
Application Programming Interfaces (APIs) Based
Interoperability of Cloud Computing

Andročec, Darko

Doctoral thesis / Disertacija

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics Varaždin / Sveučilište u Zagrebu, Fakultet
organizacije i informatike Varaždin

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:065656

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-17

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:065656
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3284
https://dabar.srce.hr/islandora/object/foi:3284

Faculty of Organization and Informatics

Darko Andročec

APPLICATION PROGRAMMING INTERFACES

(APIs) BASED INTEROPERABILITY OF CLOUD

COMPUTING

DOCTORAL THESIS

Varaždin, 2015.

DOCTORAL DISSERTATION INFO

I. AUTHOR

First and last name Darko Andročec

Date and place of birth October 11th, 1981, Čakovec

Name of the institution and date of

obtaining graduate degree

Faculty of Organization and Informatics,

November 19th, 2004.

Current employment Faculty of Organization and Informatics

II. DOCTORAL DISSERTATION

Title Application Programming Interfaces (APIs)

Based Interoperability of Cloud Computing

Number of pages, figures, tables, annexes,

bibliographic references

174 pages, 10 figures, 27 tables, 226

bibliographic references

Scientific area and field Social Sciences, Information and

Communication Sciences

Supervisors Prof Neven Vrček

Name of the institution where the doctoral

dissertation is publically defended

Faculty of Organization and Informatics,

University of Zagreb

III. EVALUATION AND DEFENCE

Date of the meeting of Faculty Council

when the topic is accepted

September 4th, 2012.

Date of submission December 19th, 2014.

Date of the meeting of Faculty Council

when the positive evaluation is accepted

March 3rd, 2015

Committee appointed for dissertation

evaluation

Prof.dr.sc. Mirko Maleković, Prof.dr.sc. Neven

Vrček, Dr.sc. Peep Küngas, Senior Researcher

Date of dissertation public defense April 20th, 2015

Committee appointed for dissertation public

defense

Prof.dr.sc. Alen Lovrenčić, Prof.dr.sc. Neven

Vrček, Dr.sc. Peep Küngas, Senior Researcher

Date of promotion

Faculty of Organization and Informatics

DARKO ANDROČEC

APPLICATION PROGRAMMING INTERFACES

(APIs) BASED INTEROPERABILITY OF CLOUD

COMPUTING

DOCTORAL THESIS

Research supervisor:

Prof. Neven Vrček

Varaždin, 2015.

Fakultet organizacije i informatike

Darko Andročec

INTEROPERABILNOST USLUŽNOG

RAČUNARSTVA POMOĆU APLIKACIJSKIH

PROGRAMSKIH SUČELJA

DOKTORSKI RAD

Varaždin, 2015.

To my beloved wife Maja

and our three little angels Marta, Marija, and Gabrijel

Acknowledgements

First, I would like to thank my research supervisor Neven Vrček for his continual support,

given freedom to choose research domain of my interest, and for his valuable comments.

Next, I would like to thank Peep Küngas (University of Tartu, Estonia) for investing his time

to evaluate my ontologies and my whole research approach, and for his detailed comments on

the previous versions of the text. These comments have greatly improved the quality of my

dissertation. Many thanks to Aleš Červinec (XLAB Research, Slovenia), Vlado Stankovski

(University of Ljubljana, Slovenia), and Miha Stopar (XLAB Research, Slovenia) for their

contribution in the evaluation of my two ontologies presented in this dissertation. I would

also like to thank Irena Mandić for proofreading the text of the dissertation. I thank my friends

and co-workers from Faculty of Organization and Informatics for their encouragement.

Finally, I wish to express my gratitude to my beloved family who have always supported me

through the difficult times. Marta, Marija, Gabrijel and Maja have been my constant source of

love, support, and strength. I thank all four of you for your patience during my work on this

dissertation.

Abstract

Cloud computing paradigm is accepted by an increasing number of organizations due to

significant financial savings. On the other hand, there are some issues that hinder cloud

adoption. One of the most important problems is the vendor lock-in and lack of

interoperability as its outcome. The ability to move data and application from one cloud offer

to another and to use resources of multiple clouds is very important for cloud consumers.

The focus of this dissertation is on the interoperability of commercial providers of platform as

a service. This cloud model was chosen due to many incompatibilities among vendors and

lack of the existing solutions. The main aim of the dissertation is to identify and address

interoperability issues of platform as a service. Automated data migration between different

providers of platform as a service is also an objective of this study.

The dissertation has the following main contributions: first, the detailed ontology of resources

and remote API operations of providers of platform as a service was developed. This ontology

was used to semantically annotate web services that connect to providers’ remote APIs and

define mappings between PaaS providers. A tool that uses defined semantic web services and

AI planning technique to detect and try to resolve found interoperability problems was

developed. The automated migration of data between providers of platform as a service is

presented. Finally, a methodology for the detection of platform interoperability problems was

proposed and evaluated in use cases.

Keywords

Cloud interoperability, cloud data portability, platform as a service, AI planning, semantic

web services, ontology, cloud APIs

Sažetak

Zbog mogućnosti financijskih ušteda, sve veći broj poslovnih organizacija razmatra korištenje

ili već koristi uslužno računarstvo. Međutim, postoje i problemi koji otežavaju primjenu ove

nove paradigme. Jedan od najznačajnih problema je zaključavanje korisnika od strane

pružatelja usluge i nedostatak interoperabilnosti. Za korisnike je jako važna mogućnost

migracije podataka i aplikacija s jednog oblaka na drugi, te korištenje resursa od više

pružatelja usluga.

Fokus ove disertacije je interoperabilnost komercijalnih pružatelja platforme kao usluge. Ovaj

model uslužnog računarstva je odabran zbog nekompatibilnosti različitih pružatelja usluge i

nepostojanja postojećih rješenja. Glavni cilj disertacije je identifikacija i rješavanje problema

interoperabilnosti platforme kao usluge. Automatizirana migracija podataka između različitih

pružatelja platforme kao usluge je također jedan od ciljeva ovog istraživanja.

Znanstveni doprinos ove disertacije je sljedeći: Najprije je razvijena detaljna ontologija

resursa i operacija iz aplikacijskih programskih sučelja pružatelja platforme kao usluge.

Spomenuta ontologija se koristi za semantičko označavanje web servisa koji pozivaju

udaljene operacije aplikacijskih programskih sučelja pružatelja usluga, a sama ontologija

definira i mapiranja između pružatelja platforme kao usluge. Također je razvijen alat koji

otkriva i pokušava riješiti probleme interoperabilnosti korištenjem semantičkih web servisa i

tehnika AI planiranja. Prikazana je i arhitektura za automatiziranu migraciju podataka između

različitih pružatelja platforme kao usluge. Na kraju je predložena metodologija za otkrivanje

problema interoperabilnosti koja je evaluirana pomoću slučajeva korištenja.

Ključne riječi

Interoperabilnost oblaka, prenosivost podataka na oblacima, platforma kao usluga, AI

planiranje, semantički web servisi, ontologija, aplikacijska programska sučelja oblaka

Extended Abstract

The numerous heterogeneities among different vendors make cloud interoperability an

interesting and complex research and practical problem. Cloud computing is nowadays

becoming a popular paradigm for the provision of computing infrastructure, but there are

some known obstacles, among which vendor lock-in stands out. The aforementioned problem

is characterized by time-consuming and costly migration of application and data to alternative

cloud solutions offered by different vendors, the inability or limited ability to use some

computing resources, applications or data outside the selected cloud computing service and

the dependence on a specific programming language used by the selected cloud computing

vendor. This dissertation has tackled vendor lock-in problem in platform as a services offers

by using Semantic Web services and AI planning to detect and try to solve the identified

interoperability problems.

The basic steps in this research include: design and implementation of use cases, development

of the ontology of platform as a service, definition and development of semantic web services,

identification of interoperability problems among different commercial providers of platform

as a service, and design of the methodology for the detection and resolution to interoperability

problems. First, two use cases were defined. These use cases are examined to determine

technical and semantic interoperability problems among APIs of different providers of

platform as a service and to test methodologies and tools used to detect and resolve

interoperability problems. In the first use case, data will be migrated between different

providers of platform as a service. Successful execution of more complex interoperability

scenarios cannot be imagined without being able to move data from one PaaS vendor to

another. The majority of vendors’ API operations deal with data manipulation and

management, so the first use case is also important to learn more about the mentioned APIs in

practical problems. The result of the first use case is an architecture for data migration among

PaaS providers that uses data ontology (OWL is intermediate data format) and data type

mappings stored as individuals in PaaS ontology. The validation of the first use case and the

data migration architecture was done by migrating a more complex set of data (concretely,

data of open-source content management system) and manually checking all of the migrated

data elements. In the second use case, current user information from one PaaS offer are added

to the application hosted on another PaaS offer. The main aim is to investigate interoperability

problems on service layer when using APIs from different providers. The ontology driven

data mediation are used and tested in second use case. Web operations and their

inputs/outputs were semantically annotated, and SAWSDL and XSLT were used to define

service type mappings.

Next, the PaaS ontology for resources and operations and the ontology of interoperability

problems were developed. For this purpose, the Ontology Development 101 methodology was

selected, because it is the simplest and it is really focused on the results, i.e. building the first

ontology version very fast and then refining it according to requirements. The representation

of resources and operations in APIs of platform as a service is determined as the domain of

the ontology of PaaS resources, remote operations, and data types. It provides information

about the most important PaaS resources, it classifies providers’ remote API operations, and

supports mappings of data types among the heterogeneous APIs and cloud storages. The

domain of the second ontology is the representation of the technical and semantic

interoperability problems of commercial platform as a service offers. This ontology is used in

the methodology for detecting interoperability problems among providers of platform as a

service as a comprehensive list of possible interoperability issues. Developed ontologies were

evaluated. There is no consensus on the best ontology evaluation approach, but evaluating the

ontologies systematically certainly raise its quality. Due to a lack of gold standards and corpus

of data, the evaluation by humans and application-based evaluation was chosen.

The ontology of PaaS resources, remote operations, and data types developed in the previous

step is used to create semantic web services that represent remote functions (APIs) of

platform as a service offers. Web services that encapsulate remote API operations of three

commercial providers (Google, Microsoft, and Salesforce) were developed to access these

services in a unique way. SAWSDL lightweight annotation was used to define semantic web

services, and XSLT was used to define needed input/output transformations. Web services,

their inputs and outputs were semantically annotated, and service data type mappings and

needed transformations were defined.

For AI planning process, a JSHOP2 planner was used. The inputs of JSHOP2 are a planning

domain and a planning problem. Problem description file is composed of logical atoms

showing the initial state and a task list. The task list and the initial state are created on the fly,

when the user executes some interoperability actions using the client web application. Based

on the choices of the user, the tasks (e.g., some interoperability action such as ones described

in two use cases) that need to be completed are generated and saved in JSHOP2 problem

description file. The initial state (a set of logical atoms) is also created programmatically.

Based on the chosen method representing the chosen interoperability action (task list to be

executed), SAWSDL and/or PaaS ontology files are parsed to generate logical atoms. The

domain description file was defined manually. If JSHOP2 planner finds a plan, this plan is

printed on the client web application, and an option to execute the plan (to invoke relevant

web services) is given to the user. If the planner finds the appropriate plan, then no

interoperability problems were found at this stage. During execution of web service

compositions, the needed transformations between inputs and outputs should be performed. If

there is no suitable plan returned by JSHOP2 planner, the client web application displays the

error message. In this case, some interoperability problems exist and the cause of the failure

needs to be determined. The algorithm for this purpose was developed and presented in this

work.

The final contribution of this dissertation is the creation of a methodology for determining the

relevant interoperability issues among two or more PaaS providers. Currently, there is still no

methodology that aims at identification and resolution of interoperability problems; neither

among APIs of commercial platforms as a service nor among cloud offers in general. The

proposed methodology uses iterative approach, because PaaS offers and their APIs evolve and

change very often. The user's interoperability requirements also change during time and new

interoperability problems could arise. The proposed methodology has five main steps:

requirements identification, interoperability analysis, solution design, solution

implementation, and evaluation. In the first step, the most important interoperability needs of

users should be listed. Interoperability analysis deals with identifying levels of

interoperability problems and reasoning on possible interoperability problems between

different commercial providers of platform as a service. Solution design includes activities

such as the development of the ontology of resources, remote operations and data types,

definition of the semantic web service, needed mappings and transformations, and defining AI

planning domain. Solution implementation deals with approach implementation and execution

of the defined use cases. Evaluation step evaluates the successful execution of use cases and

correct identification of possible interoperability problems.

Keywords

Cloud interoperability, cloud data portability, platform as a service, AI planning, semantic

web services, ontology, cloud APIs

Prošireni sažetak

Mnogobrojne razlike između pružatelja usluga rezultiraju time da je interoperabilnost

uslužnog računarstva složen istraživački i praktični problem. Uslužno računarstvo je danas

popularna paradigma za pružanje računalne infrastrukture, ali su ujedno poznati i određeni

nedostaci ovog modela, od kojih je jedan od najznačajnijih ovisnost o pružatelju usluge. Ovaj

problem manifestira se vremenski zahtjevnom i skupom migracijom podataka i aplikacija na

alternativno rješenje u oblaku, nemogućnošću ili ograničenom mogućnošću korištenja

računalnih resursa, aplikacija ili podataka izvan odabranog rješenja, te ovisnošću o korištenju

samo onih programskih jezika koje odabrani pružatelj usluge podržava. Ova disertacija

rješava spomenuti problem u modelu platforme kao servisa korištenjem semantičkih web

servisa i AI planiranja kako bi se otkrili i pokušali riješiti problemi interoperabilnosti.

Osnovni koraci ovog istraživanja su: dizajn i implementacija slučajeva korištenja, razvoj

ontologije platforme kao usluge, definicija i razvoj semantičkih web servisa, identifikacija

problema interoperabilnosti između različitih komercijalnih pružatelja platforme kao usluge,

te dizajn metodike za otkrivanje i rješavanje problema interoperabilnosti. Najprije su

definirana dva slučaja korištenja. Njihov je cilj odrediti tehničke i semantičke probleme

interoperabilnosti između API-a različitih pružatelja platforme kao usluge, te testirati

razvijenu metodiku i korištene alate. U prvom slučaju korištenja, podaci se migriraju između

različitih pružatelja usluga. Uspješno izvođenje kompleksnijih scenarija interoperabilnosti ne

može se zamisliti bez postojanja mogućnosti migriranja podataka od jednog do drugog

pružatelja platforme kao usluge. Osim toga, većina udaljenih operacija pružatelja usluga na

neki način manipulira ili upravlja podacima, pa je prvi slučaj korištenja koristan i za detaljno

izučavanje tih API-a. Rezultat prvog slučaja korištenja je arhitektura za migraciju podataka

između različitih pružatelja platforme kao usluge koja koristi podatkovnu ontologiju (OWL je

posrednički podatkovni format) i mapiranja tipova podataka koji su implementirani kao

instance u PaaS ontologiji. Validacija prvog slučaja korištenja i arhitekture za migraciju

podataka napravljena je migriranjem kompleksnijeg skupa podataka (konkretno, podataka

jednog besplatnog sustava za upravljanje sadržajem) i ručnom provjerom svih migriranih

podatkovnih elemenata. Drugi slučaj korištenja opisuje dodavanje korisničkih informacija iz

jedne PaaS usluge na aplikaciju koja koristi resurse drugog pružatelja usluge. Glavni cilj je

istražiti probleme interoperabilnosti na razini servisa kada se koriste API-i više različitih

pružatelja usluga. U drugom slučaju korištenja prikazuje se i testira posredovanje podacima

korištenjem ontologija. Web operacije i njihovi ulazi i izlazi su semantički anotirani, a

SAWSDL i XSLT definiraju mapiranja između različitih tipova podataka u servisima.

Nakon toga razvijene su dvije ontologije: ontologija resursa i operacija platforme kao usluge i

ontologija problema interoperabilnosti. Za tu svrhu, odabrana je metodika Ontology

Development 101, jer je jedna od najjednostavnijih i jer je fokusirana na sam rezultat, tj. na

brzo stvaranje početne verzije ontologije koja se s vremenom razvija i mijenja u skladu sa

zahtjevima. Domena ove ontologije je prikaz resursa i operacija API-a različitih ponuda

platforme kao usluge. Ontologija popisuje najvažnije resurse platforme kao usluge, klasificira

udaljene API operacije različitih pružatelja usluga, te podržava mapiranja tipova podataka

između različitih API-a i spremišta podataka na oblacima. Domena druge ontologije je prikaz

tehničkih i semantičkih problema interoperabilnosti komercijalnih rješenja platforme kao

usluge. Ova se ontologija koristi u predloženoj metodici za otkrivanje i rješavanje problema

interoperabilnosti i služi kao sveobuhvatna lista mogućih problema interoperabilnosti.

Razvijene ontologije su evaluirane. U literaturi nema konsenzusa oko najboljeg pristupa za

evaluaciju ontologije, ali sistematska evaluacija ontologija sigurno povećava njihovu

kvalitetu. Zbog nedostatka prihvaćenih standarda i podataka, izabrana je evaluacija

korištenjem eksperata i evaluacija bazirana na primjeni ontologije u aplikacijama.

Ontologija resursa, udaljenih operacija i tipova podataka koja je prethodno razvijena, koristi

se za kreiranje semantičkih web servisa koji prikazuju udaljene funkcije API-a različitih

platformi kao usluga. Razvijeni su web servisi koji učahuruju udaljene operacije API-a od tri

komercijalna pružatelja usluga (Google, Microsoft i Salesforce) s ciljem pristupa tim

servisima na jedinstven način. Jednostavne anotacije SAWSDL-a su korištene za definiranje

semantičkih web servisa, a XSLT se koristi za definiranje potrebnih transformacija ulaza i

izlaza. Web servisi, njihovi ulazi i izlazi, kao i mapiranja tipova podataka servisa i

eventualnih transformacija su također ovdje definirani.

Za AI planiranje koristio se planer JSHOP2. Ulazi u taj alat su domena planiranja i problem

planiranja. Datoteka opisa problema sastoji se od logičkih atoma koji prikazuju početno stanje

i listu zadataka. Ovi elementi se kreiraju programski, prilikom izvršavanja prototipa, kada

korisnik preko klijentske web aplikacije pokrene željenu akciju interoperabilnosti. Ovisno o

odabiru korisnika, zadaci koji se moraju izvršiti (na primjer, određene akcije

interoperabilnosti poput onih opisanih u slučajevima korištenja) se generiraju i spremaju u

JSHOP2 datoteku za opis problema. Početno stanje (skup logičkih atoma) također se kreira

programski. Ovisno o odabranoj metodi, parsiraju se SAWSDL datoteke i ontologija kako bi

se generiralo početno stanje. Datoteka s opisom domene se kreira ručno. Ukoliko planer

JSHOP2 pronađe plan, on se ispisuje na klijentskoj strani web aplikacije, te se korisniku

prikazuje opcija izvršenja plana, tj. u krajnjem slučaju, pozivanje relevantnih web servisa. U

tom slučaju sve je prošlo u redu, to jest u toj fazi nisu nađeni problemi interoperabilnosti.

Prilikom izvršenja kompozicije web servisa, trebaju biti napravljene potrebne definirane

transformacije između ulaza i izlaza. Ako planer ne vrati pogodan plan, web aplikacija na

strani klijenta ispisuje poruku o greški. U tom su slučaju nađeni određeni problemi

interoperabilnosti, te stoga treba utvrditi razlog greške. Za tu svrhu razvijen je algoritam koji

je opisan u samoj disertaciji.

Zadnji znanstveni doprinos ove disertacije je kreiranje metodike za određivanje relevantnih

problema interoperabilnosti između dva ili više pružatelja platforme kao usluge. Trenutno još

ne postoji metodika za identifikaciju i rješavanje problema interoperabilnosti bilo između

API-a različitih platformi kao usluga, bilo između uslužnog računarstva općenito. Predložena

metodika koristi iterativni pristup, jer se rješenja platforme kao usluge i njihovi API-i često

mijenjaju. Tokom vremena mogu se promijeniti i zahtjevi korisnika vezani uz

interoperabilnost. Predložena metodika sastoji se od pet glavnih koraka: identifikacije

zahtjeva, analize interoperabilnosti, dizajna rješenja, implementacije rješenja i evaluacije. U

prvom se koraku trebaju izlistati najvažnije korisničke potrebe za interoperabilnošću. Analiza

interoperabilnosti identificira razine problema interoperabilnosti i razmatra koji su sve

problemi interoperabilnosti mogući između različitih pružatelja platforme kao usluge. Dizajn

rješenja uključuje aktivnosti poput razvoja ontologije resursa, udaljenih operacija i tipova

podataka, definiciju semantičkih web servisa, potrebnih mapiranja i transformacija, kao i

definiranja AI domene. Implementacija rješenja sastoji se od same implementacije i

izvršavanja definiranih slučajeva korištenja. Korak evaluacije provjerava valjanost i

uspješnost izvršavanja slučajeva korištenja i ispravnu identifikaciju problema

interoperabilnosti.

Ključne riječi

Interoperabilnost oblaka, prenosivost podataka na oblacima, platforma kao usluga, AI

planiranje, semantički web servisi, ontologija, aplikacijska programska sučelja oblaka

I

TABLE OF CONTENTS

LIST OF TABLES IV

LIST OF FIGURES V

ABBREVIATIONS VI

1. INTRODUCTION 1

1.1 MOTIVATION 1

1.2 RESEARCH QUESTIONS AND HYPOTHESES 2

1.3 RESEARCH OBJECTIVES 2

1.4 CONTRIBUTIONS 3

1.5 RESEARCH METHODOLOGY 3

1.6 DISSERTATION OUTLINE 5

2. CORE CONCEPTS AND BACKGROUND 6

2.1 CLOUD COMPUTING 6

2.2 PLATFORM AS A SERVICE 7

2.3 INTEROPERABILITY 9

2.4 CLOUD COMPUTING STANDARDS 10

2.5 SEMANTIC WEB AND ONTOLOGIES 12

2.5.1 Semantic Web and its standards 12

2.5.2 OWL 13

2.5.3 Ontology 13

2.5.4 Methodologies for ontology development 14

2.6 SEMANTIC SERVICE ORIENTED ARCHITECTURE 15

2.6.1 SOA and web services 15

2.6.2 Semantic web services 16

2.7 AI PLANNING METHODS 18

2.7.1 AI planning and automated service composition 18

2.7.2 Hierarchical Task Network (HTN) planning 19

3. RELATED WORK 20

3.1 REVIEW OF INTEROPERABILITY 20

3.1.1 Interoperability problems, issues and conflicts 20

3.1.2 Cloud computing interoperability 24

3.1.3 Research projects on the cloud interoperability 27

3.1.4 Cloud computing interoperability use cases 30

3.1.5 Interoperability methodologies 34

3.1.6 Data mediation between the services 35

3.2 ONTOLOGIES 36

3.2.1 Cloud ontologies 36

II

3.2.2 Ontology anomalies and ontology evaluation 37

3.3 AI PLANNING 39

3.3.1 AI planning methods and cloud computing 39

3.3.2 Gaps in planning domains 39

3.4 SUMMARY OF THE EXISTING WORK 40

3.4.1 Systematic mapping study on cloud interoperability 40

3.4.1.1 Research scope of the systematic mapping 41

3.4.1.2 Conduct search 41

3.4.1.3 Screening of papers 41

3.4.1.4 Classification scheme 44

3.4.1.5 Data extraction and mapping 45

3.4.2 Identified gaps 49

4. USE CASES 50

4.1 PRELIMINARIES 50

4.1.1 Chosen PaaS offers 50

4.1.2 PaaS data and application models 51

4.1.3 Working with external PaaS data 53

4.1.4 Web services support in PaaS offers 54

4.2 USE CASE 1: MIGRATION OF DATA BETWEEN PAAS PROVIDERS 55

4.2.1 Requirements and use case description 55

4.2.2 Export data structures and data from PaaS providers 57

4.2.3 Transformation of data structures and data to ontology 58

4.2.4 Data type mappings 60

4.2.5 Architecture for data migration among PaaS providers 63

4.2.6 Validation and assessment 64

4.2.7 Lessons learned from use case 1 68

4.3 USE CASE 2: ADD EXISTING USER TO ANOTHER PAAS 69

4.3.1 Requirements and use case 2 description 69

4.3.2 Ontology driven data mediation 71

4.3.3 Validation 72

4.3.4 Lessons learned from use case 2 73

5. DEVELOPMENT AND EVALUATION OF ONTOLOGIES 73

5.1 SELECTED ONTOLOGY DEVELOPMENT METHODOLOGY, TOOL AND LANGUAGE 73

5.2 ONTOLOGY OF PAAS RESOURCES, REMOTE OPERATIONS, AND DATA TYPES 75

5.2.1 Domain and scope of the ontology 75

5.2.2 Reusing the existing ontologies 75

5.2.3 Important terms for the ontology 75

5.2.4 Classes and their hierarchy 77

5.2.5 Properties of classes 83

III

5.2.6 Creating instances 85

5.3 ONTOLOGY OF PLATFORM AS A SERVICE INTEROPERABILITY PROBLEMS 85

5.3.1 Domain and scope 85

5.3.2 Reused concepts from other ontologies 86

5.3.3 Enumerate important terms 86

5.3.4 Definition of the class hierarchy 88

5.3.5 Define the properties of classes 92

5.3.6 Creation of the facets and instances 93

5.4 EVALUATION OF THE ONTOLOGIES 93

5.4.1 Evaluation by tools 94

5.4.2 Evaluation by humans 94

5.4.3 Application-based evaluation 96

6. PROPOSED SOLUTION AND METHODOLOGY 98

6.1 SEMANTIC PAAS WEB SERVICES 98

6.2 IMPLEMENTATION OF AI PLANNING 102

6.2.1 JSHOP2 planner 102

6.2.2 JSHOP2 problem description 103

6.2.3 JSHOP2 domain description 105

6.3 PLAN EXECUTION AND SERVICE COMPOSITION 107

6.4 FINDING INTEROPERABILITY PROBLEMS 108

6.5 METHODOLOGY FOR DETECTION OF INTEROPERABILITY PROBLEMS 111

6.5.1 Methodology justification 111

6.5.2 Steps of the methodology 112

6.5.3 Applying the methodology 115

7. CONCLUSIONS 116

7.1 SUMMARY OF CONTRIBUTIONS 116

7.1.1 Creation of detailed ontologies 116

7.1.2 Development of a methodology 116

7.1.3 Solving interoperability problems 117

7.2 ANSWERS TO RESEARCH QUESTIONS 117

7.3 HYPOTHESES REVISITED 118

7.4 LIMITATIONS OF RESEARCH 119

7.5 OPEN ISSUES AND FUTURE WORK 119

BIBLIOGRAPHY 121

CURRICULUM VITAE 149

IV

LIST OF TABLES

Table 1 Summary of the existing use cases and scenarios 32

Table 2 Distribution of the found publications 41

Table 3 Full list of identified relevant papers 42

Table 4 Data form for sample paper 44

Table 5 Classification dimensions and their categories 45

Table 6 Obligatory standard fields of custom objects (194) 52

Table 7 Description of data migration use case 56

Table 8 Mappings from PaaS storages’ to OWL data types 61

Table 9 Mappings from OWL to PaaS storages’ data types 62

Table 10 Manual evaluation of Vosao's data migration to Salesforce 66

Table 11 Description of use case 2 69

Table 12 List of identified terms for PaaS ontology 76

Table 13 List of all classes of the PaaS ontology 78

Table 14 Object properties defined in PaaS ontology 83

Table 15 Data properties of PaaS ontology 84

Table 16 Reused concepts from Naudet et al. (17) 86

Table 17 List of important terms for PaaS interoperability ontology 87

Table 18 List of classes in the PaaS interoperability ontology 89

Table 19 Object properties of the interoperability problems ontology 93

Table 20 Summary of ontology evaluation by experts 95

Table 21 Example of operation’s annotations and transformations 99

Table 22 Example of input/output transformations 100

Table 23 Possible logical atoms in the initial state 104

Table 24 Methods defined in JSHOP2 domain file 105

Table 25 Operators and their preconditions and postconditions 106

Table 26 Testing examples of finding interoperability problems 110

Table 27 Steps and activities of the proposed methodology 114

V

LIST OF FIGURES

Figure 1 Paper distribution per cloud model 46

Figure 2 Distribution per paper types 46

Figure 3 Applied solutions 47

Figure 4 Investigated interoperability problems 48

Figure 5 Visualization of a systemic map using a bubble chart 48

Figure 6 Architecture for data migration between PaaS providers 64

Figure 7 API operations executed in use case 2 69

Figure 8 Example of service input/output transformations 72

Figure 9 Top level classes of PaaS ontology 78

Figure 10 Top level classes of interoperability problems ontology 89

VI

ABBREVIATIONS

AI Artificial Intelligence

AIF ATHENA Interoperability Framework

API Application Programming Interface

CDMI Cloud Data Management Interface

CIMI Cloud Infrastructure Management Interface

CMS Content Management System

CSV Comma-separated values

DMTF Distributed Management Task Force

EIF European Interoperability Framework

GAE Google App Engine

HTN Hierarchical Task Network

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a service

IEEE Institute of Electrical and Electronics Engineers

JSON JavaScript Object Notation

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OCCI Open Cloud Computing Interface

OVF Open Virtualization Format

OWL Web Ontology Language

OWL-S Semantic Markup for Web Services

PaaS Platform as a service

PDDL Planning Domain Definition Language

RDF Resource Description Framework

RDFS RDF Schema

REST Representational State Transfer

SAWSDL Semantic Annotations for WSDL and XML Schema

SaaS Software as a service

SDK Software Development Kit

SHOP Simple Hierarchical Task Network

VII

SLA Service-Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TOSCA Topology and Orchestration Specification for Cloud Applications

UML Unified Modeling Language

URI Uniform Resource Identifier

WSDL Web Services Description Language

WSMO Web Service Modeling Ontology

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

1

1. INTRODUCTION

1.1 Motivation

Cloud computing is nowadays becoming a popular paradigm for the provision of computing

infrastructure that enables organizations to achieve financial savings. On the other hand, there

are some known obstacles, among which vendor lock-in stands out. The aforementioned

problem is characterized by time-consuming and costly migration of application and data to

alternative cloud solutions offered by different vendors, the inability or limited ability to use

some computing resources, applications or data outside the selected cloud computing service

and the dependence on a specific programming language used by the selected cloud

computing vendor. Currently, each cloud vendor offers its own tools, remote application

programming interfaces (APIs), and some even create new programming languages and

frameworks. If clouds are not interoperable, it is difficult or even impossible to achieve

collaboration among computing resources of different cloud service providers, and possible

migration to another provider is a complex and expensive task.

The numerous heterogeneities among different vendors make cloud interoperability an

interesting and complex research and practical problem. Because of the different models of

cloud computing (infrastructure as a service, platform as a service, software as a service, etc.)

and the complexity of the technologies used, it is impossible to cover the interoperability of

all cloud computing models in one study. This dissertation is focused on platform as a service

(PaaS) model. Interoperability of platform as a service model is chosen because it is not well

investigated in the current literature (for example, interoperability of infrastructure as a

service model is dealt with more in the existing literature and cloud standards), there are no

accepted standards, and its vendor lock-in problem is very significant due to heterogeneities

of PaaS offers on many levels. This dissertation has tackled vendor lock-in problem in

platform as a services offers by using Semantic Web services and AI planning to detect and

try to solve the identified interoperability problems.

2

1.2 Research questions and hypotheses

The following research questions are identified:

(1) How to semantically describe resources and operations of commercial platform as a

service APIs?

(2) What are key indicators of the existence of interoperability problems among the available

remote functions of providers of platform as a service?

(3) What are the possible solutions to known interoperability problems?

The two hypotheses are:

H1 Developed ontology will determine the differences among remote application

programming interfaces (APIs) of commercial platform as a service providers and improve

understanding of platform as a service resources and operations.

H2 Based on the concepts identified in the ontology (resources, operations and

interoperability problems), the methodology for determining semantic interoperability

problems among the various commercial platforms as a service providers and their resolution

using the available APIs will be developed.

1.3 Research objectives

The general goal of the dissertation is to contribute to the resolution of a problem of platform

as a service interoperability. More particularly, this dissertation aims at:

• Identification of resources and operations from APIs of relevant commercial platform as a

service providers and development of the ontology.

• Abstraction of platform as a service APIs in the form of Semantic Web services using the

aforementioned ontology.

• Development of a methodology for the detection of semantic interoperability problems and

conflicts among the APIs of two or more selected providers of platform as a service.

3

• Determination of whether found interoperability problems can be solved using the available

vendors’ APIs.

1.4 Contributions

The main contribution of the dissertation is a study of interoperability problems among

different commercial providers of platform as a service and finding some solutions to achieve

interoperability among them. More specific contributions include:

1. Creation of a detailed ontology of resources and operations from APIs of commercial

providers of platform as a service and ontology of common interoperability problems between

different PaaS’ APIs

2. Development of a methodology for the detection of interoperability problems among

various commercial platform as a service providers

3. Determining whether it is possible to solve interoperability problems found using the

available API functions provided by commercial vendors of platform as a service.

During the dissertation work, it became evident that the majority of the functions of remote

providers’ APIs deal with the underlying storage and its metadata. So, the majority of

interoperability problems that can be solved by using providers’ API are data interoperability

problems. The additional contribution of the dissertation is therefore:

4. Design of the architecture for automated data migration among different providers of

platform as a service

1.5 Research methodology

The basic steps in this research include: design and implementation of use cases, development

of the ontology of platform as a service, definition and development of semantic web services,

identification of interoperability problems among different commercial providers of platform

as a service, and design of the methodology for the detection and resolution to interoperability

problems. In the first step of the research, use cases are defined. These use cases are examined

to determine technical and semantic interoperability problems among APIs of different

providers of platform as a service and to test methodologies and tools used to detect and

4

resolve interoperability problems. Initial use cases will be gradually evolved into more

complex ones while research progresses.

The second step of this research is the development of the ontology for resources and

operations and the ontology of interoperability problems. The aim is to clearly describe and

categorize the existing functionalities, features and specificities of commercial platform as a

service offers. Additionally, the ontology supports data mappings among the heterogeneous

APIs. The offerings of platform as a service often use proprietary and non-standard databases

(relational and non-relational). Representing these data models by means of ontology can

provide a common layer for information exchange. Developed ontologies have been

adequately evaluated.

The PaaS ontology developed in the previous step is used to create semantic web services that

represent remote functions (APIs) of platform as a service offers. Every operation from the

cloud vendor’s API will be semantically described using a web application developed for this

purpose. The aim of these semantic web services is to simplify determination and resolution

to interoperability problems among the existing commercial vendors. In the next phase of this

work, the technical and semantic interoperability problems of commercial platform as a

service APIs are identified. The remote functions of commercial cloud providers are mostly in

the form of SOAP or REST web services. In the context of service-oriented architecture,

semantic interoperability means the ability to interact and collaborate among software

services, and the subject of this dissertation is to determine interoperability problems among

the available remote functions from APIs of relevant commercial platform as a service

providers. The final contribution of this dissertation is the creation of a methodology for

determining the relevant interoperability issues among two or more providers. It is used to

determine the existing interoperability problems among selected commercial solutions of

platform as a service by comparing their associated semantic web services to find out which

of these problems can be solved using the currently available API operations of commercial

platform as a service providers. For this purpose, the AI planning methods (1) were used.

5

1.6 Dissertation outline

The remainder of this dissertation is composed of six additional chapters. Chapter 2 presents

the main core concepts and background (cloud computing, platform as a service,

interoperability, cloud computing standards, Semantic Web and ontologies, semantic service

oriented architecture and AI planning methods). In Chapter 3, the most relevant existing work

is listed. Chapter 4 concentrates on practical part of the dissertation, including use cases

aimed at detecting interoperability problems and the evaluation of the proposed theoretical

solution and methodology developed as part of this work. Chapter 5 is dedicated to the

development of two ontologies: the ontology of platform as a service resources, remote

operations, and data type mappings; and the ontology of platform as a service interoperability.

Chapter 6 deals with finding and solving interoperability problems among different platform

as a service offers and it elaborates on the methodology developed for the detection of

interoperability problems. The conclusion of the dissertation is given in the last chapter,

together with the summary of contributions, open issues, and ideas for future research.

6

2. CORE CONCEPTS AND BACKGROUND

2.1 Cloud computing

Cloud computing is a business and computing paradigm whose main benefits are flexibility,

pay-per-use model and significant cost reduction. National Institute of Standards and

Technology (NIST) provided the most accepted definition of cloud computing: “Cloud

computing is a pay-per-use model for enabling available, convenient, on-demand network

access to a shared pool of configurable computing resources” (2). Erl defines cloud

computing as “a specialized form of distributed computing that introduces utilization models

for remotely provisioning scalable and measured resources” (3). The Gartner Group defines

cloud computing as “a style of computing in which massively scalable IT-related capabilities

are provided "as a service" using Internet technologies to multiple external customers” (4).

Armbrust et al. (5) conclude that there are three new aspects in cloud computing from a

hardware point of view: the illusion of infinite resources available on demand, the elimination

of users’ up-front commitment and the ability to pay for use when specific cloud resources are

needed. The same authors presented the ten biggest obstacles and opportunities for cloud

computing. Their opinion is that the most significant obstacles are: service availability, data

interoperability problems, data confidentiality, bottlenecks caused by data transfer, variations

in performance, legal liability, and new means of software licensing. Each obstacle has

associated opportunities, e.g. data lock-in is the obstacle, but its associated opportunities are

standardization of APIs and development and execution of compatible software on multiple

clouds. Wang et al. (6) considered the functional aspects of cloud computing and its

differences from other computing paradigms. According to Wang et al. (6), types of services

are: hardware as a service, software as a service, data as a service, and infrastructure as a

service. Cloud computing possesses customer-oriented interface and offers the guaranteed

quality of service, scalability and flexibility. Enabling technologies behind cloud computing

are (6): systems for distributed data storage, cloud programming models, virtualization,

service-oriented architecture and web 2.0.

