
Organizational Modeling of Large-Scale Multi-Agent
Systems with Application to Computer Games

Okreša Đurić, Bogdan

Doctoral thesis / Disertacija

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:783555

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-16

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:783555
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:3584
https://dabar.srce.hr/islandora/object/foi:3584

Faculty of Organization and Informatics

Bogdan Okreša Ðurić

ORGANIZATIONAL MODELING OF
LARGE-SCALE MULTI-AGENT SYSTEMS

WITH APPLICATION TO COMPUTER
GAMES

DOCTORAL THESIS

Varaždin, 2018

Fakultet organizacije i informatike

Bogdan Okreša Ðurić

ORGANIZACIJSKO MODELIRANJE
VIŠEAGENTNIH SUSTAVA VELIKIH

RAZMJERA S PRIMJENOM NA
RAČUNALNE IGRE

DOKTORSKI RAD

Varaždin, 2018.

Faculty of Organization and Informatics

Bogdan Okreša Ðurić

ORGANIZATIONAL MODELING OF
LARGE-SCALE MULTI-AGENT SYSTEMS

WITH APPLICATION TO COMPUTER
GAMES

DOCTORAL THESIS

Supervisor:
Assoc. Prof. Markus Schatten

Varaždin, 2018

Fakultet organizacije i informatike

Bogdan Okreša Ðurić

ORGANIZACIJSKO MODELIRANJE
VIŠEAGENTNIH SUSTAVA VELIKIH

RAZMJERA S PRIMJENOM NA
RAČUNALNE IGRE

DOKTORSKI RAD

Mentor:
izv.prof.dr.sc. Markus Schatten

Varaždin, 2018.

DOCTORAL THESIS INFORMATION

I. AUTHOR

Name and surname Bogdan Okreša Đurić

Date and place of birth 2 February 1989, Smederevo, Serbia

Faculty name and graduation date for

level VII/I

Faculty of Organization and Informatics,

9 September 2010

Faculty name and graduation date for

level VII/II

Faculty of Organization and Informatics,

21 June 2013

Current employment Faculty of Organization and Informatics

II. DOCTORAL THESIS

Title Organizational Modeling of Large-Scale Multi-

Agent Systems with Application to Computer

Games

Number of pages, figures, tables,

appendixes, bibliographic information

236 pages, 38 figures, 60 tables, 3 appendices,

157 items of bibliographic information

Scientific area and field in which the title

has been awarded

Scientific area Social Sciences,

scientific field Information and

Communication Sciences

Supervisors Assoc. Prof. Markus Schatten, PhD

Faculty where the thesis was defended Faculty of Organization and Informatics

Thesis mark and ordinal number 148

III. GRADE AND DEFENCE

Date of doctoral thesis topic acceptance 20 July 2016

Date of doctoral thesis submission 10 September 2018

Date of doctoral thesis positive grade 27 November 2018

Grading committee members Prof. Mirko Maleković, PhD

Prof. Sandra Lovrenčić, PhD

Prof. Slobodan Ribarić, PhD

Date of doctoral thesis defence 14 December 2018

Defence committee members Prof. Mirko Maleković, PhD

Prof. Sandra Lovrenčić, PhD

Prof. Slobodan Ribarić, PhD

Date of promotion 4 May 2019

Markus Schatten was born in Vienna, Austria, on 27 September 1981. He gradu-
ated study programme orientation Information Systems at the Faculty of Organization
and Informatics in 2005. He obtained his master’s degree in 2008 at the same faculty with
the thesis entitled "Zasnivanje otvorene ontologije odabranih segmenata biometrijske zn-
anosti" under the supervision of Prof. Miroslav Bača, PhD, and Prof. Mirko Čubrilo,
PhD. He defended his doctoral thesis in 2010. on the topic "Programming Languages for
Autopoiesis Facilitating Semantic Wiki Systems" under the mentorship of Prof. Mirko
Čubrilo, PhD, and Prof. Miroslav Bača, PhD.

He started working as a Teaching Assistant at the Faculty of Organization and Inform-
atics in 2006, as a member of the Department of Theoretical and Applied Foundations of
Information Sciences. In 2010 he was promoted to Senior Teaching Assistant, with an-
other promotion, to Assistant Professor, in 2011, all the while being a member of the same
department. Along with being promoted to Assistant Professor, he was promoted to the
title of a Scientific Advisor, scientific area of social sciences, scientific field of information
and communication sciences, in 2013.

He was a part of the teaching staff in a number of courses on doctoral, master, and
bachelor levels at the Faculty of Organization and Informatics, and held some classes at
the Faculty of Information Studies in Novo Mesto, Slovenia, University of the People,
USA.

He is the head and the founder of the Artificial Intelligence Laboratory at the Faculty
of Organization and Informatics, and, since 2014, a member of the management board of
the Intelligent Transport Systems association.

He authored or co-authored more than 80 scientific and professional publications,
mentored more than 50 bachelor and master thesis and mentored or co-mentored five
doktoral theses.

A big thank you to my parents and my sister!
For continued support and PhD-related chat and advice,
thank you to Markus, Igor, Petra, Martina, and Tonimir.

For always being there for me,
and enduring my lamentations and other (emotional) outbursts,

thank you to Ozano, Zrinka, Vedran, Goran, Andrija, and Kristijan.
A special thank you to all my international colleagues I was in contact with during the

last couple of years, who made the whole experience that much better and richer!
And a big shout-out to all the others who had an impact on my journey thus far.

“All we have to decide is what to do with the time that is given us.”
— J.R.R. Tolkien

This work has been fully supported by
Croatian Science Foundation
under the project number:
HRZZ-UIP-2013-11-8537.

Abstract

Abstract in English
The most popular and frequent methods of conducting a system of agents, of small-
or large-scale, are those based on swarm intelligence, and organisational models. Or-
ganisational models for multi-agent systems are being developed alongside their role in
the modern world. Technological improvements lead to creation of systems comprising
thousands, or millions, of agents – large-scale multiagent system (LSMAS). Numerous
LSMAS application domains (Internet of Everything (IoE), massively multi-player online
games (MMOGs), smart cities, etc.) make LSMAS a genuinely useful concept in the
modern era. Recent studies argue higher efficiency of LSMAS with imposed organisation,
as opposed to systems with emerging intelligence. This makes organisational modelling
of LSMAS a particularly interesting research subject. Organisational model based on
ontology comprising LSMAS-related organisational concepts, built conforming to modern
organisational perspectives for LSMAS, is a step towards easier LSMAS modelling. The
ontology is basis for an organisational metamodel for LSMAS, which, coupled with graph
grammars and logic, is suitable for modelling organisational dynamics, especially in the
domain of massively multi-player online role-playing games (MMORPGs).
Keywords. organisation, modelling, multiagent systems, large-scale multiagent systems,
MMORPG, computer game, dynamics, ontology

Abstract in Croatian
Najpoznatiji i najučestaliji oblici uređenja sustava agenata, velikog ili malog razmjera, su
oni koji se temelje na inteligenciji roja i oni koji svoje osnove vuku iz organizacijskih mo-
dela. Organizacijski modeli višeagentnih sustava razvijaju se usporedno s ulogom takvih
sustava u modernom svijetu. Razvojem tehnologije stvaraju se sustavi koji broje tisuće ili
milijune agenata – višeagentni sustavi velikih razmjera (VASVR). Mnogobrojne aplikacij-
ske domene za VASVR (Internet svega, mrežne računalne igre namijenjene većem broju
igrača (MMORPG), pametni gradovi i sl.) čine VASVR realno potrebnim konceptom
u moderno doba. Recentna istraživanja ukazuju na veću učinkovitost VASVR uređenih
temeljem organizacijske teorije, od onih koji prate inteligencija roja, te je stoga organiza-
cijsko modeliranje VASVR iznimno interesantno podučje za istraživanje. Organizacijski
model temeljen na ontologiji organizacijskih koncepata i modernim načelima organizacije
VASVR korak je prema lakšem oblikovanju VASVR. Ontologija je baza za organizacijski
metamodel za VASVR koji, spojen s gramatikama grafova i logikom, dobiva na priklad-
nosti za modeliranje organizacijske dinamike, naročito u domeni MMORPG.
Ključne riječi. organizacija, modeliranje, višeagentni sustav, višeagentni sustav velikih
razmjera, MMORPG, računalne igre, dinamika, ontologija

ii

Contents

Extended Abstract in Croatian xii

1 Introductory Notes and Related Research 1
1.1 Motivation . 1
1.2 Introduction . 2

1.2.1 Research Objectives . 6
1.2.2 Initial Research Plan . 6

1.3 Conceptual Definitions . 9
1.4 Related Research . 9

1.4.1 The Concept of Organisation in Multiagent Systems 10
1.4.2 The use of Semantic Modelling in Multiagent Systems 11
1.4.3 Models in the Domain of Multiagent Systems 15

2 Scientific Contribution 21
2.1 Semantic Modelling . 22

2.1.1 Ontology Engineering Methodology 22
2.2 Metamodelling . 46

2.2.1 Metamodelling Process . 50
2.2.2 Organisational Dynamics . 76

3 Practical Contribution 88
3.1 Metamodelling Tool . 88
3.2 Metamodel Implementation . 91

3.2.1 Basis for the metamodel . 91
3.2.2 Defining the Metamodel . 96

3.3 Custom Code . 99
3.3.1 Multimodel Modelling . 105
3.3.2 Application Template Generator . 111

4 Examples 114
4.1 recipeWorld . 114
4.2 The Mana World . 121
4.3 Smart Self-Sustainable Human Settlement with Organisations 126

5 Conclusion 129
5.1 Discussion . 129
5.2 Future Research . 133

Bibliography 135

iii

Contents Contents

Appendices 151

A METHONTOLOGY 152
A.1 Data Dictionary . 152
A.2 Instance Properties . 168

B Theoretical Background 171
B.1 Graphs . 171
B.2 Graph Grammars . 172

C Full Listings 178
C.1 Logical Production System . 178
C.2 ZODB Object Definition . 181
C.3 OWL Functional Syntax Ontology Rendering 184

Curriculum Vitae 227

Published Research 232

iv

List of Used Acronyms

ABM agent-based modelling

ACMAS agent-centred multiagent system

AMAS adaptive multiagent system

API application programming interface

AToM3 A Tool for Multi-formalism and Meta-Modelling

BDI belief-desire-intention

DD data dictionary

DPO double pushout

GT glossary of terms

HMAS holonic multiagent system

ICT Information and communication technology

IoE Internet of Everything

IoT Internet of Things

IVE intelligent virtual environment

JaCalIVE Jason Cartago implemented intelligent virtual environment

KB knowledge base

LPS Logical Production System

LSMAS large-scale multiagent system

MAM5 Multi-Agent Model For intelligent virtual environments

MAS multiagent system

MMOG massively multi-player online game

MMORPG massively multi-player online role-playing game

ModelMMORPG Large-Scale Multi-Agent Modelling of Massively On-Line
Role-Playing Games

v

Contents Contents

NPC non-player character

OCMAS organisation-centred multiagent system

OOVASIS cro. Organizacijsko oblikovanje višegentnih sustava u Internetu
Stvari - eng. Organizational Design of Multi-Agent Systems in the
Internet of Things

OWL Web Ontology Language

RDFS Resource Description Framework Schema

RDF Resource Description Framework

RPG role-playing game

SPADE Smart Python Agent Development Environment

SSSHS Smart Self-Sustainable Human Settlement

TMW The Mana World

W3C World Wide Web Consortium

vi

List of Figures

2.1 Basic steps of METHONTOLOGY ontology engineering methodology, ad-
apted from [42] . 25

2.2 Intermediate Representations in the conceptualisation phase, adapted from
[42] . 30

2.3 Concept classification tree . 36
2.4 Visualised structure of core cro. Organizacijsko oblikovanje višegentnih

sustava u Internetu Stvari - eng. Organizational Design of Multi-Agent
Systems in the Internet of Things (OOVASIS) concepts. [104] 38

2.5 Visualised structure of core MAM5 concepts. [104] 39
2.6 Lamrast−+ ontology class hierarchy as seen in Protégé 40
2.7 OrganizationalUnit concept relative to other ontology concepts 42
2.8 Activity concept relative to other ontology concepts 43
2.9 Norm concept relative to other ontology concepts 44
2.10 An example of metamodelling levels in the domain of computer games . . . 48
2.11 A specific concept, similar to [80] . 48
2.12 Concept hierarchy using instanceOf and isA relationships 49
2.13 Visualised concepts of the metamodel and their non-detailed properties . . 58
2.14 Overview of the Lamrast−+ metamodel 63
2.15 An example of an oversimplified model . 78
2.16 Context of the graph grammars example described using Logical Produc-

tion System (LPS), complete code listed in Appendix C.1 81
2.17 Abstracted model representation of the system whose behaviour is shown

in Fig. 2.16 . 82
2.18 Double pushouts of the defined productions 85
2.19 The initial graph G suitable for Add Roles production 86
2.20 The initial graph G suitable for Enable Grouping production 86
2.21 double pushout (DPO) approach structure, a direct derivation, according

to [37] . 86
2.22 Model with necessary elements for dynamic organisational structure 87

3.1 The elements of AToM3 predefined class diagram metamodel 93
3.2 Editing attributes of a class diagram class individual 94
2.14 Repeated visual representation of Lamrast−+ metamodel from Page 63 . . 97
3.3 Editing updateRoleActions action of hasAction concept 100
3.4 Editing initialActionCodeTemplate action of Action concept 102
3.5 Editing an Action individual . 102
3.6 Editing ConstraintKnArt constraint of canAccessKnArt concept 103

4.1 The model of the recipeWorld . 116

vii

List of Figures List of Figures

4.2 The modelled objectives of the recipeWorld 117
4.3 The modelled roles, and their actions, of the recipeWorld 118
4.4 Editing attribute values of action SearchForFactories 119
4.5 The model of the Quest for the Dragon Egg implemented in The Mana

World (TMW) . 123
4.6 Tutorial quest breakdown, from The Mana World 124
4.7 A quest breakdown, from The Mana World 125
4.8 Roles and their actions that are used to solve quests from Figs. 4.6 and 4.7,

from The Mana World . 125
4.9 Smart Self-Sustainable Human Settlement (SSSHS) model 128

B.1 More detailed direct derivation as a DPO construction, according to [28] . 176

viii

List of Tables

2.1 Structured comparative overview of ontology engineering methodologies
presented in [63] . 24

2.2 Comparative description of Lamrast−+ metamodel and NOSHAPE MAS [1] 60
2.3 Description of how concepts of the metamodel can be used on two distinct

application domains . 75
2.4 Production rules . 79

3.1 Selected similarities and differences of ADOxx and A Tool for Multi-formalism
and Meta-Modelling (AToM3) . 90

3.2 Evaluation criteria used by Kravari and Bassiliades [70] 91
3.3 Evaluation of Smart Python Agent Development Environment (SPADE)

according to criteria used by Kravari and Bassiliades [70] 92

A.1 Acquisition data dictionary entry . 152
A.2 Action data dictionary entry . 152
A.3 Agent data dictionary entry . 153
A.4 Artefact data dictionary entry . 153
A.5 Criteria of Organising data dictionary entry 153
A.6 Design Factor data dictionary entry . 154
A.7 Design Method data dictionary entry . 154
A.8 Goal data dictionary entry . 154
A.9 Heterarchical Organisational Structure data dictionary entry 155
A.10 Hierarchical Organisational Structure data dictionary entry 155
A.11 Human Immersed Agent data dictionary entry 155
A.12 Hybrid Organisational Structure data dictionary entry 156
A.13 Inhabitant Agent data dictionary entry . 156
A.14 Intelligent Virtual Environment data dictionary entry 156
A.15 IVE Law data dictionary entry . 157
A.16 IVE Workspace data dictionary entry . 157
A.17 Knowledge Artefact data dictionary entry 157
A.18 Manual data dictionary entry . 158
A.19 Merger data dictionary entry . 158
A.20 Norm data dictionary entry . 158
A.21 Normative System data dictionary entry 159
A.22 Objective data dictionary entry . 159
A.23 Observable Property data dictionary entry 159
A.24 Organisation data dictionary entry . 160
A.25 Organisational Architecture data dictionary entry 160
A.26 Organisational Change data dictionary entry 160

ix

List of Tables List of Tables

A.27 Organisational Culture data dictionary entry 161
A.28 Organisational Environment data dictionary entry 161
A.29 Organisational Knowledge Network data dictionary entry 161
A.30 Organisational Structure data dictionary entry 162
A.31 Organisational Unit data dictionary entry 162
A.32 Physical Artefact data dictionary entry . 163
A.33 Physical Property data dictionary entry . 163
A.34 Plan data dictionary entry . 163
A.35 Process data dictionary entry . 163
A.36 Quest data dictionary entry . 164
A.37 Role data dictionary entry . 164
A.38 Rule data dictionary entry . 164
A.39 Situated Organisational Unit data dictionary entry 165
A.40 Strategic Alliance data dictionary entry . 165
A.41 Strategy data dictionary entry . 165
A.42 Super Structure data dictionary entry . 166
A.43 Task data dictionary entry . 166
A.44 Time Dependent Norm data dictionary entry 166
A.45 Workspace data dictionary entry . 167
A.46 isAchievedBy instance property table . 168
A.47 triggers instance property table . 168
A.48 isAccessibleTo instance property table . 169
A.49 definesRoles instance property table . 169
A.50 hasCriteriaOfOrganizing instance property table 169
A.51 isPartOf instance property table . 170
A.52 hasRole instance property table . 170
A.53 playsRole instance property table . 170

x

Listings

2.1 OrganizationalUnit concept rendered using OWL functional syntax 42
2.2 Activity concept rendered using OWL functional syntax 43
2.3 Norm concept rendered using OWL functional syntax 43
3.1 Implementation details of function OrgUnitDetermineSize 100
3.2 Implementation details of UpdateActions function 101
3.3 Implementation details of ActionCodeTemplate function 102
3.4 Implementation details of ConstraintKnArt constraint 104
3.5 Implementation details of canAccessKnArtCheckConnections function . . . 104
3.6 Implementation details of SaveAll function 107
3.7 Implementation details of SaveNode function 108
3.8 Excerpt from CustomCodeDB shown in full in Appendix C.2 109
3.9 Implementation details of addConnectionToDB function 110
3.10 Implementation details of generateNodeCode function 113
4.1 Implementation details of generateNodeCode function 120
4.2 Knowledge base of an organisational unit 126

xi

Prošireni sažetak na hrvatskom
jeziku

Uvod i pregled dosadašnjih istraživanja

Višeagentni sustav (VAS) sastoji se od većeg broja individualnih autonomnih softverskih
agenata, čije ponašanje može biti ograničeno određenim skupom pravila, tj. organizirano.
Takvi se agenti u svom sustavu nalaze unutar određene okoline na koju mogu utjecati
svojim aktuatorima ili iz koje mogu dobivati podražaje korištenjem senzora [116]. Osim
okoline u kojoj se nalaze, agenti mogu percipirati druge agente koji se nalaze u okolini
istog sustava, što postavlja temelje za njihovu međusobnu komunikaciju, suradnju i orga-
nizaciju.

Motivacija ovog istraživanja proizlazi iz uočavanja aplikacijskih domena VAS te mjesta
za napredak u domeni organizacijskih modela za modeliranje organizacije u višeagentnim
sustavima velikih razmjera (VASVR). Recentna istraživanja koja se bave organizacijom
u VAS postavljaju nove standarde za organizacijske modele VAS koji su primjereniji za
moderni svijet u kojem raste popularnost tzv. Interneta svega (eng. Internet of Everyt-
hing (IoE)) i Interneta stvari (eng. Internet of Things (IoT)), a koji uvjetuje rad u rastuće
turbulentnoj i kompleksnoj sredini. IoE i IoT [7, 84, 142, 122] su, u svom obliku sustava
sastavljenih od raznih objekata, podataka, ljudi i procesa, povezanih konceptima infor-
macijskih i tehničkih znanosti, čime ostvaruju sadržajno bogatiju okolinu nego ikad prije,
prepoznati kao odlično prikazivi koncepti apstrahiranjem u VASVR. Uz navedeno, VA-
SVR dodatno podržavaju i razna područja primjene IoE i IoT, od pametne infrastrukture
i prometa, do pametnih gradova [137, 135, 139, 144], i mnogih drugih oblika distribuiranih
sustava. Naime, upravo osnovne pretpostavke IoE i IoT predviđaju inteligentne sustave
koji odgovaraju konceptima distribuiranih i autonomnih sustava – obilježja distribuira-
nosti, autonomnosti i inteligentnosti jasno opisuju višeagentne sustave.

Unatoč specifičnosti poput projektiranja ontologije te stvaranja organizacijskog meta-
modela, interdisciplinarnost ovog istraživanja vidljiva je u isprepletenosti područja infor-
macijskih znanosti (višeagentni sustavi velikih razmjera [152, 126]) s ekonomskim discipli-
nama (modeliranje organizacije [87, 83, 20, 30]), što povezuje ovo istraživanje s mnogim
objavljenim istraživanjima, dio kojih je naveden u poglavlju 1.4. Povećana kompleksnost

xii

Chapter 0. Extended Abstract in Croatian

i raširenost VAS te njihova uloga u životu modernog čovjeka dovela je do potrebe za
proučavanjem organizacije u takvim sustavima, a s ciljem korištenja brojnosti agenata te
njihove suradnje prema zajedničkom cilju i rješavanju prepreka vidljivih u ograničenosti
individualnih agenata [3, 4, 62].

Pojam organizacije se temeljno promatra iz dvije perspektive: kao entitet ili kao
proces, koje nisu međusobno isključive [31]. Sukladno tome, Abbas, Shaheen i Amin
[3] opisuje dva osnovna odnosa prema organizaciji u proučavanju VAS: višeagentni sus-
tavi usredotočeni na agenta (eng. agent-centred multiagent system (ACMAS)), i više-
agentni sustavi usredotočeni na organizaciju (eng. organisation-centred multiagent sys-
tem (OCMAS)). ACMAS se vodi idejom da ne postoji organizacija koja je nametnuta
sustavu, već individualni agenti svojim djelovanjem, postupcima i ponašanjem utječu na
svoju okolinu te organizacija nastaje temeljem interakcije svakog individualnog agenta s
njegovom okolinom. Ovakav pogled na VAS podsjeća na mrave ili roj insekata, no ne
predstavlja zadovoljavajuću podlogu za kompleksnije sustave (npr. potencijalno otežava
usklađivanje agenata prema zajedničkom cilju) [3, 154]. S druge strane, OCMAS odnos
organizaciju promatra u smislu strukture sustava koja je nametnuta agentima. Agenti
su upoznati s organizacijom i mogu je mijenjati ukoliko je potrebna prilagodba sustava
nestabilnoj okolini. Takvi sustavi mogu imati jasno određen tok informacija i određivanja,
kao i komunikacijski protokol, što ih čini podobnijima za kompleksnije sustave. Upravo
je sinteza obaju pogleda pogodna za moderne sustave koji djeluju u visoko turbulentnoj
okolini [27, 36], kako bi se spojile dobrobiti oba načina organizacije VAS. Nadalje, novija
istraživanja, navedena u poglavlju 1.4, često govore o samo-organizacijskim sustavima.

Organizacijski modeli za VAS služe za prikaz arhitekture organizacije agenata, a iz-
ražavaju se jezicima za modeliranje sastavljenim od specifičnih simbola. Uobičajeno je
da jezik za modeliranje ima dva osnovna elementa [5, 54, 59]: konceptualizaciju (skup
koncepata za modeliranje) i sintaksu (pravila za povezivanje elemenata konceptualiza-
cije). Dodatna razmatranja meta- i modeliranja iznesena su u poglavlju 2.2. Prema
tome, model [29] je instanciranje sintaktički iskazane koceptualizacije koja opisuje dani
sustav. Jezik za modeliranje opisan je metamodelom, tj. modelom modela. Specifična
vrsta metamodela je domenska ontologija [54] – konceptualizacija dane domene bez obzira
na jezičnu sintaksu.

Coutinho, Sichman i Boissier [29] procjenjuju organizacijske modele za VAS teme-
ljem skupa dimenzija: organizacijska struktura, organizacijske funkcije, organizacijska
interakcija, organizacijske norme, organizacijska procjena, organizacijska evolucija, orga-
nizacijska okolina, organizacijske ontologije. Od 11 organizacijskih modela analiziranih u
navedenom istraživanju, većina se, jasno uočljivo, usredotočuje na modeliranje strukture
sustava, dok su organizacijska interakcija te organizacijske funkcije i organizacijske norme
sekundarni koncepti modeliranja. Te četiri glavne dimenzije najzastupljenije su, iako su
rijetki modeli koji podržavaju modeliranje sve četiri dimenzije (npr. OperA i MAS-ML).

xiii

Chapter 0. Extended Abstract in Croatian

Ostale četiri dimenzije su dodatne, te su rijetko podržane među analiziranim modelima.
U novijem je istraživanju [118, 122] predložen skup perspektiva za procjenu organi-

zacijske arhitekture VASVR, tj. perspektiva koje prema autoru navedenog istraživanja
uvelike doprinose učinkovitom djelovanju VASVR. Navedeni skup sastoji se od sljedećih
sedam perspektiva: organizacijska strukture (tok informacija i odlučivanja unutar or-
ganizacije), organizacijska kultura (nefizički elementi organizacije poput znanja, normi,
jezika i slično), strategija (dugoročni ciljevi organizacije, planovi za njihovo postizanje te
načini mjerenja uspjeha), procesi (aktivnosti organizacije), individualni agenti (osnovne
pokretačke jedinice organizacije), organizacijska dinamika (organizacijske promjene i re-
organizacija), te kontekst i međuorganizacijski aspekti (organizacijsko ponašanje prema
okolini).

Osim navedenog, moderna istraživanja [72, 3] konačno uvode i temporalno-dinamičnu
komponentu organizacije u organizacijske modele argumentirajući modele za VAS u re-
alnom vremenu i promovirajući reorganizaciju VAS. Dodatna diskusija o modelima VAS
nalazi se u poglavlju 1.4.

Ciljevi istraživanja

Osnovno istraživačko pitanje je: od kojih se elemenata sastoji skup koncepata primjenjivih
na organizacijsko modeliranje VASVR, s naglaskom na organizacijsku dinamiku, i na koji
su način oni primjenjivi?

Glavni cilj ovog istraživanja, temeljem navedenog osnovnog istraživačkog pitanja, de-
finiranje je ontologije koja obuhvaća bitne odabrane organizacijske koncepte vezane uz
VASVR te na njoj temeljenog organizacijskog modela za VASVR koji poštuje moderne
perspektive organizacijskog modeliranja VASVR, s naglaskom na organizacijsku dina-
miku.

Za potrebe usmjeravanja istraživanja te provjere uspješnosti dobivenih rezultata, a
temeljem glavnog cilja istraživanja, definirano je nekoliko istraživačkih ciljeva:

C1 Istražiti koncepte organizacijskog modeliranja koji su pogodni za modeliranje orga-
nizacije u VASVR.

C2 Modelirati organizacijske koncepte primjenjive na MMORPG.

C3 Istražiti modeliranje organizacijske dinamike u primjeni VASVR na MMORPG.

Metodologija

Istraživanje je jasno podijeljeno u tri elementa, koji odgovaraju ciljevima istraživanja:
ontologija, metamodel, i procjena.

xiv

Chapter 0. Extended Abstract in Croatian

S obzirom na ulogu temelja rezultata ovog istraživanja, temeljita ontologija koja obu-
hvaća odabrane bitne elemente organizacijskog modeliranja VASVR ključan je element.
Stoga je važno odabrati dobru metodologiju za inženjering ontologija. Ovaj dio istraži-
vanja predviđa ukupno šest koraka, prema METHONTOLOGY, koja je odabrane među
metodologijama za inženjering ontologija predstavljenom u [63]. Postupak izrade ontolo-
gije opisan je u poglavlju 2.1.

Prvi korak odabrane metodologije je specifikacija koja rezultira specifikacijskim do-
kumentom zapisanim prirodnim jezikom. Namjena ove ontologije je okupljanje i obu-
hvaćanje odabranih organizacijskih koncepata relevantnih za organizacijsko modeliranje
VASVR. Ontologija smije obuhvaćati i specifične i općenite koncepte, jer će za stvaranje
metamodela biti odabrani samo najbitniji identificirani elementi. Koncepti ontologije bit
će zapisani korištenjem OWL (eng. Web Ontology Language) jezika. Drugi korak je
akvizicija znanja, a provodi se usporedno s definiranjem specifikacije. Ovo je nezavisna
aktivnost koja gubi intenzitet napredovanjem procesa definiranja ontologije, ali uvelike
ovisi o cilju istraživanja te njegovoj dekompoziciji. Glavni izvor podataka za ovaj dio is-
traživanja istraživanje je objavljeno [126, 118] u sklopu OOVASIS1 projekta, uz pristanak
autora. OOVASIS ontologija nadograđena je tijekom Large-Scale Multi-Agent Modelling
of Massively On-Line Role-Playing Games (ModelMMORPG) projekta, no ovdje se za
istu tu ontologiju koristi isti naziv – OOVASIS. Sljedeći korak je konceptualizacija, a sas-
toji se od izrade pojmovnika te grupiranja i opisivanja identificiranih pojmova. Četvrti
korak je integracija, tj. povezivanje s metaontologijama i drugim ontologijama, koliko je
to moguće i smisleno. Peti korak izrade ontologije je implementacija koja uključuje oda-
bir i implementaciju ontologije u odabranom alatu. Ontologija će većinom biti definirana
korištenjem Protégé alata zbog njegovog de facto standarda u semantičkom modeliranju
u akademskom kontekstu. Zadnji korak je evaluacija, tj. tehnička procjena ontologije, za-
jedno s njenom softverskom okolinom i dokumentacijom, u odnosu na referentnu stavku,
koja može biti dokumentacija proizašla iz prvog koraka. Ovaj korak podrazumijeva i
verifikaciju i validaciju ontologije.

Pregledom metodologija za inženjering ontologija koji su objavili Iqbal i dr. [63], za-
jedno s jasnim značajkama koje nudi svaka od ontologija te potrebama autora, odabrana
je metodologija METHONTOLOGY [42]. Ova metodologija odabrana je zato što nudi
razvoj korištenjem razvojnog prototipa, daje podršku za ponovnu primjenu rezultata, nije
ovisna o specifičnog aplikaciji, daje jasan prijedlog životnog ciklusa ontologije te je de-
taljno opisana. Navedeni alat (Protégé) odabran je zbog svoje popularnosti u predmetnoj
akademskoj i stručnoj zajednici te izradi ontologija, kao i prirode otvorenog koda.

