
Process Model Improvement for Source Code
Plagiarism Detection in Student Programming
Assignments

Kermek, Dragutin; Novak, Matija

Source / Izvornik: Informatics in Education, 2016, 15, 103 - 126

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.15388/infedu.2016.06

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:588098

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-08

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://doi.org/10.15388/infedu.2016.06
https://urn.nsk.hr/urn:nbn:hr:211:588098
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3484
https://dabar.srce.hr/islandora/object/foi:3484

Informatics in Education, 2016, Vol. 15, No. 1, 103–126
© 2016 Vilnius University
DOI: 10.15388/infedu.2016.06

103

Process Model Improvement for Source Code
Plagiarism Detection in Student Programming
Assignments

Dragutin KERMEK, Matija NOVAK
Faculty of Organization and Informatics, University of Zagreb
e-mail: {dkermek, matnovak}@foi.hr

Received: March 2015

Abstract. In programming courses there are various ways in which students attempt to cheat. The
most commonly used method is copying source code from other students and making minimal
changes in it, like renaming variable names. Several tools like Sherlock, JPlag and Moss have
been devised to detect source code plagiarism. However, for larger student assignments and proj-
ects that involve a lot of source code files these tools are not so effective. Also, issues may occur
when source code is given to students in class so they can copy it. In such cases these tools do
not provide satisfying results and reports. In this study, we present an improved process model for
plagiarism detection when multiple student files exist and allowed source code is present. In the
research in this paper we use the Sherlock detection tool, although the presented process model
can be combined with any plagiarism detection engine. The proposed model is tested on assign-
ments in three courses in two subsequent academic years.

Keywords: plagiarism detection, source-code, process model, programming assignments.

1. Introduction

Source code plagiarism in programming classes is a big concern because in performing
their assignments students often try to copy source code parts, or the entire code, from
their colleagues, or find similar source code on the Internet and use it without noting its
origin. A lot of literature is available on plagiarism detection in student programming as-
signments. Lancaster (Lancaster, 2003) gave a comprehensive overview of literature in
the field of plagiarism. Mozgovoy (Mozgovoy, 2006) gave an overview of desktop tools
for offline plagiarism detection in computer program. Culwin, MacLoad, and Lancaster
(Culwin et al., 2001), and Cosma and Joy (Cosma and Joy, 2006) revealed various pla-
giarism issues in higher education and concluded that, on the whole, plagiarism in the
UK context is a prevalent and extensive phenomenon and that academics have different
perspectives on what constitutes plagiarism. For instance, there is disagreement as to

D. Kermek, M. Novak104

whether the reuse of source code without acknowledgement can be considered plagia-
rism. In another interesting research about plagiarism from a student’s perspective (Joy
et al., 2011) examples of source code were divided into categories depending on the type
of plagiarism that was performed. In that study, students were asked to detect if a certain
example of source code was plagiarism or not. For example, students correctly (with more
than 90% accuracy) identified category “Copying from another student” as plagiarism.
So the authors concluded that if those students do that, then they cheat deliberately.

Another paper, by Simon et al. (Simon et al., 2014), also discussed the problem of
what to consider as plagiarism in computing scenarios and in essay scenarios. They
have developed 14 scenarios (cases) and asked students and academics to identify the
scenarios that are considered plagiarism. Majority of the participants agreed that it was
plagiarism: “to purchase the work of others and submit it as one’s own, to incorporate
the work of another student without their permission, and to include the work of other
without referencing the source”. Also, by diminishing majorities, the following scenari-
os where considered plagiarism/collusion: “borrowing and using another student’s work,
giving completed work to another students and asking them to improve it, and using
work that had been written and submitted for previous assignments”. They found out
that there are “substantial differences between academic integrity issues in text based
and computing assessments”. In computing assessments it is more difficult to define
plagiarism and collusion; and even if one chose to reference one’s computing work,
there are no standard guidelines for doing so. Another problem is that there is a gray area
between plagiarism/collusion relating computer code and standard practices like using
online tutorials. Authors concluded that “educating students about academic integrity
policies it a necessary but insufficient strategy... Academic integrity standards should be
accompanied by strategies to imbue students with an understanding and genuine com-
mitment to these standards”.

In object oriented programming the reuse of source code is encouraged and should not
be seen as plagiarism. Cosma and Joy (Cosma and Joy, 2008) suggested that, if its reuse
is allowed, the acknowledgement to the original author should be made. To identify the
copied source code, today there are plagiarism detection engines which detect similari-
ties in source code. Yang, Jiau, and Ssu (Yang et al., 2014) cautioned that all source code
similarities cannot necessarily be considered plagiarism because there are other causes
that contribute to them. This article does not deal with those other causes directly, but it
is easier to detect and exclude some of them as non-plagiarism manually. For example, a
possible cause of false plagiarism detection is the usage of some design patterns.

The main focus of this article is detecting plagiarism that is mostly performed by
copying. One of the goals of this article is to exclude reused source code whose use is
allowed and get an overview report which shows only highly potential plagiarized as-
signments. The second goal is to optimize the detection of plagiarism in assignments
with many source code files. The third goal is to create a detailed report that lists similar
source code parts as potential plagiarism cases. This report is then used to identify cases
in which design patterns are used and to manually decide whether plagiarism was actu-
ally performed in them. To fulfil all these goals, we propose a process model improve-
ment for detecting plagiarism.

Process Model Improvement for Source Code Plagiarism Detection in ... 105

In Section 2 research goals are presented in more detail. Section 3 contains a short
description of the Sherlock detection engine and the reasons why it was selected for
our research. It is not the intention of the authors of this paper to improve any detection
algorithm but rather use one of them in our process model. In Section 4 we propose a
process model for plagiarism detection. Section 5 describes the validation of the model
based on student assignments in three courses from two subsequent academic years.
Finally, an outline of future work is given in Section 6, followed by the conclusion in
Section 7.

2. Research Questions and Problem Description

From the academic point of view, the fact that some students cheat in their assignments
represents a big problem. We can distinguish between two major issues in that respect:
students copy parts or the whole source code from other students, or they copy the whole
source code or parts of it from an unknown source and modify that source code mini-
mally (for example, by changing variable names only). Besides, students may be given
some source code parts in class that they may be encouraged to use in their assignments.
Therefore every instance of copied source code does not necessarily represent cheating.
The first question is: “Is it possible to identify source code whose reuse is allowed and
exclude it from being detected as plagiarism?”

Đurić and Gašević (Đurić and Gašević, 2013) offered a five step approach (process
model) to detect plagiarism that involves removing the reused source code. Drawing on
their concept, our previous question can be extended in the following way: “Is it pos-
sible to identify source code whose reuse is allowed and exclude it from being detected
as plagiarism in larger assignments with multiple source code files?”