7

Most researchers distinguish three main types of cloud services. These main service models of

cloud computing are (2): software as a service (SaaS), platform as a service (PaaS), and

infrastructure as a service (IaaS). In software as a service model, the consumer directly uses

the provider’s applications running on their cloud infrastructures from various client devices

(2). In regard to management and control of cloud infrastructure, the consumer can typically

modify only limited user-specific application configuration settings (2). The second model of

cloud computing is platform as a service. Using this type of cloud service, the client can

deploy their own or acquired applications supported by vendor’s platform together with the

supported programming languages, libraries and tools (2). The client can control deployed

applications and configure application environment. In infrastructure as a service model, the

consumer controls operating systems, storages, deployed applications and some selected

networking components (2). Infrastructure as a service provides the capability to provision

fundamental computing resources to run operating systems, web, email and application

servers and applications.

Mell and Grance (2) distinguish four main deployment models of cloud computing: private

cloud, community cloud, public cloud and hybrid cloud. Private cloud’s resources are used

exclusively by a single organization with multiple users (2). Community clouds are used by

specific communities from organizations (2). The general public can use infrastructures

provisioned by public cloud (2). The hybrid cloud’s infrastructure consists of two or more

distinct types of clouds (private, community, or public) bound by standardized or proprietary

technology (2).

2.2 Platform as a service

If a cloud vendor supplies the software platform on which systems run, instead of providing a

virtualized infrastructure, one talks about platform as a service (PaaS) model (7). The NIST

definition of the platform as a service is elaborated in the previous chapter (2.1). Boniface et

al. (8) define platform as a service as “the provision of a development platform and

environment providing services and storage, hosted in the cloud” (8). Multiple applications

use this single platform and its predefined services. The platform itself is built on some offers

of infrastructure as a service. The promise of PaaS is that one only needs to code the

application, and cloud vendor will handle everything else, from infrastructure and network to

8

their operations (9). In theory, PaaS consumers will get better security and business continuity

accompanied by a much lower price (9). Walton (10) claims that PaaS solutions represent

web-based development platforms with predefined and vendor-controlled infrastructure for

application deployment. PaaS users build and deploy their applications with the providers’

tools and application environments. Platform as a service vendors offer virtual platforms to

their users to develop and run applications. Data is mostly stored within vendor’s

infrastructure. Erl (3) also agreed that platform as a service relies on the usage of ready-made

environment to support the complete lifecycle of web applications. The cloud consumer has a

lower level of control over the underlying infrastructure compared to infrastructure as a

service model. At the same time, he can focus more on core aspects of his job (application

development) and minimize time spent on configuration and system engineering.

Platform as a service model of cloud computing has the following benefits (10): increasing

programmer productivity, companies can release products more quickly, and development

costs are reduced. Apart from these benefits, Lawton (10) also listed some limitations,

concerns, and drawbacks of platform as a service model: strong provider lock-in, security and

privacy problems, it only delivers a subset of functions that are standard in classical

development platform, heavy-weight management or governance services are not provided.

Emison (9) listed the following possible trade-offs regarding platform as a service: limitation

of control over many aspects of application development, low-level performance tuning is not

available or is very limited, providers support only a limited set of software versions, a limited

set of configuration options, dependence on vendor-created metrics of application

performance and vendor lock-in.

Vendor lock-in problem is mentioned in both lists of PaaS drawbacks. Specific PaaS

implementations are less portable than virtual machines (9), so there is a greater risk of

occurrence of the mentioned problem in PaaS than in IaaS environment. Furthermore, some

PaaS offers like Force.com, Rollbase and WorkXpress use proprietary computer languages

and application environments (9).

Emison (9) distinguishes three main categories of platform as a service providers:

 Comprehensive PaaS vendors support more languages and/or environments to address

many scenarios and support as many different applications as possible (9). Google

9

App Engine, Microsoft Azure, and Red Hat Openshift can be listed as representatives

of the first category.

 Specific-stack PaaS targets customers that already use standard stacks for applications

and enables simpler deployment of applications to PaaS environment without the need

to dramatically change applications developed in the specific enterprise-based stack

(9). The representative of the second category of PaaS providers is IBM.

 Proprietary PaaS providers offer robust platform with many useful features in

exchange for using their proprietary languages, tools and configuration (9). An

example of the third category is Salesforce’s platform as a service offer.

2.3 Interoperability

Interoperability can be defined in several ways. One of the simplest definitions is credited to

IEEE that defines this term as “the ability of two or more systems or components to exchange

information and to use the information that has been exchanged” (11). Brownsword et al.

(12) provided the following working definition of interoperability: “The ability of a collection

of communicating entities to (a) share specified information and (b) operate on that

information according to an agreed operational semantics” (12). Pokraev et al. (13) claim

that “interoperability implies that systems are able to interact (i.e., exchange messages), read

and understand each other’s messages and share the same expectations about the effect of the

message exchange” (13). From this definition, three main aspects of interoperability arise

(13): syntactic interoperability (compatible formats), semantic interoperability (meaning of

the information), and pragmatic interoperability (effect of the exchanged information).

Vernadat similarly defines the term interoperability as “the ability for a system to

communicate with another system and to use the functionality of the other system” (14).

Park and Ram (15) think that interoperability is the most critical issue for businesses that use

data from different information systems. Two types of interoperability are distinguished in

their work: semantic interoperability and syntactic interoperability. For them, semantic

interoperability exists at the knowledge-level and it is used to bridge semantic conflicts due to

differences in meanings, perspectives, and assumptions (15). On the other hand, they define

syntactic interoperability as the interoperability at application level that aims at cooperation

10

among different software components with different implementation languages and

development platforms (15).

Interoperability is a multidimensional concept that can be looked at from multiple

perspectives. Therefore, frameworks for interoperability which specify a set of common

elements such as vocabulary, concepts, principles, guidelines and recommendations were

developed and can be identified in the literature. Some of the most important frameworks are

(16): ATHENA Interoperability Framework (AIF), IDEAS Interoperability Framework, LISI

Reference Model, Enterprise Interoperability Framework, and GridWise Interoperability

Context-Setting Framework.

Apart from interoperability frameworks, some comprehensive interoperability models are

presented in the current literature. For example, Naudet et al. (17) developed a general

ontology of interoperability. This ontology describes the ontological metamodel system,

problems and solutions and can be used to diagnose and resolve interoperability problems.

The above mentioned authors conclude that there are only two alternative technical solutions

to interoperability problems: bridging and homogenization. Bridging uses an intermediate

system (often called an adapter) between systems having interoperability problems. The

intermediate system relies on the translation protocol (for example, using mappings) to

achieve interoperability between interacting systems (17). Homogenization implies the

unified model and acts directly on models or their representations (17). It requires either

syntactic or semantic transformations that used the defined unified model.

2.4 Cloud computing standards

For now, there are not any adopted cloud computing standards (18) among different

commercial cloud providers. Each commercial service provider has its own specific APIs and

different technological solutions, which is not conducive to their mutual interoperability. So,

the initiatives for standardization in this area are very important. Pahl, Zhang and Fowley

listed the most promising initiatives in their two papers - (19) and (20).

The scope of The Open Cloud Computing Interface (OCCI) (20) is high-level functionalities

for life cycle management of virtual machines running on virtualization technologies. OCCI is

RESTful API for remote management including deployment, autonomic scaling, and

11

monitoring (21). First it was developed for infrastructure as a service model, but current

version is capable to serve all three main models of cloud computing (IaaS, PaaS, and SaaS).

Similarly, The Cloud Infrastructure Management Interface (CIMI) (22) defines a model for

the management of resources of infrastructure as a service. It addresses deploying and

managing virtual machines, volumes, network and other IaaS artifacts. The Open

Virtualization Format (OVF) (23) is the DMTF’s standard that describes the open format for

the virtual machines. It is optimized for the distribution of single or multiple virtual machines;

it is vendor and platform independent, extensible and localizable. It provides the complete

specification of a virtual machine.

OASIS’s Topology and Orchestration Specification for Cloud Applications (TOSCA) aims to

enhance the portability of application layer services across alternative clouds (24). TOSCA

can be used to provide description of service components, their relationships and service

management procedures (24). TOSCA’s core concept is the ability to move services and

applications between public and private cloud infrastructures, but the most prominent

providers of infrastructure as a service have not yet joined this OASIS consortium (20). Cloud

Data Management Interface (CDMI) specifies the interface for cloud storages and their

successful management (25). It enables cloud programmers to discover the capabilities of the

chosen cloud storage, to manage containers and their associated data, and to use metadata for

containers and/or data objects. CDMI provides standardized interface by means of RESTful

web services that can be used to create, retrieve, update and delete data objects. CDMI is now

accepted as ISO standard in ISO/IEC 17826:2012.

Lewis’s technical report (26) explores the role of standards regarding cloud interoperability.

Her opinion is that cloud standards probably do not make sense beyond infrastructure as a

service layer, because value-added features provided by PaaS and SaaS vendors automatically

correspond to greater differences between them. Lewis (26) thinks that cloud standardization

will take some time, similar to the development of web service standards in the past. Petcu

(27) listed several barriers in cloud standardization. These include barriers to exit which many

vendors put into their cloud offers, differentiated services of various commercial vendors,

standards take years to mature, and different standards are needed for each of the three main

models of cloud computing.

12

Demands for cloud standards are growing, but there is not a central body to lead the

standardization, although many try to become such body. Cloud landscape is still in

innovation phase, vendors often change their services, and many major market players do not

support the existing standard initiatives and are not involved in the new ones. Many cloud

standards are not mature yet. At this moment, the existing standards are not yet able to port

applications and data from one vendor of platform as a service to another or find and solve

interoperability problems between different APIs, so use cases shown in this dissertation

cannot be solved by using one or more of the existing cloud standards.

2.5 Semantic Web and ontologies

2.5.1 Semantic Web and its standards

Most of the content on the Web is designed for people, and not for computer programs and

agents. Programs can parse this content, but it is complex to process the semantics. The

solution for the mentioned problem is the use of Semantic Web technologies. The ultimate

goal of Semantic Web is to create structured and meaningful web pages that can be used by

software agents capable of carrying out sophisticated users’ tasks automatically (28). For

now, there are many prototypes and proof-of-the-concept solutions, but the Semantic Web has

not yet become the mainstream in the industry. The main idea of the Semantic Web is to

provide coherent data model that is a part of the web infrastructure (29). One data item can

point to another using standard links. The fundamental concepts of Semantic Web are (29):

the AAA slogan (anyone can say anything about any topic), open world (it is assumed that

there is always more information than known), and non-unique naming (the same entity can

have more names).

Semantic modeling usually starts with the definition of the competency questions to

determine what questions the model should answer (29). Semantic model should anticipate its

possible usage by someone other than its designer in the future, and should be flexible

regarding the ability to upgrade and merge with other semantic models. The meaning of

classes and properties in Semantic Web differs from their meaning in object-oriented

modeling and programming. Properties in Semantic Web exist independently of any class,

they can be used to describe any individual, regardless of which classes it belongs to (29).

Membership of individuals in multiple classes is also possible.

13

Semantic Web consists of a number of modeling languages that are organized in layers (29).

The basis of Semantic Web is the Resource Description Framework (RDF) used for

representing information about things (resources) that can be identified on the web by using

web identifiers (URIs) (30). It can be represented as a graph of nodes and arcs depicting the

resources, their properties and values. This modeling language uses a particular terminology

for various parts of statements: the subject (the thing that the statement is about), the predicate

(the property of the subject), and the object (the value of the property) (30).

The main elements of Web Ontology Language (OWL 2) are classes, properties, individuals,

and data values (31). It is a semantic language designed to represent rich and complex

knowledge. OWL 2 ontologies can be used together with the information written in RDF. The

OWL 2 is chosen to design ontologies in this dissertation, since this modeling language

contains all the concepts required to describe the functionalities of cloud resources, API

operations, and interoperability problems of a platform as a service offers. It is also frequently

used in related papers. OWL is described in more detail in the next subchapter (2.5.2).

2.5.2 OWL

An ontology in OWL is a set of precise statements about the domain of interest (31). Axioms

in OWL are the basic statements of the OWL ontology (31). Entities include all types of

elements used to refer to real-world objects to abstract categories (classes in OWL), relations

(object properties, datatype properties, and annotation properties in OWL), and objects

(individuals). The expressions are combinations of entities to represent complex descriptions

(for example, the atomic classes “man” and “pilot” could be combined to new class of male

pilots). The most important tools when working with OWL are ontology editors used to create

and edit ontologies, and reasoners to infer logical consequences (31).

2.5.3 Ontology

The most cited definition of ontology is: “An ontology is an explicit specification of a

conceptualization“ (32). The ontology defines basic concepts and their relationships in a

14

specified domain of interest. Noy and McGuinness (33) define ontology as “formal explicit

description of concepts in a domain of discourse” (33), together with their properties and

restrictions. The ontologies are most often developed to share common understanding, reuse,

separate, and analyze the existing domain knowledge, and make domain assumptions explicit

(33).

An ontology consists of axioms that are stated in an ontology language (34). An ontology

language lists the available language constructs and the formal semantics, and today there are

many different ontology languages in use. Web ontologies are subtypes of ontologies

designed by using one of the semantic web ontology languages described in the previous

chapter. In his doctoral dissertation, Vrandenčić (34) lists the main elements of a web

ontology: axioms (class axiom, property axiom), facts, annotation, ontology entity, individual,

class and property.

2.5.4 Methodologies for ontology development

Bergam (35) reviewed the existing ontology development methodologies. Many ontology

development methodologies were proposed in the existing literature. However, the pace of

new methodology development has recently waned, but still there is no methodology that is

dominantly used by most researchers. Some of the leading methodologies are (35): ONIONS

(Ontologic Integration of Naive Sources), COINS (Context Interchange System),

METHONTOLOGY, OTK (On-To-Knowledge), Cyc, TOVE (Toronto Virtual Enterprise),

IDEF5 (Integrated Definition for Ontology Description Capture Method), UPON (United

Process for Ontologies) and Ontology Development 101. Most methodologies share general

logical steps from assessment to deployment, testing and improvement. For the purpose of

this research, the Ontology Development 101 methodology (33) was chosen. The

methodology itself and reasons why it was selected as the methodology for developing these

ontologies is described in Chapter 5.1. In the next paragraph, other relevant methodologies

will be elaborated.

Corcho et al. (36) reviewed the methodologies, tools and languages for building ontologies

and relationships among them. Cyc (36) consists of manual codification of knowledge and it

acquires new knowledge using natural language or some machine learning tools.

15

METHONTOLOGY (37) distinguishes the following ontology development states:

specification, conceptualization, formalization, implementation, and maintenance. It promotes

the evolving prototypes approach as a life cycle for developing ontologies. The specification

phase produces specifications written in natural language or using competency questions. In

the conceptualization activity, the obtained domain knowledge is structured into a conceptual

model. METHONTOLOGY recommends the reuse of the existing ontologies when this is

possible. The On-To-Knowledge methodology (36) is based on the analysis of ontology’s

usage scenarios and consists of the following phases: feasibility study, kick-off (ontology

requirements, competency questions, and draft version of the ontology), refinement (mature

ontology is produced), evaluation and ontology maintenance. In 2005, De Nicola et al. (38)

proposed the UPON methodology which is inspired by Unified Software Development

Process and uses Unified Modeling Language (UML) for the preparation of the ontology

development project. UPON is a use-case driven and iterative process that has cycles. Each

cycle has four phases (inception, elaboration, construction, and transition) and output of each

cycle represents a new version of the ontology. Each mentioned phase is divided into

iterations consisting of requirements, analysis, design, implementation, and test workflows. In

2013, Iqbal et al. (39) conducted a literature review on ontology engineering methodologies

and concluded that none of the methodologies are fully mature, and recommended the use of

METHONTOLOGY, UPON and Ontology Development 101 because they all follow an

evolving prototype model and provide some details of used techniques and activities for

ontology development.

2.6 Semantic service oriented architecture

2.6.1 SOA and web services

The main aim of service-oriented architecture (SOA) is to enable loosely coupled and

protocol independent distributed computing (40). The main elements of SOA are services

usually defined as self-contained software modules that are independent of other services

(40). SOA is independent of any specific technology and it assumes that service can be

dynamically located, invoked and combined. Each service consists of interface and service

implementation. The preferred implementation technology for SOA is web services. W3C

describes the term of web service as “a software system identified by a URI, whose public

interfaces and bindings are defined and described using XML“ (41).

16

Generally, there are two types of web service architecture common in practice: WS-* stack

and RESTful web services. WS-* stack uses SOAP for the definition of message architecture

and formats, WSDL to define interfaces syntactically, and a large set of WS-* specification to

enable security, quality of service, and service interoperability (42). REST is based on four

principles (42): resource identification through URI, uniform interface, self-descriptive

messages and stateful interactions through hyperlinks. REST services are much simpler than

SOAP stack, and they are based on standard HTTP methods. In the REST architecture,

everything is a resource which can be located using URIs. Due to its simplicity, a very large

number of service providers are switching to REST (43).

2.6.2 Semantic web services

Current web services provide only syntactical descriptions, so web service integration must be

done manually. Semantic web services are the integration of Semantic Web and service-

oriented architecture implemented in the form of web services. Semantic web services are

aimed at an automated solution to the following problems: description, publishing, discovery,

mediation, monitoring and composition of services.

To implement semantic web service, new languages should be used. OWL-S (Semantic

Markup for Web Services) is the ontology of services that enables users and/or software

agents to discover, invoke, and compose web services (44). This ontology is defined by using

the OWL language. It has three main parts: the service profile for specifying the intended

purpose and functionality of the service; the process model for describing the operation of the

service, and the grounding containing details on how to use a service. Next initiative, the Web

Service Modeling Ontology (WSMO) is used for describing various aspects related to

Semantic Web services (45). It is an extension of the Web Service Modeling Framework

(WSMF). WSMF itself consists of four different elements: ontologies, goals, web services

descriptions and mediators. WSMO refines and extends this framework by developing the

ontology for the core elements of Semantic Web services and the description language that

consists of non-functional, functional and behavioral aspects of web services.

WSMO and OWL-S are heavyweight solutions for semantic web services; they introduce new

languages founded on expressive formalisms and promote the semantics-first modeling

17

approach (46). The heavyweight solutions are perceived as complex in terms of modeling and

computational complexity (47). Lightweight approaches can be used to reduce the complexity

and enhance the existing SOA capabilities with intelligent and automated integration on top of

the existing service descriptions (48). Lightweight service ontologies use the bottom-up

modeling. The most known lightweight approaches include WSMO-Lite, SAWSDL,

MicroWSMO, hRESTS, SA-REST. Furthermore, lightweight service annotation models are

surprisingly cost-effective, because work on the semantic annotation is faster.

To semantically annotate web services, SAWSDL will be used in this dissertation. It is chosen

because SOAP web services described by WSDL were developed, because it is simple, it

possesses a rich ontology-based data mediation mechanism for mapping inputs to outputs of

web services, and there exists a tool that can be easily integrated into the Java application.

SAWSDL consists of extension attributes for WSDL and XML Schema to add semantics to

their components (49). It enables the usage of the semantic annotation by specifying

references to semantic models such as OWL ontologies. The concept from the semantic

models can be referenced from WSDL or XML schema. SAWSDL uses the following

extension attributes (49):

• “modelReference” defines semantics of the inputs or outputs of WSDL operations.

• “liftingSchemaMapping” and “loweringSchemaMapping” are used to specify mappings

between semantic data and mapping language

A model reference can be used with every WSDL element, but its meaning is defined in

SAWSDL only for interface, operation, fault, xs:element, xs:complexType, xs:simpleType

and xs:attribute (49). The same annotation on a WSDL operation or fault gives semantic

information about the annotated operation or fault, and it provides a classification of the

interface on a WSDL interface.

XML Schema simple types can be annotated by using modelReference attribute (49).

Furthermore, complex types can be annotated using two techniques: bottom level (annotation

of the member element or attribute) and top level (annotation of complex type itself) (31). A

“modelReference” attribute can be used to annotate semantic mapping for the data type, but

detailed mappings must be specified for the actual invocation by using

“liftingSchemaMapping” and “loweringSchemaMapping” (50). For this purpose, SAWSDL

18

allows using any mapping language, and its documentation gives examples written in

XQuery, XSLT, and SPARQL.

2.7 AI planning methods

Humans plan when addressing new or complex situations, when there is high risk from

environment, or when they work with large numbers of coworkers on a project. Planning is

“an abstract, explicit deliberation process that chooses and organizes actions by anticipating

their expected outcomes” (51). It aims at achieving the predefined objectives. Planning is a

complex, time-consuming and costly process (51). Planning can come in different forms (51):

path and motion planning (path from a starting point to a goal), perception planning (to sense

actions for gathering information), navigation planning, manipulation planning (to handle

objects), and communication planning. AI planning is mostly interested in domain-

independent approaches where the input that the planner takes is the problem specifications

and domain knowledge (51). Classical AI planning problem consists of a set of all the

possible states, the initial state, the planning goal, and a set of actions together with their

preconditions and effects (1). AI planning for automated service composition is described in

more detail in the next chapter (2.7.1).

2.7.1 AI planning and automated service composition

In the current literature, automated composition of web services was performed using

numerous methods, such as: Event Calculus (52), Petri Nets (53), Colored Petri Nets - (54)

and (55), Linear Logic theorem proving (56), AI planning, logic programming, Markov

process, States Machines, etc. AI planning is one of the most promising techniques to solve a

problem of automated web service composition. Some of the most prominent papers will now

be briefly listed. McDermott (57) showed how to compose simple web services using the

extension of PDDL (Planning Domain Definition Language). Sirin et al. (58) described how

to use AI planner software SHOP2 (Simple Hierarchical Task Network) to compose web

services. Bertoli et al. (59) showed that the tools for automated service composition can be

implemented by using and upgrading an AI planning techniques. They described the

framework for automated service composition and algorithms to solve the service

composition. At the end of their paper, they showed an implementation of the approach and

19

experimental results. Hatzi et al. (60) showed an integrated approach to automated

composition of web services using AI planning techniques. The descriptions of web services

in OWL-S were transformed into the AI planning problem using PDDL (the Planning Domain

Definition Language), while the semantic information was used to improve the process of

composition and to evaluate the optimal composition of services. The implementation of this

approach was made by the integration of the two software systems.

2.7.2 Hierarchical Task Network (HTN) planning

Hierarchical Task Network (HTN planning) is the AI planning technique that is most widely

used for practical applications. This is partly because it provides a convenient way to write

problem-solving "recipes" that is similar to human domain in which an expert thinks about the

ways of solving the problems of planning. An HTN planner uses domain knowledge and

formulates the plan by recursively decomposing the tasks until it reaches primitive tasks that

can be executed directly (61). As an illustration, Anshul Goyal (61) explored how HTN

planning algorithm can be used to perform real-time planning in a stealth-based game. HTN

planning is suitable for service composition because it encourages modularity, it can scale up

to a large number of services, and it has means to deal with failures and costs (62). Sirin et al.

(58) proved the semantic correspondences between the SHOP2 planner and OWL-S, and they

showed how one can use SHOP2 planner to compose web services (62).

20

3. RELATED WORK

3.1 Review of interoperability

3.1.1 Interoperability problems, issues and conflicts

Interoperability is a multidimensional concept where interoperability problems, issues, and

conflicts can occur on multiple levels. The best description of these levels is given in some

interoperability frameworks. European Interoperability Framework (EIF) (63) aims at

interoperability of European public services and identifies four levels of interoperability: legal

(due to incompatibilities of legislation in different EU countries), organizational (business

process incompatibilities), semantic (it is caused by conflicts of the meaning of data elements

and format of the exchanged information), and technical interoperability. IDEAS

interoperability framework (64) distinguishes the following interoperability levels: business,

knowledge, ICT system level, and semantic level. The ATHENA interoperability framework

(65) lists four interoperability levels: enterprise/business (organizational and operational

ability of an organization to work with other organizations), process (level of business

processes), service (flexible execution and composition of services) and information/data

(management and exchange of information). Enterprise interoperability framework (64)

identifies three categories of interoperability barriers: conceptual barriers (syntactic and

semantic data conflicts), technological barriers (incompatibilities between different

architectures, platforms and infrastructures), and organizational barriers (organizational

responsibility, authority and structures). GridWise interoperability framework (66) lists three

interoperability aspects: technical aspects (basic connectivity, network interoperability,

syntactic interoperability), informational aspects (semantic understanding and knowledge to

apply these semantics in process workflows), and organizational aspects (alignment between

business processes, shared business objectives, and economic/regulatory policy).

Legal and organizational interoperability issues will be observed first. Rosati and Lamar (67)

listed privacy, security, Stark Law, non-profit task, antitrust, intellectual property, medical

malpractice and state law issues as the most important legal issues when dealing with

interoperable electronic health records. The results of a case study executed by Hellman (68)

showed ten barriers to organizational interoperability: competency gaps, missing indicators

for measuring organizational interoperability, funding the interoperability projects, national

21

joint efforts, disconnected small projects, different legislation, anemic arenas, under

investigated best practice, people and their managers and ubiquitous heterogeneity. Rauffet at

al. (69) conducted two case studies and discovered the following issues regarding

organizational interoperability between two examined organizations: heterogeneities in

functional practices and processes, communication between different actors, and a missing

means to manage heterogeneous and complex structures. Rana and Ion (70) claim that many

legal issues arise when two organizations work together and give an example of antitrust law.

Vernadat (71) lists several possible organizational issues: different human behaviors, various

organizational structures, heterogeneities in business process organization and management,

different value creation networks and business goals. The main objective of an organizational

interoperability (71) is to coordinate business processes, enable collaboration between the

involved organizations, and address the requirements of users.

In this dissertation, the focus is on the technical and semantic interoperability issues among

commercial providers of platform as a service. For this reason, the next paragraphs will

elaborate on the mentioned types of interoperability problems in more detail. Sheth and

Kashyap (72) classified and defined the most important interoperability conflicts among

multiple independent database systems. They listed the following main categories of

incompatibilities (72): domain definition incompatibility (attributes have different domain

definitions), entity definition incompatibility (descriptors used for the same entity are partially

compatible), data value incompatibility (inconsistency between related data), abstraction level

incompatibility (the same entity is represented at different levels of abstraction), schematic

discrepancy (data in one database corresponds to schema elements in another). For each

incompatibility category, Sheth and Kashyap listed possible concrete conflicts.

Parent and Spaccapietra (73) listed the most relevant issues and the approaches to tackle data

interoperability problem when integrating databases. They distinguished seven categories

(73):

- Heterogeneity conflicts: different data models

- Generalization/specialization conflicts: different generalization/specialization hierarchies

and different classification abstractions

- Description conflicts: types have different properties and/or their properties are described

differently (73)

- Structural conflicts: different structures of related types

22

- Fragmentation conflicts: the same object is depicted by decomposition into different

elements (73)

- Metadata conflicts

- Data conflicts: data instances have different values for the same properties.

Park and Ram (15) conclude that semantic conflicts among databases can occur at two levels:

data and schema. Data-level conflicts include data-value conflicts (the data value has different

meaning in different databases), data representation conflicts (such as different

representations of date and time), data-unit conflicts (different units are used in different

databases), and data precision conflicts. All data-level conflicts can occur at the attribute level

or at the entity level. Schema-level conflicts include (15): naming conflicts, entity-identifier

problems, schema-isomorphisms, conflicts of generalization, aggregation conflicts, and

schematic discrepancies.

Haslhofer and Klas (74) dealt with metadata interoperability and provided a classification of

heterogeneities impending interoperability from a model-centric perspective. They distinguish

two classes of heterogeneities: structural heterogeneity and semantic heterogeneity. Structural

heterogeneities occur at the model level in the form of:

- Naming conflicts – different names of model elements that represent the same real object

(74).

- Identification conflicts – model elements are identifiable by their name or by identifier

- Constraints conflicts – different definition of constraints in different models (74)

- Abstraction level incompatibilities – different generalization of aggregation of the same real-

world object (74)

- Multilateral correspondences – an element from one model corresponds to multiple models

in another model (74)

- Meta-level discrepancy – The same elements in one model could be modeled differently in

another model (74).

- Domain coverage – Real-world concepts described in one model are missing from the other

model (74).

Semantic heterogeneities occur because of the differences in the semantics of models:

- Domain conflicts – incompatible or overlapping domains (74).

- Terminological mismatches – synonyms or homonyms

23

- Scaling/unit conflicts

- Representation conflicts – different encoding schemes for content values (74).

Ponnekanti and Fox (75) examined if it is feasible to substitute one vendor service for another

when using SOAP web services. They classified interoperation incompatibilities into:

structural (a mismatch in the structure of ingoing and outgoing messages), value (occurrence

of unexpected filled-in values in ingoing or outgoing messages), encoding and semantic

(vendors’ extensions with the same structure and value, but different meaning). In their paper,

Ponnekanti and Fox (75) focused on structural and value incompatibilities and defined the

following classes of incompatibilities: missing methods, extra fields, missing fields, facet

mismatches (different types for input or output fields), and cardinality mismatches (different

cardinality requirements for the field). Zhu et al. (76) addressed the problem of large scale

data integration in the healthcare domain and described the following heterogeneities among

different data sources:

- Naming – synonyms and homonyms

- Relational structure varies

- Value – different representations of values in different databases

- Semantic – differences in meaning or the context in different databases

- Data model differences and transformations

- Timing – changes in the structure of the database, attribute representations and values over

time

- Syntax – query languages may be different

- Different transaction mechanisms in different databases

- Different security mechanisms and policies in different systems

Nagarajan et al. (77) classified the types of heterogeneities that can occur between web

services and presented a possible solution for data interoperability using semantic descriptions

and schema/data mappings. They used pre-defined mappings to enable data mediation in web

services environment. Message or data heterogeneities exist when the data elements sent

between the two services are incompatible (77). There are no syntactic heterogeneities,

because the XML resolves them. The main classes of heterogeneities in web services are (77):

attribute level incompatibilities (different descriptions are used to model similar attributes),

entity definition incompatibilities (different descriptions are used to model similar entities),

24

and abstraction level incompatibilities - different levels of abstraction (77). In their approach

to solve the aforementioned interoperability problems, Nagarajan et al. (77) used SAWSDL

(49) to annotate web services with semantic concepts from an external ontology. Data

mediation between services can be achieved by means of the manual mappings, but these

mappings have to be changed every time the services are modified. An alternative solution is

more flexible, and it maps inputs and outputs to a conceptual model (77). Through ontologies,

web services can resolve their message level heterogeneities. A similar approach will be used

in this dissertation to solve interoperability problems among API operations of different PaaS

vendors. The support for data mediation in SAWSDL is provided by using the

'liftingSchemaMapping' and ‘loweringSchemaMapping’ attributes on web service message

input and output elements to create mappings with the ontology concept with which input or

output is associated with (77).

3.1.2 Cloud computing interoperability

Basically, cloud users want to be able to transfer data or applications among multiple cloud

environments and connect each other across various clouds (78). Petcu (27) listed various

definitions of cloud interoperability as the ability to model the programmatic differences,

translate between different abstractions of clouds, move applications from one cloud to

another, enable applications to run on multiple clouds, port data between cloud providers, use

unified management tools for multiple clouds. The development of a common interface for

accessing a variety of clouds in a unique way is shown by Tao et al. (79). This paper

demonstrates functions of a service request and the graphical interface to display information

about cloud computing services that are available to the user. Rodero-Merino et al. (80)

propose a new abstraction layer for infrastructure as a service. This layer is closer to the

service lifecycle and it provides automatic deployment, definition and management of

services. Ranabahu and Maximilien (81) describe their own Altocumulus middleware to

homogenize different cloud solutions and the associated cloud best practice model. Bernstein

and Vij (82) present their InterCloud Directories and Exchanges mediator to enable

connectivity and collaboration among cloud vendors. They define their ontology of cloud

computing resources by means of the Resource Description Framework (RDF). Merzky,

Stamou and Jha (83) demonstrate a proof-of-concept of application-level interoperability

among different clouds and grids by means of the SAGA-based implementation of

MapReduce. They developed a range of cloud adaptors for SAGA. MapReduce is a Google’s

25

programming framework used to simplify data processing of massive data, and SAGA is a

programming interface for developing distributed applications in an infrastructure

independent way.

Ranabahu and Sheth (84) present the usage of semantic technologies to overcome cloud

vendor lock-in issues. They distinguish four types of semantics for an application: data

semantics (definitions of data structures, their relationships and restrictions), logic and process

semantics (the business logic of the application), non-functional semantics (e.g. access control

and logging) and system semantics (deployment descriptions and dependency management of

the application). Buyya et al. (85) present the vision, challenges and architecture of a utility-

oriented federation of cloud computing environments. In their paper, Buyya et al. advocate

the creation of a federated cloud. The reference architecture for semantically interoperable

clouds (RASIC) was proposed by Loutas et al. (86). The main aim of the architecture is to

enable the design, deployment and execution of new services using semantic descriptions of

different cloud computing offerings.

Demchenko et al. (87) presented their inter-cloud architecture which they plan to use as a

basis for building framework for cloud service integration. This is work in progress, and only

the initial abstract model was defined. In his master’s thesis, Fazai (88) proposed a three-

dimensional space to assess the cloud provider’s interoperability level. He argues that before

choosing any provider, clients need to answer questions of vendor’s interoperability level.

The first dimension of Fazai’s model is technology. It represents the interoperability level of

the technology used by the specified cloud provider and it evaluates whether users can move

their applications, data and virtual machines without significant effort. Management

dimension includes vendor’s management’s tools and their level to support interoperability.

The third dimension is concerned with provider’s constraints or regulations.

Miranda et al. (89) used software adaptation techniques to tackle cloud interoperability and

migration. Software adaptation techniques are aimed at developing mediator elements, called

adaptors (89). They identified three important interoperability problems of cloud service

based applications: communication is conditioned by the technology supported by each

vendor, invoking third-party services is limited by the supported invocation mechanisms,

portability problems occur due to vendor-specific technologies. The variability among

26

different providers’ APIs and service specifications can be defined by using formal methods

and by generating the required mappings and adaptation components. Bhukya et al. (90)

showed how to use web services to connect Google App Engine and Windows Azure. Bastiao

Silva et al. (91) developed a unified API for delivering services using cloud resources of

multiple vendors with abstract layer for cloud blob stores, cloud columnar data (e.g. Azure

Table), and Publish/Subscribe mechanism (Channel API of Google App Engine and Azure

Queue).

Ma et al. (92) introduced service mediators that mediate the collaboration of services. Their

idea is to specify service-oriented applications that involve yet unknown component services.

Their mediator consists of local components and yet unknown services and it specifies the

flow of data in and out of services. They argue that a service description should comprise

three parts: a functional description of inputs and outputs, pre- and post-conditions; a category

of the service operation; and a quality of service (QoS) attributes. Khalfallah et al. (93)

proposed the use of a two-phase semantic data mediation model and a cloud-based platform to

achieve interoperability for collaborative product development in the aerospace industry.

They converted the proprietary data models into OWL ontology and mapped it to the

reference OWL ontology that contains concepts from data exchange standards in the

aerospace industry. They also used other conversion rules for data transformations. Their

mapping ontology describes the concepts to map classes, object properties and data

properties.

Guillen et al. (94) proposed a framework for cloud agnostic software development. An

application is converted into sets of cloud artifacts that contain predefined structure, source

code, adapters and interoperability elements. A deployment plan of a software project

contains cloud artifacts and their configuration parameters, services to achieve

interoperability, and adapters for cloud integration. The core component of the framework is

Cloud Variability Model (94) that contains information (service catalogue, technological

restrictions, templates, and configuration parameters) about all supported cloud platforms.

There are several cloud APIs and frameworks that act as intermediaries between different

clouds. Apache Libcloud (95) is a Python library containing a unified API that can manage

cloud resources of different providers. This library is focused on infrastructure as a service

27

and supports cloud servers, block storage, cloud object storage, load balancers, and DNS as a

service. Deltacloud API (96) contains a cloud abstraction API working as a wrapper around a

large number of clouds to abstract their differences. It is also focused on IaaS providers and

provides drivers for Amazon, Eucalyptus, GoGrid, OpenNebula etc. Apache jclouds (97) is an

open-source library offering blob (binary content) store and compute service abstraction for

30 IaaS providers.

There are also some commercial (industrial) approaches to tackle cloud portability and

interoperability. For example, Cloutex can integrate and synchronize data between Salesforce,

Quickbooks Online and Magento. A similar offer, Import2.com, enables transfer of data

between cloud application such as Salesforce, Tumblr, Nimble, Pipedrive, SugarCRM, and

Zoho CRM. Import2 is currently focused on CRM, helpdesk and blog migration of cloud data.

The mentioned two offers are focused on SaaS data.

3.1.3 Research projects on the cloud interoperability

Cloud computing interoperability is a very active research topic and several European

research projects used to be or are currently concerned with it. The main objective of the FP7-

funded Cloud4SOA project (16) was to open up the cloud market to small and medium

European providers of platform as a service and solve the vendor lock-in problem.

Researchers involved in the mentioned cloud project planned to semantically interconnect

heterogeneous platform as a service (PaaS) solutions that share the same technology

(programming language and frameworks). The main research objectives were: design of

semantic interoperability framework, introduction of reference architecture to interconnect

different clouds and development of Cloud4SOA system. This project is dealing with

semantic interoperability at platform level (98). Cloud4SOA interoperability framework is

described in the deliverable D1.2 (16). Cloud Semantic Interoperability Framework has the

following core dimensions (86): fundamental entities (e.g. system, offering, API, cloud

application), types of semantics (e.g. functional, non-functional, execution), and semantic

conflict levels (information model and data). Loutas et al. (86) claim that a semantic conflict

arises when semantic descriptions of the aforementioned fundamental PaaS entities are

incompatible. The core capabilities of Cloud4SOA are (99):

28

 Semantic matchmaking – It lists the offerings of platform as a service that satisfies

defined user requirements

 Management capability – It supports the deployment and management of applications

on PaaS offers.

