
An Ad-Hoc Smartphone-to-Smartphone Live
Multimedia Streaming Application with Real-Time
Constraints

Ivković, Nikola; Magdalenić, Ivan; Milić, Luka

Source / Izvornik: Journal of Advances in Computer Networks, 2016, 4, 6 - 12

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.18178/JACN

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:802288

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-11-27

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://doi.org/10.18178/JACN
https://urn.nsk.hr/urn:nbn:hr:211:802288
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3422
https://dabar.srce.hr/islandora/object/foi:3422

Abstract—Widespread of smartphones which are equipped

with cameras and an Internet connection allow development of

applications that might be used as parking assistance, or to help

humans to coordinate their actions with something that they

cannot see directly. We propose an application that uses

distributed architecture with carefully designed techniques to

deal with Network Address Translation (NAT) issues and to

allow users to, simply, temporarily and in an Ad-Hoc manner,

interconnect their smartphones and achieve live video streaming

with QoS feedback. Based on the proposed model, a prototype

application was implemented and tested. Conducted

experiments confirm the soundness of this approach.

Index Terms—Video streaming, mobile application,

peer-to-peer, Ad-Hoc association.

I. INTRODUCTION

Widespread of smartphones with cameras and Internet

connections permits implementation of a mobile application

that can help humans in activities that require coordination

with objects or events that are outside of direct sight, e.g. due

to physical obstacles. Compared to specialized equipment

like the interconnected camera-and-display system, the

mobile application has some advantages. It is easily

obtainable by simply downloading and installing the

application by a user that already owns the smartphone. The

mobile application is handy since people do not have to carry

additional equipment, and the user does not have to spend

money for buying additional hardware.

The motivating example for such application is the case of

helping a driver with vehicle parking that might be difficult

because of additionally attached trailers, narrow or

complicated parking space, etc. In this situation, one owner of

the smartphone can record a view from outside of the vehicle

and live stream this video to the driver’s smartphone. Unlike

the live broadcast of sport events that can tolerate delays in

order of tens of seconds or even minutes, the proposed

application has to meet stricter real-time constraints,

otherwise its usage could result with damage or injury.

To be practical, this application has to manage a temporary

connection between smartphones, in an Ad-Hoc manner, and

for the untrained user this has to be simple and fast.

Other use scenarios include helping humans in placing stuff

on the wall that should be aligned with other objects that are

not visible to them, or helping viewing an area that is hard to

Manuscript received October 4, 2015; revised January 21, 2016.

The authors are with the Faculty of Organization and Informatics,

University of Zagreb, Pavlinska 2, 42000 Varazdin, Croatia (e-mail:

nikola.ivkovic@foi.hr, ivan.magdalenic@foi.hr, luka.milic@foi.hr).

access but that is possible to reach with a hand and a

smartphone, etc.

Streaming stored video from server to smartphone is rather

common and often uses HTTP and TCP since real-time

properties, although required, are not very strict [1]. Video

conferencing applications like Skype have properties similar

to proposed application, but they are not designed to work in

an Ad-Hoc, temporary manner. Unlike the proposed

application, they cannot work when both smartphones are a

part of a network without Internet connectivity or when

infrastructure servers are unavailable, since their main

purpose is to allow communication between distant users, not

to users in close proximity. Also, lacking alerting mechanisms

for real-time constraint omissions makes them unsuitable for

some applications.

Implementing the application with real-time properties that

uses Internet infrastructure for communication is particularly

challenging. Internet is a packet switching network that

provides only the best-effort service to protocols in higher

layers and consequently to applications. There are two

research approaches to updating the current network layer

protocols in order to provide versatile service models to upper

layers: Differentiated Services (DiffServ) and Integrated

Services (IntServ) architectures. DiffServ architecture offers

different traffic classes but cannot guarantee timing properties

essential for real-time applications [2], [3].

IntServ architecture can offer Quality of Service (QoS)

which includes guarantees for the packet delay. Unfortunately,

in order to achieve this QoS, it is necessary to allocate

resources in all links and nodes (routers) on the path between

the source and the destination, e.g. by using Resource

Reservation Protocol (RSVP), and this approach does not

scale well [4].

Both DiffServ and IntServ approaches require changes in

the network core, which are not easy to implement on the

global scale and certainly are not in the domain of the

application developer. Implementing a real-time application

in the current Internet infrastructure requires carefully

designed architecture with an appropriate choice of

networking protocols.

