bound to a property implemented in the ViewModel. The code-behind of the
View serves only to unfocus, focus or animate (for example) view controls. The ViewModel
implements properties and commands that define actions to be taken when, for instance, a
button is pressed. It calls methods from the RestService class when it needs to send an HTTP

request to the API, and then works with the returned values.

18



5.Backend development

This chapter marks the beginning of the multiplatform application development process.

The first thing that most applications need is a database, which will hold the data that the

application will use. Modeling a robust database is the foundation upon which the rest of the

app will be built, so before getting into building the database itself, it will first be modeled. To

model a database, an online tool such as draw.io can be used, where one can create diagrams

that will represent tables in an SQL database, and the connections between these tables. It is

often that the first version of a database model quickly becomes outdated. The database model

that will be presented in the following subchapter is a diagram created inside of Microsoft SQL

Server Management Studio, which represents the final version of the database.

5.1. Database modeling

The first version of the database model for SportSpark looked like the following image:

Friendship

PK

Friendshipld

Userld

User2id

EventRepeaiType

PK

RepeatTypeld

Description

Event

User

PK

Eventid

PK

Userld

UserName
Password
FirstName
LastMame
Age

Bio

Rating

Email

UserDocument

Typeld

Title

Description

Lat

Long

TimeOfDay
RepeatTypeld
Duration

Price
MNumberOfParticipants

Privacy

EventType

PK

Typeld

Name

Description

PK

UserDocumentid

Userld

Documentlid

Document

PK

Documentid

Elobld

Image 14. SportSpark database model version 1, Source: author screenshot

19



However, while developing the application, numerous changes were required to be made.
Keeping in mind the application idea, the author of this paper created a database model

consisting of 6 tables:

1. Event
2. EventType
3. EventRepeatType
4. User
5. Friendship
6. Document
EventType
T i
MName
Description EventRepeatType
CreatedAt 7 Id
UpdatedAt Description
CreatedAt K N
Friendship
UpdatedAt 7 Id
Senderld
Receiverld
4 Status
Event
7o User
Title T ol
Description UserMame
Lat Password
Long FirstMame
Time LastName ] Document
Duration o Email 2 Id
Price Bio ImageTitle
MNumberOfParticipants Rating ImageData
an.acy Age CreatedAt
Active Profilelmageld Updatedat
Userld CreatedAt
EventTypeld UpdatedAt
RepeatTypeld DesiredRadius
CreatedAt VoteCount
UpdatedAt VoteSum
ValidUserlds

Image 15. SportSpark final database model, Source: author screenshot

5.2. Creating a database

As was mentioned in a previous chapter, the database will be created using Entity
Framework Core 7's Code-First approach. In order to create a database, EF requires entities

and a DbContext class.

20



An entity corresponds to a table in the newly created database. The table name may
be defined by using an annotation: [Table (,EventType“)] will create a table named

»=EventType® in the database, with properties defined in the EventType.cs class.
[Table ("EventType") ]
public class EventType : Basekntity
{
[Required]
[StringLength (50) ]

public string Name { get; set; }

[Required]
[StringLength (150) ]

public string Description { get; set; }

#region Relations
public ICollection<Event> Events { get; set; }

#endregion

The above code means that a table named ,EventType* will be created, with a property
called ,Name*, which cannot be null, and has a maximum length of 50 characters. Similarly,
,pescription“ is not nullable, and has a maximum length of 150 characters. The
ICollection<Event> Events property means that multiple Events may be of one EventType.
Other entities are created in a similar way. They need to be defined as a DbSet<T> inside of

a class that inherits from DbContext.

public class SportSparkDBContext : DbContext

{
public DbSet<User> Users { get; set; }
public DbSet<Friendship> Friendships { get; set; }
public DbSet<EventType> EventTypes { get; set; }

public DbSet<EventRepeatType> EventRepeatTypes { get; set; }

21



public DbSet<Event> Events { get; set; }
public DbSet<Document> Documents { get; set; }

public SportSparkDBContext (DbContextOptions<SportSparkDBContext>

options) : base(options)

protected override void OnModelCreating (ModelBuilder modelBuilder)

base.OnModelCreating (modelBuilder) ;

modelBuilder.Entity<User> ()

.HasMany (x => x.Events)

.WithOne (x => x.User)

.HasForeignKey(x => x.UserId);
modelBuilder.Entity<User> () .Property(x => x.Password)

.UseCollation("SQL Latinl General CP1 CS AS");

modelBuilder.Entity<Friendship> () .HasKey(x => x.Id);
modelBuilder.Entity<Friendship> ()

.HasOne (x => x.Sender)