Nakon definirane ontologije slijedi dio istraživanja koji se bavi stvaranjem metamo-
dela, predstavljen u poglavlju 2.2. Znanstvena metoda modeliranja sastoji se od četiri
faze [Žugaj, 2007]: postavljanje zadatka, izbor ili stvaranje modela, istraživanje modela

1Više informacija dostupno na http://ai.foi.hr/oovasis

xv

http://ai.foi.hr/oovasis

Chapter 0. Extended Abstract in Croatian

te prijenos spoznaja s modela na original. Shodno tome, a uzimajući u obzir i ostatak di-
skusije u poglavlju 2.2, identificirano je nekoliko koraka u postupku izrade organizacijskog
modela. Prvi korak je određivanje detaljnosti, a zahtijeva određivanje razine specifičnosti
metamodela te dubine modeliranih koncepata, tj. razinu apstrakcije promatrane domene.
Suviše apstraktni koncepti dovode do neizražajnosti modela, dok prevelika konkretizacija
domenskih koncepata stvara potencijalno previše kompleksan model. Obje krajnosi su,
dakako, loše, te mogu dovesti do otežane primjenjivosti modela. Drugi korak je ocjena
i odabir elemenata, u što je uključena analiza ontologije te procjena korisnosti ili is-
koristivosti uključenih koncepata. Ontologija organizacijskih koncepata primjenjivih na
VASVR potencijalno obuhvaća koncepte koji nisu prilagođeni uključivanju u metamo-
del ili su dovoljno neutjecajni na konačni ishod da mogu biti isključeni iz finalne verzije
metamodela. Ovaj korak rezultira popisom koncepata odabranih za uključivanje u mo-
delirani metamodel. Usporedba i informiranje treći su korak, koji obuhvaća analiziranje,
procjenu i usporedbu postojećih VAS organizacijskih modela i njihovih koncepata. Cilj
ovog koraka je uočiti dobre primjere koji odgovaraju krajnjem cilju ovog istraživanja te
ih prilagoditi za razvijani metamodel. Četvrti korak je samo stvaranje metamodela. Us-
poredbom koncepata odabranih u trećem koraku i onih uočenih u četvrtom koraku te
njihovim spajanjem, razvija se metamodel. Slijedi uključivanje odabranih koncepata u
metamodel pomoću odabranog alata AToM3. Zadnji korak ovog dijela istraživanja us-
poredba je metamodela sa sedam perspektiva i evaluacija modela temeljem istih. Ovaj
korak iznimno je bitan zbog ostvarivanja svojevrsne povratne veze te stvaranja ocjene
razvijenog metamodela. Modelirani model te njegove instance bit će uspoređeni sa sedam
perspektiva organizacijske arhitekture VASVR [118]. U slučaju nedovoljnog zadovolja-
vanja zadanih kriterija i obilježja navedenih perspektiva, potrebno je ponoviti slijed od
četvrtog ili drugog koraka.

Navedeni alat (A Tool for Multi-formalism and Meta-Modelling (AToM3)) odabran
je zbog svoje prirode otvorenog koda, iznimno dobre povezanosti s programskim jezikom
Python, te zadane namjenjenosti procesu metamodeliranja. Navedeni alat omogućava
grafičko stvaranje modela te njegovo korištenje i prilagodbu raznih aspekata tog modela.
Povezanost s programskim jezikom Python bitna je zbog jasne i efikasne za korištenje
platforme za stvaranje višeagentnih sustava, SPADE (eng. Smart Python Agent Deve-
lopment Environment). SPADE je jedinstven po tome što je prvi potpuno temeljen na
XMPP tehnologiji. Dodatna evaluacija SPADE-a iznesena je u poglavlju 3.1.

Organizacijski metamodel dobiven tijekom ovog istraživanja procijenjen je kako slijedi.
Usporedbom s nekim od vodećih postojećih i razvijenih organizacijskih modela utvrđene
su prednosti i nedostaci razvijenog modela. Primjenjivost modela ovog istraživanja pro-
cijenjena je temeljem njegove primjenjivosti prvenstveno na aplikacijsku domenu u vidu
mrežne računalne igre s ulogama namijenjene većem broju igrača (eng. massively multi-
player online role-playing game, MMORPG), a zatim i dodatne dvije domene, jednu bližu

xvi

Chapter 0. Extended Abstract in Croatian

kontekstu modeliranja temeljenog na agentima, i drugu koja svoju primjenu nalazi u kon-
tekstu Interneta stvari i pametnih gradova. MMORPG igre prepoznate su kao jedan od
odličnih primjera primjene VASVR, dok je specifična igra The Mana World odabrana
za okolinu testnog scenarija zbog svoje prirode otvorenog koda, besplatnog sudjelovanja
u igri, jednostavnosti uređivanja raznih aspekata virtualnog svijeta, sadržavanja konce-
pata često korištenih u domeni MMORPG igara, te njenog korištenja u ModelMMORPG
projektu dio kojeg je i ova disertacija.

Disertacija je strukturirana kako slijedi. Poglavlje 1 opisuje motivaciju istraživanja,
osnovne definicije korištenih pojmova, s ciljem lakšeg snalaženja i razumijevanja ostatka
sadržaja, te pregled povezanih istraživanja. Znanstveni doprinos opisan je u poglavljima
2.1 i 2.2, gdje su zasebno izneseni detalji procesa semantičkog modeliranja i metamode-
liranja. Praktični doprinos ovog istraživanja predstavljen je u poglavlju 3.1. Primjeri
primjene razvijenog modela opisani su u poglavlju 4, dok je zadnje poglavlje rezervirano
za diskusiju o iznesenom sadržaju. Sadržaj dodataka služi za pobliže određivanje ili po-
jašnjenje određenih tema disertacije te su prema tome referencirani u sadržaju disertacije.

xvii

Chapter 0. Extended Abstract in Croatian

xviii

Chapter 1

Introductory Notes and Related
Research

1.1 Motivation

This research is motivated by observing application domains of multiagent systems (MASs)
and advancement possibilities in the domain of organisational models for large-scale mul-
tiagent systems (LSMASs). Recent studies on organisation in MASs suggest new stand-
ards for organisational models for MASs that are more suitable for the increasingly turbu-
lent and complex modern world where the Internet of Everything (IoE) and the Internet of
Things (IoT) are growing in popularity. IoE [7, 84, 142, 122] is, as a specific combination
of various objects, data, people and processes creating environment contextually richer
than ever before, recognised as a concept appropriately described and abstracted using
LSMASs. Furthermore, confirmation of the stated can be found in application domains
of IoE, e.g. smart infrastructure, smart transportation, smart cities, etc. [137, 135, 139,
144, 65] The specific basic features of IoE demand and assume intelligent systems that
conform to concepts of distributed and autonomous systems. Features of such systems,
like distribution, autonomy, and intelligence clearly represent multiagent systems.

Another key domain that is gaining popularity in research related to MASs are com-
puter games. A specific genre of computer games is in the spotlight of this research:
massively multi-player online role-playing games (MMORPGs), which are a combina-
tion of the genre of massively multi-player online games (MMOGs) and role-playing
games (RPGs). The interest in conducting research in the domain of RPGs is based
on personal attraction to such a genre of computer games, and the observed applicability
of RPG dynamics and mechanics to the domain of MASs. Coupled with the genre of
MMOGs, which feature large numbers of players who interact with each other and the
in-game world, MMORPGs represent a highly interesting field of research in the context
of MASs. Quest driven gameplay, vast possibilities in the context of available player

1

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

actions, and encouraged or demanded social interaction of player agents, are only some
of the features of MMORPGs that make them a good research topic when MASs and
LSMASs are concerned.

Although this research contains specific elements such as ontology engineering, and
defining an organisational metamodel, interdisciplinary nature of the research visible in
interwoven areas such as information sciences (LSMASs [152, 118]), and economical dis-
ciplines (organisational modelling [87]), clearly relates this research to many published
studies. Increased complexity and presence of MASs, along with their meaning in a life of
the modern human, led to the necessary research of organisation in such systems, aimed
at utilising benefits of agent numbers, their cooperation towards a common goal, and
individual agent’s constraints [3, 4, 62].

1.2 Introduction

A MAS consists of a great number of individual autonomous software agents. Their
behaviour can be constrained using a set of rules, i.e. organised. Such agents are located
within an environment they can act upon using their actuators, or get feedback from
using their sensors [116]. In addition to interacting with their environment, agents can
perceive other agents in the system’s environment, thus forming the basis for implementing
organisational features through communication and cooperation with each other.

The concept of organisation is usually observed from two perspectives: as an entity,
or as a process, but not necessarily mutually excluded [31]. Both are closely related to
later studies of Abbas, Shaheen and Amin [3], who recognise two basic approaches to how
the concept of organisation is observed in research on MASs: agent-centred multiagent
systems (ACMASs), and organisation-centred multiagent systems (OCMASs).

An ACMAS delves on the idea that there is no organisation that would be cast upon
the system by design. The concept of organisation in an ACMAS is built in the bottom-up
manner and it emerges from agents affecting each other and interacting amongst them-
selves and with their environment. Behaviour, actions, and interaction of agents are thus
said to produce organisation as a concept in an ACMAS [19]. Such a perspective on MASs
reminds of ants and insect swarms, yet it alone is not presented as a beneficial solution
for complex systems [3, 154, 12]. Depending on the intended nature of the observed
system, the ACMAS approach can render the whole system unresponsive to its rapidly
changing environment or otherwise inhibit its performance as a result of the emergent
nature of the behaviour of the whole system. Furthermore, one of the arguments against
clean ACMAS implementation are overburdened agents that are given the responsibility
of system organisation in addition to their regular functional responsibilities [154].

An OCMAS, on the other hand, considers organisation as a concept enforced upon the
system and the included agents. Agents are aware of the organisation though, and they

2

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

can influence on it when they recognise that the system should be adapted to the unstable
environment. Such systems usually have a clearly defined information and decision flows,
as well as communication protocols. Therefore, an OCMAS approach is more suitable for
complex systems, for it usually allows the system to produce a response to unpredictable
situations faster than an ACMAS system. Clearly, both the argument for ACMAS, and
that for OCMAS, depend on the intended purpose of the observed system.

In the end, it is actually the joint view on organisation that which is the most beneficial
for the modern systems functioning in highly turbulent environments [27, 36]. Such an
approach would assure benefits of the both described perspectives.

Coutinho, Sichman and Boissier [29] evaluate organisational models for MASs using
the following set of dimensions, of which four are basic, and four are additional dimensions,
respectively:

• organisational structure,

• organisational functions,

• organisational interaction,

• organisational norms,

• organisational evaluation,

• organisational evolution,

• organisational environment,

• organisational ontologies.

Out of the eleven organisational models analysed in [29], most of them feature the
concepts of organisational structure, yet only a smaller number of models comprise con-
cepts of organisational interaction, organisational functions, and organisational norms. It
is expected that the mentioned four basic dimensions are present in most of the analysed
models, whereas the four additional dimensions are often missing. However, two models
contain concepts of all the basic dimensions (OperA and MAS-ML). Some of these models
are detailed in Section 1.4.3.

A newer research, conducted by Schatten et al. [126] and Schatten, Ševa and Tomičić
[122], presents a revised set of organisational modelling perspectives that are argued to aid
more in building efficient LSMASs constrained by organisational features. The mentioned
set contains the following seven perspectives:

• organisational structure (decision and information flows of an organisation),

• organisational culture (important intangible aspects of an organisation including
knowledge, norms, reward systems, language and similar),

• strategy (long term objectives of an organisation, action plans for their realisation
as well as tools on how to measure success),

• processes (activities and procedures of an organisation),

3

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

• individual agents (the most important asset of any organisation – individual agents
actually performing the work),

• organisational dynamics (organisational changes including reorganisation of any of
the mentioned components),

• context and inter-organisational aspects (organisational behaviour towards its en-
vironment including strategic alliances, joint ventures, mergers, splits, spinouts, and
similar).

Furthermore, recent studies [72, 3] finally introduced a temporally-dynamical organisa-
tional component to LSMAS organisational models arguing the need for real-time LSMAS
models and promoting reorganisation in LSMASs.

MMOGs are an interesting application domain of LSMASs for several reasons. The
rising popularity complex computer games gained with the development of digital in-
frastructure led to an increased importance of various aspects of how computer systems
are used, and to what ends, and computer games (including consoles) are one of them.
Greater technology availability motivated the gaming industry to invest more into game
development, thus creating a whole new domain of Information and communication tech-
nology (ICT) in its own right. Computer games have since become a lucrative business,
with market shares measured in dozens of billions of USD. [123] In this case, huge market
share is caused by a large user base, meaning that video games have a high popularity.
The trend that is growing for a couple of years is the development of MMOGs – video
games that are designed for a large number of players playing the game simultaneously,
possibly interacting with each other, and the in-game world. MMOGs represent a whole
new medium that can be used for social interaction of end-users, and a self-realisation tool
in the online world. Out of many of the video game genre that adapted to the MMOG
environment, the most interesting genre for this research is MMORPG because games of
this genre explicitly make their players assume a role and exercise its abilities and other
features in an in-game world.

MMORPGs therefore face their players with a virtual world accessible to their avatars
in this world, and confronts them with various challenges ranging from simple tasks to
complex campaigns. The in-game world is rich in player avatars (hence the MMOG genre),
non-player characters (NPCs), and numerous other creatures that inhabit the given virtual
world. Players are usually presented with a set of quests that can be dealt with in a linear
or a non-linear manner. Modern games leave this choice to individual players, as the
idea of an open world (a world without strict story-bound constraints) is prevalent. One
of the key aspects of an MMORPG is interaction – social interaction between player
avatars and other creatures of the given world, as well as interaction of player avatars
with the world in general. The social component is by large what makes MMORPGs very

4

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

interesting for research in modern systems comprising artificial agents, as well as for this
particular research. Namely, individual players can advance through an MMORPG, yet
their progress grows slower as they advance through the game. As the game advances,
players can gain increased benefit from interacting with other players (in games that
stimulate cooperative gameplay), and forming various types of groups of players (parties,
and guilds, as described earlier here). Such coalitions or groups or organisations help
individual players best the challenges they are faced with through the game. The nature
of such groups, and their purpose, varies between games, with the standardised notion of
a party as a temporary quest-centred grouping mechanism, and a guild as a longer-lasting
grouping mechanism with emphasised social components. Furthermore, some in-game
challenges are designed for larger numbers of organised players with a tactful approach.

MMORPGs usually have players playing characters belonging to a single, a pair of, or
a number of character classes – usually using stereotyped character descriptors – warriors,
archers, thieves, wizards, druids, etc. Depending on the class the character plays, different
parts of the game are usable to the player, including varying gear, abilities, interactions,
etc. MMORPGs are usually computer games that are quest-driven, i.e. game dynamics in
the context of a story and campaign and game advancement is governed by in-game quests
usually obtainable through interaction with NPCs or special in-game events. These quests
yield special rewards for their completion (e.g. special kind of loot, new quests, etc.).
Some quests depend on the player’s character being able to perform a specific in-game
action or interaction, thus underlining the importance of character actions. The described
view on the MMORPGs domain can be simplified and represented using the Lamrast−+
metamodel, in order to create an artefact that can be further used in the modelled system’s
development. Research on social interaction of players, and its replication on artificial
agents, with the goal of creating agents that are able to cooperatively solve more complex
quests, is one of the integral parts of Large-Scale Multi-Agent Modelling of Massively
On-Line Role-Playing Games (ModelMMORPG) project, a part of which is this thesis.

The specific game of the MMORPG genre that is used in this research, and was the
main research environment of ModelMMORPG project, is The Mana World (TMW)1 –
an open-source 2D MMORPG. Although it looks simple, TMW includes all the key ele-
ments of an MMORPG, including avatar customisation, social interaction, quests, avatar
grouping features, etc. Furthermore, TMW can be modified and customised as necessary,
which was important for this particular research, as a specific quest was developed for the
purpose of collecting initial research data.

A welcome addition to the scientific contribution and theoretical part of this research
is the modelling tool that is built upon the defined Lamrast−+ metamodel. This prac-
tical contribution is what sets this research apart from most of the research into modelling
LSMASs, since a lot of the already published models (see Section 1.4.3 for further discus-

1For more information visit https://www.themanaworld.org

5

https://www.themanaworld.org

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

sion) remain at theoretical-only level. However, Lamrast−+ metamodel is supported by
its proprietary modelling tool that is built as a customisation of the open-source metamod-
elling tool A Tool for Multi-formalism and Meta-Modelling (AToM3). The most prominent
feature of this customised metamodelling tool is application template generation based
on the defined model of a system comprising agents. Additionally, the modelling tool
provides necessary mechanisms for using graph grammars, which are used in this research
for the purposes of modelling organisational dynamics (especially evident in MMORPGs
considering the existence of both parties and guilds). Further described in Section 3.3.2,
application template generating feature of the customised metamodelling tool helps sys-
tem developers receive basic implementation template of the modelled system.

1.2.1 Research Objectives

The basic research question of this thesis is: What are the elements included in the set of
concepts applicable to organisational modelling of LSMASs, emphasising organisational
dynamics, and how can they be used?

The main objective of this research, based on the research question, consists of the
following: defining an ontology comprising chosen organisational concepts applicable to
LSMASs, and an organisational metamodel for LSMASs based on the mentioned on-
tology, conforming to the modern perspectives of organisation modelling, emphasising
organisational dynamics.

With the idea of guidance and evaluation support, several research objectives are
defined based on the main objective:

O1 Analyse organisational modelling concepts applicable to LSMASs.

O2 Model organisational concepts applicable to MMORPGs.

O3 Explore modelling of organisational dynamics in MMORPGs as a specific application
of LSMASs.

1.2.2 Initial Research Plan

The research covered by this thesis is divided into three parts: an ontology, a model, and
evaluation.

Considering its key role in this research, adequate ontology comprising selected organ-
isational concepts applicable to LSMASs is fundamental to the research results. Therefore,
a good ontology engineering methodology is needed. Six steps are identified in this part
of research, based on the chosen ontology engineering methodology, METHONTOLOGY,
whose selection motivation is presented in Section 2.1.1. Result of the first step (specific-
ation, detailed in Section 2.1.1.1) is a specification document written in natural language

6

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

that contains basic information about the ontology being developed. Purpose of this on-
tology is to collect the chosen organisational concepts applicable to LSMASs. Ontology
concepts will be written in Web Ontology Language (OWL). The second step (knowledge
acquisition, detailed in Section 2.1.1.2) is performed simultaneously with the specification
step. This independent activity weakens in intensity as the ontology definition process
advances, and is greatly influenced by the main research goal. This step will mostly rely
on the research conducted during cro. Organizacijsko oblikovanje višegentnih sustava u
Internetu Stvari - eng. Organizational Design of Multi-Agent Systems in the Internet
of Things (OOVASIS) project [118, 126]. The third step (conceptualisation, detailed in
Section 2.1.1.3) is about building an index of the chosen and identified concepts with
their definitions. The fourth step (integration, detailed in Section 2.1.1.4) connects the
developed ontology to metaontologies and other ontologies, where sensible and possible.
The fifth step (implementation, detailed in Section 2.1.1.5) works on coding the developed
ontology using a chosen tool. The ontology will mostly be defined using Protégé. The last
step of METHONTOLOGY (evaluation, detailed in Section 2.1.1.6) serves to carry out a
technical judgement of the developed ontology, including the accompanying software en-
vironment and documentation, with respect to a frame of reference (e.g. documentation
from step one). This step includes ontology verification and validation.

METHONTOLOGY [42] ontology engineering methodology was chosen based on the
review of ontology engineering methodologies published by Iqbal et al. [63]. The chosen
methodology is based on a developing prototype, has reusability support, is not dependent
on a specific application environment, is very well described, and has a clear ontology life
cycle recommendation. Protégé was chosen because it is open-source, very popular in
academic and real sectors, and is widely accepted tool for ontology engineering. OWL
was chosen as an ontology language for its role of a de facto standard in the domain of
semantic modelling.

After the ontology is defined, the associated model is to be developed. The scientific
model developing method consists of several phases [157]: setting a goal, building a model,
detailing the model, and applying the model. According to these phases, five steps were
identified, as follows. The first step (detailed in Section 2.2.1.1) is about choosing the level
of abstraction of the model, i.e. in how much detail will the final model be modelling
the given domain. Clearly, very abstract concepts will not give an expressive model.
Contrariwise, very specific concepts may make the final model hard to use. Both extremes
are undesirable, since the final model may hardly be usable. The second step (detailed
in Section 2.2.1.2) is about choosing concepts for the model being built, by analysing
usefulness and usability of all the concepts of the defined ontology. The ontology may
comprise concepts that are not suitable for the developing model, and should therefore
not be included, e.g. they are not important enough. Result of this step is a list of
concepts that will be a part of the final model. Third step (detailed in Section 2.2.1.3)

7

Chapter 1. Introductory Notes and Related Research 1.2. Introduction

is about analysing, assessing, and comparing concepts and LSMAS organisational models
that already exist. Additionally, analysis will be conducted on more general elements, e.g.
normative systems. The fourth step (detailed in Section 2.2.1.4) is developing the actual
model. Organisational dynamics (detailed in Section 2.2.2) will be defined and described
using, but not limited to, graph grammars (definitions provided in Appendix B.2), and
temporal logics. The chosen concepts are integrated in a model using AToM3. The
last step (detailed in Section 2.2.1.5) of this part of the research is assessment of the
metamodel, based on the seven perspectives, and its evaluation. The defined metamodel,
and its respective instances, will be compared to the seven perspectives of organisation
architecture for LSMAS [118]. In case the criteria will not be met, the development
process should be repeated, and the metamodel improved.

AToM3 is chosen for this research since it is an open-source software working with Py-
thon, and is by default built for meta- and modelling purposes. Furthermore, it makes it
possible to graphically create and use a model, and to introduce numerous modifications
to it. Easy integration with Python is important since a clear and efficient platform for
development of MAS – Smart Python Agent Development Environment (SPADE) – is
developed using Python, and Python provides many libraries of various possible applica-
tions. SPADE is the first such piece of software to use a particular popular communication
protocol (XMPP).

Organisational metamodel developed during this research is evaluated as follows.
Firstly, the developed metamodel is compared to some of the leading already existing
organisational models on conceptual level, and similarities and differences are noted.
Secondly, applicability of the model is tested using an MMORPG as a good example
of LSMASs application domain, with further testing conducted on an example closer to
the agent-based modelling (ABM) context, and another, applicable to IoT and smart
cities. The tests were conducted on three testbed scenarios. In addition to being an
MMORPG, and therefore being recognised as a decent LSMASs application example, the
specific game TMW is chosen as the test environment for its open-source nature, free
game participation, easy modifications of the in-game world, inclusion of an average num-
ber of elements from the MMORPG domain, and because it is used in ModelMMORPG
project, a part of which is this thesis.

This research is set to develop basics for easier modelling of LSMASs in the context
of MMORPGs. Scientific contribution is recognised in the ontology comprising organisa-
tional concepts applicable to LSMASs, and a organisational model for LSMASs (applied
to MMORPGs) based on the mentioned ontology and modern features of organisational
modelling for LSMASs, emphasising organisational dynamics. In addition to the scientific
contribution, a practical contribution is presented as well, in form of an application tem-
plate generating tool for basic parts of LSMASs modelled using the provided modelling
tool, which supports use of graph grammars as well.

8

Chapter 1. Introductory Notes and Related Research 1.3. Conceptual Definitions

1.3 Conceptual Definitions

The following mostly short definitions are used to clearly define the scope of various
concepts used further in this thesis. The purpose of this is to avoid confusion and to
clearly state the scope of each of the key concepts of this thesis. Intensions of various
concepts will be defined here, although further discussions about a concept may be present
in other parts of this thesis. The following concepts are grouped by their meaning and
value for this thesis, and are not presented in alphabetical or similar order.

agent An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actuators. [116]

multiagent system (MAS) Multiagent systems are the best way to characterize or
design distributed computing systems. [151] Key characteristics of MASs are: in-
frastructure specifying communication and interaction protocols, open environment
with no centralised designer, and autonomous, intelligent, distributed agents that
behave cooperatively or out of self-interest.

large-scale multiagent system (LSMAS) MASs that comprise a large number of agents,
and base their complexity therein.

model Abstract approximative representation of a real domain. A model is a represent-
ation of something for someone’s purpose somebody (sic) and developed by someone
else. [134].

metamodel Shortly defined, a metamodel is a model of a model.

ontology The context of the concept of ontology is constrained within this thesis to the
domain of information and computer sciences. An ontology is an explicit specifica-
tion of a shared conceptualization that holds in a particular context. [52]

organisation Organizations are (1) social entities that (2) are goal-directed, (3) are de-
signed as deliberately structured and coordinated activity systems, and (4) are linked
to the external environment. [30]

1.4 Related Research

The following section presents the published research related to the concepts and the
context of this thesis. For the sake of clarity, the contents of this section are divided into
three parts: one that contains research related to organisation in the context of MASs
(Section 1.4.1), followed by the part about semantic modelling and the use of ontologies
in the domain of MASs and LSMASs (Section 1.4.2), with the part on the use of models
in the domain of MASs and LSMASs at the end of this section (Section 1.4.3).

9

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

1.4.1 The Concept of Organisation in Multiagent Systems

Organisation as a concept in systems comprising artificial agents, especially those of a
large scale, is a matter of an ever growing body of research. With the development of the
IoT paradigm, along with the research towards smart cities [74], smart grid [23, 135, 47,
23], and ultimately the IoE [122], it is important to work on the protocols that foster agent
interaction and, even better, their cooperation towards reaching a common goal shared
amongst a group of agents, or a whole organisation – an approach completely in accord-
ance with what is stated here above. MASs are developed as self-organising systems as
well, with the role of other (complex) system controllers, such as the results described by
Boes and Migeon [16], where the adaptive multiagent system (AMAS) approach is used.
A similar research on self-organisation of MASs in the form of a swarm, realised using
a distributed control system, is described by Krishnan and Martínez [71]. Furthermore,
the concept of self-organisation is recognised as a useful feature in smart environments
by Cameron et al. [21] as well, since the emerging organisation and coordination mechan-
isms emerge from behaviour of individual agents, thus rendering the whole system more
resilient, when the aspect of a single-point-of-failure is examined. Further examples are
available, for example in [133].

Since the core of this research is a combination of semantic and organisational mod-
elling, what should be mentioned here is a core ontology (ORG) for organizational struc-
tures, aimed at supporting linked data publishing of organizational information across a
number of domains. [145] This ontology, named The Organization Ontology, was pub-
lished by W3C [145] with the intention of creating a basic ontology that is ready for
domain-specific extensions which could add more specific classification of the included or-
ganisation and roles, all the way to extensions such as organisational activities, or perhaps
the concepts discussed further in this thesis, such as normative concepts beyond roles and
similar.

Main discussion on various meta- and models of the domain of MASs is located in Sec-
tion 1.4.3, yet the research which is of fundamental significance for this research should
be reported about here as well, since it is related to both organisational modelling and
MASs. A research done by Schatten [118] and Schatten, Ševa and Tomičić [122] presents
a set of perspectives for organisational modelling that is argued to aid in building efficient
LSMASs constrained by organisational features. The mentioned set contains the following
seven perspectives: organisational structure (decision and information flows of an organ-
isation), organisational culture (important intangible aspects of an organisation including
knowledge, norms, reward systems, language and similar), strategy (long term objectives
of an organisation, action plans for their realisation as well as tools on how to measure
success), processes (activities and procedures of an organisation), individual agents (the
most important asset of any organisation – individual agents actually performing the

10

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

work), organisational dynamics (organisational changes including reorganisation of any of
the mentioned components), as well as context and inter-organisational aspects (organ-
isational behaviour towards its environment including strategic alliances, joint ventures,
mergers, splits, spinouts, and similar).

1.4.2 The use of Semantic Modelling in Multiagent Systems

Modelling in general is viewed as a method of creating models. In this context, a model is
considered an abstract representations of a real domain. The building blocks of a model
– concepts – are constrained by a selected set of properties of real-life concepts [134]. A
concept is described using its three main descriptors: intension, extension, and symbol.
An intension is basically a definition of the concept, its description using features of
the concept that define it for what it is, no more, no less. The extension includes all the
instances of the given concept. The symbol is a way of referencing the given concept. Early
examples of the use of symbols and concepts to represent human thoughts is described
using examples of ancient Egyptian hieroglyphs in [25]. All three concept descriptors are
exemplified in Section 2.2.

The process that is used to apply various concepts to objects of the real domain is
called classification. Using the concept of extension, classification can be described as
the process of populating the extension set of a given concept. Classification has multiple
benefits [105]: it can be used as a process of structuring knowledge featuring concepts and
their associated objects from the real domain, and it fosters the reasoning process thus
rendering exhaustive definition of property values unnecessary, since some of the needed
property values can be inferred based on those that are defined. Further discussion on
concepts and the notion of modelling is given in Okreša Ðurić and Maleković [100, 99].

Since the process of modelling, when conceptual modelling is used, is of high import-
ance, as it represents the basis for all the information and knowledge that will be stored
through the knowledge management process, four key elements are identified by Thal-
heim [134] that characterise a good model: a source (the basic properties necessary for a
good description of the modelled source, along with the purpose of the model, goals of its
creation and application, the context of the model and the source, etc.), concepts (defin-
itions of the concepts, their applicability, constraints, etc.), a view, and understanding
(user profiles, their intentions, and other features). The reasoning around the listed four
characteristics of a good model and their relevance to models of knowledge management
is rooted not only in the benefits stemming from a well implemented knowledge man-
agement practice rooted in innovation, but in the sole knowledge management process
as well, especially in its sharing part, and application phase. For the purposes of the
aforementioned use of knowledge management (KM), KM is defined as the process of
discovering, acquiring, storing, sharing and applying knowledge.