Another difficulty in the process of designing a

peer-to-peer system like this stems from the fact that many

end-system devices are hidden behind middleboxes which

perform the Network Address Translation (NAT) [5], [6].

In this paper, we are analyzing influences on the

performance of a smartphone-to-smartphone real-time

streaming application and propose an application model that

enables users to, simply, temporarily, and in an Ad-Hoc

manner, interconnect their smartphones and achieve live

video streaming with QoS feedback.

An Ad-Hoc Smartphone-to-Smartphone Live Multimedia

Streaming Application with Real-Time Constraints

Nikola Ivković, Ivan Magdalenić, and Luka Milić

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

6doi: 10.18178/jacn.2016.4.1.195

II. APPLICATION REQUIREMENTS

In the model of the proposed application two smartphones

are essential parts; one is a streaming source, and the other is a

multimedia player. To achieve desired architecture goals,

other devices and processes might be employed to provide

auxiliary infrastructure. The user of the application needs to

be aware only of the smartphone part of the distributed

application and choose its role as the source or the player of

the live multimedia. Fig. 1 shows the simplified view of the

system from the user’s perspective.

streaming multimedia

multimedia

source

multimedia

player

auxiliary

infrastructure

Fig. 1. Simplified view of the system architecture.

The basic design requirements for the application are the

following.

The system should be simple to use for an end user and

should not require any technical knowledge.

The application should allow Ad-Hoc communication

between smartphones with preserved privacy, e.g. users do

not have to exchange phone numbers or e-mail addresses.

It should satisfy real-time constraints, and in the case of

missed deadlines the streaming player should inform the user,

e.g. by drawing a red X across the screen or with a short

beeping sound.

Helping infrastructure should scale well and be able to cope

with a large number of users.

The system should function regardless of NAT devices that

might complicate the communication establishing process.

A failure or a malfunction of the smartphone should not

affect other users of the application.

Even if the auxiliary infrastructure is not available, the

application should work whenever this is possible.

The application model should be designed to assist

security.

III. SYSTEM ARCHITECTURE AND DESIGN CHOICES

The distributed application is composed from a smartphone

application, a meeting server and relaying servers. The

smartphone application is logically divided into two modules:

a multimedia source and a multimedia player. The meeting

server and the relay servers are parts of the auxiliary

infrastructure.

The meeting server is used to simplify the connecting

process of two smartphones and to make multimedia

streaming possible when there are NAT middleboxes in the

communication paths. It is also used to provide the

smartphone application with a list of the relay servers if

intermediation in multimedia streaming is required. In

principle both TCP and UDP could be used as a transport

protocol between a smartphone and the meeting server. In

order to place lesser burden on infrastructure and by this to

achieve better scalability, UDP is used in our model. The

other reason for selecting UDP is to simplify the smartphone

application design, since UDP is used to transport multimedia

from the source to the multimedia player. The meeting server

does not play an active role in reliable message delivery and

the most of the complexity is placed on the smartphone

application. Short lifetime records, with a stream identifier as

the key and parameters for the associated multimedia source

as other fields, are maintained at the meeting server.

Parameters most essentially include a 4-tuple with private and

public IP addresses and port numbers. Time to live is noted

for every record to achieve a robust removal of outdated

records in conformity with the soft-state protocol philosophy.

To prevent DoS attacks, additional data fields might be used.

Data records are stored in memory to achieve better

performance, by using an associative container. Although

logically one, when this is necessary or desirable, the meeting

server can be deployed on multiple physical machines with

data records divided through a distributed associative

container.

Relay servers have a simple task of forwarding application

messages, mostly from the multimedia source to the

multimedia player and occasionally in the opposite direction.

Because of time constraints it is necessary to have multiple

servers geographically distributed to cover wide area. In order

to mitigate possibility that a relay server is exploited for

cyber-attacks, forwarding is performed only if the source of

the message is previously registered as allowed by the

designated destination.

Fig. 2 shows three possible ways by which mobile

applications interact with auxiliary infrastructure.

The applications running on smartphones might

communicate with the meeting server and then establish direct

communication which is used for multimedia streaming. This

is the case with the blue smartphones.

meeting

server

relay

server

relay

server

Fig. 2. Communication examples regarding auxiliary infrastructure.

