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 

Abstract—Reporting the results of optimization algorithms in 

evolutionary computation is a challenging task with many 

potential pitfalls. The source of problems is their stochastic 

nature and inability to guarantee an optimal solution in 

polynomial time. One of the basic questions that is often not 

addressed concerns the method of summarizing the entire 

distribution of solutions into a single value. Although the mean 

value is used by default for that purpose, the best solution 

obtained is also occasionally used in addition to or instead of it. 

Based on our analysis of different possibilities for measuring the 

performance of stochastic optimization algorithms presented in 

this paper we propose quantiles as the standard measure of 

performance. Quantiles can be naturally interpreted for the 

designated purpose. Besides, they are defined even when the 

arithmetic mean is not, and are applicable in cases of multiple 

executions of an algorithm. Our study also showed that, on the 

contrary to many other fields, in the case of stochastic 

optimization algorithms the greater variability in measured data 

can be considered as an advantage. 

 
Index Terms—Algorithmic performance, experimental 

evaluation, metaheuristics, quantile. 

 

I. INTRODUCTION 

Experimental research in evolutionary optimization is 

fairly common, especially in the case of nature-inspired 

algorithms that often have modest theoretical foundations, or 

entirely lack them. Although performing experiments with a 

stochastic optimization algorithm and presenting the results in 

a way that will satisfy high scientific standards might seem 

easy, it can actually prove to be a tricky business. Over the 

past years, a number of works have been published that point 

out shortcomings in experimental practice or propose certain 

procedures, including [1]-[6]. Some problems addressed in 

those papers arise only when the results for different problem 

instances need to be summarized. In this article, we assess 

different measures of algorithmic performance, which is an 

aspect that is often omitted in similar papers and possibly 

even considered as trivial. As a matter of fact, the decision of 

choosing an appropriate measure of performance is relevant 

regardless of the number of problem instances that are used in 

experiments (i.e. one or many).  

This discussion is mainly motivated by the papers of Eiben 

and Jelasity [3] and Birattari and Dorigo [7] that discuss the 

suitability of the best solution found and the arithmetic mean 
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as measures of the performance of stochastic optimization 

algorithms. Eiben & Jelasity noticed that the arithmetic mean 

is not well suited for measuring the performance of stochastic 

optimization algorithms although it is typically used for that 

purpose. Consequently, they suggested the best solution 

found as a measure of performance. On the other hand, 

Birattari & Dorigo cautioned that the best solution found 

cannot be used as a measure of algorithmic performance 

because the best solution is not a reproducible result. Instead, 

they further recommended the usage of the arithmetic mean. 

Although they did not offer a solution for problems pointed 

out by Eiben and Jelasity, they admitted that a proper research 

methodology should encompass a widely adopted practice of 

multiple executions of the algorithm.  

Lately, it has become more widely recognized that 

parametric statistical methods are not appropriate for 

measuring the performance of stochastic optimization 

algorithms [8], [9]. Consequently, the median is sometimes 

used as a measure of algorithmic performance. 

In this paper, we analyze different possibilities for 

measuring the performance of algorithms, taking into 

consideration the useful practice of multiple executions of an 

algorithm, and advocate quantiles as the most suitable 

measure of performance. The suitability of reporting of 

additional statistical information such as spread of data is also 

discussed. 

 

II. MEASURING PERFORMANCE OF STOCHASTIC 

OPTIMIZATION ALGORITHMS  

In the analysis of stochastic optimization algorithms it is 

important to pay attention to two important concepts. One is 

the quality of solutions, since stochastic optimization 

algorithms usually do not guarantee finding the optimal 

solutions, and the other is the amount of computational 

resources necessary for obtaining the solutions. A trade-off 

between the quality of solutions and the amount of 

computational resources is usually possible in a way that more 

computational resources can allow the algorithm to find better 

solutions. The computational resources include processing 

elements, memory and elapsed time, among others. In the case 

of experimental research, time is the resource that is usually 

considered, while other resources are often regarded either as 

available or unavailable. Time, which can be expressed 

directly in physical units, is often expressed indirectly by the 

number of iterations, number of generated solutions, and 

number of executed instructions, among others. In the 

following sections the term ”computational resources” will be 

used in the general sense although in practice it primarily 

refers to time expressed directly or indirectly. 
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In terms of solution quality and computational resources, 

there are three different approaches to measuring the 

performance of stochastic optimization algorithms: 

1) The most common approach is to restrict computational 

resources and to observe the solution quality.  

2) Another approach is to specify the minimal solution 

quality and then observe the amount of computational 

resources required to reach the specified solution. 