11

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

While conceptual modelling is concerned with concepts and their definition through
the three descriptors referenced above, semantic modelling is about enriching conceptual
models with semantic information. In the context of distributed systems (e.g. MASs and
IoT or IoE), application of semantic technologies thus helps interoperability, promotes
integration and data transportation, fosters reasoning, and knowledge discovery and ex-
traction Wang et al. [150]. Following the set context, semantic models can be used to
assure more detailed semantic annotations for various system elements, including services,
resources, data, etc.

The main outcome of a semantic modelling process is an ontology – a knowledge model,
in its most basic definition, in the context of information and computer sciences. Schreiber
[128], building on Gruber [52], provides a tentative commonly used definition as: An
ontology is an explicit specification of a shared conceptualization that holds in a particular
context. An older definition, again in the context of information and computer sciences,
is given by Smith [131]: an ontology is a software (or formal language) artefact designed
with a specific set of uses and computational environments in mind. Russell and Norvig
[116] describe an ontology as the result of one of the steps in the knowledge-engineering
process using first-order logic, namely deciding on a vocabulary of predicates, functions,
and constants. An ontology is thus described as a particular theory of the nature of being
or existence. The ontology defines what kinds of things exist, but does not determine their
specific properties and interrelationships.[116] It should be noted here that the concept
of an ontology in the context of information and computer sciences is somewhat different
from the same concept in the context of philosophy. Whereas information and computer
sciences refer to a piece of software, in the context of philosophy ontology is the branch
of metaphysics that deals with the nature of being, and the basic categories of being and
their relations2. Further in this thesis, the concept ontology is used in the context of
information and computer sciences.

By its definition, an ontology consists of interrelated concepts. The included concepts
are defined using various constraints, and usually related to other concepts using rela-
tions. While it is suitable to talk about relations only on the lower levels of implementing
semantics, when using OWL 2 (as is the case of this research), we denote objects as indi-
viduals, categories as classes and relations as properties. [147] Therefore, while relations
are the entities connecting various concepts of an ontology, they are mostly referred to
as properties in this thesis. Furthermore, since the Lamrast−+ ontology is defined us-
ing OWL 2 constructs, two types of properties can be discerned: object properties and
data properties. Object properties are relation entities connecting two concepts or ob-
jects of the defined ontology (e.g. two individuals of type ComicBookCharacter), while data
properties are entities that relate an object to a data type (e.g. an individual of type

2Collins English Dictionary - Complete & Unabridged 2012 Digital Edition, c©William Collins Sons
& Co. Ltd. 1979, 1986 c©HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012

12

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

ComicBookCharacter and data of type string).
Three main ontology types are defined by Schreiber [128]: foundational ontologies,

domain-specific ontologies, and task-specific ontologies. Foundational ontologies (also
called upper ontologies [116, p. 437]) stay the truest to their original concept from philo-
sophical studies [131] where an ontology is the theory of that what is, considering they
aim to provide conceptualizations of general notions, such as time, space, events, pro-
cesses. [128] Domain-specific ontologies are related to a specific domain, i.e. a specific
context, and are intent on providing concepts and their relations in a particular area of
interest. One such ontology is the one of this research, presented further in this thesis
(Section 2.1), since it is related to a specific domain of LSMASs and MMORPGs. The
lowest-level ontology form are task-specific ontologies which provide conceptualisations
needed for performing a particular task. A somewhat similar specification is provided by
Russell and Norvig [116], which recognises general-purpose, and specific-purpose ontolo-
gies.

The shared aspect of an ontology in information and computer sciences, emphasised in
the above definitions, is the most interesting, for an ontology is created with the main goal
of supporting and promoting knowledge sharing. What is shared is a conceptualisation,
i.e. an abstract model of a specific phenomenon, or of specific domain, in terms of concepts
and their relations usually in the form of modelled concept properties. These concepts
are further specified using various terms and semantic features. Such a specification
is presented in a defined, clear, and precise form, using definitions and formalisms made
explicit using a language that is, preferably, understandable by both humans and artificial
agents.

Ultimately, every ontology, be it a foundational, a domain-specific, or a task-specific
one, is related to a particular context. Indeed, context is of great importance when
knowledge stored in an ontology is reused (thus fulfilling its main purpose) [128], as it
is unreasonable to expect various people or artificial agents to understand an author’s
conceptualisation, if no context is provided.

A further overview of semantic modelling was conducted in a Master thesis by Okreša
Ðurić [95]. The referenced work provides an overview of semantic modelling and the lan-
guages used for describing an ontology (Resource Description Framework (RDF), Resource
Description Framework Schema (RDFS), and OWL), as well as an insight into semantic
modelling of business rules.

Even though in their description and basic use, ontologies may be very similar to
an ordinary data model, the differences exist, and are situated in the emphasised intent
of ontologies – a set of concepts to be shared amongst users (human and artificial) and
applications. Ontologies are therefore created with an open world in mind (using the open
world assumption) where distributed knowledge is appreciated, while data models are
meant for relatively small, but more importantly, closed worlds (using the closed world

13

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

assumption). [128, 57] The closed world assumption (CWA) assumes that everything
that is not explicitly defined as true is false by default. On the contrary, the open world
assumption (OWA) assumes that that what is not explicitly defined as true or false, is
unknown, i.e. can be either true or false, but is not known. [116] Based on the following
fact, that is defined as true: Goran is from Pula. – the answer to the following question:
Is Ozano from Pula? – is false under the CWA, but is not known, and therefore neither
true nor false, under the OWA.

Various languages have been used for defining ontologies, from Ontolingua to Know-
ledge Interchange Format (KIF), to RDF and OWL, with OWL2 defined as the latest re-
commended standard in ontology languages by W3C OWL Working Group [146]. OWL
was thus chosen as the language for Lamrast−+ ontology implementation further de-
tailed in this thesis, because of its role of a de facto standard in the domain of semantic
modelling.

Conceptual models are extensively used in modern applications which demand increas-
ingly dependable communication between human and artificial agents, or even amongst
artificial agents without the access of a human agent. Many such modern examples are
gathered by Karagiannis, Mayr and Mylopoulos [65].

Ontologies or the concept of semantic modelling are used in combination with MASs
with increasing frequency, in many aspects related to MASs – whether for development
of a metamodel, for simulations comprising many agents [9, 67], description of knowledge
needed by agents in a system [101], enhanced understanding of a domain related to MASs
and computer games, design of MASs using ontologies as the basis of the process [57, 129,
107, 114], semantic representation of agent plans and the planning domains [44], object
annotations [10], or modelling smart city environments [17, 18, 74], to name a few.

Ontologies of the referenced examples are mostly used as models of knowledge that is
available to agents of the observed system. Those ontologies that are designed to contain
data further usable for modelling the observed system are concerned only with the basic
features of such a system, e.g. description of agents and objects in the system. The use
of ontology in this thesis is most similar to that presented in [17, 18], since both feature
ontologies as the first step towards a defined metamodel for a specific domain – LSMASs
in the case of this thesis. What is more, the ontology of this thesis contains concepts that
can be used to describe organisational features of a group of agents, which is a purpose
not seen in recent research. Finally, the ontology of this thesis is utilised as a medium
for providing a clear and unambiguous definitions for the concepts of the metamodel and
their extensions.

Other than using ontologies as a part of specific MASs, ontologies are used as know-
ledge maps for the various domains of computer games and organisation [118, 101, 145,
108, 98, 49]. The concept of organisational dynamics was not tackled yet though, as
ontologies and models by default represent a real-world phenomena in a moment in time.

14

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

The ontology of this thesis can be further constrained to achieve specificity necessary for
an efficient description of a gaming domain (e.g. to describe an MMORPG).

1.4.3 Models in the Domain of Multiagent Systems

Organisational models for MASs are used for showing organisational architecture of agent
systems. Such models are explicated using modelling languages comprising specific sym-
bols. Modelling language usually has two basic elements [5, 53, 59]: conceptualisation
(a set of modelling concepts), and syntax (rules of using the conceptualisation elements).
Therefore, a model [29] is an instance of syntactic conceptualisation of a given domain.
A modelling language is defined using a metamodel, i.e. a model of a model.

When the combination of MASs and system modelling is concerned, there are two
distinct concepts that have to be taken into account: multiagent systems (MASs), and
agent-based modelling (ABM). While a MAS details how an agent is implemented and
what are the implementation details, including their actions, features, and possibilities, an
ABM is interested in observing agents’ behaviour, interaction on a more social level, and
how the involved agents act in the given environment. In other words, MASs are used more
often in the context of development and integration of systems comprising a multitude of
agents (both virtual and real everyday systems are of interest to this observation), while
ABM is the concept often used alongside the concept of agents in the context of simulations
and simulation models. Therefore, the ABM approach is commonplace in research on
economics or social sciences, as a tool for conducting behavioural experiments that would
be too expensive, technically complex, or morally complicated, to be performed on real
subjects. Many of the arguments towards ABM in these respective fields are presented in
[15, 24, 153].

A part of the ABM approach is research of various characteristics of agents and their
allocation to roles. Roles in this context [130] group agents with appropriate charac-
teristics, being their connection to different sets of tasks that are associated with roles.
The modelling approach proposed by Sharpanskykh [130] is a form of ABM that fosters
modelling motivation of an agent. Agent motivation is an interesting concept for research
even in the context of belief-desire-intention (BDI) agents, and further social studies of
MASs and use of MASs in social studies and related experiments.

A more recent study by Béhé et al. [9] proposed a metamodel based on an ontology
for multiagent-based simulations. Using this metamodel, the simulation is split in de-
scription into two parts: a running ontology which encompasses all the entities related to
or produced by the given simulation, and definition bases that define all the entities that
can be encountered during the given simulation.

The first methodology that combines the benefits and good practice of both existing
ontology and MASs design methodologies is presented in [57], under the name of Onto-

15

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

Agent Methodology. The second part of the methodology, i.e. the agent methodology,
consists of the following five steps: 1) Classify agents according to their responsibilities;
2) Identify the need for an ontology to support agents’ intelligence; 3) Define agents’
collaboration; 4) Construct individual agents, 5) Protect the system by implementing
security requirements. Other than reusing the best features of earlier methodologies, new
characteristics are introduced as well. All of the methodology steps are described in [57].

A comprehensive, although not exhaustive, overview of modelling methods for MASs
was published by Abbas, Shaheen and Amin [3]. The overview of those modelling methods
for MASs, found in an organisational context, was presented in short in [92], where key
concepts where each model’s key concepts were extracted, as follows.

The first observed model, AGR model (agent/group/role, also known as Aalaadin)
[41], features three key concepts – individual agents, group of agents, and agent roles.
Agents are in the context of the AGR model considered as individuals capable of inter-
acting and communicating with each other, independent of their levels of reactivity or
intelligence. Since the model does not delve into implementation details of an agent,
agents can simply enact roles or belong to a group of agents. Groups comprise many
agents that share a common interest or a common feature. Thus, groups can be arranged
to form organisational segments, whether in functional or structural sense.

TÆMS framework’s [34] most prominent feature related to MASs is layered descrip-
tion of environments (a concept that is somewhat different from the standard environment
concept in the context of MASs). Since the original intention of the framework was to
model complex computational tasks, task analysis, environment modelling, and simula-
tions, it provides concepts necessary for describing tasks and group tasks. Tasks and
environments are characterised using three layers [34]: objective, subjective, and generat-
ive. Agents of this framework are not defined as usual either, being modelled as a locus
of belief and action.

A model that builds on aforementioned Aalaadin model, MOISE+ (Model of Organ-
isation for multI-agent SystEms (MOISE) [61], comprises concepts that are needed for
structural, functional, and deontic modelling of organisation in the context of MASs. The
focus of this model is on modelling roles and relations between them, rather than on
modelling agents. Similar to a normative perspective, roles are considered as constraints
that individual agents must follow when enacting a specific role. Roles are defined in
a cause-and-effect style, with available roles being dependent on the role already played
by an agent. Grouping is performed on a role basis, with agents enacting a specific role
grouped in a specific group. MOISE+ features functional specification, wherein goals are
structured in plans and grouped in missions. Plans are not necessarily linear, as they can
be modelled using the available notation for sequential, parallel, or choice-based plans.

Although possibly deemed as an outsider in this group, a language for textual specific-
ation of electronic institutions, ISLANDER [40], is included here for its language parts

16

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

that are used for defining performative structure, its scenes, and normative rules. Norm-
ative rules define action consequences, whereas possible actions an agent can perform are
defined by roles as sets of constraints over individual agents. Some of the more important
constraints are communication protocols, which are used in inter-agent communication.

OperA framework [35] is focused on describing a system at a conceptual level, com-
prising concepts whose main use is to define structure and global behaviour of a model.
Agents of the system are modelled independently and separately, when their internal
design is considered. Three components of the framework are considered: organisational
model (models roles and interactions), social model (distributes individual agents along
the defined organisational stucture), and interaction model.

AUML [141] is an agent-based extension of UML that incorporates swimlaned, class
diagrams, sequence diagrams, and activity graphs. Swimlanes are to be used for role
grouping purposes. Class diagram serves for the purpose of defining roles and their rela-
tionships. Finally, sequence diagrams are used for describing possible interaction withing
the modelled system, amongst the defined roles.

The model which set out to be the most general one of all in this list, NOSHAPE
MAS [1, 2], works with three levels of abstraction: universe, world, and organisation.
It is important to note that this model knows about holarchy and hierarchy, wherefore
individuals can be either individual agents or a group, depending on the perspective.
A similar approach is used in the definition of an organisational unit in the context of
Lamrast−+ metamodel.

MACODO [154, 155] is another particularly interesting model because its main inten-
tion is describing dynamic organisations. Agents are therefore modelled separately from
their lifecycle, which is a technique that makes it easier to understand and model changes
in a given system, or its environment, as well as their effect on the given system and its
elements.

Overview of the above models is purposed as a short description and depiction of
the most common concepts used in models for MASs – those for describing structure of
a system of agents (e.g. groups of agents, and agents), interaction within the system
(e.g. communication protocols), normative restrictions (e.g. norms as roles), and some
functional features of an organisation (e.g. capabilities of agents), to name a few.

All the models mentioned in the overview above, except for NOSHAPE MAS, the most
recent one, are used to deal with MASs, and not their large-scale counterparts. Several
levels of abstraction, mentioned by NOSHAPE MAS help coping with large-scale systems,
which is the intention of the Lamrast−+ metamodel as well.

Development of various aspects of MASs or LSMASs exists in the form of a large
number of diverse models or platforms. Apart from those briefly described above, others
are available as well. One such, jTRASTO (java Real-Time Agent Specification Toolkit)

17

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

was published by Navarro, Julian and Botti [90]. As the name suggests, this framework
provides developers with the opportunity to develop real-time MASs in accor dance with
jART (java Agent for Real-Time) platform. The authors argue about the popularity of
Java programming language for implementation of MASs, although Java at the time (year
2007) was not apt for implementation of real-time systems, such as the one proposed
by jTRASTO, until Java extensions were developed that deal with garbage collection,
dynamic load of classes, and general stability of the given system. However, byways do
exist, wherefore the implementation of jTRASTO is possible and feasible. Afterwards, in
year 2015, the jART platform was used by the authors to implement a system of real-time
agreement agents [91].

Another approach to modelling MASs was published by Horling and Lesser [60], in
the form of the Organisational Design Modelling Language, which renders models in two
distinct forms: a template that contains explicit encoding of organisational decisions that
must be made, and an organisational instance which is based on the defined template, and
created by making specific choices for the defined decisions. The language contains a set
of concepts, including node templates, parameters, has-a relations, constraints, variables,
etc.

When recent publications are considered, it is worth noting a three-layer platform for
large-scale game-playing multiagent systems on a high performance computing infrastruc-
ture developed in JAVA that focuses on large-scale machine learning experiments [68].
Another novel model featuring some organisational aspects, such as norms, roles, organ-
isations, and interaction, in the context of designing holonic multiagent systems (HMASs)
with added normative concepts in order to retain the idea of social control within such
systems, is described by Missaoui et al. [83]. In the context of MASs built for the purpose
of modelling and simulations of large-scale complex adaptive systems, Birdsey, Szabo and
Falkner [13] introduce the specific concept of semantic groups to an already published
earlier defined language, representing a group of agents that have a semantic relationship.
Thus enriched language can be used to define applicable systems. Models developed
to foster the concept of self-organisation (briefly mentioned in Section 1.4), such as the
one described by Lhaksmana, Murakami and Ishida [73], emphasise the importance of
roles, for self-organised systems, by default, do not have their goals and behaviour of
agents defined beforehand. Furthermore, some recent studies [72] referenced in [3] in-
troduced a temporally-dynamical organisational component to organisational models for
LSMASs arguing the need for real-time models for LSMASs and promoting reorganisation
in LSMASs.

Lamrast−+ metamodel is either a more generalised view on many of the just men-
tioned examples, or is complementary with them. While the three-layer platform for
large-scale game-playing multiagent systems [68] is focused on grid infrastructure and
faster or automated execution of experiments thereon, the research of Missaoui et al. [83]

18

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

concentrates on normative elements used to constrain a system of agents. Applicable
to LSMASs due to the holonic point of view, which is similar to that of Lamrast−+
metamodel, the model is used for defining a set of norms that constrain behaviour of
agents in a system of agents. Such norms can be described using modal operators for
obligation, permission, and designating something as forbidden. Although Lamrast−+
recognises the benefits of using holonic approach to defining groups of agents, normat-
ive aspects of organisations are contained in role definitions, while additional normative
elements can, at the moment, be stored in a knowledge artefact. A difference between or-
ganisational and non-organisational norms does exist though. Semantic groups specified
in [13] can be considered as a specification of a compound organisation unit of Lamrast−+
metamodel, since they represent a group of agents organised using a specific criteria of
organisation (semantic relationship, i.e. a set of relationships between entities). It is in-
teresting to note here that semantic groups, since they depend on agent relationships, are
susceptible to time, yet so are compound organisational units of Lamrast−+ metamodel,
using the concept of organisational dynamics. Finally, the role model presented in [73] is
about modelling roles only, therefore in a way similar to the mentioned normative model
[83], featuring no concepts that can be used for modelling organisations, role actions, or
strategic elements such as objectives – all of which are featured in Lamrast−+ metamodel.

Coutinho, Sichman and Boissier [29] evaluate organisational models for MASs using
the following set of dimensions: organisational structure, organisational functions, or-
ganisational interaction, organisational norms, organisational evaluation, organisational
evolution, organisational environment, organisational ontologies. Out of the eleven ana-
lysed organisational models, most of them feature concepts of organisational structure,
yet only a smaller number of models comprise concepts of organisational interaction, or-
ganisational functions, and organisational norms. It is expected that the four mentioned
basic dimensions are present in most of the analysed models, whereas the four additional
dimensions are often missing. Indeed, only two models contain concepts of all the basic
dimensions (e.g. OperA, MAS-ML).

A newer research done by Schatten [118] and Schatten, Ševa and Tomičić [122] presents
a revised set of organisational modelling perspectives that are argued to aid more to build-
ing efficient LSMAS constrained by organisational features. The mentioned set contains
the following seven perspectives: organisational structure (decision and information flows
of an organisation), organisational culture (important intangible aspects of an organisa-
tion including knowledge, norms, reward systems, language and similar), strategy (long
term objectives of an organisation, action plans for their realisation as well as tools on
how to measure success), processes (activities and procedures of an organisation), indi-
vidual agents (the most important asset of any organisation – individual agents actually
performing the work), organisational dynamics (organisational changes including reorgan-
isation of any of the mentioned components), as well as context and inter-organisational

19

Chapter 1. Introductory Notes and Related Research 1.4. Related Research

aspects (organisational behaviour towards its environment including strategic alliances,
joint ventures, mergers, splits, spinouts, and similar).

Based on the above, Lamrast−+ metamodel represents a novelty insomuch that it:

• features concepts necessary for high-level organisational modelling of LSMASs, as
opposed to modelling MASs only;

• respects the recursive nature of holonic point of view on the concept of organisational
unit;

• allows model designers to model normative elements of a system using the concepts
of roles and their actions, storing further norms in knowledge artefacts that are
accessible to to either organisational concepts (i.e. roles), or individual concepts
(i.e. individual organisational units);

• provides concepts that can be used for modelling simple and complex objectives,
and their position in an organisation;

• can be used for defining various forms of agent groups (compound organisational
units), independent of their used criteria of organising;

• provides the concepts for modelling a system of agents that can dynamically change
the actions at their disposal based on the roles they enact.

Apart from the beneficial features of the Lamrast−+ metamodel, further benefits are
apparent in the provided modelling tool, the most prominent one being the implementa-
tion template generator.

20

Chapter 2

Scientific Contribution

The following chapter is concerned with the scientific contribution of the research presen-
ted in this thesis, divided in the following manner [94]:

• a domain-specific ontology comprising organisational concepts applicable to the
domain of large-scale multiagent systems (LSMASs);

• a metamodel that allows for modelling of various application domains of LSMASs,
especially massively multi-player online role-playing games (MMORPGs), emphas-
ising modelling of organisational dynamics.

Both of the above stated elements are presented in this thesis starting with a short
introduction to the element at hand. A detailed account of the process of development
of the respective element follows, extended with an elaborate description of the associ-
ated concepts. Both of the scientific contribution sections end with an example serving
evaluation purposes.

21

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

2.1 Semantic Modelling

2.1.1 Ontology Engineering Methodology

A comprehensive overview of ontology engineering methodologies authored by Iqbal et al.
[63] sorts and marks various ontology engineering methodologies based on eight of their
attributes:

• type of development;

• support for collaborative construction;

• support for reusability;

• support for interoperability;

• degree of application dependency;

• life cycle recommendation;

• strategies for identifying concepts;

• details of methodology.

The set of 16 ontology engineering methodologies [63], evaluated against the above
set of criteria, is shown here in Table 2.1. Type of development classifies each ontology
engineering methodology into one of the following three categories: stage based model
(useful when the developer has purpose and requirements clearly defined), evolving pro-
totype model (used when evolution is favoured, as requirements are not clear from the
beginning), and guidelines (provides the ontology engineer with useful tips, rules, and
techniques for achieving better results, rather than presenting them with an overall devel-
opment model). The second criteria aims to foster the Internet as a collaborative tool, and
indicate whether a given ontology engineering methodology can be used for collaborative
ontology construction, thus allowing geographically or otherwise varied team members to
work on a single ontology at the same time. Support of reusability, as the third criteria,
indicates if the given ontology engineering methodology supports reusability of concepts
of existing ontologies. The fourth criteria indicates whether an ontology engineering
methodology supports interoperability between systems. Application dependency criteria
categorises each ontology engineering methodology as either dependent, semi-dependent,
or independent of a specific application, when ontology development is considered. The
sixth criteria indicates if a life cycle is proposed or not. Whether a strategy for identi-
fying concepts is defined, is indicated by the seventh criteria, with three possible classes:
bottom-up approach, top-down approach, or a middle-out approach. The final criteria

22

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

classifies an ontology engineering methodology according to the details provided: insuffi-
cient detail, some detail, and sufficient detail.

METHONTOLOGY ontology engineering methodology [42] was chosen based on the
review of ontology engineering methodologies published in [63]. The chosen methodology
is based on a developing prototype, has reusability support, is not dependent on a specific
application environment, is very well described, and has a clear ontology life cycle recom-
mendation. The above features of METHONTOLOGY are clearly, and comparatively
with some other ontology engineering methodologies, laid out in Table 2.1.

Being based on a developing prototype, the chosen ontology engineering methodology
predicts that the final product i.e. an ontology, is not generated in an instant, but
is a result of many iterations, and a process of refinement. Therefore, the overview
of the METHONTOLOGY steps given in Fig. 2.1 is not a waterfall-like list of steps,
but represents a collection of steps with their natural, but not exclusive or restrictive,
sequence. One of the most valued advantages of such an approach, in the context of this
specific research, is the refinement process foreseen by default in a way that the ontology is
not finished until the author is satisfied with the result, possibly using feedback from some
of the steps following any of the methodology steps (except, for example, the maintenance
state). Moreover, it is stated in [63] that evolving prototype may be the best choice when
requirements are initially not clear and need refinement over time.

As opposed to some of the ontology engineering methodologies on the list of [63],
METHONTOLOGY allows the ontology engineer to use ontologies that already exist,
thus avoiding building theirs from scratch. Such an approach is useful in this particular
scenario, since the ontology of this research is based on work already published in various
papers [126, 101, 98, 111, 104]. Furthermore, one of the basic features of an ontology
is the principle of interconnectedness, i.e. most ontologies available online are meant to
be reused by default [140, p. 7]. Therefore, a methodology that includes reusability
support is highly appreciated for this research. Iqbal et al. [63] states that methodologies
that support reusability help ontology engineers reduce the time and effort necessary
to develop an ontology, leaving them with more time to spend on other issues, such as
assuring ontology quality.

Even though the application scenarios for the ontology of this research is stated in the
basis of this thesis, using an application independent ontology engineering methodology
broadens the potential of the finished ontology, as it does not constrain the engineering
process based solely on the application scenarios and specific application knowledge base.
Furthermore, even though applicable scenarios are stated, the ontology should eventually
be used in various ways and with numerous kinds of agents, systems, etc.

23

C
hapter

2.
Scientific

C
ontribution

2.1.
Sem

antic
M
odelling

Table 2.1: Structured comparative overview of ontology engineering methodologies presented in [63]

Methodology Type of de-
velopment

Collaborative
construction

Reusability
support

Interoper-
ability
support

Degree of
application
dependency

Lifecycle
recom-
mendation

Strategies for
identifying
concepts

Methodology
details

TOVE stage based no yes no semi inde-
pendent no middle out some

Enterprise model approach stage based no yes no independent no middle out some

METHONTOLOGY evolving
prototype no yes no

application
independ-
ent

yes middle out sufficient
details

KBSI IDEF5 evolving pro-
totype no yes no independent no not clear some

Ontolingua modular
development yes yes yes independent no not clear some

Common KADS i KACTUS modular
development no yes no dependent no top down insufficient

PLINIUS guidelines no no no independent no bottom up some

ONIONS
modular de-
velopment
guidelines

no no yes semi inde-
pendent no not clear insufficient

Mikrokosmos guidelines no no no dependent no rule based some

MENELAS guidelines no no no dependent no concept
graphs insufficient

SENSUS
does not men-
tion any pref-
erence

yes yes yes dependent no bottom up some

Cyc methodology evolving pro-
totype no yes no independent no not clear some

UPON evolving pro-
totype no yes no independent yes middle out some

101 method evolving pro-
totype no yes no independent no developer’s

consent some

On-To-Knowledge evolving pro-
totype no no no dependent yes middle out some

24

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Specification Maintenance

Conceptualisation ImplementationIntegrationFormalisation

States

Activities
Knowledge Acquisition

Documentation

Evaluation

Figure 2.1: Basic steps of METHONTOLOGY ontology
engineering methodology, adapted from [42]

Using a set of methods, just like initial use of a metamodel without former experience
in using it, can be a tedious work, if the set of methods, or a metamodel, is not described
clearly enough and in sufficient detail. METHONTOLOGY is given a thorough explan-
ation and description in the initial paper of its original authors [42], and is even given a
slight modification in a later publication [75]. Having a summary of its steps, states, and
various included instructions at hand can prove to be a useful guiding element to how a
methodology is designed to be used.

“Methodologies classified to have sufficient details cover the employed techniques
with reasonable level of details, allowing the reader to clearly understand the tech-
nique and its application in the ontology development process.”

— Iqbal et al. [63]

In addition to being clearly described, the authors of METHONTOLOGY published
a set of identified states or stages in a life cycle of an ontology developed using their
methodology. In the context of developing an ontology, an ontology life cycle is defined
by Iqbal et al. [63] as a set of stages through which the ontology moves during its life. Using
an ontology engineering methodology that proposes stages in a life cycle of an ontology
provides the ontology engineer with a sense of security, since the guidelines do not stop
immediately after the ontology is created.

2.1.1.1 Activity One: Specification

“The goal of the specification phase is to produce either an informal, semi-formal
or formal ontology specification document written in natural language, using a set
of intermediate representations or using competency questions, respectively.”

— Fernández-López, Gómez-Pérez and Juristo [42]

25

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

As stated above, the goal of the specification phase or state (as referred to in Fig. 2.1)
is to define an ontology specification document. According to the guidelines about the
proposed information included, the Lamrast−+ ontology is specified as follows.

The Lamrast−+ ontology comprises various selected concepts from the organisational
modelling domain applicable to LSMASs. The main purpose of the ontology, strictly
speaking in the confines of this thesis, is to serve as a basis for the definition and devel-
opment of the Lamrast−+ metamodel for organisational modelling of LSMASs. From a
broader perspective, the purpose of the Lamrast−+ ontology is to collect and structure
concepts of human organisation modelling domain that are applicable to the domain of
LSMASs so as to facilitate organisational modelling of LSMASs, since, as stated earlier,
modern and upcoming instances of LSMASs in various application domains benefit from
organisational features (e.g. an organisational structure), and self-organisation, especially
in the context of achieving a system-wide common goal and utilising multitude of agents’
abilities.

The Lamrast−+ ontology is used as an initial stage of the Lamrast−+ metamodel,
yet its use is not limited to such a scenario, but can be broadened to description of
various application domains of LSMASs for many purposes, such as, but not limited to,
simulations, analyses, knowledge repositories, etc. As such, the ontology is, certainly,
intended to be used by developers (even game developers), knowledge engineers, and
designers of LSMASs.

Therefore, the ontology must comprise, at least, the following elements:

• a list of elements used in organisation modelling, e.g. OrganisationalUnit, Organ-
isation, OrganisationalArchitecture, OrganisationalDesign, Goals, Organisational-
Structure, etc.;

• a list of particular examples to depict use case scenarios of this particular ontology;

• various properties necessary for clear modelling of a specific domain, e.g. isAPartOf,
contains, isDefinedBy, isOrganisationalStructureOf, etc.

While developing the Lamrast−+ ontology, a middle-out approach is used, as opposed
to the classic bottom-up or top-down approaches, since it makes it possible to identify
the primary concepts early on, moving to specialisation and generalisation afterwards if
necessary, which results in less re-work needed and increased stability of the whole process.
[42]

It is necessary to mention here that the Lamrast−+ ontology is not concerned with
detailed modelling of individual agents, or their behaviour and complexity. Organisational
units are basic building blocks of an organisation, and their realisation is of no concern
when developing the ontology. In line with the mentioned, the Lamrast−+ ontology
provides a recursive definition of an organisation, and by extension an organisational unit.