 Migration capability – It enables migrating applications from one supported PaaS offer

to another.

 Monitoring capability – It monitors the performance of application hosted on clouds.

Cloud4SOA uses repository layer to store semantic and syntactic data (99). Semantic data

includes RDF triples of developer’s profiles and PaaS providers’ capabilities. Harmonized

API component is a unified PaaS API that contains a number of operations for the

management of the cloud applications. The adapter that translates operations of this unified

API to vendors’ native APIs is also developed. Cloud4SOA API includes methods for

working with instances of platform as a service, for deployment of applications, for migration

of the application, for monitoring, for discovering offering of platform as a service, for

recommendation of PaaS offerings, and for user management.

Another FP7 project, mOSAIC (100), aims at creating, promoting and exploiting an open-

source Cloud API and a platform targeted for developing multi-cloud applications. The

existence of standard API could simplify the development process, increase the adoption of

cloud services and enable the interoperability of data and services of different cloud

providers. Petcu et al. (98) presented an integrated overview of the mOSAIC’s architecture

and its various usage scenarios.

The FP7-funded Contrail project (101) is aimed at designing an open source system for cloud

federations. Cloud federation in Contrail implies (102) integrating platform as a service and

infrastructure as a service offers, integrating resources from other clouds with private

infrastructure, and allowing live application migration across clouds. The Contrail project

key objectives are: to support the pay-per-use model, to enable users to specify the quality of

service requirements in the Service Level Agreements (SLAs) and to integrate elastic resource

provisioning capabilities to the deployed applications. Contrail is developing a software stack

that enables (103): federation (combines services from different cloud providers), identity

management (federated identity management to use all services from different cloud vendors),

federated service level agreements (user defines them and the system translates them into

29

requirements), cloud file system, and interoperability layer that eases the management of

infrastructure and deployment of the application.

Vision Cloud project (104) was primarily concerned with developing the architecture of a

cloud-based infrastructure to provide a scalable and flexible framework for optimized delivery

of data-intensive storage services. Its main aim is to solve the data management conflicts in

cloud federations and multi-clouds. Federated cloud assumes a formal vendors’ agreement,

while the term multi-cloud (105) denotes the usage of multiple independent clouds. Five areas

of innovation in the VISION Cloud platform (104) include: data objects are enriched with a

detailed metadata, data lock-in should be avoided, computations are put close to the data,

efficient retrieval of objects is enabled, and strong QoS guarantees, security and compliance

with international regulations are guaranteed. Vision Cloud builds storage of tens of data

centers, and it can serve millions of clients with billions of data objects that contain data of

arbitrary type and size and corresponding metadata. Data objects are grouped into containers

that can have associated metadata descriptions. Researchers working on Vision Cloud project

used CDMI standard to achieve interoperability among CDMI-compliant cloud storage

vendors. They also introduced the on-boarding federation to move data from one cloud

storage provider to another. Vision Cloud’s approach uses a cloud storage container as the

basic unit of federation. Vision Cloud offers a RESTful API to manage data federation. The

Federator-Direct component provides a unified view of a data container distributed over the

new and old cloud (106). The FederatorJobsExecutor is responsible for moving the data and

their corresponding metadata. Multi-Cloud Adapter implements multiple existing cloud data

APIs and converts metadata formats.

Mohagheghi and Saether (107) presented the achievements of REMICS whose main aim was

the development of the methodology and tools for model-driven migration of legacy

applications to software as a service solutions. The primary goal of the mentioned project is to

transform legacy systems into UML models, and to manipulate these models to migrate

applications to clouds. REMICS extracts the architecture of the legacy application, analyzes it

and finds out how to modernize it. This information is converted into models that represent

the start of the migration activity. Researchers working on REMICS project defined a

methodology (108) for the migration of legacy systems to clouds. Their methodology consists

of the following activities: requirements and feasibility (to gather the migration requirements),

30

recover (to get the application model of the legacy application), migrate (to migrate to the

cloud), validation (to define testing strategy), supervise (to control the performance of the

system), interoperability (to solve interoperability problems), and withdrawal (to stop the

service). They developed the PIM4Cloud (109) metamodel and UML profile, an extension to

the existing modeling standards that supports specification of deployment to cloud platforms

from an application designer perspective. For now, PIM4Cloud does not provide elements to

abstract PaaS in application models due to the high degree of heterogeneities of PaaS

solutions (109).

MODAClouds (110) plans to provide methods for deployment on multiple clouds and for data

synchronization among multiple clouds by using model-driven techniques. This project is in

initial phase; it started in October 2012 and will last until September 2015. They plan to

develop MODAClouds IDE to support a cloud-agnostic design of software.

3.1.4 Cloud computing interoperability use cases

Several cloud computing interoperability use cases have already been described in the current

literature. The FP7 project Cloud4SOA (111) defines the following usage scenarios:

deploying a service-based application on the Cloud4SOA platform, and migration

to/deployment on a different platform as a service provider. In the other deliverable of the

same project, four semantic interoperability use cases were defined (16):

• Deployment of an application on a PaaS offering

• Migration of an application deployed on one PaaS solution to a different PaaS offering

• Hybrid clouds: PaaS systems/offering interoperation

• Integration between applications deployed on different PaaS offerings

Another FP7 project, Contrail (112), describes four use cases that represent a diverse set of

requirements:

• Distributed provision of geo-referenced data which is an implementation of a 3D Virtual

Tourist Guide (VTG service)

• Multimedia processing service marketplace that will exploit Contrail federated cloud to

develop a marketplace offering multimedia services to end-users

• Scientific data analysis that will archive climate model output data and the neutron

scattering

31

• Electronic drug discovery use case plans to use modern bioinformatics tools/applications on

a federated cloud system

The research project mOSAIC (113) covers three basic business scenarios for using multiple

Clouds:

• Switch the cloud – Application developers or their clients should easily change the cloud

provider

• Service brokerage – Finding the best cloud services for a certain application

• Development of cloud applications

There are several application scenarios (113) that will be deployed by project partners:

• Document manager – Receives and classifies documents and offers dedicated services for

searching them.

• Cloud bursting – In order to face a peak of requests, the provider buys additional resources

from other cloud providers and resells them to its final users.

• A port of document transformation and information extraction algorithms into the cloud

environment.

• Structural dynamics application that is used by civil engineers to study the behavior of a

structure when subjected to some action.

• Earth observation

• A railway company – A project for the maintenance of devices, early diagnosis of faults and

real-time monitoring.

The real world scenarios that drive Vision Cloud FP7 project (114) are:

• SAP – Business intelligence on-demand – Vision Cloud will be used for storage, data

mobility and data federation

• Telco use case – telecommunication operators want to offer data-intensive applications with

high quality of service

• Media use cases – videos in clouds

• Healthcare use case – personalized healthcare applications based on patient health records

Badger et al. from NIST (115) listed 25 cloud computing use cases, and some of them are

directly related to cloud interoperability:

• Copy data object between cloud providers

• Cloud burst from data center to cloud

• Dynamic operation dispatch to infrastructure as a service (IaaS)

32

• Migrate a queuing-based application

Some use case scenarios from the Open Cloud Manifesto (116) are also related to

interoperability:

• Cloud applications deployed on the public cloud interoperate with partner applications

• Switching cloud vendors or working with additional ones

• Hybrid clouds – multiple different clouds should be able to work together to federate data

and applications

Microsoft established the IEC Council in June 2006 as a means of regularly interacting with

customers to solve their technology interoperability challenges. Their white paper (117)

describes ten of the most common cloud computing use cases from a practical point of view

based on customer experience:

• Move three-tier application from own servers to cloud

• Move three-tier application deployed on cloud to another cloud vendor

• Move part of application to cloud to create hybrid applications

• Hybrid application with shared user identity

• Move hybrid application to another similar cloud

• Hybrid cloud application using platform services

• Port cloud application using platform services to another cloud vendor

• Develop cloud application for multiple clouds

• Cloud application workload requires use of multiple clouds (cloudburst)

• Users can “shop around” for cloud services

Even from the first use case, application and data portability is a key requirement (117). A

raw listing of use cases and scenarios from different sources can be summarized, so use case

and scenarios are here divided into five categories described in Table 1.

Table 1 Summary of the existing use cases and scenarios

Category Description List of use cases and scenarios

Cloud

deployment

and

migration

Development and

deployment on cloud,

migration of data and

application from on-

premise to cloud or from

one cloud to another

- Application deployment on a PaaS solution (16)

- Migration of an application to a different PaaS

offering (16)

- Changing the cloud (113)

- Development of cloud applications (113)

- Copy data object between cloud providers (115)

33

- Migration of a queuing-based application (115)

- Move three-tier application to cloud (117)

- Move three-tier cloud application to another

cloud vendor (117)

- Move hybrid application to another similar cloud

(117)

- Port cloud application that uses platform

services to another cloud (117)

- Move part of application to cloud to create hybrid

applications (117)

- Switch cloud providers or work with additional

providers (116)

Cloud

application

cooperation

Cooperation among two

or more applications on

different clouds, or

cooperation among

components of one

application where

components are deployed

on multiple clouds

- Integration between applications on different

PaaS offerings (111)

- Cloud applications deployed on the public cloud

interoperate with partner applications (116)

- Hybrid application with shared user identity (117)

- Hybrid cloud application that uses platform

services (117)

- Create cloud application with components that

run on multiple clouds (117)

Federated

cloud

Data and/or applications

use federated cloud

- Distributed provision of geo referenced data

(112)

- Multimedia processing service marketplace

(112)

- Scientific data analysis on federated cloud (112)

- Electronic drug discovery on a federated cloud

system (112)

- Business intelligence on-demand for storage,

data mobility and data federation (114)

- Telco use case to offer data-intensive

applications with high quality of service (114)

- Media use cases with videos in clouds (114)

- Personalized healthcare applications based on

patient health (114)

- Hybrid clouds where multiple clouds work

together (116)

Cloudburst Cloud application requires - Cloud burst from data center to cloud (115)

34

use of multiple clouds - Dynamic operation dispatch to infrastructure as

a service (115)

- Cloud application requires use of multiple clouds

(117)

Brokerage of

cloud

services

Finding appropriate cloud

services among services

of different providers

- Finding the best cloud services for a certain

application (113)

- Users can “shop around” for cloud services (117)

3.1.5 Interoperability methodologies

There are some interoperability methodologies in the existing literatures that are mostly

concerned with enterprise interoperability. The ATHENA Interoperability Methodology

(AIM) (118) is an extension of the Unified Software Development Process (UP) (119) which

introduces a group of interoperability activities. AIM is used to identify interoperability issues

and select the adequate ATHENA solutions. Chen and Daclin (120) proposed four main

phases of methodology for interoperability:

 Definition of interoperability objectives and needs

 Analysis of the existing system to identify interoperability barriers and measure

current interoperability level

 Select and combine solutions

 Implementation and testing

Sanati et al. (121) presented their E-service Integration Methodology (E-SIM) to solve

complex interoperability problems and configure service workflow. The tasks in the

mentioned methodology include specification of life-event requirements of the user of the

service, specification of interoperability requirements at business process, data, and interface

levels, detailed design of e-government services, design and implementation of Semantic Web

specifications.

European Interoperability Framework (EIF) (63) addresses interoperability of European

public services at four identified interoperability levels: legal, organizational, semantic, and

technical. The involved public organizations should make interoperability agreements for

each level, such as agreements on transposition of European directives to national legislation,

35

SLAs, reference taxonomies, code lists, data dictionaries, interface specifications, data

formats etc. Interoperability agreements specify one or more interoperability solutions that are

implemented by one or more interoperability solution instances. Due to environment

changes, interoperability of European public services is a continuous task.

3.1.6 Data mediation between the services

When dealing with the composition of web services, a dominant interoperability problem is

how to map the inputs and outputs of the involved services, and in most cases, data mediation

is required to achieve interoperability among web services (122). Many works in the existing

literature address the mentioned problem. Nagarajan et al. (122) proposed a data mediation

architecture that uses WSDL-S for mapping from inputs and outputs to common ontology and

vice versa. The web services should be semantically annotated by using WSDL-S, and

mapping engine was used to transform SOAP messages according to defined XSLT or

XQuery mappings. WSDL-S later became the main input for W3C recommendation

SAWSDL that provides similar data mediation mechanism. The main contributors of

SAWSDL standard were members of METEOR-S research project and IBM (123). Sheth et

al. (123) claim that key SAWSDL's benefit is systematic data mediation where XSLT is used

to map a service schema to the ontology (lifting schema mapping) and vice versa (lowering

schema mapping). Klímek and Necaský (124) introduced a model-driven method to

automatically generate XSLT for lifting and lowering schema mappings and its prototype

implementation.

Li et al. (125) presented an approach to reconciliate semantic conflicts in the composition of

web services. They used COIN ontology, SAWSDL and mapping algorithms to handle

complex differences by using minimal numbers of predefined transformations. The method to

automatically analyze data flows of BPEL process and automatically determine possible

semantic differences is also shown in the same paper. Stollberg et al. (126) proposed

mediation model for Semantic web services using WSMO mediators at data, functional, and

process level.

36

3.2 Ontologies

3.2.1 Cloud ontologies

There are several existing studies involving cloud computing ontologies. One of the first

attempts was introduced in Youseff at al. (127). They presented an ontology which

differentiates five main layers of cloud computing (applications, software environments,

software infrastructure, software kernel and hardware). Weinhardt et al. (128) proposed a

cloud business ontology model to classify current cloud services and their pricing models into

three layers: infrastructure as a service, platform as a service and application as a service.

Deng et al. (129) introduced a formal catalog of cloud computing services modeled by means

of ontological representation. Takahashi, Kadobayashi and Fujiwara (130) applied the

ontology for cyber security to cloud computing. Adrian Martinez et al. (131) used the

ontology for malware and intrusion detection based on cloud computing and created an

ontological model for reaction rules that could form the prevention system.

The concepts of the mOSAIC’s cloud ontology (132) were identified by analyzing standards

and the existing cloud interoperability and integration works from literature. This ontology is

used for retrieval and composition of cloud services in mOSAIC’s usage scenarios. Bernstein

and Vij (82) developed a mediator to enable collaboration among different cloud vendors.

They defined the ontology of cloud computing resources using RDF.

Han and Sim (133) presented a cloud service discovery system with ontology determining the

similarities among different cloud offers. They created agent-based discovery system to assist

users in searching the available cloud services. Kang and Sim (134) proposed a cloud

ontology to define the relationship between different cloud services. They used similarity

reasoning of concepts, object properties, and data properties. In the same paper, they

presented their own search engine that uses the defined ontology to retrieve cloud service

compatible with user’s requirements. Dastjerdi et al. (135) presented an ontology-based

discovery architecture providing QoS-aware deployment of virtual appliances on

infrastructure as a service. Ma et al. (136) presented clouds formalism by a description of

cloud services in the form of ontology. These descriptions contain service types, pre- and

post-conditions, and keywords that describe the functionality of the annotated service.

37

Cloud computing ontologies are predominantly applied in the description, discovery and

selection of the best service alternative in accordance with users’ requirements. The existing

cloud computing ontologies are mostly general and detailed ontologies of each cloud

computing layer (software as a service, platform as a service and infrastructure as a service)

are still missing. The most mature ontology is mOSAIC ontology, but it is focused on

infrastructure as a service model and SLA. The ontologies presented in this dissertation are

focused on remote operations of PaaS providers’ APIs and interoperability problems among

different platform as a service offers. There are not any similar ontologies in the existing

literature.

3.2.2 Ontology anomalies and ontology evaluation

There are some ontology anomalies and pitfalls that can arise during ontology modeling.

Poveda-Villalón et al. (137) manually inspected pitfalls in ontologies of 26 students. They

have identified 24 pitfalls and classified them into (137): consistency (creating polysemous

elements, defining wrong inverse relationships, including cycles in the hierarchy, merging

different concepts in the same class, misusing “allValuesFrom”, misusing “not some” and

“some not”, specifying wrong the domain or the range, swapping intersection and union,

using recursive definitions), completeness (unconnected ontology elements, missing basic

information, missing domain or range in properties, missing equivalent properties, missing

inverse relationships, misusing primitive and defined classes), and conciseness (creating

synonyms as classes, creating the wrong relationship, specializing a hierarchy too much, using

a miscellaneous class). In their other work (138), the same authors presented a web based tool

called OOPS! that can detect the mentioned anomalies in OWL ontology. Baumeister and

Seipel (139) explored anomalies in ontologies used with rule extensions. They distinguish

four categories of anomalies: circularity (exact circularity in taxonomy and rules, circularity

between rules and taxonomy, circular properties), redundancy (identity errors, redundancy by

repetitive taxonomic definition, rule subsumption, redundant implication, redundant

implication of transitivity or symmetry, redundancy in the antecedent of a rule, etc.),

inconsistency (partition error in taxonomy, incompatible rule antecedent, self-contradicting

rule, contradicting rules, multiple functional properties), deficiency (lazy class/property,

chains of inheritance, lonely disjoint class, property clump).

38

The evaluation of ontology was discussed in many of the existing works. Ontology can be

evaluated by itself, with some context, within an application, and in the context of an

application and a task (34). Gomez-Perez (140) divides ontology evaluation into ontology

verification and ontology validation. Lovrenčić and Čubrilo (141) also recognized the fact that

the most important parts of an ontology evaluation are verification and validation. Ontology

verification evaluates the correctness of the ontology building process. It finds errors such as

circular class hierarchies, redundant axioms, and inconsistent naming schemes. Ontology

validation evaluates whether the meanings of ontology elements really match the specified

conceptualization.

Vrandečić (34) analyzed the ontology quality criteria, and summarized them into the

following important criteria: accuracy (the axioms of the ontology must comply to the domain

expert’s knowledge; classes, properties, and individuals must be correctly defined),

adaptability (the ontology can be extended and specialized without the need to remove the

existing axioms), clarity (ontology should clearly communicate the meaning of its elements

by using concise element names and documentation), completeness (the domain of the

ontology must be appropriately covered), computational efficiency (the reasoning complexity

and the ability of tools to efficiently work with the ontology), conciseness (only essential

ontology elements should be defined, irrelevant or redundant elements should be removed),

consistency (there are no contradictions in the ontology), and organizational fitness (how

easily an ontology can be used within an organization). Competency questions are defined to

describe what knowledge the specific ontology must possess (34). These questions can be

formalized in a semantic query language.

Brank et al. (142) differentiate four main ontology evaluation approaches: comparison of the

ontology to the gold standard, using ontology in an application and evaluating the results,

comparison to the data about the domain and human evaluation. Ontology is a complex

structure, so Brank et al. (142) propose evaluation separately on each level of the ontology:

lexical layer; hierarchy; other semantic relations; context or application level; syntactic level;

and structure, architecture and design level. Amirhosseini and Salim (143) listed three main

approaches for ontology evaluations: gold standard evaluation (comparison with benchmark

ontology), task-based evaluation (Can the ontology complete the pre-defined tasks?), and

criteria-based evaluation (human evaluation based on some criteria).

39

3.3 AI planning

3.3.1 AI planning methods and cloud computing

Some initial works on using AI planning methods in cloud computing were published. Weber

et al. (144) used an AI planner to discover the appropriate sequence of the available Amazon

API operations in order to rollback to checkpoint. They implemented a proof-of-concept

prototype by choosing AWS as the domain and the PDDL as the planning formalism. They

formalized part of Amazon AWS APIs in a planning domain model, and used planner to

create undo sequences for rollback. Zou et al. (145) proposed a framework for web service

composition in multi-cloud environments. Their proposed method is based on AI planning

and combinatorial optimization to minimize the number of clouds involved in a service

composition sequence. They tried to upgrade traditional web service selection and

composition methods to address new possible requirements where web services can reside on

multiple clouds. Different cloud platforms have different functionalities in terms of adaptivity,

scalability, and load scheduling, so different algorithms are needed for the selection and

composition of web services deployed on various clouds (145). They modeled web services in

multiple clouds as trees, defined an approximation algorithm to select services, and used AI

planning for service composition.

3.3.2 Gaps in planning domains

Goebelbecker et al. (146) addressed the problem when AI planners are unable to come up

with a plan. They presented an algorithm to find excuses for not being able to find a plan.

Planning task can be changed so it is possible to generate a solution and find out why

planning failed in the first place (146). In their paper, they concentrated on the changes to the

initial state. Excuses enable users not only to realize that something went wrong, but also to

decipher what went wrong. They defined an excuse as a change in the initial state without

adding fluent values that contribute to the plan’s goal (146). Goebelbecker et al. (146)

transformed the problem of finding excuses into planning a problem by adding new operators

that change the candidates of excuses. Kungas and Matskin (147) showed how to apply partial

deduction for finding possible missing web services and identifying possible inconsistencies

40

in the descriptions of semantic web services. Yan et al. (148) proposed repair techniques

instead of recomposition when available web services and requirements change and

compositions become broken. They used graph planning to complete this task. Vukovic and

Robinson (149) presented framework that reformulates failed goals into new AI planning

problems and to show partial satisfaction of a goal. Friedrich et al. (150) proposed a self-

healing model-based approach to dynamically create repair plans for faulty activities in web

service compositions.

3.4 Summary of the existing work

To present the summary of the existing work, the method of systematic mapping study was

chosen. The main aim of these studies is to give an overview of a research field. Petersen et

al. (151) listed five essential steps to perform a systematic mapping study in software

engineering:

1. Definition of research questions – Research questions are specified to determine the

research scope of the systematic mapping study.

2. Conduct search – Studies are found by executing a search string derived from research

questions on scientific databases.

3. Screening of papers – Irrelevant papers are excluded based on the defined inclusion and

exclusion criteria.

4. Keywording using abstracts – In this step, researchers need to read abstracts, look for

keywords (main concepts) and build classification scheme.

5. Data extraction and mapping of studies – The relevant studies are presented and

summarized in the form of a systematic map.

3.4.1 Systematic mapping study on cloud interoperability

Based on the steps proposed by Peterson et al. and described in the previous chapter, the

systematic mapping study on cloud interoperability was performed in July 2014. The main

aim of this study was to get an overview of the existing work on cloud interoperability,

determine which interoperability of which cloud model (IaaS, PaaS, or SaaS) is most

investigated, and recognize the main existing methods and tools used to achieve cloud

41

interoperability. These goals are reflected in the defined research questions for the mapping

study.

3.4.1.1 Research scope of the systematic mapping

RQ1: Which model of cloud computing is best investigated in the existing literature regarding

cloud interoperability?

RQ2: What types of papers are published in the cloud interoperability area?

RQ3: What are the most frequently applied methods and techniques to achieve cloud

interoperability?

RQ4: Which journals include papers on cloud interoperability?

RQ5: Which types of interoperability problems are most investigated?

3.4.1.2 Conduct search

The studies were identified by using a search string ("cloud interoperability" OR "cloud

provider lock-in" OR "cloud vendor lock-in") on the following databases: IEEE Xplore,

Scopus, INSPEC, Science Direct, Springer Link, Web of Science, and Google Scholar. The

full text search was performed on 15th July 2014. A total of 1182 publications were identified

and their distribution per scientific database is shown in Table 2.

Table 2 Distribution of the found publications

Source Number of

publications

IEEE Xplore 146

Scopus 108

INSPEC 30

Science Direct 35

Springer Link 91

Google Scholar 772

3.4.1.3 Screening of papers

Irrelevant studies (publications that are not relevant to answer the stated research questions of

the systematic mapping) were excluded based on the analysis of their titles, abstracts and

keywords. Book chapters, scientific conferences and journal papers on cloud interoperability

and cloud provider lock-in were included. Duplicate studies and papers not written in English

42

were excluded. If several papers reported the same findings, only the newest work was

included. If abstract was not good enough to determine whether the focus of the work is on

cloud interoperability, introduction and conclusion was read to determine whether to include

this article or not. Review papers were excluded; only papers that describe solutions to some

cloud interoperability problems were included. Finally, the list of all 41 studies considered to

be relevant is shown in Table 3.

Table 3 Full list of identified relevant papers

Id Authors Paper title

P1 Dowell et al. (152) Cloud to Cloud Interoperability

P2 Di Martino et al. (153) Semantic and Agnostic Representation of Cloud

Patterns for Cloud Interoperability and Portability

P3 Petcu et al. (154) Building an interoperability API for Sky computing

P4 Hill and Humphrey (155) CSAL: A Cloud Storage Abstraction Layer to Enable

Portable Cloud Applications

P5 Loutas et al. (156) A Semantic Interoperability Framework for Cloud

Platform as a Service

P6 Mindruta and Fortis (157) A Semantic Registry for Cloud Services

P7 Thabet and Boufaida (158) An Agent-Based Architecture and a Two-Phase

Protocol for the Data Portability in Clouds

P8 Emeakaroha at al. (159) Analysis of Data Interchange Formats for

Interoperable and Efficient Data Communication in

Clouds

P9 Miranda et al. (160) Assisting Cloud Service Migration Using Software

Adaptation Techniques

P10 Boob et al. (161) Automated Instantiation of Heterogeneous FastFlow

CPU/GPU Parallel Pattern Applications in Clouds

P11 de Morais et al. (162) Cloud-Aware Middleware

P12 Nguyen et al. (163) Development and Deployment of Cloud Services via

Abstraction Layer

P13 Maheshwari et al. (164) Evaluating Cloud Computing Techniques for Smart

Power Grid Design Using Parallel Scripting

P14 Oprescu et al. (165) ICOMF: Towards a Multi-Cloud Ecosystem for

Dynamic Resource Composition and Scaling

P15 Demchenko et al. (166) Intercloud Architecture Framework for

Heterogeneous Cloud Based Infrastructure Services

Provisioning On-Demand

43

P16 Li et al. (167) Modeling for Dynamic Cloud Scheduling via

Migration of Virtual Machines

P17 Abdul-Rahman and Aida

(168)

Multi-Layered Architecture for the Management of

Virtualized Application Environments within Inter-

Cloud Platforms

P18 Michon et al. (169) Porting Grid Applications to the Cloud with

Schlouder

P19 Miceli et al. (170) Programming Abstractions for Data Intensive

Computing on Clouds and Grids

P20 Kotecha et al. (171) Query Translation for Cloud Databases

P21 da Silva and Lucrédio (172) Towards a Model-Driven Approach for Promoting

Cloud PaaS Portability

P22 Strijkers et al. (173) Towards an Operating System for Intercloud

P23 Aversa et al. (174) Cloud Agency: A Guide through the Clouds

P24 Steinbauer et al. (175) Challenges in the Management of Federated

Heterogeneous Scientific Clouds

P25 Ciuffoletti (176) A Simple and Generic Interface for a Cloud

Monitoring Service

P26 Amato and Venticinque

(177)

A Distributed Agent-Based Decision Support for

Cloud Brokering

P27 Lordan et al. (178) ServiceSs: An Interoperable Programming

Framework for the Cloud

P28 Di Martino and Cretella

(179)

Semantic Technology for Supporting Software

Portability and Interoperability in the Cloud-

Contributions from the MOSAIC Project

P29 Sotiriadis et al. (180) Meta-Scheduling Algorithms for Managing Inter-

Cloud Interoperability

P30 Bastião Silva et al. (91) A Common API for Delivering Services over Multi-

Vendor Cloud Resources

P31 Zeginis et al. (181) A User-Centric Multi-PaaS Application Management

Solution for Hybrid Multi-Cloud Scenarios

P32 Andročec and Vrček (182) Platform as a Service API Ontology

P33 Amin et al. (183) Intercloud Message Exchange Middleware

P34 Kostoska et al. (184) A New Cloud Services Portability Platform

P35 Rezaei et al. (78) A Semantic Interoperability Framework for Software

as a Service Systems in Cloud Computing

Environments

P36 Guillén et al. (94) A Service-Oriented Framework for Developing

44

Cross Cloud Migratable Software

P37 Amato et al. (185) Vendor Agents for IAAS Cloud Interoperability

P38 Wright et al. (186) A Constraints-Based Resource Discovery Model for

Multi-Provider Cloud Environments

P39 Zhang et al. (187) A Survey on Cloud Interoperability: Taxonomies,

Standards, and Practice

P40 Kamateri et al. (99) Cloud4SOA: A Semantic-Interoperability PaaS

Solution for Multi-cloud Platform Management and

Portability

P41 Woo and Mirkovic (188) Optimal Application Allocation on Multiple Public

Clouds

3.4.1.4 Classification scheme

The next step proposed by Petersen et al. (151) is to read abstracts of the selected primary

studies and write out relevant keywords and concepts to understand the contributions of each

study. This helps to define a set of categories. Using this technique, data aimed at answering

five research questions of this systematic mapping study (cloud model; type of paper; applied

methods, techniques and tools; journal name; and types of interoperability problems being

investigated) was collected. Table 4 shows an example of data form of one relevant paper. For

each of 41 relevant studies, this form was filled in Excel file. In this work, publications are

classified into categories in four different dimensions. Dimensions and their corresponding

categories are presented in Table 5.

Table 4 Data form for sample paper

Data header Value

Identifier P9

Retrieved from IEEE Xplore

Authors Javier Miranda, Joaquın Guillen, Juan Manuel Murillo and Carlos

Canal

Year 2013

Paper title Assisting Cloud Service Migration Using Software Adaptation

Techniques

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6676

742

Abstract Paper abstract is copied here

Keywords and key cloud service migration, software adaptation, model-driven

45

phrases

Cloud model PaaS

Type of paper conference paper

Applied methods,

techniques and tools

proposal of software adaptation techniques with small case study

Journal -

Investigated

interoperability

problems

cloud application migration issues

Table 5 Classification dimensions and their categories

Dimension Categories

cloud model infrastructure as a service, platform as a service, software as a

service, mobile cloud computing

type of paper book chapter, conference paper, journal article

applied methods,

techniques and

tools

model/framework, ontology, broker, adapter, unified

management/standardized API, use of cloud standards

types of

interoperability

problems

cloud storage interoperability issues, cloud application/platform

interoperability problems, management/API interoperability

problems, infrastructure interoperability problems

3.4.1.5 Data extraction and mapping

Finally, the relevant papers are sorted into the established classification schema (151). One

paper can be mapped to multiple categories, so the total numbers on sides of the map may not

be equivalent. The frequencies of each category show what kind of research was prevalent in

the past and then gaps and new research possibilities can be identified. In this work, the

results will be shown as answers to research questions stated in the first step of systematic

mapping study process.

RQ1: Which model of cloud computing is best investigated in the existing literature regarding

cloud interoperability?

The question is answered by cloud model dimension of the chosen classification scheme.

There are papers mapped to more than one category, the most common example of

combination is IaaS/PaaS, i.e. the solution that addresses the infrastructure and platform

46

models of cloud computing. The results are shown in Figure 1. The most investigated cloud

model is infrastructure as a service.

Figure 1 Paper distribution per cloud model

RQ2: What types of papers are published in the cloud interoperability area?

The majority of the published types of papers in the cloud interoperability area are conference

papers. The distribution is depicted by Figure 2. These conference papers often present work

in progress or a proposal of solution with or without simple prototype.

Figure 2 Distribution per paper types

RQ3: What are the most frequently applied methods and techniques to achieve cloud

interoperability?

The results are shown in Figure 3. The proposal of model and frameworks is most frequently

used, and a runner-up is unified management/standardized API. The majority of the solutions

are not mature enough to present the solution to cloud interoperability problems in industrial

cases or more realistic scenario rather than simple prototypes.

47

Figure 3 Applied solutions

RQ4: Which journals include papers on cloud interoperability?

Two journals include two papers on cloud interoperability (Scalable Computing and Journal

of Systems and Software), whereas one paper on cloud interoperability was published in the

following journals: Mondo Digitale, Journal of Integrated Design and Process Science,

Journal of Grid Computing, Advances in Parallel Computing, International Journal of High

Performance Computing and Networking, Expert Systems with Applications, Journal of

Cloud Computing, ACM SIGMETRICS Performance Evaluation Review and Computer

Networks. A total of 13 articles relevant to this study were published in journals. Only one

journal has the term “cloud computing” in its name, the rest of the journals are on distributed

computing, grids, systems and software and expert systems. Interest for cloud interoperability

issues exists, and the quality research can be published in journals.

RQ5: Which types of interoperability problems are most investigated?

Distribution per interoperability issues are presented in Figure 4. Some papers investigated

more than one category. Interoperability problems connected to infrastructures are the most

investigated ones. Cloud storage and API interoperability problems are less investigated, so

this work is trying to cover these issues.

48

Figure 4 Investigated interoperability problems

Figure 5 Visualization of a systemic map using a bubble chart

Finally, a systemic map in the form of an Excel bubble chart was created. The connection

between types of interoperability problems and proposed solutions is visualized in Figure 5. It

shows that there is a lack of papers on cloud application/platform and cloud storage

49

interoperability problems. The majority of papers deal with infrastructure interoperability

problems where they propose some kind of broker architecture or model/framework.

3.4.2 Identified gaps

Platform as a service model was chosen as a focus of this dissertation, because it has

significant interoperability problems and it is not investigated, as well as interoperability at

infrastructure level. The problem of interoperability among different commercial providers of

platform as a service is far from being resolved. The main market players often upgrade their

services, and for now they did not adopt cloud standards. Many cloud standards are still not

mature enough, and some authors even argue that standardization is reasonable only for

infrastructure as a service model. The vendor lock-in is omnipresent in platform as a service

offers, and many clients have postponed their investment because they fear the significant

costs if they decide to migrate to another provider.

The work in this dissertation is built upon the foundations described in the existing literature.

The gaps in the existing literature include lack of data portability among different cloud

vendors. There was some work regarding data migration in Cloud4SOA project, but this

problem is far from being fully resolved. Furthermore, there is no existing work that solves

the problem of data type mappings among different platform as a service offers. Based on

their systematic review on cloud migration research, Jamshidi et al. (189) conclude that there

is a lack of cloud migration tools from legacy systems to clouds. A detailed ontology of

platform as a service and operations from PaaS providers’ APIs is not yet available. Also, the

methodology for detecting and solving interoperability problems among commercial platform

as a service offers is not yet defined. These identified gaps are a motivation for the work

presented in this dissertation.

50

4. USE CASES

The final goal of use cases is to create applications that can evaluate, test and demonstrate an

approach to find and solve interoperability problems presented in this dissertation. The use

cases were chosen to represent a diverse set of interoperability problems among PaaS offers.

4.1 Preliminaries

4.1.1 Chosen PaaS offers

There are many providers of platform as a service. The following three prominent providers

of platform as a service (Microsoft, Google, and Salesforce) will now be examined, as well as

their offers and the most important functionalities. The mentioned PaaS offers will be used

throughout the use cases and as an important source for terms in the presented ontologies.

These offers were chosen in the first place because they are currently among the leading

offers in platform as a service market with many current users. For example, in his magic

quadrant for enterprise application platform as a service published in January 2014, Gartner

(190) listed Microsoft and Salesforce.com as the only two market leaders, and Google as the

only market challenger among the total of 18 reviewed commercial PaaS providers.

Furthermore, the mentioned PaaS offers support different types of data storages that can

possibly identify more data interoperability problems in comparison to moving data only

among the cloud storages of the same types.

Google App Engine supports the following programming languages: Java, Python, and Go.

Google App Engine does not support the entire Java EE specification (191): e.g., EJB, JAX-

RPC, JDBC, JCA, etc. are all the Java EE APIs that are currently not supported in this

platform. Therewithal, Google App Engine can run most of the Python web frameworks.

Google’s platform as a service runs on Google’s custom Linux distributions. It supports the

following types of data stores: relational Google Cloud SQL, blob storage named Google

Cloud Storage, and non-relational High Replication Datastore. Google App Engine runs on

its own web and application servers. App Engine offers thick client and RESTful APIs.

Google App Engine provides its own Memcache service, full text search, logging service,

monitoring service, email, Google Talk, Channel service, and queuing service.

51

Microsoft Windows Azure supports SDKs for the following programming languages: C#,

Java, PHP, Javascript, and Python. It can be configured to run any framework that can run on

Windows Server operating systems. The platform is supported in Visual Studio and Eclipse

development environments. There are three main storage offerings on the Azure platform:

Local Storage, Windows Azure Storage, and SQL Database. All applications run on IIS for

Windows Azure web and application server. Windows Azure is compatible with Memcache,

users can configure Solr/Lucene search services, and it supports logging services and Azure

queuing service. Windows Azure APIs are exposed through HTTP/REST. For some

languages, additional libraries are available (as an illustration, Windows Azure Libraries for

Java offer Java classes for CRUD operations on Azure Blobs, Tables and Queues, helper

classes, and support for logging, authentication and error management).

Force.com is Salesforce.com's platform as a service offer. Force.com development is

performed by using Salesforce's tools and a proprietary computer language called Apex (192).

The Apex is a pseudo-combination of Java and SQL. SOAP and REST Salesforce’s web

services APIs can be used for integration with other systems. The biggest benefit of

Salesforce’s platform as a service offer is time saving for developers (they can easily use the

existing common objects, forms and workflows, and they can use only one predefined

framework). The biggest obstacle is a significant vendor lock-in, because no other vendor

supports Salesforce’s programming language, tools and framework. Salesforce also offers

many tools for CRM software integration and customization.

4.1.2 PaaS data and application models

First, this dissertation will attempt to determine the differences in data and application models

between chosen commercial vendors of platform as a service. For this purpose, the

documentation of three chosen PaaS offers was examined in detail. Additionally, the

dissertation tries to model simple data structure and sample web application and deploy it to

three chosen providers, to see whether some other differences exist among the chosen

platforms and available tools of various commercial PaaS vendors. Next paragraphs will

describe the main characteristics of each of the chosen PaaS offers (Salesforce, Google App

Engine, and Microsoft Azure).