If that is possible, then our second question is: “Is it possible to detect plagiarism
among student assignments in that revised environment and create an overview report of
highly potential plagiarized assignments?” To obtain this report, we propose a process
model improvement for plagiarism detection.

For the purpose of model testing, we developed a Java based application that imple-
ments the proposed model and uses the Sherlock plagiarism detection system as a tool to
detect similarities in two different areas. We also made a web application for viewing the
reports based on different options and filters. The test cases comprise around 100 student
assignments, with each assignment consisting of approximately 10 files of source code
(though the number of files is not limited) and, possibly, some files that are not part of
source code and should therefore not be included in detection.

3. Plagiarism Detection Engine

The proposed process model uses an existing plagiarism detection engine. A good defi-
nition of plagiarism detection engines was given by Lancaster (Lancaster and Culwin,
2005) : “Plagiarism detection engines are programs that compare documents with pos-

D. Kermek, M. Novak106

sible sources in order to identify similarity and so discover student submissions that
might be plagiarised.” In this article we are looking at plagiarism detection engines that
were made to find plagiarism in source code files, which is different than finding plagia-
rism in text files.

There are many source code plagiarism detection engines, like JPlag (Prechelt et al.,
2000), MOSS (Schleimer et al., 2003) and Sherlock (Joy and Luck, 1999). Lancester
and Culwin (Lancaster and Culwin, 2004); (Lancaster and Culwin, 2005) provided a
comparative overview of available plagiarism detection engines including the metrics
that each of them uses. Plagiarism detection is often performed on different types of files
for finding similarity between them. Sherlock, for example, creates multiple versions of
original files for finding similarities that comprise: tokenized version (files are tokenized
and then checked, a very popular and analyzed technique (Joy and Luck, 1999); (Pre-
chelt et al., 2002); (Mozgovoy et al., 2005)), original version (similarity check is run on
the original file), no white spaces (white spaces are removed before checking), normal-
ized (normalizing files for Java or C++), no comments (all comments are removed from
the file before checking), no comments and normalized, no white spaces and no com-
ments, and comments only (this was not used).

Since our faculty uses Moodle LMS, JPlag and Moss were considered for usage
at the start of our research. Several advantages of using a plagiarism detection engine
within the Moodle system have been reported (Tresnawati et al., 2012). For example,
it directly provides information to teachers about existing similarities in the submission
system for each submission.

However, the problem with MOSS and JPlag1 is that source files are first uploaded
to their web server, after which they perform plagiarism detection and return the re-
port. Uploading files to a server might be a security issue (concerning, for example,
the access to the data after their upload) and also depends on the Internet connection.
Also, there is always a possibility that for some reason the service might shut down
temporarily, or even permanently. According to our process model, each assignment
must be compared with source code whose reuse is allowed so that those parts of
source code are deleted from assignments. This step is repeated until no similarity is
found. Such a procedure is likely to result in a large amount of data traffic and much
slower processing.

Due to the aforementioned reasons, we prefer a detection engine that can be used
locally. Another requirement is that the tool has a public license so that it can be used
free of charge. The tool should also enable some kind of tokenized detection needed
for detecting copied source code containing changed variable names. Sherlock fulfils
all those prerequisites and its source code is under the GPL v2 license (University of
Warwick, 2012).

Sherlock also provides documentation as evidence for plagiarism. However, the ob-
tained results were not satisfactory for our needs. In the following sections we explain
reasons for some of our decisions and present modifications we made in the process
model for plagiarism detection.

1 JPlag since March 2015 enables downloading source code and use it on local server.

Process Model Improvement for Source Code Plagiarism Detection in ... 107

4. Process Model for Plagiarism Detection

This section presents a process model improvement for plagiarism detection. A similar
model presented in (Đurić and Gašević, 2013) has five steps:

Pre-processing – making the detection robust to source code transformations like: ●
removing blocks of comments, splitting/merging variable declarations, changing
variable order, adding redundant statements, etc.
Tokenization – making the detection robust to source code transformations like: ●
language translation, renaming of variables, etc.
Exclusion – creating and removing a tokenized version of the allowed source code ●
Similarity measurement – detecting similarities on more types of algorithms ●
Final similarity calculation – calculating overall similarity between two sources ●
based on similarities obtained from different algorithms.

Our process model has a similar global structure but as we deal with multiple files
in one assignment a merge step has been added and the exclusion phase split into two
steps (5 and 6) which are repeated iteratively. Tokenization and pre-processing are al-
ready implemented in Sherlock, and they are executed every time similarity checking is
performed (steps 7 and 10), but with different objectives.

The process model we propose has the following steps (Fig. 1):
Load all student assignments – loads all files from student assignments.1.
Exclude overhead files – deletes all unused files, leaving only files that should be 2.
checked.
Merge all files from one assignment – all assignment files of each student are 3.
merged into one big file that represents his/her assignment.
If allowed source code files exist, go to step 5, otherwise go to step 10.4.
Prepare one file with all the source code whose use is allowed for each group. 5.
Choose allowed source code file – if more than one file is present (e.g. if two 6.
groups of files exist), it is checked which file among all files given to groups
matches best the student assignment and this file is then used further
Compare each student assignment with the file chosen in step 6 – the plagiarism 7.
detection engine is run to find similarities between the student assignment and the
allowed source code file.
Filter student assignment – delete similarities found in step 7 from the student 8.
assignment.
Iterate steps 7 and 8 until no similarity exists between the file in step 6 and the 9.
student assignment. This should be done for every student’s assignment.
Run the plagiarism detection engine on all student assignments – finding similari-10.
ties between refined student assignments.
Create overview report – with information from the assignments for which high-11.
est similarity was determined:

Similarity that is higher than 20% between two student assignments, based a.
on one type of similarity checking (tokenized, original, without white
spaces…).

D. Kermek, M. Novak108

Similarity that is between 10% and 20% based on four types of Sherlock b.
similarity checking.

Create detailed report – report with concrete file names and source code blocks 12.
that are similar between two student assignments.

As we already mentioned, to test our model we developed a Java application. The
rest of this section includes a detailed description of each step and explains how each of
them was implemented.

4.1. Load all Student Assignments

The first step is simple and consists of loading all the assignments (with all the files in-
cluded) that should be checked. In the implemented application all student assignments
should be placed into one directory. Each student assignment is then placed under a
separate subdirectory (further referred to as the student assignment directory) contain-
ing files and directories of the assignment. It is important that each student assignment
directory has a unique name (e.g. student’s username) to enable the differentiation of
assignments in further steps.

At this stage Sherlock can be used to detect plagiarism although it is hard to find
in a large set of data, as can be seen in Fig. 2, where points on the circle show the as-
signments and the lines between two points represent the similarity between these two
assignments. The line color represents the strength of similarity between two files (red
– highest, yellow – medium, black – lowest). A few smaller subsets of files were identi-
fied (Fig. 3) in which some files were similar owing to the allowed reused source code

9. Iterate steps 7 and 8 until no similarity exists between the file in step 6 and
the student assignment. This should be done for every student’s
assignment.