26

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Such an approach is elaborated in [118], where organisational units are defined clearly
as individuals on the lowest observable level, that build an organisation supported by
several features of an organisation. These organisations can be organised into higher-level
organisations, whereat they can be considered organisational units. An easy illustrative
example of the above observation follows. In a smart city domain, an apartment in a
residential building can be occupied by smart appliances alongside human tenants. These
appliances (organisational units) can be grouped into an organisation on the apartment
level. Three other such apartments are located on the same floor of the observed building.
All the apartments of the same floor can be grouped into a floor level organisation (the
apartments are therefore now considered organisational units). The same approach can
be applied to other interesting levels of the observed workspace, e.g. floors organised into
the whole building. A very similar example is presented by Tomičić, Okreša Ðurić and
Schatten [136].

At the end of this activity, the above section represents an ontology requirements
specification document, in the domain of organisational modelling of LSMASs.

2.1.1.2 Activity Two: Knowledge Acquisition

“[. . .] knowledge acquisition is an independent activity in the ontology development
process. However, it is coincident with other activities.”

— Fernández-López, Gómez-Pérez and Juristo [42]

The paper detailing activities of METHONTOLOGY and the related methods [42]
presents the reader with a number of techniques its authors used while developing a
chemical ontology. The following techniques are mentioned:

• interview with experts (both structured and unstructured),

• text analysis (both formal and informal).

Additional techniques, including brainstorming and knowledge acquisition tools, are
recommended by the authors.

As the knowledge acquisition activity is not a time-constrained activity, i.e. it can
be performed throughout the most of the ontology engineering process, it already started
during the Specification activity, thus not being strictly second, but an underlying activity
of the whole process.

Knowledge acquisition techniques for the Lamrast−+ ontology engineering process
are quite simple in their most basic form, but get rather complicated in the context of
content analysis, comparison, and selection.

The main body of knowledge that is used in development of the Lamrast−+ ontology
was created during the cro. Organizacijsko oblikovanje višegentnih sustava u Internetu
Stvari - eng. Organizational Design of Multi-Agent Systems in the Internet of Things

27

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

(OOVASIS) project, and is hereafter referred to as OOVASIS ontology. The OOVASIS
ontology [126, 118] consists of the concepts that were identified as useful for organisational
modelling of LSMASs, by direct transfer of such concepts from the set of concepts used
in describing human organisations.

The OOVASIS ontology and the underlying work is described in some of the published
papers, mainly [126, 118], and the ontology itself, along with some of the more elaborate
descriptions available at the project wiki website. In order to access and assess relevancy
of all the available content, all the available sources have to be analysed. The key piece
of information about the OOVASIS ontology is that it comprises all the concepts that
were identified in the domain of human organisations and directly applied to the domain
of LSMASs. This approach is good in generally observing organisational modelling of
LSMASs, but the ontology developed for the purposes of this research and the emerging
results can be further constrained, or reduced in the number of available and important
concepts. Discussion on OOVASIS is continued in Section 2.1.1.4.

The second very important knowledge resource of concepts concerning (organisational)
modelling of LSMASs comes in form of the Multi-Agent Model For intelligent virtual en-
vironments (MAM5) metamodel and ontology. MAM5 is based on the idea of LSMASs,
but with a more emphasised organisational approach, and providing a development en-
vironment of sorts when used in tandem with Jason Cartago implemented intelligent
virtual environment (JaCalIVE) framework, which provides a method to develop a kind of
intelligent virtual environments (IVEs) along with a supporting platform to execute them
[112], and is based on the MAM5 metamodel. Considering how appropriate MAM5 is
for the topic of this document, it is considered noteworthy in the context of knowledge
acquisition activity towards the Lamrast−+ ontology.

Further knowledge acquisition tasks are performed related to the activity of integra-
tion, Section 2.1.1.4, since already existent models for multiagent systems (MASs) and
LSMASs have to be found, identified, and analysed.

Certainly, the knowledge acquisition activity is not a one-shot activity, and is being
performed all through the research, thus allowing for further improvement of the already
done work. Probably owing to such a nature of this activity, knowledge acquisition is
primarily performed using the available text analysis techniques, with some basic un-
structured expert interviews where applicable.

2.1.1.3 Activity Three: Conceptualisation

“[. . .] you will structure the domain knowledge in a conceptual model that describes
the problem and its solution in terms of the domain vocabulary identified in the
ontology specification activity.”

— Fernández-López, Gómez-Pérez and Juristo [42]

It is noted in [42] that the conceptualisation phase of METHONTOLOGY is about

28

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

producing a set of well-defined deliverables that make the act of ascertaining whether
the final ontology is needed at all, useful, and usable for the given application domain.
Furthermore, if these deliverables are done well, ontology comparison can be done based
on them.

The initial glossary of terms (GT) includes all the relevant concepts, instances, verbs,
and properties of the given domain. More specifically, GT by definition identifies and
gathers all the useful and potentially usable domain knowledge and its meanings. [42]
Such a GT is based on the specification document, i.e. the result of the specification
activity described in Section 2.1.1.1.

Further specifics of the conceptualisation activity are defined using some of the fol-
lowing [42, 49]:

• data dictionary (DD) – used to describe all the gathered, useful, and potentially
usable domain concepts, their meanings, attributes, instances, etc.;

• tables of instance attributes – provides information about attributes or their values
at the instance level;

• tables of class attributes – similar to the above, but at the concept level;

• tables of constants – specifying features that never change;

• tables of instances – defines relevant instances;

• attributes classification tree – graphical representation of attributes and constants
related in the inference sequence of the root attributes, as well as the sequence of
formulas or rules to be executed to infer such attributes. [42]

Whilst the above mechanisms (shown graphically in Fig. 2.2) are used for concepts,
identified verbs from the GT, that represent actions in the given domain, are handled and
described using the following:

• Verbs Dictionary – declarative expression of the meaning of relevant verbs;

• tables of conditions – specifying the pre- and post-conditions of relevant actions.

In case there are identified formulas or rules, a table of formulas, and a table of rules,
are defined, so as to gather the available knowledge about formulas and rules.

data dictionary Concepts identified in this step of METHONTOLOGY, that are a part
of the data dictionary, are presented in Appendix A.1. Many of the identified concepts
have their descriptions and definitions stated (e.g. concept A.20 Norm), and concepts’
synonyms and acronyms are noted where applicable (e.g. concept A.3 Agent). Only
those concepts that were afterwards classified as needed for the Lamrast−+ metamodel

29

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Data Dictionaries
Tables of Instance Attributes
Tables of Class Attributes
Tables of Constants
Tables of Instances
Attributes Classification Trees

Verbs Dictionary
Table of Conditions

Concept Classification Trees Verbs Diagram

Table of Formulas
Table of Rules

Glossary of Terms

Concepts Verbs

Figure 2.2: Intermediate Representations in the concep-
tualisation phase, adapted from [42]

30

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

development are detailed using class attributes and instances in the context of The Mana
World (TMW), the open-source 2D MMORPG game used during the Large-Scale Multi-
Agent Modelling of Massively On-Line Role-Playing Games (ModelMMORPG) project.
The following is a brief description of a select number of concepts presented in DD, in the
context of MMORPGs and LSMASs.

The identified concepts, as expected, mostly revolve around the idea of an organisation
(A.24) as a group of agents structured according to a set of criteria (A.5). The main
reason why such a group is constituted in the first place is the claim that an organised
group of individuals is more successful than an unorganised group of individuals, mainly
because organisation overcomes various hindrances of individual agents (A.3). Some of
the mentioned hindrances are spatio-temporal uniqueness of an individual (one agent can
at exactly one point in time be at exactly one point in space), skill constraint (no agent
can be a Jack of all trades), and more [3, 4, 62, 46]. In the context of MMORPGs,
the most common criteria of organising are certainly goals, i.e. common ground of a
couple of player agents who are working each on their own towards fulfilling a certain
goal, but realise that together the given goal can be achieved in an easier fashion, usually
more profitable for all included. Such a grouping behaviour is observable in the context
of creating short-termed groups usually called parties, while coalitions based on a more
strategic outlook, thus longer lasting, are called guilds.

Organisations as systems comprising individual agents are encompassed by the concept
of a Workspace (A.45) which comes from the MAM5 ontology. A workspace includes all
the concepts even remotely relevant to an organisation. Physical section of the said
concepts belongs to the concepts of IVE workspace (A.16). All the concepts that can
influence the given organisation, but are not strictly a part of it, belong to the environment
concept (A.28). The mentioned IVE workspace is one of the subconcepts of an IVE (A.14)
– a virtual environment that simulates the real world, and is populated by autonomous
intelligent entities. Various organisation of elements of an IVE causes organisations to
change, in any of their key aspects, which leads to organisational change (A.26).

Individual agents are the basic unit of an organisation. These agents work using
their actions (A.2) towards fulfilling high-level objectives (A.22) that are integral parts
of a strategy of an organisation (A.41). Objectives can be cut down into goals (A.8), or
quests (A.36) and tasks (A.43). A set of successive actions following the antecedent and
precedent relations, i.e. such a set that has a positive outcome in the context of agent’s
aims, is a plan (A.34). A plan can be made true following a series of actions, i.e. a process
(A.35).

Every action in a system in the context of this document pertains to a specific role
(A.37) that can be played by an organisational unit. An organisational unit can, follow-
ing the formal definition that uses a form of recursion (laid out in [118]), represent an
individual agent, or a group of agents forming an organisation. Since a whole organisa-

31

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

tion, i.e. an organisational unit, can ultimately enact a specific role (like a wizard, or
a builder), a role is observed as quite an abstract concept, employing the idea of norms
(A.20). A norm is an informal rule that is socially enforced, and is a constituent part of a
normative system (A.21). Although a general description of a normative system is given
in the respective Appendix A.1, it is useful to state here that a normative system in the
context of MAS is a blend of both normative systems and MASs. A normative multia-
gent system is therefore a set of agents that are governed by specific norms (i.e. their
interaction is governed by norms) which can be obeyed, but can be deviated from as well.
Thus, it is apt to state that agents can choose whether to follow the given norms, and
that the system can decide upon the extent to which agents can modify the initially set
norms. One could state that the instrument affecting the stated features is organisational
culture (A.27).

The DD is subject to knowledge verification, so as to assure that there are no contra-
dictory pieces of knowledge inside the DD, and that the contents are consistent throughout
the DD. Aims of this process are enumerated in [49], and are immediately followed here
by comments pertaining this particular DD:

• To guarantee the completeness of the knowledge attached to each concept. That
is, the concept description is concise and all the relevant instance attributes, class
attributes and instances have been identified.

Concept descriptions and definitions are concise and clearly represent the aimed-
at concepts. Attributes and instances are included only where their inclusion is
beneficial towards fulfilling the research goal of this research, i.e. when concepts
that are a part of the Lamrast−+ metamodel are considered.

• To determine the granularity or level of detail of the concepts covered by the ontology.

From the defined descriptions and definitions, it is clear on what level of granularity
a certain concept is being used, i.e. what level of detail it describes and can be used
for.

• Consistency of the instance attributes and class attributes. That is, they make sense
for the concept.

All the concepts in DD have consistently named attributes that are divided amongst
classes and instances in a consistent manner.

• Concept names and descriptions. To assure absence of redundancies and to keep
concision.

Concise concept names, descriptions, and definitions help in easy comprehension of
the concepts included in DD. There are no overlapping concepts defined in the DD,

32

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

yet when concepts are defined as almost identical, that is clearly stated, and their
differences are emphasised.

Classification Classification [105, 99, 100] is a process that helps agents (artificial and
real alike) observe and perceive their environment and structure their knowledge about
it. It is used as a sort of a catalyst that fosters information communication, thus reducing
the necessary amount of information agents have to remember, communicate and process.
The extent to which the aforementioned is achieved depends on the number of properties
of a concept [105, p. 39]. Therefore, data dictionary provides an overview of class and
instance properties. Moreover, classification provides cognitive economy since it allows
the agent to structure knowledge about objects into two levels: concept and instance. [105,
p. 39]

Concept has properties common to all the instances of the said concept, while at the
instance level, we find only the concept of which the object is an instance. [105, p. 39]
Properties are classified as defining or non-defining [105, p. 38], where defining properties
are the necessary and sufficient properties for an object to be considered an instance of
the concept, and non-defining properties are described as redundant. The operation of
classification is therefore simply mostly checking that all the defining properties of a
concept are included in the set of all the properties of the given object, i.e. an instance
must have all the properties of the given concept, optionally enriched with additional
properties. Such a set of defining properties of a given concept is called the intension of
the given concept.

Using the idea of classification, the concepts in DD were analysed, and their respective
class and individual properties were defined. Such properties are listed in Appendix A.1, at
their designated places. However, not all the concepts described within the DD have their
respective class and individual properties stated. Only those concepts that are selected
to be included in the finalised metamodel have their respective properties detailed.

Individuals of some of the concepts present in DD are named in Appendix A.1 under
the Instance/s part of an applicable concept. The individuals stated there are mostly
from the domain of The Mana World or MMORPGs. These individuals have or can have
the individual properties stated in the Attributes part of select concepts. Only a small
number of concepts are detailed using the possible instance attributes, namely those that
are featured in the metamodel concepts. Most of the concepts that have no individuals in
Appendix A.1 are described as abstract classes, having classes as individuals, or simply
can have individuals that are not of interest for this research.

Most of the individuals in Appendix A.1 are references to work published primarily
in [126], yet some reference the mentioned computer game of MMORPG genre, The
Mana World. Such individuals as non-player characters (NPCs) Archmage and Sorfina,
classified as Inhabitant Agents in DD (A.13), The Quest for the Dragon Egg, classified

33

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

as a quest (DD A.36), and Wizard or Warrior as individuals of class Role (DD A.37) are
prime examples of individuals from the MMORPGs domain. Individuals pertaining to
another take on IVEs, MAM5, are present in extension sets of some of the classes, most
interesting being the mentioned inhabitant agent (which is clearly well blended in the
MMORPGs domain), along with IVE Law (DD A.15) represented with the individual
When a character is located on a map with at least 75% of tiles of type Frozen, they are
more susceptible to Damage of type Ice., and intelligent virtual environment itself (DD
A.14) with its individual that represents the whole modified version of the mentioned
TMW computer game.

Tables of Instance Attributes It is stated in [49] that an individual instance attribute
table is to be defined for every attribute included in the DD. Only the most interesting
concepts of the DD have their instance attributes defined, as follows.

Out of all the parts of an instance attribute table prescribed in [49], some of them are
omitted in the following tables, since their inclusion is not regarded as beneficial for the
purpose of the process of engineering the ontology of this research.

Since it is accustomed to talk about properties rather than attributes in the context of
an ontology, when one is discussing a Web Ontology Language (OWL) 2 ontology, instance
attributes tables are referred to as instance property tables in this document. Considering
that most of the properties used in Lamrast−+ ontology, and all the properties in tables
of Appendix A.2 , this document works with properties – data properties that connect
individuals with literals, and object properties that connect pairs of individuals [146]. The
term instance attributes references attributes, i.e. properties, that are applicable on the
level of individuals. Opposed to this, class attributes are relevant properties of the concept
that describe the concept itself. [49] All of the properties in Appendix A.2 are classified
as belonging to the original concept of individual attributes since they are defined at the
level of individuals, even though a concept, i.e. a class, is defined using those properties,
but in the context of individuals which it contains, i.e. particular individuals that are
to be reasoned to be individuals of that particular class. Furthermore, the concepts of
Appendix A.2 are, in fact, object properties.

The properties described in Appendix A.2 are those that are a part of the ontology
and are deemed useful for the metamodel, or are interesting since they belong to useful
concepts of the DD.

Properties are described in Appendix A.2 using a subset of properties proposed by
[49]. The property isAchievedBy that is used by individuals of class Objective is described
because it creates a link between specific actions (DD A.2) and objectives (DD A.22). As
stated before, any given action can achieve exactly one objective, even though an objective
can be achieved by a single action out of a set of them (denoted by Cardinality attribute
of the property). For example, in the domain of MMORPGs, an objective of killing a

34

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

non-player character, a mob, can be achieved either by attacking the target with whatever
weapons available, or by using other means that are permitted in a given situation (e.g.
throwing the target off a cliff). Situations as the one described are not often applicable,
and mostly happen during a regular attack.

Several other properties described in Appendix A.2 are interconnected. An organ-
isational unit that represents an organisation (consists of a number of lower-level organ-
isational units and organisational features) by its definition defines some roles (property
definesRoles, IA A.49). Based on the defined roles, and roles that are already available in
the given organisational unit, a set of roles is available to be played by lower-level units of
that particular organisational unit (property hasRole, IA A.52). All the roles that exist
in an organisational unit, are, presumably, playable by lower-level organisational units,
i.e. every role in an organisation can be played by at least one organisational unit of that
organisation. Roles that are played by a given organisational unit are designated using
the playsRole property (IA A.53. Furthermore, actions that are available to the organisa-
tional unit playing a given role can be used to achieve (inverse property to achievedBy,
IA A.46) certain objectives.

It should be discussed here that roles are by default playable by at least one organisa-
tional unit in an organisation, yet do not necessarily have to be played at every moment
in time. One should observe a situation in which the role of a Wizard can not be played
by any of the organisational units of an organisation if none of the units possesses the
necessary skills. It should be decided then whether the role should be disbanded, and
therefore not defined by the organisation anymore, or it should be allowed to exist even
though no organisational unit exists in the organisation that can play the given role.

Concept Classification Tree Concept classification tree is used to organise recognised
domain concepts , most of which are described and defined in the DD. The classification
tree represents visual take on the taxonomy and relations of the selected concepts. The
concept classification tree in Fig. 2.3 represents a selected set of concepts, since using the
whole ontology, using all the defined concepts, would further decrease legibility.

2.1.1.4 Activity Four: Integration

“Ontologies are built to be reused. [. . .] So, you should reuse existing ontologies.”
— Fernández-López, Gómez-Pérez and Juristo [42]

The activity four of METHONTOLOGY strives to fulfil one of the main goals of
the concept of ontology – re-usability and a big network spanning many ontologies. In
order to achieve the set goal, domain compatible existing ontologies have to be analysed
and marked according to the level of their fitting into the concept of the ontology being
developed. Lamrast−+ ontology concerns the domain of organisation and LSMAS. Some

35

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Figure 2.3: Concept classification tree

36

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

interesting existing ontologies were found to be connected to the said domain, yet three
specific ontologies were decided to be most interesting and useful: OOVASIS, MAM5,
and World Wide Web Consortium (W3C) The Organization Ontology [145].

OOVASIS ontology is deemed interesting because it represents a modern take on the
problem of organisational modelling of LSMASs. MAM5 deals with IVEs, therefore posing
as a good candidate as one of the most interesting existing ontologies, in the context of this
research. The following is the account of the two most prominently included ontologies,
in somewhat more detail.

OOVASIS ontology is a result of OOVASIS research project. The ontology comprises
concepts applicable to the LSMASs domain, pertaining to the idea of organisational mod-
elling of such systems, i.e. referencing various features used for describing human organ-
isations. The research resulting in the OOVASIS ontology was conducted as a thorough
study of publications in the domain of organisation theory, organisation architecture,
and organisation design [126]. Customised tools were used to conduct the said research,
detailed in [126, 118].

The original OOVASIS ontology was further developed and enriched during the course
of ModelMMORPG project, a part of which is this thesis. Therefore, further in this thesis,
the used ontology is the one that is the result of the ModelMMORPG project, but it is
referenced here with the older prefix of OOVASIS for legacy reasons. This modified ontology
[98, 101] is available at the project’s web site1.

One of the most prominent contributions of this research is the ontology featuring
identified organisational concepts, from human organisations, applicable to the domain of
LSMASs. Structure of the core concepts of the OOVASIS ontology is shown in Fig. 2.4,
showing only concepts relevant to this document. Thus the research represents a theoret-
ical groundwork for modern LSMASs using organisation features in LSMASs categorised
into seven perspectives of organisational modelling primed for the future of LSMASs:
organisational structure, organisational culture, strategy, processes, individual agents, or-
ganisational dynamics, as well as context and inter-organisational aspects. Another key
feature of this document found its base in [118], that of recursive modelling of various
organisational concepts, similar to the idea of holons and holarchy [113, 56, 83].

It is clear, considering the above, that the ontology is not concerned with individual
agents, rather with organisational features of groups of agents or individual agents. There-
fore, it can be used to describe mutual relations of agents in an organisational context
and organisational features of an organisation formed by agents. The ontology still com-
prises concepts of human origin, i.e. pertaining to human organisations, an idea that is
clearly transferred to Lamrast−+ ontology, even though it represents an open area for
improvement, since not all of the identified concepts have to be present when artificial
agents are taken into account.

1For more information, visit http://ai.foi.hr/modelmmorpg.php

37

http://ai.foi.hr/modelmmorpg.php

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Thing

Organisation
Architecture

Organisation
Change

Organisation
Culture

Organisation
Knowledge
Network

Knowledge
Artefact

Norm

Role

Organisation
Design
Method

Organisation
Environment

Organisation
Individuals

Organisation
Processes

Activity
/

Behavior

Organisation
Strategy

Objective

Organisation
Structure

Organisation
Unit

Agent

Figure 2.4: Visualised structure of core OOVASIS con-
cepts. [104]

MAM5 is a model working with IVEs, featuring an ontology in its background that
comprises concepts necessary for essential modelling of IVEs. An IVE is an abstract of
a MAS, defined as a virtual environment simulating a physical world, inhabited by both
human and artificial autonomous intelligent agents [8]. An overview of interesting concepts
of MAM5 is given in Fig. 2.5, where concepts are shown that allow for modelling physical
and non-physical elements of a IVE. Physical entities can be situated and represented
physically in a physical world, as opposed to non-physical which cannot. Human-immersed
agent is an interesting addition (in contrast to OOVASIS for example), emphasising that
an IVE can include both artificial and human agents, or direct representations of human
agents in a virtual system. MAM5 follows the Agent & Artefact (A&A) metamodel [106],
thus allowing for representation of agents, artefacts, and workspaces. The artefact concept
can be used to model various kinds of entities not classifiable as agents or workspaces
(containers of system-wide elements).

Therefore, MAM5 ontology is a basis for the model that can be used for modelling
virtual environments, on a declarative level. A limited palette of inter-system entity
relations are available, yet more advanced concepts that would make modelling systems
from the LSMASs domain possible are lacking. Such a state is possibly supported by a
probable conclusion based on analysis of MAM5, stating that the said model is developed
primarily to be used in the context of MASs, but not LSMASs. The former is motivated
by observations of the importance of organisational features in LSMASs, discussed earlier
in this document.

It should be mentioned here that the Lamrast−+ ontology is heavily based on the
mentioned two ontologies, since both are applicable to the concepts of MASs, yet each
covers a specific context of the mentioned domain. MAM5 is to be used to define systems
comprising artificial and human agents, as well as artefacts, thus describing an IVE in
terms of possible actions that agents can perform in order to affect their environment in a

38

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

IVE

Non-Virtually
Physical Situated

Workspace Artifact Agent

Virtually
Physical Situated

IVE-Workspace IVE-Artifact Inhabitant-Agent

Human-Inmersed Agent

Figure 2.5: Visualised structure of core MAM5 concepts.
[104]

predefined way. On the other hand, the OOVASIS ontology is defined in order to facilitate
modelling of LSMASs, especially in the context of organisational features of such agents.
Thus the emphasis is on the concepts necessary for expressing various organisational
features of a system of agents. Furthermore, normative elements are included, fostering
definitions of normative systems. Clearly, the two chosen ontologies are related by their
common interest and primary domain, and their combination is seen as a useful addition
to both of the ontologies. Further discussion on their individual benefits for the domain
of LSMASs, as well as the benefit of their combination, is discussed further in this thesis
and in [104].

The selected set of important concepts of Lamrast−+ ontology with noted original
ontology names where applicable, i.e. where the given concepts were reused from another
ontology, is available in Fig. 2.6. Every concept name is prefixed by the appropriate
namespace, i.e. name of the ontology it comes from. JaCalIVE namespace denotes MAM5
ontology, OOVASIS the corresponding extended ontology, and mambo5 is the namespace of an
ontology that is a part of a collaborative research performed during the ModelMMORPG
project, and was submitted for publication. It should be noted here that the Lamrast−+
ontology is a slight addition [98, 101] to already published research [8, 111, 126, 118],
since it is focused on defining concepts applicable to the domain of LSMASs, thus being
heavily dependent on concepts related to the domain of MASs.

Since the OOVASIS ontology is built with the LSMASs domain in mind, but with no
real application or implementation examples, it presents a strong foundation for describ-
ing LSMAS applications in organisational context detailing their various organisational
features. The lack of implementation details clearly keeps it in the theoretical domain.
MAM5 ontology, on the other hand, is directed towards implementation by using the
MAM5 model and the JaCalIVE framework in order to create a working example descrip-
tion of an IVE, which fundamentally models an LSMAS application domain example. The

39

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Figure 2.6: Lamrast−+ ontology class hierarchy as seen
in Protégé

40

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

ontology presented in this thesis is utilised as a starting point towards defining a prac-
tically usable metamodel for organisational modelling of LSMASs, thus representing an
upgrade on both of the referenced ontologies.

On both sides, from the perspective of MAM5, and that of OOVASIS, improvement
opportunities are detected, in the form of further enrichment of the ontology, and further
improvement of applicability or implementation, respectively. The benefits of introducing
organisational features to MAM5 are identified in the opportunity to expand MAM5 to
LSMASs, and modelling and implementation of more complex applications that would
benefit from the introduced organisational concepts, in the context of earlier definitions
of organisational modelling and the benefits of organisations in LSMASs. The concepts
of OOVASIS, on the other hand, can be used to enrich the content of any MAS-related
ontology or a model that works with ways of creating organisations in MASs, or that
fosters cooperation of agents. One of the prominent benefits is observed in the testing
and example development environment created by combining OOVASIS concepts with
implementation-ready MAM5.

The combination of these ontologies, presented as the Lamrast−+ ontology, provides
its user with a more expressive set of concepts for describing LSMASs. Such an ontology
was published under the name of MAMbO5 [104], yet for the sake of consistency it is
referred to as Lamrast−+ throughout this thesis. Apart from the basic organisational
features of a system of agents, the new ontology features various other concepts that
can be used for describing more complex LSMASs that feature human agents, location-
dependent organisations, more detailed normative concepts, and a set of new or improved
properties. On the other hand, the new ontology can, using its expanded or revised set
of concepts, be used for creating a richer description of IVEs that feature organisational
concepts, updated grouping concepts, and a revised take on normative concepts.

2.1.1.5 Activity Five: Implementation

“The result of this phase is the ontology codified in a formal language [. . .]”
— Fernández-López, Gómez-Pérez and Juristo [42]

The implementation activity is about completing the implementation process of the
ontology. Codifying Lamrast−+ ontology in a formal language is performed using Protégé
and OWL2. Both were chosen based on their widespread use in academic as well as in
real sectors, and their status of formally defined or informally established standards in
the context of ontology engineering. Class hierarchy created using Protégé is shown in
Fig. 2.6.

Protégé [86] is the most widely used software for building and maintaining ontologies,
with more than 250 000 users in 2015.

“The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language

41

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

1 Declaration (Class(<OOVASIS_ # OrganizationalUnit >))
2

3 EquivalentClasses (<OOVASIS # OrganizationalUnit >
4 ObjectUnionOf (<OOVASIS #Agent >
5 ObjectIntersectionOf (
6 ObjectSomeValuesFrom (<OOVASIS # definesRoles > <OOVASIS #Role >)
7 ObjectSomeValuesFrom (<OOVASIS # hasRelation > <OOVASIS #

StructuralRelation >)
8 ObjectSomeValuesFrom (<OOVASIS # hasRole > <OOVASIS #Role >)
9 ObjectAllValuesFrom (<OOVASIS # hasRelation > <OOVASIS #

StructuralRelation >)
10 ObjectMinCardinality (1 <OOVASIS # definesRoles > <OOVASIS #Role >)
11 ObjectExactCardinality (1 <OOVASIS # hasCriteriaOfOrganizing > <OOVASIS #

CriteriaOfOrganizing >))))
12 SubClassOf (<OOVASIS # OrganizationalUnit > <MAM5#Agent >)

Listing 2.1: OrganizationalUnit concept rendered using
OWL functional syntax

Figure 2.7: OrganizationalUnit concept relative to other
ontology concepts

for the Semantic Web with formally defined meaning. OWL 2 ontologies provide
classes, properties, individuals, and data values and are stored as Semantic Web
documents. OWL 2 ontologies can be used along with information written in RDF,
and OWL 2 ontologies themselves are primarily exchanged as RDF documents.”

— W3C OWL Working Group [146]

The selected key concepts are covered in more detail as follows. The complete ontology
rendered using OWL functional syntax is present in Appendix C.3.

The OrganizationalUnit concept, which plays a crucial role in the metamodel, is defined
as presented in Listing 2.1, and is related to other concepts as shown in Fig. 2.7. This
makes it take an intermittent position between the agent concept defined in JaCalIVE,
and its more specified concept representing inhabitant agents, i.e. agents that can be
represented physically.

The Activity concept is visualised (Fig. 2.8) using a complicated digraph, yet the
definition (Listing 2.2) is not as complex – the activity concept is set to be equivalent
to the concepts of Behavior (can be encountered in Smart Python Agent Development
Environment (SPADE)-implemented systems) and Agent_Action.

The Norm concept is, by transition, defined as a subconcept in the context of both
basic ontologies of this research (Fig. 2.9). A norm is thus positioned as an important
organisational concept that can be specified as an IVE_Law. Functional OWL rendering of
the Norm concept is provided in Listing 2.3.