52

On the Force.com platform, data objects are called custom objects (similar as tables in

databases). In Salesforce (193), an organization represents a database with built-in user

identity and security. Objects are similar to tables in relational databases and they contain

fields and records. Objects are related to other objects by using relationship fields instead of

primary and foreign keys. There are two types of objects: standard objects (predefined,

created automatically by Salesforce) and custom objects (objects that you create in your

organization). Each custom object has some predefined, standard fields (Table 6). Every

custom object’s name on Salesforce must finish with postfix __c (e.g. Customer__c).

Table 6 Obligatory standard fields of custom objects (194)

Standard field Description

Created By Creator of the record.

Currency Currency of the record.

Division Division to which the custom object record belongs.

Last Modified By User who last modified the record.

Name Identifier for the custom object record.

Owner Owner of the custom object record.

Custom data objects are created by using a web administration application provided by

Salesforce or programmatically by using the Salesforce Metadata API. To build a web user

interface, one must use Visualforce and Salesforce’s proprietary programming language Apex

which is similar to Java. Visualforce (195) is a framework for building custom user interfaces

on the Force.com platform. It includes tag-based markup language and implements Model-

View-Controller (MVC) design pattern (196) to separate the view and its styling from the data

and logic.

Next, the features of Google App Engine were examined. The mentioned PaaS offer has three

options for data storage: App Engine Datastore, Google Cloud SQL and Google Cloud

Storage. The App Engine Datastore (197) is a schema-less object datastore. The datastore

holds data objects named entities; each entity has one or more properties of one of the

supported data types; and each entity is identified by its kind and key. Google Cloud SQL

(198) enables the usage of relational MySQL databases in Google’s cloud. The Google Cloud

Storage is an experimental service that provides storage for big objects and files (up to

terabytes in size). The first option (App Engine Datastore) was selected because it is the only

free option. Furthermore, it is a good example of key-value cloud storage. Datastore objects

53

can be created programmatically by means of Java object classes, servlets, HTML and

JavaScript. There are Google App Engine plugins for Eclipse and Netbeans, therefore it is

possible to develop and deploy Java application on Google App Engine using any of these

IDEs.

Finally, the third platform as a service offer (Microsoft Azure) was examined. There are three

main storage offerings on the Azure platform (199): Local Storage, Windows Azure Storage,

and SQL Database. Local Storage provides a temporary storage for a running application and

it represents a directory that can be used to store files. Windows Azure Storage consists of

blobs (storage of unstructured binary data), tables (a schema-less collection of rows such as

entities, each of which can contain up to 255 properties) and queues (storage for passing

messages between applications) that are accessible by multiple applications. SQL Database is

based on SQL Server technology and provides a relational database for the Azure platform.

For the purpose of these use cases, SQL Database option was chosen. To be better at

detecting interoperability problems among different types of PaaS storages, this relational

storage option was chosen, because in the first two providers different types of PaaS storage

were selected. More various interoperability problems can be detected if different types of

PaaS storages were chosen, instead of choosing the same or similar storage types (such as

key-value datastore, relational database-like storage, or object storage) for each PaaS

provider. A database can be created by means of Microsoft Azure management portal

(https://windows.azure.com). It can also be created programmatically, as done here. The

supported programming languages are any of the languages of .NET family. C# was chosen

here, due to its similarities with Java programming language.

4.1.3 Working with external PaaS data

Next, the options to use external cloud storage in each of the three chosen PaaS offers were

examined. Briefly, Google App Engine, Microsoft Azure, and Salesforce do not allow

applications deployed on their cloud to directly access external databases (other than their

predefined ones that are part of their platform as a service offer or one of their other cloud

storage options). The external data can only be accessed using REST or SOAP web services.

These web services need to use vendor’s remote APIs to access and manipulate the

corresponding cloud data. There is no accepted standard for remote APIs among commercial

vendors, so each vendor defines its own set of data functions that vary in name, input and

54

output parameters, and behavior. Another big issue lies in different query languages used by

vendors and often required as input parameters in remote APIs for cloud storage

manipulation.

The simplest way to connect external databases to a web application stored on Google

AppEngine is by exposing them via RESTful web services that will layer upon the database or

cloud storage. The commands can be sent and data can be received from external cloud

storage by communicating over HTTP using UrlFetch class provided by Google AppEngine.

Using UrlFetch call, the author of this dissertation managed to print some data containers

from the other two providers (Microsoft Azure and Salesforce) on the page of web application

deployed on Google App Engine. The same approach was used in Microsoft Azure. The

author connected to REST web services of this project containing web services to access

cloud data, here using the Microsoft libraries to do HTTP calls in C# programming language.

Data from other chosen PaaS offers in web application published on Azure was successfully

fetched. In Salesforce, before users can access external servers using Apex, the remote site

must be added to a list of authorized sites in the Salesforce user interface (Setup | Security

Controls | Remote Site Settings). HTTP calls in Apex were done using Salesforce’s libraries.

4.1.4 Web services support in PaaS offers

Interoperability between two applications hosted on two different clouds can be achieved

using principles of service-oriented architecture. The most common way is to design REST or

SOAP web services that can work together. All three chosen PaaS providers support the

creation of SOAP and REST services by using different methods that are investigated in this

subchapter to examine their differences.

A RESTful service as part of the application deployed on Google App Engine can be

implemented by means of App Engine Endpoints. App Engine Endpoints (200) are still in

experimental release, so the API can be easily changed drastically in the future and it is not

covered in SLA. Therefore, a classic Java solution was opted for: Jersey REST framework.

Musial-Bright (201) listed all the steps needed to create REST service using the mentioned

framework, and to deploy it on Google’s infrastructure: Jersey REST framework must be

downloaded, Jersey libraries must be added to Java project intended to be deployed on App

Engine, and Jersey servlet must be properly configured. When all mentioned preconditions

55

are satisfied, a simple REST service can be coded in a web application deployed on Google

App Engine. REST services can be developed for application published on Microsoft Azure

using several techniques depending on the framework used for creating web application. A

sample MVC3 web application was created, deployed on Microsoft Azure, and the steps

proposed by Schwartzenberger (202) were used to code sample REST service. API Area is

created within the application, routes for RESTful URLs were configured, and the controller

that represents REST service was written. It is also possible to create your own REST-based

web services using Apex (203) and deploy it to Salesforce. A programmer must set up a

custom REST Apex endpoint and develop a class that can have different methods for HTTP

GET, POST, PUT or DELETE requests. To access REST web service from Saleforce’s

platform as a service an authentication such as OAuth with the help of cURL tool must be

used.

SOAP server and SOAP client can be built and deployed on Google App Engine, but the

needed procedure (204) is far more complex than REST alternative. On Microsoft Azure, it is

pretty simple to run and deploy SOAP web service (205). The third-party SOAP service can

also easily be consumed by an application deployed on Azure using the same code as the one

for an on-premise server. Apex, the programming language used for applications stored on

Salesforce, supports the ability to expose methods as web services (206) and to invoke an

external SOAP service. Both approaches (SOAP and REST) are supported by PaaS vendors,

so an application on different clouds can use any of the mentioned approaches to interoperate.

There must only be an agreement on the chosen approach and on the message format (e.g.,

REST service can output the result as a simple text, JSON or XML).

4.2 Use case 1: Migration of data between PaaS providers

4.2.1 Requirements and use case description

In the first use case, data will be migrated between different providers of platform as a

service. Two main requirements are defined. First, the user must be able to port all data from

one PaaS provider to another. Secondly, the user may move only one chosen data container

(for example, table, custom object, or entity) from one PaaS offer to another. Additionally, the

migration method should be flexible and use the ontologies and AI planning method described

later in this dissertation. This use case will check if the ontology can be used to semantically

annotate relevant API operations and whether data type mappings work. Successful execution

56

of more complex interoperability scenarios cannot be imagined without being able to move

data from one vendor to another. First use case will also help to identify new interoperability

problems or confirm the known interoperability problems together with the associated

indicators. The focus of this dissertation is on using vendors’ APIs to find and solve

interoperability problems. The majority of vendors’ API operations deal with data

manipulation and management, so the first use case is also important to learn more about the

mentioned APIs in practical problems. The use case is described in Table 7.

Table 7 Description of data migration use case

Use Case ID: UC-1

Use Case Name: Migration of data between PaaS providers

Created By: Darko Andročec Last Updated By: Darko Andročec

Date Created: August 2013 Last Revision Date: September 2014

Actors: PaaS user, PaaS provider 1, PaaS provider 2

Description: This use case shows how to migrate data from one PaaS provider to

another. User can choose to move all data or only one data container

(table, entity, or custom object) from source PaaS vendor to target

PaaS provider.

Trigger: This use case is initiated by the cloud user when he chooses to move

data stored in current PaaS offer to another one.

Preconditions: 1. PaaS user must have the existing data stored on one PaaS offer

2. PaaS user must register to another PaaS offer and be able to put

data on it

Post conditions: 1. Chosen data is moved from one PaaS offer to another

Normal Flow: 1. PaaS user chooses whether he wants to move all data or specific

data container (table, entity, or custom object)

2. PaaS user selects the source and target PaaS offer from the

available ones

3. PaaS user initiates the data migration

Alternative Flows:

-

Exceptions: 1. If there is a problem with connection to chosen source or target

PaaS offers, the exception is raised and error message is shown

2. If the system finds the interoperability problem during data migration,

data migration is stopped and found interoperability problem is shown

to the PaaS user

Includes: No other use case is included by this use case.

57

Special Requirements: Data migration should be flexible and use PaaS ontology and data type

mappings defined in them.

Assumptions: PaaS user understands the English language.

Notes and Issues: -

4.2.2 Export data structures and data from PaaS providers

Most API data operations deal with one data container (table, entity, or custom object), so if

users want to migrate all data, they must first learn how to get names or identifiers of data

container. All three chosen PaaS providers enable CSV export, and these files can be used to

obtain the names of data containers. First, observe how to do this in Salesforce. There is an

option in Salesforce’s administration web interface to schedule data exports (Setup -

Administration Setup - Data Management - Data Export). A system sends the compressed

(.zip) file with CSV files of the chosen Salesforce data objects to the user’s e-mail. A CSV

file stores tabular data with headers in a plain-text format.

Google provides the bulk loader tool in Python SDK that provides functionalities to upload

and download data to and from your application's Google App Engine Datastore. However,

the data export process is not as simple as expected, and as seen in the other two providers

(Salesforce and Microsoft). Python and Google App Engine SDK for Python need to be

installed. The configuration of the deployed application also must be changed by adding

RemoteApiServlet to the configuration file named web.xml and redeploy the application. After

completing this step, Google’s bulk loader tool can be used to access application’s data. Next,

a connector for every kind of entity needs to be specified in bulkloader.yaml file. Afterwards,

the additional commands should be executed to store data into CSV files.

Microsoft offers free MS SQL Server 2012 Express Management Studio that contains, inter

alia, a tool Import and Export Data that can export data from Azure SQL to CSV files. When

connection string is properly configured, working with Azure SQL database is the same as

with local or remote regular SQL Server instance. One can directly connect to Azure database

and export the associated data.

When parsing CSV files, the basic structures of data objects and their attributes can be

obtained, but one cannot get data types and primary or foreign keys (or their synonyms: other

58

ways to mark identifiers and relationships with other tables/entities/data objects). The

obtained basic structure can be used to call remote API functions to retrieve detailed

information about the structure of data and data types from cloud storages. DatastoreService

interface (207) from Google App Engine API can be used to get data structures, data and data

types from Google’s storage. It is a schema-less data storage system and its fundamental unit

of data is called the entity (207). The entity has key and zero or more mutable properties.

Basically, the key of each entity from CSV file was extracted and thereafter API functions

were used to retrieve all entities by their keys. The entity’s kind, keys, properties and their

data types were identified using the aforementioned method.

The similar technique was also used for Salesforce’s data. First, a list of important objects and

fields was extracted (for each application, Salesforce also automatically stores its own

standard objects, so only custom objects that have postfix __c as part of their name were

listed). Then describeSObject() Salesforce API call was used to obtain metadata for a given

object, and query() calls were executed to retrieve all data from each of the retrieved object.

Data structures, data and data types were obtained from Azure SQL database after writing the

code for various database operations using JDBC SQL Azure driver. Thereafter, queries were

constructed that enable a retrieval of metadata about all tables.

4.2.3 Transformation of data structures and data to ontology

The data structures and data of each platform as a service’s storage will be represented as the

unified data model ontology, so OWL will be used as an intermediate format to migrate data

between PaaS vendors. This architecture is inspired by direct mapping approach (208)

proposed by the RDB2RDF Working Group. Transformation of data structures from cloud

storage to ontologies is based on mapping rules that specify how to map PaaS data constructs

to the ontological models. Astrova et al. (209) proposed an approach to automatic

transformation of relational databases to ontologies. They listed the mapping rules (209)

which inspired the rules presented later in this dissertation. Inevitably, some of the semantics

captured in a relational database will be lost when transforming the relational database to the

ontology (209), the same situation will certainly also happen when dealing with PaaS

storages.

59

Due to many differences among cloud storage types supported by major commercial

providers of platform as a service, the basic transformation rules were defined to build data

model ontology’s classes, data properties and instances:

A) From Microsoft Azure SQL

1. A table is mapped to an OWL class.

2. A column is mapped to a data type property.

3. A row is mapped to an instance.

4. A primary key is mapped to a value of data property identifier in an instance.

5. A foreign key is mapped into object property hasLinkToObject with the appropriate domain

and range in an instance.

B) From Google App Engine Datastore

1. An entity kind is mapped to an OWL class.

2. A property is mapped to a data type property.

3. An entity is mapped to an instance (OWL individual).

4. An identifier from an entity key is mapped to a value of data property identifier in an

instance.

5. A relationship between two entities is mapped into object property hasLinkToObject with

the appropriate domain and range in an instance.

C) From Salesforce

1. An object is mapped to an OWL class.

2. A field is mapped to a data type property.

3. A record is mapped to an instance.

4. An identifier of an object (recognized as a field of Salesforce’s ID data type) is mapped to a

value of data property identifier in an instance.

5. A relationship between two objects (recognized as a field of Salesforce’s reference data

type) is mapped into object property hasLinkToObject with the appropriate domain and range

in an instance.

The mappings in other direction (from OWL ontology to cloud storage) could also be defined,

so representing these data models by means of OWL ontology can provide a common layer

for information exchange:

A) To Microsoft Azure SQL

1. An OWL class is mapped to a table.

60

2. A data type property is mapped to a column.

3. An instance is mapped to a row.

4. A value of data property identifier in an instance is mapped to a primary key.

5. Object property hasLinkToObject with the appropriate domain and range in an instance is

mapped into foreign key.

B) To Google App Engine Datastore

1. An OWL class is mapped to an entity kind.

2. A data type property is mapped to a property.

3. An instance is mapped to an entity.

4. A value of data property identifier in an instance is mapped to an identifier from an entity

key.

5. Object property hasLinkToObject with the appropriate domain and range in an instance is

mapped into a relationship between two entities.

C) To Salesforce

1. An OWL class is mapped to an object.

2. A data type property is mapped to a field.

3. An instance is mapped to a record.

4. When inserting new record, Salesforce automatically assigns its identifier that is unique

within the organization’s data. So, the identifier cannot be manually set. If it is important to

save the identifier when migrating from different storage, this value (of data property

identifier) can be stored in a new custom field such as identifier__c.

5. Object property hasLinkToObject with the appropriate domain and range in an instance is

mapped into a relationship between two objects (a field of Salesforce’s reference data type).

The web services for reading and writing OWL data ontologies were created using the above

specified transformation rules and the Apache Jena framework (210) for building Semantic

Web applications in Java programming language. Jena provides an API to work with OWL

and RDFS files and a rule-based reasoning inference engine.

4.2.4 Data type mappings

Each platform as a service provider supports its own set of data types. Data types differ in

their name, value space, permitted range of values, precision of data etc. Data types from the

three chosen PaaS storages - Google App Engine Datastore (211), Microsoft Azure SQL

Database (212), Salesforce (213) - are mapped to XSD (because OWL uses Schema Data

Types - (214) and (215)), more specifically to an OWL data property’s range of data model

61

ontology. The summary of the mentioned mappings is shown in Table 8. The mapping in the

other direction (from OWL data types to data type of platform as a service storage) is also

specified below (see

Table 9).

In these two tables representing mappings, OWL (XSD) data types are chosen as a baseline

system.

Table 8 Mappings from PaaS storages’ to OWL data types

Azure

SQL

Salesforce GAE DataStore OWL (XSD)

char, varchar,

text, nchar,

nvarchar, ntext

string, combobox, email,

encryptedstring, multipicklist,

phone, textarea, URL

java.lang.String,

com.google.appengine.api.datastore.Text,

com.google.appengine.api.datastore.GeoPt,

com.google.appengine.api.datastore.PostalAddress,

com.google.appengine.api.datastore.PhoneNumber,

com.google.appengine.api.datastore.Email,

com.google.appengine.api.users.User,

com.google.appengine.api.datastore.IMHandle,

com.google.appengine.api.datastore.Link,

com.google.appengine.api.datastore.Category,

com.google.appengine.api.datastore.Key,

com.google.appengine.api.datastore.EmbeddedEntity

xsd:string

bit boolean boolean, java.lang.Boolean xsd:boolean

decimal,

money,

numeric,

smallmoney

 xsd:decimal

real float, java.lang.Float xsd:float

float double, currency, percent double, java.lang.Double xsd:double

 java.lang.Integer,

com.google.appengine.api.datastore.Rating

xsd:integer

bigint long, java.lang.Long xsd:long

int int int xsd:int

smallint short, java.lang.Short xsd:short

 byte xsd:byte

tinyint xsd:unsignedByte

datetime,

datetime2,

datetimeoffset,

smalldatetime

dateTime java.util.Date xsd:dateTime

time time xsd:time

date date xsd:date

 com.google.appengine.api.datastore.ShortBlob,

com.google.appengine.api.datastore.Blob,

com.google.appengine.api.blobstore.BlobKey

xsd:hexBinary

binary,

varbinary,

image,

timestamp

base64 xsd:base64Binary

 xsd:anyURI

62

geography,

geometry,

cursor,

hierarchyid,

sql_variant,

table,

uniqueidentifier,

xml

anyType, calculated,

DataCategoryGroupReference,

ID, masterrecord, picklist,

reference

 - (unsupported

mapping to OWL)

Table 9 Mappings from OWL to PaaS storages’ data types

OWL (XSD) Azure

SQL

Salesforce GAE DataStore

xsd:string varchar string java.lang.String

xsd:normalizedString varchar string java.lang.String

xsd:token varchar string java.lang.String

xsd:language varchar string java.lang.String

xsd:NMTOKEN varchar string java.lang.String

xsd:Name varchar string java.lang.String

xsd:NCName varchar string java.lang.String

xsd:boolean bit boolean java.lang.Boolean

xsd:decimal decimal double java.lang.Double

xsd:float real double java.lang.Double

xsd:double float double java.lang.Double

xsd:integer int int java.lang.Integer

xsd:positiveInteger int int java.lang.Integer

xsd:nonPositiveInteger int int java.lang.Integer

xsd:negativeInteger int int java.lang.Integer

xsd:nonNegativeInteger int int java.lang.Integer

xsd:long bigint int java.lang.Long

xsd:int int int java.lang.Integer

xsd:short smallint int java.lang.Short

xsd:byte tinyint byte java.lang.Short

xsd:unsignedLong bigint int java.lang.Long

xsd:unsignedInt int int java.lang.Integer

xsd:unsignedShort smallint int java.lang.Short

xsd:unsignedByte tinyint byte java.lang.Short

xsd:dateTime datetime dateTime java.util.Date

xsd:time time time java.util.Date

xsd:date date date java.util.Date

xsd:gYearMonth varchar string java.lang.String

xsd:gYear varchar string java.lang.String

xsd:gMonthDay varchar string java.lang.String

xsd:gDay varchar string java.lang.String

xsd:gMonth varchar string java.lang.String

xsd:hexBinary varbinary - com.google.appengine.api.datastore.Blob

xsd:base64Binary varbinary base64 -

xsd:anyURI varchar string java.lang.String

63

Data type mappings were implemented by means of PaaS ontology that will be elaborated in

detail in Chapter 5. Two classes deal with data types mappings between different PaaS

storages: DataType and DataTypeMapper. Subclasses of the DataType class are OWL data

types and data types of each platform as a service storage model (AzureDataType,

GoogleDataType, OWLDataType, and SalesforceDataType). Each data type from the tables

above is represented by an individual (instance) of the associated class. As an illustration,

XsdDate is an instance of the OWL class OWLDataType and it represents the xsd:date type.

The second important class is DataTypeMapper. This class has two object properties

(hasSource and hasDestination), and instances of this class are actually data type mappings.

For instance, SalesforceToOwl_2 is an instance of the DataTypeMapper hasSource

SalesforceBoolean and hasDestination XsdBoolean, so it shows that the Salesforce boolean

data type is mapped to the OWL boolean data type.

Web services were created to handle these mappings automatically by reading the OWL

ontology and performing the needed mappings and transformations. For now,

DataTypeMapper has approximately 150 instances (mappings). The mapping instances are

created based on the mappings presented in Table 8 and Table 9. If some mappings are not

correct, they can be fixed in the PaaS ontology and data type conversion will work. If another

platform as a service provider is added, another subclass of DataType must be added, as well

as instances for each data type of a new PaaS storage, and mapping instances from and to

OWL data types must be created. Web services for data mapping to deal with the new storage

provider also need to be slightly upgraded. This enables great flexibility regarding mapping of

data types supported by different PaaS providers. Table 8 and Table 9 show that some data

types have unsupported mappings (for example, Salesforce’s anyType has not mappings to

any OWL type). In these cases, data migration will stop and error will be shown to the user

suggesting that there is interoperability problem connected to data types of different PaaS

storages.

4.2.5 Architecture for data migration among PaaS providers

64

User starts data migration using client web application (Figure 6). The CSV files are parsed

and the data, data structures and types are retrieved by calling remote API functions. The data

model ontology is created, and data is ready for migration to another PaaS provider. There are

also internal web services that can read data ontology, perform mappings, create data and data

structures and move them into target PaaS storage. If user chooses only one data container

(table, entity, or Salesforce’s custom object) the migration flow is the same, only data

container name is forwarded as a filter to include only the chosen container and disregard

other remaining data during migration.

Figure 6 Architecture for data migration between PaaS providers

4.2.6 Validation and assessment

The validation of the first use case and the data migration architecture was done by migrating

a more complex set of data and manually checking all of the migrated data elements. For this

purpose, an open-source content management system (CMS) Vosao (216) was chosen. It is

coded in Java and it aims to be deployed on Google App Engine. On Vosao web site there is a

list of 16 active web sites that use this software as their content management system. The

author of this dissertation downloaded the source code of Vosao CMS from December 2013,

opened and compiled the source and successfully deployed it on Google App Engine using his

Google account. The installation of Vosao CMS is publicly available on http://quiet-surface-

517.appspot.com/.

65

Vosao CMS uses Google App Engine Datastore and initially consists of 19 entities. There will

be an attempt to migrate its data to other two chosen PaaS offers (Microsoft Azure and

Salesforce) to check whether the methodology and developed prototype migration tool works

smoothly when there is a real cloud application with more data containers and data objects

than shown in the previously considered simple examples. Furthermore, Vosao CMS default

installation already contains some pages with contents, so data store is filled with the initial

data.

According to this migration approach, first Vosao’s data need to be exported into CSV file.

Google’s bulk loader tool will be used in its Python SDK to accomplish the mentioned task.

To be able to remotely access the data, web.xml configuration file must be changed to include

RemoteApiServlet. Then, Google’s bulk loader tool can be used to export data. Next, a

connector for every kind of entities needs to be specified in bulkloader.yaml file to store data

into CSV files.

The underlying data and data structures of Vosao are represented by the unified data model

ontology using transformations/mapping rules presented in Chapter 4.2.3 of this work. For

each Google’s data store entity, attributes, identifiers and number of instances were checked

and the conclusion was that the transformation was successful. The data ontology contains all

the entities and data from Vosao’s data stored in Google Datastore.

Next, the developed client web application, data type mappings logic, web services and AI

planning will be used to actually migrate data to Salesforce and Microsoft Azure. Using this

tool ontology, and AI planning techniques, Vosao’s data from Google App Engine platform

was successfully migrated to Salesforce platform. In Salesforce, data objects are custom

objects (with suffix __c) and their attributes are custom fields. Custom objects and custom

fields can be created using Salesforce Metadata API. Furthermore, Vosao’s data from Google

App Engine platform was successfully migrated to Microsoft Azure platform and its Azure

SQL Server database. In it, data objects are tables and their attributes are tables’ columns.

The verification of migration of Vosao's data was done manually in Excel. The example for

the used form for Salesforce destination is shown in Table 10. All data containers, their

66

names, names and number of their attributes and number of records were listed there.

Additionally, all the data for randomly chosen entities was also checked.

Table 10 Manual evaluation of Vosao's data migration to Salesforce

Data entity Number

of

attributes

Attributes Number

of data

records

ConfigEntity__c 25 attributesJSON__c, commentsEmail__c, commentsTemplate__c,

createDate__c, createUserEmail__c, defaultLanguage__c,

defaultTimezone__c, editExt__c, enableCkeditor__c, enablePicasa__c,

enableRecaptcha__c, googleAnalyticsId__c, modDate__c,

modUserEmail__c, picasaPassword__c, picasaUser__c,

recaptchaPrivateKey__c, recaptchaPublicKey__c, sessionKey__c,

site404Url__c, siteDomain__c, siteEmail__c, siteUserLoginUrl__c,

version__c, identifier__c

1

ContentEntity__c 9 content__c, createDate__c, createUserEmail__c, languageCode__c,

modDate__c, modUserEmail__c, parentClass__c , parentKey__c,

identifier__c

23

ContentPermissionEntity__c 10 allLanguages__c, createDate__c, createUserEmail__c, groupId__c,

languages__c, modDate__c, modUserEmail__c, permission__c, url__c,

identifier__c

1

FieldEntity__c 17 createDate__c, createUserEmail__c, defaultValue__c, fieldType__c,

formId__c, height__c, index__c, mandatory__c, modDate__c,

modUserEmail__c, name__c, regex__c, regexMessage__c, title__c,

values__c, width__c, identifier__c

3

FileChunkEntity__c 8 content__c, createDate__c, createUserEmail__c, field__c, index__c,

modDate_c, modUserEmail__c, identifier__c

43

FileEntity__c 11 createDate__c, createUserEmail__c, filename__c, folderId__c,

lastModifiedTime__c, mimeType__c, modDate__c, modUserEmail__c,

size__c, title__c, identifier__c

43

FolderEntity__c 8 createDate__c, createUserEmail__c, modDate__c, modUserEmail__c,

name__c, parentId__c, title__c, identifier__c

15

FolderPermissionEntity__c 8 createDate__c, createUserEmail__c, folderId__c, groupId__c, modDate__c,

modUserEmail__c, permission__c, identifier__c

3

FormConfigEntity__c 7 createDate__c, createUserEmail__c, formTemplate__c, letterTemplate__c,

modDate__c, modUserEmail__c, identifier__c

1

FormEntity__c 14 createDate__c, createUserEmail__c, email__c, enableCaptcha__c,

enableSave__c, letterSubject__c, modDate__c, modUserEmail__c,

name__c, resetButtonTitle__c, sendButtonTitle__c, showResetButton__c,

title__c, identifier__c

1

GroupEntity__c 6 createDate__c, createUserEmail__c, modDate__c, modUserEmail__c,

name__c, identifier__c

1

LanguageEntity__c 7 code__c, createDate__c, createUserEmail__c, modDate__c,

modUserEmail__c, title__c, identifier__c

1

PageEntity__c 31 attributes__c, cached__c, commentsEnabled__c, contentType__c,

createDate__c, createUserEmail__c, description__c, enableCkeditor__c,

endPublishDate__c, friendlyURL__c, headHtml__c, keywords__c,

modDate__c, modUserEmail__c, pageType__c, parentUrl__c,

publishDate__c, restful__c, searchable__c, skipPostProcessing__c,

sortIndex__c, state__c, structureId__c, structureTemplateId__c,

template__c, title__c, velocityProcessing__c, version__c, versionTitle__c,

wikiProcessing__c, identifier__c

26

PageTagEntity__c 7 createDate__c, createUserEmail__c, modDate__c, modUserEmail__c, 13

67

pageURL__c, tags__c, identifier__c

StructureEntity__c 7 content__c, createDate__c, createUserEmail__c, modDate__c,

modUserEmail__c, title__c, identifier__c

1

StructureTemplateEntity__c 11 content__c, createDate__c, createUserEmail__c, headContent__c,

modDate__c, modUserEmail__c, name__c, structureId__c, title__c,

type__c, identifier__c

2

TagEntity__c 9 createDate__c, createUserEmail__c, modDate__c, modUserEmail__c,

name__c, pages__c, parent__c, title__c, identifier__c

5

TemplateEntity__c 8 content__c, createDate__c, createUserEmail__c , modDate__c,

modUserEmail__c, title__c, url__c, identifier__c

2

UserEntity__c 12 createDate__c, createUserEmail__c, disabled__c, email__c,

forgotPasswordKey__c, modDate__c, modUserEmail__c, name__c,

password__c, role__c, timezone__c, identifier__c

1

First, the data migrated to Salesforce was checked. Some errors were initially found and bugs

in the programs were fixed until migration was properly done. In Salesforce, custom object

must have __c postfix, so it is necessary to add these to the names of entities stored in Google

App Engine’s Datastore. The names of custom fields must also end with __c string. In Excel,

the number of properties (of entities from GAE Datastore) and custom fields of each custom

objects were compared, and the numbers were identical. Salesforce automatically creates ID

standard field for each object, so the identifier__c custom field was created to save the

Google’s identifier. When creating a new object, Salesforce always adds some obligatory

standard fields (Name, CreatedBy, LastModifiedBy, and Owner). Then, the data record

numbers in Google’s and Salesforce’s platforms were compared, and identical values were

obtained. ApexDataLoader tool was used to get data records from Salesforce. In the end,

some entities were randomly chosen and all the data and mappings of data types were

checked.

Next, the data migrated from Google App Engine to Microsoft Azure was checked in the

similar way. Using the same manual technique and Excel as in the migration to Salesforce, the

number of properties (of entities from GAE Datastore) and columns of tables created in

Microsoft Azure were compared, and the numbers were identical. Then, the data record

numbers in Google’s and Azure’s platforms were compared, and identical values were

obtained. Microsoft SQL Server Management Studio tool was used to inspect the data

migrated to the Microsoft Azure instance. Finally, some entities were randomly chosen and all

the data and mappings of data types in one and the other platform were checked.

68

Furthermore, the migrated data was taken and put again using the migration tool and

methodology to a new instance of Google App Engine (datafromazure.appspot.com and

datafromsalesforce.appspot.com) and then this data was compared to original Vosao’s data in

its original instance of Google App Engine and its underlying datastore. Number and names

of entities, properties and identifiers were manually checked. When migrating from

Salesforce, the only difference in data is identifier, because Salesforce platform automatically

assigns identifiers (ID field of each custom object). The same procedure was repeated to

migrate data back from Microsoft Azure to the new instance of Google App Engine.

4.2.7 Lessons learned from use case 1

Use case 1 illustrates that there are many data migration/interoperability problems among

PaaS providers. The first identified problem is the difference between data storage models of

various commercial providers of platform as a service. As an illustration, it is difficult or even

impossible to move data without losing important information from an SQL model of one

provider to a NoSQL model of another platform as a service provider. Even if the same

models were chosen (e.g. SQL) in two various offers, these models will still have significant

differences due to provider’s design and used technology. For example, each provider

supports their own set of data types. Data types differ in name, value space, permitted range

of values, precision of data etc. Some offers also have predefined standard objects or tables,

e.g. Salesforce lists standard objects in its documentation (some object/table names are

reserved) and it also adds some standard fields to any new custom object (object created by

user). Data import or export is often complicated. Most providers offer only basic CSV or

XML exports (list of columns and row data), so users cannot determine data types, identifiers,

possible relationships between tables (e.g. foreign keys) etc. Users must use remote APIs of

cloud providers to get that information. APIs are not standardized, so users need to cope with

different functions, input and output parameters and different means to access remote API

functionalities by using libraries for programming languages and/or SOAP or REST web

services. Various platform as a service providers also use their own versions of data query

languages. For instance, Salesforce demands that the Salesforce Object Query Language

(SOQL) and Salesforce Object Search Language (SOSL) be used to query data in its PaaS

storage. Google Query Language (GQL) is a language for retrieving entities or keys from the

Google App Engine datastore, and its syntax is similar to that of SQL. SQL Azure uses T-

SQL as its query language.

69

To minimize the possible data interoperability problems in PaaS domain, users should

carefully choose PaaS offer, underlying PaaS storages, and features. It is best to avoid using

vendors’ specific features that are not supported in any other PaaS offer. For example, most

data types problems can be avoided if the established variants of data types (for example,

integer, string etc.) were used and if the usage of new or innovative data types (e.g.,

Salesforce’s anyType, calculated, or DataCategoryGroupReference data type) that cannot be

mapped to data types of different PaaS storage is avoided. The more users use advanced and

innovative functionalities that are vendor specific, the more difficult it will be for migration

and interoperability to occur.

4.3 Use case 2: Add existing user to another PaaS

4.3.1 Requirements and use case 2 description

In the second use case, current user information from one PaaS offer will be added to the

application hosted on another PaaS offer. The main aim is to investigate interoperability

problems on service layer when using APIs from different providers. To solve possible

interoperability issues like the one described by Nagarajan et al. (77), the ontology driven data

mediation will be used and tested in this use case. Web operations and their inputs/outputs

will be semantically annotated, and SAWSDL and XSLT will be used to define service type

mappings. The use case is described in Table 11. The flow of API operation with operation

names as defined in the ontology is shown in Figure 7.

Figure 7 API operations executed in use case 2

Table 11 Description of use case 2

Use Case ID: UC-2

Use Case Name: Add existing user to another PaaS providers

Created By: Darko Andročec Last Updated By: Darko Andročec

Date Created: September 2014 Last Revision Date: September 2014

Actors: PaaS application administrator, PaaS provider 1, PaaS provider 2

70

Description: This use case shows how to add user from one PaaS offer to an

application hosted on another PaaS. PaaS administrator specifies data

container of target PaaS where user information will be stored.

Adequate schema mapping files should also be created. In the end, an

e-mail is sent to PaaS application administrator that new user is added.

Trigger: This use case is initiated by the PaaS application administrator when

he decides that he wants to add the existing user information (from

other PaaS offer) to PaaS application that he manages.

Preconditions: 1. User that is required to migrate must be logged-in on source PaaS

offer

2. PaaS application administrator must be able to put data into data

container with user information on target PaaS offer

Post conditions: 1. The existing user from source PaaS offer is added to the application

hosted on target PaaS offer, an e-mail is sent to PaaS application

administrator

Normal Flow: 1. PaaS application administrator selects the source and the

connections of target PaaS offer, and specifies the name of data

container where user information is stored for target application

2. PaaS application administrator initiates the user migration

3. Input/output mappings are performed, appropriate web services are

called, user is added for application stored on target PaaS offer, and

email on new user is sent to administrator

Alternative Flows:

-

Exceptions: 1. If there is a problem with connection to chosen source or target

PaaS offers, the exception is raised and error message is shown

2. If the system finds the interoperability problem during the planning

phase or service execution, the action is stopped and found

interoperability problems are shown in user interface

Includes: No other use case is included by this use case.

Special Requirements: This use case should validate API service level interoperability, using

ontology based data mediation and lifting and lowering schema as

defined in SAWSDL.

Assumptions: PaaS user understands the English language.

Notes and Issues: -

71

4.3.2 Ontology driven data mediation

To solve message-level heterogeneities of PaaS APIs, the author will use the approach similar

to the one presented by Nagarajan et al. (122). Their approach was used to enable automatic

or semi-automatic composition of semantic web services and it can resolve data

heterogeneities between different web services by means of the ontology. In this work,

semantic web services are used to abstract PaaS providers’ APIs. The operations are

semantically annotated using cross-PaaS concepts from the ontology of PaaS resources,

remote operations, and data types defined in Chapter 5.2. These cross-PaaS concepts are

actually subclasses of the ComplexServiceDataType and SimpleServiceDataType. For

example, UserInfoType is a cross-PaaS concept for complex type giving the basic information

about currently logged user, and it consists of three data properties: userInfoEmail,

userInfoName, and userInfoUserName.

The details of semantic annotations, service data type mappings, AI problem generation and

concrete service composition and inputs/outputs transformations are presented in Chapter 6.

The most relevant concepts will be explained here. Besides semantically anotating operation

and input/output types, the needed transformations between data types should be provided.

For this purpose, standard mechanism provided by SAWSDL, lifting and lowering schema

mappings will be used. The SAWSDL’s liftingSchemaMapping specifies a mapping and/or

transformation from XML element in XSD schema of service description to the concept from

an ontology (77). On the other side, loweringSchemaMapping specifies a mapping and/or

transformation in the reverse direction (122). SAWSDL enables the use of any ontology and

mapping language, and the most used ones were chosen: OWL for the ontology and XSLT for

XML transformations (217). When there is a need for new transformation, users need to

manually construct valid XSLT files and add lifting or lowering schema mappings to these

files. Observe one of the examples. Service annotated with GetUserInformation has output

UserInfoType. This operation provides basic information on the user that is logged in specific

PaaS offer, and its output is used by other two operations (CreateDataOperation and

SendEmailOperation) to create data object in other PaaS offer, and send an e-mail to

application administrator that new user is added. CreateDataOperation has input of

72

NoSqlDataObjectType, and SendEmailOperation has input of EmailMessageType (see Figure

8). Minimally three mappings should be defined, from output of the GetUserInformation to

the concept in the ontology, and from the concept in the ontology to both inputs of

CreateDataOperation and SendEmailOperation.