10. Run the plagiarism detection engine on all student assignments – finding
similarities between refined student assignments.

11. Create overview report – with information from the assignments for which
highest similarity was determined:

a. Similarity that is higher than 20% between two student
assignments, based on one type of similarity checking (tokenized,
original, without white spaces…).

b. Similarity that is between 10% and 20% based on four types of
Sherlock similarity checking.

12. Create detailed report – report with concrete file names and source code
blocks that are similar between two student assignments.

Fig 1. Plagiarism detection process model.

As we already mentioned, to test our model we developed a Java application. The
rest of this section includes a detailed description of each step and explains how
each of them was implemented.

4.1. 4.1. Load all Student Assignments
The first step is simple and consists of loading all the assignments (with all the files
included) that should be checked. In the implemented application all student
assignments should be placed into one directory. Each student assignment is then
placed under a separate subdirectory (further referred to as the student assignment
directory) containing files and directories of the assignment. It is important that each
student assignment directory has a unique name (e.g. student’s username) to enable
the differentiation of assignments in further steps.

At this stage Sherlock can be used to detect plagiarism although it is hard to find in a
large set of data, as can be seen in Fig. 2, where points on the circle show the
assignments and the lines between two points represent the similarity between these
two assignments. The line color represents the strength of similarity between two

1 Load
student
assignm
ents

3 Merge
files of one
assignment

2 Exclude
overhead
files

5 Prepare allowed source-
code file for each group

10 Run plagiarism
detection (between
student assignments)

11 Create
overview
report

7 Compare one
by one student
assignment (to
best allowed
file)

8 Filter
student
assignm
ent

9 Has some
similarity?

12 Create
detailed
report

Yes
No

4 Has allowed
source-code

files?

Yes

No

6 Choose
allowed source-
code file (based
on best
similarity)

Fig. 1. Plagiarism detection process model.

Process Model Improvement for Source Code Plagiarism Detection in ... 109

or similarities between files inside one student assignment. However, it is not interest-
ing to see the similarity between files in the same student assignment. Even when such
similarity is not obtained, no conclusions can be based on a single file as we still do not
know what amount of plagiarism exists in the whole assignment. These issues should be
resolved in step 3.

Note that step 1 (Load all student assignments) can be preceded by another step, i.e.
extraction (download) of assignments from the online submission system.

4.2. Exclude Overhead Files

Some similarities shown in Fig. 2 to Fig. 5 were identified owing to files that do not be-
long to source code, like log files. In this step all files that do not have a valid extension
are deleted (e.g. jpg, xml) and all parts of source code that are not directly connected
to the assignment (e.g. libraries and frameworks, like jQuery, Smarty, Twig, reCaptcha,
etc.) are deleted too. The aim of this step is to exclude overhead (i.e. unimportant) files
from being further used in plagiarism detection.

Fig. 2. Sherlock output – large amount of similarities.

Fig. 3. Sherlock output – small amount of similarities.

D. Kermek, M. Novak110

4.3. Merge all Files of One Assignment

The goal of this step is to merge all important files of one student assignment into one
big file to reduce the number of files. These files are then directly checked with Sherlock
which returns the information about the similarity of the whole assignment and not about
each file in the assignment separately. The issue of similarity between files within the
same assignment is also resolved in this way.

In this step all the files from one assignment are merged into one file. It is important
to add the name of the original file (following the format: FILE_ {original file name})
before its content in the merged file in order to be able to identify which file the source
code pertains to (Example 1). After this step is completed, Sherlock can be used to detect
plagiarism.

FILE_file_name_1.java

package some_package_1;
import some_package.some_class;
…
FILE_file_name_2.java
package some_package_2;
import some_package.some_class;
…

Example 1. Added lines with file name.

Fig. 4 shows better results than those in Fig. 2. In Sherlock it is possible to change
the minimum similarity (i.e. line between two points) that two assignments must demon-
strate to be shown in the graph. Fig. 4 and Fig. 2. have a 1% similarity. If the minimum
similarity is set at a higher value, for example 7%, the results are much better (Fig. 5).

A lot of similarities in this stage are still based on the allowed source code. Also,
there is another issue to be considered here, for which it is important to understand dif-
ferent types of files for finding similarity that Sherlock works with. They were described

Fig 1. Sherlock output –merged files.

Fig 2. Sherlock – Display matches.

Fig. 4. Sherlock output –merged files.

Process Model Improvement for Source Code Plagiarism Detection in ... 111

at the beginning of section 3. For each of those similarity types Sherlock creates matched
blocks which contain the percentage of similarity between the compared files.

The problem is that every matched block of the same type has its own similarity, but
the similarity of the assignment is the sum of all the matched block similarities of the
same type. Therefore it is not so easy to determine the similarity between assignments.
A solution to this problem is provided in steps 10 and 11. Fig. 6 shows the “Display
Matches” screen.

Fig 1. Sherlock output –merged files.

Fig 2. Sherlock – Display matches.

Fig. 5. Sherlock output – merged files with similarity above. 7%

Fig 1. Sherlock output –merged files.

Fig 2. Sherlock – Display matches.

Fig. 6. Sherlock – Display matches.

D. Kermek, M. Novak112

4.4. Has Allowed Source Code File?

It is not necessary to have source code whose reuse is allowed. In such cases steps 5–9
are skipped. If allowed source code does exist, step 5 is included.

4.5. Prepare allowed source code files for each group

To resolve the problem of source code that can be reused, it is necessary to create one
file which contains the source code that can be reused. This step can be done in parallel
with the previous steps. This file must be created manually and usually represents a sum-
marized copy of all source code that can be reused.

Allowed source code is given to students in lectures, as well as built during labora-
tory exercises. It is also necessary to mention that the amount of data that is put into the
allowed source code file will influence the final results.

Due to the number of enrolled students in a course it is possible that laboratory
exercises must be organized in two or more groups with the same or different teachers.
Sometimes it is useful that each group has a different approach to some parts of the as-
signment since in that way students can suggest different variable names, data types,
algorithms, etc. in the solution proposal debate. In such cases, a different file containing
allowed source code is created for each group.

In the following subsection we explain why it is better to have a different source code
file for each group than use the same source code file for all groups.

4.6. Chose Allowed Source Code File

In this step one allowed source code file (created in the previous step) is selected that
has highest similarity to the student assignment based on the original type similarity
detection. If only one group source code file is used, other groups will not have such a
good match as the group from which the source code file is taken. Because of that, some
allowed source code is not deleted, and in step 10 more similarities are found owing to
the allowed reused source code.