42

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

1 Declaration (Class(<OOVASIS # Activity >))
2

3 AnnotationAssertion (rdfs:comment <OOVASIS # Activity > "Any atomic activity
performed by some individual agent

4 ")
5 EquivalentClasses (<OOVASIS # Activity > <OOVASIS # Behavior >)
6 EquivalentClasses (<OOVASIS # Activity > <OOVASIS # Behavior > <MAM5#

Agent_Action >)
7 SubClassOf (<OOVASIS # Activity > <OOVASIS # Process >)
8 SubClassOf (<OOVASIS # Activity >
9 ObjectIntersectionOf (

10 ObjectMinCardinality (1 <OOVASIS # achieves > <OOVASIS # Objective >)
11 ObjectExactCardinality (1 <OOVASIS # isPerformedBy > <OOVASIS #Agent >

)))

Listing 2.2: Activity concept rendered using OWL
functional syntax

Figure 2.8: Activity concept relative to other ontology
concepts

1 Declaration (Class(<OOVASIS #Norm >))
2

3 AnnotationAssertion (rdfs:comment <OOVASIS #Norm > "Norms are defined as (
socially) accepted behavior in a defined group and represent a
blueprint for behaving in said group")

4 SubClassOf (<OOVASIS #Norm > <OOVASIS # KnowledgeArtifact >)

Listing 2.3: Norm concept rendered using OWL
functional syntax

43

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

Figure 2.9: Norm concept relative to other ontology con-
cepts

2.1.1.6 Activity Six: Evaluation

“Evaluation means to carry out a technical judgement of the ontologies, their soft-
ware environment and documentation with respect to a frame of reference (in our
case the requirements specification document) . . . ”

— Fernández-López, Gómez-Pérez and Juristo [42]

To make sure the defined ontology is following some set rules of standard, and that
it is ready to be used in the real world, the process of evaluation is necessary. Two
segments of evaluation are verification and validation [42, 50]. Verification is the technical
process that makes sure the designed ontology is correct in the context of associated
software environments and documentation, with respect to a certain frame of reference.
Validation, on the other hand, guarantees that the ontologies, the software environment
and documentation correspond the the system that they are supposed to represent. [42]

In order to perform the verification process we have to verify [the ontology’s] archi-
tecture, its lexis and syntax, and its content. [50]

Architecture verification is concerned with the structure of the developed ontology and
how it follows the principles of design of the environment in which the ontology is included.
[50] Lamrast−+ is defined using Protégé environment and is completely in accordance
with the good practice examples associated with it. Furthermore, the designed ontology
follows the basic guidelines of OWL2.

Lamrast−+ follows all the set rules of OWL2 and Resource Description Framework
(RDF) as well, in the context of syntactic correctness and lexical structure. Defined classes
are correctly defined as owl:class concepts, with all their associated properties defined
accordingly. Formal definitions of the concepts included in Lamrast−+ are therefore
verified for their lexical and syntactical correctness.

Content verification is the most complex component of the three stated, since it is:

“[. . .] concerned with the analysis of completeness, consistency, conciseness, ex-
pandability, and robustness of the definitions and axioms that are explicitly stated
in the ontology, and the inferences that can be drawn from those definitions and
axioms.” — Gómez-Pérez, Juristo and Pazos [50]

The importance of content verification is emphasised using the main goal of an ontology
– knowledge reuse and sharing. Since the concepts are shared, and are expected to be

44

Chapter 2. Scientific Contribution 2.1. Semantic Modelling

further built upon and expanded, it is important to define concepts that guarantee such
criteria to be met. Rules of Lamrast−+ ontology are set in such a way that the inference
process is performed in its entirety and without unexpected results, proving positive
consistency of the defined ontology, as no contradictory conclusions can be reached. Thus,
there are no contradictory sentences that may be inferred using other definitions and
axioms. [50]

Ontology completeness is a concept open for debate, but using the first activity of this
methodology, laid out in Section 2.1.1.1, the scope of Lamrast−+ ontology is defined, and
the ontology can be deemed to be complete in the context of this research, backed up by
the following definition of semantically complete ontology:

“– All that is supposed to be in the ontology is explicitly set out in it, or can be
inferred using other definitions and axioms.

– Each individual definition is complete.”
— Gómez-Pérez, Juristo and Pazos [50]

Lamrast−+ ontology is concise, for all the defined concepts are deemed useful and
precise. Redundancies do exist (e.g. definitions of Agent or the concepts of Behaviour,
Activity, and Agent_Action), but they do serve a purpose, namely to define a couple of
synonymous concepts. The defined ontology can be used as a basis for further expansion.
Indeed, the one of the intended expansions, intended to be performed as a part of a future
research, is expanding the ontology with concepts that are specific to various LSMASs
domains, such as MMORPGs, smart settlements, or similar.

When speaking of validation, the designed ontology has to be apt for representation of
an intended system, and correspond to the elements of such a system, taking into account
all the concepts of the ontology and the phenomena they are supposed to represent.

“The validation of the ontologies against the frame of reference provides information
about whether the ontology definitions are necessary and sufficient to represent the
tasks and their solutions for different uses.”

— Gómez-Pérez, Juristo and Pazos [50]

The Lamrast−+ ontology can be used for modelling all the examples in Chapter 4.
Since the models shown there are expressive enough, and they use only a set of selected
concepts from the ontology, the ontology can be used to specify further details of the
respective modelled systems, thus providing enhanced expressiveness, when compared to
the metamodel, meaning that it can be used to further specify the appropriate systems.

45

Chapter 2. Scientific Contribution 2.2. Metamodelling

2.2 Metamodelling

A model is an abstract representation of a real domain. In other words, an abstraction of
reality according to a certain conceptualization [59, p. 31] referencing [54]. Fundamentally,
it is an abstraction effort [64]. It is usually used to show a real-world phenomenon often
in a simplified or stylised manner, therefore a hypothetical description of a complex entity
or process [132, p. 14]. A model is defined in temporal terms as an approximation M(t)
of S(t), where S(t) is a system evolving over time [82]. A less formal or strict description
of the concept of a model is given in [134]: A model is a representation of something for
someone’s purpose somebody (sic) and developed by someone else. meaning that every
model is author-driven and addressee-oriented, is aspect-related, is purpose specific, is
limited in space, context and time, and is perspective. An overview of various kinds of
models is presented in [132].

The purpose of a model, being only a representation of a piece (i.e. an object or a
phenomenon) of the real world, is that of analysis, observation, and research. Furthermore,
a model is customised based on the goal that drives its creation, i.e. properties of a model
depend on its purpose. For example a demographic model of inter-country migrations
due to students attending various universities will not be useful for studying migratory
behaviour of emigrants and immigrants on national basis. Another example may be
a business process model where inclusion or omission of details of the model depend
on the end-user of the model: lower management (such models include more detailed
features of the observed system, such as stationery consumption and similar), or higher
management (which is a model that omits the low-level nuances of an everyday life and
presumably contains more abstract information that provides an overview of the business).
Additionally, a model of a system comprising producers and consumers varies in details
depending on the purpose of the model: analysis of goods transport, analysis of mergers
and takeovers, overview of financial flow of an enterprise, etc. Modelling, as a method
of constructing and describing models, is therefore conducted based on observation of a
real-world situation, with the goal of creating an abstract tailored representation that
can further be used for various purposes. Customisation of the model’s features and
their abstractness in representing the observed real domain is not intended to modify the
observed situation, but to discern the features crucial for achieving the desired goal.

For all the former features, and many more, modelling is a method used extensively
in science in general. Furthermore, digital models are gaining on popularity with the
advancement of information sciences and computer performances.

Types of models are recognised based on a number of features, most prominent of
which are [82]: time (static or dynamic), state (discrete or continuous), randomness (de-
terministic or stochastic), details and similarity (abstractness as a measure of repression
of details, and fidelity as a measure of the real system’s characteristics reflection), and

46

Chapter 2. Scientific Contribution 2.2. Metamodelling

dimensionality (dimensionality of representation – 1D to 3.5D). A different approach to
types of models, in the context of information systems modelling is given in [148]: rep-
resentation model, state tracking model, and system model.

In a manner similar to the transition of a real-life situation to a model, metamodelling
introduces the model of a model, i.e. a metamodel. As mentioned before, a model is
a simplified view on the given real domain. For example, real-life situation can include
dozens of companies, and hundreds of consumers all of which interact with each other,
buying and selling goods, demanding and providing services, forming coalitions etc. In
a situation where observing organisational behaviour, in the context of organisational
dynamics, of the involved companies is the primary goal, the model will be rather ab-
stract, with minimal additional features being modelled, other than financial flows, spars
messages, and basic account of demanded or provided services. The select few features
are presumed to be enough for a satisfying analysis of merger behaviour of the observed
companies. Each of the organisations and consumers, and other entities, is represented
using a single element of the model, with identifying precision. Therefore, models are said
to abstract information [132, p. 14]. Further discussion on levels of models, especially
in the context of model-driven development, is provided by Atkinson and Kühne [6] and
Muhanna and Pick [85].

The problem that may arise in the development of the described example model is
the set of concepts to be used for representing the necessary elements of the model.
Such a problem might not arise if the model is being built by a single person who is
always around when the model is being referenced, but in case of a collaborative effort,
the precise meaning of various elements might not be communicated clearly enough and
misunderstanding could happen. Furthermore, if the model designer creates the given
model, and comes back to it after a couple of years, they might have difficulties reading
or further developing it. This is where metamodelling steps in.

A metamodel is in its core a model of a model – a definition of a set of concepts and
their relationships [59]. The method of constructing models of models is therefore called
metamodelling. Henderson-Sellers [59, p. 41], referencing [11], states that a metamodel
is an explicit specification of an abstraction expressed in a specific language. Most of
the time, a metamodel sacrifices domain specificity for the benefit of reusability across
domains. [64] The relationship of a metamodel and a model is very similar to that of a
model and a real domain, respectively. Whereas a model is an abstract representation of a
real domain, a metamodel provides language elements for creating a model. The semantic
nuances of the concept of a metamodel and relative view of the modelling levels surpassing
sole model, are argued in [59], on the basis of the difference between metamodelling in the
sense of M2 level (as opposed to modelling being M1), and the concept of metametamodel.
An example of metamodelling levels is shown in Fig. 2.10, where Computer game is a part
of a metamodel (level M2), with instances used in modelling on level M1 representing

47

Chapter 2. Scientific Contribution 2.2. Metamodelling

Computer game Game character

Role-playing
games

Multiplayer on-
line battle arena

isA isA

The Mana World
South Park:

The Fractured
But Whole

The Elder Scrolls
V: Skyrim Dota 2 League of Legends Heroes of the Storm

instanceOf instanceOfinstanceOf instanceOf instanceOf instanceOf

features

Domain

M1 – model

M2 – metamodel

Figure 2.10: An example of metamodelling levels in the
domain of computer games

Istar

S:
Istar, Wizard

I:
Maia sent to Middle-
Earth in a human form
to aid the Free Peoples
against the threat of
Sauron

E:
Curumo,
Olórin,
Aiwendil,
Alatar,
Pal-
lando

Figure 2.11: A specific concept, similar to [80]

concepts again, whereas instances are provided only on the lowest level designated as
objects of the chosen domain. It may be argued whether instantiating is performed on
a low enough level, but such an observation depends on the intended use of the model –
for a purpose of tracking sold items and copyright infringement cases, it would be more
useful if instances were particular instances of sold games, e.g. Ozano’s Skyrim, Goran’s
League of Legends, Andrija’s League of Legends, etc.

A short digression should be welcomed here, on the notion of a concept, in addition to
what is mentioned in Section 2.1.1.3. By definition, a concept consists of three constituent
elements: intension, extension, and a symbol. An intension is basically a definition of the
concept, its description using features of the concept that define it for what it is, no
more, no less, e.g. Maiar sent to Middle-Earth as human forms to aid the Free Peoples
against the threat of Sauron. The extension includes all the instances of the given concept,
e.g. Curumo, Olórin, Aiwendil, Alatar, and Pallando – the Istari from the lore of J.R.R.
Tolkien. The symbol is a way of referencing the given concept, e.g. Istari or Wizards. Such
a concept is visualised in Fig. 2.11. Early examples of the use of symbols and concepts to
represent human thoughts are described on examples of ancient Egyptian hieroglyphs in
[25].

48

Chapter 2. Scientific Contribution 2.2. Metamodelling

Ainur

Valar Maiar

isA isA

instanceOf instanceOf instanceOf instanceOf

Manwë Yavanna Olórin Curunír.

Figure 2.12: Concept hierarchy using instanceOf and
isA relationships

A model therefore consists of elements that represent the modelled entities, i.e. ex-
tension consists of instances that represent real-world entities. A metamodel however
consists of concepts the extension of which is populated by entities that are concepts
themselves, i.e. concepts whose instances are concepts [105, p. 384]. The most prominent
difference is therefore found in the distinction of two key relationships: instanceOf and
isA. instanceOf is a relationship of a concept and an instance, while the isA connects
two distinct concepts creating a hierarchy relationship between them with the meaning
of one concept being a specific case of the other concept. One of the key criteria of their
distinction is that, opposed to instanceOf, isA is transitive [105, p. 387].

A description based on two of the described examples follows. Istari are only a subset
of the Maiar – they are the Maiar that are, as the intension defines, sent to Middle-Earth
as human forms. Other Maiar include various other spirits that descended into Arda to
help the Valar shape the World. The angel-like spirits of the Tolkien’s legendarium2 are
divided into Valar (god-like beings) and Maiar (angel-like beings). Therefore, the concept
of Ainur, representing all the spirits of Tolkien’s legendarium, has the extension consisting
of two concepts: Valar and Maiar. The described situation is shown in Fig. 2.12. Both of
these concepts can further be observed, but in the context of naming the known beings,
they do not represent particular individuals.

Metamodel is described by Kleppe [69] as a model to specify language. In the context
of graph theory, a model is defined as a type graph with a set of constraints, i.e. A
model is a combination of a type graph and a set of constraints of various types. [69].
A type graph is a mathematical construct that consists of a set of nodes and a set of
edges between the nodes (each edge having a source and a target node), where nodes
represent concepts, and edges represent relationships. An instance is thereafter described
as a labelled graph in which every node and edge is of a type defined by the type graph,
i.e. An instance of a model M is a labelled graph that can be typed over the type graph of
M and satisfies all the constraints in M ’s constraint set. [69] Definitions of the selected

2Information of this example is based on http://lotr.wikia.com/wiki/Valar

49

http://lotr.wikia.com/wiki/Valar

Chapter 2. Scientific Contribution 2.2. Metamodelling

concepts used herein are provided in Appendix B.1. Following the list of several types
of possible constraints, the concept of metamodel is described in a manner similar to the
descriptions and definitions in Section 2.2, yet with a refreshing addition: A metamodel
is a model used to specify a language. [69] Constituent models of a language specification
are an abstract syntax model, a concrete syntax model, and a semantic domain model.

2.2.1 Metamodelling Process

The process of defining a metamodel may be considered rather intuitive – the goal is
to create a model that abstracts the given model of a real domain. Various steps of
the metamodeling method have been defined by various authors [38, 134, 117, 110, 45],
following their own interpretations of the metamodelling process therein. What follows
is a short overview of a couple of views on the process of creating models, or applicable
steps described in a similar fashion.

Four main dimensions of models are systematised as follows [134]: purpose, mapping,
language, and value.

The purpose dimension of a model and modelling determines the reason a model is
being defined, using intentions, goals, aims, and tasks identified as the goals to be solved
by the model. Main concerns [134, p. 548] of this particular dimension are the impact
of the model, the insight into the origin’s properties, restrictions on applicability and
validity, providing reasons for model value, and the description of how a model functions.

The mapping dimension is about the description of the modelled domain using the
model, i.e. a description of the solution provided by the model, the characterisation of the
problem, phenomena, construction or application domain through the model. [134, p. 547]

The language dimension is burdened with how to pick elements that allow the solution
or the targeted domain to be expressed clearly. Some requirements can be defined [134]
for language used in modelling or metamodelling, based on the established purpose of
a model: means of representation, constructs, statements of relationship, scope, causal
explanations, testable propositions, prescriptive statements.

The value dimension of a model is determined by explicit statement of the internal and
external qualities, and the quality of use [134, p. 547]. The mentioned dimensions can be
defined by keywords wherefore, whereof, wherewith, and worthiness, respectively.

A very important observation is given in [134, p. 547] about the dynamic nature of a
model, as it is not an artefact that is set in stone, rather a concept of a changing nature,
never being completed due to various sources of change, including scope insight, guiding
rules, development plans, theories, mapping styles, etc.

Additional dimensions of models are emphasised in [134]: artefact dimension, user
dimension, domain dimension, and context dimension. The mentioned dimensions are
utilised in the description of the Lamrast−+ metamodel in the following sections.

50

Chapter 2. Scientific Contribution 2.2. Metamodelling

A short overview of the metamodelling process is given in [117], in the context of
metamodelling systems: listing properties that are required of particular metamodels
being developed, and issues to be discussed and decided while creating a metamodel.
Seven properties that are to be looked after include the purpose of the metamodel with
sought after attention to the value of system output based on the values of system inputs,
system optimisation, and similar; determining whether system responses are deterministic
or random; how many variables are to be considered and whether they are qualitative or
quantitative; what is the region of applicability and what is the amount of accuracy
that is needed. It is evident that some of the properties given here encompass some of
the dimensions of [134] described above. Since the metamodelling domain observed in
[117] somewhat varies when compared to the domain of this thesis, decision issues are
not discussed here in detail, excepting one, D5: Does the metamodel have the necessary
accuracy required? that is discussed indirectly in Section 5.1 of this document.

A clear multi-step modelling cycle, based on observations in agent-based modelling
domain, is proposed in [110, p. 7] referencing [51], since modelling may be observed
as an iterative process [51], always improving the given model. The following tasks are
presented, although it may not be necessary to perform the full cycle for every iteration,
rather act in smaller cycles, as seen fit: formulate the question; assemble hypotheses for
essential processes and structures; choose scales, entities, state variables, processes, and
parameters; implement the model; analyse, test, and revise the model.

Formulating the question is the natural first step in the modelling cycle, demanding a
clear research question to be formed and defined, since this research question is then used
as a lead through the rest of the modelling cycle. Certainly, the posed question must not
be too simple, or too complex, thus reformulation is a welcome method until the right
research question is reached, one that is clear enough and achievable.

The second task is concentrated on formulating and assembling hypotheses concerning
processes and structures essential to the problem addressed by the modelling process.
Some of the questions regarding this task deal with identifying factors that have strong
influence on the domain of interest, their mutual relationship and effects, and similar
observations. This task is effectively a brainstorming session, generating hypotheses, but
keeping in mind the necessity of simplification since the basic idea of the modelling cycle
is to start with the most simple model possible, building up through cycle iterations.

A written formulation of the model is the result of the third task dealing with choosing
scales, entities, state variables, processes, and parameters. Elements of the model are to
be clearly described in detail in terms understandable by the model developer, and the
intended user of the model.

Implementation task is charged with translating the verbal model description that was
produced in the previous task into a model artefact. The model is thus produced using a
computer software or other mean applicable to the given domain and model features.

51

Chapter 2. Scientific Contribution 2.2. Metamodelling

The last task in the modelling cycle described by [51, 110] that is about analysing,
testing and revising the implemented model, stimulates the model developer to learn from
their model. Effectively, this task is the scene-setting process for the next iteration of the
modelling cycle.

Some overlapping features can be observed between all the three modelling-related
approaches described thus far, most notably clear definition of the purpose of the model,
careful choosing of the elements of the model to be included, and ever-changing nature of
a model.

Further study of the metamodelling process is continued here with observations from
[45], although originally situated in the domain of building a simulation metamodel.
A number of elements of the metamodel construction phase are proposed as follows:
metamodel form proposal depending on the information uncovered during the target
domain analysis; setting estimates of the parameters of the proposed metamodel as
per simulation-generated data; metamodel verification conducted using various tests;
metamodel validation derived from the simulation model validation performed by com-
paring it to actual data from the target domain or similar.

A sequence of six design steps is also presented in [45] in reference to [77], in the
context of building a simulation model and metamodel: define the problem, define the
ranges for the input variables, develop the experimental design, build a simulation model,
develop the metamodel, validate the metamodel. Along with short descriptions of the
mentioned design steps, some insight into metamodel validation process is given in [45],
but the proposed validation is concentrated on simulation metamodels and is therefore
omitted here.

The metamodelling process defined for this thesis consists of five activities: defining the
level of abstraction, choosing concepts from the defined Lamrast−+ ontology, comparative
analysis of the chosen concepts and existing approaches to large-scale multiagent systems
(LSMASs) modelling, development of the metamodel, and its assessment. This sequence
of activities is envisioned as a circular process for the sake of metamodel refinement.
The stated sequence of activities is a customised summary of the meta- and modelling
processes described in this section, further supported by analysing some other sources
[157] and practical work during the research leading to this thesis.

2.2.1.1 Activity One: Level of Abstraction

This activity covers elements proposed as a part of the purpose dimension of a model [134],
most of the question formulation and hypotheses assembling steps presented in [110, 51],
and the problem definition steps of [45, 77].

The Lamrast−+ metamodel is set to deal with the problem of organisational modelling
of LSMASs, with special emphasis on organisational dynamics. Organisational modelling

52

Chapter 2. Scientific Contribution 2.2. Metamodelling

of multiagent systems (MASs) is not in itself a state-of-the-art problem, since various
approaches already exist (see Section 1.4.3), but application of such approaches to the
domain of LSMASs is not utilised to a great extent. Furthermore, organisational dynamics
is not a widely researched problem in the context of LSMASs, even though it is a concept
that is of great interest in implementing LSMASs, as argued earlier, in Section 1.4. The
problem tackled by this process is therefore definition of a metamodel that can be used
for organisational modelling of LSMASs, with emphasis on organisational dynamics and
application domain of massively multi-player online role-playing games (MMORPGs).

One of the research objectives of the research leading to this thesis is confronted by the
Lamrast−+ metamodel: O2 Model organisational concepts applicable to MMORPGs.

Organisation is by many a definition a set of some entities, be it units, processes,
etc. It is hard to talk about organisation when only a single individual is considered.
MMORPGs recognise two main types of organisations or coalitions comprising various
characters mostly representing players: parties and guilds. Main differences are temporal
and membership-related.

Parties (a common name for this kind of an organisation in MMORPGs) are usually
short-lived groups of players that are concentrated on accomplishing a set quest, without
further attachments. Such organisations have simple structures, where the prominent
criteria of organising is a common goal of the included agents (players). The number of
members of a party is usually lower than that of a guild. The purpose of a party is to
team up with (often unfamiliar) other players that share a quest or other driving goal
with the party leader. Once the common goal is achieved, the party is usually disbanded.
The described behaviour is commonplace, although deviations are allowed, e.g. friends
cooperating in a game often play as members of the same party.

Guilds, as this type of an organisation is usually called, are by definition long-lived
groups of players sharing more than a common quest. The criteria of organisation may
be a strategic goal, the need for socialisation, etc. Guilds often develop internal organisa-
tion features, including hierarchical decision flows, coordinated event-attending activities,
various organisation-related roles, etc.

When observing MMORPGs, the interesting organisations are those that are formed
motivated by e.g. a hard quest. These party-level organisations tend to exhibit features
of organisational dynamics most often and most prominently, out of all the organisation-
related forms of cooperation between players of a MMORPG.

Since the emphasis of the Lamrast−+ metamodel is on modelling organisational fea-
tures, agent-detailed modelling is of no interest. In other words, detailed modelling of an
individual agent, i.e. an organisational unit, is of no concern to this metamodel, since the
internal structure of an organisational units is not of grave importance. What is import-
ant are the actions that an organisational unit can perform, and to what extent can these
actions be performed.

53

Chapter 2. Scientific Contribution 2.2. Metamodelling

During the research leading to this thesis, it was concluded that the most suitable
method of defining actions available to an agent is their definition as a part of a normative
system. Therefore, the observed system should be defined using norms. As mentioned
earlier in this thesis, when the Lamrast−+ ontology was considered, sets of norms included
in a normative system are grouped into the concept of a role. Thus, a role, as a set of
norms with a common denominator (DD A.37), defines which actions can be played by a
specific organisational unit enacting the given role.

Even though details of an individual organisational unit do not have to be available
for modelling using Lamrast−+ metamodel, an overly general approach is not welcome
either. A metamodel that is too general might lead to a language with expressiveness
problems, i.e. it may be unsuitable for a successful description of the real domain situ-
ation. The middle ground established during this research recognised the Lamrast−+
metamodel as being able to discern various kinds of organisational units (not necessarily
individual instances of organisational units, but allowed if necessary), various roles avail-
able in the modelled system, actions defined by these roles, and goals achievable by the
selected actions. All the elements should not be modelled in great detail, since one of the
leading ideas of the metamodel is its implementation platform independence. Therefore,
the language of the metamodel should not encourage implementation-specific values of a
modelled system.

Following the described abstract-level-related characteristics of the Lamrast−+ metamodel,
some additional features [134] are further provided below.

The finished Lamrast−+ metamodel is aimed at fostering modelling LSMASs with the
emphasis on organisational features, especially dynamic changes in organisational features
within the modelled system. As such, the metamodel should provide a viable solution
for modelling LSMASs in one of their application domains, MMORPGs, by allowing the
model developer to use concepts that are essential for modelling computer game-related
situations and problems. These concepts are aimed at covering both the organisational
and MMORPG domains.

The nature of MMORPGs was briefly described earlier in this thesis, with further
details in the context of this research provided in [121, 120, 98, 97, 125, 124, 123, 138,
101, 127]. Individual players can advance through an MMORPG, yet their progress
grows slower as they advance through the game. As the game advances, players can gain
increased benefit from interacting with other players (in games that stimulate cooperative
gameplay), and forming various types of groups of players (most prominent being parties
and guilds, as described earlier here). Such coalitions or groups or organisations help
individual players best the challenges they are faced with through the game. Furthermore,
some in-game challenges are designed for larger numbers of organised players with a tactful
approach. Additionally, MMORPGs usually have players playing characters of belonging
to a single, a pair of, or a number of character classes – usually stereotyped character

54

Chapter 2. Scientific Contribution 2.2. Metamodelling

descriptors – warriors, archers, thieves, wizards, druids, etc. Depending on the class the
character plays, different parts of the game are usable to the player, including varying
gear, abilities, interactions, etc. MMORPGs are usually computer games that are quest-
driven, i.e. game dynamics in the context of a story and campaign and game advancement
is governed by in-game quests usually obtainable through interaction with non-player
characters (NPCs) or special in-game events. These quests yield special rewards for their
completion (e.g. special kind of loot, new quests, etc.). Some quests depend on the
player’s character being able to perform a specific in-game action or interaction, thus
underlining the importance of character actions. The described view on the MMORPGs
domain can be simplified and represented using the Lamrast−+ metamodel, in order to
create an artefact that can be further used in the modelled system’s development.

The Lamrast−+ metamodel can be therefore used when a quest-driven MMORPG
world is to be described. Quest-driven feature is not a necessity, since goals can be
defined, and quests are specialised goals by definition. The model has to be, certainly,
modified if the game elements are modified, as the modelled system has to conform to
the modelled properties of the observed system. Even though the primary application
domain of Lamrast−+ metamodel are MMORPGs, it can be used to represent some
other application domains of LSMASs, such as distributed sustainable systems, or other
distributed systems comprising artificial intelligent agents.

The value of the Lamrast−+ metamodel stems from its wide suitable application
domains, novelty inasmuch as it provides a simple language for modelling LSMASs and
implementation of the modelled systems, comprehensibility found in the fact that only
a numerically constrained set of concepts are defined that are easy to understand yet
expressive enough for the possible challenges in modelling the primary application domain.

2.2.1.2 Activity Two: Choosing Concepts

The source of possible concepts to be included in the Lamrast−+ metamodel is the
ontology described in Section 2.1, although some elements can be sourced to the domain-
specific ontology presented in [98], since it provides concepts from the MMORPGs do-
main. The established level of abstraction in Section 2.2.1.1 governs the fact that not all
concepts included in Lamrast−+ ontology are selected for inclusion in the Lamrast−+
metamodel. Therefore a short overview of the concepts deemed necessary to be included
in the metamodel, and arguments in favour of such a decision, are presented in the fol-
lowing parts of this thesis. Only those concepts that have been selected for the set of
concepts included in the metamodel are argued about here.

A set of rules that can be used to identify necessary objects among a large number of
candidate objects and their respective properties is proposed in [148, 149]. The referenced
set of rules is proposed in the context of ontology acting as a foundation for a metamod-
elling process and method engineering. More specifically, the set of rules in [148] has its

55

Chapter 2. Scientific Contribution 2.2. Metamodelling

source in object-oriented enterprise modelling. Out of the five main rules, the following
are selected to be presented here:

“

(2) The candidate objects are those that represent things that become active (un-
dergo external and possibly internal events) as a result of the interactions
between the system and its environment.

(3) The relevant properties of a thing that should appear in the model are only
those that other objects must be "aware" of as a result of the interactions that
propagate in the system. Thus, a certain attribute of a thing is modelled only
if it is used or modified by other things (when the system interacts with the
environment).

(4) All information used in the system conveys states of objects. There is no
"global" state information.

” — Wand [148]

Organisational Unit The main building block of an organisation is, as mentioned earlier
in this thesis, an organisational unit. Here it represents induvidual agents, as well
as groups of agents, following the recursive definition stated earlier in this thesis.
The meaning of this is that organisational units should be considered in a rather
abstract sense, i.e. as building blocks of an organisation, which is a view hinted at
by the selected desired level of abstraction set up in Section 2.2.1.1. Therefore the
more abstract concept of an organisational unit is favoured when compared to the
concept of an agent, in addition to a rather obvious difference between these two
concepts – an agent is always an agent, defined as either artificial or human, yet an
organisational unit can be defined as a superconcept with agent as its subconcept,
thus possibly containing more than agents. In the context of this metamodel, an
organisational unit is a player’s character, hence indirectly a player, but groups of
such individuals as well, and potentially groups of groups, etc. Based on everything
stated here, organisational unit was deemed as a crucial element of the Lamrast−+
metamodel.

Role The concept of a role is a commonplace concept found in the domain of MMORPGs.
A role defines a set of characteristics of the player’s character (be it an artificial
player or a human player), and may have slight or great impact on the gameplay or
the interaction and life of the character with other characters (players’ characters
and non-player characters alike) within the game. A role can by definition include
several varied types of normative constraints put on player characters, e.g. race,
skill proficiency, class, etc. A role is therefore, when combined with the definition
of a role, unavoidable concept when normative systems are observed. A role in the

56

Chapter 2. Scientific Contribution 2.2. Metamodelling

Lamrast−+ metamodel represents a set of norms of the system that are applicable
to organisational units within the system. Furthermore, as units of constraint,
roles make certain actions available to be performed by organisational units playing
particular roles. A role of a wizard thus allows the character to performs spells.
Roles can be much more specific than e.g. classes are in MMORPGs, or can be
completely unrelated. The concept of a role is best described by the model designed,
and are not necessarily a direct copy of the groups of constraints in the original
observed system. Deriving from all the stated here, the role concept is an important
companion of the concept of an organisational unit, and an important element of a
normative system.