Figure 8 Example of service input/output transformations

The next problem is the actual dynamic execution of these web services and on the fly

transformations of inputs/outputs. Apache CXF (218) framework was used in which all

message transformations are done by means of interceptor classes. Custom interceptor was

implemented to adequately transform input and output message based on XSLT files obtained

from AI planning files, and to use CXF features to dynamically call web services. XSLT

processor Xalan was used to parse XSLT files, and standard Java classes for XML parsing

were used to parse transformed XML files. The procedure is described in more detail in

Chapter 6.

4.3.3 Validation

Testing and validation was performed on a case where current Salesforce’s user is added to

data container in Vosao CMS application mentioned in use case 1. The name of Google’s

entity where Vosao’s user data is stored is called UserEntity. When choosing the action of use

case 2, the client web application enables a user to write to which data container in target

PaaS the basic user information will be stored. Salesforce’s and Google App Engine’s web

services and their inputs and outputs were semantically annotated, and lifting and lowering

schema mappings were created and incorporated in adequate SAWSDL files. In the end, an

AI planner has successfully found the plan, CXF interceptor class and service data mapping

73

and transformation were successfully finished, and web services defined in composition were

successfully invoked. UserEntity was successfully created with the appropriate properties for

username, name and email filled-in. Finally, the email message was sent to test e-mail

representing mail of application administrator. Also, SAWSDL files (semantic annotations)

and XSLT files were changed, to test whether relevant interoperability problem was listed.

4.3.4 Lessons learned from use case 2

Nagarajan et al. (77) claim that structural and semantic differences of messages exchanged by

web services represent the most complex interoperability challenges regarding the

interoperability on a service level. The same is true for this case. API operations of different

PaaS vendors have different types, most often these types are complex (they consist of more

simple types and/or other complex types). To achieve interoperability, mappings and

transformations between inputs and outputs need to be defined. SAWSDL provides its lifting

and lowering schema mapping features to map XML elements to the ontology and back. Use

of cross-PaaS concept for data types in the ontology simplifies mappings, and enables the

creation of new mappings and possible transformations, when new PaaS offer is used, or

when specific API is changed. This is a more flexible approach than direct mapping and

transformation approach used in web service composition languages like BPEL. The most

critical part of this approach is the requirement for user/administrator to create valid and

meaningful mappings and transformations.

5. DEVELOPMENT AND EVALUATION OF ONTOLOGIES

5.1 Selected ontology development methodology, tool and language

For the purpose of this research, the Ontology Development 101 (33) methodology was

selected. The various ontology development methodologies are briefly presented in Chapter

2.5.4. This methodology was chosen among others, because it is the simplest and it is really

focused on the results, i.e. building the first ontology version very fast and then refining it

according to requirements. Ontology Development 101 is designed as a simple iterative

methodology and a starting guide for new ontology designers to develop their own ontologies.

Furthermore, it is also well aligned with the used tool (Protégé) and it provides working

examples for this ontology editor. The open-source tool Protégé was selected because it is free

74

and currently most used tool for ontology development. As an illustration, Protégé has more

than 240,000 registered users at the moment. Protégé has many useful plug-ins, including the

ones for semantic queries, ontology reasoning and ontology visualizations. Web Ontology

Language (OWL) was chosen because it has the needed expressive power and is most widely

used language for ontologies in the papers in the field of computer science and research

projects related to this field of study.

Now, the main steps of the selected ontology will be listed. Noy and McGuinness (33) claim

that the development of the ontology includes defining classes and their hierarchy, defining

their properties and instances. The ontology development process is iterative, an initial

version is built, this version is checked in applications or by experts, and it is refined until

usable ontology is obtained. There are seven steps in Ontology Development 101

methodology (33):

1. Determine the domain and scope of the ontology – First step includes defining

ontology's domain and scope by using competency questions (questions that the

ontology should be able to answer).

2. Consider reusing the existing ontologies – Checking whether the existing ontologies

can be refined and extended.

3. Enumerate important terms in the ontology – Write down all the possible relevant

terms without worrying about the overlap between concepts.

4. Define the classes and the class hierarchy – Using top-down or bottom-up approach, or

the combination of the two, to define classes and their hierarchy.

5. Define the properties of classes – slots – Here the internal structure of concepts is

defined using data and object properties.

6. Define the facets of the slots – The value type, allowed values, domain, range, and

cardinality of slots should be defined.

7. Create instances – The individual instances of classes should be defined and their slot

values should be filled.

As part of their published document, Noy and McGuinness (33) showed how to create sample

Wine ontology using the above mentioned steps. In the next chapter, the Ontology

Development 101 methodology is used to create ontology of PaaS resources, remote

operations and data type mappings.

75

5.2 Ontology of PaaS resources, remote operations, and data types

5.2.1 Domain and scope of the ontology

In the first step of Ontology Development 101 (33) guide, the domain and scope of the model

should be limited. The representation of resources and operations in APIs of platform as a

service is determined as the domain of the ontology. This ontology will be used to

semantically annotate API operations of platform as a service offers. The information in the

ontology should provide answers to the following questions: What are the main resources of

the platform as a service model of cloud computing? What are the most important remote

operations on PaaS resources? How to support mappings of data types among the

heterogeneous APIs? The aim of the ontology is to describe clearly and to categorize the

existing functionalities and features of commercial providers of platform as a service.

5.2.2 Reusing the existing ontologies

First, the work of the other authors was considered and checked if there was a possibility to

refine and extend the existing ontologies for the domain and scope determined in the previous

step. The most important previous work related to cloud and PaaS ontologies is listed in

Chapter 2.4.4. There is no ontology that is focused on remote operations providers of

commercial platform as a service and data type mappings among them, but some concepts

from mOSAIC ontology (132) and Deng et al. (129) were used as important terms for

development of this ontology. These important terms are listed in the next step (Table 12).

5.2.3 Important terms for the ontology

A list of all the relevant terms was identified in this step, without worrying about the overlap

between the concepts or considering whether the concepts were OWL classes or properties.

Excel spreadsheets were used to list all relevant terms, one sheet per one relevant document.

Initially, the concepts in this ontology were derived from the existing cloud ontologies

(mostly from mOSAIC project), PIM4Cloud (109) metamodel from REMICS project, OASIS

Reference Ontology for Semantic Service Oriented Architecture (219), relevant related works

from literature (127), remote cloud functions specified in the API documentation of the most

prominent commercial providers of platform as a service (Google App Engine, Microsoft

Azure, Salesforce), standards for Semantic Web services such as OWL-S and WSMO,

relevant cloud computing standards (OCCI, TOSCA, CDMI), and using personal experience

in building applications for platform as a service. Experimental remote APIs are not included,

76

because they are subject to frequent change, and providers do not guarantee that they will

keep these operations in the next versions of their APIs. Terms obtained from these sources

are listed in Table 12. The list of terms was incrementally updated during the whole research.

Table 12 List of identified terms for PaaS ontology

Source Important terms

Deng et al. (129) service offering, composite offering

mOSAIC ontology - Moscato et

al. (132)

API, data storage, replicated relational database, key

value stores, distributed file system, language,

application, utility API, data management API,

authentication API, platform provider, cloud resources

OWL-S (44) service, variable, parameter, input, output, result,

precondition

WSMO (45) web service, precondition, assumption, postcondition,

effect

OCCI (20) entity, resource, kind, action

TOSCA (24) properties, capabilities, interfaces, operation,

requirements

CDMI (25) container, data object, queue object

Salesforce's APIs - (213), (220)

- list of remote operations

convert lead, create, delete, empty recycle bin, get

deleted, get updated, invalidate sessions, login, logout,

merge, process, query, query all, query more, retrieve,

search, undelete, update, upsert, describe global,

describe data category groups, describe data categories

group structures, describe layout, describe search scope

order, describe SObject, describe softphone layout,

describe tabs, get server timestamp, get user info, reset

password, send email, send email message, set

password, deploy metadata, check deploy status of

metadata, retrieve metadata, create metadata, delete

metadata, update metadata, check status of metadata,

describe metadata, list metadata

Google App Engine APIs -

(211), (221) – list of remote

operations

put, get, delete, query, begin transaction, commit

transaction, rollback transaction, resize images, rotate

images, flip images, crop images, logs, send email,

search application data, queues, fetch URL, authenticate

users, send and receive instant messages

Microsoft Azure APIs (222) – set table service properties, get table service properties,

77

list of remote operations query tables, create table, delete table, get table ACL, set

table ACL, query entities, insert entity, merge entity,

replace entity, update entity, delete entity, list containers,

set BLOB service properties, get blob service properties,

create container, get container properties, get container

metadata, set container metadata, get container ACL, set

container ACL, lease container, delete container, list

blobs, put blob, get blob, get blob properties, set blob

properties, get blob metadata, set blob metadata, delete

blob, lease blob, snapshot blob, copy blob, abort copy

blob, put block, put block list, get block list, put page, get

page ranges, set queue service properties, get queue

service properties, list queues, create queue, delete

queue, get queue metadata, set queue metadata, get

queue ACL, set queue ACL, put messages, get

messages, peek messages, delete messages, clear

messages, update message

REMICS PIM4Cloud (109) PaaS resource, communication resource

5.2.4 Classes and their hierarchy

From the list created in the previous step, the terms describing independent objects were

selected to present classes in the ontology. In OWL, classes are used to group individuals that

have something in common and that represent sets of individuals (31). A class can have

subclasses, so the classes were organized into a hierarchical taxonomy. A total of 146 classes

were defined that are organized in 17 top level classes (see Figure 9). All classes are

systematically specified in Table 13.

78

Figure 9 Top level classes of PaaS ontology

Table 13 List of all classes of the PaaS ontology

Class Super class Description

Api Thing It represents vendors’ Application

Programming Interfaces (APIs).

Application Thing It contains all instances of applications that

are deployed to a PaaS offer and run in the

ApplicationEnvironment.

ApplicationEnvironment Thing PaaS application environment such as

Google App Engine Java runtime

environment.

79

ApplicationServer Thing Application server dedicated to efficient

execution of cloud applications on vendor’s

servers.

DataContainer Thing This class is an abstraction of containers of

data objects, e.g. tables, entities, objects, files

directories.

DirectoryContainer DataContainer A data container in the form of a directory.

EntityContainer DataContainer A data container for key-value cloud storage.

ObjectContainer DataContainer A data container for object of object-like cloud

storage.

TableContainer DataContainer A container for tables in relational-database

cloud storage.

DataObject Thing This class includes instances of data objects

of various storage options such as NoSQL,

relational database, object database and

cloud file systems.

EntityProperty DataObject An instance of data objects in key-value cloud

datastores.

ObjectRecord DataObject It describes a particular occurrence of an

object.

TableRow DataObject A row of a table in relational cloud storage.

DataType Thing Data types in cloud storages or cloud

services.

CloudStorageDataType DataType Data types in cloud storages.

AzureDataType CloudStorageDataType Microsoft Azure’s data types.

GoogleDataType CloudStorageDataType Data types in Google App Engine.

OWLDataType CloudStorageDataType Standard OWL (XML schema) data types.

SalesforceDataType CloudStorageDataType Data types in Salesforce’s cloud storage.

ServiceDataType DataType Data types of inputs and outputs of remote

APIs in form of web services.

ComplexServiceDataType ServiceDataType Cross-PaaS complex types of inputs and

outputs of remote APIs in the form of web

services. They consist of simple or other

complex types.

EmailMessageType ComplexServiceDataType Cross-PaaS complex type for email message

that contains the most important fields of

email header (from, to, subject) and email

text.

NoSqlDataObjectType ComplexServiceDataType Cross-PaaS complex type that represents

NoSQL data object, for example, Entity in

Google App Engine Datastore.

NoSqlKeyType ComplexServiceDataType Cross-PaaS complex type representing a key

of NoSQL data object, for example, Key in

Google App Engine Datastore.

NoSqlPropertyType ComplexServiceDataType Cross-PaaS complex type for a property of

NoSQL data objects, for example, Property in

Google App Engine Datastore.

UserInfoType ComplexServiceDataType Cross-PaaS concept for complex type giving

basic information about currently logged user.

SimpleServiceDataType ServiceDataType Cross-PaaS concepts for simple service

input/output data types of PaaS vendors.

CurrencyType SimpleServiceDataType Cross-PaaS simple service data type for

currency.

EmailAddressType SimpleServiceDataType Cross-PaaS simple service data type for

email address.

80

EncryptedStringType SimpleServiceDataType Cross-PaaS simple service data type for

encrypted text fields (strings).

GeographicLocationType SimpleServiceDataType Cross-PaaS simple service data type for

geographic locations.

PercentType SimpleServiceDataType Cross-PaaS simple service data type for

percentage values.

PostalAddressType SimpleServiceDataType Cross-PaaS simple service data type for

postal addresses.

RatingType SimpleServiceDataType Cross-PaaS simple service data type for a

user-provided integer rating.

TelephoneNumberType SimpleServiceDataType Cross-PaaS simple service data type for

telephone numbers.

UrlLinkType SimpleServiceDataType Cross-PaaS simple service data type for URL

links.

DataTypeMapper Thing Its instances are used for data type mappings

between different storages of different PaaS

vendors.

Operation Thing It represents all instances of remote

operations defined in various vendors’ APIs.

MonitoringOperation Operation Operations for monitoring PaaS resources.

ResourceUsageOperation MonitoringOperation It returns information on PaaS resource

usage.

BillingOperation MonitoringOperation Operation that returns current cost and other

billing information.

UpdateAlertRuleOperation MonitoringOperation It updates the specified alert rule.

ListAlertRulesOperation MonitoringOperation It retrieves information about all of the alert

rules.

GetAlertRuleOperation MonitoringOperation It retrieves information about the specified

alert rule.

DeleteAlertRuleOperation MonitoringOperation It deletes the specified alert rule.

CreateAlertRuleOperation MonitoringOperation It creates a new alert rule.

AuthenticationOperation Operation Operations for authentication, access control

and security

AddServiceCertificateOperation AuthenticationOperation It adds a certificate to a cloud service.

DeleteServiceCertificateOperation AuthenticationOperation It deletes an existing certificate of a cloud

service.

ChangePasswordOperation AuthenticationOperation It is used to change the password.

GetDataAccessInformationOperation AuthenticationOperation It gets information about access policies for

specified data.

GetPublicCertificatesForAppOperation AuthenticationOperation It returns a list of public certificates.

GetUserInfoOperation AuthenticationOperation It gets information about the specified or

current user.

LoginOperation AuthenticationOperation It logs in to be able to use PaaS service.

LogoutOperation AuthenticationOperation It logs out from PaaS offer.

SetDataAccessInformationOperation AuthenticationOperation It sets information about access policies for

specified data.

SetPasswordOperation AuthenticationOperation It sets the password to the specified value.

CustomCompositeOperation Operation These operations are implemented by

external developers and are not part of

vendors’ APIs, they are built upon remote

APIs, and compose multiple API operations to

perform some composite task such as

creation of data model described in the use

case of data migration presented earlier in

this dissertation.

81

CreateDataElementsFromOntologyOper

ation

CustomCompositeOperation It creates data elements (data objects and

containers) from data model ontology.

CreateDataModelOntologyOperation CustomCompositeOperation It creates data model ontology for migrating

data between different providers.

FindKeyOperation CustomCompositeOperation It finds all keys for all data containers in

specific cloud data storage.

DataOperation Operation Operations for cloud data manipulation and

management

BlobDataOperation DataOperation Operations for manipulation and management

of binary data (blobs)

GetBlobCreationDateOperation BlobDataOperation It returns the time and date the blob was

uploaded.

GetBlobFilenameOperation BlobDataOperation It returns the file included in the Content-

Disposition HTTP header during upload of this

blob.

GetBlobMd5Operation BlobDataOperation It returns the md5Hash of the blob.

GetBlobSizeOperation BlobDataOperation It returns the size in bytes of the blob.

GetContentTypeOperation BlobDataOperation It returns the MIME content-type.

GetMaxSizeBlobOperation BlobDataOperation It sets the maximum size in bytes for the total

upload.

BeginTransactionOperation DataOperation It begins a transaction.

CommitTransactionOperation DataOperation It commits a transaction.

CopyDataOperation DataOperation It copies one data object to another.

CreateDataOperation DataOperation It adds one or more new data

objects/containers.

DeleteDataOperation DataOperation It deletes one or more data

objects/containers.

EmptyRecycleBinOperation DataOperation It empties the recycle bin (the temporary

limited storage of deleted data).

GetDeletedDataOperation DataOperation It retrieves a list of data objects deleted since

the specified time.

GetUpdatedDataOperation DataOperation It retrieves a list of data objects updated since

the specified time.

MergeDataOperation DataOperation It merges data objects.

QueryDataOperation DataOperation It executes query and returns data that

matches the specified criteria.

RetrieveDataOperation DataOperation It retrieves data object specified by identifier.

RollbackTransactionOperation DataOperation It rollbacks the transaction.

SearchDataOperation DataOperation It performs text search in your data.

UndeleteFromRecycleBinDataOperation DataOperation It recovers data from recycle bin.

UpdateDataOperation DataOperation It updates the data object.

UpsertDataOperation DataOperation It updates an existing data object or inserts a

new data object if it does not exist in the data

container.

MetadataOperation Operation Operations to retrieve, deploy, create, update

or delete metadata and for managing

customizations.

CreateMetadataOperation MetadataOperation It creates new metadata component/s.

DeleteMetadataOperation MetadataOperation It deletes the metadata component.

DescribeApplicationGuiOperation MetadataOperation It describes the GUI of the application, e.g.

layout.

GetQueuePropertiesOperation MetadataOperation It gets the properties of the queue.

GetStoragePropertiesOperation MetadataOperation It gets the properties of the storage service.

ListAvailableDataContainersOperation MetadataOperation It lists and describes the available data

82

containers (e.g. objects, entities, tables).

ListMetadataOperation MetadataOperation It lists metadata.

RetrieveMetadataForDataContainerOper

ation

MetadataOperation It retrieves metadata for the specified data

container.

SetQueuePropertiesOperation MetadataOperation It sets the properties for the queue.

SetStoragePropertiesOperation MetadataOperation It sets the properties of the storage.

UpdateMetadataOperation MetadataOperation It updates metadata components.

QueueOperation Operation Operations that work with queues in platform

as a service offers.

CreateQueueOperation QueueOperation It creates new queue.

DeleteElementFromQueueOperation QueueOperation It deletes an element from the queue.

DeleteQueueOperation QueueOperation It deletes the queue.

EmptyQueueOperation QueueOperation It clears all the elements from the queue.

GetElementFromQueueOperation QueueOperation It retrieves an element from the queue.

ListQueueOperation QueueOperation It lists all available queues.

PutQueueElementOperation QueueOperation It adds a new element to the queue.

UtilityOperation Operation Operations for environment configuration,

registration, log manipulation, sending and

receiving emails, figures manipulations and

transformations.

RegistrationOperation Operation Operation registers new user.

CheckServiceAvailabilityOperation UtilityOperation It checks whether the specified service is

available.

EmailOperation UtilityOperation Operations dealing with email messages.

GetAttachmentOperation EmailOperation It gets the content of the attachment.

GetEmailHeaderOperation EmailOperation It gets email header.

ReceiveMailOperation EmailOperation It receives incoming e-mails.

SendEmailOperation EmailOperation It sends an email message.

SendEmailToAdminsOperation EmailOperation It sends an email alert to all administrators.

EnvironmentOperation UtilityOperation Operations that work with application

environment.

GetBackendAddressOperation EnvironmentOperation It gets the address of a specific backend.

GetCurrentBackendOperation EnvironmentOperation It gets a name of the current backend.

GetCurrentInstanceOperation EnvironmentOperation It gets an instance.

GetMaintenanceDateOperation EnvironmentOperation It returns the scheduled date of maintenance.

GetServerTimestampOperation EnvironmentOperation It retrieves the current system timestamp.

GetSystemPropertyValueOperation EnvironmentOperation It gets a system property.

SetSystemPropertyValueOperation EnvironmentOperation It sets a system property.

FigureOperation UtilityOperation Operations for image manipulations.

TransformFigureOperation FigureOperation It applies the chosen transformations (resize,

rotate, flip, or crop) to images.

InvalidateSessionOperation UtilityOperation It ends one or more sessions.

LoggingOperation UtilityOperation Operations for logging.

GetLogDataOperation LoggingOperation It gets logs.

OperationException Thing It includes all instances of possible exceptions

thrown by remote operations defined in

vendors’ APIs.

PaaSProvider Thing It includes instances of commercial vendors

who offer platform as a service.

PaaSResource Thing A generic resource provided by PaaS vendor.

CommunicationResource PaaSResource It represents PaaS communication resource.

DataStorage PaaSResource Different types of data storages in PaaS

FileStorage DataStorage A storage working with files.

83

KeyValueStorage DataStorage NoSQL key-value storage

ObjectStorage DataStorage It stores data in form of objects.

RelationalDatabaseStorage DataStorage A PaaS storage with typical relational

database’ functionalities.

ProgrammingLanguage Thing It contains instances of computer languages

used for developing applications in vendor’s

environment.

Queue Thing It covers all instances of FIFO queues

supported by commercial providers of

platform as a service.

Service Thing It includes all kinds of services provided by

commercial vendors of platform as a service.

ServiceDescription Thing A description of the functionality provided by

service

Variable Thing Its subclasses include input, output, and

results of APIs’ web services.

Parameter Variable A parameter

Input Parameter An input of web service

Output Parameter An output of web service

Result Parameter A result of the invocation of web service

5.2.5 Properties of classes

The properties of classes describe the internal structure of concepts. Properties specify how

the instances of a class relate to other instances. Property cardinality defines how many values

a property can have. The allowed classes for a property instance are called a range of a

property, and the classes that the property describes are called the domain of the property

(33). Apart from having a domain and a range, an object property may have super- and sub-

properties, inverse properties, equivalent properties and property chains. A set of defined

object properties, along with their corresponding domains, ranges and other characteristics is

shown in Table 14. A total of 34 object properties were defined.

Table 14 Object properties defined in PaaS ontology

Object property Domain Range Other

characteristics

isOfferedByPaaSProvider DataStorage PaaSProvider Inverse property:

offersStorage

configuresEnvironment EnvironmentOperation ApplicationEnvironment

containsDataObject DataContainer DataObject Inverse property:

isInContainer

definesOperation Api Operation Inverse property:

isDefinedIn

describes ServiceDescription Service Asymmetric

facilitatesDevelopment ApplicationEnvironment Application Asymmetric

hasContainer DataStorage DataContainer Asymmetric

hasDataType DataObject DataType Asymmetric

84

hasDestination DataTypeMapper DataType Functional

hasInput Operation Input Asymmetric

hasNoSqlDataObjectKey NoSqlDataObjectType NoSqlKeyType Asymmetric

hasNoSqlDataObjectParent NoSqlDataObjectType NoSqlDataObjectType

hasNoSqlDataObjectProperty NoSqlDataObjectType NoSqlPropertyType

hasNoSqlPropertyValue NoSqlPropertyType SimpleServiceDataType

hasOutput Operation Output Asymmetric

hasParameter Operation Parameter Asymmetric

hasResult Operation Result

hasSource DataTypeMapper DataType Functional

isDefinedIn Operation Api Inverse property:

definesOperation

isDeployedOn Application ApplicationServer Asymmetric

isDescribedBy Service ServiceDescription

isDevelopedFor Api Service

isInContainer DataObject DataContainer Inverse property:

containsDataObject

isProvidedBy Service PaaSProvider Inverse property:

providesService

isSupportedInService ProgrammingLanguage Service Inverse property:

supportsLanguage

isThrown OperationException Operation

isTypeFor DataType DataObject Asymmetric

managesDataStorage DataOperation DataStorage

offersStorage PaaSProvider DataStorage Inverse property:

isOfferedByPaaS-

Provider

providesService PaaSProvider Service isProvidedBy

runsInEnvironment Application ApplicationEnvironment Asymmetric

supportsLanguage Service ProgrammingLanguage Inverse property:

isSupportedIn-

Service

worksWithQueue QueueOperation Queue

Additionally, instances can be described by data values. For this purpose, OWL provides data

type properties (31) that relate instances to data values (instead of relating them to other

instances). A total of 30 data properties were defined and are listed alphabetically in Table 15.

Table 15 Data properties of PaaS ontology

Data property Domain Range (XSD data

type)

appId Application string

appURL Application string

appVersion Application string

assumption ServiceDescription string

capacity DataStorage string

communicationBandwidth CommunicationResource string

communicationType CommunicationResource string

dataContainerKey DataContainer string

dataContainerName DataContainer string

85

dataObjectValue DataObject -

effect ServiceDescription string

emailFromField EmailMessageType string

emailSubjectField EmailMessageType string

emailTextField EmailMessageType string

emailToField EmailMessageType string

hasName PaaSProvider string

noSqlDataObjectKind NoSqlDataObjectType string

noSqlKeyId NoSqlDataObjectType long

noSqlKeyName NoSqlKeyType string

noSqlKeyNamespace NoSqlKeyType string

noSqlPropertyName NoSqlPropertyType string

postcondition ServiceDescription string

precondition ServiceDescription string

serviceName Service string

serviceUrl Service string

typeName DataType string

userInfoEmail UserInfoType string

userInfoName UserInfoType string

userInfoUserName UserInfoType string

5.2.6 Creating instances

The last step in the methodology devised by Noy and McGuinnes (33) is filling in the values

for instances. It requires the creation of individual instances of each relevant class. For now, a

total of 426 individuals were created. This number is obtained from ontology documentation

created by using OWLDoc plugin in Protégé, and DL Query was used to obtain the number of

instances per each OWL class. Most of the created instances are used for data type mappings

between cloud storage of different PaaS vendors. For example, OWL class DataTypeMapper

has 178 instances, and CloudStorageDataType has 124 instances.

5.3 Ontology of platform as a service interoperability problems

The second ontology was also developed using Ontology Development 101 methodology

(33), OWL and Protégé tool.

5.3.1 Domain and scope

The domain of this ontology is the representation of the technical and semantic

interoperability problems of commercial platform as a service offers. The ontology will be

used in the methodology for detecting interoperability problems among providers of platform

86

as a service as a comprehensive list of possible interoperability issues. The information in the

ontology should give answers to the following question: What are the most important

interoperability problems among different platform as a service offers?

5.3.2 Reused concepts from other ontologies

Naudet et al. (17) developed a general ontology of interoperability that can be used as a

starting point for this ontology of platform as a service interoperability. Their ontology is

based on system theory and aims at defining interoperability in a more formal way and it is

the basis for allowing interoperability problem detection, and suggesting solutions (17). The

general interoperability concepts from their ontology that can be applied to platform as a

service APIs interoperability (e.g. Interoperability, AprioriSolution, AposterioriSolution,

Problem etc.) and relations between them will be directly used in this ontology. The complete

list of reused concepts is listed in Table 16, and more details can be found in Chapter 5.3.4

and Chapter 5.3.5 in which classes and properties are described.

Table 16 Reused concepts from Naudet et al. (17)

Reused classes Reused properties

InteroperabilitySolution, Indicator,

InteroperabilityProblem,

InteroperabilityExistenceCondition,

Model, ConformancePoint,

AntiPattern, InteroperabilitySolution,

AprioriInteroperabilitySolution,

AposterioriInteroperabilitySolution,

Incompatibility , Misalignment ,

Heterogeneity

actsOnApi, actsOnModel,

actsOnRepresentation,

canInduceNewProblem, concernsApi,

concernsModel, concernsRepresentation ,

definesCondition, existsIf, solvesProblem

5.3.3 Enumerate important terms

According to the instructions in Ontology Development 101 (33), the main activity in this step

is to list all the relevant terms, without worrying about the overlap between the concepts or

considering whether the concepts were OWL classes or properties. Excel spreadsheets were

used to list all the relevant terms. The concepts of the ontology of interoperability problems

were derived from Naudet et al.’s ontology of interoperability (17), interoperability problems

87

between different databases listed in the literature - (15), (72), (73), (76), metadata

interoperability problems (74), interoperability problems of web services - (75) and (77), the

ATHENA Interoperability Framework (65) and problems identified by the author of this

dissertation when working on use cases. Terms obtained from these sources are listed in Table

17. Interoperability problems, issues and conflicts from the existing literature are described in

more details in Chapter 3.1.1.

Table 17 List of important terms for PaaS interoperability ontology

Source Important terms

Naudet et al. (17) InteroperabilitySolution, Indicator, InteroperabilityProblem,

InteroperabilityExistenceCondition, Model,

ConformancePoint, AntiPattern, InteroperabilitySolution,

AprioriInteroperabilitySolution,

AposterioriInteroperabilitySolution, Incompatibility ,

Misalignment , Heterogeneity, actsOnApi, actsOnModel,

actsOnRepresentation, canInduceNewProblem,

concernsApi, concernsModel, concernsRepresentation ,

definesCondition, existsIf , solvesProblem

Park and Ram (15) DataLevelConflict, DataValueConflict,

DataRepresentationConflict, DataUnitConflict,

DataPrecisionConflict, SchemaLevelConflict,

NamingConflict, EntityIdentifierConflict,

SchemaIsomorphismConflict, GeneralizationConflict,

AggregationConflict, SchematicDiscrepancies

Cloud4SOA (16) different data models, different APIs, different query

languages

Haslhofer and Klas (74) Metadata heterogeneities, structural heterogeneities,

domain representation conflicts, abstraction level

incompatibility, multilateral correspondences, meta-level

discrepancy, domain coverage, element definition conflicts,

naming conflicts, identification conflicts, constraints

conflicts, semantic heterogeneities, domain conflicts,

terminological mismatches, scaling/unit conflicts,

representation conflicts

Parent and Spaccapietra

(73)

generalization/specialization conflicts, description conflicts,

structural conflicts, fragmentation conflicts, metadata

conflicts, data conflicts

Sheth and Kashyap (72) domain definition incompatibility, naming conflicts, data

88

representation conflicts, data scaling conflicts, data

precision conflicts, default value conflicts, attribute integrity

constraint conflicts, entity definition incompatibility,

database identifier conflicts, union compatibility conflicts,

schema isomorphism conflicts, missing data item conflicts,

data value incompatibility, known inconsistency, temporary

inconsistency, acceptable inconsistency, aggregation

conflicts, generalization conflicts, data value attribute

conflict, attribute entity conflicts, data value entity conflicts

Ponnekanti and Fox (75) structural, value, encoding and semantic incompatibilities,

missing methods, extra fields, missing fields, facet

mismatches, cardinality mismatches

Zhu et al. (76) naming synonyms, naming homonyms, different composite

structure, different value representation, differences in

semantic meaning, differences between data models,

changes over time of the structure and the representation of

attributes and values, different query languages, different

transaction mechanisms

AIF (65) interoperability at enterprise/business level, interoperability

of processes, interoperability of services, interoperability of

information/data

5.3.4 Definition of the class hierarchy

Again, from the list created in the previous step, the terms that describe independent objects

were selected, because they present classes in the ontology. The top level of the ontology of

platform as a service interoperability is shown in Figure 10. A total of 78 classes were

defined. All classes are systematically specified in Table 18.

89

Figure 10 Top level classes of interoperability problems ontology

Table 18 List of classes in the PaaS interoperability ontology

Class Super class Description

Api Thing It represents remote APIs of platform as a

service offers.

Indicator Thing Indicators detect the occurrence of potential

conflicts (17).

AntiPattern Indicator It is a formalization of the known problems, the

conditions in which the problems appear and

possible solutions (17).

ConformancePoint Indicator It describes checking points that must be verified

to test the actual operation of the system (17).

InteroperabilityExistenceCondition Thing An existence condition for interoperability

problems (17).

Incompatibility InteroperabilityExistenceCondition It represents incompatibility (17).

Heterogeneity Incompatibility Heterogeneous interfaces (e.g. PaaS remote

APIs) constitute the most commonly considered

interoperability problems.

ApisHeterogeneity Heterogeneity PaaS providers offer different Application

Programming Interfaces (APIs).

PaaSDataModelHeterogeneity Heterogeneity Each PaaS provider supports different types of

underlying data models.

ProgrammingModelHeterogeneity Heterogeneity Different PaaS providers offer different

programming models.

QueryLanguagesHeterogeneity Heterogeneity Query languages differ among various PaaS

providers.

SupportedDataTypesHeterogeneity Heterogeneity Different data types are supported in different

PaaS offers.

SupportedProgrammingLanguages-

Heterogeneity

Heterogeneity Different PaaS offers support different

programming languages.

TypesOfPaaSServicesHeterogeneity Heterogeneity There are heterogeneities among PaaS services

types.

90

Misalignment Incompatibility Misalignment can occur when a system

constrains the building, structure or behavior of

other system (17).

InteroperabilityProblem Thing It represents an interoperability problem.

PaaSApiInteroperabilityProblem InteroperabilityProblem It represents an interoperability problem that

occurs because of different vendors’ APIs.

AbstractionLevelProblem PaaSApiInteroperabilityProblem It lists interoperability problems that arise

because two semantically similar API operations

or their parameters are represented at different

level of abstraction (77).

ApiOperationAggregationProblem AbstractionLevelProblem Two semantically similar API operations where

one is represented as an aggregate of another

API operation (77).

ApiOperationGeneralizationProblem AbstractionLevelProblem Semantically similar API operations are

represented at different levels of generalization

(77).

ApiOperationParameterConflictProblem AbstractionLevelProblem Semantically similar entities are modeled as a

parameter in one PaaS offer and API operation

in another PaaS offer (77).

ApiOperationLevelProblem PaaSApiInteroperabilityProblem Interoperability problems between API

operations.

ApiOperationNamingProblem ApiOperationLevelProblem Problems that occur because of different

naming.

ApiOperationHomonymProblem ApiOperationNamingProblem Semantically unrelated API operations might

have the same name in different PaaS offers

(homonyms) (77).

ApiOperationSynonymProblem ApiOperationNamingProblem Semantically alike API operations might be

named differently in different PaaS offers

(synonyms) (77).

ApiOperationSchemaIsomorphismProblem ApiOperationLevelProblem Semantically similar API operations may have

different numbers of parameters (77).

MissingApiOperationProblem PaaSApiInteroperabilityProblem Some needed API operation is missing from

vendor’s remote API (75).

ParameterLevelProblem PaaSApiInteroperabilityProblem Differences that exist due to different

descriptions for semantically similar parameters

(77).

ParameterDataTypeProblem ParameterLevelProblem Two semantically similar parameters might have

different data types (77).

ParameterNamingProblem ParameterLevelProblem Problems arise due to different parameters’

naming.

ParameterHomonymProblem ParameterNamingProblem Two semantically unrelated parameters might

have the same names (77).

ParameterSynonymProblem ParameterNamingProblem Two semantically alike parameters might have

different names (77).

ParameterScalingProblem ParameterLevelProblem Two semantically similar parameters might be

represented using different precisions (77).

PaaSApplicationInteroperabilityProblem InteroperabilityProblem Interoperability problems that arise when PaaS

applications need to cooperate.

ApplicationComputerLanguageNot-

SupportedProblem

PaaSApplicationInteroperability-

Problem

Programming language in which the specific

application is written may not be supported by

specific PaaS vendor.

LibraryNotSupportedProblem PaaSApplicationInteroperability-

Problem

Some PaaS vendor may forbid some standard

libraries that the application uses (for example,

some standard libraries used in J2EE are not

supported by some providers).

91

PaaSLegalInteroperabilityProblem InteroperabilityProblem Interoperability problems that arise due to

different legislature.

DataPrivacyLegislationInteroperability-

Problems

PaaSLegalInteroperabilityProblem Different countries have different data privacy

laws.

DataSovereigntyInteroperabilityProblem PaaSLegalInteroperabilityProblem Is the data subject to the jurisdiction where it is

physically stored or hosted on servers?

OwnershipOfDataInteroperabilityProblem PaaSLegalInteroperabilityProblem Agreements on temporary or permanent transfer

of certain data rights to the service provider by

the end-user in exchange for using the cloud

services.

PaaSOrganizationalInteroperabilityProblem InteroperabilityProblem Interoperability problems that arise at

interoperability level.

PaaSStorageInteroperabilityProblem InteroperabilityProblem Interoperability problems that arise because of

heterogeneities of cloud storages.

DataAggregationProblem PaaSStorageInteroperabilityProblem An aggregation is used in one cloud storage to

represent a set of entities in another cloud

storage (72).

DataAttributeEntityProblem PaaSStorageInteroperabilityProblem The same entity is being modeled as an attribute

in one cloud storage and a data container in

another storage (72).

DataAttributeIntegrityConstraintProblem PaaSStorageInteroperabilityProblem Two semantically similar attributes are restricted

by some inconsistent constraints (72).

DataContainerGeneralizationProblem PaaSStorageInteroperabilityProblem Two entities are represented at different levels of

generalization in various cloud storages (72).

DataContainerIdentifierProblem PaaSStorageInteroperabilityProblem Two data containers modeling the same entity

have semantically different identifiers (72).

DataContainerNamingProblem PaaSStorageInteroperabilityProblem Conflicts that arise due to naming of data

containers.

DataContainerHomonymProblem DataContainerNamingProblem Semantically unrelated entities might have the

same name in different cloud storages

(homonyms) (72).

DataContainerNamingRestrictionProblem DataContainerNamingProblem Some names are reserved and forbidden, and

some types of names can be required (e.g.

Salesforce requires that you name your custom

object with postfix __c).

DataContainerSynonymProblem DataContainerNamingProblem Semantically similar entities are named

differently in different PaaS storages (synonyms)

(72).

DataContainerRelationshipProblem PaaSStorageInteroperabilityProblem Different means to define relationships between

two data containers (e.g. foreign key, no

relationship between data containers etc.), or

maybe some cloud storage does not have any

means to connect two data containers.