It is possible to put all of the allowed source code from all groups into one file.
However, in that case the file is quite large and contains a lot of source code that is very
similar. Owing to that, it may not be easy to obtain such good matching results and simi-
larity detection may take too long.

The third possibility is to use the “Exclude files” option in Sherlock. When this
option is active, the files that contain allowed source code are given, and Sherlock
uses them during similarity detection. If some source code from those files is found
in assignment comparison, it is excluded from detection. The duration of similarity
detection is a big problem. There is a possibility to modify the Sherlock’s algorithm
for this part, but since we were not able to find any technical documentation describing
the source code, it was easier to do it outside of Sherlock. Also, we wanted to make

Process Model Improvement for Source Code Plagiarism Detection in ... 113

a model that we would be able to use with any detection engine in the future, not just
Sherlock.

To avoid all the aforementioned issues, one allowed source code file was prepared for
each group in the previous step. In this step, for each assignment the most suitable file
(i.e. the one demonstrating best similarity to the original type) is chosen.

As a consequence, in most cases, each particular assignment will have best similarity
with the allowed source code file of the group in which the student attends the course.

4.7. Compare Student Assignments with Allowed Source Code

After the file containing the source code whose reuse is allowed has been selected, we
can proceed with comparison. There are two ways that were considered during the im-
plementation:

The first way is to run Sherlock on all assignments including the file with the ●
allowed source code. However, this may take quite a while and may result in un-
necessary matches.
The second (preferred) way, is to run Sherlock on only one assignment with the ●
allowed source code file and then go to step 8.

Note that Sherlock’s configuration will influence the final results. For example, if
a large number is put in the configuration field “max forward jump” (for example, 5),
Sherlock will try to find similarity by jumping up to 5 lines forward. It is important to
mention that lines that are skipped will also be deleted in further steps, so configuration
parameters should be carefully chosen. It should be noted again that in this step another
plagiarism detection tool could be used instead of Sherlock.

4.8. Filter Student Assignment

When matching which was described in the previous step is completed, filtering of files
can be made. In the implemented application, matches (between the file with the allowed
source code and the student assignment) found in this step are deleted from the student
assignment. For example, if lines 2–5 in the student assignment are matched with some
lines in the allowed source code file, these lines are simply deleted from the student
assignment. During deletion, it is important to take care not to delete the line with the
original file name (see step 2 and Example 1). Because of Sherlock’s algorithm and its
configuration it can happen that the title line gets inside a matched block, so we need to
check if that has happened and accordingly exclude that line from deletion.

4.9. Iterate Steps 7 and 8 until no Similarity Exists

The aim of this step is only to check if some match exists between the file with the al-
lowed source code and the student assignment. No similarity should exist between the

D. Kermek, M. Novak114

student assignment and the allowed source code. If no similarity is found, continue to
step 9. Otherwise checking is performed again on the filtered files, so the procedure re-
verts to step 7. Steps 6 to 8 are repeated for each student assignment separately.

4.10. Run Plagiarism Detection Engine on all Student Assignments

This step can be applied when no similarities exist between particular student assign-
ments and allowed source code files. In this step detection is made between all student
assignments. Sherlock is used again in the implemented application. In the detection
performed in this stage there is no problem with the reused source code (such as that
presented in step 2) because we have removed the allowed source code in previous
steps.

In the implemented application, match blocks generated by Sherlock are stored in
a MySQL database to make the report creation easier. It stores id, file1 path, file2 path,
match type, match type name (e.g. tokenized), start line in file 1, end line in file 1,
line count in file 1 (start line in file 1 – end line in file 1), start line in file 2, end line
in file 2, line count in file 2, similarity (given as percentage), username 1 (of the first
student for whose assignment the match was found), username 2 and category name
(e.g. homework assignment 1). Naturally, Sherlock can be used for data analysis, but
the problem with similarity shown for every matched block that we explained in step 2
still remains (Fig. 6).

4.11. Create Overview Report

In this step, the analysis of the data stored in the database in the previous step is per-
formed. After that, an overview report is generated (Appendix 1) and automatically sent
via email to corresponding teachers.

In the example report (Appendix 1) from a total of 63 assignments we found 2
pairs of students (student1-student2, student3-student4) in which the minimum simi-
larity that was obtained was larger than 20% (Appendix 1.A) on one type of similarity
checking (for pair student1-student2 similarity was found only on the Tokenized type,
and for pair student3-student4 similarities were found on all types of checking). Two
different pairs had similarity between 10% and 15% (Appendix 1.B) on at least 4 types
of similarity checking (for pair student5-student6 similarities were found on all types,
and for pair student3-student4 they were found on all types except on the No Comment
type). So we obtained 4 pairs that needed to be checked. It must be mentioned that
these cases were not found when the assignments were checked manually, which had
been done before using this application. When we used Sherlock without the proposed
model only two pairs were found, while the other two pairs were found only by using
Sherlock.

After this report has been generated and the pairs have been found, we can proceed
with the manual checking using Sherlock. When we have identified the pairs, we can

Process Model Improvement for Source Code Plagiarism Detection in ... 115

simply use the “Display matches” option in Sherlock and examine only the pairs that
have been found.

Some conclusions can be directly drawn from the report itself. For example, when
we look at the first pair in the example (Appendix 1.A), we can see that the tokenized
version has a 41% similarity. Here it is notable that only the tokenized matches should
be further explored and, more importantly, that students copied the source code and
changed it poorly while keeping the same structure. After looking at the source code in
Sherlock using the “Display matches” option, we see that students only changed vari-
able names.

While looking at the first pair, it may be concluded that source code parts have
been directly copied because of large similarities that were found in all types of pla-
giarism detection. Based on such a conclusion only the original files should be further
examined, which was actually the case. The same conclusion applies to Pairs 3 and 4
as it was confirmed that copying actually took place, only in smaller amounts than in
the first pair.

This report is not optimal because some cases of plagiarism may have not been iden-
tified. Therefore we decided to implement a solution in which the parameters used in
report creation can be changed.

Parameters that can be configured are:
Minimum required similarity (of assignments to be included in the report). If simi- ●
larity is set at a smaller value, more cases are included in the report. By default,
the minimum similarity is set to 20%, which means that the assignment must yield
at least a 20% similarity to be included in the report.
Minimum line count (of assignments to be included in the report). By default, ●
it is set to zero, and can be set at, for example, 100. It means that there should
be at least 100 similar lines between two assignments. So if one assignment has
a 20% similarity and only 20 similar lines, that case will not be included. This
parameter is useful if we have an assignment that has very large similarity with
the allowed reused source code, so a lot of source code is deleted. On the other
hand, we may have an assignment that did not use the allowed reused source
code, has 100 similar lines and yields a 20% similarity. It is easy to determine
that the second case is our target. We want only such cases, while other cases
are not our concern. Naturally, the result also depends on what kind of assign-
ments are given to students. This is likely to occur in smaller assignments where
students only need to add a few lines to some previously provided source code.
It is also possible that a student will make a whole new solution which is not
based on the allowed source code, and another student will simply copy parts of
his/her solution.