Action An agent affects its environment by using actions at its disposal. Actions are
therefore the mode of interaction between an agent and its environment. Every
action can thus be defined as having a source and a target states, with a defined
action in between. Since an action can be described as a metaphor for a piece
of any and all interaction between an agent and its environment, i.e. between
a character and the rest of the in-game world, it is recognised as an important
element of an organisational metamodel of LSMASs. Furthermore, an action is the
key middle element when organisational units playing a role are faced with fulfilling
a set objective – the action necessary for fulfilling a given objective can be performed
by a single role instance, when it is enacted by a given organisational unit. Several
different actions can be grouped into a process, yet their relationship is different
than the recursive one found when organisational units are considered.

Objective The concept of an objective was selected as one of the concepts of Lamrast−+
ontology, all of them having a similar meaning pertaining to an almost identical real-
life object. Based on the selected level of abstraction described in Section 2.2.1.1,
the concept of an objective was chosen in favour of any of the other concepts of
similar meaning in the Lamrast−+ ontology. Although the MMORPGs domain is
most comfortable with the concept of quests, it is argued that the concepts of both
a quest and a goal are not adequate since a quest is most often a series of tasks, and
a goal is short-termed or not timed by definition. Contrariwise, an objective is said
to be presenting a more generalised view on the matter, featuring more extensive
use cases. Even though it is by definition a concept encompassing both the concept
of a quest and that of a goal, it can be used as a mix of the two in the metamodel,
best described later in the thesis.

Knowledge Artefact Even though it may not be a key concept when an organisation
is considered, and especially when the MMORPGs domain is used as a pretext, the
knowledge artefact concept is a welcome addition to the set of concepts describing
normative LSMASs. A knowledge artefact is described as storing agent knowledge

57

Chapter 2. Scientific Contribution 2.2. Metamodelling

Organisational UnitRole

ActionObjective

Knowledge Artefact B

Knowledge Artefact A

Figure 2.13: Visualised concepts of the metamodel and
their non-detailed properties

relevant to the agents of the given system. Since agent knowledge is not easy to be
described using generally applicable methods, a knowledge artefact is a formalised
representation of a piece of knowledge relevant to the agents within the observed sys-
tem. Descending to a more detailed observation of the knowledge artefact concept,
two distinct but related concepts are identified: individual knowledge artefact and
an organisational knowledge artefact. Individual knowledge artefacts are defined as
knowledge pertaining to individual organisational units (e.g. character character-
istics, their skills, and similar individual-level data), while organisational knowledge
artefacts contain knowledge that should be available system-wide since it contains
norms, guidelines, system-level knowledge, etc.

The above concepts are those most interesting and worthwhile for an organisational
metamodel. Arguably, some of the concepts of Lamrast−+ ontology are more suitable to
be observed as concepts for describing an organisation, as opposed to modelling features
of an organisation, such as the subclasses of organisational structure. It is useful to note
here that the concepts of the Lamrast−+ metamodel are supposed to be used to describe
a system to be implemented, whereas the organisational developments within the system
are a matter of the system, and not entirely of the model of that system. In other words,
run-time organisations and their features depend on the implementation details of the
system, such as agent-based details, permitted actions and interactions, and similar.

In addition to the concepts described above (Fig. 2.13), their properties have to be
defined for the metamodel to be defined clearly.

The decision not to include most of the concepts encountered within the ontology is
motivated by the goal of creating a simple yet expressive metamodel.

It is clear from the provided argumentation above that some quite important concepts
were left out from the Lamrast−+ metamodel, such as types of organisational struc-

58

Chapter 2. Scientific Contribution 2.2. Metamodelling

ture. The main reason for such a decision is that, with the purpose of the Lamrast−+
metamodel in mind, along with some of its other features, some of the concepts of the
ontology would demand an overly specific metamodel, which is not in accordance with
the prescribed abstraction guidelines for this metamodel.

2.2.1.3 Activity Three: Comparative Analysis

An analysis of existing models that can be used for modelling organisations in MASs
domain, although only some of them are intended for LSMAS domain, in the context
of this research, is given in [92], where the existing models, described in some detail in
this thesis under Section 1.4.3, are put in context regarding the Lamrast−+ metamodel.
Descriptions given in Section 1.4.3 are given with respect to Lamrast−+ metamodel as
well.

Some common features of these models can be derived from their descriptions in
Section 1.4.3: individual units are always in the spotlight, along with normative elements
translatable to roles. Since a MAS is about interaction of agents and their impact on the
system environment, a concept of action, detailed to some extent, is always present in a
model dealing with the concept of organisation in MASs.

The selected key concepts described in Section 2.2.1.2, combined and utilised as parts
of the Lamrast−+ metamodel bring additional value not present in the models mentioned
in Section 1.4.3, as far as this research is considered. Furthermore, it should be noted
here that existing models either deal with MASs primarily, thus leaving modern needs
of distributed systems describable as LSMASs wanting, or have had their development
stopped at the stage of meta- or model descriptions, without clear use-cases or tools that
can be utilised for using the developed meta- or models. Lamrast−+ metamodel is by
default intended to be used within the context of LSMASs, which is a point of view backed
up by the metamodel conforming to the modern perspectives of organisational modelling
for LSMASs presented in [118]. Additionally, Lamrast−+ metamodel is provided not only
theoretically, but as a practically usable artefact as well.

Out of all the models presented in Section 1.4.3, Lamrast−+ metamodel is compared
here with NOSHAPE MAS organisational model described by Abbas [1]. NOSHAPE
MAS is chosen as the model Lamrast−+ metamodel is compared to since it is intended
for organisational modelling of large-scale systems comprising agents grouped on several
levels of abstraction, it is similar in offered concepts to Lamrast−+ metamodel, and
belongs to recently published research (published in 2014). Comparative description is
provided in Table 2.2, where the used customised criteria is mostly based on concepts
featured in either of the metamodels, and in general coordination with earlier mentioned
perspectives of organisational modelling of LSMASs [118].

59

Chapter 2. Scientific Contribution 2.2. Metamodelling

Table 2.2: Comparative description of Lamrast−+
metamodel and NOSHAPE MAS [1]

Lamrast−+ NOSPAHE MAS

O
rg
an

isa
tio

n

Organisation is defined as a set of
organisational units organised using
a specific criteria of organising. The
element of an organisational unit
can be used to represent an indi-
vidual agent or a group of agents.
The amount of modelled organisa-
tional levels is virtually unlimited,
as shown in Chapter 4.

Three levels of abstraction are
defined, where Organisation is con-
sidered the lowest, with World and
Universe defined above it. Although
most of the features of these three
concepts are shared amongst them,
the principle difference is of se-
mantic value.

A
ge
nt
s

There is no concept in Lamrast−+
metamodel that should be exclus-
ively used for modelling individual
agents. Agents are modelled as
organisational units, since every
MASs can be considered an organ-
isation, with various organisational
features defined to an extent.

Agents are considered lower-level
entities that enact roles, execute
tasks, and use various resources
(e.g. databases).

R
ol
es

A role is considered as a set of
organisational norms and is meant
to be enacted by organisational
units, thus making defined actions
available to them. On the meta-
and model no distinction is made
between types of roles – they are all
modelled in the same way. Roles
can be enacted by organisational
units, regardless of their atomicity,
i.e. individual or compound organ-
isational unit.

Roles are defined by organisations
and can be played by agents. On
the metamodel level two role types
can be distinguished: static (spe-
cific to each organisation and con-
cerned with its structural features)
and dynamic (domain specific, can
be shared, exchanged, and moved
between organisations).

Continued on next page

60

Chapter 2. Scientific Contribution 2.2. Metamodelling

Table 2.2 – continued from previous page

Lamrast−+ NOSPAHE MAS
A
ct
io
ns

Actions can be modelled and related
to roles. Based on the roles they are
associated with, actions can be per-
formed by organisational units, de-
pending on the role played by the
given organisational unit. Actions
can be modelled as a part of a pro-
cess. Each action can be used to
achieve an associated objective.

While actions are not defined expli-
citly, agents are modelled as entit-
ies that can execute Tasks, and roles
can utilise Interaction Protocols.
These concepts can be, in part,
considered as concepts that corres-
pond with the concept of Action in
Lamrast−+ metamodel.

St
ra
te
gy

Both Objective and Process con-
cepts can be used to define aspects
of an organisation’s strategy, with
objectives being a more prominent
example. Objectives can be mod-
elled as simple (atomic objectives,
i.e. being achievable by a single ac-
tion) or complex (consisting of non-
predefined levels of sub-objectives,
the lowest of which are simple or
atomic objectives).

No elements exist for modelling
strategy-related concepts.

To
ol
s

The modelling tools is an integral
part of Lamrast−+ metamodel, as
it renders the metamodel usable.
The added feature of implementa-
tion template generation is a benefit
none of the models possess, as far as
the author is aware.

No apparent tools are presented in
the original research, nor in sub-
sequent research, as far as the au-
thor of this thesis is aware.

End of Table 2.2

Further discussion on Lamrast−+ metamodel and its evaluation is presented in Sec-
tion 5.1.

61

Chapter 2. Scientific Contribution 2.2. Metamodelling

2.2.1.4 Activity Four: Metamodel Development

The metamodel development process was performed in cycles, where each cycle was used
to add, remove, or modify various concepts included in the metamodel, upon those de-
scribed in Section 2.1.1.2. Some concepts were added for ease of metamodel implement-
ation, especially because they were identified as having properties common to more than
one concept.

Overview of the finished Lamrast−+ metamodel is presented in Fig. 2.14, with all the
classes representing the included concepts and their relationships.

The overview of the metamodel, provided in Fig. 2.14, shows graphically the noted
significance and centrality of the concepts of organisational unit and role.

Associated classes are represented as connected using a solid arrow, while inheritance
is shown as classes connected via a solid arrow with a hollow arrow head. Concepts
are shown as rectangles, and their properties (i.e. their relationships) are shown having
hexagonal headers.

The concept of organisational dynamics that is emphasised throughout this thesis is
dealt with using graph grammars, since the whole metamodel, and the model created
using it, is in form of a graph. For the purpose of this thesis, an introduction to graph
grammars, with key definitions, is provided in Appendix B.2. Rules were created that can
be applied to modifying the model created using the metamodel accordingly. These rules
either describe situations with an organisational unit playing a certain role and using its
actions to create new organisations, or to describe situations where organisational units
can join other organisational units (i.e. organisations). The initial mention of Lamrast−+
metamodel’s graph grammars and their role in representing organisational dynamics is
given in [125]. Further description of graph grammars, and their use in this metamodel,
with examples, is shown in Section 2.2.2.

Pages 64 to 69 contain a detailed account on the developed metamodel elements,
and their associations, with description provided where deemed convenient. Details of
class concepts are provided first, followed by associations. Concept descriptions are not
provided here, since they are defined in other parts of this thesis (e.g. Section 2.2.1.2).
Before element-based details are provided, it should be noted here that all the elements of
Lamrast−+ metamodel have attribute ID which is used for unique identification of model
elements.

62

C
hapter

2.
Scientific

C
ontribution

2.2.
M
etam

odelling

Attributes:

 - ID :: String

 - Individual :: Boolean

 - UnitSize :: String

 - hasActions :: List

 - name :: String

Constraints:

 > ConstraintOutputOrgUnit

Actions:

 > determineSize

Multiplicities:

 - To isPartOfOrgUnit: 0 to N

 - From isPartOfOrgUnit: 0 to N

 - To canHaveRole: 0 to N

 - To canAccessKnArt: 0 to N

 - To answersToOrgUnit: 0 to N

 - From answersToOrgUnit: 0 to N

OrgUnit

Attributes:

 - ID :: String

 - hasActions :: List

 - isMetaRole :: Boolean

 - name :: String

Constraints:

 > RoleConstraintKnArt

Actions:

 > checkMetaRole

Multiplicities:

 - From canHaveRole: 0 to N

 - To hasActions: 0 to N

 - To canAccessKnArt: 0 to N

 - To hasObjective: 0 to N

 - To genericAssociation: 0 to N

 - From genericAssociation: 0 to N

 - To answersToRole: 0 to N

 - From answersToRole: 0 to N

 - To canStartProcess: 0 to N

 - To isPartOfRole: 0 to N

 - From isPartOfRole: 0 to N

Role

Attributes:

 - ActionCode :: Text

 - ID :: String

 - name :: String

Actions:

 > initialActionCodeTemplate

Multiplicities:

 - From hasActions: 0 to N

 - To isPartOfProcess: 0 to N

 - To hasObjective: 0 to N

Action

Attributes:

 - ID :: String

 - description :: String

 - name :: String

<<Abstract>>KnowledgeArtifacts

Attributes:

 - KnArtContent :: Text

Multiplicities:

 - From canAccessKnArt: 0 to N

OrganisationalKnArt

Attributes:

 - KnArtContent :: Text

Multiplicities:

 - From canAccessKnArt: 0 to N

IndividualKnArt

Attributes:

 - description :: Text

 - name :: String

<<Abstract>>Strategy

Attributes:

 - ID :: String

 - Measurement :: Text

 - Reward :: Text

 - ofActions :: List

Multiplicities:

 - To isPartOfObjective: 0 to N

 - From isPartOfObjective: 0 to N

 - From hasObjective: 0 to N

 - To precedentTo: 0 to N

 - From precedentTo: 0 to N

Objective

Attributes:

 - ID :: String

 - Name :: String

 - hasActions :: List

Multiplicities:

 - From canStartProcess: 0 to N

 - To hasObjective: 0 to N

 - From isPartOfProcess: 0 to N

Process
isPartOfOrgUnit

Attributes:

 - ID :: String

Multiplicities:

 - From OrgUnit: 1 to N

 - To OrgUnit: 1 to N

canHaveRole

Attributes:

 - ID :: String

Multiplicities:

 - From OrgUnit: 0 to N

 - To Role: 0 to N

hasActions

Attributes:

 - ID :: String

Actions:

 > updateRoleActions

Multiplicities:

 - To Action: 1 to N

 - From Role: 1 to 1

canAccessKnArt

Attributes:

 - ID :: String

Constraints:

 > ConstraintKnArt

Multiplicities:

 - To OrganisationalKnArt: 0 to N

 - From Role: 0 to N

 - From OrgUnit: 0 to N

 - To IndividualKnArt: 0 to N

genericAssociation

Attributes:

 - name :: String

 - Description :: Text

 - ID :: String

Multiplicities:

 - To Role: 1 to N

 - From Role: 1 to N

answersToRole

Attributes:

 - ID :: String

Multiplicities:

 - From Role: 1 to N

 - To Role: 1 to N

canStartProcess

Attributes:

 - ID :: String

Multiplicities:

 - To Process: 0 to N

 - From Role: 0 to N

answersToOrgUnit

Attributes:

 - ID :: String

Multiplicities:

 - To OrgUnit: 1 to N

 - From OrgUnit: 1 to N

isPartOfRole

Attributes:

 - ID :: String

Multiplicities:

 - From Role: 0 to N

 - To Role: 0 to N

isPartOfProcess

Attributes:

 - ID :: String

Actions:

 > updateProcessActions

Multiplicities:

 - From Action: 0 to N

 - To Process: 0 to N

isPartOfObjective

Attributes:

 - ID :: String

Multiplicities:

 - From Objective: 0 to N

 - To Objective: 0 to N

hasObjective

Attributes:

 - ID :: String

Actions:

 > updateObjectiveActions

Multiplicities:

 - To Objective: 1 to N

 - From Role: 0 to N

 - From Process: 0 to N

 - From Action: 0 to N

precedentTo

Multiplicities:

 - From Objective: 0 to N

 - To Objective: 0 to N

Figure 2.14: Overview of the Lamrast−+ metamodel

63

Chapter 2. Scientific Contribution 2.2. Metamodelling

Concept Role

– attributes Each Role individual is defined by the following attributes:

• ID is used for unique identification of model elements.

• hasActions is a list of actions that the given Role is associated with, used for
storage purposes and a quick overview of connected actions in graphic view.

• isMetaRole is a boolean value that defines whether the given role has some
sub-roles defined.

• name contains the name of the role to be displayed in graphic view and used
when implementation template is generated.

– constraints There is only one active Role constraint.

• RoleConstraintKnArt is a constraint which defines that a Role individual can only
be connected to an OrganisationalKnArt individual. This constraint is necessary
since a shared relation type is defined for connecting Role and OrgUnit concepts
to knowledge artefact concepts.

– actions Only one action is defined for Role concept.

• checkMetaRole is an action that is run when a Role individual is connected
to another Role individual, and is used to set the isMetaRole attribute value
automatically.

– connections Each Role individual can be connected to the following concepts:

• OrgUnit connected to a Role means that the given OrgUnit individual can enact
any of the connected Role individuals. The logical nature of the connection de-
pends on the graphical representation of the connection, since an organisational
unit cannot play all the available roles at the same time.

• Action individual related to a Role individual describes an action that is made
available to an organisational unit when it enacts the given role.

• OrganisationalKnArt individuals store organisational knowledge and are there-
fore made available when a role is enacted by an organisational unit.

• Process individual related to a Role individual is a case that does not show up
often, and is serves simply to show a group of related actions that are available
to a Role individual.

• Objective is not used.

64

Chapter 2. Scientific Contribution 2.2. Metamodelling

Concept OrgUnit

– attributes Each OrgUnit individual is defined by the following attributes:

• ID is used for unique identification of model elements.

• Individual is a boolean value type attribute that defines whether the OrgUnit

individual represents an individual organisational unit or a group of individuals.

• UnitSize serves the same purpose as attribute Individual, but this one is further
used in graphic view of a model.

• hasActions is a list of actions that are defined on an organisational unit level,
i.e. they do not depend on the role enacted by an organisational unit.

• name contains the name of the organisational unit to be displayed in graphic
view and that is to be used when implementation template is generated.

– constraints There is only one active OrgUnit constraint.

• ConstraintOutputOrgUnit is a constraint which defines that an OrgUnit individual
can only be connected to a single knowledge artefact individual.

– actions Only one action is defined for OrgUnit concept.

• determineSize is an action that is run when an OrgUnit individual is connected
to another OrgUnit individual, and is used to set the Individual and UnitSize

attribute values automatically.

– connections Each Role individual can be connected to the following concepts:

• Role connected to an OrgUnit individual describes that the given OrgUnit indi-
vidual can enact any of the connected Role individuals. The logical nature of
the connection depends on the graphical representation of the connection, since
an organisational unit cannot play all the available roles at the same time.

• IndividualKnArt individuals store individual knowledge and are therefore made
available to an organisational unit.

Concept Action

– attributes Each Action individual is defined by the following attributes:

• ID is used for unique identification of model elements.

65

Chapter 2. Scientific Contribution 2.2. Metamodelling

• ActionCode string attribute contains implementation template necessary for im-
plementing agent action using a chosen LSMASs development environment.
The only available option at the moment is Smart Python Agent Development
Environment (SPADE), and the associated implementation template for agent
behaviours. The code input here is copied into the generated implementation
template feature provided by the accompanying modelling tool.

• name contains the name of the action to be displayed in graphic view and that
is to be used when implementation template is generated.

– actions Only one action is defined for Action concept.

• initialActionCodeTemplate is an action that is run when an Action individual is
created or edited, and is used for setting up the ActionCode attribute value, i.e.
for generating implementation template for the given agent action.

– connections Each Action individual can be connected to the following concepts:

• Role connected to an Action individual describes that the given Role individual
can conduct the specific action, and makes that particular action available to
the OrgUnit individual that chooses to enact the given role.

• Process individuals, when Action individuals are connected to them, represent
a grouping concept, i.e. a set of actions that, when used in a combination, can
achieve a set objective.

• Objective is a concept denoting to what end can an action be used, i.e. what
is the intended result of performing a specific action.

Concept Process

– attributes Each Process individual is defined by the following attributes:

• ID is used for unique identification of model elements.

• hasActions is the list of Action individuals connected to the given Process indi-
vidual, denoting all the actions that are considered a part of the given process.

• Name deprecated – was replaced with name.

• name contains the name of the process to be displayed in graphic view and
that is to be used when implementation template is generated. Inherited from
Strategy.

– connections Each Process individual can be connected to the following concepts:

66

Chapter 2. Scientific Contribution 2.2. Metamodelling

• Role connected to a Process individual describes that the given Role individual
can conduct the specific process, having already defined available Action indi-
viduals as well.

• Action individuals, when connected to Process individuals, represent parts of a
group, i.e. a set of actions that, when used in a combination, can achieve a set
objective.

• Objective is a concept denoting to what end can a process be used, i.e. what
is the intended result of performing a specific process.

• Strategy is an abstract concept that is not intended to be instantiated, as it
serves as a generalised concept of both Process and Objective concepts, and
their common attributes.

Concept Objective

– attributes Each Objective individual is defined by the following attributes:

• ID is used for unique identification of model elements.

• Measurement is the mechanism that can be used for measuring when an objective
is achieved, i.e. what is the state of the in-game world that has to be achieved
for the objective to be considered fulfilled. This feature is not yet implemented
as a part of the application template generator.

• Reward received by the agent who successfully solves this particular objective is
defined here. This feature is not yet implemented as a part of the application
template generator.

• ofActions is a list of actions that a particular Objective individual is connected
to.

• name contains the name of the objective to be displayed in graphic view and
that is to be used when implementation template is generated. Inherited from
Strategy.

– connections Each Objective individual can be connected to the following concepts:

• Role is not used.

• Action individuals, when connected to Objective individuals, represent to what
end can an action be used, i.e. what is the intended result of performing a
specific action.

• Process individuals, when connected to Objective individuals, represent to what
end can a process be used, i.e. what is the intended result of performing a
specific process.

67

Chapter 2. Scientific Contribution 2.2. Metamodelling

• Strategy is an abstract concept that is not intended to be instantiated, as it
serves as a generalised concept containing both Process and Objective concepts,
and their common attributes.

Concept Strategy

– attributes Each Strategy individual is defined by the following attributes:

• description is a textual attribute containing natural language description of
the given Strategy individual, i.e. a Process or an Objective.

• name contains the name of the Strategy individual to be displayed in graphic
view and that is to be used when implementation template is generated. In-
herited by Process and Objective.

Concept OrganisationalKnArt

– attributes Each OrganisationalKnArt individual is defined by the following attributes:

• ID is used for unique identification of model elements. Inherited as such from
KnowledgeArtifacts.

• description is a textual attribute containing natural language description of the
given knowledge artefact individual. This feature is not yet implemented as a
part of the application template generator. Inherited from KnowledgeArtifacts.

• KnArtContent is a textual attribute that contains the content of the given know-
ledge artefact. Since agent knowledge is for the purposes of this research ex-
plicated using Prolog, the contents of this attribute should be defined using
Prolog as well. This feature is not yet implemented as a part of the application
template generator.

• name contains the name of the objective to be displayed in graphic view and
that is to be used when implementation template is generated. Inherited from
KnowledgeArtifacts.

– connections Each OrganisationalKnArt individual can be connected to the following
concepts:

• Role individual connected to an OrganisationalKnArt individual denotes organ-
isational knowledge available to a specific role. Knowledge associated with a
specific role is made available to an organisational unit when it enacts the given
role.

• OrgUnit individuals cannot be connected to an OrganisationalKnArt individual.

68

Chapter 2. Scientific Contribution 2.2. Metamodelling

• KnowledgeArtifacts is an abstract concept that is not intended to be instanti-
ated, as it serves as a generalised concept containing both OrganisationalKnArt

and IndividualKnArt concepts, and their common attributes.

Concept IndividualKnArt

– attributes Each IndividualKnArt individual is defined by the following attributes:

• ID is used for unique identification of model elements. Inherited as such from
KnowledgeArtifacts.

• description is a textual attribute containing natural language description of the
given knowledge artefact individual. This feature is not yet implemented as a
part of the application template generator. Inherited from KnowledgeArtifacts.

• KnArtContent is a textual attribute that contains the content of the given know-
ledge artefact. Since agent knowledge is for the purposes of this research ex-
plicated using Prolog, the contents of this attribute should be defined using
Prolog as well. This feature is not yet implemented as a part of the application
template generator.

• name contains the name of the objective to be displayed in graphic view and
that is to be used when implementation template is generated. Inherited from
KnowledgeArtifacts.

– connections Each IndividualKnArt individual can be connected to the following con-
cepts:

• Role individuals cannot be connected to an IndividualKnArt individual.

• OrgUnit individual connected to an IndividualKnArt individual denotes indi-
vidual knowledge available to a specific organisational unit.

• KnowledgeArtifacts is an abstract concept that is not intended to be instanti-
ated, as it serves as a generalised concept containing both OrganisationalKnArt

and IndividualKnArt concepts, and their common attributes.

Concept KnowledgeArtifacts

– attributes Each KnowledgeArtifacts individual is defined by the following attributes:

• ID is used for unique identification of model elements.

• description is a textual attribute containing natural language description of
the given KnowledgeArtifacts individual, i.e. an OrganisationalKnArt or an
IndividualKnArt.

69

Chapter 2. Scientific Contribution 2.2. Metamodelling

• name contains the name of the KnowledgeArtifacts individual to be displayed in
graphic view and that is to be used when implementation template is generated.
Inherited by OrganisationalKnArt and IndividualKnArt.

After the class concepts are described above, the other important type of elements
in the Lamrast−+ metamodel should be described – associations. Both of these ele-
ment types can be seen in Fig. 2.14. While concepts (classes) are shown as rectangles,
associations are visually represented as rectangles with hexagons on top. The main dif-
ference between these two types of metamodel elements is evident in modelling using this
metamodel. Concepts are instantiated as objects and associations are instantiated as re-
lations between those objects. Therefore, for example, the association canHaveRole that
connects organisational units with roles they can enact will be visualised in a system’s
model as a relation between an OrgUnit individual and a Role individual. By default,
associations of Lamrast−+ metamodel contain only one attribute – ID – which is used for
unique identification of model elements. Pages 70 to 72 therefore provide the overview of
association elements without stating the single and default ID attribute.

Association isPartOfOrgUnit can be created between two OrgUnit individuals, and de-
notes that an organisational unit is a part of another organisational unit, thus build-
ing the idea of a higher-level (compound) organisational unit comprising lower-level
(more simple) organisational units.

OrgUnit

Domain:
OrgUnit

Range:
isPartOfOrgUnit

Association answersToOrgUnit can be created between two OrgUnit individuals, and de-
notes that an organisational unit is located on a hierarchically lower level, when
compared to the associated organisational unit. This feature is not yet implemen-
ted as a part of the application template generator.

OrgUnit

Domain:
OrgUnit

Range:
answersToOrgUnit

Association canHaveRole can be created between an OrgUnit individual and a Role in-
dividual, and denotes that an organisational unit can enact a certain role. Logic
of the relation is dealt with in graphic view, when a model is being defined – Role

individuals connected to an OrgUnit individual using a single canHaveRole association
element cannot be enacted simulatneously, i.e. only one role can be enacted by a
given organisational unit per canHaveRole association defined. This feature is not
yet implemented as a part of the application template generator.

OrgUnit

Domain:

Role

Range:
canHaveRole

70

Chapter 2. Scientific Contribution 2.2. Metamodelling

Association isPartOfRole can be created between two Role individuals, and denotes that
a role is a part of another role, thus building the idea of a higher-level (complex)
roles comprising lower-level (more simple) roles. The purpose of this association
is to define a single higher-level role that a system modeller could then connect to
an OrgUnit individual, thus making all the lower-level roles available to the given
organisational unit. This feature is not yet implemented as a part of the application
template generator.

Role

Domain:

Role

Range:
isPartOfRole

Association answersToRole can be created between two Role individuals, and denotes that
a role is located on a hierarchically lower level, when compared to the associated
role. This feature is not yet implemented as a part of the application template
generator.

Role

Domain:

Role

Range:
answersToRole

Association genericAssociation can be created between two Role individuals, with the
role of a placeholder, for defining an association that is not defined by default. This
feature is not yet implemented as a part of the application template generator,
although it can be used in model development.

Role

Domain:

Role

Range:
genericAssociation

Association canAccessKnArt can be created between an OrgUnit or a Role individual, and
an IndividualKnArt or an OrganisationalKnArt individual, respectively. Individual
knowledge artefacts (containing knowledge about a given agent’s individual features)
are available to organisational units only, while organisational knowledge artefacts
(containing pieces of organisational knowledge, organisational culture, etc.) are
available to roles only.

OrgUnit,

Role

Domain:
IndividualKnArt,

OrganisationalKnArt

Range:

canAccessKnArt

Association hasActions can be created between a Role individual and Action individuals,
and denotes actions that are available to a given role. When an organisational unit
enacts a particular role, the associated actions are made available to it.

Role

Domain:

Action

Range:
hasActions

71

Chapter 2. Scientific Contribution 2.2. Metamodelling

Association canStartProcess can be created between a Role individual and an Action

individual, and denotes a process that can be started by a given role, where a
process is built only of actions available to the given role. This feature is not yet
implemented as a part of the application template generator.

Role

Domain:

Process

Range:
canStartProcess

Association isPartOfProcess can be created between an Action individual and a Process

individual, and denotes that an action is a part of a process which serves as a
grouping concept. A process is here defined as a set of actions that can be used
in unison to achieve a set objective. This feature is not yet implemented as a part
of the application template generator, since actions are defined atomary and with
their own objectives.

Action

Domain:

Process

Range:
isPartOfProcess

Association hasObjective can be created between either a Role or an Action or a Process

individual and an Objective individual, and denotes that a role, an action, or a
process have a specific objective, i.e. that they strive to, or can be used to achieve,
respectively, a specific state of the system (or an in-game world in the context of
MMORPGs). This feature is partially implemented as a part of the application
template generator.

Role,

Action,

Process

Domain:

Objective

Range:
hasObjective

Association isPartOfObjective can be created between two Objective individuals, and
denotes that an objective is a part of another objective, i.e. that an objective
consists of a set of objectives, namely that an Objective individual is a part of a
complex objective. This does not denote, of course, that the lower-level objective is
atomic.

Objective

Domain:
Objective

Range:
isPartOfObjective

Association precedentTo can be created between two Objective individuals, and denotes
that an objective precedes another objective, i.e. that it is advised to achieve one
objective before achieving the other.