However, practical issues can arise in that case since the 

optimal solution quality is generally not known in 

advance. As a result, the solution quality that surpasses 

the quality of an optimal solution, which is impossible to 

achieve, may be required by mistake.  

3) In the combined approach both maximal computational 

resources and the minimal solution quality are 

prespecified simultaneously. After that, the success rate 

of the algorithm is observed. This approach is the most 

restrictive among the three described approaches since 

both maximal computational resources and minimal 

solution quality must be provided in advance, which is 

often not convenient. Considering that the third approach 

has an obvious measure of performance – the success rate 

– in this paper we are focused on evaluating the 

performance for the first two approaches. 

Optimization algorithms in the evolutionary computation 

are stochastic and produce different solutions on different 

executions. Although the whole distribution represents the 

most comprehensive information, it often means too much 

information to obtain or to handle directly, which entails that a 

distribution is usually analyzed by looking at some numbers 

that describe it. In the analysis suitable representative 

number(s) that satisfy basic scientific requirements should be 

used. It is mandatory that the measure of performance can be 

obtained in an objective way, to allow reproducibility (i.e. 

that the obtained results can be reproduced by other 

independent scientists) and that it is informative (i.e. ensuring 

that the measure of algorithmic performance has a useful 

interpretation). The measure of performance of stochastic 

optimization algorithms should ideally incorporate the 

common and beneficial practice of multiple executions of an 

algorithm.  

A. Arithmetic Mean 

The arithmetic mean still prevails as a measure of 

algorithmic performance. It allows for the reproducibility of 

results, provided that it is possible to measure the arithmetic 

mean in a reliable way and that a suitably large and 

representative sample is used. The most recognized 

disadvantage of using the arithmetic mean for stochastic 

optimization algorithms is that it is not well suited in the case 

of asymmetrical distribution, which is relevant when we 

consider that distributions of solution quality for stochastic 

optimization algorithms indeed are often asymmetrical [8], 

[10], [11].  

Another disadvantage is that the arithmetic mean is not 

very informative. In the case that the arithmetic mean of the 

solutions’ quality for a certain algorithm and problem 

instance is known, this information can be interpreted as 

follows: if the algorithm is executed many times, the sum of 

the achieved solutions as well as their arithmetic mean is 

expected to attain certain values. The sum of the solutions is 

expected to be approximately equal to the product of the 

number of executions and the known arithmetic mean. In 

addition, the arithmetic mean of the achieved solutions is 

expected to be approximately equal to the known arithmetic 

mean. This is usually not very interesting information since 

the user of the algorithm is typically not concerned with the 

sum of solutions or their arithmetic mean. If the algorithm is 

executed once, the user will want to know what kind of 

solution he might expect. Also, if the algorithm is executed 

many times, the user will be interested to know what kind of 

solution will be the best one obtained from these executions. 

The arithmetic mean could still be a useful indicator of 

algorithmic performance since one hopes that a better solution 

might be acquired by an algorithm that achieves a better mean 

solution.  

Yet another disadvantage of using the arithmetic mean is 

that it is not applicable to the common and very useful 

practice of multiple executions of an algorithm and using the 

best solution obtained. In this case the arithmetic mean is also 

only a possible indicator of algorithmic performance.  

There is a specific disadvantage of using the arithmetic 

mean that applies only to the case when the minimal solution 

quality is specified and the required computational resources 

are the measured value. Calculating the arithmetic mean of the 

required computational resources might not be possible 

owing to some experiments that might require more resources 

than the researcher is able to provide, e.g. too much execution 

time.  

Finally, a stochastic optimization algorithm may come to 

stagnation and reach the state from which it is not possible to 

obtain the required solution quality regardless of the available 

time and other computational resources. Such cases, although 

essential for the correct estimation of the arithmetic mean, 

might be rare and hard to observe and might not occur in a 

gathered sample. Consequently, the arithmetic mean of the 

required time could be estimated wrongly to some definite 

value, when in fact it is infinite or undefined 

B. Best Solution 

The best solution obtained in multiple executions of an 

algorithm is fairly often used as a measure of performance. 

Eiben and Jelasity [3] determined that the information wanted 

by the user of the stochastic optimization algorithm is the best 

result and therefore recommended it as a measure of 

algorithmic performance. Birattari and Dorigo [7] correctly 

observed that the best achieved result cannot be reproduced 

by another researcher and can thus not be used as a measure of 

algorithmic performance. In our opinion, it is worth noting 

that if the best achieved solution for some problem instance is 

better than the best solution that is known from the literature 

(or when such a solution is not known), the best achieved 

solution should be reported. In that case, the best achieved 

solution represents valuable information about a problem 

instance rather than information about algorithmic 

performance.  