In the case that direct communication between smartphones

is not possible, after communicating with the meeting server,

the smartphones use one relay server to stream multimedia

indirectly. This is the case for red and yellow smartphone

pairs on Fig. 2. When choosing an appropriate relay server,

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

7

timing constraints and server’s load have to be considered.

If the auxiliary infrastructure is not available, temporarily

or permanently, then smartphones establish direct

communication, in the case that this is possible to achieve.

The most of the complexity and computational burden is

placed on smartphone applications to achieve better

scalability of auxiliary infrastructure. Since UDP does not

provide a reliable data transfer, when this is necessary, e.g. in

interaction with a meeting server, the mobile application has

to use retransmissions and timeouts.

After performing preparatory procedures in the

initialization phase, both the multimedia source and the

multimedia player go through different states that can be

divided into four phases: multimedia stream

advertising/lookup, communication establishing, multimedia

streaming, and the shutdown phase.

In the multimedia stream advertising/lookup phase,

network parameters for establishing communication are

exchanged or generated by using an association code. The

communication establishing phase has to deal with NAT

issues, and a possibility that auxiliary infrastructure is not

available. In the multimedia streaming phase the multimedia

source sends chunks of multimedia, the multimedia player is

measuring the delay to confirm that real-time constraints are

satisfied, and it plays received content until it goes to the

shutdown phase.

A. Coupling the Source and the Player Smartphones

In other to establish a communication channel between the

multimedia source and the multimedia player, it is necessary

to set up the address parameters, IP address and the port

number, that determine the network socket. The port number

can be predefined, but the IP address needs to be

communicated from one user to another, either directly or

indirectly through some specially designed mechanism. Since

NAT can change original port numbers, predefined port

numbers are not practical either.

Currently, the most deployed IPv4 addresses, which use 32

bits, are represented in a human readable format with 12

decimal digits, and newer, partially deployed IPv6 addresses

use 128 bits and are usually represented with a hexadecimal

notation. One user could directly inform another user about

his address, but this is not practical even in the case of shorter

IPv4 addresses and the situation is further complicated by

NAT mechanisms. To mitigate these problems, we propose an

association code composed from up to 10 characters that is

uniquely mapped to a 64-bit stream identifier by the scheme

displayed on Fig. 3. Each character is taken from a modified

base64 index table and requires 6 bits to be stored. Storing the

association code of maximal length (10 characters) requires

60 bits, which leaves 4 bits to store information about the

length of the association code.

Length char1 char2 . . . char10

(4 bits) (6 bits) (6 bits)

(6 bits)

Fig. 3. Encoding of association code to stream identifier.

As a fallback mechanism that can be used in some

situations when the auxiliary infrastructure fails, the

association code, that is 8-characters long, encodes an IPv4

address and a port number. All other association codes, that

are longer or shorter than 8 characters, can be chosen in any

manner, e.g. randomly.

Using only 3-characters long association code, which is

easy for a user to enter, can allow more than 250000

simultaneous smartphone couplings. The association code

that is 5-character long allows more than 10
9
 couplings which

seem enough for the massive world scale application.

The multimedia source application generates an

association code, whose uniqueness is assured by the

auxiliary infrastructure, and displays this code to the user as

shown on Fig. 4. The user that has the multimedia source

communicate this code to a user of the multimedia player.

Both the source and the player compute a stream identifier

and use it to establish communication.

Fig. 4. Screen of the smartphone showing an association code to a user.

B. Application Messages

All the messages used by the distributed application start

with the message-type field, followed by additional fields.

Selected message types, together with a short description, are

listed in Table I. All messages are transported by UDP, using

only one bidirectional channel between communicating

processes, i.e. multimedia chunks and control messages use

same sockets. Messages of the type MULTIMEDIA have

many fields borrowed from the Real-Time Transport Protocol

(RTP), although some fields are not used since they are not

relevant for this type of applications [7].

The message flow in Fig. 5 illustrates a typical message

exchange, without lost messages or retransmission. At the

beginning of the multimedia stream advertising phase, the

multimedia source sends STREAM_ADVERTISEMENT to

the meeting server. This message contains a stream identifier,

a private IP address and a port number. The public IP address

and the port number are available to the meeting server from

the IP and UDP headers. Since the chosen stream identifier is

available, the meeting server stores the data record and

responds with STREAM_REG message which indicates the

registration was successful.