To make the process creation easier, we built a PHP application which generates
overview reports from the data stored in MySQL database and enables easy changing of
parameters.

Although this report is itself a great help, Sherlock still must be opened for files to be
found and compared, which is time-consuming. To speed up the process, another report
is created in step 12.

D. Kermek, M. Novak116

4.12. Create Detailed Report

In this step a detailed report is created on each pair found in the previous step. This report
contains source code snippets that are similar as well as the files in which those source
code snippets were found. By ‘file’ we mean the original file name in the unmerged stu-
dent assignment. A small part of the report is presented in Appendix 2. This report elimi-
nates the need to open Sherlock (which can still be optionally used). Using the original
file name, the teacher can directly go to the original assignment files (uploaded by a
student) and examine them in detail. Code snippets from the report are helpful in finding
this source code part in the original file. The main purpose of source code snippets is that
they can be examined directly to see if plagiarism was performed or not.

The idea of this report is not to replace reading the assignment for grading purposes.
Likewise, it is by no means meant to accuse the student of plagiarism based on the evi-
dence in the report. It reveals only the assignment pairs with potential plagiarism, which
makes it possible to examine these two assignments one after another. It also provides
the teacher with a hint about which file in the assignment should be examined.

5. Process Model Validation

Process model validation is based on the previously mentioned Java based application
and 20 assignments from three courses from academic years 2012/2013 and 2013/2014.
Course descriptions are as follows:

Advanced Web Technologies and Services (AWTS) – academic year 2012/2013 – ●
61 students – Java programming language – 3 assignments
Advanced Web Technologies and Services (AWTS) – academic year 2013/2014 – ●
65 students – Java programming language – 4 assignments
Web Design and Programming (WDP) – academic year 2012/2013 – 91 students ●
– PHP programming language – 6 assignments
Web Design and Programming (WDP) – academic year 2013/2014 – 85 students ●
– PHP programming language – 4 assignments
Design Patterns (DP) – academic year 2013/2014 – 60 students – 3 assignments ●
– Java and C# programming language – no reused source code is allowed in this
course.

All detections and tests were performed on HP Proliant ML 350G5 LFF server with
following hardware and software specifications: 2 processors Intel Xeon Quad core
E5410 2,33 GHz, RAM 2*512MB + 4 GB FBD, 4 x HP HDD300GB 15K SAS 3,5”,
Debian GNU/Linux 8.0 (jessie), Linux kernel 2.6.32-5-amd64, OpenJDK 64-Bit Server
VM (build 24.75-b04, mixed mode), Apache/2.4.10, PHP 5.6.5, MySQL 5.5.42. Devel-
opment environment was NetBeans 8.0.2.

In previous sections we already explained why the deletion of the allowed source
code was done and why merging of files was necessary. We also established that it is best

Process Model Improvement for Source Code Plagiarism Detection in ... 117

to have one allowed source code file for each group and do the matching based on the
file that suits each assignment best.

In the case of AWTS assignment 2 we attempted to perform detection without any
deletion of reused source code. The test resulted in 134 pairs, with a similarity larger
than 20% and 562 similarities between 10% and 20%. This was too much to analyze.
A quick look at the detailed report showed that most similarities were actually attrib-
utable to the allowed source code. Those similarities would be even larger but after
9 hours of detection the test was stopped because the tokenized detection was not
finished.

To improve the results, the allowed source code was added to the process (but only
the source code that was written in one laboratory group) and deleted from student as-
signments. The results were similar to those in the previous test and random examina-
tion of the results showed that a lot of allowed source code was still used. The entire
source code from all groups was then merged into one large file. The following problems
emerged in the implementation of that solution: (1) detection was very slow because of
the size of the single file that was used (~65KB per group (3) = 200KB); (2) deletion of
allowed source code in a single assignment took a long time (~1h); (3) matching was bad
because of too much similar source code in that one file.

The final solution was to separate each group source code into one file. This approach
yielded 24 pairs with similarity larger than 20% and 14 pairs with similarities between
9% and 21%.

The duration of the detection was also satisfying (~24h). The results in the report
showed that 21% similarity in this case is not good, because some allowed source code
was still included. To solve this, the parameter for minimum similarity was raised to
25%. The new results were 8 pairs with similarity larger than 25% and 1 pair with simi-
larity between 15% and 26%. By checking the results manually we established that these
were the actual cases of plagiarism.

In the case of WDP assignment, 4 initial results were 16 pairs with similarity larger
than 21% and 4 pairs with similarity between 9% and 10%. Raising the similarity param-
eter to 25% resulted in 8 pairs with similarity larger than 25% and 5 pairs with similarity
between 15% and 26%.

However, in the case of AWTS assignment 4, first results were 457 pairs with simi-
larity larger than 20% and 85 pairs with similarities between 9% and 21%. Raising the
parameter for similarity did not help because a very high level of similarity with the
allowed source code was found. In the end, the student file contained mostly file names
of the original source code files (which had not been deleted to later enable the recogni-
tion of files in which similarity would be detected). Raising the similarity in this case
resulted only in obtaining more files that contained code that had mostly been deleted.
The solution was to add the absolute number of lines which the match must contain in
the final report. In this case the number of lines was set to 150, so it resulted in 7 pairs
when similarity is larger than 20%. For cases in which similarity is between 9% and 21%
the number of lines was set to 50 results, which resulted in 4 pairs.

Every test case is further described in the following tables. Table 1 shows individual
test results and settings (the tuning parameters that helped us to minimize the number of

D. Kermek, M. Novak118

Table 1
Overview of found plagiarism results

Course –
Academic Year

G
ro

up
s

D
el

et
e Language

A
ss

ig
nm

en
t

A
ss

ig
nm

en
ts Similarity

>20% 9–21%

DP – 2013–2014 1 No C#, Java 2 55 2 2
DP – 2013–2014 1 No C#, Java 3 60 4 0
DP – 2013–2014 1 No C#, Java 4 56 0 0
AWTS– 2012–2013 4 Yes Java, xhtml 1 61 2 0
AWTS– 2012–2013 4 Yes Java, xhtml 2 59 24 (>25% =8) 14 (15–26%=1)
AWTS– 2012–2013 4 Yes Java, xhtml 4 61 457 (>20% &

lines>150=7)
85 (9–21% &
lines>50=4)