Objective

Domain:
Objective

Range:
precedentTo

72

Chapter 2. Scientific Contribution 2.2. Metamodelling

2.2.1.5 Activity Five: Metamodel Assessment

This metamodel is created with seven perspectives of organisational modelling of LSMASs
in mind, presented in [118]:

• organisational structure (decision and information flows of an organisation),

• organisational culture (important intangible aspects of an organisation including
knowledge, norms, reward systems, language and similar),

• strategy (long term objectives of an organisation, action plans for their realisation
as well as tools on how to measure success),

• processes (activities and procedures of an organisation),

• individual agents (the most important asset of any organisation – individual agents
actually performing the work),

• organisational dynamics (organisational changes including reorganisation of any of
the mentioned components),

• context and inter-organisational aspects (organisational behaviour towards its en-
vironment including strategic alliances, joint ventures, mergers, splits, spinouts, and
similar)

The metamodel assessment activity was envisioned as an evaluation process comparing
the features of the metamodel with the above perspectives of organisational modelling
of LSMASs, since they represent a modern approach to modelling LSMASs, and the
metamodel should be capable of modelling modern applications of the LSMASs domain,
including MMORPGs.

The Lamrast−+ metamodel allows the model developer to define various roles and or-
ganisational units, and relations between them that define decision flows e.g. answersToRole

which is a typically hierarchical relation. However, organisational structure does not have
to be hierarchical, which is why roles and organisational units can be defined independ-
ently of each other. Another feature towards fulfilling this perspective of organisational
structure is the ability to define a role as being a part of another role, with the same
system applicable to organisational units. This approach allows the model designer to
build a model that is simple in its core, but branches out as necessary.

Intangible aspects of an organisation are constrained to the concepts of knowledge
artefacts. Individual knowledge artefacts and organisational knowledge artefacts con-
tain knowledge applicable to the elements of a given system, but they discern individual
knowledge that is meaningful and important to an individual agent, from organisational
knowledge that is applicable to system-level aspects, and is important to any given role.

73

Chapter 2. Scientific Contribution 2.2. Metamodelling

In the context of MMORPGs, individual knowledge is tied to an individual character,
thus describing their attributes such as character traits, skills, history, or inventory; or-
ganisational knowledge is used by the given character when they play a certain role, such
as rules of conduct in a certain area of the game, available ways of approaching a given
mob character, or in-game time.

Strategical aspect of an organisation is realised using the concept of objective along
with its available properties and attributes. The most important property of the objective
concept, in the context of strategic planning, is precedentTo since it defines which objectives
precede which other objectives, thus creating a flow of objective concepts which ultimately
describe a basis for an action plan. Since lowest-level objectives are achievable by single
actions offered by roles defined in the given system, their combination describes which
actions are necessary for the fulfilment of their ultimate top goal. Another feature of the
Lamrast−+ metamodel should be mentioned here – that of programming code template
generator which uses the modelled precedence of objective elements and renders a plan-like
code available for use in the modelled system’s implementation process afterwards.

Lamrast−+ metamodel contains elements that are necessary for defining actions that
organisational units of a system can perform within the system. Such actions stem from
the defined roles of the system, since roles here represent grouped norms of the given
system. Even though use of actions is recommended, processes can also be defined, as
sets of actions i.e. as elements that consist of actions. Using actions alone is recommended
since actions are directly used for achieving certain goals. However, it is possible to define
an action and its goal, whilst defining it as a part of a process as well.

Individual agents cannot be modelled in detail using this metamodel, yet their pres-
ence can. Furthermore, it should be noted that the organisational unit concept of the
metamodel is by default used as an agent class when the model is defined, not as a rep-
resentation of a single individual agent. This view is aligned with the MASs development
platform used in this research (SPADE) which allows agents to be defined as classes with
their many instances. Yet, an organisational unit concept can be used to represent indi-
vidual agents, since no formal obligations are set. The metamodel by no means allows
the model developer to define implementation-level details of individual agents, since im-
plementation depends heavily on the used programming language and implementation
platform.

Organisational dynamics is described in the metamodel using features provided by
the tool in which the metamodel is developed. Therefore, organisational dynamics which
is realised using graph grammars depends in its implementation on the modelling tool
developed along with this metamodel, and is described in Section 2.2.2. Since the model
that can be built based on this metamodel in its essence describes a state of a given
system, it can be used to describe the system at a single moment in time. Therefore,
organisational dynamics is shown using two different instances of the model. Modelling an

74

Chapter 2. Scientific Contribution 2.2. Metamodelling

organisational unit as having the possibility of being a part of another organisational unit
shows the intention of developing organisational dynamics during the modelled system’s
implementation process.

Inter-organisational aspects are present inasmuch as the organisational unit concept
can be a representation of either an individual organisational unit, or a group of individu-
als. No significant difference of these two concepts should be made when the model of a
given system is being built, such as roles that can be played, or mutual relationships of or-
ganisational units. Therefore, inter-organisational aspects describable using the concepts
defined by the metamodel can be modelled.

Some of the mentioned features were already shown on examples from the domain
of the recipeWorld [43], as well as some other application domains of LSMASs, e.g.
MMORPGs [96, 92, 93]. The example of recipeWorld is presented in Section 4.1, and
The Mana World example is presented in Section 4.2. Both of the example descriptions
are used as a medium for highlighting some of the described seven perspectives of organ-
isational modelling of LSMASs [118], an overview of which is shown in Table 2.3. The
most complex modelling perspective – context and inter-organisational aspects – is not
applicable to these quite simple examples, and is more successfully shown on the third
example described in Section 4.3.

Table 2.3: Description of how concepts of the metamodel
can be used on two distinct application domains

Perspective recipeWorld The Mana World

organisational
structure

The system is described us-
ing only individual organisa-
tional units, therefore disallow-
ing them to form organisations
beside the top-level one repres-
ented by the modelled system
itself.

Individual organisational unit
(a single player character
played by an agent) can be a
part of an organisational unit –
such a relationship represents
party or guild membership.

organisational
culture

The system defines certain
norms some of which are form-
alised as roles.

Modelled indirectly using the
concept of knowledge artefacts
– storage of normative elements
not included in the definitions
of modelled roles.

Continued on next page

75

Chapter 2. Scientific Contribution 2.2. Metamodelling

Table 2.3 – continued from previous page

Perspective recipeWorld The Mana World

strategy Objectives are described us-
ing two complex objectives per-
taining to either of the defined
roles. Complex objectives are
decomposed to atomic object-
ives achievable by single ac-
tions.

Available actions within the
system are defined and related
to specific roles that can be
played by individual agents.

processes The defined objectives are
achievable by various actions
that organisational units can
perform when playing a role of
the modelled system.

Defined actions have their ef-
fect on the system environment
defined through their connec-
tions to the defined objective
elements.

individual
agents

The system is described using
only individual organisational
units.

organisational
dynamics

Not applicable. A relationship exists between
an individual organisational
unit and a compound organisa-
tional unit. A role that can ini-
tialise the process of creating
compound organisational units
is defined.

context
and inter-
organisational
aspects

Not applicable. Not applicable.

End of Table 2.3

2.2.2 Organisational Dynamics

Organisational dynamics is the concept that involves all the processes that affect organ-
isational features of an organisation, thus introducing change to the observed system.
These changes are mostly visible in the organisational structure of a given system, al-

76

Chapter 2. Scientific Contribution 2.2. Metamodelling

though other features of an organisation can be affected as well. Various elements [118]
are deemed needed to tackle the problem of organisational dynamics in LSMASs, since
static systems are good enough for implementations featuring individual agents, but are
lacking when a multitude of agents is considered, especially when a multitude of agent
organisations is considered.

The problem of organisational dynamics is considered in this thesis only from the as-
pect of organisational structure, thus only in the sense of individual organisational units
and them belonging to complex organisational units. Such a problem is described as fol-
lows, in terms of graph grammars, temporal and satisfiability logics. Graph grammars are
chosen for their applicability to graphs which are the basis of models developed using the
Lamrast−+ metamodel, and can be implemented using the customised A Tool for Multi-
formalism and Meta-Modelling (AToM3) modelling tool. Temporal logic is considered a
useful addition to graph grammars since dynamic changes in organisational features are
happening in time, and are presented herein as events in discrete time. Satisfiability logic
is chosen as a tool for describing the environment of a change in organisational features
– events before and after the given event.

A solid introduction to graph grammars is provided in [115, 37], with emphasis on
active graph grammars in [119]. A short definition of graph grammars is given in [115]
using a finite set of productions of graph grammars, whereby a production is, in gen-
eral, a triple (M,D,E) where M and D are graphs (the "mother" and "daughter" graph,
respectively) and E is some embedding mechanism. A production can be applied to the
host graph H when an occurence of M is detected in H. Then, this M is removed from
H, and replaced with D or its isomorphic copy, followed by using the embedding mech-
anism E to finally attach D to the remainder H− of H. Following [115], there are two
types of embedding that can be distinguished: gluing and connecting, based on which two
main approaches to graph grammars exist: gluing approach (algebraic), and connecting
approach (algorithmic).

The main distinction of the two approaches is in their treatment of nodes and edges
of the original (host, H) graph and the additional (daughter, D) graph [115]:

• In the gluing case, certain parts (i.e., nodes and edges) of D are identified with
certain parts of H−.

• In the connecting case, certain new edges are used as bridges that connect D to H−.

Further theoretical details about graph grammars are provided in Appendix B.2, while
this section provides specific details on using graph grammars for organisational dynamics
in the context of Lamrast−+ metamodel.

Since graph grammars used alongside the Lamrast−+ metamodel are based on edges
and nodes identified using labels, a label alphabet is to be defined in the first place. A

77

Chapter 2. Scientific Contribution 2.2. Metamodelling

Individual

OU|1

1:Agent
2:Role

Action

3:Action
A

4:Objective

O|0
a:

b:
c:

Figure 2.15: An example of an oversimplified model

label alphabet L = 〈LV ,LE〉, where LV is a set of node labels, and LE is a set of edge
labels. Elements of both of these sets come from the elements of the metamodel, i.e.
LV = {OrgUnit, Process, Role, Action, Objective, IndividualKnArt, OrganisationalKNArt,

. . . }
LE = { hasAction, hasObjective, playsRole }
A graph built using the Lamrast−+ metamodel is therefore a graph over L is defined

as G = (VG, EG, sG, tG, lG,mG), where VG and EG are sets of nodes (vertices) and edges
respectively, sG, tG : EG → VG are source and target functions respectively, and lG : VG →
LV and mG : EG → LE are labelling functions for nodes and edges respectively.

Specifically, for the model in Fig. 2.15, the following is true:

VG = {1, 2, 3, 4}, EG = {a, b, c},

along with the following:

sG(a) = (1), sG(b) = (2), sG(c) = (3);

tG(a) = (2), tG(b) = (3), tG(c) = (4);

whereby labels are distributed as follows:

lG(1) = Agent, lG(2) = Role, lG(3) = Action, lG(4) = Objective,

mG(a) = ∅,mG(b) = ∅,mG(c) = ∅.

Using an analogous approach, any model developed using the Lamrast−+ metamodel
can be defined in a formal way. The more interesting part are production rules, or
simply put, productions. Using the principles of the double pushout (DPO) approach, a
production is described by a pair L l←− K

r−→ R of graph homomorphisms from a common
interface graph K, where another way [55] of writing the stated is as p = 〈L← K → R〉.
L is always called a left-hand side, and R is the right-hand side, withK being the interface
of p. Further details are specified in Appendix B.2.

In order to model organisational dynamics, two productions are defined, as shown in
Table 2.4.

As mentioned before, creating coalitions or enjoying the privilege of being a part of one

78

Chapter 2. Scientific Contribution 2.2. Metamodelling

Table 2.4: Production rules

a) Add Roles
Production rule that creates roles for creating and joining groups

Individual

<ID>

1:Agent

Individual

<ID>

1:Agent

Individual

<ID>

1:Agent

2:PartyFounder

3:PartyMember

a:canHaveRole

l r

L K R

b) Enable Grouping
Production rule that creates a higher-level organisational unit

Individual

<ID>

1:Agent

2:PartyFounder

a:canHaveRole Individual

<ID>

1:Agent

2:PartyFounder

Individual

<ID>

1:Agent

2:PartyFounder

a:canHaveRole

b:isPartOfOrgUnit
Group

<ID2>

3:Party

l r

L K R

79

Chapter 2. Scientific Contribution 2.2. Metamodelling

is a process of temporal nature – it happens in time, usually in a set order. So as to show
this temporal component of the organisational dynamics in the context of MMORPGs,
linear temporal logic [151, 48, 102, 79] is used here. A set of discrete moments T is defined
as T = {t1, . . . , ta, tb, . . . , tn}, where ta is the moment immediately before the observed
event, and tb is the moment immediately following the event. Based on the language used
in [102], referencing [79], several temporal operators are available to be used – those for
the future are: N (Next), A (Always), Ev (Eventually), U (Until), and W (Unless or
waiting for). In addition to temporal operators for the future, the following temporal
operators are used for the past: Np (Previous), Ap (Has always been), Evp (Once), Up

(Since), and W p (Back to). Where F and G are formulae, so are N(F), A(F), Ev(F)
FUG, and FWG, using temporal operators for the future, and Np(F), Ap(F), Evp(F),
FUpG, and FW pG, using temporal operators for the past.

Furthermore, the temporal context is enriched with operators for expressing agent’s
knowledge of the system wherein it’s located. Hence, the organisational dynamics ex-
amples are shown in temporal relation to agent’s knowledge of the system. Knowledge
operator is defined in [102], referencing [79], as follows. A set of formulae above a set
of basic propositions P , and a set of agents A is defined recursively. If every basic pro-
position from P is a formula, and F and G are formulae, so are ¬F , (F ∧ G), (F ∨ G),
(F ⇒ G), and (F ⇔ G). Finally, if F is a formula, so is Ki(F), ∀i ∈ A whereby Ki is the
modal knowledge operator.

Before organisational dynamics of this metamodel is described here using graph gram-
mars, the context of the example should be set, considering temporal component is rather
important when dealing with dynamical processes. Figure 2.16 shows the time-based
analysis of a simple MMORPG situation that can be narratively set as follows.

In an MMORPG world, there are two players: Alice and Bob, i.e. P = {Alice,Bob}.
The world is here observed in discrete time periods with T = {0, 1, . . . , 14, 15}. Alice
started her life in the in-game world earlier than Bob, at the beginning of the observed
time, t1, or put more precisely, Alice becomes available and present in the system at the
transition of time period t0 to t1, denoted here, where necessary, as 0t1. Bob becomes
available later, i.e. at the moment t4, from its very beginning, therefore from 3t4. When
the player is not occupied with solving a quest, they are designated as available, therefore
isAvailable(alice) means that Alice is available (not solving a quest) at the given point
in time, shown visually in Fig. 2.16 in horizontal lane isAvailable(A).

Every player has a set of three skills – strength, dexterity and intelligence. Starting
value of each of these skills is 0, with the possibility to grow as certain quests are solved
by the given player. This growth depends on the defined rewards awarded for successfully
solving quests. For example, the killMaggots quest rewards the player who finishes it
with (1, 1, 0) in skills. The value of skills of a given player is shown in Fig. 2.16, in
horizontal lane skills(A,B,C,D), for both Alice and Bob. Skills are therefore noted as

80

Chapter 2. Scientific Contribution 2.2. Metamodelling

Figure 2.16: Context of the graph grammars example
described using LPS, complete code listed in Ap-
pendix C.1

skills(p, s, d, i), where s, d, i ∈ N, and p ∈ P .
Quests that are available to any of the given players are shown in Fig. 2.16 in horizontal

lane questAvailable(A,B) denoting which quest is available to which player, e.g. killMaggots

,alice reads that the quest killMaggots is available (e.g. was unlocked) to the player
Alice. Every quest has a set requirements, existing of the minimum value of skills that is
necessary for a player to match in order to start solving the given quest. The meaning of
a quest being available to a player is that the player can interact with the given quest,
but not necessarily that the given player can play the observed quest, i.e. the player does
not have to meet the skill criteria of the given quest.

If a player is available and has a quest available that it can start solving (i.e. satisfies its
requirements), then they will start the given quest, denoted as hasQuest(P,Q) meaning that
player P started solving a quest Q. This is shown in Fig. 2.16 in the topmost horizontal
lane hasQuest(A,B).

Upon solving a quest, the player who finished it receives the set reward thus advancing
through the given game. A line of quests in an MMORPG is defined, and subsequent
quests become available to players when they solve their prerequisites.

The situation shown in Fig. 2.16 can therefore be described as follows. The two
players, Alice and Bob, start their adventure in an MMORPG world at different times
(more precisely, 0t1 and 3t4 respectively). Both of them can initially start only one quest,
labelled killMaggots, since it requires no special set of skills. Once Alice solves this first
quest, at 5t6, its successor is unlocked (quest seekPotion), at 5t6. Since Alice receives the
reward for solving the first quest at 6t7, she can start solving the next quest, seekPotion.

81

Chapter 2. Scientific Contribution 2.2. Metamodelling

Individual

OU|0

Player
GenericRole

GenericAction

GenericAction
A

killMaggots

O|0

seekPotion

O|1

dragonEgg

O|2

Figure 2.17: Abstracted model representation of the sys-
tem whose behaviour is shown in Fig. 2.16

Bob is solving his first quest at that time. Once Alice solves her second quest, at 9t10, the
third quest becomes available to her. The reward is not enough for her to bring her skills
to the level necessary to start solving the third quest (dragonEgg), and there are no other
quests available to her, so Alice decides to start looking for help by founding a party at
11t12. Such a party is the basic organisational construct in a MMORPG. At the moment
14t15 Bob acts selfishly and starts his own party for all the same reasons Alice did the
same a couple of moments earlier.

In the context where P is a set of players, and Q is a set of quests, if the quests a
player can play are designated as canPlayQuest(P,Q), where P ∈ P , and Q ∈ Q, then indi-
vidual gameplay for a player P is a valid choice as long as ∃x : canP layQuest(P, x). It is
reasonable to expect that at a moment in the future, there will be no quests that a player
can play, although a set of quests is available to them, i.e. Ev(¬canP layQuest(P,Q) ∧
questAvailable(Q,P)) : P ∈ P , Q ∈ Q. At this point in time, the given player starts play-
ing the role of a party founder or a party leader, and can create a party. Contrariwise,
the given player can assume the role of a party member, search for existing parties, and
join the one they judge fit. These roles are considered here to be defined by a compound
organisational unit by default, yet their creation in the model is subject to graph gram-
mars because organisational units can exist that do not favour grouping of lower-level
organisational units.

A simplified model using the Lamrast−+ metamodel that models the interesting parts
of the system described here, and shown in Fig. 2.16, is shown in Fig. 2.17. Roles and
their actions are not of importance here, and are hence substituted with a generic role
and a generic action, both of which should in a real model be expanded into a number
of roles and their actions. Furthermore, only the top-level objective is shown, without
further deconstruction. Objective sequence is shown though, with killMaggots being the
first objective (actually representing the concept of a quest in an MMORPG) to be solved,
followed by seekPotion, and finally dragonEgg.

The first graph grammar (shown in Table 2.4) takes place at the moment tf when the

82

Chapter 2. Scientific Contribution 2.2. Metamodelling

formula (¬canP layQuest(P,Q) ∧ questAvailable(Q,P)) : P ∈ P , Q ∈ Q becomes true,
i.e. when there are quests available to a player, but the given player cannot start solving
any of those quests since they cannot meet the necessary requirements. Following the rule
of graph grammars dual-pushout approach, visualised in Fig. 2.21, and using the graph of
Fig. 2.17 as a given graph G, production Add Roles from Table 2.4 can be used as shown
in Fig. 2.18a. In order to have a clearer situation when working with graph grammars,
the following examples use a subgraph of the graph shown in Fig. 2.17, i.e. the graph
shown in Fig. 2.19, consisting only of elements representing organisational units, roles,
and the relationships between them. Therefore, graph shown in Fig. 2.19 is used in the
graph grammars modification processes as the initial given graph G.

Theoretical overview considering productions and pushouts and the generalised process
of modifying an initial graph to the resulting graph, is given in Appendix B.2.

The Add Roles production (Table 2.4) can be therefore shown as a pushout shown in
Fig. 2.18a, using graph in Fig. 2.19 as the initial graphG. The result of applying the stated
graph grammar production to the initial graph which consists of an organisational unit
that can play a set of roles that are defined by the given organisation the organisational
unit is a part of, is the ability of the organisational unit to play a new set of roles
consisting of two key roles for modelling the grouping ability of an organisational unit, as
shown in Table 2.4: PartyFounder, and PartyMember. Both of these roles define actions that
work with the concept of grouping: PartyFounder role enables the organisational unit to
create and define new groups of organisational units, while the PartyMember role provides
actions needed for searching for existing higer-level organisational units, determining how
interesting they are to the given lower-level organisational unit, and finally joining them.

Graph H in Fig. 2.18a represents a part of a system that features an organisational
unit that can play roles PartyFounder, and PartyLeader, nonsimultaneously, and is therefore
ready for creating, or joining, a higher-level organisational unit. Such a system is used
for the example shown in Fig. 2.16 – the featured organisational units (individual agents
Alice and Bob) can found parties, or can look for and join existing parties.

The next step is actually forming a party, or in general an organisational unit of a
higher level. The production shown in Table 2.4 is the appropriate one for describing
this transition – from an organisational unit that can form a higher-level organisational
unit, to the one that is a part of a newly formed higher-level organisational unit. The
initial graph G is given in Fig. 2.20, as an isolated part of the graph representing the
whole system, just as was case above, when the Add Roles production was considered.
Production Enable Grouping in Table 2.4 is a graph grammars approach of what can be
described verbally as an organisational unit founding a higher-level organisational unit,
where it is a leader and a founding member.

Clearly and graphically put, double pushout of the Enable Grouping production is
shown in Fig. 2.18b, where the final graph H features an organisational unit that can be

83

Chapter 2. Scientific Contribution 2.2. Metamodelling

a part of another organisational unit – the one it just created.
In the context of the LPS example visualised in Fig. 2.16, this second graph grammar

production (Enable Grouping) takes place at the moment ts, which immediately follows
tf when organisational units are introduced to the appropriate roles. In particular, agent
Alice started the first higher-level organisation, of the observed example, at t12.

All of the graph grammars derivations are implemented in the chosen metamodelling
tool, and can be used when working with the metamodel. These can be used in the process
of modelling an LSMAS using the Lamrast−+ metamodel. Howbeit, the metamodel is
intended to be used as a static representation of the modelled system, wherefore all of
the derivations described here have no real impact on the generated code template for
the modelled system, as they are of no use to the system once the implementation phase
is realised – detailed behaviour of agents is not a concern of this research as of yet. An
interesting future research may be a real-time model following the changes in a developed
model’s system in runtime.

Considering the nature of the metamodel’s representation of an individual organisa-
tional unit, i.e. considering the fact that the organisational unit element of the metamodel
does not represent an individual of a class, but rather a class of organisational units (e.g.
the class of Player agents, and not the individual player Alice), the model’s graph rep-
resentation is not very rich in expressions, yet it shows many aspects of organisational
dynamics. In the case of a model like in Fig. 2.22, where two organisational unit ele-
ments are present, along with a role element representing a set of custom roles, two
roles used for the process of organisational dynamics (PartyFounder, and PartyMember),
their respective actions (not presented in the referenced model), the verbal decription and
interpretation is as follows:

A lower-level organisational unit can play any one of the roles from the
custom set of roles at any given moment. At the same moment, the organisa-
tional unit can play any one of the following two roles as well: PartyFounder
and PartyMember. Using the actions provided by the PartyFounder role, the
organisational unit can establish a higher-level organisational unit. On the
other hand, if a higher-level organisational unit is present, the organisational
unit can, using the actions provided to them by playing the PartyMember role,
look for, assess, and join a higher-level organisational unit.

It is possible therefore that the higher-level organisational unit is only an abstract
concept consisting of real or artificial agents, or an implemented agent – such a decision is
in the hands of the modelled system’s developers, and is not of concern at the modelling
stage of a system’s development. An example of the higher-level organisational unit as an
abstract concept is the Fellowship of the Ring3 (from the legendarium of J.R.R. Tolkien),

3For more information, visit http://lotr.wikia.com/wiki/Fellowship_of_the_Ring

84

http://lotr.wikia.com/wiki/Fellowship_of_the_Ring

Chapter 2. Scientific Contribution 2.2. Metamodelling

Individual

<ID>

1:Agent

Individual

<ID>

1:Agent

Individual

<ID>

1:Agent

2:PartyFounder

3:PartyMember

a:canHaveRole

Individual

<ID>

4:Agent

5:Wizard

b:canHaveRole

6:Warrior

7:Rogue

Individual

<ID>

4:Agent

Individual

<ID>

4:Agent

5:Wizard

b:canHaveRole

c:canHaveRole 6:Warrior

7:Rogue

8:PartyFounder

9:PartyMember

l r

1 - 4d1 - 4m

1 - 4
a - c
2 - 9
3 - 8

(a) Double pushout of production Add Roles

Individual

<ID>

1:Agent

2:PartyFounder

a:canHaveRole Individual

<ID>

1:Agent

2:PartyFounder

Individual

<ID>

1:Agent

2:PartyFounder

a:canHaveRole

b:isPartOfOrgUnit
Group

<ID2>

3:Party

Individual

<ID>

4:Agent

5:PartyFounder 6:Wizard

7:Warrior

8:Rogue

c:canHaveRole

d:canHaveRole

Individual

<ID>

4:Agent

c:canHaveRole

5:PartyFounder

Individual

<ID>

4:Agent
e:isPartOfOrgUnit

c:canHaveRole

d:canHaveRole

5:PartyFounder 6:Wizard

7:Warrior

8:Rogue

Group

OU|1

9:Party

l r

1 - 4
2 - 5d

1 - 4
a - c
2 - 5

m

1 - 4
a - c
2 - 5
b - e
3 - 9

(b) Double pushout of production Enable Grouping

Figure 2.18: Double pushouts of the defined productions

85

Chapter 2. Scientific Contribution 2.2. Metamodelling

Individual

<ID>

4:Agent

5:Wizard

b:canHaveRole

6:Warrior

7:Rogue

Figure 2.19: The initial graph G suitable for Add Roles
production

Individual

<ID>

4:Agent

5:PartyFounder 6:Wizard

7:Warrior

8:Rogue

c:canHaveRole

d:canHaveRole

Figure 2.20: The initial graph G suitable for Enable
Grouping production

L K R

G D H

(1) (2)

Figure 2.21: DPO approach structure, a direct deriva-
tion, according to [37]

86

Chapter 2. Scientific Contribution 2.2. Metamodelling

Individual

OU|0

Agent

Group

OU|1

Party

PartyFounderPartyMemberCustomRole

Figure 2.22: Model with necessary elements for dynamic
organisational structure

a brotherhood of members of the various Free Peoples of Middle-Earth, which consists of
nine agents, where the Fellowship is only a name for the defined group of agents. A similar
situation is with the Avengers4 from Marvel’s universe. The higher-level organisational
unit in this context provides no new features, other than the combined power of individual
agents it consists of, and their cooperative effort towards fulfilling a common goal. On the
other hand, a Megazord5 – a combination of five Dinozords – from the Mighty Morphin
Power Rangers live-action television and movie series, can be considered, in the context
of higher-level organisational units, as a new agent, since it is not an abstract concept,
but a combination of lower-level agents, thus forming a new agent with features that are
not merely the combination of those of the included lower-level agents, but surpass them.

4For more information, visit http://marvelcinematicuniverse.wikia.com/wiki/Avengers
5For more information, visit http://powerrangers.wikia.com/wiki/Megazord

87

http://marvelcinematicuniverse.wikia.com/wiki/Avengers
http://powerrangers.wikia.com/wiki/Megazord

Chapter 3

Practical Contribution

Even though many models applicable to the domain of multiagent systems (MASs) have
been defined, and published in many a research, some of them described in subsection 1.4.3
and [3, 92], only a few of them have had their practical application developed, i.e. their
development somehow ended with theoretical definitions and guidelines.

The goal of the development process of Lamrast−+ metamodel is not to leave it on
theoretical level, thus providing only a sense of scientific contribution, but to move further
on to developing a metamodelling tool that uses the concepts defined by the metamodel,
which can be used for modelling complex large-scale multiagent systems (LSMASs).
Furthermore, apart from modelling systems comprising agents, the metamodelling tool
provides the used with the feature that allows them to generate an implementation tem-
plate for the modelled system. Therefore this chapter provides the description of the
practical contribution of this research.

This chapter describes the developed metamodelling tool (defined as a modification of
an existing tool used for metamodelling), its application guidelines, some of the features
and challenges. The content of Sections 3.1 and 3.2 describes the tool and how Lamrast−+
metamodel is implemented, while the feature of generating implementation template is
covered in Section 3.3.2.

The tool can be found online as a publicly available open source project at GitHub,
https://github.com/Balannen/LSMASOMM.

3.1 Metamodelling Tool

Apart from defining the sole metamodel, a complete metamodelling process can go fur-
ther, towards defining various constraints introduced by the metamodel yet possibly not
visible in the graphical representation of it, in order to provide a wholesome metamod-
elling approach. Building blocks of such a modeling method, as referenced to by [66],
include the modelling language, the modelling procedure, and the mechanisms and al-
gorithms. The modeling language is described [66] as a set of modelling constructs along

88

https://github.com/Balannen/LSMASOMM

Chapter 3. Practical Contribution 3.1. Metamodelling Tool

with their grammar and semantics – syntax (grammar) in the context of defining pos-
sible fundamental modelling constructs, and semantics as unambiguous meaning of the
constructs of the language. Modelling procedure is the part that defines the steps that
must be taken by modelers towards their goal. [66] Amongst the steps it defines are the
precedence guidelines on what should be the order of creating certain types of models so
as to have an ultimately valid model. The block dealing with mechanisms and algorithms
covers various forms of functionality in the context of processing models and their content
for a number of purposes such as visualisation, transformation, simulation, etc.).