Using best achieved solutions (out of predefined number of 

attempts) inside statistical tests that can handle individual 

values might be acceptable. It is not relevant if in a particular 

experiment one algorithm yields a better “best solution” than 
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the other. Instead, it is important that this behavior is 

consistent in many experiments and confirmed as statistically 

significant. 

C. Quantiles 

The use of the median is becoming more common owing to 

the increased awareness that the distribution of solution 

quality is often asymmetrical and that the median makes for a 

more robust measure of central tendency in such cases, as 

suggested by statistical textbooks. Here we argue that there 

are other important advantages of using the median or, more 

generally, of using quantiles in measuring the performance of 

stochastic optimization algorithms. The quantile Qp is 

associated with probability p. For some random variable X 

from the population, it holds by definition that P(X ≤ Qp) ≥ p 

and P(X ≥ Qp) ≥ 1 – p. The median is a special case, where 

p = 0.5 so there is a 0.5 probability that a random variable X 

from the population is greater than or equal to Qp and at the 

same time there is a 0.5 probability that the random variable X 

is lesser than or equal to Qp.   

An important advantage of using quantiles as a measure of 

performance for stochastic optimization algorithms is their 

interpretation. If quantile Qp of the solution quality for some 

algorithm is known, then the probability of achieving a 

solution that has equal or better quality than Qp is greater than 

or equal to p. For example, if Q0.7 = 150 then it is known that 

there is at least a 0.7 probability of getting a solution with the 

quality equal to 150 or better. It is worth noting that the 

probability is at least p and not exactly p because in some 

cases the probability of obtaining a solution of a certain 

quality can be larger than p. This occurs when for some 

p1 < p2 it is also true that the corresponding quantiles are 

equal Qp1 = Qp2. In that case the probability of finding a 

solution of the quality that is at least Qp1 is at least p2. The 

most extreme case is when the algorithm always finds 

solutions of equal quality since in that case the probability of 

finding any quantile Qp  is equal to 1.  

In the case when a minimal solution quality is specified and 

quantile Qp of the required computational time is properly 

measured, it is known that at least with probability p the 

algorithm will find a solution of the desired quality using at 

most Qp time. For example, if Q0.8 = 200 s, then it is known 

that there is at least a 0.8 probability of getting a solution with 

the desired quality after at most 200 seconds. 

When using quantiles one inconvenience may arise that can 

be easily avoided. For certain pairs of probabilities and 

sample sizes, e.g. median and even sample sizes, quantiles can 

be calculated slightly differently depending on interpolation 

or the rounding rule that is applied. Although the method that 

was used for calculating the quantiles can be explicitly stated 

with the results or a default method for the field of stochastic 

optimization algorithms might be agreed, the best way to 

overcome this issue is to use sample sizes in which such issues 

do not arise in the first place. For example, this issue does not 

occur when calculating quantiles Q0.1, Q0.2, Q0.3, … , Q0.9 if 

the sample size is set at 10k + 1, where k is an arbitrarily 

selected natural number. It is also sufficient that the sample 

size is set at 2k + 1 when calculating the median, or 4k + 1 

when calculating quartiles (Q0.25 and Q0.75), or 5k + 1 when 

calculating Q0.2. In all these cases the values of k should be 

suitably large to achieve a good estimation of the true quantile 

value.   

Another advantage of quantiles over the arithmetic mean is 

manifested when, although the algorithm fails to find a 

solution of a specified quality with probability r in reasonable 

time, it is still possible to measure Qp, if p < 1 – r. 

Besides being very informative and having other good 

properties quantiles are applicable to the practice of multiple 

executions of stochastic algorithms, which is explained in 

Section III of this paper. 

D. Mode 

The mode is usually not reported in the results of 

experiments with stochastic optimization algorithms. 

Solutions whose quality equals the mode have the highest 

probability of being produced by an execution of the 

algorithm, provided that the distribution is discrete and 

unimodal. Owing to this, the mode may seem as a good 

measure of performance in some cases. However, since the 

probability of gaining a solution of the quality that equals the 

mode is usually very small, the mode is clearly not a suitable 

measure of the performance of a stochastic optimization 

algorithm.  
 

III. MULTIPLE EXECUTIONS OF STOCHASTIC OPTIMIZATION 

ALGORITHM 

A big advantage of using quantiles is their applicability to 

multiple executions of the same algorithm for a particular 

problem instance. In the common approach, when 

computational resources are restricted and the algorithm is 

independently executed in a sequential or parallel manner, the 

best achieved solution is used as the final result. If the 

algorithm with restricted computational resources achieves 

quantile Qp of solution quality, then for n independent 

executions there is probability 1 – (1 – p)
n
 of getting at least 

once the solution of the quality at least as good as Qp. 

