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Abstract  
The goal of our research was to use simulation modelling for prediction of the 

Croatian First Football League seasonal ranking and analyse variation in teams’ 

performance during a season. We have developed a model of the number of goals 

scored by a team in a match based on the Poisson distribution. Parameters of the 

model were estimated from the data on consecutive matches in a season. Variation 

in a team’s performance was modelled as a moving parameter estimate. The final 

rankings were predicted from 1000 simulation runs of the second part of the season 

based on parameter estimates from the first part of the season. For each team the 

most frequent outcome of the simulation defined the team's rank. The method was 

tested on seasons 2014/15 and 2015/16. Prediction was correct for six teams in the 

season 2014/15 and five teams in the season 2015/16. Proposed methods enable 

dynamic monitoring of a team’s performance and prediction of final rankings during 

the season. An advantage of the prediction method is that in addition to predicting 

the final ranking it also estimates probabilities of alternative positions. 
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Introduction 
Our aim was to develop methodology to dynamically monitor teams’ performance 

and predict final rankings of teams in a league after the first half of the season is 

played and apply it to the Croatian football league. There is a wide range of 

benefits that such an analysis can provide. Teams' management can gain more 

objective assessment on (relative) strength of their team. Applied to a sliding window 

of matches during a season results can also signal decrease in team's quality that 

cannot be attributed to natural variation.  

Models in current literature are becoming complex and require large amount of 

data. On the other hand, Croatian league is relatively small (10 teams, 180 matches 

per season). Teams’ performance monitoring and prediction of final rankings had to 



  

 

 

16 

 

Croatian Review of Economic, Business and Social Statistics (CREBSS) Vol.  2, No. 1, 2016 

be based on final scores of ca. 90 matches. This imposed a strong restriction on the 

feasible number of parameters (i.e. degrees of freedom of the model). Therefore, we 

had to make some strong assumptions. We assume that number of goals scored by 

a team is a Poisson random variable with a constant parameter during the season, 

modified only by home advantage. Numbers of goals scored by two teams in a 

match are assumed to be independent. It is interesting to determine whether such a 

simple model is rich enough to enable prediction of the final rankings in Croatian 

Football League from data on only a part of a season. 

The rest of the paper is structured as follows. The next section presents literature 

review and some directions of further development in the area of football match 

score prediction. Research Methodology section introduces basic information on the 

Croatian Football League and the structure of data as well as methodology. The 

fourth section provides results for seasons 2014/15 and 2015/16 with discussion. Main 

findings are summarised in Conclusions. 

 

Literature review 
Sports analytics and predictive analytics captured the attention of both scientific 

and general audience after the appearance of the book Moneyball (Lewis, 2004) 

and the subsequent movie (Moneyball, 2011). They display now famous results of 

baseball team Oakland Athletics’ attributed to use of statistical analysis of the game 

and of players' performance. Football analytics still do not get such attention of 

general audience; however, they have been around for more than 30 years.  

The first models of football results were published in the 80's (e.g. Maher, 1982). 

Modelling number of goals scored by a team as a Poisson random variable was one 

of the first approaches. Further developments include prediction of league results 

(e.g. Lee, 1997) and use of bivariate distribution (e.g. Karlis and Ntzoufras, 2003). 

More recently, Constantinou et al. (2012) demonstrate use of a Bayesian network 

model for forecasting of match outcomes, Arabzad et al. (2014) use artificial neural 

networks to predict outcomes, and Dobravec (2015) demonstrates an approach for 

forecasting world cup results using a matrix-factorization model. Models in current 

literature are becoming more complex and require large number of parameters 

(e.g. team strength in attack and defence, separate estimate of home effect per 

team, etc.) which also requires structure  

 

Research methodology 
Data 
Data on Croatian Football League used in the paper and available at 

www.rezultati.com. They consist of games schedules and number of goals scored 

per team in each of the games played in seasons 2014/15 and 2015/16. The first 

Croatian Football League comprises 10 teams. During a season, every team meets 

four times with each other team, twice on home and twice on the opponent’s 

stadium. Schedule of games is known before the season starts. Teams score 3 points 

for every win and 1 point for every draw. Final ranking is based on the total number 

of points scored during the season.  