.WithMany (x => x.RequestedFriendships)

.IsRequired()

.OnDelete (DeleteBehavior.Cascade) ;
modelBuilder.Entity<Friendship> ()

.HasOne (x => x.Receiver)

.WithMany(x => x.ReceivedFriendships)

.IsRequired()

.OnDelete (DeleteBehavior.Restrict);

22



The above code shows the SportSparkDBContext class, which inherits from
DbContext. It has multiple DbSet<T> properties, one for each SportSpark entity. The
constructor must have a parameter of DbContextOptions<SportSparkDBContext> and
:base(options). OnModelCreating is an overridden method inside of which a developer may
use FluentAPI to specify relationships or other settings on the tables that will be created. For
the Friendship entity, it is required to specify that it has one Sender, which is of type User, with
many RequestedFriendships and vice-versa. This will mean that Entity Framework will know
to populate the User.RequestedFriendships collection with User objects corresponding to the
Senderld attribute. If a User's Id is a Senderld in a Friendship entity, then that User's
RequestedFriendships collection will be populated with that Friendship entity.

Finally, to create the database that is described using the annotations inside Entity
classes and the FluentAPI definitions inside of OnModelCreating, one may use the Package
Manager Console and Migrations. Migrations are ,a way to incrementally update the database
schema to keep it in sync with the application's data model while preserving existing data in
the database.“ [17] Before creating a Migration, a database connection string needs to be set
up. Inside Program.cs, the following line is placed:

builder.Services.AddDbContext (builder.Configuration.GetConnectionString ("Lo

calConnection"));

Inside appsettings.json, a connection string named LocalConnection is defined:

"ConnectionStrings": {

"LocalConnection":
"Server=.;Database=SportSpark; Trusted Connection=True;MultipleActiveResultsS

ets=true;Encrypt=False;"

}y

This also serves to specify a name for the newly created database. As was previously
mentioned, Migrations are part of EF Core, and one may be created using the Package

Manager Console, for instance.
Add-Migration Init -o Data/Migrations

The above command will create a new Migration, named ,Init* in the folder Data/Migrations
inside the project where a class that inherits from DbContext exists. EF Core will therefore
create a database schema, and the database may be created using

Update-Database.
23



This is all that is required to create a database using EF Core. If a developer needs to change
the database, they need not delete the database and recreate the schema, losing all data in
the process. They may simply change an Entity as required, create a new Migration, and

update the database.

5.3. Creating an API

An API serves as the ,middleman” between the Ul and the database. The Ul will send
HTTP requests to SportSpark API endpoints, which will call Service class methods, which in
turn call Repository class methods to retrieve data from the database. The Service classes
contain the business logic and map Entity objects to DTO objects using a NuGet package
called AutoMapper. They return these DTO objects to the API endpoints, which return them as
a JSON to the UL

The APl endpoints are housed inside controllers. This chapter will look at
UserController.cs, the services it uses, the BaseController it inherits from, error handling, and
filtering HTTP requests. The API can be considered a website that, instead of a nice-looking
Ul, returns JSON files. Therefore, it has a domain, just like any website. This paper deals with
a locally run application, so SportSpark's API's domain is localhost:7181. To specify a route to
a specific controller on the API, one may use an annotation. The controller inherits from
BaseController which is a custom class that inherits from ControllerBase (this inheritance is
important).
[Route ("api/vl/[controller]")]
[ApiController]

public class UserController : BaseController

{
private readonly IUserService userService;
public UserController (IUserService userService)
{

_userService = userService;

[ActionFilters.AuthorizationFilter ()]
[HttpGet]

[ProducesResponseType (typeof (UserDTO), 200) ]

24



public async Task<ActionResult<List<UserDTO>>> Get ()
{

try

return await userService.GetAllAsync();

catch (Exception ex)

return BadRequest (new ApiResponseHelper (400, ex.Message));

The above code shows the annotations required to specify a route for the controller, as well as

define it as a controller. It inherits from BaseController, which implements one property:
public class BaseController : ControllerBase

{
public int UserId

{

get
{

var userlId = -1;

_ = int.TryParse (this.User.Claims.FirstOrDefault (t =>
t.Type == "UserId")?.Value, out userId);

return userId;

The Userld property will be used throughout some controllers. It contains the Id of the currently

logged in user, or in other words, the user that is sending an HTTP request to the API. This

25



Userld is parsed from so-called ,User claims®. ,User claims® are part of the API's authentication
and authorization. API authentication and authorization is set up by writing the following lines

into Program.cs:
builder.Services.AddAuthentication (opt =>
{
opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

.AddJwtBearer (options =>
{
var tokenData = builder.Configuration.GetSection ("TokenData");

options.TokenValidationParameters =
TokenValidationConfiguration.GetTokenValidationParameters (tokenData["Issuer

"],

tokenData["Audience"], tokenDatal["SecretKey"]);

app.UseAuthentication () ;

app.UseAuthorization () ;

This sets up the JSON Web Token authentication for the API.