After the association code is entered into the multimedia

player, it is used to decode the stream identifier and

FIND_STREAM_SRC is sent to the meeting server.

The meeting server responds with STREAM_SRC_DATA

that contains public and private IP addresses and ports of the

multimedia source. After that, the multimedia player requests

streaming directly from the multimedia source, which is

confirmed with SOURCE_READY and followed by chunks

of multimedia.

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

8

TABLE I: LIST OF MAIN APPLICATION MESSAGES

Message type Short description

PING
Sent by the mobile application to the relay

server for measuring timing

PONG
Response from the relay server for

measuring timing

STREAM_ADVERT
Sent by the multimedia source to the

meeting server

STREAM_REG
Response from the meeting server if the

stream identifier is accepted

ID_NOT_USABLE
Response from the meeting server if the

stream advertisement is rejected

FIND_STREAM_SRC
Sent by the multimedia player to the

meeting server

STREAM_SRC_DATA
Meeting server responds with

connection-establishing parameters

STREAM_PLYR_DATA
Meeting server forwards

connection-establishing parameters

STREAM_REMOVE
Sent by the multimedia source to the

meeting server to delete the record

MULTIMEDIA
Multimedia chunk sent from the

multimedia source to the player

REQUEST_STREAMING
Multimedia player requests streaming from

the multimedia source

FORWARD_PLYR_RDY

Multimedia player sends to the meeting

server to inform the multimedia source

about its public IP address and port

PLAYER_RDY
Sent by the multimedia player to the

multimedia source

SOURCE_RDY

Sent by the multimedia source to indicate

that a message from the multimedia player

was successfully received

REQ_RELAY_LIST
Requesting a relay list from the meeting

server

RELAY_LIST List of relay servers

SHUTTING_DOWN Request to end communication

PLEASE_FORWARD
Message encapsulating another message

sent to the relay server

REG_FORWARDING
Destination registers source to the relay

server

multimedia

player
multimedia

source
meeting server

STREAM_ADVERT

STREAM_REG

FIND_STREAM_SRC

STREAM_SRC_DATA

REQUEST_STREAMING

SOURCE_READY

STREAM_REMOVE

MULTIMEDIA

MULTIMEDIA

MULTIMEDIA

… …

Fig. 5. Example of message flow.

In between, the multimedia source explicitly informed the

meeting server to remove the record related to the streaming

identifier. If this message is lost, the soft-state principle

ensures that this record is removed. The meeting server

accepts STREAM_REMOVE message only from the socket,

identified by the IP address and the port number, which

registered the stream identifier with STREAM_REG message,

to make cyberattacks more difficult.

C. Dealing with the Network Address Translation

Shortage of IPv4 addresses has motivated wide deployment

of NATs. Middleboxes that perform NAT change IP

addresses and port numbers in headers of packets that

transport data between end-system applications. Many

devices behind one NAT can have different addresses from

some private IP range, but all of them often use only one

public IP address that is visible to the outside world. This

makes it hard to initiate communication toward a device that

is inside a private IP space hidden behind a NAT.

private

IP space

private

IP space

public

IP space

G

E

A
B

C

D
H

NAT

NAT

F

Fig. 6. Devices in public and private IP spaces.

Fig. 6 shows two networks with private IP spaces that are

interconnected with the public IP space with NATs.

Regarding NAT and address spaces, there are five different

scenarios important for this application:

i) The multimedia source and the multimedia player are

inside different private IP spaces, e.g. smartphones A and

E, or smartphones F and C,

ii) The multimedia source is inside a private IP space and

the multimedia player has a public IP address, e.g.

smartphone B as the source and smartphone H as the

player,

iii) The multimedia source has a public IP address and the

multimedia player is in a private IP space, e.g.

smartphone D as the source and smartphone F as the

player,

iv) The multimedia source and the multimedia player have

public IP addresses, e.g. smartphones D and H,

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

9

v) The multimedia source and the multimedia player are

inside one private IP space, e.g. smartphones A and B, or

smartphones E and G.

Although all five scenarios could be successfully resolved

by using a relay server, all unnecessary intermediation in

communication should be avoided to satisfy real-time

requirements. The multimedia player is responsible for

initiating communication with the multimedia source, and this

task is performed as described by a flowchart on Fig. 7.