WDP– 2012–2013 6 No HTML 1 63 30 (> 90% = 8) 6 (80–90%=1)
WDP– 2012–2013 6 Yes HTML, JS, CSS 2 91 4 3
WDP– 2012–2013 6 No HTML, JS, CSS 3 83 1 2
WDP– 2012–2013 6 yes HTML, PHP, JS 4 90 16 (>25% = 8) 4 (15–26%=4)
WDP– 2012–2013 6 Yes HTML, PHP 5 91 151 (>28% &

lines>100=13)
6 (9–29%=10)

WDP– 2012–2013 6 Yes HTML, PHP 6 77 7 1
AWTS 2013–2014 3 Yes Java 1 55 0 1
AWTS 2013–2014 3 Yes Java 2 47 6 8
AWTS 2013–2014 3 Yes Java 3 49 10 (lines>50=4) 4 (lines>50=0)
AWTS 2013–2014 3 Yes Java 4 50 297 (>60% &

lines>70=2)
10 (15–61% &
lines>40=3)

WDP–2013–2014 6 Yes HTML, CSS 1 85 1 0
WDP–2013–2014 6 Yes JS 3 85 4 8
WDP–2013–2014 6 Yes PHP 4 85 2 0
WDP–2013–2014 6 Yes PHP 5 85 26 (>40%&

lines>100=1)
7 (25–41% &
lines>100=6)

Table 2
Overview between found and real plagiarism academic year 2013/2014

Course /Academic Year Found potential plagiarism (total) Real potential
plagiarismFirst run After tuning

AWTS 2013–2014 1 NA 1
AWTS 2013–2014 14 NA 3
AWTS 2013–2014 14 4 0
AWTS 2013–2014 307 5 2
WDP 2013–2014 1 NA 1
WDP 2013–2014 12 NA 3
WDP 2013–2014 2 NA 2 + 2 found manually
WDP 2013–2014 33 7 0

Process Model Improvement for Source Code Plagiarism Detection in ... 119

results are given in brackets in the right-hand column). Table 2 gives an overview of how
much potential plagiarism was found in the academic year 2013/2014, and how much of
it can actually be considered plagiarism. To be able to change the minimum similarity or
the number of lines, it was necessary to have an appropriate interface. Sending a report
by email was not the best option. A small PHP web application was therefore built in
which the user can set the similarity and the number of lines. New queries can subse-
quently be performed and a new report is generated right away.

In the end we discuss another special case. This is WDP assignment 1, where only
one HTML file was submitted by each student. In this case very large similarity existed
between the allowed source code and the student file, so after deletion only a few lines
were left in the student file. Moreover, it was hard to get results by raising the similarity.
Although raising the number of lines did help (in correspondence with the case men-
tioned in the description of minimum line count parameter in section 4.11.) in this case it
was more practical to simply detect plagiarism without the allowed source code file and
set the minimum similarity above 90%.

In (Đurić and Gašević, 2013) authors showed that the removal of the allowed
source code is possible and necessary, which has also been confirmed in this paper.
Also we showed that merging of files provides a better overview of similarity and bet-
ter detection.

The following problems arose during the test:
It was necessary to manually clean all student folders from overhead files like ●
JavaScript libraries (e.g. jQuery) or “old” folders and similar content that was
found in some students’ folders.
Sometimes students did not use their username in naming their folders and instead ●
labelled them as “mine” (or in a similar way). This must be corrected to know
which student a particular file refers to.
The manual selection of minimum similarity and minimum number of lines de- ●
pends of the teacher’s judgment and therefore cannot be the best solution.
In case in which a large amount of assignments (about 90) exists and files are not ●
small (>70KB) and, in addition, similarity with the allowed source code file is not
high, the final tokenized detection takes long (up to a few days). It is therefore
necessary to change the detection setting for the tokenized version, which has an
impact on the quality of the findings and results in lower similarity that will be
identified.

In running these tests we noticed that the tokenized version is the slowest. To opti-
mize the process, it was modified in a way that detection in step 10 is performed on all
types of plagiarism detection except for the tokenized type. After that the process contin-
ues to steps 11 and 12, and then reverts to step 10 and performs the plagiarism detection
only on the tokenized type. When this is finished, steps 11 and 12 are repeated. In this
way the largest plagiarism detection is quickly found (in approximately 3 hours) so the
tokenized version can take longer, after which the information about other plagiarism
that was found (if any) can be additionally reported.

D. Kermek, M. Novak120

6. Comparison with other Systems

In Section 3 was already mentioned that there are other systems for detecting plagia-
rism. Several tools address also the problem of “allowed source code” like: MOSS,
JPlag, Plaggie and SCSDS. In this section a comparisons with MOSS, JPlag and Plaggie
is given. SCSDS was not available, so no comparison could be done. In (Hage et al.,
2014) MOSS, JPlag, Marble, SIM and Plaggie were compared and the authors found
that: “tools are sensitive to numerous small changes, all tools do well for the majority of
single refactoring, but many tools score rather badly when refactorings are combined,
worse than what may be obtained from simply using diff, a striking result of the top-10
comparison is that the top-10’s for JPlag, Marble and MOSS are fairly similar, whereas
the top-10’s of Plaggie and SIM differ quite a lot from the other three”.

The comparison of the tools was performed on the same datasets that were men-
tioned previously. To have a controlled comparison six tests were made T1 to T6 (details
in Table 3).

All six tests had one plagiarized pair. The tests were:
T1 was a PHP assignment. ●
T2 was a PHP assignment. ●
T3 was a HTML and CSS assignment. ●
T4 was Java assignment. ●
T5 was Java assignment ●
T6 was JavaScript assignment. ●

Since all three MOSS, JPlag and Plaggie are token based, for all detections minimal
token match was set to nine. JPlag and MOSS support text detections that are not token-
ized. All tools did a good job on finding plagiarism in Java based assignments. JPlag and
Plaggie could not be made plagiarism detection on assignments that included HTML,
CSS, PHP or JavaScript. The reason is that tokenized algorithm for those languages does
not exist. Text detection was tried with JPlag on such assignments but it was also not

Table 3
Similarity detection of compared systems for done tests

Test Real plagiarism
(manually estimation)

JPlag Plaggie Moss Proposed system
based on Sherlock

T1 ~25% N/A N/A T: 23% T: 21%
T2 ~25% N/A N/A T: 23% T: 21%
T3 ~20% N/A N/A T: 8%

Tx: 5%
N: 31%
T: 7%

T4 ~50% T: 71.9% T: 76,5% T: 51% T: 45%
T5 ~35% T: 60.3% T: 66,8% T: 34% NC: 32%

T: 16%
T6 ~25% N/A N/A T: 25% NCNW: 23%

T: 10%

Legend: T – Tokenized, N – Normalised, NC – NoComment, Tx – text version,
 NCNW – NoCommentNo White Spaces, N/A – not avalible

Process Model Improvement for Source Code Plagiarism Detection in ... 121

possible. The nice advantage of the proposed system is that it can compare on several
versions of source code files including tokenized. This way if tokenized version fails the
other text based comparison can be useful.