26



5.3.1. JWT Authentication

JWTs define a way to securely transmit information between parties as a JSON object.
Part of the token is the payload, which contains claims, which contain, for instance, user data.

An example JWT is:

eyJhbGciO1iJIUzIINiIsInR5cCI6IkpXVCI9.eydVc2VySWQi01I3IiwibmdmIjoxNjg2MzkzMz

k2LCJ1eHAIOjE20DY50Tgx0TYsImlzcyI6I1INwb3J0U3BhcmsiLCJhdWQiO01iJTcGI9ydFNwYXJrI
n0.zaaPTBrZSpZ0aZbb24Q1vpHO6NGFFTTyLhAIIwS5 mvHI.

When decoding this JWT using an online tool, one can see its payload:

{
"Userld": "7",

"nbf": 1686393396,
"exp": 1686998196,
"iss": "SportSpark”,
"aud": "SportSpark"

}
This JWT token is attached to each HTTP request's header the frontend sends to the backend.

The backend, or API, then checks the JWT token before each HTTP request is processed. If
the user is not logged in (therefore the JWT is broken or is not attached to the HTTP request)
it returns 401 Unauthorized. This processing takes place inside of the AuthorizationFilter class,
which is part of the [ActionFilters.AuthorizationFilter ()] annotation. The

AuthorizationFilter class overrides the OnActionExecuting method:

public class AuthorizationFilter : ActionFilterAttribute

{

public override async void OnActionExecuting
(ActionExecutingContext context)

{

var httpUser = context.HttpContext.User;

if ('httpUser.Identity.IsAuthenticated) context.Result = new
ForbidResult () ;

else base.OnActionExecuting (context) ;

27



This class checks if the user sending the HTTP request to an API endpoint is authenticated. If
not, it returns 401 Unauthorized, as was explained previously. This is how to prevent malicious
users from tampering with the application's database.

The JSON Web Token is created during a wuser's log in process.

AuthenticationController.cs defines a Login method:

[HttpPost ("login") ]

public async Task<ActionResult<UserDTO>> Login (UserLogin userLogin)
{

try

var user = await
_userService.UserValid(userLogin.EmailOrUserName,

userLogin.Password) ;

if (user is not null)

var userDto = userService.Login (user);

return Ok (userDto) ;

}

return Unauthorized() ;

catch (Exception ex)

return BadRequest (new ApiResponseHelper (400, ex.Message));

UserService.Login creates the user claims and the JWT:
public UserDTO Login (User user)

{

UserDTO userDto = mapper.Map<UserDTO> (user) ;

List<Claim> claims = new/()

28



new Claim("UserId", user.Id.ToString())
}i

AuthenticationInfo authInfo = new/()

AccessToken = __tokenService.GenerateJwt (claims,

_tokenDataConfiguration.AccessTokenExpirationInMinutes),

RefreshToken = _tokenService.GenerateJdwt (claims,

_tokenDataConfiguration.RefreshTokenExpirationInMinutes)
bi
userDto.AuthenticationInfo = authlInfo;

return userDto;

The TokenService's GenerateJwt method creates the token string that was displayed

earlier. The string is attached to a UserDTQO's Authenticationinfo property, which defines

AccessToken and RefreshToken. When the user logs in, the UserDTO object is returned,

having Authenticationinfo populated with the user's JWT, which is then attached to the

HttpClient's headers on the frontend.

5.3.2. Handling HTTP requests

After an incoming HTTP request passes through the filter, the controller calls a method

in the corresponding Service class.

[ActionFilters.AuthorizationFilter ()]

[HttpGet ("{id}") ]

[ProducesResponseType (typeof (UserDTO), 200)]

public async Task<ActionResult<UserDTO>> GetById(int id)

try

return await userService.GetByIdAsync(id);

}

catch (Exception ex)

29



return BadRequest (new ApiResponseHelper (400, ex.Message));

In the case of UserController.cs' GetByld method, the id passed to the endpoint is then passed
to UserService.GetByIdAsync () . The _userService object is of type IUserService, which is
an interface that UserService implements. As could be seen in the code previously, the
interface is injected using Dependency Injection. To do this, the following line is required in
Program.cs:

services.AddScoped<IUserService, UserService>();
In SportSpark, this is implemented in a different way. In Program.cs, this line is written:

builder.Services.RegisterServices|();

The RegisterServices method is an extension, and resides inside DependencyContainer.cs in
the Infrastructure layer. It adds all services and repositories used with Dependency Injection.
This is to prevent unclean code inside Program.cs, as adding services for Dependency

Injection can quickly become a mess, consisting of many lines of code.