INPUT: (myPubIP, myPubPort,

myPrvIP, myPrvPort, srcPubIP,

srcPubPort, ,srcPrvIP,

srcPrvPort)

srcPubIP = srcPrvIP

AND

srcPubPort = srcPrvPort

myPubIP = myPrvIP

AND

myPubPort = myPrvPort

myPubIP = srcPubIP

AND

NetworkPart(myPrvIP) =

NetworkPart(srcPrvIP)

Proc_iii_iv

Proc_ii

Proc_v

Proc_i

Communication

established?

YES

YES

YES

NO

NO

NO

NO

Communication

established?

STREAMING

PHASE

START

COMMUNICATION

ESTABLISHING

PHASE

COMMUNICATION

ESTABLISHING

FAILED

YES

YES

NO

Length (association code) = 8
YES

Proc_no_infrastracture

NO

Fig. 7. Program flowchart of the communication establishing phase performed by the multimedia player.

After examining the association code, the multimedia

player decides whether to use auxiliary infrastructure to

receive input parameters from a meeting server, which is

considered as a default behavior, or to use the backup

technique by executing the procedure Proc_no_infrastructure.

In Proc_no_infrastructure, the multimedia player tries to

establish direct communication by sending a

REQUEST_STREAMING message to the IPv4 address and

the port decoded from the 8-character long association code.

If the multimedia player receives SOURCE_RDY message,

communication is established and both the multimedia player

and the multimedia source go to the multimedia streaming

phase.

This procedure can establish communication in the case of

scenarios iii, iv, and v, and could be extended to work in the

case of a scenario ii, but this would require a second

association code and additional user actions. This procedure

cannot work with IPv6 addresses and requires rather long

association codes.

When the meeting server provides necessary address

parameters with STREAM_SRC_DATA message to the

multimedia player, it is easy to identify the actual scenario.

Proc_iii_iv is used for scenarios iii and iv. The multimedia

player sends REQUEST_STREAMING message and waits

for SOURCE_RDY message. If such arrives, the

communication is established.

Proc_ii is performed in the case of the scenario ii. The

multimedia player sends FORWARD_PLYR_RDY message

to the meeting server who in turn sends PLAYER_RDY

message to the multimedia source. This message contains a

public IP address and a port number of the multimedia player,

and so the multimedia source initiates direct communication

with the multimedia player.

In the case that the scenario v is presumed, the multimedia

player sends REQUEST_STREAMING to a private IP

address and a port of the multimedia source at the beginning

of Proc_v. If this is successful, the multimedia source

responds with SOURCE_RDY and communication is

established.

If the scenario i is presumed, the multimedia player starts

with Proc_i. It requires assistance from the meeting server to

establish communication with the multimedia source. After

learning each other’s public IP addresses and ports, the

multimedia player and the source try to communicate directly

by sending each other messages (REQUEST_STREAMING

and SOURCE_RDY). Same messages are discarded and

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

10

should not reach inside the private address space, but since

application uses UDP, after a few tries both NATs could

allow messages to reach the right destination. If this

procedure does not succeed, both the multimedia source and

the multimedia player should use a relay server with a public

IP address to establish indirect communication. Agreement

about which relay server will they use is communicated with

the help of the meeting server.

It is not always easy for the smartphone application to

distinguish between scenarios i and v. In both cases, both end

applications use private addresses and ports which are

translated by NATs to public addresses and ports. The

necessary condition for the end applications to be inside the

same private IP space like in the scenario v. is that both

devices have equal network part of IP address, unfortunately

this is not sufficient since IP ranges behind NATs are not

unique. If devices also have equal public IP addresses, then

devices are indeed in the same private IP space (scenario v),

but if they have different IP addresses this does not necessary

imply the scenario i. Using indirect communication for

multimedia streaming in the case of the scenario v. that is

falsely recognized as scenario i, would introduce unnecessary

network delays that could cause the application to fail its

real-time constraints. The description of these procedures was

somewhat simplified, e.g. some messages are sent

periodically until predefined maximal number of attempts is

reached or the expected response message is received.

D. Timing Properties

The consequence of real-time requirements is that all sorts

of delays have to be considered when system architecture is

designed. In general, there are processing delays, queuing

delays, transmission delays, propagation delays,

packetization delay, protocol induced delays, resending

delays and reproduction delay. The sum of all these delays

makes the total source-to-player delay.