For convenience, the sample of probabilities for multiple 

executions of the algorithm is provided in Table I. For 

example, if Q0.5 = 1000 and the algorithm is executed 4 times 

independently over a particular problem instance, there is at 

least a 0.9375 probability that the best solution found will 

have a quality equal to 1000 or better. 

The other possible approach is to specify the solution 

quality and then execute multiple instances of the algorithm in 

parallel until a solution of the required quality is found by at 

least one algorithm. In this approach, if the quantile of time Qp 

required for finding a solution of the specified quality is 

known, then it is expected that for n parallel executions of the 

algorithm there is probability 1 – (1 – p)
n
 of finding a suitable 

solution in at most Qp time. 

For example, if the algorithm needs 1000 seconds to obtain 

a specified solution quality with a 0.75 probability, i.e. 

Q0.75 = 1000 s, then there is at least a 0.9961 probability that 

the required solution quality will be obtained within 1000 

seconds at least in one of four parallel executions of the 

algorithm.  

 

IV. ADDITIONAL STATISTICAL INFORMATION 

Sometimes it is appropriate to provide additional 
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information along with the measure of performance. When 

the arithmetic mean is reported, the additional information 

provided is usually the standard deviation. In the case of the 

median, interquartile or q-quantile range may be provided. 

Although such practice is widely recommended in many fields, 

we argue that this is not the best choice in reporting the 

performance of a stochastic optimization algorithm. When 

measuring some natural phenomena, one is usually concerned 

with precision and accuracy. The measured value is often 

deterministic and dispersion is caused by imperfections in the 

measuring process or by some neglected or unknown 

phenomena. A smaller dispersion in this case is obviously 

preferred. 

When the performance of stochastic optimization 

algorithms is concerned, the spread of data, i.e. distribution of 

values, is not caused by imperfections in measurement or by 

some neglected details. Obtaining different solutions for a 

particular problem instance on different executions is inherent 

to stochastic optimization algorithms. 

A symmetrical measure of dispersion like the interquartile 

range is not very informative in this case, since the decision 

whether it is better to have a larger or a smaller symmetrical 

dispersion is generally not straightforward. With some fixed 

quantile value, it is preferable to have a larger dispersion on 

the side that is closer to the optimum and a lesser dispersion 

on the side that is at the opposite side of the optimum. In the 

case of such dispersion, and if the actual solution is not as 

good as the specified quantile, it is more probable that this 

solution will be closer to the chosen quantile than in the case 

in which the dispersion is reversed.  
 

TABLE I: PROBABILITIES FOR MULTIPLE EXECUTIONS OF THE STOCHASTIC 

OPTIMIZATION ALGORITHM 

n Q0.1 Q0.2 Q0.25 Q0.5 Q0.75 Q0.8 Q0.9 

1 0.1000 0.2000 0.2500 0.5000 0.7500 0.8000 0.9000 

2 0.1900 0.3600 0.4375 0.7500 0.9375 0.9600 0.9900 

3 0.2710 0.4880 0.5781 0.8750 0.9844 0.9920 0.9990 

4 0.3439 0.5904 0.6836 0.9375 0.9961 0.9984 0.9999 

5 0.4095 0.6723 0.7627 0.9688 0.9990 0.9997 1.0000 

10 0.6513 0.8926 0.9437 0.9990 1.0000 1.0000 1.0000 

20 0.8784 0.9885 0.9968 1.0000 1.0000 1.0000 1.0000 

30 0.9576 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 

40 0.9852 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

50 0.9948 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Similarly, if the achieved solution is better than the 

specified quantile, it is more probable that it will be closer to 

the optimum. This situation is further clarified by Fig. 1, 

where all the algorithms have an equal median value for 

solution quality, and algorithms C and D also have an equal 

interquartile range. Presuming that the algorithms were 

applied to a minimization problem and based on the presented 

information, it follows that algorithm D has better properties 

than algorithms A, B and C. This is because algorithm D has 

quantiles Q0.25 and Q0.75 closer to the optimum than the other 

algorithms. Also, algorithm A has Q0.25 closer to the optimum 

than algorithm C, and algorithm B has Q0.75 closer to the 

optimum than algorithm C. Therefore, both algorithms A and 

B have better properties than algorithm C. 

