
Razvoj multiplatformske aplikacije u tehnologiji .NET
MAUI

Tkalčec, Antun

Master's thesis / Diplomski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:178011

Rights / Prava: Attribution-NoDerivs 3.0 Unported / Imenovanje-Bez prerada 3.0

Download date / Datum preuzimanja: 2024-05-10

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:178011
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nd/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:7710
https://repozitorij.unizg.hr/islandora/object/foi:7710
https://dabar.srce.hr/islandora/object/foi:7710

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

V A R A Ž D I N

Antun Tkalčec

DEVELOPMENT OF A MULTIPLATFORM

APPLICATION IN .NET MAUI

TECHNOLOGY

MASTER'S THESIS

Varaždin, 2023.

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

V A R A Ž D I N

Antun Tkalčec

JMBAG: 0016136241

Study: Databases and knowledge bases

DEVELOPMENT OF A MULTIPLATFORM APPLICATION IN .NET

MAUI TECHNOLOGY

MASTER'S THESIS

Mentor:

Izv. Prof. dr. sc. Mario Konecki

Varaždin, May 2023.

i

Antun Tkalčec

Statement of originality

I declare my master's thesis as the result of my own work and that, writing it, I did not use

sources that are not specified in it. Ethically suitable and acceptable methods and work

techniques were used in the creation of this thesis.

 Confirmed by the author by accepting the FOI-radovi provisions

ii

Summary

The subject of this paper is the development of a multiplatform application in

Microsoft's new technology, .NET MAUI, with a backend built using ASP.NET Core, all with

technologies that developers commonly use to build full-fledged production applications.

 The paper first lists and describes tools and technologies that are used in software

development, before taking the reader through the steps of designing a database model,

creating an application backend using ASP.NET Core, designing user interface ideas in

Figma and finally creating a .NET MAUI application.

This paper will demonstrate the capabilities of Microsoft's new technology, .NET

MAUI (Multiplatform Application User Interface) by displaying the particularities of an

application built primarily for Android smartphones, with a backend built using ASP.NET

and the Entity Framework Code-First approach. The paper may serve as a guide to those

readers who are interested in multiplatform application development, Microsoft technologies

or both.

The paper concludes that .NET MAUI may not be the best choice for multiplatform

application development at this time, due to numerous bugs and an unsatisfactory

frequency of updates and bugfixes.

Key words: .NET; software development; multiplatform application; ASP.NET; .NET

MAUI; C#; XAML;

iii

Content

Content ... iii

1. Introduction ... 1

2. Tools and technologies ... 2

2.1. Microsoft Visual Studio ... 2

2.2. Microsoft SQL Server ... 3

2.3. Microsoft SQL Server Management Studio (SSMS) ... 4

2.4. Git .. 4

2.5. Sourcetree ... 5

2.6. adb ... 6

2.7. Backend tools and technologies ... 7

2.7.1. ASP.NET Core .. 7

2.7.2. Entity Framework Core 7 ... 7

2.8. Frontend tools and technologies .. 9

2.8.1. Figma .. 9

2.8.2. XAML ...10

2.8.3. .NET MAUI ...12

3. Application idea ...13

4. Best practices, patterns and important terms ...15

4.1. Clean Architecture ..15

4.2. Repository pattern ...17

4.3. Data Transfer Objects ...17

4.4. Model-View-ViewModel-Service pattern ..18

5. Backend development ...19

5.1. Database modeling ...19

5.2. Creating a database ..20

5.3. Creating an API ...24

iv

5.3.1. JWT Authentication ..27

5.3.2. Handling HTTP requests ..29

5.3.2.1. Error handling ..32

6. Frontend development ...33

6.1. Designing a user interface...33

6.2. Building a user interface ..39

6.2.1. FirstStartupView ...39

6.2.2. StartingView ...43

6.2.2.1. AppShell ..44

6.2.3. RegisterView ..44

6.2.4. SignInView ...46

6.2.5. HomeView ..47

6.2.5.1. WeakReferenceMessenger ...47

6.2.5.2. Retrieving location data ...49

6.2.6. ProfileView ...50

6.2.7. CreateEventView ...52

6.2.8. FriendsView and FriendsListView ...54

6.2.9. EventDetailsView ...54

7. Comparison with Windows version ..56

8. Author's opinion on .NET MAUI ...59

9. Conclusion ...60

Sources ..61

Images ...63

Attachments ...65

1

1. Introduction

When developing an application, a lot of time is usually spent adapting the business

logic and the user interface (UI) to each platform – such as Android, iOS, Windows, Web and

macOS. In situations where developers do not have the time to use specific frameworks or

technologies to build the same application for each platform, technologies like Microsoft's new

.NET MAUI can be useful.

.NET MAUI stands for .NET Multiplatform Application User Interface, and it allows the

developer to seamlessly target devices of most platforms. MAUI abstracts the latest

technologies for building native apps on popular platforms into one common framework. This

means that developers can build applications that „look and feel like the native platforms“ from

a single codebase [1].

This paper will display the power of .NET MAUI by taking the reader through the

necessary steps of building a multiplatform application and its backend, starting by designing

the database model, building a database using Entity Framework's Code-First approach,

creating an API using ASP.NET Core and finally building the user interface using .NET MAUI

and XAML. The paper will also show some difficulties, bugs and weaknesses of MAUI.

The first part of this paper will present the technologies that will be used in the creation

of the multiplatform application and its backend APIs, relying mostly on cited sources. In the

main part of the paper, some techniques that will be shown are taken from accrued experience

of the author. This paper assumes the reader has some experience and knowledge of C#,

XAML, REST APIs and object-oriented programming in general, as well as terms such as

inheritance.

The author has chosen .NET MAUI for his Master's thesis because technologies like

these are very valuable in today's job market, as well as because of a general interest in

Microsoft development technologies.

2

2. Tools and technologies

This chapter will list and describe tools and technologies that will be used during

development of the multiplatform application.

2.1. Microsoft Visual Studio

All of the code for the application's frontend and backend will be written inside of a

technology called Microsoft Visual Studio. „The Visual Studio IDE is a creative launching pad

that you can use to edit, debug, and build code, and then publish an app.“ [2]

Microsoft offers Visual Studio in several versions:

1. Community – the free version, which will be used for development throughout this paper

(specifically VS Community 2022)

2. Professional – paid, for developers working on commercial projects, adding more

advanced capabilities

3. Enterprise – paid, for large-scale enterprise development teams and complex projects

Image 1. Microsoft Visual Studio logo, Source:

https://commons.wikimedia.org/wiki/File:Visual_Studio_Icon_2022.svg

3

Image 2. Microsoft Visual Studio's User Interface with tabs open, Source: author screenshot

2.2. Microsoft SQL Server

The database for the application will be setup locally, meaning a local database server

is required. Microsoft's SQL Server will be used for this purpose. Microsoft SQL Server is a

relational database management system, or RDBMS for short, and is a powerful and widely

used database platform. It provides an environment for managing and storing data.

Image 3. Microsoft SQL Server logo, Source: https://www.commvault.com/supported-

technologies/microsoft/sql

4

2.3. Microsoft SQL Server Management Studio (SSMS)

Microsoft's SQL Server is only an environment for storing data. To work with the data,

another of Microsoft's technologies will be used. SQL Server Management Studio, or SSMS

for short, „is an integrated environment for managing any SQL infrastructure...“ and „provides

tools to configure, monitor, and administer instances of SQL Server and databases [3]. It is

available in a multitude of languages, such as Chinese, English, French, German, Italian,

Japanese and others. SSMS can be used to query and manage databases locally and in the

cloud, but the cloud is out of scope for this paper. Everything to do with this application will be

done locally.

SSMS will be used during the development of the multiplatform application in multiple

ways. For instance, the database model diagram will be created in SSMS and shown in a

future chapter.

Image 4. Microsoft SQL Server Management Studio logo, Source:

https://stackshare.io/microsoft-sql-server-management-studio

2.4. Git

In order to store code in a remote location, which allows developers to collaborate on

projects, a version control system such as Git is used. Though the application will be created

by one developer on a single machine, Git will still be used to commit and push code changes

to a GitHub repository. All of the code can be found by clicking the GitHub link at the end of

this paper.

Using Git, developers can simultaneously develop features or fix bugs by using

branches. One of the key features is its ability to track and manage changes by detecting

differences between versions of code. Ultimately, Git is a core tool for any developer, and the

reader is hereby encouraged to read more about this industry standard technology [4].

5

Image 5. Git logo, Source: https://commons.wikimedia.org/wiki/File:Git-logo.svg

2.5. Sourcetree

Git alone does not have a nice-to-look-at graphical user interface, but is rather (mostly)

a command line tool. Sourcetree is a free Git client and a graphical user interface for Git that

allows developers to manage and visualize repositories and code changes [5].