Tables 1 and 2 present number of games played, total number of goals scored by 

a team and rankings at the end of the winter part of the Season 2014/15 (Table 1) 

and Season 2015/16 (Table 2).  

 Number of games played in the winter part of a season was 95 for the Season 

2014/15, and 105 for the Season 2015/16. Data on scores of these games were used 

for prediction of final ranking for the seasons. 
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Methods 
We have modelled number of goals scored by each team as a Poisson random 

variable: 

  ,...1,0,
!
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t 
, (1) 

Parameter 𝜆𝑡 depends on number of goals achieved by a team in previous 

matches. Since number of goals is larger when team plays home, and smaller when 

team plays away, we have added a home-bonus factor h. If A is the team playing 

home and B is the team playing away then: 

  AA th  11 , 

  BB th  11 , 
(2) 

where λ is an average number of goals scored per team in all matches, 𝑡𝐴  and 𝑡𝐵 

are team specific factors. 

Goals in a match where home team A is playing against away team B were 

modelled independently. If X was number of goals scored by team A and Y was 

number of goals scored by team B probability of score n:m was: 

     BABA mYPnXPmYnXP   ,, , (3) 

where X and Y were Poisson random variables with parameters 𝜆𝐴 and 𝜆𝐵. 

 

Table 1 Rankings at the end of the winter part of the Season 2014/15 
Team Games 

Played 

Home 

Games 

Played 

Away 

Goals 

Scored 

Home 

Goals 

Scored 

Away 

Points 

Scored 

Din. Zagreb 10 9 30 18 42 

Rijeka 9 10 29 14 33 

Hajduk Split 10 9 23 16 32 

Lok. Zagreb 9 10 17 19 31 

RNK Split 9 10 14 8 21 

Slaven Belupo 9 10 12 6 19 

Osijek 10 9 13 5 18 

NK Zagreb 10 9 14 11 18 

Istra 1961 9 10 8 11 16 

Zadar 10 9 14 4 9 

 

Table 2 Rankings at the end of the winter part of the Season 2015/16 
Team Games 

Played 

Home 

Games 

Played 

Away 

Goals 

Scored 

Home 

Goals 

Scored 

Away 

Points 

Scored 

Din. Zagreb 11 10 27 14 45 

Rijeka 10 11 21 14 43 

Hajduk Split 10 11 15 14 39 

RNK Split 11 10 16 6 32 

Lok. Zagreb 10 11 18 16 30 

Int. Zaprešić 11 10 11 8 22 

Slaven Belupo 10 11 13 11 21 

Istra 1961 11 10 13 6 19 

Osijek 10 11 8 7 19 

NK Zagreb 11 10 10 6 9 
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Home-bonus h was estimated as ℎ = 𝜆ℎ 𝜆 ⁄ − 1, where 𝜆ℎ  was the average number 

of goals scored per home team in all matches. Team specific factor t for a team that 
played n matches at home and m matches away was estimated as 𝑡 = 𝑔 𝑒⁄ − 1, 

where g was average number of goals scored by the team and e was expected 

number of goals scored by an average team that played n matches at home and 

m matches away, given by: 

mn

mn
e ah







. (4) 

We have estimated Poisson parameters 𝜆ℎ, 𝜆𝑎, home-bonus ℎ, and team specific 

factors from available data. For the purpose of monitoring teams’ performance, we 

have estimated the parameters on a sliding window of consecutive matches. For 

prediction of the final ranking, we have used parameter estimates from the first part 

of the season for simulation of match results for the rest of the season. Based on 

results of the simulation we have allocated points to the teams and generated a 

ranking. Simulations were run 1000 times. For each team probability of each position 

in final ranking was estimated as a proportion of simulation runs resulting with the 

team in that position. 