In tests T4 and T5 JPlag and Plaggie gave 20% greater similarity. This happens be-
cause of the inclusion of similarity with allowed source-code. In our opinion this is not
good because allowed code is given by the teacher and students can/should have those
parts similar. And this can’t be considered as plagiarism and should not increase the
similarity. Their reports show allowed source-code parts with the rest of code without
any visual marking. So teacher must spent more time finding those parts to exclude them
from other parts. JPlag performs detection only on files in root folder even the project
has files in subfolders which could be a significant problem if the project has for instance
Java package structure.

Problem with MOSS is that it is online service as already explained in section 3.
MOSS also has not so good detection in T3 when HTML and CSS are used. This is a
problem in cases when PHP or Java web applications are built where HTML and CSS
are normal parts of the project.

The benefits of the presented system is that it supports all languages. Findings in
tokenized version are best for Java since tokens are made for Java. But regardless
there are no tokens for PHP the tokenized version works just fine. In cases where other
language than Java is used a text based comparison is often more useful but this is
not always the case. The system gives at once multiple detection results including the
tokenized version. This way if tokenized detection fails other detection can show that
the plagiarism is present like in T3. The system is offline which resolves the security is-
sues that exist with online tools. Another benefit of the presented system is that it stores
all results into database. This makes easier to review the results and create different
reports. The plus of the system that it enables multiple groups of allowed source-code
as explained in section 4.5. This is not possible in any of other tools. This is good when
distinctions between lab groups exists and the system will find the best matching of
allowed source code.

7. Future Work

To be able to have a completely automated solution, an extra step should be added to
the process: connecting to the online submission system (like Moodle LMS) and starting
the whole plagiarism detection process directly from such a system. Since we found it
was more important to have a reliable tool for reporting plagiarism and test the process
model, this step was left out although it had been originally planned. Instead we de-
cided to perform this first step manually and not integrate it right away with the online
submission system. Our plan is to add this step in future versions and to combine more
plagiarism detection engines to additionally verify the results.

In our future work we could extend the model to detect which programming language
was used and to detect plagiarism with an algorithm specially designed for some pro-
gramming language as well as to see whether better results will be obtained in that way.

D. Kermek, M. Novak122

Another problem that we have not dealt with so far would be to find out if some
students have taken parts of source code from other students. Our task would be to
determine how many different assignments a certain assignment is similar to, and what
those similarities are.

8. Conclusion

Plagiarism in student assignments remains a big problem, but the presented process
model makes its detection better and faster. The process model has twelve steps. It can
be used regardless of whether the allowed source code is present or not. It can also be
combined with any programming language as well as with different plagiarisms detec-
tion tools. Currently we are using Sherlock but other tools like JPlag or Moss can be
used instead. When tools like Moss are applied, it is important to take into account that
an Internet connection is necessary and that files need to be uploaded to a server, which
can present a problem in some cases.

To implement the proposed process model, we built an application that we tested
with assignments from three courses from two subsequent academic years. The results
show that the proposed process model is valid. With the implemented application, pla-
giarism was detected in assignments that had previously not been found by manual
detection.

In some cases plagiarism can be detected even if there is none, so the results obtained
by means of an application should not be taken for granted and should be additionally
confirmed manually. The tool only provides hints to identify most suspicious cases. Pa-
rameters like minimum similarity play an important role in how many pairs we will be
matched in the end. Because of that our second tool (the PHP web application) is particu-
larly helpful for adjusting different parameters in order to reduce or extend the number
of pairs. It can also happen that some plagiarism is not found. The tool is therefore not
perfect, but is of great help in finding plagiarism.

Finally, all tools compared in section 6 are good and each has its benefits and down-
sides. It is proven that the proposed system works and it has some new benefits over
existing tools. As mentioned in the previous section, there are some areas that can be
improved in the proposed system, like detecting the programming language used in the
assignment and using different plagiarism detection tools that are specialized for such a
programming language.

Process Model Improvement for Source Code Plagiarism Detection in ... 123

References

Cosma, G., Joy, M. (2006). Source-code plagiarism: a UK academic perspective. In: The 7th Annual Confer-
ence of the HEA Network for Information and Computer Sciences. HEA Network for Information and
Computer Sciences.

Cosma, G., Joy, M. (2008). Towards a definition of source-code plagiarism. IEEE Transactions on Education,
51(2), 195–200.

Culwin, F., MacLeod, A., Lancaster , T. (2001). Source Code Plagiarism in UK HE Computing Schools, Issues,
Attitudes and Tools. London: South Bank University.

Đurić, Z., and Gašević, D. (2013). A source code similarity system for plagiarism detection. The Computer
Journal, 56(1), 70–86.

Hage, J., Rademaker, P., and Vugt, N. (2014). A Comparison of Plagiarism Detection Tools. Utrecht, The Neth-
erlands: Department of Information and Computing Sciences, Utrecht University. Retrieved 07 04, 2015,
from http://www.cs.uu.nl/research/techreps/repo/CS-2010/2010-015.pdf

Joy, M., Luck, M. (1999). Plagiarism in programming assignments. IEEE Transactions on Education, 42(2),
129–133.

Joy, M., Cosma, G., Yau, J. Y.-K., and Sinclair, J. (2011). Source code plagiarism – a student perspective. IEEE
Transactions on Education, 54(1), 125–132.

Lancaster, T. (2003). Effective and Efficient Plagiarism Detection, PhD Thesis. London, United Kingdom:
South Bank University – School of Computing, Information Systems and Mathematics. Retrieved April
3, 2014, from
http://www.academia.edu/168972/Effective_and_Efficient_Plagiarism_Detection

Lancaster, T., Culwin, F. (2004). Using freely available tools to produce a partially automated plagiarism. In:
Proc. of the 21st ASCILITE Conference. Perth, Australia, 520–529.

Lancaster, T., Culwin, F. (2005). Classifications of plagiarism detection engines. Innovation in Teaching and
Learning in Information and Computer Sciences, 4(2). Retrieved April 3, 2014, from
http://journals.heacademy.ac.uk/doi/pdf/10.11120/ital.2005.04020006

Mozgovoy, M. (2006). Desktop tools for offline plagiarism detection in computer programs. Informatics in
Education, 5(1), 97–112.

Mozgovoy, M., Fredriksson, K., White, D., Joy, M., Sutien, E. (2005). Fast plagiarism detection system. In:
SPIRE’05. Buenos Aires, Argentina, 267–270.

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding plagiarisms among a set of programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Prechelt, L., Malpohl, G., Phlippsen, M. (2000). Finding Plagiarisms Among a Set of Programs. Karlsruhe,
Germany: Universität Karlsruhe, Fakultültät für Informatik. Retrieved Dec 15, 2013, from http://page.
mi.fu-berlin.de/~prechelt/Biblio/jplagTR.pdf

Schleimer, S., Wilkerson, D. S., Aiken, A. (2003). Winnowing: local algorithms for document fingerprinting.
In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York,
US: ACM, 76–85.