DataContainerUnionCompatibilityProblem PaaSStorageInteroperabilityProblem Two entities are union incompatible when a one-

one mapping is not possible between the two

sets of attributes (72).

DataDefaultValueProblem PaaSStorageInteroperabilityProblem Two attributes might have different default

values in different cloud storages (72).

DataDifferentSupportedDataTypesProblem PaaSStorageInteroperabilityProblem Different cloud storages support different data

types.

DataModelDifferencesProblem PaaSStorageInteroperabilityProblem Differences between data models.

DataObjectNamingProblem PaaSStorageInteroperabilityProblem Different naming of data objects can also be the

cause for interoperability problems.

DataObjectHomonymProblem DataObjectNamingProblem Two data objects that are semantically unrelated

might have the same name (homonyms) (72).

92

DataObjectNamingRestrictionProblem DataObjectNamingProblem Some names are reserved and forbidden, and

some types of names can be required (e.g.

Salesforce requires that you name your custom

fields with postfix__c).

DataObjectSynonymProblem DataObjectNamingProblem Two data objects that are semantically alike

might have different names (synonyms) (72).

DataPrecisionProblem PaaSStorageInteroperabilityProblem Data object in different cloud storages have

different precisions.

DataRepresentationProblem PaaSStorageInteroperabilityProblem Different data types or representations of two

semantically similar attributes (72).

DataScalingProblem PaaSStorageInteroperabilityProblem Data has different units and measures (15).

DataSchemaIsomorphismProblem PaaSStorageInteroperabilityProblem Semantically alike entities have different

numbers of attributes (72).

DataValueAttributeProblem PaaSStorageInteroperabilityProblem The value of an attribute in one cloud storage

corresponds to an attribute in another cloud

storage (72).

DataValueEntityProblem PaaSStorageInteroperabilityProblem This conflict arises when the value of an attribute

in one cloud storage corresponds to a data

container in another data storage.

DifferentQueryLanguageProblem PaaSStorageInteroperabilityProblem The query languages of different PaaS providers

are different.

DifferentTransactionMechanismProblem PaaSStorageInteroperabilityProblem Transactions mechanism may be different in

various PaaS offers (76).

MissingDataItemProblem PaaSStorageInteroperabilityProblem One of the semantically similar entities has a

missing attribute (72).

InteroperabilitySolution Thing A solution to some interoperability problem.

AposterioriInteroperabilitySolution InteroperabilitySolution This is a solution that corrects problems after

they occurred (17)

BridgingSolution AposterioriInteroperabilitySolution It is an intermediate system, often called adapter

(17).

AprioriInteroperabilitySolution InteroperabilitySolution This is a solution that corrects problems by

anticipation (17).

HomogenisationSolution AprioriInteroperabilitySolution It uses a unified model of several kinds: a unified

language, a unified metamodel, or a unified

interface such as API (17).

Model Thing A simplified representation of a concrete or

abstract reality (17).

PaaSService Thing PaaSService is concrete platform as a service

offer (e.g. Google App Engine).

Representation Thing It is the aggregation of symbols used to

materialize a model (17).

5.3.5 Define the properties of classes

A set of defined object properties, along with their corresponding domains, ranges and other

characteristics is shown in Table 19. A total of 14 object properties were defined. For now,

the ontology does not contain any data properties.

93

Table 19 Object properties of the interoperability problems ontology

Object property Domain Range Other characteristics

actsOnApi (17) BridgingSolution Api Asymmetric

actsOnModel (17) HomogenizationSolution Model Asymmetric

actsOnRepresentation (17) HomogenizationSolution Representation Asymmetric

canInduceNewProblem (17) InteroperabilitySolution InteroperabilityProblem

concernsApi (17) Heterogeneity Api Inverse property:

hasHeterogeneity

concernsModel (17) Heterogeneity Model

concernsRepresentation (17) Heterogeneity Representation

definesCondition (17) Indicator InteroperabilityExistenceCondition Inverse property:

isDefinedByIndicator

existsIf (17) InteroperabilityProblem InteroperabilityExistenceCondition Inverse property:

causes

solvesProblem (17) InteroperabilitySolution InteroperabilityProblem Asymmetric

isSolvedUsing InteroperabilityProblem InteroperabilitySolution

hasHeterogeneity Api Heterogeneity Inverse property:

concernsApi

isDefinedByIndicator InteroperabilityExistenceCondition Indicator Inverse property:

definesCondition

causes InteroperabilityExistenceCondition InteroperabilityProblem Inverse property:

existsIf

5.3.6 Creation of the facets and instances

The last step in the methodology devised by Noy and McGuinnes (33) is filling in the values

for individuals. In Protégé, the class needs to be selected and individuals of the chosen class

can then be created. A total of 15 individuals were created.

5.4 Evaluation of the ontologies

Ontology evaluation gathers information about some properties of the ontology, compares the

results with a set of requirements, and assesses the suitability of the ontology for some

specified purpose (223). Ontology Development 101 methodology does not have an explicit

evaluation step and it lacks evaluation procedure and recommendations, but evaluating the

ontologies is useful to refine the ontologies and see whether they can be used in applications

as expected. The question of choosing the ontology evaluation method is still one of the

biggest problems in ontology engineering. There is no consensus on the best ontology

evaluation approach and there exist no universally agreed metrics for ontology evaluations

(223), but evaluating the ontology systematically during its whole lifecycle will certainly raise

its quality. Ontology anomalies and main approaches to tackle ontology evaluation are

94

presented in Chapter 3.2.2 of this dissertation. Neuhaus et al. (223) claim that ontology

evaluation should be incorporated into all ontology development lifecycle phases based on

carefully identified ontology requirements. Due to a lack of gold standards and corpus of data,

the evaluation by humans and application-based evaluation was chosen. Additionally, some

tools were used to eliminate OWL syntax errors and known ontology anomalies. In the next

subchapters, the evaluation process of developed ontologies will be shown.

5.4.1 Evaluation by tools

First, the logical consistency of the developed ontologies was checked by means of the Pellet

reasoner that checks hierarchies, domains, ranges, conflicting disjoint assertions and

calculates the resulting inferred hierarchy and other properties. Pellet uses logic to draw

inferences from the facts and axioms defined in the OWL ontology. Pellet reasoner plug-in for

Protégé 4 was installed and executed, and no consistency problems were found.

Next, the DL Query was used to check whether the ontology meets the basic requirements.

DL Query is a Protégé 4 plug-in, and the supported query language is based on Manchester

OWL syntax. For example, DL Query “Operation” can be executed to get all subclasses,

descendant classes and individuals of the Operation class. Then vendor’s documentation of

their remote API operations can be observed, and it should be checked if all the relevant

operations were included in the ontology. Other relevant DL Query can be

“DataTypeMapper” to check whether all relevant data type mappings are present as

individuals in our ontology.

Furthermore, the web based tool called Ontology Pitfall Scanner! (OOPS!) (138) was used to

detect possible ontology anomalies. The mentioned tool can currently identify 40 ontology

pitfalls. The two ontologies in this dissertation were evaluated using publicly available OOPS!

tool. One critical (swapping intersection and union) and three important (untyped property)

pitfalls were found and eliminated.

5.4.2 Evaluation by humans

Ontology was also evaluated by four human experts working in the field of cloud computing

interoperability and related science projects Contrail (102) and mOSAIC (132). The

95

questionnaire was sent to ten researchers, and four answers were obtained. They were sent a

brief ontology description document with figures of class hierarchy, and asked to answer the

following questions:

1. Completeness

Do the ontologies cover the major concepts regarding PaaS API operations and PaaS

interoperability problems? Are there any concepts/terms that you recommend to add to the

ontologies and where?

2. Conciseness

Can you identify some redundant or ambiguous concepts in the ontologies? Do you think that

some concepts should be removed and why?

3. Consistency

Can you identify some inconsistencies (for example, contradictions, semantic duplication, or

circular definitions) in the provided ontologies?

4. Flexibility

Can new concept/s be included into the ontologies without revising their existing structures?

Their feedback was used to refine the ontology. After their initial feedback, the ontologies

were revised and improved, and contact was kept (by email) with the experts which offered

more comments on newer versions of the ontologies. Several pitfalls were found by four

experts. The findings, together with the actions taken, are shown in Table 20.

Table 20 Summary of ontology evaluation by experts

Expert’s comments Actions taken

- Authentication describes authT towards the

PaaS portal? AuthT against application

developed within the PaaS? If second, maybe

alternative (e.g. x509) authentication operations

can be added (there is GetPublicCert operation)?

- You could add RegistrationOperation in parallel

to AuthenticationOperation.

- I have not seen any operations/concepts related

to accounting/monitoring/billing/alerting. How is

that? Is this maybe included in some operation?

- However, I believe that your concepts cover

most of the operations.

- New operations can be added without revising

other concepts in the ontology.

- AddServiceCertificateOperation and

DeleteServiceCertificateOperation were

added

- RegistrationOperation is added to the

ontology

- MonitoringOperation,

ResourceUsageOperation,

BillingOperation,

UpdateAlertRuleOperation,

ListAlertRulesOperation,

GetAlertRuleOperation,

DeleteAlertRuleOperation,

CreateAlertRuleOperation were added to

the ontology

96

- The ontology seems pretty extensive and

consistent to me, although slightly different from

the one developed in mOSAIC.

- None

- My first impression is that the ontologies are too

abstract i.e. not very "practical".

- The best way to proceed would be to include

some instance data in Protégé and prepare some

SPARQL queries that would be useful in your

given context - that would demonstrate its usage.

- More instance data was included and

use cases were used to better describe

where the ontologies will be used

- I would suggest inspecting Cloud API-s such as

Dasein Cloud API, Apache jclouds etc, where

standardization has been performed for

accessing clouds in a provider-independent way.

- I saw some potential anomalies, such as e-mail

address being a concept/class.

- Go through the instances to add more

assertions.

- What about mappings between complex types?

- With respect to ontology sources I suggest to

also look at the REMICS-related metamodels

- Also, please unify the naming of classes and

properties

- You model all data structures of specific PaaS

solutions in the ontology with dedicated entities

instead of defining cross-PaaS concepts - why

was this choice made? This means that in order

to add support for other PaaS' you need both -

extend the ontology and create new mappings,

while with cross-PaaS conceptualization creation

of new mapping might suffice.

- Additional ontology sources were

inspected

- Email class is removed from the ontology

because it was an anomaly

- More instance assertions were added

- Complex types mappings were listed in

the PaaS ontology

- The naming of classes and properties

were unified

- In the final version of PaaS ontology,

cross-PaaS concepts are used to model

simple and complex data types of

services' inputs and outputs

5.4.3 Application-based evaluation

To perform application-based evaluation of the ontologies, the use cases where ontologies are

extensively used were performed. The use cases are described in Chapter 4. The aim was to

validate the usability of these ontologies to semantically annotate remote vendors’ PaaS API

operations, to enable mapping between their inputs and outputs, and to enable mappings of

97

different types between different PaaS storages. The prototype was developed in Java and it

uses Jena library to work with the ontologies. The developed prototype demonstrates the

feasibility of applying the ontologies to semantically annotate API operations, find

interoperability problems, and try to find solution for the problems found.

98

6. PROPOSED SOLUTION AND METHODOLOGY

6.1 Semantic PaaS web services

Web services that encapsulate remote API operations of three commercial providers (Google,

Microsoft, and Salesforce) were developed to access these services in a unique way (providers

offer their remote APIs in different forms - REST, SOAP or programming language libraries).

These services directly call remote vendors’ APIs. Some composite services (that call more

than one cloud API operation and perform some additional tasks) were also developed (e.g.,

some of the services used for data migration between PaaS storages). Web services and all

other parts of the author’s prototype were implemented in Java.

SAWSDL (W3C's Semantic Annotations for WSDL) (123) lightweight annotation was used

to define semantic web services. As already stated in Chapter 2.6.2, SAWSDL was chosen

due to its simplicity, its rich ontology-based data mediation mechanism for mapping inputs to

outputs of web services and tool availability. A source code of the SOWER tool which can be

used to semantically annotate web services using SAWSDL standard was downloaded,

installed and adjusted, and included into the author’s client web application. The SOWER tool

was developed as part of the SOA4All FP7 project (224). The aforementioned tool is an editor

to facilitate the manual annotation of WSDL service descriptions with the semantic

information (224). SOWER saves SAWSDL files to iServe repository (remote repository of

semantic web services of the SOA4All FP7 project), but the code was changed to save the

files to a folder that can be accessed by Glassfish application server on which other parts of

the prototype are deployed. The web services that invoke API operations of the providers of

platform as a service were developed, and each particular API operation with a term defined

in this ontology of platform as a service can now be annotated. In SOWER, the platform as a

service ontology is opened. Also, WSDLs of desired web services can be opened, such as

AzureServices that represent the remote API’s operations of Windows Azure platform as a

service. The ontology class can be dragged and dropped to WSDL area, and the tool will

automatically annotate the service operation. For instance, the Azure’s createTable web

service operation can be referenced to CreateDataOperation class of the OWL ontology.

99

Similarly, input and output parameters of web services can be semantically annotated. Data

types on inputs and outputs are annotated using cross-PaaS concepts of simple and complex

service data types from PaaS ontology. More detailed mappings and needed transformations

can be specified in SAWSDL by using “liftingSchemaMapping” and

“loweringSchemaMapping” annotations. The SOWER tool supports addition of the

mentioned semantic annotations, so this standard was used to map outputs of one operation to

inputs of another operation. For this purpose, SAWSDL allows the usage of any mapping

language and its specification contains examples in XQuery, XSLT, and SPARQL. In this

work, XSLT (217) was used for XML transformations.

An example of semantic annotation of web services will now be discussed. The service

annotated with GetUserInformation has output UserInfoType that provides information on the

user, and SendEmailOperation has input of EmailMessageType. Some user information can

be sent to a predefined email account. Mappings and transformations need to be defined.

Semantic annotations are defined in SAWSDL files, and an example from Salesforce’s

SAWSDL file, together with relevant annotated elements is shown in Table 21.

Table 21 Example of operation’s annotations and transformations

Element name Type Annotations

getUserInfo operation <operation name="getUserInfo"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#GetUserInfoOperation"

>

tns:getUserInfoRes

ponse

output <output message="tns:getUserInfoResponse"

wsam:Action="http://services.api.salesforce.foi.org.hr/SalesForceService

s/getUserInfoResponse"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#UserInfoType">

getUserInfoResult complex type <xs:complexType name="getUserInfoResult"

 sawsdl:liftingSchemaMapping =

"http://localhost:8091/SowerWeb/xslt/userInfo_lifting.xslt"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#UserInfoType">

sendEmail operation <operation name="sendEmail"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#SendEmailOperation">

tns:sendEmail input <input message="tns:sendEmail"

wsam:Action="http://services.api.salesforce.foi.org.hr/SalesForceService

s/sendEmailRequest"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#EmailMessageType">

100

singleEmailMessage complex type <xs:complexType name="singleEmailMessage"

 sawsdl:loweringSchemaMapping =

"http://localhost:8091/SowerWeb/xslt/userInfo_lowering_to_email.x

slt"

 sawsdl:modelReference =

"http://localhost:8080/PaaSOntologyv4.owl#EmailMessageType">

In the example shown in the table above, operations, input and output elements and types are

linked with the appropriate cross-PaaS concepts from PaaS ontology described in Chapter 5.2.

Two schema mappings are defined: lifting schema that maps from WSDL to an ontology

element, and lowering schema which transforms the known ontology element to input of

SendEmailOperation. During the service execution, the prototype performs needed

transformations. XSTL files for lifting and lowering schemas need to be manually specified

before semantic annotations and successful service composition. For the above mentioned

simple scenarios, XML transformations are shown in Table 22.

Table 22 Example of input/output transformations

XML description XML content

1. SOAP result

obtained after

sample execution

of getUserInfo()

operation

<?xml version="1.0"?>

<return>

 <accessibilityMode>false</accessibilityMode>

 <currencySymbol>$</currencySymbol>

<orgAttachmentFileSizeLimit>5242880</orgAttachmentFileSizeLimit>

 <orgDefaultCurrencyIsoCode>USD</orgDefaultCurrencyIsoCode>

 <orgDisallowHtmlAttachments>false</orgDisallowHtmlAttachments>

 <orgHasPersonAccounts>false</orgHasPersonAccounts>

 <organizationId>00DA0000000ZdWQMA0</organizationId>

 <organizationMultiCurrency>false</organizationMultiCurrency>

 <organizationName>FOI</organizationName>

 <profileId>00eA0000000ssupIAA</profileId>

 <sessionSecondsValid>7200</sessionSecondsValid>

 <userEmail>darkoandr@yahoo.com</userEmail>

 <userFullName>Darko Androcec</userFullName>

 <userId>005A0000000p3ZeIAI</userId>

 <userLanguage>en_US</userLanguage>

 <userLocale>en_US</userLocale>

 <userName>darkoandr@yahoo.com</userName>

 <userTimeZone>America/Los_Angeles</userTimeZone>

 <userType>Standard</userType>

 <userUiSkin>Theme3</userUiSkin>

</return>

2. Lifting schema:

userInfo_lifting.xslt

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

101

xmlns:n1="http://localhost:8080/PaaSOntologyv3.owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"

xmlns:service="http://localhost:8080/SalesForceServices.sawsdl"

version="1.1">

 <xsl:output encoding="iso-8859-1" indent="yes" method="xml"

version="1.0"/>

 <xsl:template match="/">

 <rdf:RDF>

 <n1:UserInfoDataType>

 <n1:userInfoName>

 <xsl:value-of select="/return/userFullName"/>

 </n1:userInfoName>

 <n1:userInfoEmailAddress>

 <xsl:value-of select="/return/userEmail"/>

 </n1:userInfoEmailAddress>

 <n1:userInfoUserName>

 <xsl:value-of select="/return/userName"/>

 </n1:userInfoUserName>

 </n1:UserInfoDataType>

 </rdf:RDF>

 </xsl:template>

</xsl:transform>

3. Transformed

output (after

XSTL

transformation)

<?xml version="1.0" encoding="iso-8859-1"?><rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:service="http://localhost:8080/SalesForceServices.sawsdl"

xmlns:n1="http://localhost:8080/PaaSOntologyv3.owl#">

<n1:UserInfoDataType>

<n1:userInfoName>Darko Androcec</n1:userInfoName>

<n1:userInfoEmailAddress>darkoandr@yahoo.com</n1:userInfoEmailAdd

ress>

<n1:userInfoUserName>darkoandr@yahoo.com</n1:userInfoUserName>

</n1:UserInfoDataType>

</rdf:RDF>

4. Lowering

schema:

userInfo_lowering_

to_email.xslt

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:n1="http://localhost:8080/PaaSOntologyv3.owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"

xmlns:service="http://localhost:8080/SalesForceServices.sawsdl"

version="1.1">

 <xsl:output encoding="iso-8859-1" indent="yes" method="xml"

version="1.0"/>

102

 <xsl:template match="/">

User name: <xsl:value-of

select="rdf:RDF/n1:UserInfoDataType/n1:userInfoUserName"/>

Full name: <xsl:value-of

select="rdf:RDF/n1:UserInfoDataType/n1:userInfoName"/> </SingleEmailMessage>

 </xsl:template>

</xsl:transform>

5. Input after

XSLT

transformation

<?xml version="1.0" encoding="ISO-8859-1"?>

<SingleEmailMessage

xmlns:n1="http://localhost:8080/PaaSOntologyv3.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:service="http://localhost:8080/SalesForceServices.sawsdl">

<toAddresses> dandrocec@foi.hr </toAddresses>

<subject> New user is automatically added to Vosao </subject>

<plainTextBody> New user is automatically added to Vosao.

Password needs to be generated. User name: darkoandr@yahoo.com

Full name: Darko Androcec</plainTextBody>

</SingleEmailMessage>

6.2 Implementation of AI planning

6.2.1 JSHOP2 planner

For AI planning process, a JSHOP2 planner was used in this dissertation. JSHOP2 planner

was chosen because it is implemented in Java and can be easily incorporated into other parts

of the prototype system that was developed using Java technologies, and it was used in the

past for similar purposes, i.e. composition of web services in various contexts. JSHOP2 is a

Java version of Simple Hierarchical Ordered Planner (SHOP). It is used to generate sequential

plans. It is based on ordered task decomposition where tasks are planned in the same order as

later in execution (225). The objective of JSHOP2 and other HTN planners is to accomplish a

set of tasks where each task can be decomposed, until primitive tasks (226) are reached. The

inputs of JSHOP2 are a planning domain and a planning problem. In JSHOP2, primitive tasks

are called operators whose name must begin with an exclamation mark. The body of an

operator consists of precondition (must be satisfied to execute the action), delete list (set of

103

properties that will be removed), and add list (set of properties that will be added) (225).

Solving a planning problem in JSHOP2 is done in three steps: the domain description file is

compiled into Java code, the problem descriptions are converted into Java class, and the

second Java class should be executed to initiate the planning process and inspect the planning

results. Next subchapters deal with definitions of domain and problem description files in the

context of executing compositions and finding interoperability problems introduced earlier in

this dissertation when the two use cases were described.

6.2.2 JSHOP2 problem description

Problem description file is composed of logical atoms showing the initial state and a task list

(225). The task list and the initial state are created on the fly, when the user executes some

interoperability actions using the client web application. Based on the choices of the user, the

tasks that need to be completed are generated and saved in JSHOP2 problem description file.

For example, when the user chooses “add existing user to another PaaS”, he must also select

a source and target PaaS and data container on target PaaS where user information will be

stored. One sample of the mentioned task list could be:

((addUserToAnotherPaaS SalesForce GoogleAppEngine UserEntity))

If the user chooses another interoperability action, then other task list to be executed by

planner will be generated. For example, if the user selects the data migration between

Salesforce's and Google App Engine's PaaS storages, it looks like this:

((migrateData SalesForce GoogleAppEngine))

Java class was developed that handles this and writes the appropriate content to file using

standard Java I/O and file classes and methods. In this case, the task lists are simply methods

defined in the domain description file. This file is described in the next subchapter that

defines which operators need to be executed to carry out some interoperability actions.

The initial state (a set of logical atoms) is also created programmatically. Based on the chosen

method representing the chosen interoperability action (task list to be executed), SAWSDL

and/or PaaS ontology files are parsed to generate logical atoms. For example, if the chosen

interoperability action is not to migrate data, there is no need to parse PaaS ontology to obtain

all data types of PaaS storages and their mappings. This enables users to always have

relatively small problem definition and faster execution of the planning process. A SAWSDL

parser was developed in Java by using EasyWSDL open-source library and its extension

EasySAWSDL. The class for parsing OWL ontology was implemented by using Apache Jena

104

library. Based on these two files, various logical atoms could be generated to represent the

initial state. All possible logical atoms, together with their definition and description of their

creation are systematically listed in Table 23.

Table 23 Possible logical atoms in the initial state

Logical atom (with example) Description and generating method

hasApiOperation

(hasApiOperation Azure

CreateDataOperation)

- it claims that a specific PaaS API has a specific API

operation

- cross-PaaS operation names are specified in the PaaS

ontology, and services are annotated using SAWSDL

- it is generated based on SAWSDL files - if Java class

parsing SAWSDL finds semantic annotation by means of

sawsdl:modelReference on a service operation, it then

generates hasApiOperation logical atom in JSHOP2

problem description file

ServiceIOType

(ServiceIOType

NoSqlDataObjectType)

- it shows that specific cross-PaaS type is used in input or

output of some operations

- SAWSDL files are parsed to find out annotations

(sawsdl:modelReference) on simple and complex types

used by inputs and outputs of the operations

operationHasInput

(operationHasInput

GoogleAppEngine

CreateDataOperation

NoSqlDataObjectType)

- it describes the input of the operation (PaaS offer, cross-

PaaS operation name, and its cross-PaaS concept for

type)

- SAWSDL files are parsed to find out annotations

(sawsdl:modelReference) on inputs of the operations and

on simple and complex types used by inputs

operationHasOutput

(operationHasOutput

SalesForce

GetUserInfoOperation

UserInfoType)

- it describes the output of the operation (PaaS offer,

cross-PaaS operation name, and its cross-PaaS concept

for type)

- SAWSDL files are parsed to find out annotations

(sawsdl:modelReference) on outputs of the operations and

on simple and complex types used by outputs

TypeHasLiftingSchema

(TypeHasLiftingSchema

SalesForce UserInfoType

userInfo_lifting)

- it shows which type defined in a specific PaaS offer has

lifting schema mapping associated with it

- SAWSDL files are parsed to determine which types are

annotated by using sawsdl:liftingSchemaMapping

TypeHasLoweringSchema

(TypeHasLoweringSchema

GoogleAppEngine

- it shows which type defined in a specific PaaS offer has

lowering schema mapping associated with it

105

NoSqlDataObjectType

userInfo_lowering_to_email)

- SAWSDL files are parsed to determine which types are

annotated by using sawsdl:loweringSchemaMapping

typeInCurrentData

(typeInCurrentData

salesforcecurrency)

- it is used when the user chooses data migration

interoperability action

- it shows which type is present in storages of the chosen

PaaS offers

- present data types in PaaS storages are obtained calling

remote APIs of PaaS providers

dataTypeMappingExists

(dataTypeMappingExists

azuresmallmoney xsddecimal)

- it specifies data type mapping between data types of

different PaaS storages

- the PaaS ontology is parsed to obtain all instances of

DataTypeMapper OWL class that represent data type

mappings between PaaS storages – a more detailed

description is presented in Chapter 4.2.4 of this

dissertation

6.2.3 JSHOP2 domain description

The domain description file consists of operators, methods and axioms (225). The

preconditions of operators and methods are described using logical expressions (226). An

operator is a primitive task and it consists of logical preconditions, delete list (negative

postconditions), add list (positive postconditions), and optionally cost (225). A method

consists of logical precondition and a task list (225), and it defines how composite tasks are

decomposed. The domain description file is defined manually. Two methods which show how

to get plans for two interoperability actions presented in use case 1 and use case 2 were

defined and are listed in Table 24. These methods are decomposed into operators (see Table

25) which are shown together with their preconditions and positive postconditions.

Table 24 Methods defined in JSHOP2 domain file

Method JSHOP2 source Description

migrateData (:method (migrateData ?from ?to)

()

((!checkDataTypeMappings

?from)(!createDataModelOntology

?from)

- method showing which operators

should be called to migrate data from

one PaaS storage to another

- first, the existence of needed data

type mappings are checked, then

data model ontology is created, and

106

(!createDataElementsFromOntology

?to))

)

finally data is migrated to target PaaS

storage

addUserToAnotherPaaS (:method (addUserToAnotherPaaS ?from

?to ?containerName)

()

((!checkAddUserServiceDataTypeMappin

gs ?from ?to)(!login ?from)

(!getUserInfo ?from) (!createData

?to ?containerName)(!sendEmail

?from))

)

- this method shows which operators

to call to add current user to another

PaaS

- needed service input/output data

type mappings are checked, and then

the existence of appropriate services

for login, user information, data

creation, and email sending are

checked

Table 25 Operators and their preconditions and postconditions

Operator Preconditions Positive postconditions

checkDataTypeMappings ((forall (?p)

(typeInCurrentData ?p) (and

(dataTypeMappingExists ?p

?x))))

- Precondition checks whether all

data types from data to be migrated

have appropriate data type mappings

defined in JSHOP2 problem file

((hasAllDataTypeMappings ?from))

createDataModelOntology (hasApiOperation ?from

CreateDataModelOntologyOperatio

n)

((haveDataOntology ?from))

createDataElementsFromOntology (hasApiOperation ?to

CreateDataElementsFromOntologyO

peration)

((dataMigrationSuccessfulTo

?to))

checkAddUserServiceDataTypeMappings (operationHasOutput ?from

GetUserInfoOperation ?type1)

 (operationHasInput ?to

CreateDataOperation ?type2)

 (operationHasInput

?from SendEmailOperation

?type3)

 (TypeHasLiftingSchema

?from UserInfoType ?lifting)

 (TypeHasLoweringSchema

?to NoSqlDataObjectType

?lowering1)

 (TypeHasLoweringSchema

?from EmailMessageType

?lowering2))

- If appropriate lifting and lowering

schemas exist, and are defined in the

planning problem, then it is assumed

that there are no input/output

message problems

(

(

TransformationDuringExecution

GetUserInfoOperation ?from

UserInfoType ?lifting

)

(

TransformationDuringExecution

CreateDataOperation

?toNoSqlDataObjectType

?lowering1

)

(

TransformationDuringExecution

SendEmailOperation ?from

 EmailMessageType

?lowering2

)

)

)

- this will be used during execution to

see which XSLT transformations

need to be performed

login (hasApiOperation ?from ((userIsLoggedIn ?from))

107

LoginOperation)

getUserInfo (hasApiOperation ?from

GetUserInfoOperation)

((userInfoIsObtained ?from))

createData (hasApiOperation ?to

CreateDataOperation)

((dataObjectIsCreated ?to))

sendEmail (hasApiOperation ?from

SendEmailOperation)

((EmailIsSent ?from))

6.3 Plan execution and service composition

After the domain and problem description files were successfully created, these definitions are

forwarded to a component in the prototype which invokes JSHOP2 planner to get a plan if it

exists. The domain and problem descriptions are dynamically compiled into Java code, and

the resulting Java files are redeployed to Glassfish server. AI planning process can then be

started. If JSHOP2 planner finds a plan, this plan is printed on the client web application, and

an option to execute the plan (to invoke relevant web services) is given to the user. If the

planner finds the appropriate plan, then no interoperability problems were found at this stage.

The plan given by JSHOP2 is parsed to retrieve adequate web services from SAWSDL files

that need to be executed. Apache CXF framework (218) was used to dynamically invoke web

service. This framework enables a dynamic creation of web service clients, and invokes web

services with their inputs. It works fine, when operation inputs and outputs are simple types,

and the class which takes care of inputs was implemented.

But there are operations that have different complex types, and to be able to actually execute

web services, the transformations between inputs and outputs should be performed. The

transformations are defined in SAWSDL and accompanying lifting and lowering schema

mappings in form of XSLT. Furthermore, they are also defined as postconditions of the

checkAddUserServiceDataTypeMappings operator in JSHOP2. After the plan execution, the

state can be obtained from JSHOP2 planner, and users can then parse which transformations

should be performed. This was done in the prototype: during execution, the program looks at

the current state after a plan is found, and it searches for TransformationDuringExecution to

get all lifting/lowering transformations that need to be performed. In Apache CXF, all

message transformations are done by means of interceptor classes. Interceptor classes are the

fundamental unit of Apache CXF that can read, transform, process the headers of messages,

and validate messages both at client and server side. The interceptors can be added

108

programmatically during execution, if transformations are needed. Custom interceptor was

implemented to adequately transform input and output message based on XSLT files obtained

from TransformationDuringExecution postconditions from the planner’s state, and then CXF

features were used to dynamically call web services with appropriately transformed SOAP

inputs. Open-source XSLT processor Xalan was used to parse XSLT files, and standard Java

classes for XML parsing were used to parse intermediate XML files. An example of

intermediate XML files is shown in Chapter 6.1 in Table 22.

6.4 Finding interoperability problems

If there is no suitable plan returned by JSHOP2 planner, the client web application displays

the error message. In this case, some interoperability problems exist and the cause of the

failure needs to be determined. In the existing literature, there are few approaches to tackle

gaps in planning domains. The most relevant methods are listed in Chapter 3.3.2 of this

dissertation. This approach is similar to the one proposed by Goebelbecker and Keller (146).

They proposed to change the initial state, when no plan can be found, with the aim to find

reasons why some tasks cannot be solved. They named this change an excuse; they created a

method for finding the candidates for excuse where they replan with new initial states to find

out whether they found the cause why the plan is not found.

This approach differs from the one proposed by Goebelbecker and Keller (146), because it

does not need replanning that is an expensive and time-consuming task. This algorithm

consists of four main steps:

1. Find problematic operator or method

The domain description file of JSHOP2 is simple and it is described in Chapter 6.2.3. Every

interoperability action is represented by one method that describes a set of operators that need

to be executed. When the user chooses an interoperability action, source PaaS offer, target

PaaS offer and other parameters, an AI goal is formed that calls the appropriate JSHOP2

method with parameters. There is only one way to successfully get a plan (for now, there is no

interoperability action defined where more possible solution paths were introduced) – all

operators defined in a particular JSHOP2 method must be successfully finished. JSHOP2

supports a function to programmatically inspect every step in the planning process. This

function was used to get the list of all the steps of the planner. This list of steps was

programmatically parsed in Java, and operator or method were found where first

109

BACKTRACKING action occurs. This action occurs when some preconditions of the

operator or method are not satisfied, and then JSHOP2 planner goes back up in the tree to try

to find another path to the solution. In this case, the first BACKTRACKING action in a plan

step represents problematic atom (problematic method or operator where interoperability

problem had occurred).

2. Parse concrete preconditions

The next step is to parse preconditions of a problematic operator or method. JSHOP2 domain

file is directly parsed to get all the relevant preconditions. A list of preconditions was created,

and in the next step it was determined which of the preconditions is the cause of the problem.

3. Check whether the preconditions are satisfied in the end state

The end state (the last state after AI planner fails to get a plan) is parsed to compare which of

the preconditions are not satisfied in this state, and one or more preconditions are listed as

indicators of interoperability problems.

4. List interoperability problems

Chapter 6.2.2 describes how logical atoms in the initial state are programmatically created.

Each logical atom that is used in states and preconditions has some meaning (for example,

hasApiOperation describes that some PaaS offer has a particular API operation annotated

with cross-PaaS concept from the ontology). Using this meaning, error messages were

programmatically created to explain the found interoperability problem in the client web

application to a user. For example, if the problematic precondition contains hasApiOperation,

then there is a missing API operation problem in the concerned PaaS offer.

Here are some examples. Everything started with the scenario introduced in the Chapter on

use case 2, and some intentional errors were made in SAWSDL annotations and PaaS

ontology to test the problem finding technique and the software tool. These tests, together

with found problematic operator, found problematic precondition, and results obtained from

the client web application are shown in Table 26. In the first three test scenarios, the author

selected to add the existing user in his client web application from Salesforce instance to

Vosao CMS deployed on Google App Engine instance. In the last scenario the choice was to

migrate all the data from Salesforce to Google App Engine PaaS offer.

110

Table 26 Testing examples of finding interoperability problems

Test scenario Problematic operator with all

preconditions

Problematic

preconditions

Message on web client

application

- In Salesforce’s

SAWSDL file an

annotation on

operation sendEmail

to cross-PaaS

operation concept

from PaaS ontology

is removed

(:operator (!sendEmail ?from)

 ((hasApiOperation ?from

SendEmailOperation))

(hasApiOperation

?from

SendEmailOperation

)

MissingApiOperationProble

m => Operation sendEmail

is missing in Salesforce!

Check service annotations

(SAWSDL file) or whether

this operation is supported

by PaaS vendor!

- In Salesforce’s

SAWSDL file an

annotation of

lowering schema

mapping on complex

type

EmailMessageType

is removed

(:operator

(!checkAddUserServiceDataTypeMappi

ngs ?from ?to)

 ((operationHasOutput

?from GetUserInfoOperation

?type1)(operationHasInput ?to

CreateDataOperation

?type2)(operationHasInput ?from

SendEmailOperation

?type3)(TypeHasLiftingSchema ?from

UserInfoType

?lifting)(TypeHasLoweringSchema

?to NoSqlDataObjectType

?lowering1)(TypeHasLoweringSchema

?from EmailMessageType

?lowering2))

(TypeHasLoweringSc

hema ?from

EmailMessageType

?lowering2)

Missing lowering schema =>

TypeHasLoweringSchema

salesforce

EmailMessageType

?lowering2! Check service

annotations (SAWSDL file)

and add adequate lowering

schema!

- In Salesforce’s

SAWSDL file an

annotation on input

of sendMail

operation is

intentionally

removed together

with the link to

lowering schema

mapping on complex

type EmailMessage

(:operator

(!checkAddUserServiceDataTypeMappi

ngs ?from ?to)

 ((operationHasOutput

?from GetUserInfoOperation

?type1)(operationHasInput ?to

CreateDataOperation

?type2)(operationHasInput ?from

SendEmailOperation

?type3)(TypeHasLiftingSchema ?from

UserInfoType

?lifting)(TypeHasLoweringSchema

?to NoSqlDataObjectType

?lowering1)(TypeHasLoweringSchema

?from EmailMessageType

?lowering2))

(operationHasInput

?from

SendEmailOperation

?type3)

(TypeHasLoweringSc

hema ?from

EmailMessageType

?lowering2)

Missing annotation on

operation input =>

operationHasInput

salesforce

SendEmailOperation !

Check service annotations

(SAWSDL file)!

Missing lowering schema =>

TypeHasLoweringSchema

salesforce

EmailMessageType

?lowering2! Check service

annotations (SAWSDL file)

and add adequate lowering

schema!

- All the Salesforce’s

PaaS storage data

type mappings were

removed from the

PaaS ontology

(:operator (!checkDataTypeMappings

?from) ((forall (?p)

(typeInCurrentData ?p) (and

(dataTypeMappingExists ?p ?x))))

(typeInCurrentData

?p) (and

(dataTypeMappingEx

ists ?p ?x)

DataRepresentationProblem

: Source PaaS offering

storage includes data types

that cannot be mapped to

destination PaaS's storage -

> Missing or impossible

data type mapping!

111

Most of the problems can be identified using this method. However, some problems can occur

only in service composition execution phase. For example, some PaaS API could be

temporary unavailable. Lifting and lowering schema can also have some errors, leading to

runtime errors due to input mismatch. In these cases, the client web application will show the

exception thrown. For the most common exceptions, a user-friendly description is added to

list possible causes of the error to an end user. For example, if exception contains

org.apache.cxf.interceptor.Fault, then the following message is printed: “There is a problem

with input for the operation operation_name PaaS_offer! Please check lifting and lowering

schema mappings”! Operation_name and PaaS_offer variables are substituted with concrete

values during execution.