Image 6. Sourcetree logo, Source: https://iconduck.com/icons/94916/sourcetree

6

Image 7. Sourcetree User Interface, Source: author screenshot

Image 7. shows Sourcetree's user interface, where the multiplatform application's

commits and branches can be seen.

2.6. adb

adb or Android Debug Bridge „is a versatile command-line tool that lets you

communicate with a device.“ [6] Given that the multiplatform application will be a primarily

Android mobile application, adb is used to connect the phone to the localhost API. Put simply,

starting the API project within Visual Studio runs the API locally, but the phone cannot send

HTTP requests to it without using a tool such as adb. The API running on localhost will have a

port, which needs to be used in the following command-line command:

adb reverse tcp:port tcp:port

Once the Android phone is connected via USB cable to the PC the API is running on

and this command is used, the phone will successfully send HTTP requests to the locally

running API. This means the API will send back JSON files containing data that is displayed

on the application's frontend.

7

2.7. Backend tools and technologies

An application's backend serves as a bridge between the frontend, or user interface,

which is what the user can see, and the database where all the data is stored. Many

technologies, frameworks and programming languages may be used to create backends. This

paper will focus on C# and ASP.NET, along with Entity Framework Core, both of which will

now be described.

2.7.1. ASP.NET Core

As per Microsoft documentation, „ASP.NET Core is a cross-platform, high-

performance, open-source framework for building modern, cloud-enabled, Internet-connected

apps.“ [7] It is suitable for a wide range of applications, from small websites to large enterprise

systems. Furthermore, it is the successor to the older ASP.NET framework, and provides the

following benefits and more [7]:

1. Open-source and community-focused

2. Built-in dependency injection

3. A lightweight, high-performance and modular HTTP request pipeline

4. Simplifies modern web development

ASP.NET Core offers features to build web APIs and web apps, along with technologies

such as Razor Pages and Blazor and patterns such as MVC (Model-View-Controller).

However, this paper will only focus on building an API for the application using ASP.NET Core.

Image 8. ASP.NET Core logo, Source: https://www.azureblue.io/tag/asp-net-core/

2.7.2. Entity Framework Core 7

As per Microsoft documentation, „Entity Framework (EF) Core is a lightweight,

extensible, open source and cross-platform version of the popular Entity Framework data

access technology.“ It is an ORM (object-relational mapper), which means developers can

8

work with a database using .NET objects and mostly eliminates the need to write SQL code to

retrieve rows from a database table or tables. However, it cannot create stored procedures,

one of which will later be required to retrieve events based on location and a user's chosen

radius. That stored procedure will be created using SQL, and it will be called using a mix of

Entity Framework Core 7 and SQL. If the reader wishes to view the stored procedure's creation

and implementation, they are hereby encouraged to check the application's code on GitHub.

 EF Core 7 is a NuGet package, which means it is installed to a project inside of Visual

Studio using the NuGet Package Manager or the .NET Core CLI.

Image 9. Entity Framework Core logo, Source: https://codeopinion.com/porting-to-entity-

framework-core/

 EF Core supports two development approaches:

1. Code-First

2. Database-First

The application's backend will be using the Code-First approach. An integral part of EF is the

DbContext class, which „represents a session with the database and can be used to query

and save instances of entities to a database.“ [9] The next building block of EF Core are

entities. The code below displays the Event entity, and the DbContext class which references

it.

[Table("Event")]

public class Event : BaseEntity

{

 [Required]

 [StringLength(50)]

 public string Title { get; set; }

 [Required]

9

 [StringLength(150)]

 public string Description { get; set; }

 ...

 #endregion

}

public class SportSparkDBContext : DbContext

{

...

 public DbSet<Event> Events { get; set; }

...

}

 As a reminder, the complete code of these classes and more may be found using the

GitHub link at the end of this paper. As one can see, the class shown inherits from DbContext,

and one of its properties is DbSet<Event> Events. The Event entity has an annotation,

[Table(„Event“)] which, along with the aforementioned property, lets EF know that it must

create a database table named „Event“ with properties defined inside the Event class. The way

to create this database table, and others, is using so called migrations, which will be covered

in a later chapter. Database creation will also be covered in more detail in a later chapter.

2.8. Frontend tools and technologies

The frontend encompasses the development of anything the user can see, or what

happens inside of the user's device. Before coding XAML code to create a user interface inside

.NET MAUI, mockups will be created using Figma. XAML and .NET MAUI itself will also be

described in the following subchapters.

2.8.1. Figma

Figma is a modern interface design tool to create user interfaces for all sorts of

applications, ranging from web to desktop to mobile. It was first released in 2016, and offers

seamless collaboration between designers. [10]

10

Image 10. Figma logo, Source: https://www.stickpng.com/img/icons-logos-emojis/tech-

companies/figma-logo

 For this application's development, Figma will merely be used to brainstorm UI design

ideas. Figma offers many more features and tools, but they are out of scope for this paper.

The Figma-created mockups will be shown in a later chapter.

2.8.2. XAML

XAML stands for Extensible Application Markup Language, and is a „declarative

language that's based on XML.“ [11] It allows developers to build rich and interactive

applications while separating the UI design from the application logic. XAML is quite similar to

HTML or XML, while the underlying functionality and behavior are implemented in the code-

behind using C#. XAML also supports data binding, which allows UI elements to be connected

to data sources, enabling automatic updates and synchronization. This will be crucial to this

application's development, and is one of the foundations of the Model-View-ViewModel-

Service pattern which will be discussed later. Developers may create interfaces using tags and

attributes, instead of writing code to create and position UI elements. These tags and attributes

may be very simple, but designing a complex interface quickly becomes quite complicated.

The following code is an example of a, relatively to other views, simple view inside of the

multiplatform application's final design.

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://schemas.microsoft.com/dotnet/2021/maui"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:skia="clr-

namespace:SkiaSharp.Extended.UI.Controls;assembly=SkiaSharp.Extended.UI"

 xmlns:viewModels="clr-namespace:SportSpark.ViewModels"

11

 x:Class="SportSpark.Views.StartingView"

 Shell.NavBarIsVisible="False"

 x:DataType="viewModels:StartingViewModel">

 <Grid RowDefinitions="1.5*, *, 0.5*, *" ColumnDefinitions="*, *"

Margin="0, 30, 0, 0" RowSpacing="30">

 <Border BackgroundColor="{StaticResource SportSparkLightGreen}"

 HorizontalOptions="CenterAndExpand" StrokeThickness="0"

Margin="15, 0" Grid.RowSpan="1" Grid.Row="0"

 Grid.ColumnSpan="2">

 <Border.StrokeShape>

 <RoundRectangle CornerRadius="30"/>

 </Border.StrokeShape>

 <skia:SKLottieView Source="manonphone.json"

IsAnimationEnabled="True" RepeatCount="-1" Padding="20"/>

 </Border>

 <Label Text="{Binding Language[Discover]}" FontSize="32"

Grid.Row="1" TextColor="Black"

 HorizontalOptions="CenterAndExpand"

HorizontalTextAlignment="Center" Grid.ColumnSpan="2" FontAttributes="Bold"

 Shadow="{StaticResource DefaultShadow}" Margin="20"/>

 <Label Text="{Binding Language[Explore]}" FontSize="15" Grid.Row="2"

 Grid.ColumnSpan="2" TextColor="Black"

HorizontalOptions="CenterAndExpand" HorizontalTextAlignment="Center"

 Shadow="{StaticResource DefaultShadow}" Margin="25, 5"/>

 <Button Text="{Binding Language[SignIn]}" FontAttributes="Bold"

FontSize="28" BackgroundColor="{StaticResource SportSparkDarkBlue}"

 Grid.Row="3" HeightRequest="70" Margin="15, 0"

TextColor="White" Shadow="{StaticResource DefaultShadow}"

 CornerRadius="30" Grid.ColumnSpan="2" Command="{Binding

SignInCommand}"/>

 </Grid>

</ContentPage>

12

 The code displays tags such as Button, and attributes such as CornerRadius.

Furthermore, it displays the aforementioned data binding, as well as defining namespaces that

can be used inside of the XAML page. Other views inside of the multiplatform application will

reach over 200 lines of XAML code.

2.8.3. .NET MAUI

As per Microsoft documentation, „.NET Multi-platform App UI (.NET MAUI) is a cross-

platform framework for creating native mobile and desktop apps with C# and XAML.“ [12] .NET

MAUI is open-source and developers may use it to create apps that run on mobile (Android,

iOS), macOS and Windows from a single shared code-base. It is the evolution of

Xamarin.Forms, and entered General Availability in 2022.

 MAUI provides a framework for building the UIs for mobile and desktop apps, unifying

„Android, iOS, macOS and Windows APIs into a single API that allows a write-once run-

anywhere developer experience.“ [12] As building apps for iOS and macOS requires a Mac

computer, this paper will focus on the Android side of .NET MAUI, while displaying the UI

difference between Android and Windows at the end of this paper.