Simon, Cook, B., Sheard, J., Carbone, A., Johnson, C. (2014). Academic integrity perceptions regarding com-
puting assessments and essays. In: Proceedings of the Tenth Annual Conference on International Comput-
ing Education Research (ICER ‘14). New York, NY, USA: ACM, 107–114.

Tresnawati, D., Syaichu, A.R., Kuspriyanto. (2012). Plagiarism detection system design for programming as-
signment in virtual classroom based on moodle. Procedia – Social and Behavioral Sciences, 67, 114–122.

University of Warwick, D. o. (2012, August 25). Warwick – Sherlock. Retrieved April 3, 2014, from
http://www2.warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock

Yang, F.P., Jiau, H.C., Ssu, K.F. (2014). Beyond plagiarism: an active learning method to analyze causes be-
hind code-similarity. Computers & Education, 70, 161–172.

D. Kermek, M. Novak124

Appendix 1 – Example of Overview Report

Appendix A

Assignments with similarity larger than 20% at least on one type of similarity checking
Table below has similarities for all types of similarity checking for found assignments.

Username1 Username2 File Type File Type Name Line Count Similarity (%)

student1 student2 0 Original 159.0 11.0
student1 student2 1 Normalized 39.0 3.0
student1 student2 2 No Whitespaces 36.0 3.0
student1 student2 3 No Comment 123.0 8.0
student1 student2 4 No Comment Normalized 38.0 3.0
student1 student2 5 No Comment No Whitespaces 16.0 1.0
student1 student2 8 Tokenized 417.0 41.0
student3 student4 0 Original 306.0 34.0
student3 student4 1 Normalized 301.0 38.0
student3 student4 2 No Whitespaces 316.0 41.0
student3 student4 3 No Comment 198.0 25.0
student3 student4 4 No Comment Normalized 211.0 33.0
student3 student4 5 No Comment No Whitespaces 240.0 39.0
student3 student4 8 Tokenized 266.0 32.0

Appendix B

Assignments with similarity between 10% and 20% at least on 4 type of similarity
checking Table below has similarities for all types of similarity checking for found as-
signments.

Username 1 Username 2 File Type File Type Name Line Count Similarity

student5 student6 0 Original 185.0 10.0
student5 student6 1 Normalized 131.0 10.0
student5 student6 2 No Whitespaces 134.0 10.0
student5 student6 3 No Comment 178.0 10.0
student5 student6 4 No Comment Normalized 190.0 15.0
student5 student6 5 No Comment No Whitespaces 178.0 15.0
student5 student6 8 Tokenized 166.0 10.0
student7 student8 0 Original 98.0 10.0
student7 student8 1 Normalized 107.0 11.0
student7 student8 2 No Whitespaces 109.0 11.0
student7 student8 3 No Comment 77.0 8.0
student7 student8 4 No Comment Normalized 71.0 11.0
student7 student8 5 No Comment No Whitespaces 71.0 11.0
student7 student8 8 Tokenized 139.0 12.0

Process Model Improvement for Source Code Plagiarism Detection in ... 125

Appendix 2 – Detailed Report – Partly
Detail report – part

Pa
ir Org

File1
Org
File2

Code File1 Code File2

L
in

e
Fi

le
1

C
ou

nt
L

in
e

Fi
le

2
C

ou
nt

Si
m

ila
ri

ty

Fi
le

 T
yp

e
N

am
e

… … … … … … … … …

st
ud

en
t1

-s
tu

de
nt

2 File5.
java

File6.
java

….
@Override public void
registerObserver (
Observer observer) { this.
observersEfficient.add
(observer); }

@Override public void
removeObserverEfficient
(Observer observer) { this.
observersEfficient
.remove
(observer); }{
…

 …
@Override public void
registerObserver (
ObserverEfficient observer) {
this.observersEfficient.add
(observer); }

@Override public void
removeObserverEfficient
(ObserverEfficient observer) {
this.observeriEfficient
.remove
(observer); }
…

60 59 4

O
rig

in
al

… … … … … … … … …

st
ud

en
t1

-s
tu

de
nt

2 File1.
java

File2.
java

catch (IOException e) {
System.out.println(e);
}
return clubs;
}

catch (IOException e) {
System.out.println(e);
}
return read;
}

4 4 0

N
o

C
om

m
en

t
N

or
m

al
iz

ed
… … … … … … … … …

st
ud

en
t1

-s
tu

de
nt

2 File3.
java

File4.
java

<IDT>.<IDT>(<IDT>)
}
}
}<CATCH>(<IDT><IDT>){
<IDT>.<IDT>.<IDT>(<IDT>)
}
<RETURN><IDT>
}
<VALUE>

<MODIFIER><MODIFIER>
<TYPE>
<IDT>(){

<IDT>.<IDT>(<IDT>)
}
}
}<CATCH>(<IDT><IDT>){
<IDT>.<IDT>.<IDT>(<IDT>)
}
<RETURN><IDT>
}
<VALUE>

<MODIFIER><MODIFIER>
<TYPE>
<IDT>(){

10 10 0

To
ke

ni
ze

d

… … … …. … … … … …

D. Kermek, M. Novak126

D. Kermek received 1999. his Ph.D. in Information Sciences from University of Za-
greb, Croatia. From 1986. to 1993. he worked as a programmer, software architect, and
project leader at the Center for informatics at the University of Zagreb Faculty of organi-
zation and informatics in Varaždin. He served at University of Zagreb Faculty of Organi-
zation and Informatics as Vice dean for Academic affairs in 3 consecutive terms from
academic year 2005/2006 to 2010/2011. Currently, he is a Full Professor at the Depart-
ment of Theoretical and Applied Foundations of Information Sciences at the University
of Zagreb Faculty of Organization and Informatics. He teaches following courses: Web
design and programming, Advanced Web technologies and services, Design patterns,
E-learning systems.

M. Novak studied at the Faculty of Organization and Informatics in Varaždin at Uni-
versity of Zagreb. He gained Master degree “Master of Informatics” in 2010. After fin-
ishing master’s degree he worked for two years in NTH Group in Varaždin as Product
manager for voice platform and Business Consultant for mobile applications for Swiss
and German territory where he gained experience on international projects. After that,
he worked for one year at MCS d.o.o as system architect for mobile and web platforms.
From November 2013 he is a PhD student at Faculty of Organization and Informatics
and is working as a teaching assistant at the same faculty where he is teaching courses
Web design and programming, Building a Web application and Advanced Web technolo-
gies and services. His fields of interest are plagiarism detection, software engineering,
data warehousing and data extraction, transformation and loading (short ETL).