Prediction accuracy for Seasons 2014/15 and 2015/16 were compared with 

accuracy of naïve predictions based on ranking after the winter part of the seasons 

using Euclidean distance between predicted and actual rankings. 

Variation in a team’s performance was modelled by moving parameter 

estimates. For each team specific factors and home-bonus were calculated in 

moving time-frames of five consecutive games. Expression (2) was used to estimate 

teams' expected average number of goals per game, without correction for home 

advantage, over moving time frames. These estimates were used to monitor teams’ 

performance dynamics. 

 

Results 
Season 2014/15 
During the Season 2014/15, total number of games played was 180. In the winter part 

of the Season, there were 19 rounds with the total of 95 matches. Average number 

of goals scored per team (λ) was 1.505, average number of goals scored per home 

team ( 𝜆𝐻 ) was 1.832, and average number of goals scored per away team ( 𝜆𝐴 ) 

was 1.179. Home-bonus h was 0.216, i.e. teams achieved 21.6% more goals per 

game when playing home then in general. 

Estimates of teams' parameters are presented in Table 3. It is interesting to 

compare data in Table 1 and parameter estimates in Table 3. For the upper part of 

the table (the best four teams), their order in respect to the total number of points 

after the winter part of the Season corresponded to the order in respect to Poisson 

lambdas. For the middle and lower part of the table, these orders were not equal. 

Teams with higher number of goals scored tended to have higher lambdas then we 

would have expected based only on point rankings. Therefore, we expected to find 

a difference between a naïve prediction based on interim ranking after the winter 

part of the Season and our prediction based on simulation. 

Table 4 presents results of the simulation, along with rankings after the winter part 

of the Season and the final ranking of the Season. It shows that final ranking of teams 

is highly predictable. Six of the teams had final ranking position that was predicted 

by the model as the most likely. Slaven Belupo, Osijek and Istra 1961 had probability 

of the most likely position lower than 0.5. For these teams predicted final position 

missed achieved final position by one. The only surprise was RNK Split for which the 
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most likely position had probability above 0.5. Their achieved final position was equal 

to the position predicted as the second most likely. Euclidean distance between 

predicted and achieved final ranking was 2.00. In comparison, Euclidean distance 

between naïve prediction (using interim ranking after the winter part of the Season 

as prediction of the final ranking) and the final ranking was 2.83. Maximal deviation 

of naïve method was two, and for our model, it was one. 

Table 3 Poisson parameters λ for the winter part of the Season 2014/15 
Team 𝜆  𝜆ℎ 𝜆𝑎 

Din. Zagreb 2.498 3.039 1.956 

Rijeka 2.289 2.786 1.793 

Hajduk Split 2.029 2.469 1.590 

Lok. Zagreb 1.917 2.332 1.501 

NK Zagreb 1.301 1.583 1.019 

RNK Split 1.171 1.425 0.917 

Istra 1961 1.012 1.231 0.792 

Slaven Belupo 0.958 1.166 0.751 

Osijek 0.937 1.140 0.734 

Zadar 0.937 1.140 0.733 

Legend: 

𝜆  – Poisson parameter for play at neutral stadium 

𝜆ℎ – Poisson parameter for home game 

𝜆𝑎 – Poisson parameter for away game 

 

Table 4 Results of the simulation for Season 2014/15 with interim and final rankings 
Team Most likely 

position 

(probability) 

2nd  most 

likely position 

(probability) 

3rd most 

likely position 

(probability) 