 In .NET MAUI, the UI is built using a collection of controls that are used to display data,

initiate actions, indicate activity and so on. It also provides [12]:

1. Multiple page types

2. Data binding

3. Handler customization

4. APIs for accessing native device features, such as GPS, accelerometer, battery and

network...

5. A single project system (different from Xamarin.Forms, MAUI's predecessor)

6. Hot reload, allowing XAML modification while the app is running, which means the

developer may make UI changes and tweaks without restarting the application

This paper will not demonstrate all of the capabilities of .NET MAUI, but the ones

required to create this particular application.

13

3. Application idea

The very first thing one needs before developing an application is an idea. The

application that will be built throughout this paper is one that serves as a tool to find sports

events in the user's vicinity. The idea is, therefore, to give users a quick and easy way to find

sports events they might be interested in inside of a certain square kilometer radius. The user

starts by creating an account and signing into the application. Furthermore, they may choose

to complete their profile with a picture or some information about themselves. On the same

profile page, they may create new events. The most important part of this setup process will

be specifying a radius inside which they want to see other users' sports events.

 Another way to see sports events, other than seeing the nearest one, is to add „friends“.

If a user's „friend“ creates an event, the user may visit the friend's profile and view their events,

even if those events are outside of the radius in which they wish to see them. Users create

events by specifying the following data:

• Event location – where the event will take place, in the form of latitude & longitude

• Event privacy – who can see the event; an event may be public, private or visible to

selected friends

• Event repetition type – does the event takes place only once, daily, weekly...

• Event duration – how long the event will last, in hours

• Event price – an event may have an entry fee

• Event time – when the event takes place (time of day)

• Number of participants – how many people the event is meant for

• Event type – of which sport the event is

To combat the creating of fake events, a rating system will be put in place. Users can

rate event organizers, and a bad rating may deter potentially interested users from signing up

to their events. This system would be especially useful for repeating events. A gamification of

sorts could be implemented. Users can check an event creator's profile, thus seeing their rating

and deciding if commiting their time to that creator's event is worthwhile.

 To monetize an app like this, there would be a free version with ads and a paid version

with no ads. Users would have a choice to bump their events (increase their visibility for a short

time) by paying a small fee. However, monetization will not be implemented into the application

as part of this paper.

 The application might also target video game events. To achieve this feature, there

would not be a location requirement, because these events would be played online. For

14

example, an event that specifies a roleplay match of a certain war-simulation video game,

where players would go out of their way to play the game in a way that would simulate real

wartime tactics and combat. Usually, these types of events are organized by way of online

communities like YouTube communities or on platforms like Discord. This feature would

simplify the process of organizing these events.

 Marketing a primarily mobile app like this can be done in multiple ways. For free, the

app could be marketed through posts on platforms such as Facebook or Discord groups,

Twitter and other social networks. Another way is to make deals with sport organizations or

clubs, where they would use the app to organize events and therefore, with time, have a higher

number of participants in their events.

 Ultimately, not all of these ideas will be implemented in the final application. The

purpose of this paper is to demonstrate the aforementioned technologies, not to create a real-

world consumer-facing mobile application.

 Having all this information in mind, SportSpark will be the application's name.

15

4. Best practices, patterns and important terms

This chapter will describe some of the best practices, patterns and important terms that

all developers aiming to create an application such as this should be aware of.

4.1. Clean Architecture

As per Microsoft documentation, Clean Architecture has gone by multiple names over

the years. Hexagonal Architecture, Ports-and-Adapters and Onion Architecture are some of

the older names, and they all describe putting the business logic and application model at the

center of the application [13].

Image 11. Clean Architecture diagram, Source: https://learn.microsoft.com/en-

us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures

 Image 11 shows the layers of Clean Architecture, where one can see that infrastructure

and implementation details depend on the Application Core, in which our Interfaces and

Entities reside. In the Infrastructure layer, one can see 'Repositories' and 'Implementation

Services'. These are implementations of abstractions, or interfaces, in the Application Core.

The User Inteface layer should not know about the implementation types residing in the

Infrastructure layer and only works with interfaces and entities defined in the Application Core.

16

Image 12. Clean Architecture implementation in Visual Studio, Source: author screenshot

 Image 12 shows the implementation of Clean Architecture in Visual Studio. Folders for

the API (where Controllers reside), the Application Core, Application Core Shared,

Infrastructure and the UI projects are created. The projects inside of the folders are, in this

case, .NET MAUI class libraries.

Image 13. Folders inside of Clean Architecture projects, Source: author screenshot

17

 Inside the projects, one can see folders for aforementioned Interfaces, Entities,

Services and Repositories. Furthermore, the Application Core also houses Enums. The

Infrastructure layer has everything to do with the application's database, along with Helper

classes and the implementations of repository interfaces and service interfaces. The

Application Core Shared library houses Data Transfer Objects, which will be described in a

later chapter, and classes for Authentication. The Shared library exists because Data Transfer

Objects and Authentication classes are used by both the UI and the backend.

4.2. Repository pattern

As was mentioned in the previous chapter, Clean Architecture defines interfaces for

Service and Repository classes. The repositories are part of the Repository pattern, which is

a design pattern that allows developers to have a cleaner separation of code. A repository is a

class that implements an interface, and is used to retrieve data from the database using an

ORM (Object Relational Mapping) such as Entity Framework Core [14].

 The Repository pattern is implemented in SportSpark in the following way: Controllers

use Services, where all business logic is located, and which in turn use Repositories, which do

naught but retrieve data from the database. To summarize, Repository pattern mediates data

from and to the Domain and Data Access Layers [14]. Repositories define methods that are

called from inside Services, and serve to retrieve, update or create data in the application

database. API Controllers do not know about repositories. They merely use Services, which in

turn use repositories, and return the returned values from the Service they call (in the case of

a GET operation, for instance).

4.3. Data Transfer Objects

A Data Transfer Object or DTO is an object that carries data between application layers.

Applications usually rely on a system of HTTP requests and calls to an API. Returning

unprocessed entities from a database to the UI layer is a bad idea, as that might expose

sensitive data [15]. For example, the User.cs class in SportSpark has a password property,

because each user has a password in the database. Even though this password is hashed

during user account creation, sending it to the frontend (especially when user 1 visits user 2's

profile) is bad practice. HTTP request results may be intercepted, and sensitive data may be

exposed to malicious users this way.

 Data Transfer Objects serve to fix or alleviate this problem. A UserDTO will, in this

example, opt to 'ignore' the password property from the User entity class during the mapping

of User.cs to UserDTO.cs. A future chapter will go further into mapping these objects.

18

4.4. Model-View-ViewModel-Service pattern

.NET MAUI documentation describes a Model-View-ViewModel pattern, which consists

of three core components: the model, the view, and the view model [16]. Typically, .NET MAUI

involves creating a user interface using XAML, then using the code-behind to add code to work

with the user interface. This leads to maintenance issues and tight coupling of UI and business

logic, as well as difficulty of Unit Testing code [16]. MVVM helps separate UI and business

logic, and is a best practice pattern that any developer using .NET MAUI should be aware of.

 SportSpark goes one step further, using the MVVMS pattern, which adds a Service

component to MVVM. In MVVMS, the View defines the structure, layout and appearance of

the UI, using XAML and some code-behind (animations and such, not business logic). The

ViewModel exists to house the business logic of the UI, implementing properties and

commands which can be bound to using Bindings in XAML. In MVVMS, the ViewModel of each

View should not know about the business logic of making and sending HTTP requests.

Therefore, SportSpark defines a RestService class, which defines methods that are called from

the ViewModels. RestService also implements a single instance of the HttpClient object,

whereas it would need to be instantiated multiple times within multiple ViewModels, if not for

RestService.

 To summarize, MVVMS means that the View contains XAML where properties such as

a Label's Text are bound to a property implemented in the ViewModel. The code-behind of the

View serves only to unfocus, focus or animate (for example) view controls. The ViewModel

implements properties and commands that define actions to be taken when, for instance, a

button is pressed. It calls methods from the RestService class when it needs to send an HTTP

request to the API, and then works with the returned values.

19

5. Backend development

This chapter marks the beginning of the multiplatform application development process.

The first thing that most applications need is a database, which will hold the data that the

application will use. Modeling a robust database is the foundation upon which the rest of the

app will be built, so before getting into building the database itself, it will first be modeled. To

model a database, an online tool such as draw.io can be used, where one can create diagrams

that will represent tables in an SQL database, and the connections between these tables. It is

often that the first version of a database model quickly becomes outdated. The database model

that will be presented in the following subchapter is a diagram created inside of Microsoft SQL

Server Management Studio, which represents the final version of the database.

5.1. Database modeling

The first version of the database model for SportSpark looked like the following image:

Image 14. SportSpark database model version 1, Source: author screenshot

20

However, while developing the application, numerous changes were required to be made.