IUserService inherits from I1BaseService<UserDTO>, which defines methods such as
GetAllAsync, GetByldAsync, CreateAsync and other methods that all service classes will use.
Other than the methods IUserService inherits, it also defines some of its own. For this particular
example, GetByldAsync is implemented inside of UserService in the following way:

public async Task<UserDTO> GetByIdAsync (int id)
{
var user = awalt userRepository.Fetch()
.Include (u => u.Events)
.Include (u => u.ReceivedFriendships)
.ThenInclude (_ => .Sender)
.ThenInclude (u => u.ProfileImage)

.Include (u => u.RequestedFriendships)

.ThenInclude( => .Receiver)

30



.ThenInclude (u => u.ProfileImage)
.Include(u => u.ProfileImage)
.FirstOrDefaultAsync(u => u.Id == id);

return mapper.Map<UserDTO> (user) ;

As one can see, the service simply calls the corresponding repository, specifies which objects
to include (tables to join) and return the user whose Id is equal to the one the HTTP request
sent. Finally, the entity object is mapped to a UserDTO object using AutoMapper. AutoMapper
is a NuGet package that serves to automatically and more easily map entity objects to DTO

objects. To set it up, one must simply add the following line to Program.cs:
builder.Services.AddAutoMapper (AppDomain.CurrentDomain.GetAssemblies ());
Furthermore, a class that inherits from Profile must be created, where map settings are

specified. The following code displays an example mapping between User to UserDTO and

vice-versa:

public class AutoMapperProfile : Profile

{

public AutoMapperProfile()

{
CreateMap<User, UserDTO> ()

.ForMember (x => x.RequestedFriendships, opt => opt.MapFrom (

=> .RequestedFriendships)) .MaxDepth (2)

.ForMember (x => x.ReceivedFriendships, opt => opt.MapFrom (

=> .ReceivedFriendships)) .MaxDepth (2)

.ForMember (x => x.Events, opt => opt.MapFrom ( =>

__.Events)) .MaxDepth (2)
.ForMember (x => x.Password, opt => opt.Ignore())

.ForMember (x => x.ProfileImageData, opt => opt.MapFrom( =>

__.ProfilelImage.ImageData)) ;

CreateMap<UserDTO, User>();

31



As one can see, when mapping the User object to a UserDTO object, the password property
is ignored. This prevents a user's password from ever being sent to the frontend.
5.3.2.1. Error handling

If an exception is raised anywhere between the endpoint's service method call and the
returning of the values, the API will return an object containing the error status code, and a

message describing the error.

catch (Exception ex)

{

return BadRequest (new ApiResponseHelper (400, ex.Message));

ApiResponseHelper is a custom class that consists of two properties: the error status code
and an error message. This error message can be custom. For example, in UserService an

exception is thrown if a user's desired radius is over 500km when trying to update the user:

if (entity.DesiredRadius > 500)

{

throw new Exception ("Radius cannot be higher than 500.");

This custom error message will be returned to the frontend, where it may be displayed inside

of a dialog, alert, toast or snackbar.

32



6. Frontend development

The following chapters will go through the process of brainstorming user interface
ideas, converting those ideas into a real, usable Ul using XAML and writing necessary code in

the views' code-behind and view models.

6.1. Designing a user interface

As was previously mentioned, user interface ideas were created using a tool called
Figma. This chapter will display each of SportSpark's views as first imagined in Figma. Note
that it is usual for the Ul to change during the development process, so the end result may

differ from the following images.

Image 16. SportSpark splash screen, Source: Figma export

33



Get started

Image 17. FirstStartupPage, Source: Figma export

Discover

awesome
events in just
a few clicks

Explore all the sport possibilities after
you log in to your account.

D

Image 18. StartingView, Source: Figma export

34



Welcome to
SportSpark

Enter your information to register

First name

Enter first name...

Last name

Enter last name...

Username

Enter username...

Email

Enter email...

Password

Enter password... ©

Image 19. Register, Source: Figma export

Hello again!

‘Welcome back to SportSpark.

Username or email

Enter username or email...