6.5 Methodology for detection of interoperability problems

6.5.1 Methodology justification

Interoperability problems between cloud providers are one of the most serious issues of this

new computing paradigm. A methodology is needed to systematically and effectively find and

solve interoperability problems. Currently, there is still no methodology that aims at

identification and resolution of interoperability problems; neither among APIs of commercial

platforms as a service nor among cloud offers in general. The most relevant similar

interoperability methodologies are explained in Chapter 3.1.5. The only existing methodology

that takes into consideration cloud interoperability problems is methodology developed by

REMICS consortium (108) but its main purpose is to provide model-driven approach to

migrate legacy application on software as a service. The part of methodology that addresses

interoperability deals with finding possible interoperability problems for the future migrated

system, and with building interoperability components in migrated software when it is

needed. It does not consider interoperability problems between different cloud providers. In

REMICS’s methodology, interoperability is modeled as one of five technical practices with

five tasks: identification of interoperability problems/scenarios, definition of interoperability

requirements, performing interoperability analysis, implementation of interoperability

components, and interoperability monitoring (108).

For this reasons, a new methodology with detailed steps to find and solve interoperability

problems is here proposed. This new methodology is focused and implemented on platform as

a service, but it can be used in any of the three main models of cloud computing. The

112

methodology uses iterative approach, because PaaS offers and their APIs evolve and change

very often. The user's interoperability requirements also change during time and new

interoperability problems could arise. This dissertation focuses on using remote PaaS APIs to

solve interoperability problems on technical, PaaS storage and services level. Other levels of

interoperability (for example, legal and organizational level) cannot be solved using remote

APIs, and are not subject of this work and proposed methodology. In the next subchapter, the

steps of the methodology will be described.

6.5.2 Steps of the methodology

The proposed methodology has five main steps:

 Requirements identification

 Interoperability analysis

 Solution design

 Solution implementation

 Evaluation

In the first step, the most important interoperability needs of users should be listed, i.e.

interoperability actions such as migration of data from one PaaS offer to another cloud

storage, working with external cloud data in PaaS applications, communication between two

applications deployed on different PaaS offerings, composition of two or more API operations

of different providers, etc. These actions can be derived from the available use cases

presented in technical and research papers, deliverables of related projects, and proposals for

cloud standards where authors already did some research on user’s interoperability

requirements. Based on the identification of relevant interoperability actions, adequate use

cases should be defined and described.

Interoperability analysis deals with identifying levels of interoperability problems and

reasoning on possible interoperability problems between different commercial providers of

platform as a service. This step starts with studying the existing literature with an aim to find

the most important known interoperability problems for a given context. The systematic

mapping study or systematic review methods can be used to perform the mentioned review.

The final result of the review will be identification of levels of interoperability problems and

specific problems on each level. In the platform as a service context, the following levels of

interoperability problems were determined: legal, organizational, service level, application

113

level, and storage level. Next, the ontology of the interoperability problems should be

developed using the chosen ontology development methodology such as Ontology

Development 101 (33).

Solution design prepares the whole architecture. It includes activities such as the development

of the ontology of resources, remote operations and data types, definition of the semantic web

service, needed mappings and transformations, and defining AI planning domain. The remote

operations of commercial platform as a service, their data types and mappings are modeled by

means of the ontology of resources, remote operations, and data type mappings. Current state

is described in the ontology presented in Chapter 5.2. However, the landscape of cloud APIs

is changing constantly, and the ontology should be upgraded during time. The refinement of

the ontology is mandatory when users detect important changes in APIs of included providers

and when they want to add a new cloud provider with its new remote functions, data types

and new mappings. Next, the language for semantic web services is selected, and after that

semantic web services are created by annotating operation, inputs and outputs, data types and

needed mappings and transformations. In the end, an AI planner is chosen, and planning

domain is created taking into account interoperability actions chosen in previous steps.

Solution implementation deals with approach implementation and execution of the defined

use cases. The initial state and goal for AI planner are generated programmatically based on

the chosen interoperability action, semantic annotations, the ontology, and defined mappings

and transformations. Interoperability tool is developed or upgraded; AI planner is executed to

get a plan or list found interoperability problems. If there is a suitable plan, appropriate

service compositions are executed, taking into account possible mappings and transformations

of inputs and outputs of different services representing remote APIs or composite service

consisting of more remote APIs with additional logic.

Evaluation step evaluates the successful execution of use cases and correct identification of

possible interoperability problems. If some problems are found, the AI domain and problem

definitions, interoperability tool, and semantic annotations should be inspected and errors

should be eliminated. Additionally, it is useful to evaluate developed ontologies using known

ontology evaluation techniques and methods. The steps of the proposed methodology and

their main activities are listed in Table 27.

114

Table 27 Steps and activities of the proposed methodology

Step Activities

1. Requirement identification 1.1 Choose cloud model

1.2 Study the existing use cases

1.3 Identification of relevant interoperability actions

1.4 Define use cases

2. Interoperability analysis 2.1 Review the existing literature on interoperability

problems

2.2 Identify levels of interoperability problems

2.3 Identify specific interoperability issues at each level

2.4 Choose ontology development methodology

2.5 Create ontology of interoperability problems

3. Solution design 3.1 Create ontology of resources, remote operations, and

data types

3.2 Choose language for semantic web services

3.3 Create mappings and transformations

3.4 Associate mappings and transformations to the

appropriate elements of services

3.5 Choose AI planner

3.6 Define AI planning domain

3.7 Define algorithms for finding interoperability problems

4. Solution implementation Use cases execution:

4.1 Implement needed web services to invoke remote APIs

4.2 Generate AI planning problem based on semantic

annotations, the ontology and user choice

4.3 Develop or modify/upgrade interoperability tool

4.4 Get a suitable plan from AI planner or find

interoperability problems

4.5 Execute service composition

5. Evaluation 5.1 Evaluation of the ontologies

5.2 Validation of execution of use cases

115

6.5.3 Applying the methodology

The methodology is the result of the work in this dissertation. All listed steps and activities

were performed on platform as a service model and two use cases: migration of data between

different PaaS storages and adding user to application deployed on other PaaS offers. These

two use cases were constructed to illustrate how PaaS storage interoperability and service-

level interoperability can be solved using this approach and remote APIs of PaaS providers.

The plan for the future is to apply the proposed methodology on additional use cases

regarding PaaS interoperability, using other AI planners (for example, some contingent

planner to address the non-determinism of the domain), and try to apply it to other two models

of cloud computing (IaaS and SaaS). Hopefully, the other researchers will find this

methodology useful, and apply it in their research.

116

7. CONCLUSIONS

The main aim of this dissertation was to advance knowledge of interoperability problems

among different commercial vendors of platform as a service, and develop ontologies and

methodology to identify and solve interoperability problems among different API operations.

In the following subchapters the scientific contribution of the dissertation and review of

hypotheses and research questions are presented. The limitations of this study are also brought

up, followed by directions for future research.

7.1 Summary of contributions

The main contributions of the dissertation proposal are fulfilled in this work:

7.1.1 Creation of detailed ontologies

This work described the development of two ontologies. The mentioned ontologies describe

functionalities, features and interoperability problems among APIs of different providers of

platform as a service. The first ontology provides data type mapping among different PaaS

storages and cross-PaaS data types used in inputs and outputs of the operations. This

functionality provides a common layer for information exchange and data migration among

different PaaS providers. The logical consistency of the ontologies was checked and four

human experts evaluated the ontologies. Furthermore, the ontologies were used in two use

cases to show their practical applicability.

7.1.2 Development of a methodology

Based on use cases, literature review and this research, the new methodology for the detection

of interoperability problems among different providers of platform as a service was

developed. This methodology uses semantic web annotations, semantic web services,

ontology and AI planning method to detect and solve common interoperability problems.

Remote PaaS API operations are used to execute interoperability actions.

117

7.1.3 Solving interoperability problems

In this study, AI planning method was used to identify and try to solve interoperability

problems. Practical examples of solving interoperability problems are shown in this

dissertation. These approaches were succesful in determining interoperability problems and

showed how most common interoperability problems can be solved using semantic web

services, cross-PaaS concepts defined in an ontology, and AI planning techniques.

7.2 Answers to research questions

How to semantically describe resources and operations of commercial platform as a

service APIs?

The answer to the above question is presented in Chapter 4.1 and Chapter 5.2. The OWL2

ontology was used to semantically describe resources and operations of commercial platform

as a service APIs. The aim of the ontology is to clearly describe and categorize the existing

functionalities and features of commercial providers of platform as a service. This ontology is

used to semantically annotate API operations of platform as a service offers. SAWSDL

(W3C's Semantic Annotations for WSDL) lightweight annotation was chosen to define

semantic web services.

Which are key indicators of the existence of interoperability problems among the

available platform as a service APIs?

Key indicators can be found in the description of classes in Chapter 5.3.4 where classes of the

ontology of interoperability problems of platform as a service are presented in Table 18.

Classes representing interoperability problems are subclasses of InteroperabilityProblem

OWL class.

What are the possible solutions to known interoperability problems?

The solutions were presented in earlier chapters on use cases, PaaS ontology, the proposed

solution and methodology. Briefly, interoperability problem on PaaS storage level can be

118

solved by using exported CSV files, custom-built composite web services, PaaS remote APIs,

mappings between data types of different PaaS storages defined as instances of the PaaS

ontology, and transformations of data from PaaS storage to and from unified data model

ontologies. Interoperability problems on service level can be handled by semantically

annotating web services using SAWSDL and its lowering and lifting schema mappings coded

in XSTL format.

7.3 Hypotheses revisited

H1 Developed ontology will determine the differences among remote application

programming interfaces (APIs) of commercial platform as a service providers and

improve understanding of platform as a service resources and operations.

Instances in the ontology show different categories of PaaS API operations, data types of

input and outputs of the operations, data types supported in different PaaS storage options and

data type mappings. The logical consistency of the ontology was checked, it was evaluated by

four human experts, and it was succesfully used in two presented use cases. The ontology

improves the understanding of PaaS offers, their operations and data type, and enables

mappings to overcome their differences. Identified cross-PaaS concepts of operation, input

and output data types, as well as defined PaaS storage data types and their mappings improve

the understanding of platform as a service model in more detail than other models and

ontologies in the existing literature. These concepts also enable semantic annotations and help

solve known interoperability problems.

H2 Based on the concepts identified in the ontology (resources, operations and

interoperability problems), the methodology for determining semantic interoperability

problems among the various commercial platform as a service providers and their

resolution using the available APIs will be developed.

The methodology for determination and resolution of PaaS interoperability problems was

developed as part of this dissertation. This methodology extensively uses elements of

ontology to find and solve interoperability problems and to enable data type mappings among

PaaS storages and cross-PaaS concepts representing operations and input/output types. The

developed ontology is the most important element of the methodology, because other steps

119

extensively use this ontology. Two use cases illustrate how the metholodogy can be applied to

address PaaS interoperability problems.

7.4 Limitations of research

There are several limitations of this work that need to be considered. Real industrial case

study proving that it is possible to solve certain interoperability problems by using cloud

providers’ API may improve validation of this methodology and overall approach. However,

it is very difficult to find real (industrial) case studies using more than one PaaS offer or

trying to migrate from one PaaS provider to another. Currently, in Croatia, cloud computing

usage in general is at its beginning, and the search for the companies that use platform as a

service and are willing to cooperate regarding this research was not successful. The small

number of companies that use cloud computing paradigm in Croatia use only infrastructure as

a service model as a substitution for on-premise solution or previous hosting provider.

Furthermore, AI planning components of this system do not take into consideration the non-

determinism of the domain (as an example, some of the remote API operations could be

unavailable at specific time; output of one web service could differ from the expected one,

etc.). For this purpose, a contingent planner could be used for planning under uncertainty.

Three prominent commercial offers of platform as a service (Google App Engine, Salesforce

and Microsoft Azure) were used in use cases presented in this dissertation. Their APIs

represent most of the functionalities found today in platform as a service offers, but it would

be certainly beneficial to also include other providers.

7.5 Open issues and future work

Some possible future research topics could arise by solving limitations of this study listed in

the previous section. If the appropriate real (industrial) case study could be found, this

approach and methodology to solve it could be applied. In addition to JSHOP2 planner that is

used in this approach, this methodology could be upgraded to use some contingent planners to

address the non-determinism of the domain. The presented ontology of PaaS resources,

remote operations, and data type mappings can be extended including the other providers of

120

platform as a service. The ontology is designed to be easily extended with additional API

operations, data types and mappings of data types. Another direction for future work could be

to try this approach to solve interoperability problems of other two main models of cloud

computing (software as a service and infrastructure as a service). The author will work further

on the tool for migration and solving interoperability problems. Generally, the interoperability

of platform as a service and cloud computing are very complex and important issues, and

hopefully, this dissertation will be a solid foundation for future research in this field.

121

BIBLIOGRAPHY

1. Chan KSM, Bishop J, Baresi L. Survey and Comparison of Planning Techniques for

Web Services Composition [Internet]. Pretoria: Pretoria University; 2007 [cited 2013

Jul 9]. Available from: http://polelo.cs.up.ac.za/papers/Chan-Bishop-Baresi.pdf

2. Mell P, Grance T. The NIST Definition of Cloud Computing [Internet]. NIST; 2011

Sep [cited 2013 Jun 24] p. 7. Report No.: 800-145. Available from:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

3. Erl T. Cloud computing: concepts, technology, & architecture. Upper Saddle River, NJ:

Prentice Hall; 2013. 487 p.

4. Velte AT. Cloud computing: a practical approach. New York: McGraw-Hill; 2010. 334

p.

5. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, et al. Above the

Clouds: A Berkeley View of Cloud Computing [Internet]. Berkeley: EECS

Department, University of California, Berkeley; 2009 Feb [cited 2013 Jun 4] p. 23.

Report No.: EECS-2009-28. Available from:

http://d1smfj0g31qzek.cloudfront.net/abovetheclouds.pdf

6. Wang L, von Laszewski G, Kunze M, Tao J. Cloud computing: A Perspective study.

Proceedings of the Grid Computing Environments (GCE) workshop [Internet]. Austin,

Texas; 2008 [cited 2013 Jun 24]. Available from:

https://ritdml.rit.edu/bitstream/handle/1850/7821/LWangConfProc11-16-

2008.pdf?sequence=1

7. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M. A break in the clouds. ACM

SIGCOMM Computer Communication Review. 2008 Dec 31;39(1):50.

8. Boniface M, Nasser B, Papay J, Phillips SC, Servin A, Yang X, et al. Platform-as-a-

Service Architecture for Real-Time Quality of Service Management in Clouds. Fifth

International Conference on Internet and Web Applications and Services (ICIW 2010)

122

[Internet]. Barcelona: IEEE; 2010 [cited 2013 Aug 6]. p. 155–60. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5476775

9. Emison JM. PaaS Buyer’s Guide. InformationWeek; 2013 Mar.

10. Lawton G. Developing Software Online With Platform-as-a-Service Technology.

Computer. 2008 Jun;41(6):13–5.

11. IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries [Internet]. New York; 1991 [cited 2013 Jun 27]. Report No.: 610-

1991. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=182763

12. Brownsword LL, Carney DJ, Fisher D, Meyers C, Morris EJ, Place PRH, et al. Current

Perspectives on Interoperability [Internet]. Pittsburgh: Carnegie Mellon University;

2004 Mar [cited 2014 Mar 25] p. 1–51. Report No.: CMU/SEI-2004-TR-009. Available

from:

http://resources.sei.cmu.edu/asset_files/TechnicalReport/2004_005_001_14390.pdf

13. Pokraev S, Quartel D, Steen MWA, Reichert M. Semantic Service Modeling: Enabling

System Interoperability. In: Doumeingts G, Müller J, Morel G, Vallespir B, editors.

Enterprise Interoperability [Internet]. London: Springer London; 2007 [cited 2013 Jun

27]. p. 221–30. Available from: http://www.springerlink.com/index/10.1007/978-1-

84628-714-5_21

14. Vernadat F. Enterprise modeling and integration: principles and applications. London ;

New York: Chapman & Hall; 1996. 513 p.

15. Park J, Ram S. Information systems interoperability. ACM Transactions on Information

Systems. 2004 Oct 1;22(4):595–632.

16. Loutas N, Kamateri E, Tarabanis K, D’Andria F. D 1.2 Cloud4SOA Cloud Semantic

Interoperability Framework [Internet]. 2011 [cited 2013 Jun 26]. Available from:

http://www.cloud4soa.eu/sites/default/files/D1.2_Cloud4SOA%20Cloud%20Semantic

%20Interoperability%20Framework.pdf

123

17. Naudet Y, Latour T, Guedria W, Chen D. Towards a systemic formalisation of

interoperability. Computers in Industry. 2010 Feb;61(2):176–85.

18. Machado GS, Hausheer D, Stiller B. Considerations on the interoperability of and

between cloud computing standards. Procs OGF27: G2C-Net [Internet]. Banff, Alberta,

Canada; 12-15 October2009 [cited 2013 Jul 3]. Available from:

http://www.csg.uzh.ch/publications/ogf27-g2cnet-discussion-cc-standards-

finalversion.pdf

19. Pahl C, Zhang L, Fowley F. Interoperability Standards for Cloud Architecture. 3rd

International Conference on Cloud Computing and Services Science, CLOSER 2013

[Internet]. Aachen, Germany; 2013 [cited 2013 Jul 3]. Available from:

http://doras.dcu.ie/17824/1/closer13-sp.pdf

20. Pahl C, Zhang L, Fowley F. A look at cloud architecture interoperability through

standards. The Fourth International Conference on Cloud Computing, Grids, and

Virtualization [Internet]. Valenica, Spain; 2013 [cited 2013 Jul 3]. p. 7–12. Available

from: http://doras.dcu.ie/18355/1/CloudComp13-Std.pdf

21. Nyren R, Edmonds A, Papaspyrou A, Metsch T. Open Cloud Computing Interface -

Core [Internet]. Open Grid Forum; 2011 Jun [cited 2013 Jul 3]. Report No.: GFD-P-

R.183. Available from: http://www.ogf.org/documents/GFD.183.pdf

22. DMTF. Cloud Infrastructure Management Interface (CIMI) Model and RESTful HTTP

based Protocol 6 - An Interface for Managing Cloud Infrastructure [Internet].

Distributed Manage ment Task Force, Inc. (DMTF); 2012 Sep [cited 2013 Jul 3].

Available from:

http://www.dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf

23. DMTF. Open Virtualization Format Specification [Internet]. DMTF; 2012 Dec [cited

2013 Jul 3]. Report No.: DSP0243. Available from:

http://dmtf.org/sites/default/files/standards/documents/DSP0243_2.0.0.pdf

24. OASIS. Topology and Orchestration Specification for Cloud Applications Version 1.0

[Internet]. OASIS; 2013 Mar [cited 2013 Jul 3]. Report No.: Committee Specification

124

01. Available from: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-

cs01.pdf

25. SNIA. Cloud Data Management Interface (CDMITM) Version 1.0.2 [Internet]. SNIA;

2012 Jun [cited 2013 Jul 3]. Available from:

http://snia.org/sites/default/files/CDMI%20v1.0.2.pdf

26. Lewis GA. The Role of Standards in Cloud Computing Interoperability [Internet].

Carnegie Mellon University; 2012 Oct [cited 2013 Jul 5]. Report No.: Paper 682.

Available from: http://www.sei.cmu.edu/reports/12tn012.pdf

27. Petcu D. Portability and Interoperability between Clouds: Challenges and Case Study.

In: Abramowicz W, Llorente IM, Surridge M, Zisman A, Vayssière J, editors. Towards

a Service-Based Internet [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg;

2011 [cited 2013 Nov 26]. p. 62–74. Available from:

http://www.springerlink.com/index/10.1007/978-3-642-24755-2_6

28. Berners-Lee T, Hendler J, Lassila O. The Semantic Web. Scientific American. 2001

May;284(5):29–37.

29. Allemang D. Semantic Web for the working ontologist: effective modeling in RDFS

and OWL. 2nd ed. Waltham, MA: Morgan Kaufmann/Elsevier; 2011. 354 p.

30. W3C. RDF Primer [Internet]. 2004 Feb [cited 2013 Jun 29]. Available from:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

31. W3C. OWL 2 Web Ontology Language Primer [Internet]. 2009 Oct [cited 2013 Jun

29]. Available from: http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

32. Gruber TR. A translation approach to portable ontology specifications. Knowledge

Acquisition. 1993 Jun;5(2):199–220.

33. Noy NF, McGuinness DL. Ontology Development 101: A Guide to Creating Your First

Ontology [Internet]. Stanford University; 2001 [cited 2013 Jun 30]. Available from:

http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf

125

34. Vrandečić D. Ontology Evaluation [Internet] [PhD thesis]. [Karlsruhe]: Karlsruher

Instituts fuer Technologie (KIT); 2010 [cited 2013 Sep 19]. Available from:

http://www.aifb.kit.edu/images/b/b5/OntologyEvaluation.pdf

35. Bergman M. A Brief Survey of Ontology Development Methodologies [Internet]. 2010

[cited 2013 Jun 29]. Available from: http://www.mkbergman.com/906/a-brief-survey-

of-ontology-development-methodologies/

36. Corcho O, Fernández-López M, Gómez-Pérez A. Methodologies, tools and languages

for building ontologies. Where is their meeting point? Data & Knowledge Engineering.

2003 Jul;46(1):41–64.

37. Fernandez M, Gomez-Perez A, Juristo N. METHONTOLOGY: From Ontological Art

towards Ontological Engineering. Proceedings of the AAAI97 Spring Symposium

Series on Ontological Engineering. Standford, USA; 1997. p. 33–40.

38. De Nicola A, Missikoff M, Navigli R. A proposal for a unified process for ontology

building: UPON. DEXA’05 Proceedings of the 16th international conference on

Database and Expert Systems Applications. Copenhagen, Denmark: Springer; 2005. p.

655–64.

39. Iqbal R, Murad MAA, Mustapha A, Sharef NMS. An Analysis of Ontology

Engineering Methodologies: A Literature Review. Research Journal of Applied

Sciences, Engineering and Technology. 2013;6(16):2993–3000.

40. Papazoglou MP, Heuvel W-J. Service oriented architectures: approaches, technologies

and research issues. The VLDB Journal. 2007 Mar 3;16(3):389–415.

41. Austin D, Barbir A, Ferris C, Garg S. Web Services Architecture Requirements

[Internet]. W3C; 2004 Feb [cited 2014 Feb 10]. Available from:

http://www.w3.org/TR/wsa-reqs/

42. Pautasso C, Zimmermann O, Leymann F. Restful web services vs. “big”’ web services:

making the right architectural decision. ACM Press; 2008 [cited 2014 Feb 8]. p. 805.

Available from: http://portal.acm.org/citation.cfm?doid=1367497.1367606

126

43. Pautasso C. RESTful Web service composition with BPEL for REST. Data &

Knowledge Engineering. 2009 Sep;68(9):851–66.

44. Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S, et al. OWL-S:

Semantic Markup for Web Services [Internet]. 2004 Nov [cited 2013 Jun 29].

Available from: http://www.w3.org/Submission/OWL-S/

45. Roman D, Lausen H, Keller U, de Bruijn J, Bussler C, Domingue J, et al. D2v1.4. Web

Service Modeling Ontology (WSMO) [Internet]. 2007 Feb p. 29 June 2013. Available

from: http://www.wsmo.org/TR/d2/v1.4/

46. Fensel D, Kopecky J, Komazec S. Leight-weight Annotations [Internet]. 2010 [cited

2013 Jun 29]. Available from: http://www.sti-

innsbruck.at/sites/default/files/fileadmin/documents/SWS_SS11/SWS-Lecture11-

handouts.pdf

47. Pedrinaci C. Lightweight Semantic Annotations for Services on the Web [Internet].

2009 [cited 2013 Jun 29]. Available from: http://soa4all.eu/training/SOA4All-

FirstExternalTutorialSlideSet.pdf

48. Vitvar T, Kopecky J, Viskova J, Mocan A, Kerrigan M, Fensel D. Chapter 5 Semantic

Web Services Architecture with Lightweight Descriptions of Services. Advances in

Computers [Internet]. Elsevier; 2009 [cited 2013 Jun 29]. p. 177–224. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S0065245809010055

49. W3C. Semantic Annotations for WSDL and XML Schema [Internet]. W3C; 2007 Aug

[cited 2013 Jun 29]. Available from: http://www.w3.org/TR/sawsdl/

50. Verma K. Configuration and adaptation of semantic web processes [Internet] [Doctoral

thesis]. [Athens, Georgia]: University of Georgia; 2006 [cited 2014 Feb 5]. Available

from:

http://athenaeum.libs.uga.edu/bitstream/handle/10724/9083/verma_kunal_200608_phd.

pdf?sequence=1

51. Ghallab M. Automated planning: theory and practice. Amsterdam ; Boston:

Elsevier/Morgan Kaufmann; 2004. 635 p.

127

52. Okutan C, Cicekli NK. A monolithic approach to automated composition of semantic

web services with the Event Calculus. Knowledge-Based Systems. 2010 Jul;23(5):440–

54.

53. Yoo T, Jeong B, Cho H. A Petri Nets based functional validation for services

composition. Expert Systems with Applications. 2010 May;37(5):3768–76.

54. Ni Y, Fan Y. Model transformation and formal verification for Semantic Web Services

composition. Advances in Engineering Software. 2010 Jun;41(6):879–85.

55. Xu C, Qu W, Wang H, Wang Z, Ban X. A Petri Net-Based Method for Data Validation

of Web Services Composition. IEEE 34th Annual Computer Software and Applications

Conference (COMPSAC 2010) [Internet]. Seoul: IEEE; 2010 [cited 2013 Jul 10]. p.

468–76. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5676297

56. Rao J, Küngas P, Matskin M. Composition of Semantic Web services using Linear

Logic theorem proving. Information Systems. 2006 Jun;31(4-5):340–60.

57. McDermott D. Estimated-Regression Planning for Interactions with Web Services.

Proceedings of the Sixth International Conference on Artificial Intelligence Planning

Systems [Internet]. Toulose, France: AAAI; 2002 [cited 2013 Jul 10]. p. 204–11.

Available from: ftp://cs.yale.edu/pub/mcdermott/papers/aips02.pdf

58. Sirin E, Parsia B, Wu D, Hendler J, Nau D. HTN planning for Web Service

composition using SHOP2. Web Semantics: Science, Services and Agents on the

World Wide Web. 2004 Oct;1(4):377–96.

59. Bertoli P, Pistore M, Traverso P. Automated composition of Web services via planning

in asynchronous domains. Artificial Intelligence. 2010 Mar;174(3-4):316–61.

60. Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos D, Vlahavas I. An

Integrated Approach to Automated Semantic Web Service Composition through

Planning. IEEE Transactions on Services Computing. 2012;5(3):319–32.

128

61. Goyal A. Real-Time Planning Using HTN in Stealth Game [Internet]. 2010 [cited 2013

Jul 5]. Available from:

http://www.anshulgo.com/download/AnshulGoyal_AIProjectPaper_April2010.pdf

62. Yang T-H, Lee W-P. A Service-Oriented Framework for the Development of Home

Robots. International Journal of Advanced Robotic Systems. 2013;10(122):1–11.

63. European Commission. European Interoperability Framework (EIF) for European

public services [Internet]. European Commission; 2010 [cited 2014 Jul 7]. Available

from: http://ec.europa.eu/isa/documents/isa_annex_ii_eif_en.pdf

64. Chen D, Doumeingts G, Vernadat F. Architectures for enterprise integration and

interoperability: Past, present and future. Computers in Industry. 2008 Sep;59(7):647–

59.

65. Berre A-J, Elvesæter B, Figay N, Guglielmina C, Johnsen SG, Karlsen D, et al. The

ATHENA Interoperability Framework. In: Gonçalves RJ, Müller JP, Mertins K, Zelm

M, editors. Enterprise Interoperability II [Internet]. London: Springer London; [cited

2013 Aug 3]. p. 569–80. Available from:

http://www.springerlink.com/index/10.1007/978-1-84628-858-6_62

66. The GridWise Architecture Council. GridWise Interoperability Context-Setting

Framework [Internet]. The GridWise Architecture Council; 2008 [cited 2014 Jul 7].

Available from: http://www.gridwiseac.org/pdfs/interopframework_v1_1.pdf

67. Rosati K, Lamar M. The Quest for Interoperable Electronic Health Records: A Guide to

Legal Issues in Establishing Health Information Networks [Internet]. American Helath

Lawyers Association; 2005 [cited 2014 Jul 8]. Available from:

http://www.crowell.com/pdf/2005-July_Quest_for_EHRs_Butler.pdf

68. Hellman R. Organizational Barriers to Interoperability: Norwegian Case Study. 2009

Proceedings of ongoing research, general development issues and projects of EGOV 09

8th International Conference. Linz, Austria; 2009. p. 182–9.

69. Rauffet P, Cunha CD, Bernard A. Designing and Managing Organizational

Interoperability with Organizational Capabilities and Roadmaps. IESA ’09

International Conference on Interoperability for Enterprise Software and Applications

129

[Internet]. Beijing, China: IEEE; 2009 [cited 2014 Jul 8]. p. 120–6. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5260854

70. Rana J, Ion M. Challenges of Interoperability Issues for Enterprise Software and

Applications [Internet]. OSCO Team, CREATE-NET; 2007 [cited 2014 Jul 8].

Available from: ftp://ftp.cordis.europa.eu/pub/ist/docs/ict-ent-net/eivp-create_en.pdf

71. Vernadat FB. Technical, semantic and organizational issues of enterprise

interoperability and networking. Annual Reviews in Control. 2010 Apr;34(1):139–44.

72. Sheth AP, Kashyap V. So Far (Schematically) yet So Near (Semantically). Proceedings

of the IFIP WG 26 Database Semantics Conference on Interoperable Database

Systems. North-Holland Publishing Co.; 1993. p. 283–312.

73. Parent C, Spaccapietra S. Database Integration: the Key to Data Interoperability.

Advances in Object-Oriented Data Modeling. MIT Press; 2000.

74. Haslhofer B, Klas W. A survey of techniques for achieving metadata interoperability.

ACM Computing Surveys. 2010 Feb 1;42(2):1–37.

75. Ponnekanti SR, Fox A. Interoperability among independently evolving web services.

Middleware ’04 Proceedings of the 5th ACM/IFIP/USENIX international conference

on Middleware. Toronto, Canada: Springer; 2004. p. 331–51.

76. Zhu F, Turner M, Kotsiopoulos I, Bennett K, Russel M, Budgen D, et al. Dynamic Data

Integration Using Web Services. ICWS ’04 Proceedings of the IEEE International

Conference on Web Services. San Diego, USA: IEEE Computer Society; 2004. p. 262–

72.

77. Nagarajan M, Verma K, Sheth AP, Miller JA. Ontology Driven Data Mediation in Web

Services. International Journal of Web Services Research. 2007 34;4(4):104–26.

78. Rezaei R, Chiew TK, Lee SP, Aliee ZS. A Semantic Interoperability Framework for

Software as a Service Systems in Cloud Computing Environments. Expert Systems

with Applications. 2014 Mar;41(13):5751–70.

79. Tao J, Marten H, Kramer D, Karl W. An Intuitive Framework for Accessing

Computing Clouds. Procedia Computer Science. 2011 Jan;4:2049–57.

130

80. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS, et al. From

infrastructure delivery to service management in clouds. Future Generation Computer

Systems. 2010 Oct;26(8):1226–40.

81. Ranabahu A, Maximilien EM. A Best Practice Model for Cloud Middleware Systems.

Proceedings of the Best Practices in Cloud Computing: Designing for the Cloud

workshop in ACG SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). Orlando FL, USA;

2009. p. 41–51.

82. Bernstein D, Vij D. Intercloud Directory and Exchange Protocol Detail Using XMPP

and RDF. 6th World Congress on Services (SERVICES-1 2010) [Internet]. Miami,

Florida: IEEE; 2010 [cited 2013 Jun 28]. p. 431–8. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577272

83. Merzky A, Stamou K, Jha S. Application Level Interoperability between Clouds and

Grids. Workshops at the Grid and Pervasive Computing Conference (GPC ’09)

[Internet]. Geneva: IEEE; 2009 [cited 2013 Jun 28]. p. 143–50. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4976556

84. Ranabahu A, Sheth A. Semantics Centric Solutions for Application and Data

Portability in Cloud Computing. IEEE Second International Conference on Cloud

Computing Technology and Science (CloudCom 2010) [Internet]. Indianapolis: IEEE;

2010 [cited 2013 Jun 28]. p. 234–41. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708456

85. Buyya R, Ranjan R, Calheiros RN. InterCloud: Utility-Oriented Federation of Cloud

Computing Environments for Scaling of Application Services. In: Hsu C-H, Yang LT,

Park JH, Yeo S-S, editors. Algorithms and Architectures for Parallel Processing

[Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010 [cited 2013 Jun 28]. p.

13–31. Available from: http://www.springerlink.com/index/10.1007/978-3-642-13119-

6_2

86. Loutas N, Peristeras V, Bouras T, Kamateri E, Zeginis D, Tarabanis K. Towards a

Reference Architecture for Semantically Interoperable Clouds. IEEE Second

International Conference on Cloud Computing Technology and Science (CloudCom)

131

[Internet]. Indianapolis: IEEE; 2010 [cited 2013 Jun 28]. p. 143–50. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708445

87. Demchenko Y, Makkes MX, Strijkers R, de Laat C. Intercloud Architecture for

interoperability and integration. 4th International Conference on Cloud Computing

TEchnology and Science (CloudCom 2012) [Internet]. Taipei: IEEE; 2012 [cited 2013

Jul 5]. p. 666–74. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6427607

88. Fazai S. Three-Dimensional Space to Assess Cloud Interoperability [Internet] [Master’s

thesis]. [Monterey, CA]: Naval Postgraduate School; 2013 [cited 2013 Jul 5]. Available

from: http://calhoun.nps.edu/public/handle/10945/32818

89. Miranda J, Murillo JM, Guillén J, Canal C. Identifying adaptation needs to avoid the

vendor lock-in effect in the deployment of cloud SBAs. Proceedings of the 2nd

International Workshop on Adaptive Services for the Future Internet and 6th

International Workshop on Web APIs and Service Mashups (WAS4FI-Mashups ’12)

[Internet]. Bertinoro, Italy: ACM Press; 2012 [cited 2013 Jul 5]. p. 12. Available from:

http://dl.acm.org/citation.cfm?doid=2377836.2377841

90. Bhukya DP, Sony R, Muduganti G. On Web Services Based Cloud Interoperability.

IJCSI. 2012 Sep;9(5):232–6.

91. Bastião Silva LA, Costa C, Oliveira JL. A common API for delivering services over

multi-vendor cloud resources. Journal of Systems and Software. 2013 Apr;86(9):2309–

17.

92. Ma H, Schewe K-D, Thalheim B, Wang Q. A formal model for the interoperability of

service clouds. Service Oriented Computing and Applications. 2012 Jan 18;6(3):189–

205.

93. Khalfallah M, Barhamgi M, Figay N, Ghodous P. A Novel Approach to Ensure

Interoperability Based on a Cloud Infrastructure. In: Stjepandić J, Rock G, Bil C,

editors. Concurrent Engineering Approaches for Sustainable Product Development in a

Multi-Disciplinary Environment [Internet]. London: Springer London; 2013 [cited

132

2013 Nov 26]. p. 1143–54. Available from:

http://www.springerlink.com/index/10.1007/978-1-4471-4426-7_96

94. Guillén J, Miranda J, Murillo JM, Canal C. A service-oriented framework for

developing cross cloud migratable software. Journal of Systems and Software. 2013

Sep;86(9):2294–308.

95. The Apache Software Foundation. Welcome to Apache Libcloud’s documentation!

[Internet]. 2013 [cited 2013 Oct 23]. Available from:

https://ci.apache.org/projects/libcloud/docs/#main

96. Apache. About Deltacloud [Internet]. 2013 [cited 2013 Oct 23]. Available from:

http://deltacloud.apache.org/about.html

97. Apache. What is Apache jClouds? [Internet]. 2013 [cited 2013 Oct 23]. Available from:

http://jclouds.incubator.apache.org/documentation/gettingstarted/what-is-jclouds/

98. Petcu D, Di Martino B, Venticinque S, Rak M, Máhr T, Esnal Lopez G, et al.

Experiences in building a mOSAIC of clouds. Journal of Cloud Computing: Advances,

Systems and Applications. 2013;2(1):12.

99. Kamateri E, Loutas N, Zeginis D, Ahtes J, D’Andria F, Bocconi S, et al. Cloud4SOA:

A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and

Portability. In: Lau K-K, Lamersdorf W, Pimentel E, editors. Service-Oriented and

Cloud Computing [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013

[cited 2013 Sep 18]. p. 64–78. Available from: http://link.springer.com/10.1007/978-3-

642-40651-5_6

100. Petcu D, Macariu G, Panica S, Crăciun C. Portable Cloud applications—From theory to

practice. Future Generation Computer Systems. 2013 Aug;29(6):1417–30.

101. Yegou Y, Artac M, Temporale C, Cascella R. First Specification of the System

Architecture D10.1 [Internet]. INRIA; 2011 Aug [cited 2013 Jun 28]. Report No.:

D10.1. Available from: http://contrail-project.eu/documents/18553/136157/D10.1.pdf

102. Carlini E, Coppola M, Dazzi P, Ricci L, Righetti G. Cloud Federations in Contrail. In:

Alexander M, D’Ambra P, Belloum A, Bosilca G, Cannataro M, Danelutto M, et al.,

133

editors. Euro-Par 2011: Parallel Processing Workshops [Internet]. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2012 [cited 2013 Aug 9]. p. 159–68. Available from:

http://www.springerlink.com/index/10.1007/978-3-642-29737-3_19

103. Contrail consortium. Contrail White Paper - Overview of the Contrail system,

components and usage [Internet]. Contrail consortium; 2012 Nov [cited 2013 Aug 10].