Keeping in mind the application idea, the author of this paper created a database model

consisting of 6 tables:

1. Event

2. EventType

3. EventRepeatType

4. User

5. Friendship

6. Document

Image 15. SportSpark final database model, Source: author screenshot

5.2. Creating a database

As was mentioned in a previous chapter, the database will be created using Entity

Framework Core 7's Code-First approach. In order to create a database, EF requires entities

and a DbContext class.

21

 An entity corresponds to a table in the newly created database. The table name may

be defined by using an annotation: [Table(„EventType“)] will create a table named

„EventType“ in the database, with properties defined in the EventType.cs class.

[Table("EventType")]

public class EventType : BaseEntity

{

 [Required]

 [StringLength(50)]

 public string Name { get; set; }

 [Required]

 [StringLength(150)]

 public string Description { get; set; }

 #region Relations

 public ICollection<Event> Events { get; set; }

 #endregion

}

 The above code means that a table named „EventType“ will be created, with a property

called „Name“, which cannot be null, and has a maximum length of 50 characters. Similarly,

„Description“ is not nullable, and has a maximum length of 150 characters. The

ICollection<Event> Events property means that multiple Events may be of one EventType.

Other entities are created in a similar way. They need to be defined as a DbSet<T> inside of

a class that inherits from DbContext.

public class SportSparkDBContext : DbContext

{

 public DbSet<User> Users { get; set; }

 public DbSet<Friendship> Friendships { get; set; }

 public DbSet<EventType> EventTypes { get; set; }

 public DbSet<EventRepeatType> EventRepeatTypes { get; set; }

22

 public DbSet<Event> Events { get; set; }

 public DbSet<Document> Documents { get; set; }

 public SportSparkDBContext(DbContextOptions<SportSparkDBContext>

options) : base(options)

 {

 }

protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<User>()

 .HasMany(x => x.Events)

 .WithOne(x => x.User)

 .HasForeignKey(x => x.UserId);

 modelBuilder.Entity<User>().Property(x => x.Password)

 .UseCollation("SQL_Latin1_General_CP1_CS_AS");

 modelBuilder.Entity<Friendship>().HasKey(x => x.Id);

 modelBuilder.Entity<Friendship>()

 .HasOne(x => x.Sender)

 .WithMany(x => x.RequestedFriendships)

 .IsRequired()

 .OnDelete(DeleteBehavior.Cascade);

 modelBuilder.Entity<Friendship>()

 .HasOne(x => x.Receiver)

 .WithMany(x => x.ReceivedFriendships)

 .IsRequired()

 .OnDelete(DeleteBehavior.Restrict);

 }

}

23

 The above code shows the SportSparkDBContext class, which inherits from

DbContext. It has multiple DbSet<T> properties, one for each SportSpark entity. The

constructor must have a parameter of DbContextOptions<SportSparkDBContext> and

:base(options). OnModelCreating is an overridden method inside of which a developer may

use FluentAPI to specify relationships or other settings on the tables that will be created. For

the Friendship entity, it is required to specify that it has one Sender, which is of type User, with

many RequestedFriendships and vice-versa. This will mean that Entity Framework will know

to populate the User.RequestedFriendships collection with User objects corresponding to the

SenderId attribute. If a User's Id is a SenderId in a Friendship entity, then that User's

RequestedFriendships collection will be populated with that Friendship entity.

 Finally, to create the database that is described using the annotations inside Entity

classes and the FluentAPI definitions inside of OnModelCreating, one may use the Package

Manager Console and Migrations. Migrations are „a way to incrementally update the database

schema to keep it in sync with the application's data model while preserving existing data in

the database.“ [17] Before creating a Migration, a database connection string needs to be set

up. Inside Program.cs, the following line is placed:

builder.Services.AddDbContext(builder.Configuration.GetConnectionString("Lo

calConnection"));

Inside appsettings.json, a connection string named LocalConnection is defined:

...

"ConnectionStrings": {

 "LocalConnection":

"Server=.;Database=SportSpark;Trusted_Connection=True;MultipleActiveResultS

ets=true;Encrypt=False;"

 },

...

This also serves to specify a name for the newly created database. As was previously

mentioned, Migrations are part of EF Core, and one may be created using the Package

Manager Console, for instance.

Add-Migration Init -o Data/Migrations

The above command will create a new Migration, named „Init“ in the folder Data/Migrations

inside the project where a class that inherits from DbContext exists. EF Core will therefore

create a database schema, and the database may be created using

Update-Database.

24

This is all that is required to create a database using EF Core. If a developer needs to change

the database, they need not delete the database and recreate the schema, losing all data in

the process. They may simply change an Entity as required, create a new Migration, and

update the database.

5.3. Creating an API

An API serves as the „middleman“ between the UI and the database. The UI will send

HTTP requests to SportSpark API endpoints, which will call Service class methods, which in

turn call Repository class methods to retrieve data from the database. The Service classes

contain the business logic and map Entity objects to DTO objects using a NuGet package

called AutoMapper. They return these DTO objects to the API endpoints, which return them as

a JSON to the UI.

 The API endpoints are housed inside controllers. This chapter will look at

UserController.cs, the services it uses, the BaseController it inherits from, error handling, and

filtering HTTP requests. The API can be considered a website that, instead of a nice-looking

UI, returns JSON files. Therefore, it has a domain, just like any website. This paper deals with

a locally run application, so SportSpark's API's domain is localhost:7181. To specify a route to

a specific controller on the API, one may use an annotation. The controller inherits from

BaseController which is a custom class that inherits from ControllerBase (this inheritance is

important).

[Route("api/v1/[controller]")]

[ApiController]

public class UserController : BaseController

{

private readonly IUserService _userService;

 public UserController(IUserService userService)

 {

 _userService = userService;

 }

 [ActionFilters.AuthorizationFilter()]

 [HttpGet]

 [ProducesResponseType(typeof(UserDTO), 200)]

25

 public async Task<ActionResult<List<UserDTO>>> Get()

 {

 try

{

return await _userService.GetAllAsync();

}

 catch (Exception ex)

 {

 return BadRequest(new ApiResponseHelper(400, ex.Message));

 }

 }

...

The above code shows the annotations required to specify a route for the controller, as well as

define it as a controller. It inherits from BaseController, which implements one property:

public class BaseController : ControllerBase

{

public int UserId

 {

get

 {

var userId = -1;

_ = int.TryParse(this.User.Claims.FirstOrDefault(t =>

t.Type == "UserId")?.Value, out userId);

 return userId;

}

}

}

The UserId property will be used throughout some controllers. It contains the Id of the currently

logged in user, or in other words, the user that is sending an HTTP request to the API. This

26

UserId is parsed from so-called „User claims“. „User claims“ are part of the API's authentication

and authorization. API authentication and authorization is set up by writing the following lines

into Program.cs:

builder.Services.AddAuthentication(opt =>

{

 opt.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

 opt.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

})

 .AddJwtBearer(options =>

 {

 var tokenData = builder.Configuration.GetSection("TokenData");

 options.TokenValidationParameters =

TokenValidationConfiguration.GetTokenValidationParameters(tokenData["Issuer

"],

 tokenData["Audience"], tokenData["SecretKey"]);

 });

...

app.UseAuthentication();

app.UseAuthorization();

...

This sets up the JSON Web Token authentication for the API.

27

5.3.1. JWT Authentication

JWTs define a way to securely transmit information between parties as a JSON object.

Part of the token is the payload, which contains claims, which contain, for instance, user data.

An example JWT is:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJVc2VySWQiOiI3IiwibmJmIjoxNjg2MzkzMz

k2LCJleHAiOjE2ODY5OTgxOTYsImlzcyI6IlNwb3J0U3BhcmsiLCJhdWQiOiJTcG9ydFNwYXJrI

n0.zaaPTBrZSpZ0aZbb24QlvpH6NGFFTTyLhAlIw5_mvHI.

When decoding this JWT using an online tool, one can see its payload:

{

 "UserId": "7",

 "nbf": 1686393396,

 "exp": 1686998196,

 "iss": "SportSpark",

 "aud": "SportSpark"

}

This JWT token is attached to each HTTP request's header the frontend sends to the backend.

The backend, or API, then checks the JWT token before each HTTP request is processed. If

the user is not logged in (therefore the JWT is broken or is not attached to the HTTP request)

it returns 401 Unauthorized. This processing takes place inside of the AuthorizationFilter class,

which is part of the [ActionFilters.AuthorizationFilter()] annotation. The

AuthorizationFilter class overrides the OnActionExecuting method:

public class AuthorizationFilter : ActionFilterAttribute

{

public override async void OnActionExecuting

(ActionExecutingContext context)

 {

var httpUser = context.HttpContext.User;

if (!httpUser.Identity.IsAuthenticated) context.Result = new

ForbidResult();

else base.OnActionExecuting(context);

}

}

28

This class checks if the user sending the HTTP request to an API endpoint is authenticated. If

not, it returns 401 Unauthorized, as was explained previously. This is how to prevent malicious

users from tampering with the application's database.