Password

Enter password... [0

® Or ©

Not a member? Register now

Image 20. Signln, Source: Figma export

35



= @

Discover

R )

Near you

S
Football 6v6 20-30 years old Othe
10.04.2023. 32km away 10.04.20

Friends’ events

Eanathall RBulR 2N-2N vaare ald Enntl

Image 21. Home, Source: Figma export
<& User’s profile

Profile Events

oy

Antun Tkaléec, 24
4.5 %

This user hasn’t set their bio...

Add as friend [ Edit profile

Image 22. Profile, Source: Figma export



& User’s profile

Profile Events

Football 6v6 20-30 years old
10.04.2023. 32km away

Football 6v6 20-30 years old
10.04.2023. 32km away

Image 23. Profile 2, Source: Figma export

€~ Create an event

Title

Description

Location
Choose a location...

Time

Duration

Image 24. CreateEvent, Source: Figma export



My Requests

Tribb|

)
EE E.

Joe

<

3 events

45 W

Tribb

EE E‘

Joe

<

3 events

45 W

Tribb

EE E‘

Joe

<

3 events

4.5 W

D

lamur Twilubainmi

Image 25. Friends, Source: Figma export

& Event details

Event name 60km away
Only once 6 participants
10.04.2023. 15:00 Lasts 2 hours

Event description goes here. Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem
ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem
ipsum Lorem ipsum Lorem ipsum Lorem ipsum
Lorem ipsum Lorem ipsum Lorem ipsum Lorem

ipsum

&)

Joey Tribbiani

3 events View
4.5 * profile

Image 26. EventDetails, Source: Figma export

Creator



As one can see, SportSpark consists of the following views/pages:
FirstStartupView

StartingView

SigninView

RegisterView

HomeView

ProfileView (profile 2 relates to the ,events” part of the view)

CreateEventView

© N o g s~ w DN

FriendsView (plus a FriendsListView that looks the same, showing confirmed requests)
9. EventDetailsView
In addition, SportSpark has a ,splash screen®, which consists of a simple white background

and the SportSpark logo, which can be seen on Image 16.

6.2. Building a user interface

This chapter will go through each of the previously mentioned views, displaying some
interesting or more advanced parts of the code. As this paper assumes the reader has at least
some knowledge of XAML, the entirety of each view's XAML code will not be displayed, for
brevity. The reader may visit the project's GitHub page and view the code in its entirety.

6.2.1. FirstStartupView

FirstStartupView is a view that should appear to the user only once, when they are first
starting SportSpark. It tells the new user what they can expect from SportSpark, while
displaying an interesting animation that should grab their attention. The topmost part of this
view is a Lottie animation. A developer may go to Lottie's website, find an animation they like,
download the animation's .json file, import it into the .NET MAUI project's Resources/Raw
folder, and set its Build Action to MauiAsset. To use the .json file and show the animation in
.NET MAUI, a NuGet package is required. In this case, SkiaSharp.Extended.Ul.Maui was
used. After installing this NuGet package, the animation .json file can be consumed inside
XAML:

xmlns:skia="clr-

namespace:SkiaSharp.Extended.UI.Controls;assembly=SkiaSharp.Extended.UI"

39



<skia:SKLottieView HeightRequest="450" WidthRequest="450"
IsAnimationEnabled="True" RepeatCount="-1" Source="greet.json"

TranslationY="-40" Grid.RowSpan="2" Grid.Row="0"/>

First, the developer must add the NuGet package's namespace. Then, using the namespace,

the developer may use the SKLottieView control to display a .json animation of their choice.

FirstStartupView's text, which can be seen on Image 17, is created using Label
controls. The Labels have their Text property bound to a property on

FirstStartupViewModel.cs:

<Label Text="{Binding Language [Hello!]}" FontSize="32"
HorizontalOptions="CenterAndExpand" TextColor="Black" FontAttributes="Bold"

Shadow="{StaticResource DefaultShadow}" VerticalOptions="StartAndExpand"
Margin="0, 10, 0, Q0"/>

This is where language localization comes into play. As one can see, the Label's Text

property is bound to Language[Hello!]. In the ViewModel, Language is a property:
public LanguageHelper Language
{

get

return LanguageHelper.Instance;

It returns an instance of LanguageHelper:

static LanguageHelper instance;
40



public static LanguageHelper Instance

{

get

if (instance == null)
{

instance = new LanguageHelper();

}

return instance;

Then, Language can be accessed with, for example, Language[Hello!]:

public string GetString(string resourceName)

{

return manager.GetString(resourceName) ;

}

public string this[string key] => GetString(key);

The manager property is a ResourceManager type property that equals
Resources.AppRes.ResourceManager. This means manager points to the ResourceManager,
which works will files such as AppRes.hr.resx and AppRes.resx, where ke