Available from: http://contrail-project.eu/documents/18553/341152/WhitePaper.pdf

104. Gogouvitis SV, Kousiouris G, Vafiadis G, Kolodner EK, Kyriazis D. OPTIMIS and

VISION Cloud: How to Manage Data in Clouds. In: Alexander M, D’Ambra P,

Belloum A, Bosilca G, Cannataro M, Danelutto M, et al., editors. Euro-Par 2011:

Parallel Processing Workshops [Internet]. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2012 [cited 2013 Jun 26]. p. 35–44. Available from:

http://www.springerlink.com/index/10.1007/978-3-642-29737-3_5

105. Grozev N, Buyya R. Inter-Cloud architectures and application brokering: taxonomy

and survey. Software: Practice and Experience. 2012 Dec;44(3):369–90.

106. Vernik G, Shulman-Peleg A, Dippl S, Formisano C, Jaeger MC, Kolodner EK, et al.

Data On-Boarding in Federated Storage Clouds. IEEE Sixth International Conference

on Cloud Computing (CLOUD 2013) [Internet]. Santa Clara, California: IEEE; 2013

[cited 2014 Jan 28]. p. 244–51. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676701

107. Mohagheghi P, Sæther T. Software Engineering Challenges for Migration to the

Service Cloud Paradigm: Ongoing Work in the REMICS Project. IEEE World

Congress on Services (SERVICES 2011) [Internet]. Washington, DC: IEEE; 2011

[cited 2013 Jun 28]. p. 507–14. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6012736

108. Benguria G, Mohagheghi P, Gomez Y, Hein C, Morin B. Deliverable D.2.2 REMICS

Methodology, Interim Release [Internet]. REMICS Consortium; 2011 [cited 2013 Sep

18]. Available from: http://www.remics.eu/system/files/REMICS_D2.2_V1.0.pdf

134

109. SOFTEAM, SINTEF, Tecnalia. REMICS Deliverable D4.1 PIM4Cloud [Internet].

REMICS Consortium; 2012 Mar [cited 2013 Nov 19] p. 1–98. Available from:

http://www.remics.eu/system/files/REMICS_D4.1_V2.0_LowResolution.pdf

110. Ardagna D, Di Nitto E, Casale G, Petcu D, Mohagheghi P, Mosser S, et al.

MODACLOUDS: A Model-Driven Approach for the Design and Execution of

Applications on Multiple Clouds. Procs MISE 2012. Zurich, Switzerland: IEEE; 2012.

p. 50–6.

111. Loutas N, Kamateri E, Zotou M, Zeginis D, Tarabanis K, Bocconi S, et al. D1.1

Requirements Analysis Report [Internet]. 2011 Feb [cited 2013 Jul 1]. Available from:

http://www.cloud4soa.eu/sites/default/files/Cloud4SOA%20D1.1%20Requirements%2

0Analysis.pdf

112. CONTRAIL. Description of applications, use cases and requirements D12.1 [Internet].

STFC; 2011 Jun [cited 2013 Jul 1]. Available from: http://contrail-

project.eu/documents/18553/136157/D12.1.pdf

113. Petcu D, Sandru C, Di Martino B, Venticinque S, Rak M, Aversa R, et al. D 1.1 -

Architectural Design of the mOSAIC’s API and Platform [Internet]. 2011 Dec.

Available from: http://www.mosaic-

cloud.eu/index.php?option=com_chronocontact&Itemid=186

114. Allalouf M, Averbuch A, Bonelli L, Brand P, Chevalier G, Dao M, et al. Deliverable

D10.2 - High Level Architectural Specification - Release 1.0 [Internet]. 2011 Jul [cited

2013 Jul 1]. Available from: http://visioncloud.eu/resource.php?resourceID=193

115. Badger L, Bohn R, Chandramouli R, Grance T, Karygiannis T, Patt-Corner R, et al.

Cloud Computing Use Cases [Internet]. NIST; 2010 [cited 2013 Jul 1]. Available from:

http://www.nist.gov/itl/cloud/use-cases.cfm

116. Ahronovitz M, Amrhein D, Anderson P, de Andrade A, Armstrong J, Arasan E, et al.

Cloud Computing Use Cases White Paper Version 4.0 [Internet]. 2010 Jul [cited 2013

Jul 1]. Available from:

http://opencloudmanifesto.org/Cloud_Computing_Use_Cases_Whitepaper-4_0.pdf

135

117. Microsoft IEC. Cloud Computing Use Cases [Internet]. Microsoft; 2011 Aug [cited

2013 Jul 1]. Available from:

http://www.google.hr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CEAQF

jAA&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2FA%2FD%2F

D%2FADDE6C9B-FD11-4E8A-959F-

DF796FAD0749%2FIEC_Cloud_Computing_Use_Cases-Aug_2011.pdf&ei=MjfRUd-

sEdHHswbC54DwAg&usg=AFQjCNFcM8FQvyd_2dN3mdk9hjZQ4W0pPA&sig2=l

WzxOlPPbGZu1ctmMzj-DQ&bvm=bv.48572450,d.Yms&cad=rja

118. ATHENA Consortium. Interoperability methodology [Internet]. ATHENA

Consortium; 2006 [cited 2013 Oct 10]. Available from:

http://athena.modelbased.net/methodology/index.pdf

119. Jacobson I, Booch G, Rumbaugh J. The Unified Software Development Process.

Reading, Massachusetts: Addison-Wesley; 1999. 512 p.

120. Chen D, Daclin N. Barriers Driven Methodology for Enterprise Interoperability. In:

Camarinha-Matos LM, Afsarmanesh H, Novais P, Analide C, editors. Establishing the

Foundation of Collaborative Networks [Internet]. Boston, MA: Springer US; 2007

[cited 2013 Oct 10]. p. 453–60. Available from: http://link.springer.com/10.1007/978-

0-387-73798-0_48

121. Sanati F, Lu J, Zeng X. A methodological Framework for E-government Service

Delivery Integration. eGovernment Interoperability Campus [Internet]. Paris; 2007

[cited 2013 Oct 10]. Available from:

http://80.14.185.155/egovinterop/egov07cd/eGov07-CDROM/pages /papers/ T1C.pdf

122. Nagarajan M, Verma K, Sheth A, Miller J, Lathem J. Semantic Interoperability of Web

Services - Challenges and Experiences. IEEE; 2006 [cited 2014 Sep 1]. p. 373–82.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4032048

123. Sheth AP, Gomadam K, Ranabahu A. Semantics Enhanced Services: METEOR-S,

SAWSDL and SA-REST. IEEE Data Eng Bull. 2008;31(3):8–12.

136

124. Klímek J, Necaský M. Generating Lowering and Lifting Schema Mappings for

Semantic Web Services. IEEE Workshops of International Conference on Advanced

Information Networking and Applications (WAINA 2011) [Internet]. IEEE; 2011

[cited 2014 Sep 2]. p. 29–34. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5763433

125. Li X, Madnick S, Zhu H, Fan Y. Reconciling Semantic Heterogeneity in Web Services

Composition [Internet]. Massachusetts Institute of Technology; 2009 Sep [cited 2014

Sep 2] p. 1–17. Report No.: CISL#2009-08. Available from:

http://dspace.mit.edu/bitstream/handle/1721.1/66542/SSRN-

id1478025.pdf?sequence=1

126. Stollberg M, Cimpian E, Mocan A, Fensel D. A Semantic Web Mediation Architecture.

In: Koné MT, Lemire D, editors. Canadian Semantic Web [Internet]. Springer US;

2006 [cited 2014 Sep 2]. p. 3–22. Available from:

http://www.springerlink.com/index/10.1007/978-0-387-34347-1

127. Youseff L, Butrico M, Da Silva D. Toward a Unified Ontology of Cloud Computing.

GCE ’08 Grid Computing Environments Workshop [Internet]. Austin, Texas: IEEE;

2008 [cited 2013 Jul 9]. p. 1–10. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738443

128. Weinhardt C, Anandasivam A, Blau B, Stosser J. Business Models in the Service

World. IT Professional. 2009 Mar;11(2):28–33.

129. Deng Y, Head MR, Kochut A, Munson J, Sailer A, Shaikh H. Introducing Semantics to

Cloud Services Catalogs. IEEE International Conference on Services Computing (SCC

2011) [Internet]. Washington, DC: IEEE; 2011 [cited 2013 Jul 9]. p. 24–31. Available

from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6009240

130. Takahashi T, Kadobayashi Y, Fujiwara H. Ontological approach toward cybersecurity

in cloud computing. Proceedings of the 3rd international conference on security of

information and networks (SIN ’10) [Internet]. Rostov-on-Don, Russian Federation:

ACM Press; 2010 [cited 2013 Jul 9]. p. 100. Available from:

http://portal.acm.org/citation.cfm?doid=1854099.1854121

137

131. Adrian Martinez C, Isaza Echeverri G, Castillo Sanz AG. Malware detection based on

Cloud Computing integrating Intrusion Ontology representation. IEEE Latin-American

Conference on Communications (LATINCOM 2010) [Internet]. Bogota: IEEE; 2010

[cited 2013 Jul 9]. p. 1–6. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5641013

132. Moscato F, Aversa R, Di Martino B, Fortis T-F, Munteanu V. An Analysis of mOSAIC

ontology for Cloud Resources annotation. Proceedings of the Federated Conference on

Computer Science and Information Systems. Szczecin; 2011. p. 973–80.

133. Han T, Sim KM. An Ontology-enhanced Cloud Service Discovery System.

Proceedings of the International MultiConference of Engineers and Computer

Scientists 2010 [Internet]. Hong Kong; 2010 [cited 2013 Jul 9]. p. 644–9. Available

from: http://www.iaeng.org/publication/IMECS2010/IMECS2010_pp644-649.pdf

134. Kang J, Sim KM. Ontology and search engine for cloud computing system.

International Conference on System Science and Engineering (ICSSE 2011) [Internet].

Macao: IEEE; 2011 [cited 2013 Jul 9]. p. 276–81. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5961913

135. Dastjerdi AV, Tabatabaei SGH, Buyya R. An Effective Architecture for Automated

Appliance Management System Applying Ontology-Based Cloud Discovery. 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid

2010) [Internet]. Melbourne, Australia: IEEE; 2010 [cited 2013 Jul 9]. p. 104–12.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5493487

136. Ma H, Schewe K-D, Wang Q. An abstract model for service provision, search and

composition. IEEE Asia-Pacific Services Computing Conference (APSCC 2009)

[Internet]. Singapore: IEEE; 2009 [cited 2013 Jul 9]. p. 95–102. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5394133

137. Poveda-Villalón M, Suárez-Figueroa MC, Gómez-Pérez A. A Double Classification of

Common Pitfalls in Ontologies. Proceedings of Workshop on Ontology Quality

(OntoQual 2010), Co-located with EKAW 2010. Lisbon, Portugal; 2010.

138

138. Poveda-Villalón M, Suárez-Figueroa MC, Gomez-Perez, Asuncion A. Validating

ontologies with OOPS! EKAW’12 Proceedings of the 18th international conference on

Knowledge Engineering and Knowledge Management. Galway City, Ireland: Springer-

Verlag; 2012. p. 267–81.

139. Baumeister J, Seipel D. Anomalies in ontologies with rules. Web Semantics: Science,

Services and Agents on the World Wide Web. 2010 Mar;8(1):55–68.

140. Gómez-Pérez A. Ontology Evaluation. In: Staab S, Studer R, editors. Handbook on

Ontologies [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004 [cited 2013

Sep 20]. p. 251–73. Available from: http://link.springer.com/10.1007/978-3-540-

24750-0_13

141. Lovrenčić S, Čubrilo M. Ontology Evaluation – Comprising Verification and

Validation. Proceedings of the 19th Central European Conference on Information and

Intelligent Systems. Varaždin: Faculty of organization and informatics; 2008. p. 657–

63.

142. Brank J, Grobelnik M, Mladenić D. A survey of ontology evaluation techniques.

Proceedings of the Conference on Data Mining and Data Warehouses SiKDD 2005

[Internet]. Ljubljana, Slovenia; 2005. Available from:

http://ailab.ijs.si/dunja/sikdd2005/Papers/BrankEvaluationSiKDD2005.pdf

143. Amirhosseini M, Salim J. OntoAbsolute as a ontology evaluation methodology in

analysis of the structural domains in upper, middle and lower level ontologies.

International Conference on Semantic Technology and Information Retrieval (STAIR

2011) [Internet]. Putrajaya: IEEE; 2011 [cited 2014 Jul 11]. p. 26–33. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5995760

144. Weber I, Wada H, Fekete A, Liu A, Bass L. Automatic Undo for Cloud Management

via AI Planning. Eight Workshop on Hot Topics in System Dependability: HotDep ’12

[Internet]. Hollywood, CA; 2012 [cited 2013 Jul 5]. Available from:

https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final4.pdf

145. Zou G, Chen Y, Xiang Y, Huang R, Xu Y. AI Planning and Combinatorial

Optimization for Web Service Composition in Cloud Computing. CCV Conference

139

[Internet]. Singapore; 2010 [cited 2013 Jul 5]. Available from:

http://www.cse.wustl.edu/~ychen/public/AI%20Planning%20and%20Combinatorial%2

0Optimization%20for%20Web%20Service%20Composition%20in%20Cloud%20Com

puting.pdf

146. Goebelbecker M, Keller T, Eyerich P, Brenner M, Nebel B. Coming up With Good

Excuses: What to do When no Plan Can Be Found. Proceedings of the 20th

International Conference on Automated Planing and Schedulling (ICAPS) [Internet].

Toronto, Canada: The AAAI Press; 2010 [cited 2013 Aug 27]. p. 81–8. Available from:

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1453/1532

147. Kungas P, Matskin M. Detection of Missing Web Services: The Partial Deduction

Approach. Proceedings on the International Conference on Next Generation Web

Services Practices (NWeSP 2005) [Internet]. Seoul, Korea: IEEE; 2005 [cited 2014

Aug 4]. p. 339–44. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1592450

148. Yan Y, Poizat P, Zhao L. Repair vs. Recomposition for Broken Service Compositions.

Proceedings of the 8th International Conference ICSOC 2010. San Francisco, USA:

Springer Berlin Heidelberg; 2010. p. 152–66.

149. Vukovic M, Robinson P. GoalMorph: Partial Goal Satisfaction for Flexible Service

Composition. International Conference on Next Generation Web Services Practices

(NWeSP 2005) [Internet]. Seoul, Korea: IEEE; 2005 [cited 2014 Aug 4]. p. 149–54.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1592421

150. Friedrich G, Fugini M, Mussi E, Pernici B, Tagni G. Exception Handling for Repair in

Service-Based Processes. IEEE Transactions on Software Engineering. 2010

Mar;36(2):198–215.

151. Petersen K, Feldt R, Mujtaba S, Mattsson M. Systematic mapping studies in software

engineering. Proceedings of the 12th international conference on Evaluation and

Assessment in Software (EASE ’08). Bari, Italy; 2008.

140

152. Dowell S, Barreto A, Michael JB, Shing M-T. Cloud to cloud interoperability. 6th

International Conference on System of Systems Engineering (SoSE 2011) [Internet].

Albuquerque: IEEE; 2011 [cited 2014 Jul 18]. p. 258–63. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5966607

153. Martino BD, Cretella G, Esposito A. Semantic and Agnostic Representation of Cloud

Patterns for Cloud Interoperability and Portability. IEEE 5th International Conference

on Cloud Computing Technology and Science (CloudCom 2013) [Internet]. Bristol:

IEEE; 2013 [cited 2014 Jul 18]. p. 182–7. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6735416

154. Petcu D, Craciun C, Neagul M, Lazcanotegui I, Rak M. Building an interoperability

API for Sky computing. International Conference on High Performance Computing and

Simulation (HPCS 2011) [Internet]. Istanbul: IEEE; 2011 [cited 2014 Jul 18]. p. 405–

11. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5999853

155. Hill Z, Humphrey M. CSAL: A Cloud Storage Abstraction Layer to Enable Portable

Cloud Applications. IEEE Second International Conference on Cloud Computing

Technology and Science (CloudCom 2010) [Internet]. Indianapolis: IEEE; 2010 [cited

2014 Jul 18]. p. 504–11. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708493

156. Loutas N, Kamateri E, Tarabanis K. A Semantic Interoperability Framework for Cloud

Platform as a Service. IEEE Third International Conference on Cloud Computing

Technology and Science (CloudCom 2011) [Internet]. Athens: IEEE; 2011 [cited 2014

Jul 18]. p. 280–7. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133154

157. Mindruta C, Fortis T-F. A Semantic Registry for Cloud Services. 27th International

Conference on Advanced Information Networking and Applications Workshops

(WAINA 2013) [Internet]. Barcelona: IEEE; 2013 [cited 2014 Jul 18]. p. 1247–52.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6550566

141

158. Thabet M, Boufaida M. An Agent-Based Architecture and a Two-Phase Protocol for

the Data Portability in Clouds. 27th International Conference on Advanced Information

Networking and Applications Workshops (WAINA 2013) [Internet]. Barcelona: IEEE;

2013 [cited 2014 Jul 18]. p. 785–90. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6550491

159. Emeakaroha VC, Healy P, Fatema K, Morrison JP. Analysis of Data Interchange

Formats for Interoperable and Efficient Data Communication in Clouds. IEEE/ACM

6th International Conference on Utility and Cloud Computing (UCC 2013) [Internet].

Dresden: IEEE; 2013 [cited 2014 Jul 18]. p. 393–8. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6809438

160. Miranda J, Guillen J, Murillo JM, Canal C. Assisting Cloud Service Migration Using

Software Adaptation Techniques. IEEE Sixth International Conference on Cloud

Computing (CLOUD 2013) [Internet]. Santa Clara, California: IEEE; 2013 [cited 2014

Jul 18]. p. 573–80. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676742

161. Boob S, Gonzalez-Velez H, Popescu AM. Automated Instantiation of Heterogeneous

Fast Flow CPU/GPU Parallel Pattern Applications in Clouds. 22nd Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP

2014) [Internet]. Torino: IEEE; 2014 [cited 2014 Jul 18]. p. 162–9. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6787267

162. De Morais T, Liberalquino D, Rosa N. Cloud-Aware Middleware. IEEE 27th

International Conference on Advanced Information Networking and Applications

(AINA 2013) [Internet]. Barcelona: IEEE; 2013 [cited 2014 Jul 18]. p. 780–7.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6531833

163. Nguyen BM, Tran V, Hluchy L. Development and deployment of cloud services via

abstraction layer. International Conference on Computing, Management and

Telecommunications (ComManTel 2013) [Internet]. Ho Chi Minh City, Vietnam:

IEEE; 2013 [cited 2014 Jul 18]. p. 246–51. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6482399

142

164. Maheshwari K, Birman K, Wozniak J, Zandt DV. Evaluating Cloud Computing

Techniques for Smart Power Grid Design Using Parallel Scripting. 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2013)

[Internet]. Delft: IEEE; 2013 [cited 2014 Jul 18]. p. 319–26. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546108

165. Oprescu A-M, Antonescu A-F, Demchenko Y, Laat C de. ICOMF: Towards a Multi-

cloud Ecosystem for Dynamic Resource Composition and Scaling. IEEE 5th

International Conference on Cloud Computing Technology and Science (CloudCom

2013) [Internet]. Bristol: IEEE; 2013 [cited 2014 Jul 18]. p. 49–55. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753777

166. Demchenko Y, Ngo C, de Laat C, Garcia-Espin JA, Figuerola S, Rodriguez J, et al.

Intercloud Architecture Framework for Heterogeneous Cloud Based Infrastructure

Services Provisioning On-Demand. 27th International Conference on Advanced

Information Networking and Applications Workshops (WAINA 2013) [Internet].

Barcelona: IEEE; 2013 [cited 2014 Jul 18]. p. 777–84. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6550490

167. Li W, Tordsson J, Elmroth E. Modeling for Dynamic Cloud Scheduling Via Migration

of Virtual Machines. IEEE Third International Conference on Cloud Computing

Technology and Science (CloudCom 2011) [Internet]. Athens: IEEE; 2011 [cited 2014

Jul 18]. p. 163–71. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6133140

168. Abdul-Rahman O, Aida K. Multi-layered Architecture for the Management of

Virtualized Application Environments within Inter-cloud Platforms. IEEE 5th

International Conference on Cloud Computing Technology and Science (CloudCom

2013) [Internet]. Bristol: IEEE; 2013 [cited 2014 Jul 18]. p. 238–43. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6735427

169. Michon E, Gossa J, Genaud S, Frincu M, Burel A. Porting Grid Applications to the

Cloud with Schlouder. IEEE 5th International Conference on Cloud Computing

Technology and Science (CloudCom 2013) [Internet]. Bristol: IEEE; 2013 [cited 2014

143

Jul 18]. p. 505–12. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6753839

170. Miceli C, Miceli M, Jha S, Kaiser H, Merzky A. Programming Abstractions for Data

Intensive Computing on Clouds and Grids. 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid [Internet]. Shanghai: IEEE; 2009 [cited 2014 Jul

18]. p. 478–83. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5071908

171. Kotecha S, Bhise M, Chaudhary S. Query translation for cloud databases. International

Conference on Engineering (NUiCONE 2011) [Internet]. Ahmedabad, Gujarat: IEEE;

2011 [cited 2014 Jul 18]. p. 1–4. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6153249

172. Da Silva EAN, da Silva VG, Lucredio D, de Mattos Fortes RP. Towards a model-

driven approach for promoting cloud PaaS portability. Latin American Computing

Conference (CLEI 2013) [Internet]. Naiguata: IEEE; 2013 [cited 2014 Jul 18]. p. 1–9.

Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6670667

173. Strijkers R, Cushing R, Makkes MX, Meulenhoff P, Belloum A, Laat C de, et al.

Towards an Operating System for Intercloud. IEEE 5th International Conference on

Cloud Computing Technology and Science (CloudCom 2013) [Internet]. Bristol: IEEE;

2013 [cited 2014 Jul 18]. p. 63–8. Available from:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6735397

174. Aversa R, Tasquier L, Venticinque S. Cloud agency: A guide through the clouds.

Mondo Digitale. 2014;13(49).

175. Steinbauer M, Khalil I, Kotsis G. Challenges in the Management of Federated

Heterogeneous Scientific Clouds. Journal of Integrated Design and Process Science.

2014;(1):53–67.

176. Ciuffoletti A. A simple and generic interface for a cloud monitoring service. CLOSER

2014 - Proceedings of the 4th International Conference on Cloud Computing and

Services Science. Barcelona, Spain: SciTePress; 2014. p. 143–50.

144

177. Amato A, Venticinque S. A Distributed Agent-based Decision Support for Cloud

Brokering. Scalable Computing: Practice and Experience [Internet]. 2014 Apr 30 [cited

2014 Jul 18];15(1). Available from:

http://www.scpe.org/index.php/scpe/article/view/966

178. Lordan F, Tejedor E, Ejarque J, Rafanell R, Álvarez J, Marozzo F, et al. ServiceSs: An

Interoperable Programming Framework for the Cloud. Journal of Grid Computing.

2014 Mar;12(1):67–91.

179. Di Martino B, Cretella G. Semantic Technology for Supporting Software Portability

and Interoperability in the Cloud – Contributions from the mOSAIC Project.

Advances in Parallel Computing. 2013;66–78.

180. Sotiriadis S, Bessis N, Antonopoulos N, Hill R. Meta-scheduling algorithms for

managing inter-cloud interoperability. International Journal of High Performance

Computing and Networking. 2013;7(3):156.

181. Zeginis D, D’Andria F, Bocconi S, Gorronogoitia Cruz J, Collell Martin O, Gouvas P,

et al. A user-centric multi-PaaS application management solution for hybrid multi-

Cloud scenarios. Scalable Computing: Practice and Experience [Internet]. 2013 Apr 16

[cited 2014 Jul 18];14(1). Available from:

http://www.scpe.org/index.php/scpe/article/view/824

182. Andročec D, Vrček N. Platform as a Service API Ontology. Proceedings of the 12th

European Conference on eGovernment. Barcelona, Spain: Academic Publishing

International Limited; 2012. p. 47–54.

183. Amin MB, Khan WA, Awan AA, Lee S. Intercloud message exchange middleware.

Proceedings of the 6th International Conference on Ubiquitous Information

Management and Communication, ICUIMC’12 [Internet]. Kuala Lumpur; Malaysia:

ACM Press; 2012 [cited 2014 Jul 18]. p. 1. Available from:

http://dl.acm.org/citation.cfm?doid=2184751.2184845

184. Kostoska M, Gusev M, Ristov S. A New Cloud Services Portability Platform. Procedia

Engineering. 2014;69:1268–75.

145

185. Amato A, Tasquier L, Copie A. Vendor Agents for IAAS Cloud Interoperability.

Intelligent Distributed Computing VI. Springer Berlin Heidelberg; 2013. p. 271–80.

186. Wright P, Sun Y, Harmer T, Keenan A, Stewart A, Perrott R. A constraints-based

resource discovery model for multi-provider cloud environments. Journal of Cloud

Computing: Advances, Systems and Applications. 2012;1(1):6.

187. Zhang Z, Wu C, Cheung DWL. A survey on cloud interoperability: taxonomies,

standards, and practice. ACM SIGMETRICS Performance Evaluation Review. 2013

Apr 29;40(4):13.

188. Woo SS, Mirkovic J. Optimal application allocation on multiple public clouds.

Computer Networks. 2014 Aug;68:138–48.

189. Jamshidi P, Ahmad A, Pahl C. Cloud Migration Research: A Systematic Review. IEEE

Transactions on Cloud Computing. 2013;1(2):142–57.

190. Natis Y, Pezzini M, Driver M, Smith DM, Iijima K, Altman R. Magic Quadrant for

Enterprise Application Platform as a Service [Internet]. Magic Quadrant for Enterprise

Application Platform as a Service. 2014 [cited 2014 Jul 4]. Available from:

http://www.gartner.com/technology/reprints.do?id=1-1P502BX&ct=140108&st=sb

191. Google. Will it play in Java [Internet]. Google; 2012 [cited 2013 Aug 8]. Available

from: http://code.google.com/p/googleappengine/wiki/WillItPlayInJava

192. Schaeffer C. Salesforce.com Review—An Independent Assessment [Internet]. 2011

[cited 2013 Aug 8]. Available from: http://www.crmsearch.com/salesforce-review.php

193. Salesforce. Database.com Workbook [Internet]. Salesforce; 2013 [cited 2013 Jul 1].

Available from:

http://www.salesforce.com/us/developer/docs/workbook_database/workbook_database.

pdf

194. Salesforce. Defining Custom Object Fields [Internet]. [cited 2013 Jul 1]. Available

from: http://help.salesforce.com/help/doc/en/dev_objectfields.htm

195. Salesforce. Visualforce Developer’s Guide [Internet]. 2013 [cited 2013 Jul 1].

Available from: http://www.salesforce.com/us/developer/docs/pages/index_Left.htm

146

196. Pattern-oriented software architecture: a system of patterns. Chichester ; New York:

Wiley; 1996. 457 p.

197. Google. Google App Engine - Storing Data [Internet]. Google; 2013 [cited 2013 Jul 1].

Available from: https://developers.google.com/appengine/docs/java/datastore/

198. Google. Google Cloud SQL [Internet]. Google; 2013 [cited 2013 Jul 1]. Available

from: https://developers.google.com/cloud-sql/

199. Franks L. Data Storage Offerings on the Windows Azure Platform [Internet]. 2010

[cited 2013 Jul 1]. Available from:

http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-

on-the-windows-azure-platform.aspx

200. Google. Overview of Google Cloud Endpoints [Internet]. Google; 2013 [cited 2013 Jul

12]. Available from: https://developers.google.com/appengine/docs/java/endpoints/

201. Musial-Bright A. Deploy Java RESTful Application on the Google App Engine

[Internet]. O’Reilly Answers. 2011 [cited 2013 Jul 12]. Available from:

http://answers.oreilly.com/topic/2727-deploy-java-restful-application-on-the-google-

app-engine/

202. Schwartzenberger J. Build a RESTful API architecture within an ASP.NET MVC 3

application [Internet]. I Want My MVC. 2011 [cited 2013 Jul 12]. Available from:

http://www.iwantmymvc.com/rest-service-mvc3

203. Salesforce. Creating REST APIs using Apex REST [Internet]. Salesforce; [cited 2013

Jul 13]. Available from:

http://wiki.developerforce.com/page/Creating_REST_APIs_using_Apex_REST

204. Rudominer M. HOW TO: Build a SOAP Server and a SOAP Client on Google App

Engine [Internet]. 2011 [cited 2013 Jul 13]. Available from:

https://developers.google.com/appengine/articles/soap

205. Microsoft. Code Quick Start: Create and deploy a WCF service in Windows Azure

[Internet]. Microsoft; 2011 [cited 2013 Jul 13]. Available from:

http://msdn.microsoft.com/en-us/library/windowsazure/gg651130.aspx

147

206. Albert A. Apex Web Services and Callouts [Internet]. Salesforce; 2013 [cited 2013 Jul

13]. Available from:

http://wiki.developerforce.com/page/Apex_Web_Services_and_Callouts

207. Google. Interface DatastoreService [Internet]. 2013 [cited 2013 Jul 1]. Available from:

https://developers.google.com/appengine/docs/java/javadoc/com/google/appengine/api/

datastore/DatastoreService

208. Auer S, Feigenbaum L, Miranker D, Fogarolli A, Sequeda J. Use Cases and

Requirements for Mapping Relational Databases to RDF [Internet]. 2010 Jun [cited

2013 Jul 1]. Available from: http://www.w3.org/TR/rdb2rdf-ucr/

209. Astrova I, Korda N, Kalja A. Rule-Based Transformation of SQL Relational Databases

to OWL Ontologies. Proceedings of the 2nd International Conference on Metadata &

Semantics Research [Internet]. 2007 [cited 2013 Jul 1]. Available from:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.8189

210. Apache. Apache Jena [Internet]. 2013 [cited 2013 Jul 1]. Available from:

http://jena.apache.org/index.html

211. Google. Entities, Properties, and Keys [Internet]. 2013 [cited 2013 Aug 26]. Available

from: https://developers.google.com/appengine/docs/java/datastore/entities

212. Microsoft. Data Types (Windows Azure SQL Database) [Internet]. 2013 [cited 2013

Jul 1]. Available from: http://msdn.microsoft.com/en-

us/library/windowsazure/ee336233.aspx

213. Salesforce. SOAP API Developer’s Guide Version 28.0 [Internet]. 2013 [cited 2013 Jul

1]. Available from: http://www.salesforce.com/us/developer/docs/api/

214. Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider

P, et al. OWL Web Ontology Language Reference [Internet]. W3C; 2004 Feb [cited

2013 Jul 1]. Available from: http://www.w3.org/TR/owl-ref/

215. W3C. XML Schema Part 2: Datatypes Second Edition [Internet]. W3C; 2004 Oct [cited

2013 Jul 1]. Available from: http://www.w3.org/TR/xmlschema-2/

148

216. Husted T. Vosao - Google App Engine CMS [Internet]. 2013 [cited 2014 Apr 3].

Available from: https://code.google.com/p/vosao/

217. XSL Transformations (XSLT) Version 1.0 [Internet]. W3C; 1999 Nov [cited 2014 Sep

19]. Available from: http://www.w3.org/TR/xslt

218. Apache. Apache CXF Dynamic Clients [Internet]. The Apache Software Foundation;

2013 [cited 2013 Oct 1]. Available from: http://cxf.apache.org/docs/dynamic-

clients.html

219. Domingue J, Zaremba M, Norton B, Kerrigan M, Mocan A, Carenini A, et al.

Reference Ontology for Semantic Service Oriented Architectures [Internet]. OASIS;

2008 Nov [cited 2013 Oct 22] p. 1–35. Available from: http://docs.oasis-

open.org/semantic-ex/ro-soa/v1.0/pr01/see-rosoa-v1.0-pr01.pdf

220. Salesforce. Metadata API Developer’s Guide [Internet]. Salesforce; 2013 [cited 2013

Oct 14]. Available from: http://www.salesforce.com/us/developer/docs/api_meta/

221. Google. Google App Engine Java API [Internet]. Google; [cited 2013 Oct 14].

Available from: https://developers.google.com/appengine/docs/java/javadoc/

222. Microsoft. Windows Azure Storage Services REST API Reference [Internet].

Microsoft; 2011 [cited 2013 Oct 14]. Available from: http://msdn.microsoft.com/en-

us/library/windowsazure/dd179355.aspx

223. Neuhaus F, Vizedom A, Baclawski K, Bennett M, Dean M, Denny M, et al. Towards

ontology evaluation across the life cycle. Applied Ontology. 2013;(3):179–94.

224. SOA4All Consortium. SOWER [Internet]. SOA4All Consortium; 2010 [cited 2013 Sep

30]. Available from: http://technologies.kmi.open.ac.uk/soa4all-studio/provisioning-

platform/sower/

225. Ilghami O. Documentation for JSHOP2 [Internet]. 2006 [cited 2013 Jul 5]. Available

from: http://sourceforge.net/projects/shop/files/JSHOP2/

226. Ilghami O, Nau DS. A General Approach to Synthesize Problem-Specific Planners

[Internet]. College Park, Maryland: University of Maryland; 2003 Oct [cited 2014 Sep

149

23]. Report No.: CS-TR-4597. Available from:

http://www.cs.umd.edu/~nau/papers/ilghami2003general.pdf

Curriculum Vitae

Darko Andročec was born on October 11th 1981 in Čakovec, where he received high school

diploma from Gimnazija Čakovec. He graduated at Faculty of Organization and Informatics in

2004. Since 2009 he works as teaching assistant at Faculty of Organization and Informatics,

University of Zagreb, where he teaches computer labs for the following courses: Information

system development, E-business, Business processes in organizations, and Information

systems of small and medium-sized enterprises. He is member of Department for information

system development. Before joining faculty, he was a computer security incident handler at

CARNet (Croatian Academic and Research Network) and a Java developer of banking

information systems at private company Abit Ltd. He was involved in many software

development projects, including development of complete core banking information system

for Croatian small banks, content management system for CARNet CERT (computer

emergency response team), and many other complex web applications. His practical skills

include Java EE, web programming (HTML/Javascript/CSS/PHP/JSF), developing

applications for platform as a service offers (mainly Google App Engine, Salesforce, and

Microsoft Azure), and Semantic Web (RDF, OWL and SAWSDL).

His research interests are in interoperability, cloud computing, e-services, web technology,

Semantic Web, AI planning, Internet of things, and programming. He published 9 scientific

papers and 19 popular articles. Recently, he was participating on a Croatian national scientific

project “Information Infrastructure and Interoperability” (016-0161199-1715). He is a

reviewer for two scientific conferences - ECEG (European Conference on eGovernment) and

ICCSM (International Conference on Cloud Security and Management), and one scientific

journal - IET Software. He lives in Prelog, he is married and has three children.

150

Published scientific papers

1. Andročec, Darko.

Data Portability Among Providers of Platform as a Service. // Research papers Faculty of

Materials Science and Technology Slovak University of Technology in Trnava. 21 (2013);

17-22

2. Pihir, Igor; Tomičić-Pupek, Katarina; Andročec, Darko.

Governmental Incentives for the Application of the Developed e-Services // Proceedings of

the 13th European Conference on eGovernment, Volume 2 / Ferrari, Elena ; Castelanovo,

Walter (ur.).

Varese, Italy : University of Insubria, Como, Italy ; Academic Conferences and Publishing

International Limited , UK, 2013. 398-405

3. Andročec, Darko; Dobrović, Željko.

Creating Hybrid Software Engineering Methods by Means of Metamodels // Proceedings of

the ITI 2012 / Luzar-Stiffler, Vesna ; Jarec, Iva ; Bekic, Zoran (ur.).

Zagreb : University Computing Centre, 2012. 481-486

4. Andročec, Darko; Kermek Dragutin.

Useful Patterns for BPEL Developers // Central European Conference on Information and

Intelligent Systems - 23rd International Conference 2012 / Hunjak, T. ; Lovrenčić S. ;

Tomičić I.

5. Andročec, Darko; Vrček, Neven.

Platform as a Service API Ontology // Proceedings of the 12th European Conference on

eGovernment / Gasco, Mila (ur.).

Barcelona : Academic Publishing International Limited, 2012. 47-54

6. Andročec, Darko; Vrček, Neven; Ševa, Jurica.

Cloud Computing Ontologies: A Systematic Review // MOPAS 2012 - The Third

International Conference on Models and Ontology-based Design of Protocols, Architectures

and Services / Dini, Petre (ur.).

Chamonix : IARIA, 2012. 9-14

151

7. Andročec, Darko.

Research Challenges for Cloud Computing Economics // Proceedings of the 22nd Central

European Conference on Information and Intelligent Systems / Hunjak, Tihomir ; Lovrenčić,

Sandra ; Tomičić, Igor (ur.).

Varaždin : Faculty of Organization and Informatics, 2011. 175-180

8. Andročec, Darko; Vrček, Neven.

E-service Cost-Benefit Analysis in the Public Sector // Proceedings of the ITI 2011 33rd

International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ;

Jarec, Iva ; Bekić, Zoran (ur.).

Zagreb : University Computing Centre, University of Zagreb, 2011. 359-364

9. Andročec, Darko.

Simulating BPMN Models with Prolog // Proceedings of the 21st Central European

Conference on Information and Intelligent Systems / Aurer, Boris ; Bača, Miroslav ; Schatten,

Markus (ur.).

Varaždin : Faculty of Organization and Informatics, 2010. 363-369