Naïve 

ranking 

Final ranking 

Din. Zagreb 1 (0.973) 2 (0.027) - 1 1 

Rijeka 2 (0.980) 1 (0.016) 3 (0.004) 2 2 

Hajduk Split 3 (0.833) 4 (0.164) 2 (0.003) 3 3 

Lok. Zagreb 4 (0.867) 3 (0.128) 5 (0.005) 4 4 

NK Zagreb 5 (0.833) 6 (0.147) 7 (0.017) 7 5 

Slaven Belupo 7 (0.407) 8 (0.286) 6 (0.151) 6 6 

RNK Split 6 (0.597) 7 (0.214) 5 (0.109) 5 7 

Osijek 9 (0.404) 10 (0.277) 8 (0.220) 8 8 

Istra 1961 8 (0.356) 9 (0.238) 7 (0.224) 9 9 

Zadar 10 (0.658) 9 (0.240) 8 (0.080) 10 10 

Legend: 

Naïve ranking – ranking after the winter part of the Season 

Final ranking – ranking at the end of the Season 

 

 
Figure 1. Expected number of goals per game by teams in Season 2014/2015 based 

on the time frame of last five games  
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Figure 1 presents variation in teams' performance for some of the teams in the 

Season 2014/15. The analysis indicates that teams that ended in the last two positions 

had decreased their performance in the final rounds. Three top teams had some 

decline in performance in the middle of the Season, but two of them (Din. Zagreb 

and Rijeka) improved it in the finals. 

 

Season 2015/16 
During the winter part of the Season 2015/16 there were 105 matches played in 21 

rounds. Average number of goals scored per team (λ) was 1.209, average number 

of goals scored per home team (𝜆ℎ) was 1.448, and average number of goals 

scored per away team (𝜆𝑎) was 0.971. Home-bonus h was 0.197 i.e. teams achieved 

19.7% more goals per game when playing home and 19.7% less goals per game 

when playing away then when playing a neutral game. 

Expected number of goals scored by an average team (𝑒) for teams that played 

11 games at home and 10 games away was 25.638/21 = 1.221. Expected number of 

goals scored by a team that played 10 games home and 11 games away was 

25.162/21 = 1.198. These numbers were used to calculate team specific factors. For 

example, RNK Split scored 22 goals in winter part of the Season, playing 11 games 
home and 10 games away, so it’s team specific factor 𝑡 =  ((22/(11 + 10)/1.221) −
1 =  − 0.142.  

Table 5 presents Poisson parameters for all teams and different match scenarios 

(neutral ground, home, away). It is interesting to notice differences in team rankings 

based on total number of points after the winter part of the Season (Table 2) and 

those based on estimates of Poisson parameters (Table 5). For instance, Lokomotiva 

Zagreb and Slaven Belupo ranked higher in Table 5, and RNK Split ranked lower.  

 

Table 5 Poisson parameters λ for the winter part of the Season 2015/16 
Team 𝜆  𝜆ℎ 𝜆𝑎 

Din. Zagreb 1.934 2.315 1.553 

Rijeka 1.682 2.014 1.351 

Lok. Zagreb 1.634 1.956 1.313 

Hajduk Split 1.394 1.668 1.120 

Slaven Belupo 1.154 1.381 0.927 

RNK Split 1.038 1.242 0.834 

Int. Zaprešić 0.896 1.073 0.720 

Istra 1961 0.896 1.073 0.720 

NK Zagreb 0.755 0.903 0.606 

Osijek 0.721 0.863 0.579 

Legend: 

𝜆  – Poisson parameter for play at neutral stadium 

𝜆ℎ – Poisson parameter for home game 

𝜆𝑎 – Poisson parameter for away game 

 

The second part of the Season 2015/16 comprised 15 rounds with a total of 75 

games. Maximum number of points that a team could gain during the second part 

of the Season was 45. Table 6 shows three most likely positions for each team with 

estimated probabilities based on simulation. We predicted RNK Split to drop by one 

position, but they ended two positions lower than in interim ranking. Lokomotiva 

Zagreb improved its position as our model suggested. Inter Zaprešić significantly 

improved their performance in the second part of the season and was better than 

predicted. Osijek also significantly improved performance in the final 10 games 

(losing only 3 games, unexpected from a team near the bottom of the table). 
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Overall achieved final position was equal to the predicted most likely position for five 

teams. Euclidean distance between our prediction and the final ranking was 2.83, 

same as Euclidean distance between naïve prediction (using interim ranking after 

the winter part of the Season as prediction of the final ranking) and the final ranking. 