 The JSON Web Token is created during a user's log in process.

AuthenticationController.cs defines a Login method:

[HttpPost("login")]

public async Task<ActionResult<UserDTO>> Login(UserLogin userLogin)

{

try

{

var user = await

_userService.UserValid(userLogin.EmailOrUserName,

userLogin.Password);

if (user is not null)

{

var userDto = _userService.Login(user);

return Ok(userDto);

}

return Unauthorized();

}

catch (Exception ex)

{

return BadRequest(new ApiResponseHelper(400, ex.Message));

}

}

UserService.Login creates the user claims and the JWT:

public UserDTO Login(User user)

{

UserDTO userDto = _mapper.Map<UserDTO>(user);

List<Claim> claims = new()

{

29

new Claim("UserId", user.Id.ToString())

};

AuthenticationInfo authInfo = new()

{

AccessToken = _tokenService.GenerateJwt(claims,

_tokenDataConfiguration.AccessTokenExpirationInMinutes),

RefreshToken = _tokenService.GenerateJwt(claims,

_tokenDataConfiguration.RefreshTokenExpirationInMinutes)

};

userDto.AuthenticationInfo = authInfo;

return userDto;

}

The TokenService's GenerateJwt method creates the token string that was displayed

earlier. The string is attached to a UserDTO's AuthenticationInfo property, which defines

AccessToken and RefreshToken. When the user logs in, the UserDTO object is returned,

having AuthenticationInfo populated with the user's JWT, which is then attached to the

HttpClient's headers on the frontend.

5.3.2. Handling HTTP requests

After an incoming HTTP request passes through the filter, the controller calls a method

in the corresponding Service class.

[ActionFilters.AuthorizationFilter()]

[HttpGet("{id}")]

[ProducesResponseType(typeof(UserDTO), 200)]

public async Task<ActionResult<UserDTO>> GetById(int id)

{

try

{

return await _userService.GetByIdAsync(id);

}

catch (Exception ex)

30

{

return BadRequest(new ApiResponseHelper(400, ex.Message));

}

}

In the case of UserController.cs' GetById method, the id passed to the endpoint is then passed

to UserService.GetByIdAsync().The _userService object is of type IUserService, which is

an interface that UserService implements. As could be seen in the code previously, the

interface is injected using Dependency Injection. To do this, the following line is required in

Program.cs:

services.AddScoped<IUserService, UserService>();

In SportSpark, this is implemented in a different way. In Program.cs, this line is written:

builder.Services.RegisterServices();

The RegisterServices method is an extension, and resides inside DependencyContainer.cs in

the Infrastructure layer. It adds all services and repositories used with Dependency Injection.

This is to prevent unclean code inside Program.cs, as adding services for Dependency

Injection can quickly become a mess, consisting of many lines of code.

 IUserService inherits from IBaseService<UserDTO>, which defines methods such as

GetAllAsync, GetByIdAsync, CreateAsync and other methods that all service classes will use.

Other than the methods IUserService inherits, it also defines some of its own. For this particular

example, GetByIdAsync is implemented inside of UserService in the following way:

public async Task<UserDTO> GetByIdAsync(int id)

{

var user = await _userRepository.Fetch()

 .Include(u => u.Events)

 .Include(u => u.ReceivedFriendships)

 .ThenInclude(_ => _.Sender)

 .ThenInclude(u => u.ProfileImage)

 .Include(u => u.RequestedFriendships)

 .ThenInclude(_ => _.Receiver)

31

 .ThenInclude(u => u.ProfileImage)

 .Include(u => u.ProfileImage)

 .FirstOrDefaultAsync(u => u.Id == id);

return _mapper.Map<UserDTO>(user);

}

As one can see, the service simply calls the corresponding repository, specifies which objects

to include (tables to join) and return the user whose Id is equal to the one the HTTP request

sent. Finally, the entity object is mapped to a UserDTO object using AutoMapper. AutoMapper

is a NuGet package that serves to automatically and more easily map entity objects to DTO

objects. To set it up, one must simply add the following line to Program.cs:

builder.Services.AddAutoMapper(AppDomain.CurrentDomain.GetAssemblies());

Furthermore, a class that inherits from Profile must be created, where map settings are

specified. The following code displays an example mapping between User to UserDTO and

vice-versa:

public class AutoMapperProfile : Profile

{

public AutoMapperProfile()

{

CreateMap<User, UserDTO>()

 .ForMember(x => x.RequestedFriendships, opt => opt.MapFrom(_

=> _.RequestedFriendships)).MaxDepth(2)

 .ForMember(x => x.ReceivedFriendships, opt => opt.MapFrom(_

=> _.ReceivedFriendships)).MaxDepth(2)

 .ForMember(x => x.Events, opt => opt.MapFrom(_ =>

_.Events)).MaxDepth(2)

 .ForMember(x => x.Password, opt => opt.Ignore())

 .ForMember(x => x.ProfileImageData, opt => opt.MapFrom(_ =>

_.ProfileImage.ImageData));

CreateMap<UserDTO, User>();

...

32

As one can see, when mapping the User object to a UserDTO object, the password property

is ignored. This prevents a user's password from ever being sent to the frontend.

5.3.2.1. Error handling

If an exception is raised anywhere between the endpoint's service method call and the

returning of the values, the API will return an object containing the error status code, and a

message describing the error.

...

catch (Exception ex)

{

return BadRequest(new ApiResponseHelper(400, ex.Message));

}

...

ApiResponseHelper is a custom class that consists of two properties: the error status code

and an error message. This error message can be custom. For example, in UserService an

exception is thrown if a user's desired radius is over 500km when trying to update the user:

...

if (entity.DesiredRadius > 500)

{

throw new Exception("Radius cannot be higher than 500.");

}

...

This custom error message will be returned to the frontend, where it may be displayed inside

of a dialog, alert, toast or snackbar.

33

6. Frontend development

The following chapters will go through the process of brainstorming user interface

ideas, converting those ideas into a real, usable UI using XAML and writing necessary code in

the views' code-behind and view models.

6.1. Designing a user interface

As was previously mentioned, user interface ideas were created using a tool called

Figma. This chapter will display each of SportSpark's views as first imagined in Figma. Note

that it is usual for the UI to change during the development process, so the end result may

differ from the following images.

Image 16. SportSpark splash screen, Source: Figma export

34

Image 17. FirstStartupPage, Source: Figma export

Image 18. StartingView, Source: Figma export

35

Image 19. Register, Source: Figma export

Image 20. SignIn, Source: Figma export

36

Image 21. Home, Source: Figma export

Image 22. Profile, Source: Figma export

37

Image 23. Profile 2, Source: Figma export

Image 24. CreateEvent, Source: Figma export

38

Image 25. Friends, Source: Figma export

Image 26. EventDetails, Source: Figma export

39

 As one can see, SportSpark consists of the following views/pages:

1. FirstStartupView

2. StartingView

3. SignInView

4. RegisterView

5. HomeView

6. ProfileView (profile 2 relates to the „events“ part of the view)

7. CreateEventView

8. FriendsView (plus a FriendsListView that looks the same, showing confirmed requests)

9. EventDetailsView

In addition, SportSpark has a „splash screen“, which consists of a simple white background

and the SportSpark logo, which can be seen on Image 16.

6.2. Building a user interface

This chapter will go through each of the previously mentioned views, displaying some

interesting or more advanced parts of the code. As this paper assumes the reader has at least

some knowledge of XAML, the entirety of each view's XAML code will not be displayed, for

brevity. The reader may visit the project's GitHub page and view the code in its entirety.

6.2.1. FirstStartupView

FirstStartupView is a view that should appear to the user only once, when they are first

starting SportSpark. It tells the new user what they can expect from SportSpark, while

displaying an interesting animation that should grab their attention. The topmost part of this

view is a Lottie animation. A developer may go to Lottie's website, find an animation they like,

download the animation's .json file, import it into the .NET MAUI project's Resources/Raw

folder, and set its Build Action to MauiAsset. To use the .json file and show the animation in

.NET MAUI, a NuGet package is required. In this case, SkiaSharp.Extended.UI.Maui was

used. After installing this NuGet package, the animation .json file can be consumed inside

XAML:

...

xmlns:skia="clr-

namespace:SkiaSharp.Extended.UI.Controls;assembly=SkiaSharp.Extended.UI"

...

40

<skia:SKLottieView HeightRequest="450" WidthRequest="450"

IsAnimationEnabled="True" RepeatCount="-1" Source="greet.json"

TranslationY="-40" Grid.RowSpan="2" Grid.Row="0"/>

...

First, the developer must add the NuGet package's namespace. Then, using the namespace,

the developer may use the SKLottieView control to display a .json animation of their choice.