Processing delays are occurring at the end systems

(multimedia source, multimedia player and infrastructure

servers), but also at routers and any other network nodes. The

application developer and owners of the end systems can

influence the processing delay on end systems, but routers are

inside the core network out of their reach. Luckily the

processing delays in the network are often negligible, often in

order of microseconds [8].

Queuing delays depend on the network load and capacity,

which are both out of the application developer’s control, and

are the main cause of variation in the end-to-end delay (jitter).

The transmission delay is proportional to message size and

inversely proportional to the capacity of the link. The message

size can be reduced by choosing appropriate frame resolution

and compression rate. The owner of the smartphone can have

influence on the access link capacity, but the other links in the

network core, which are operated by internet service

providers, normally have higher capacities and do not create

bottlenecks. A basic prerequisite for this application to meet

real-time constraints is that a link on the path that has the

lowest throughput can transmit frames at least as fast as they

are created.

The propagation delay is proportional to the length of the

path through which signals are traveling and inversely

proportional to the speed of signal propagation, which is

3×10
8
m/s for wireless links and about 2×10

8
m/s for wired

links.

For short distances, path propagation delays are negligible,

but using satellite and intercontinental links can make the

proposed application unusable. This means that relay servers

have to be in a limited perimeter of both smartphone users;

therefore multiple relay servers are necessary for global

usage.

The packetization delay occurs because the multimedia

source has to wait for a while, until enough audio data or

video frames are accumulated to create a packet. Choosing

smaller packetization delay can reduce total source-to-player

delay and if the streamed multimedia contains only video,

without audio, then the video could be sent frame by frame

similar to motion-JPEG (MJPEG) [9].

Using particular protocols can induce additional delays, e.g.

for media access contention or because of waiting for

acknowledgment. The lower layer protocols generally cannot

be selected by the developer or the end user, but the

appropriate transport layer protocol is an important design

choice that can have a significant influence on overall

real-time properties.

Transmission Control Protocol (TCP) offers the

application a reliable transfer of bytes in the right order with

congestion and flow control, which makes it a good choice for

many applications that communicate over the Internet.

Unfortunately, a reliable transfer in the right order means that,

when some packet of data is lost in the network, the TCP

sender will resend the packet and the destination has to wait

for it. When this packet finally arrives it might not be usable

anymore and the whole resending process was undesired in

that case.

More troubling is the fact that all other out-of-order data

packets that might arrive on the receiver’s side on time are not

delivered to the player's side of the application by TCP, until

the re-sent packet arrives [10]. As a consequence, these

out-of-order packets can miss their deadlines too. Also, the

congestion control of TCP can temporarily prevent data

transmission and cause an unacceptable delay. Due to these

timing properties, TCP is not appropriate for live multimedia

streaming with real-time constraints. This leaves the User

Datagram Protocol (UDP) as a better choice for a

smartphone-to-smartphone live multimedia streaming

application.

Although UDP has smaller overhead than TCP, it requires

more careful application design since data sent over UDP can

be lost or can arrive in a wrong order. Considering the fact

that some packet can arrive too late or can be lost, it requires

that every multimedia packet is self-sufficient, e.g. starts with

the I-frame [11].

The reproduction delay is introduced intentionally on the

multimedia player side to deal with jitter. The higher

reproduction delay means more buffered frames and lower

probability of interruption in playing a video, but too high

reproduction delay can make the total source-to-player delay

too large and thus the entire application unusable.

Choosing an appropriate relay server from the list is

performed by the multimedia source. The stream player

measures round trip times from the relay server by sending

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

11

PING and receiving PONG messages. PING is small in this

case, and PONG has a size of the expected multimedia chunk,

to reflect asymmetries in links on the path. The multimedia

player sends RELAY_LIST message with timing

measurement to the meeting server who in turn forwards this

to the multimedia source.

The multimedia source uses PING messages with the size

of multimedia chunks, and receives a small PONG message

from relay servers from the list, also to reflect asymmetries in

links on the path. By combining timing measurements

received by the multimedia player with its own, the

multimedia source selects the most appropriate relay server.

These measured durations can be used to predict whether the

application will be able to deliver multimedia within required

deadlines.