Maximal deviation of both naïve method and our model was two. 

 

Table 6 Results of the simulation for Season 2015/16 with interim and final rankings 
Team Most likely 

position 

(probability) 

2nd  most 

likely position 

(probability) 

3rd most 

likely position 

(probability) 

Naïve 

ranking 

Final ranking 

Din. Zagreb 1 (0.856) 2 (0.139) 3 (0.005) 1 1 

Rijeka 2 (0.757) 1 (0.134) 3 (0.099) 2 2 

Hajduk Split 3 (0.635) 4 (0.252) 2 (0.094) 3 3 

RNK Split 5 (0.785) 6 (0.165) 4 (0.033) 4 6 

Lok. Zagreb 4 (0.704) 3 (0.257) 5 (0.028) 5 4 

Int. Zaprešić 7 (0.445) 8 (0.292) 6 (0.151) 6 5 

Slaven Belupo 6 (0.616) 7 (0.184) 5 (0.152) 7 7 

Istra 1961 8 (0.438) 7 (0.292) 9 (0.198) 8 9 

Osijek 9 (0.663) 8 (0.223) 7 (0.068) 9 8 

NK Zagreb 10 (0.954) 9 (0.040) 8 (0.006) 10 10 

Legend: 

Naïve ranking – ranking after the winter part of the Season 

Final ranking – ranking at the end of the Season 

 

 
Figure 2 Expected number of goals per game by teams in Season 2015/16 based on 

time frame of last five games 

 

Figure 2 presents variation in a team’s performance for some of the teams in 

Season 2015/16. RNK Split team, which ended two positions lower than expected, 

had continuous decrease in performance in the second half of the Season. Istra 1961 

reduced its performance during the second part of the Season as well, leading to its 

penultimate position. 

 

Conclusions 
We have introduced a simple probabilistic model of football match scores based on 

Poisson distribution. Parameters of the model were estimated from data on match 

scores in the first part of the season, and we used them to simulate rest of the season 

and the final rankings. Model was tested on data for Seasons 2014/15 and 2015/16. 

Prediction from the model was better than naïve prediction (i.e. extrapolation of the 

interim ranking after the first part of the Season). In Season 2015/16, even though 

Dinamo and Rijeka had a similar number of points at the end of the winter part of the 

Season (Dinamo 45, Rijeka 43) there was a large difference in their probabilities of 
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winning the championship. On the other hand, analysis correctly pointed out that NK 

Zagreb was at a high risk of ending the Season in the last position. Advantage of this 

method is that in addition to providing prediction for the final ranking it also provides 

probabilities of alternative positions. For teams that have large difference between 

the probabilities of the most likely and the second most likely position, we may have 

high confidence in the prediction of their final position, under the assumption that 

there are no changes in the relative quality of play of all teams. However, for teams 

for which probabilities of alternate positions are not very different, confidence of 

prediction is lower. 

Demonstrated dynamical assessment of performance during a season could be 

used for detecting change in performance or validating effects of changes 

introduced in play. Such analyses could become a valuable tool for the team-

management decision support. Model can be used for a priori impact assessment by 

running simulations of different management strategies based on their expected 

effects on match results. 

In order to accommodate small amount of available data we had to make strong 

assumptions. This model does not accommodate variations in teams' performance. 

However, due to a small number of parameters it is possible to analyse part of the 

season, and thus monitor changes in teams' performances. It is also assumed that 

home advantage is the same for all teams and locations. In order to accommodate 

for variations in home advantage effects we would have to base our prediction on a 

larger set of matches. Similar argument could be put forward regarding 

independence of number of goals scored by the two teams in a match. Thus, we 

had to make a trade-off between model complexity and size of data. We show that 

even with these limitations it is possible to achieve reasonable prediction. 
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