 FirstStartupView's text, which can be seen on Image 17, is created using Label

controls. The Labels have their Text property bound to a property on

FirstStartupViewModel.cs:

...

<Label Text="{Binding Language[Hello!]}" FontSize="32"

HorizontalOptions="CenterAndExpand" TextColor="Black" FontAttributes="Bold"

Shadow="{StaticResource DefaultShadow}" VerticalOptions="StartAndExpand"

Margin="0, 10, 0, 0"/>

...

This is where language localization comes into play. As one can see, the Label's Text

property is bound to Language[Hello!]. In the ViewModel, Language is a property:

...

public LanguageHelper Language

{

get

{

return LanguageHelper.Instance;

}

}

...

It returns an instance of LanguageHelper:

...

static LanguageHelper instance;

41

public static LanguageHelper Instance

{

get

{

if (instance == null)

{

instance = new LanguageHelper();

}

return instance;

}

}

...

Then, Language can be accessed with, for example, Language[Hello!]:

...

public string GetString(string resourceName)

{

return manager.GetString(resourceName);

}

public string this[string key] => GetString(key);

...

The manager property is a ResourceManager type property that equals

Resources.AppRes.ResourceManager. This means manager points to the ResourceManager,

which works will files such as AppRes.hr.resx and AppRes.resx, where key-value pairs are

created for any text in the application. Hello! would be the key in this instance, and „Hello!“

would be the value, if the current application culture is English. If the user sets the application

culture to Croatian, the value is read from AppRes.hr.resx, under the same Hello! key. Then,

the Label's text changes to „Bok!“. Language localization is done the same way throughout

most of the rest of the application.

42

Image 27. AppRes.resx, Source: author screenshot

Image 27 displays the AppRes.resx file. .NET MAUI knows to use the values from this file

when the application's „culture“ is set to en-US. If the culture is set to hr-HR, it will use the

values from AppRes.hr.resx.

 On Image 17, one can also see a button. Inside XAML, the button has a Command

property that is bound to FirstStartupViewModel's GetStartedCommand. However,

FirstStartupViewModel defines a method called GetStartedAsync. SportSpark uses .NET

MAUI's Community Toolkit, which simplifies binding properties to things in the view model.

Because of the Community Toolkit, FirstStartupView defines the method this way:

...

[RelayCommand]

async Task GetStartedAsync()

{

var status = await

Permissions.RequestAsync<Permissions.LocationWhenInUse>();

if (status == PermissionStatus.Granted)

{

await Application.Current.MainPage.Navigation.PushAsync(new

StartingView());

}

43

else

{

await Application.Current.MainPage.ShowPopupAsync(new

ErrorPopup("SportSpark cannot function without location

permissions"));

}

}

...

[RelayCommand] is an annotation that tells the compiler to compile GetStartedAsync as

GetStartedCommand, as well as take care of the rest of the code required to assure that

commands are bound properly. Other views will have things bound to properties in a similar

way.

6.2.2. StartingView

This view is quite similar to the previous view. However, once the user visits this view

and selects to leave it, thus entering the application proper, SportSpark should not show this

view and the previous one to the user again. This is achieved using Preferences:

...

Preferences.Set("welcomed", "1");

...

Once the user exits this view in order to begin registering or signing in, „welcomed“ is set to

„1“ in the application's preferences. SportSpark checks if the user has gone through the first

two views in App.xaml.cs' constructor:

...

public App()

{

InitializeComponent();

SetCulture();

if (!(Preferences.Get("welcomed", "0") == "1"))

{

44

MainPage = new NavigationPage(new FirstStartupView());

}

else

{

MainPage = new AppShell();

}

}

...

This code checks if „welcomed“ is not „1“, and if it isn't, the app's MainPage is set to

FirstStartupView. Otherwise, the app instantiates a new instance of AppShell.

6.2.2.1. AppShell

AppShell, by default, displays the SignInView. However, if the user has previously

signed in, they might be already authenticated. To prevent forcing the user to sign in each time

they start the application, the access token that was explained in the backend development

part of this paper is inserted into the application preferences. The token lasts for one week.

AppShell checks if the access token exists in preferences, and if it is not expired. If both of

those are true, AppShell's ContentTemplate will instead be HomeView. After FirstStartupView

and StartingView, AppShell is used for SportSpark's navigation.

6.2.3. RegisterView

RegisterView is the first view that binds controls' properties to properties using the

Community Toolkit in the view model. For example, Image 19 shows text input fields. The text

input field for the user's first name, in XAML, looks like this:

...

<Entry x:Name="firstName" Placeholder="{Binding Language[EnterFirstName]}"

TextColor="Black" PlaceholderColor="{StaticResource LightThemeEntry}"

Completed="FirstName_Completed" Unfocused="FirstName_Unfocused"

Text="{Binding FirstName}">

<Entry.Keyboard>

<Keyboard x:FactoryMethod="Create">

45

<x:Arguments>

<KeyboardFlags>CapitalizeWord</KeyboardFlags>

</x:Arguments>

</Keyboard>

</Entry.Keyboard>

</Entry>

...

As one can see, Completed and Unfocused events correspond to methods in RegisterView's

code-behind, as they have to do with the UI. The Entry control's Keyboard property is custom,

making each word in the input have its first letter capitalized. Text is bound to FirstName, which

is a property on the view model:

...

[ObservableProperty]

[NotifyPropertyChangedFor(nameof(FirstNameValue))]

string firstName = string.Empty;

public string FirstNameValue => FirstName;

...

Annotations like [ObservableProperty] and

[NotifyPropertyChangedFor(nameof(FirstNameValue)] are part of .NET MAUI's Community

Toolkit, and serve to automatically generate necessary code required for binding. The reader

is hereby encouraged to refer to the Community Toolkit's documentation for more details on

this, as the particulars of certain NuGet packages are out of scope for this paper, for brevity.

 After the user inputs the required fields and clicks the button to register, the following

code is invoked:

...

if (await _restService.RegisterAsync(userDTO))

{

await Toast.Make("Registration successful", ToastDuration.Short,

24).Show();

await _navigationService.NavigateToAsync("..");

46

}

...

This code invoked the _restService.RegisterAsync() method, which is part of the MVVMS

pattern. The view model, here, does not know about the workings of HttpClient and sending

HTTP requests.

6.2.4. SignInView

As for SignInView, what is special about it is that it sets the authorization headers for

the application's HttpClient singleton, as well as setting the access token and refresh token in

the application's preferences.

...

HttpResponseMessage response = await

_httpClient.PostAsync($"{SettingsManager.BaseURL}/Authentication/login",

content);

if (response.IsSuccessStatusCode)

{

string responseContent = await response.Content.ReadAsStringAsync();

UserDTO userDto =

JsonConvert.DeserializeObject<UserDTO>(responseContent);

AuthenticationInfo authInfo = userDto.AuthenticationInfo;

JwtSecurityTokenHandler handler = new();

var tokenS = handler.ReadToken(authInfo.AccessToken) as

JwtSecurityToken;

Preferences.Set(AccessTokenKey, authInfo.AccessToken);

Preferences.Set(RefreshTokenKey, authInfo.RefreshToken);

Preferences.Set(TokenExpirationKey, tokenS.ValidTo);

_httpClient.DefaultRequestHeaders.Authorization = new

AuthenticationHeaderValue("Bearer", authInfo.AccessToken);

...

47

Once the user inputs their username/email and password, an HTTP request is sent to

api/Authentication/Login, which returns the user's Json Web Token. The JWT is then set into

the application's preferences and attached to RestService's _httpClient's authorization

headers. This will prevent the user from having to sign in for one week.

6.2.5. HomeView

There are multiple interesting things to do with HomeView. Here, .NET MAUI's

WeakReferenceMessenger is finally used. A custom view control is part of HomeView.xaml,

and the user's location data is retrieved. HomeView also differs the most from the UI idea

created in Figma, because the ScrollView and CollectionView controls' scrolling capabilities

conflict with one another, essentially preventing both of them being part of a view.

Image 28. Final version of HomeView, Source: author screenshot

6.2.5.1. WeakReferenceMessenger

Inside HomeView's code-behind, this code is part of the constructor:

48

...

WeakReferenceMessenger.Default.Register<Message>(this, (r, m) =>

{

OnMessageReceived();

});

...

private async void OnMessageReceived()

{

await btmGrid.TranslateTo(0, 400, 250, Easing.SinInOut);

}

This sets up HomeView.xaml.cs to listen for messages. Upon receiving a message, it

„translates“ the btmGrid view control. The btmGrid view control is a grid that, by default, sits

below the HomeView. OnMessageReceived brings the grid up into visibility. The grid contains

the custom view control, MenuView:

...