E. Security Properties

The system was designed to mitigate some cyber-attacks,

as explained in Section III. The proposed application is

expected to be used sporadically and in short durations which

make a potential attack on particular communication between

the smartphones harder to perform. The close proximity of

two smartphones allows verbal communication between users,

so it is easy for the user to detect suspicious activities. If

higher security standards are required, then cryptographic

techniques can be employed by using the Datagram Transport

Layer Security (DTLS) or a specially designed lightweight

cryptography protocol.

By using QR code, cryptographic keys along with other

parameters can be exchanged in a secure manner through the

out-of-band secure communication channel. The multimedia

source would generate keys and display them on the screen

together with the association code by using QR code. The

smartphone with the multimedia player would use a camera to

automatically take over the keys and the association code. By

employing cryptographic keys, all the messages between

smartphones are encrypted. The messages sent to the meeting

server can be encrypted by using the public key from the

certificate that is downloaded together with the smartphone

application. Decryption of these messages is possible only

with the private key owned by the meeting server.

IV. CONCLUSION

The application proposed in this paper can have different

uses in everyday life. It is much cheaper and handier than

specialized hardware. It can be used in an Ad-Hoc manner,

without a need for users to exchange contacts, which also

promotes privacy. Temporary smartphone communication is

achieved by a simple few-character code, and when this is

needed, the application can work without infrastructure with

limited functionality. The proposed application model solves

communication problems in the presence of NATs, provides

guidance for solving timing issues and for an implementation

of stronger security features.

A prototype application based on the proposed model and

implemented for Android showed that this approach is sound.

REFERENCES

[1] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “piStream: Physical layer

informed adaptive video streaming over LTE,” in Proc. the 21st

Annual International Conference on Mobile Computing and

Networking, Paris, France, 2015, pp. 413-425.

[2] S. Blake et al., “An architecture for differentiated services,” RFC 2475,

IETF, December 1998.

[3] M. E. Villapol and J. Billington, “Internet service quality: A survey and

comparison of the IETF approaches,” Telecommunications Journal of

Australia, vol. 50, no. 2, pp. 57-69, 2000.

[4] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A

new resource reservation protocol,” IEEE Network Magazine, vol. 7,

no. 9, pp. 8-18, Sept. 1993.

[5] P. Srisuresh and K. Egevang, “Traditional IP network address

translator (Traditional NAT),” RFC 3022, January 2001.

[6] L. Zhang, “A retrospective view of NAT,” The IETF Journal, vol. 3,

issue 2, Oct. 2007.

[7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

transport protocol for real-time applications,” RFC 3550, July 2003.

[8] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down

Approach, 6th ed. Pearson, 2012, p. 37.

[9] L. Berc, W. Fenner, R. Frederick, S. McCanne, and P. Stewart, “RTP

payload format for jpeg-compressed video,” RFC 2435, October 1998.

[10] S. Kadry and A. E. Al-Issa, “Modeling and simulation of out-of-order

impact in TCP protocol,” Journal of Advances in Computer Networks,

vol. 3, no. 3, September 2015.

[11] L. L. Peterson, B. S. Davie, Computer Networks: A Systems Approach,

5th ed. Elsavier, 2012, pp. 610-613.

Nikola Ivković received the MS degree in computer

engineering and PhD degree in computer science from

the Faculty of Electrical Engineering and Computing,

University of Zagreb. He is a member of the research

and teaching staff at the Department of Information

Technologies and Computing of the Faculty of

Organization and Informatics, University of Zagreb.

His research interests include computational

intelligence and optimization, parallel programming,

formal methods, operating systems, and computer networks.

Ivan Magdalenić received the BS degree and MS degree in electrical

engineering, in 2000 and 2003, respectively, and received the Ph.D. degree

in computer science in 2009, all from the Faculty of Electrical Engineering

and Computing, University of Zagreb. Currently, he is working as an

assistant professor at the Department of Information Technologies and

Computing of Faculty of Organization and Informatics, University of

Zagreb. His interests include generative programming, semantic web

technologies, e-business, and computer system security.

Luka Milić received the MS degree in computer science from the Faculty of

Electrical Engineering and Computing, University of Zagreb, he is currently

a PhD candidate. He is a member of the research and teaching staff at the

Department of Information Technologies and Computing of the Faculty of

Organization and Informatics, University of Zagreb. His research interests

include operating systems, computer architectures, computer networks and

internet of things.

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

12