Deciding whether algorithm A or algorithm B is better 

depends on personal preference in the case of a single 

execution of the algorithm, but this dilemma can be 

eliminated in the case of multiple executions of the algorithm. 

Namely, if both algorithms A and B are executed many times 

so the probability of getting a solution that is better than the 

median is very high, then it might be better to choose 

algorithm A over algorithm B since there is a higher 

probability of achieving a solution that is closer to the 

optimum. 

When it is suitable to provide additional information we 

would recommend providing more than one quantile, e.g. Q0.5 

and Q0.2, instead of the quantile and symmetrical measures of 

dispersion. 

Naturally, this does not mean that statistical errors should 

not be controlled. The quantile estimated from the gathered 

sample might not perfectly match the actual quantile. It is 

therefore advisable to control and provide some information 

about estimation errors like the standard error of a quantile 

estimate, e.g. by using the bootstrap technique [12]. 

 

V. DISCUSSION 

Currently, we are not aware of any good reason why 

quantiles should not become the standard measure of 

performance of stochastic optimization algorithms. Drawing 

on the numerous arguments in favor of quantiles that were 

presented in this paper we would highly recommend using 

quantiles for that purpose. Currently, the arithmetic mean is a 

well-established and widely known measure and thus some 

researchers might continue to use it rather than quantiles. In 

the opinion of the authors of this paper, such reasoning does 

not seem scientifically acceptable. 
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Fig. 1. Example of a boxplot of stochastic optimization algorithms that have 

an equal median value but different quartiles. 

 

Some of the quantiles that we propose as standard choices 

for presenting results are Q0.50, Q0.20, Q0.10, and Q0.90, although 

other good choices are also possible. It is easy to choose 

sample sizes for these quantiles to avoid the inconvenience 

during the calculation of the sample’s quantile. Increasing the 

sample size to control the estimation error in these cases can 

be gradually performed. As a counterexample, if Q0.51 is 

chosen instead of Q0.50, then the smallest sample size for 

mitigating the inconvenience in the calculation is 101. Even if 

this size is not large enough to bound the estimation error to 

an acceptable magnitude, then the next convenient sample 

size is 201, which can be considered as a large increase in the 
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sample size. 

 In the case of a symmetrical distribution, which however 

should not be regularly expected in stochastic optimization, 

Q0.50 should match the arithmetic mean. Quantile Q0.50 has a 

special role since it is also a well-known measure of central 

tendency. Choosing Q0.50 can ensure the high probability of 

finding a solution of the specified quality after 4 or 5 

repetitions of the algorithm. 

Finding a solution with the quality Q0.90 and a high 

probability can be obtained by only one execution of the 

algorithm, while multiple executions can ensure that this kind 

of solution is found with an almost absolute certainty. When it 

is feasible to use ten or a few tens of executions, then Q0.10 and 

Q0.20 might be adequate. Small quantiles like Q0.10 or even 

smaller can capture the peak performance of the algorithm, 

for which the best found solution is not adequate because it is 

irreproducible, but require larger sample sizes. A good 

estimation of the quantile depends on the chosen probability 

and the sample size in a way that furthering from p = 0.5 

towards p = 0 or towards p = 1 requires an increase in the 

sample size. 

The same quantiles can be used when the solution quality is 

specified and computational resources are measured, and 

similar arguments apply as in the case when resources are 

constrained and the solution quality is observed. 

In the case when only the solutions of a specified quality 

are regarded as useful and computational resources are 

strictly tied, the success rate is well suited. In most other cases 

this might not be an appropriate measure of performance 

because it does not preserve the information on how close the 

obtained solutions are to the specified quality 

 

VI. CONCLUSION 

In this paper, we have shown that quantiles demonstrate 

very good properties and are a natural measure of 

performance of stochastic optimization algorithms. At the 

same time, quantiles make it possible to specify the solution 

quality and the probability of achieving that kind of solution 

or, alternatively, to state the required time and the probability 

of achieving a solution of some preselected quality. Quantiles 

are useful in the case of multiple executions of an algorithm, 

which is a frequent and beneficial practice. They enable a 

practitioner to make an informed decision when choosing a 

trade-off between computational resources and the 

probability of achieving desired solutions. Quantiles are also 

defined in cases when the arithmetic mean is not, or when the 

arithmetic mean is hard to estimate. Taking into consideration 

numerous advantages of quantiles over the arithmetic mean, 

we propose quantiles as the standard measure of performance 

of stochastic optimization algorithms. In addition, in our 

study it was established that a greater variability of results in 

stochastic optimization is not necessarily a bad characteristic 

of algorithms, as it would be in many other domains, but may 

actually prove to be an advantage in certain cases. 
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