<Grid Grid.Row="1" VerticalOptions="End" TranslationY="400" x:Name="btmGrid"

Grid.ColumnSpan="2">

<views:MenuView HeightRequest="400" Padding="10" Grid.RowSpan="2"

Grid.ColumnSpan="2"/>

</Grid>

...

MenuView contains buttons that the user can click in order to sign out, change the application's

language, visit their profile and so on. Once the button to visit the user's own profile is clicked,

this code is invoked:

...

private void GoToProfile(object sender, EventArgs e)

{

WeakReferenceMessenger.Default.Send(new Message("GoToProfile"));

}

...

49

This sends a message containing „GoToProfile“, which is then caught inside

HomeViewModel.cs:

...

public async void Receive(Message message)

{

switch (message.Value)

{

...

case "GoToProfile":

await

_navigationService.NavigateToAsync(nameof(ProfileView), new

Dictionary<string, object>

{

{ "User", LoggedInUserValue }, { "SameUser", true },

{ "UserIsNotFriend", true }, { "UserProfilePicture",

LoggedInUserValue.ProfileImageData }

});

break;

...

This code shows that upon receiving the „GoToProfile“ message, the user is navigated to the

ProfileView.

6.2.5.2. Retrieving location data

As for retrieving the user's location data, which is required on this view in order to

retrieve events in the users' vicinity, this code is that is required:

...

GeolocationRequest request = new(GeolocationAccuracy.Best,

TimeSpan.FromSeconds(60));

Location = await Geolocation.Default.GetLocationAsync(request);

...

50

The above code uses MAUI's power to invoke platform specific APIs, and retrieve the device's

location.

6.2.6. ProfileView

ProfileView consists of two side-by-side grids, one of which is placed to the side of the

Visible part of the device's screen, similar to MenuView on HomeView. This way, it appears as

if it is two pages instead of one. Once the user clicks the „Events“ Label, the EventsLayout grid

is moved to the center of the screen:

...

ProfileLabel.FontAttributes = FontAttributes.None;

EventsLabel.FontAttributes = FontAttributes.Bold;

EventsLayout.TranslateTo(0, 0, 250, Easing.SinInOut);

await ProfileLayout.TranslateTo(DeviceDisplay.Current.MainDisplayInfo.Width

* 2, 0, 250, Easing.SinInOut);

...

The above code once again displays the usage of MAUI's power to access device specific

APIs in order to retrieve the device's display width, and use it to move the ProfileLayout to the

side of the screen, while moving EventsLayout to the center. Another interesting thing on

ProfileView is that it changes depending on if the user is visiting their own profile, or another

user's profile. This is achieved using bindings and converters. For example, the user's age is

not required, so SportSpark needs to not display an empty Label in the case of a user's age

being null.

...

<Label FontSize="20" FontAttributes="Bold" TextColor="Black"

HorizontalOptions="Center" IsVisible="{Binding UserValue.Age,

Converter={StaticResource IsNotNullConverter}}">

<Label.Text>

<MultiBinding StringFormat="{}{0} {1}, {2}">

<Binding Path="UserValue.FirstName"/>

<Binding Path="UserValue.LastName"/>

<Binding Path="UserValue.Age"/>

</MultiBinding>

51

</Label.Text>

</Label>

...

The above code displays the IsVisible binding, where the user's Age property is sent to a

converter called IsNotNullConverter, which happens to be part of .NET MAUI's Community

Toolkit and returns true or false depending on UserValue.Age's value. If the user's age is null,

the Label is not part of the view. A developer may create their own custom converters. Custom

converters are regular classes that must inherit from IValueConverter, thus inheriting the

Convert and ConvertBack methods. IMultiValueConverter also exists, but MAUI seems to

currently have a bug at the time of the making of this paper which prevents the multi-value

converter from working.

 If the user is visiting their own profile, they may click their profile picture, which will

invoke platform specific APIs to open the platform's FilePicker. The user may then select an

image that will become their new profile picture:

...

var res = await FilePicker.PickAsync(new PickOptions

{

PickerTitle = "Choose a new profile picture",

FileTypes = FilePickerFileType.Images

});

...

The file must then be converted to a byte array before being saved to the database:

...

var stream = await res.OpenReadAsync();

byte[] imageData;

using var memoryStream = new MemoryStream();

await stream.CopyToAsync(memoryStream);

imageData = memoryStream.ToArray();

...

52

For a more detailed look at converting image files to byte arrays and saving them to the

database, the reader may visit the projects GitHub page.

6.2.7. CreateEventView

On CreateEventView, there is a modal view that opens once the user selects to choose

the event's location. Once the Label to open this modal is clicked, the following code is invoked:

...

var res = await Application.Current.MainPage.ShowPopupAsync(new

LocationSelectionPopup());

if (res is List<double> result)

{

...

NewEvent.Lat = (decimal?)result[0];

NewEvent.Long = (decimal?)result[1];

}

...

The LocationSelectionPopup is a view that inherits from .NET MAUI Community Toolkit's

Popup class, which allows developers to display simple popups as part of their user

experience. The popup contains a map control, which is part of the

Microsoft.Maui.Controls.Maps NuGet package:

...

<Grid RowDefinitions="*" ColumnDefinitions="*" Margin="5" x:Name="mainGrid">

<maps:Map x:Name="map"/>

</Grid>

...

In the popup's code-behind, the user's location is first retrieved, after which the map is

instantiated, and moved to around the user's location:

...

53

GeolocationRequest request = new(GeolocationAccuracy.Best,

TimeSpan.FromSeconds(60));

Location location = await Geolocation.Default.GetLocationAsync(request);

if (location != null)

{

map.MapClicked += OnMapClicked;

map.Pins.Add(new Pin

{

Label = "You",

Location = location

});

map.MoveToRegion(MapSpan.FromCenterAndRadius(location,

Distance.FromKilometers(0.4)));

}

...

Image 29. LocationSelectionPopup, Source: author screenshot

54

The user may click anywhere on the map, which returns the selected location's coordinates to

CreateEventView. It is important to note that this uses Google's Maps API. An API key is

required for this, which means that if the reader runs SportSpark locally on their own device,

this part of the app will not work, as the API key is private.

6.2.8. FriendsView and FriendsListView

These views display a user's current friend requests and their confirmed friend requests

respectively. The views essentially look the same, just display different collections. The user

may navigate to FriendsListView, which in turn allows them to navigate to their friends' profiles,

where they can see their friends' events, even if those events are outside of their desired event

visibility radius. Other than that, the user may decline or accept friend requests on FriendsView,

which removes the request from the view.

6.2.9. EventDetailsView

This view simply displays information on the event that the user clicked on, either on

HomeView, or a user's ProfileView. The view differs slightly from the Figma UI idea. The final

version of this view also contains a Label that, when clicked, loads the map control once again,

displaying the event's location on the platform specific map (Google Maps on Android, for

example).

55

Image 30. EventDetailsView with map control, Source: author screenshot

56

7. Comparison with Windows version

This chapter will compare the UI appearances between Android and Windows. The

SignInView will be used as an example. While .NET MAUI is multiplatform, and does allow

developers to create applications from a single codebase, the user interface specifically tends

to differ a lot between platforms. This is because MAUI converts its view controls to the

underlying platform APIs. Furthermore, APIs like the Map control that was discussed earlier

tend to differ heavily between platforms, and problems may arise. This chapter, however, will

only display the difference of a view on Android and Windows, and how the big UI differences

may be alleviated using MAUI's OnPlatform or OnIdiom XAML markup extensions.

Image 31. SignInView on Windows, Source: author screenshot

 Image 30 displays the SignInView as it appears on Windows while the app is fullscreen.

As one can see, the controls are stretched out, as the XAML states that they should take up

all of the horizontal space on the screen, while having a little padding so the text inputs do not

stretch to the very borders of the screen. In order to make these inputs smaller, one can use

the OnPlatform extension on the VerticalStackLayout containing the „Username or email“

Label and its Entry control:

...

<VerticalStackLayout.Margin>

<OnPlatform x:TypeArguments="Thickness">

<On Platform="WinUI">400, 0, 400, 0</On>

57

</OnPlatform>

</VerticalStackLayout.Margin>

...

The resulting UI change looks like this:

Image 32. SignInView on Windows using OnPlatform, Source: author screenshot

 Alternatively, one can use the OnIdiom extension, which sets up properties based on

the current device, instead of the platform:

...

<VerticalStackLayout.Margin>

<OnIdiom x:TypeArguments="Thickness">

<OnIdiom.Desktop>

<Thickness>400, 0, 400, 0</Thickness>

</OnIdiom.Desktop>

</OnIdiom>

</VerticalStackLayout.Margin>

...

The resulting UI change looks like this:

58

Image 33. SignInView using OnPlatform and OnIdiom extenstions, Source: author

screenshot

 This is usually how developers may transform the platform or idiom specific UI

appearances for each of the controls in the application. Sometimes, however, when working

with more specific properties than margin, things may get more complicated.

59

8. Author's opinion on .NET MAUI

.NET MAUI is a relatively new technology, having been released to general availability

mid-2022. However, it is the author's opinion that the bugs are too plentiful, and some

framework design choices poor. The .NET MAUI development team seems quite small, and

updates to the framework take too long. On GitHub, there are issues about known bugs that

have been active for months on end, some of which are catastrophic.

As one can see on Image 29, the profile picture's shadow is incorrectly rendered. It

appears to the image's top-left side and appears as a small circle, while the XAML code

specifies it should appear to the image's lower-right side and look as a natural circular shadow.

This is not a breaking bug, but would prevent developers from creating the beautiful UI their

application deserves.

 A catastrophic, breaking bug inside SportSpark, caused by .NET MAUI's ImageService,

is the app crashing when refreshing the value of a property that an Image control's Source is

bound to. Essentially, an Image may have its Source property bound to a property in the view

model. The first time the Source is set up, the image loads correctly. If the property the Source

is bound to updates, the application will crash. This happens because the same thread should

work on any UI changes, but .NET MAUI (at the time of writing) does not update Image Source

on the main UI thread, instead doing it on a different thread each time. The author has not

found a workaround for this, and as such is a breaking bug.

 A design choice that the author does not like is sending QueryProperty objects between

view models. Once ViewModel1 sends an object to ViewModel2 through AppShell's

navigation, ViewModel2 will „receive“ that object after its constructor. This means, for example,

a developer may not send a user's Id to another view model, which will then call an API to

retrieve that user's data. Instead, the developer must use the user's Id to call an API and

retrieve the user's data inside ViewModel1, then send the new object containing the user's

data to ViewModel2.

 Usually, bugs are not catastrophic, and design choices such as this can be worked

around. However, due to the number of bugs and the speed, or lack thereof, that they are

being fixed, it is the author's opinion that .NET MAUI is currently not the framework developers

should use to create multiplatform applications.

60

9. Conclusion

The purpose of this paper was to present Microsoft's new technology, .NET

Multiplatform Application User Interface in the context of a full-fledged Android application with

an ASP.NET Core backend. The paper took the reader through the technologies commonly

used to create such an app, before presenting an idea around which the application was built.

The backend built using ASP.NET Core was briefly described to the user, with more advanced

features such as JWT Authentication receiving more attention. Then, the specifics of MAUI as

a framework were explained, as were certain NuGet packages associated with some of

SportSpark's features. The user interface differences that arise between platforms were

displayed, as was the way to mitigate them. Finally, the author reviewed .NET MAUI as a

technology, concluding that it is not the framework of choice at this time when it comes to

building multiplatform applications.

 Hopefully, this paper would be useful to any readers who may have an interest in

multiplatform application development, Microsoft technologies, or both. The entirety of

SportSpark's code is present on GitHub, the link for which will be placed under attachments.

61

Sources

[1] “NET Multi-platform App UI (.NET MAUI) | .NET,” Microsoft, Mar. 05, 2023.

https://dotnet.microsoft.com/en-us/apps/maui (accessed Mar. 05, 2023).

[2] “Visual Studio: IDE and Code Editor for Software Developers and Teams,” Visual Studio.

https://visualstudio.microsoft.com (accessed May 29, 2023).

[3] erinstellato-ms, “Download SQL Server Management Studio (SSMS) - SQL Server

Management Studio (SSMS),” May 24, 2023. https://learn.microsoft.com/en-

us/sql/ssms/download-sql-server-management-studio-ssms (accessed May 29, 2023).

[4] “Git.” https://git-scm.com/ (accessed May 29, 2023).

[5] Atlassian, “Sourcetree | Free Git GUI for Mac and Windows,” SourceTree.

https://www.sourcetreeapp.com (accessed May 29, 2023).

[6] “Android Debug Bridge (adb) | Android Studio,” Android Developers.

https://developer.android.com/tools/adb (accessed May 29, 2023).

[7] tdykstra, “Overview of ASP.NET Core,” Nov. 15, 2022. https://learn.microsoft.com/en-

us/aspnet/core/introduction-to-aspnet-core (accessed May 30, 2023).

[8] ajcvickers, “Overview of Entity Framework Core - EF Core,” May 25, 2021.

https://learn.microsoft.com/en-us/ef/core/ (accessed May 30, 2023).

[9] “Entity Framework Core DbContext.” https://www.entityframeworktutorial.net/efcore/entity-

framework-core-dbcontext.aspx (accessed May 30, 2023).

[10] “Free, Online UI Design Tool & Software For Teams,” Figma. https://www.figma.com/ui-

design-tool/ (accessed May 30, 2023).

[11] maddymontaquila, “XAML overview - Visual Studio (Windows),” Mar. 10, 2023.

https://learn.microsoft.com/en-us/visualstudio/xaml-tools/xaml-overview (accessed May 30,

2023).

[12] davidbritch, “What is .NET MAUI? - .NET MAUI,” Jan. 30, 2023.

https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui (accessed May 30, 2023).

[13] ardalis, “Common web application architectures,” Mar. 07, 2023.

https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-

application-architectures (accessed Jun. 01, 2023).

[14] “Repository Pattern in ASP.NET Core - Ultimate Guide,” Jun. 28, 2020.

https://codewithmukesh.com/blog/repository-pattern-in-aspnet-core/ (accessed Jun. 10,

2023).

[15] “Data Transfer Object DTO Definition and Usage | Okta.” https://www.okta.com/identity-

101/dto/ (accessed Jun. 10, 2023).

62

[16] michaelstonis, “Model-View-ViewModel,” Nov. 04, 2022. https://learn.microsoft.com/en-

us/dotnet/architecture/maui/mvvm (accessed Jun. 10, 2023).

[17] bricelam, “Migrations Overview - EF Core,” Jan. 12, 2023.

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/ (accessed Jun. 10,

2023).

[18] auth0.com, “JWT.IO - JSON Web Tokens Introduction.” http://jwt.io/ (accessed Jun. 10,

2023).

63

Images

Image 1. Microsoft Visual Studio logo, Source:

https://commons.wikimedia.org/wiki/File:Visual_Studio_Icon_2022.svg 2

Image 2. Microsoft Visual Studio's User Interface with tabs open, Source: author screenshot 3

Image 3. Microsoft SQL Server logo, Source: https://www.commvault.com/supported-

technologies/microsoft/sql ... 3

Image 4. Microsoft SQL Server Management Studio logo, Source:

https://stackshare.io/microsoft-sql-server-management-studio .. 4

Image 5. Git logo, Source: https://commons.wikimedia.org/wiki/File:Git-logo.svg 5

Image 6. Sourcetree logo, Source: https://iconduck.com/icons/94916/sourcetree 5

Image 7. Sourcetree User Interface, Source: author screenshot ... 6

Image 8. ASP.NET Core logo, Source: https://www.azureblue.io/tag/asp-net-core/ 7

Image 9. Entity Framework Core logo, Source: https://codeopinion.com/porting-to-entity-

framework-core/ .. 8

Image 10. Figma logo, Source: https://www.stickpng.com/img/icons-logos-emojis/tech-

companies/figma-logo ..10

Image 11. Clean Architecture diagram, Source: https://learn.microsoft.com/en-

us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures15

Image 12. Clean Architecture implementation in Visual Studio, Source: author screenshot ..16

Image 13. Folders inside of Clean Architecture projects, Source: author screenshot16

Image 14. SportSpark database model version 1, Source: author screenshot19

Image 15. SportSpark final database model, Source: author screenshot20

Image 16. SportSpark splash screen, Source: Figma export ..33

Image 17. FirstStartupPage, Source: Figma export ..34

Image 18. StartingView, Source: Figma export ...34

Image 19. Register, Source: Figma export ...35

Image 20. SignIn, Source: Figma export ..35

Image 21. Home, Source: Figma export ...36

Image 22. Profile, Source: Figma export...36

64

Image 23. Profile 2, Source: Figma export ..37

Image 24. CreateEvent, Source: Figma export ...37

Image 25. Friends, Source: Figma export ...38

Image 26. EventDetails, Source: Figma export ...38

Image 27. AppRes.resx, Source: author screenshot ...42

Image 28. Final version of HomeView, Source: author screenshot47

Image 29. LocationSelectionPopup, Source: author screenshot ...53

Image 30. EventDetailsView with map control, Source: author screenshot55

Image 31. SignInView on Windows, Source: author screenshot ...56

Image 32. SignInView on Windows using OnPlatform, Source: author screenshot57

Image 33. SignInView using OnPlatform and OnIdiom extenstions, Source: author

screenshot ..58

65

Attachments

SportSpark GitHub repository:

https://github.com/AntunTkalcec/SportSpark

Github issues (mentioned bugs):

https://github.com/dotnet/maui/issues/14786, https://github.com/dotnet/maui/issues/14052