Building further on the described modeling method, it is stated that a modelling tool,
especially a domain-specific one, should include:

“(a) model-driven functionality that is relevant with respect to the modeling re-
quirements; (b) guidelines and constraints for modeling scenarios with respect to
different modeling goals and related functionality.” — Karagiannis et al. [66]

In the context of creating a modelling tool that introduces practical application to a
defined metamodel, a model of a formalism should contain enough information to permit
the automatic generation of a tool to check and build models subject to the described
formalism syntax. [33]

Two metamodelling tools, i.e. tools that allow the user both to define a metamodel,
and use the defined metamodel to develop a model representation of an observed system,
that are observed as a part of this research are the ADOxx1 and A Tool for Multi-
formalism and Meta-Modelling (AToM3)2. Some fundamental differences between them
are: the wealth of features, the ease and practicality of adding new or external features,
technical details, licences used, and more (some of these is presented in Table 3.1). The
most important similarity is that both these tools provide their users with the ability to
define a metamodel, and to use the defined metamodel when creating a model.

Granted, other tools that utilise the metamodelling process exist, such as those from
the Eclipse community3, yet only ADOxx and AToM3 are considered here since the author
has most experience with them. Furthermore, both of them fulfill the above stated features
of a modelling tool and a metamodel from [66, 33].

For further discussion provided in this document AToM3 [109, 32, 33] is used, mainly
because it is completely developed using Python programming language, and it is entirely
open source, fostering its customisation based on the needs of Lamrast−+ metamodel,
and the process of metamodelling in the context of additional features and constraints.
Furthermore, being developed in Python, it can easily be connected to Smart Python
Agent Development Environment (SPADE), which is the MASs development platform

1For more information, visit https://www.adoxx.org/live/home
2For more information, visit http://atom3.cs.mcgill.ca
3For more information, visit https://www.eclipse.org

89

https://www.adoxx.org/live/home
http://atom3.cs.mcgill.ca
https://www.eclipse.org

Chapter 3. Practical Contribution 3.1. Metamodelling Tool

Table 3.1: Selected similarities and differences of AD-
Oxx and AToM3

ADOxx AToM3

Platform de-
pendency

restricted to Windows can be installed and run on
both Windows and Linux

Availability free free
Source code closed open source
Metamodelling graphic interface graphic interface
Custom code in
metamodel

using AdoScript, a proprietary
language

using standard Python

Customisation
opportunities

the tool is available as is the tool can be customised as
needed

of choice in this research. Finally, Python community is rich in various modules and
extensions, thus allowing for successfully effective constraint development and setup of a
dynamic tool component featured as actions, which can be customised.

The reason SPADE, as a particular MASs development platform, was chosen for its
implementation in Python which makes the agents developed using it widely applicable
since they can be enriched using some of the numerous community-developed modules,
and being the first such piece of software ever to use a particular popular communication
protocol (XMPP) [93]. Furthermore, it is completely open source4, developed in academia,
and open to community upgrades.

A survey of 24 agent platforms compared against a set of criteria was conducted by
Kravari and Bassiliades [70]. Since SPADE is not featured in this survey, it is evaluated
here according to the criteria used in the referenced survey. An overview of a different set
of agent programming platforms and languages is provided in [132, chapter 5].

“Platform properties refer to the primary concepts of the platform, describing its
basic characteristics that are necessary for a potential user/developer in order to
understand the scope and the domain of the platform. Usability refers to the suit-
ability of the platform for the construction of agent applications. Operating ability
refers to all these aspects that are taken into account during execution. In other
words, operating ability indicates the quality of the platform. Pragmatics refers to
external factors that are neither related to the construction nor to the operation of
the platform. More specific, pragmatics indicates whether the platform can be used
in practice or not. Finally, security management refers to security issues, indicating
if the platform is considered safe or not.” — Kravari and Bassiliades [70]

4For more information, visit https://github.com/javipalanca/spade

90

https://github.com/javipalanca/spade

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

Table 3.2: Evaluation criteria used by Kravari and
Bassiliades [70]

Platform properties Usability Operating ability Pragmatics Security management
Developer / Organisation Simplicity Performance Installation End-to-end security

Primary domain Learnability Stability User support Fairness
Latest release Scalability Robustness Popularity Platform security

License Standard compatibilities Programming languages Technological maturity
Open source Communication Operating systems Cost

Based on the set of criteria in Table 3.2, SPADE is evaluated as shown in Table 3.3,
according to data available as of September 2018. Detailed description of each criteria is
available in [70].

It should be noted here that there are only two agent platforms in the referenced survey
[70] that use Python, yet both are based on Java, and require Java Virtual Machine
to be run, on any platform. Furthermore, none of the surveyed agent platforms offers
compatibility with the XMPP/Jabber technology. SPADE, however, is developed entirely
in Python, therefore allowing developers to naturally use all the available Python modules
and expansions.

3.2 Metamodel Implementation

The working metamodel that can be used with AToM3 metamodelling tool, as shown in
Fig. 2.14 on Page 63, was developed using the formalism creation feature of AToM3.

3.2.1 Basis for the metamodel

Lamrast−+ metamodel was therefore defined as a new model, using concepts from the
AToM3 predefined class diagram consisting of elements shown in Fig. 3.1 (classes, as-
sociations, and inheritance). Class element is used for various classes of Lamrast−+
metamodel, associations are used for various defined properties of the classes, and inher-
itance is used rarely, but a use case exists within Lamrast−+ metamodel.

Every element of a model defined in AToM3 can be defined using several key attributes,
as shown in Fig. 3.2:

name the name of the element, defining how the element is referenced, formatted follow-
ing set rules for naming Python variables5, where personal preference is the so-called
CamelCase;

Graphical_Appearance defines how the concept will be represented graphically when
AToM3 is used;

5For more information, visit https://www.python.org/dev/peps/pep-0008/#naming-conventions

91

https://www.python.org/dev/peps/pep-0008/#naming-conventions

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

Table 3.3: Evaluation of SPADE according to criteria
used by Kravari and Bassiliades [70]

Platform properties
Developer / Organisation Development project led by Javi Palanca and

Gustavo Aranda, with significant contributions by
Markus Schatten, Juan Angel Garcia-Pardo, and
Santiago M. Mola Velasco

Primary domain General purpose multiagent systems (including
large-scale distributed systems)

Latest release Latest GitHub commit dated 7 September 2018
License Creative Commons Attribution License
Open source Yes
Usability

Simplicity Simple, administrative-only web interface avail-
able

Learnability Easy
Scalability High
Standard compatibilities Communication protocols based on XML (e.g.

FIPA-ACL), FIPA-SL, RDF
Communication XMPP, P2P, HTTP, SIMBA
Operating ability

Performance High
Stability High
Robustness Good
Programming languages Python, plus RDF, Prolog, XML
Operating systems Linux, Windows
Pragmatics

Installation Command line
User support Average (docs, email)
Popularity Low
Technological maturity Stable release, Development status (Active)
Cost Free
Security management

End-to-end security N/A
Fairness N/A
Platform security N/A

92

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

CD_Class3

Attributes:

 - name :: String

 - Graphical_Appearance :: Appearance

 - cardinality :: List

 - attributes :: List

 - Constraints :: List

 - Actions :: List

 - display :: Text

 - Abstract :: Boolean

 - QOCA :: Action

Constraints:

 > checkKeywordValidity

 > checkNameValidity

Actions:

 < storeKeyword

 > addCardinality

 > updateGraphics

 < removeFromRelationships

 > removeConnection

 > updateRelationships

 > deriveAttributes

 > displayList

 > fixConnections

 > rotateMoveInheritHead

Cardinalities:

 - To CD_Association3: 0 to N

 - From CD_Association3: 0 to N

 - To CD_Inheritance3: 0 to N

 - From CD_Inheritance3: 0 to N

CD_Association3

Attributes:

 - name :: String

 - Graphical_Appearance :: Link

 - cardinality :: List

 - attributes :: List

 - Constraints :: List

 - Actions :: List

 - display :: Text

 - displaySelect :: MSEnum

 - QOCA :: Action

Constraints:

 > checkKeywordValidity

 > checkNameValidity

Actions:

 < storeKeyword

 > updateGraphics

 > removeCardinalitiesFromEntities

 > removeConnection

 > addCardinality

 > updateRelationships

 > displayList

 > fitText\Multiplicities:

 - From CD_Class3: 1 to N

 - To CD_Class3: 1 to N

CD_Inheritance3

Actions:

 > rotateMoveArrowEnd

 > connectDisconnect

Cardinalities:

 - To CD_Class3: 1 to 1

 - From CD_Class3: 1 to 1

Figure 3.1: The elements of AToM3 predefined class dia-
gram metamodel

cardinality a set of associations that are connected to the specific class individual, and
what their relationship is with the given class individual (e.g. a destination, or a
source, and minimum and maximum cardinality);

attributes a set of attributes that will be available for use if and when the element
is going to be used as an element of a metamodel, along with their core properties
(e.g. name, type, initial value, if the attribute is a key attribute uniquely identifying
the individual, and if the value of the attribute can be directly modified from the
individual edditing window);

Constraints a set of customised Python code snippets that can be introduced as imple-
mentation of various constraints that act as either preconditions or postconditions,
with defined names and proposed triggers – should a constrant return anything but
a True value, the action which was constrained will not finish and will be recalled;

Actions much like the Constraints attribute, the Actions attribute is a set of actions
that are realised as Python code snippets defined by their name, their nature (pre-
or postaction), and their triggers;

display defines what textual content is displayed in the visual representation of the model
(like the one in Fig. 2.14).

93

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

Figure 3.2: Editing attributes of a class diagram class
individual

Abstract this boolean attribute defines whether the class is going to be an abstract class
or not, and will therefore restrict individual creation, or allow it, respectively;

QOCA again a piece of Python code, this is a specific QOCA type of constraint that
can be defined.

The above list of attributes that can be defined for an instance of a class concept,
are a very good example of the relationship of a model and it’s metamodel. Those
attributes are defined as element attributes (of the element named class) in the model
describing a class diagram, shown in Fig. 3.1. Since the class diagram model is used as
a metamodel for Lamrast−+ metamodel, elements of Lamrast−+ metamodel, which are
instances of the class element of the class diagram metamodel, can be defined using the
defined attributes. Similarly, element attributes defined in Lamrast−+ metamodel are
used for further defining their instances in a model that describes a multiagent system,
or its large-scale version, based on Lamrast−+ metamodel. In other words, elements of

94

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

a model based on Lamrast−+ metamodel have an interface such as that in Fig. 3.2, but
with attributes defined in metamodel, as shown in Fig. 2.14 on Page 63.

Not all of the attributes shown in Fig. 3.2 have to be defined manually, such as
cardinality which is defined based on the connections, i.e. properties, defined in the
graphic layout of the model. What can be expressed here is the details about cardinality
of a connection.

Graphical_Appearance attribute contains graphical representation of the element in the
model view. Graphical appearance is based on Tkinter6, with possible addition of GIF7

elements. Graphical appearance of all the elements in Lamrast−+ metamodel are defined
using Tkinter only, for the sake of visualisation quality, scalability, and usability. In
addition to defining static graphical elements, AToM3 allows the developer to add some
dynamic parts to an element’s graphical appearance, which change based on the value of
attributes or are changed by element constraints or actions.

Constraints and Actions attributes are the most similar to amongst all the attributes
of a class element of the class diagram metamodel. Both of these are realised as a piece
of Python code that is run either as a pre or post event, and are triggered by one of the
following actions of the developer:

Edit is triggered when the element’s attributes or other properties are edited;

Save is the action of saving the model being developed;

Create triggers when the instance of a concept is created;

Connect is run when two elements are connected to each other, whereof at least one is
the element which has the action or constraint set to run at this particular trigger;

Delete triggers when the element is deleted;

Disconnect is run when two elements are disconnected from each other, whereof at least
one is the element which has the action or constraint set to run at this particular
trigger;

Transform is triggered when the element’s graphical appearance is transformed;

Select triggers when an element is selected;

Drag triggers when the element’s graphical appearance is picked by the model’s developer
to be moved across the canvas in AToM3;

Drop triggers when the element’s graphical appearance is dropped by the model’s de-
veloper after being moved across the canvas in AToM3;

6Tkinter is Python’s de-facto standard GUI (Graphical User Interface) package; for more information,
visit https://wiki.python.org/moin/TkInter

7Graphics Interchange Format; for more information, visit https://en.wikipedia.org/wiki/GIF

95

https://wiki.python.org/moin/TkInter
https://en.wikipedia.org/wiki/GIF

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

Move is the action of moving the element’s graphical appearance across the canvas in
AToM3.

Most of the above triggers are element-based, with the only exception being the Save

trigger, which is run when the whole model is saved.
The difference between the Constraints attribute and the Actions attribute is desig-

nated by the treatment of their code – while actions are there simply to perform some
action, a constraint has the power to cancel an action that is being performed as it’s
being triggered. In other words, a constraint code is run before (precondition) or after
(postcondition) an action is performed, with the power to cancel the given action, or
reverse it, based on the outcome of the constraint code. An action, on the other hand,
is a piece of code that is performed before (preaction) or after (postaction) an action is
performed, without necessarily directly affecting the action itself, rather a graphical ap-
pearance of the element, the value of its attributes, or anything else. Furthermore, since
all the elements of a model are connected, actions and constraints can modify, or be based
on, values of other connected elements.

3.2.2 Defining the Metamodel

As was mentioned before, the elements (concepts) of Lamrast−+ metamodel are defined
as individuals of class diagram metamodel’s Class and Association concepts, with seldom
use of Inheritance concept.

The instances of Class concept are:

• Role,

• OrgUnit,

• Action,

• OrganisationalKnArt,

• IndividualKnArt,

• KnowledgeArtifacts,

• Objective,

• Process,

• Strategy.

The instances of Association concept are:

• isPartOfOrgUnit,

• answersToOrgUnit,

• canHaveRole,

• canAccessKnArt,

• isPartOfRole,

• answersToRole,

• genericAssociation,

• hasActions,

• canStartProcess,

• isPartOfProcess,

• hasObjective,

• isPartOfObjecctive,

• precedentTo.

The concept of inheritance is used to designate that both Objective and Process con-
cepts inherit some attributes from Strategy concept, and that OrganisationalKnArt and

96

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

Attributes:

 - ID :: String

 - Individual :: Boolean

 - UnitSize :: String

 - hasActions :: List

 - name :: String

Constraints:

 > ConstraintOutputOrgUnit

Actions:

 > determineSize

Multiplicities:

 - To isPartOfOrgUnit: 0 to N

 - From isPartOfOrgUnit: 0 to N

 - To canHaveRole: 0 to N

 - To canAccessKnArt: 0 to N

 - To answersToOrgUnit: 0 to N

 - From answersToOrgUnit: 0 to N

OrgUnit

Attributes:

 - ID :: String

 - hasActions :: List

 - isMetaRole :: Boolean

 - name :: String

Constraints:

 > RoleConstraintKnArt

Actions:

 > checkMetaRole

Multiplicities:

 - From canHaveRole: 0 to N

 - To hasActions: 0 to N

 - To canAccessKnArt: 0 to N

 - To hasObjective: 0 to N

 - To genericAssociation: 0 to N

 - From genericAssociation: 0 to N

 - To answersToRole: 0 to N

 - From answersToRole: 0 to N

 - To canStartProcess: 0 to N

 - To isPartOfRole: 0 to N

 - From isPartOfRole: 0 to N

Role

Attributes:

 - ActionCode :: Text

 - ID :: String

 - name :: String

Actions:

 > initialActionCodeTemplate

Multiplicities:

 - From hasActions: 0 to N

 - To isPartOfProcess: 0 to N

 - To hasObjective: 0 to N

Action

Attributes:

 - ID :: String

 - description :: String

 - name :: String

<<Abstract>>KnowledgeArtifacts

Attributes:

 - KnArtContent :: Text

Multiplicities:

 - From canAccessKnArt: 0 to N

OrganisationalKnArt

Attributes:

 - KnArtContent :: Text

Multiplicities:

 - From canAccessKnArt: 0 to N

IndividualKnArt

Attributes:

 - description :: Text

 - name :: String

<<Abstract>>Strategy

Attributes:

 - ID :: String

 - Measurement :: Text

 - Reward :: Text

 - ofActions :: List

Multiplicities:

 - To isPartOfObjective: 0 to N

 - From isPartOfObjective: 0 to N

 - From hasObjective: 0 to N

 - To precedentTo: 0 to N

 - From precedentTo: 0 to N

Objective

Attributes:

 - ID :: String

 - Name :: String

 - hasActions :: List

Multiplicities:

 - From canStartProcess: 0 to N

 - To hasObjective: 0 to N

 - From isPartOfProcess: 0 to N

Process
isPartOfOrgUnit

Attributes:

 - ID :: String

Multiplicities:

 - From OrgUnit: 1 to N

 - To OrgUnit: 1 to N

canHaveRole

Attributes:

 - ID :: String

Multiplicities:

 - From OrgUnit: 0 to N

 - To Role: 0 to N

hasActions

Attributes:

 - ID :: String

Actions:

 > updateRoleActions

Multiplicities:

 - To Action: 1 to N

 - From Role: 1 to 1

canAccessKnArt

Attributes:

 - ID :: String

Constraints:

 > ConstraintKnArt

Multiplicities:

 - To OrganisationalKnArt: 0 to N

 - From Role: 0 to N

 - From OrgUnit: 0 to N

 - To IndividualKnArt: 0 to N

genericAssociation

Attributes:

 - name :: String

 - Description :: Text

 - ID :: String

Multiplicities:

 - To Role: 1 to N

 - From Role: 1 to N

answersToRole

Attributes:

 - ID :: String

Multiplicities:

 - From Role: 1 to N

 - To Role: 1 to N

canStartProcess

Attributes:

 - ID :: String

Multiplicities:

 - To Process: 0 to N

 - From Role: 0 to N

answersToOrgUnit

Attributes:

 - ID :: String

Multiplicities:

 - To OrgUnit: 1 to N

 - From OrgUnit: 1 to N

isPartOfRole

Attributes:

 - ID :: String

Multiplicities:

 - From Role: 0 to N

 - To Role: 0 to N

isPartOfProcess

Attributes:

 - ID :: String

Actions:

 > updateProcessActions

Multiplicities:

 - From Action: 0 to N

 - To Process: 0 to N

isPartOfObjective

Attributes:

 - ID :: String

Multiplicities:

 - From Objective: 0 to N

 - To Objective: 0 to N

hasObjective

Attributes:

 - ID :: String

Actions:

 > updateObjectiveActions

Multiplicities:

 - To Objective: 1 to N

 - From Role: 0 to N

 - From Process: 0 to N

 - From Action: 0 to N

precedentTo

Multiplicities:

 - From Objective: 0 to N

 - To Objective: 0 to N

Figure 2.14: Repeated visual representation of
Lamrast−+ metamodel from Page 63

IndividualKnArt inherit some attributes from KnowledgeArtifacts concept. Other than at-
tribute inheritance, such a relationship has no further benefits for the implementation of
Lamrast−+ metamodel.

The named concepts, and how they are connected, is shown visually in Fig. 2.14,
repeated here for the sake of accessibility.

Since most of the attributes are self-explanatory, with some of the concepts used in
the metamodel described in Appendix A.1, only an overview of the chosen metamodel
concepts is given hereafter.

Role The role represents a set of normative constraints that are not given literally and
explicitly, but are modelled using a grouping concept of a Role. A role allows
organisational units to play accompanying actions, thus enabling them to affect the
system they’re a part of. A role can be a part of another role, using a specialised
form of an inheritance property, similar to the is a property of Resource Description
Framework (RDF). The role concept can access OrganisationalKnArt concepts only.

OrgUnit The organisational unit concept is defined using the same presumptions as

97

Chapter 3. Practical Contribution 3.2. Metamodel Implementation

explained in other places in this thesis, namely the recursive approach. An organ-
isational unit element has an attribute which defines it as an individual agent or
a group of agents. Every organisational unit individual can access an unlimited
number of roles, can be designated as being a part of another organisational unit,
and can access only an individual knowledge artefact concept instance.

Action An action is the basic form of how an organisational unit playing a role can affect
its environment, i.e. the system wherein it is located. Every action individual is
associated with its respective role concept individual, and its respective objective
concept individual – an action can be enacted by an organisational unit concept
individual playing a respective role concept individual, with the goal of achieving a
respective objective concept individual.

Process A process is a set of actions that are grouped for a reason and can be performed
in a sequence. As such, a process represents a form of a strategy, since execution of
the actions of a process is an attempt of achieving a set objective.

Objective An objective is a state of the system that an organisational unit is looking
forward to achieving. Objectives are designated as complex or elementary, based on
them being composed of other lower-level objectives, or being on the lowest level
of objective decomposition, respectively. An elementary objective can be achieved
directly by an action concept individual, while a complex objective is achieved with
regard to its sub-objectives’ status. An objective concept individual can thus be a
part of another objective concept individual, and a precedence association can be
defined, as a sort of a strategic directive for an organisational unit.

canHaveRoles This association concept connects organisational unit individuals to role
individuals, thus representing which roles can be played by which organisational
units. Each instance of this association represents a logical disjunction in the context
of an organisational unit having a set of roles offered for playing at a given moment.

The peculiar nature of the organisational unit concept (OrgUnit in Lamrast−+ metamodel)
is its behaviour in the context of it being used in a model. Namely, the organisational
unit concept from the metamodel is instantiated as an organisational unit individual in
a model. The meaning of that individual depends on the will of the developer – it can
represent an entity that can directly be implemented and instantiated, and that acts
on its own, or it can represent a class of entities that will be instances or individuals
of that particular class of entities. In other words, if used in the context of SPADE,
the organisational unit concept in the model based on Lamrast−+ metamodel will most
likely represent a class of agents, since SPADE allows the developer to define a class of
agent, that can have individual agents instantiated at runtime. Such an approach is used

98

Chapter 3. Practical Contribution 3.3. Custom Code

in examples in [92]. A different approach can take an organisational unit element in a
model as a representation of a single agent of the modelled system. Both approaches are
permitted as per the metamodel’s design.

Apart from the basic act of defining metamodel concepts using the attributes provided
by the class diagram metamodel, an important role is played by the additional program-
ming code developed for the purposes of constraints and actions of the metamodel con-
cepts, but for other features of the metamodelling tool, such as generating application
template (described in more detail in Section 3.3.2), and support for multimodel model-
ling. This additional custom code is presented in Section 3.3.

3.3 Custom Code

Some of the features of the final metamodelling tool were developed using custom Python
code. Even though some of the features realised using custom code are basic, it may have
been easier to implement them using customised code, rather than fine tuning all the fea-
tures of AToM3. Customised code is therefore used to various ends, from simply modifying
graphical appearance of model elements, to constraint implementation, to development
of support for multimodel modelling, and generating application templates based on the
systems modelled. The file containing most of the customised code (excluding that which
is scattered throughout AToM3 implementation, is available on GitHub8.

One of the basic functions developed for the purpose of code used in constraints and
actions is NodeOutputsInputs which is used by other functions to receive a set of nodes
or a number of nodes that are neighbours of the given node – on the source or the
destination end of an association. This particular function was implemented with the
goal of reducing code redundancy, since a similar feature was sought after in many other
customised functions. The function therefore returns to its caller either a set of nodes, or
simply their number, of either nodes on the other end of in- or out-connections, sorted by
their respective concepts, as per request of the caller function.

The use of this function is exemplified further using another function, OrgUnitDetermineSize

, which is used as an action of OrgUnit concept, since an organisational unit is designated
as individual if there are no lower-level organisational unit concept individuals connec-
ted to the given one, and group when there is at least one lower-level organisational unit
concept individual connected to the given one, i.e. if the given organisational unit is a
higher-level organisational unit concept individual relative to another organisational unit
concept individual. The code for this function is given in Listing 3.1. The above men-
tioned NodeOutputsInputs is called in line 2 of Listing 3.1, whereby only a count of nodes
by their class is wanted, for all the in-connections, i.e. all the nodes on the source sides of
in-connections of the given organisational unit concept individual’s node. The function

8For more information, visit https://github.com/Balannen/LSMASOMM

99

https://github.com/Balannen/LSMASOMM

Chapter 3. Practical Contribution 3.3. Custom Code

1 def OrgUnitDetermineSize (self):
2 eIns = NodeOutputsInputs (self , ’in’, ’count ’)
3

4 if ’isPartOfOrgUnit ’ in eIns:
5 return ’Group ’
6 elif ’isPartOfOrgUnit ’ not in eIns:
7 return ’Individual ’
8

9 return

Listing 3.1: Implementation details of function
OrgUnitDetermineSize

Figure 3.3: Editing updateRoleActions action of hasAc-
tion concept

gives a certain value in return, based on its environment. The return value is further
analysed and acted upon in AToM3.

Another good example of customised code defined for Actions attribute of a role
concept is UpdateActions function, which populates the list of actions of a role concept
individual based on the action concept individuals connected to it. Thus the attribute of
a role concept individual is always updated if there is a change on the graphical level.

This function is implemented as shown in Listing 3.2. Here the NodeOutputsInputs is
used again, to retrieve the nodes that are on the either side of an in- or out-connection.
Graphical appearance modification in implemented in line 15, while the list of actions is
prepared as shown in line 9, where data must be prepared as a predefined ATOM3String
data type to be an eligible element for a list of values.

This particular action was added to the hasActions concept in the metamodel, as
shown in Fig. 3.3. The action is, as visible in Fig. 3.3, defined as a postaction triggered
by a connect or disconnect (not visible in the figure) event. When triggered, the defined
piece of code is run, i.e. the UpdateActions function from CustomCode file is called. Since all
the modifications are performed as a part of the called function, nothing additional has
to be defined in the action code itself.

Another example of an action that shows how customised code communicates with

100

Chapter 3. Practical Contribution 3.3. Custom Code

1 def UpdateActions (self):
2 eOuts = NodeOutputsInputs (self , ’out ’, ’nodes ’)
3 eIns = NodeOutputsInputs (self , ’in’, ’nodes ’)
4

5 actions = []
6

7 if ’Action ’ in eOuts:
8 for a in eOuts[’Action ’]:
9 actions . append (

10 prepareAttributeValue (’ATOM3String ’, a.name. getValue ()))
11

12 if ’Role ’ in eIns:
13 for r in eIns[’Role ’]:
14 for a in actions :
15 r. hasActions . newItem (a)
16 r. graphObject_ . ModifyAttribute (’hasActions ’, r.

hasActions . toString ())
17 return 1
18

19 return 0

Listing 3.2: Implementation details of UpdateActions
function

various elements and features of a model based on Lamrast−+ metamodel, is ActionCodeTemplate

function, which is called as a part of initialActionCodeTemplate action of the action
concept. The action is set up as shown in Fig. 3.4 – as a postaction triggered by a create
event, thus being run when an action concept individual is created. The action code calls
ActionCodeTemplate function from the file of customised code, listed in Listing 3.3.

The customised code for ActionCodeTemplate is a bit more complex, as it works directly
with attributes of the whole model (defined on the metamodel level as well), as opposed to
working only with the attributes of the given individual. Line 2 in Listing 3.3 is looking for
the model being developed by the name of its metamodel. Value of its agentImplementation

attribute is returned in line 3, and is used in lines 5 through 13 to determine what
should be the returned template. At the moment, the only agent implementation feature
provided by the modelling tool is that of SPADE. The selected code template is thereafter
formatted as an AToM3 text type data, and is returned as such to the action code of the
action concept individual.

The action code then modifies the value of ActionCode attribute of the given action
concept individual, thus giving the model developer a code template to work with, based
on the designated agent platform. What the generated action code template looks like as
an attribute value when an action concept individual is edited, is shown in Fig. 3.5.

A good example of a constraint implementation is given as a constraint of a canAc-
cessKnArt concept. The constraint artfully named ConstraintKnArt is defined as a postcondition
triggered by a connect event, as shown in Fig. 3.6. The constraint code, shown in the
figure, but listed here in Listing 3.4, is used to interpret the return value of the called

101

Chapter 3. Practical Contribution 3.3. Custom Code

Figure 3.4: Editing initialActionCodeTemplate action of
Action concept

1 def ActionCodeTemplate (self):
2 Root = self. parent . ASGroot . getASGbyName (’LSMASOMM_META ’)
3 t, s = Root. agentImplementation . getValue ()
4

5 if t[s] == ’SPADE ’:
6 codeString = u ’’’# action code template
7 class BehaviourNamePlaceholder (spade. Behaviour . OneShotBehaviour):
8 """ Behaviour available to agents ."""
9 def _process (self):

10 pass
11 ’’’
12 else:
13 codeString = ’’
14

15 codeTemplate = prepareAttributeValue (’ATOM3Text ’, codeString)
16

17 return codeTemplate

Listing 3.3: Implementation details of
ActionCodeTemplate function

Figure 3.5: Editing an Action individual

102

Chapter 3. Practical Contribution 3.3. Custom Code

Figure 3.6: Editing ConstraintKnArt constraint of
canAccessKnArt concept

canAccessKnArtCheckConnections function in CustomCode file. This function is shown here in
Listing 3.5.

The original function code (Listing 3.5) checks the number of assorted nodes at the
ends of incoming and outgoing connections (lines 2 and 6), and returns an according re-
turn value. For example, if a role concept individual is on the incoming connections side
(relative to the given canAccessKnArt concept individual), and an individual knowledge
artefact concept individual is on the far end of the outgoing connections side (again, re-
lative to the same concept individual), defined by line 7, the function returns a specific
keyword RoleWithOrgOnly with the meaning that roles can only be connected to organisa-
tional knowledge artefacts (line 8). If no constraints are validated, the function returns
no specific value (line 11).

Back in the constraint details (Listing 3.4), the behaviour of the constraint is ruled by
the function’s return value – if anything is returned, the constraint is fired up because a
specific value is returned and a graphical representation of a model element is associated
with the constraint (the returned value is used as a warning message). If no specific
value is returned by the associated function, the action that triggered the constraint is
left as is. Otherwise, the connect action which triggered the constraint, is undid (since
it was already done as the constraint is defined as a postcondition). If the associated
function returned keyword RoleWithOrgOnly (line 6), the constraint is invalidated and the
appropriate warning message is shown to the metamodel user (line 7).

This is a good example to illustrate the difference between a pre- and postcondition
type of a constraint (and similar approach is used for actions as well). If this particular
constraint was run before the connections were established, i.e. as a precondition, the
associated functions would not be able to assert the situation according to the set con-
straint. Therefore, the action which triggered the constraint would go unnoticed until the
next such action was performed – only then would the results of the last connection action
be visible. On the other hand, as a postcondition, the constraint is run after the whole

103

Chapter 3. Practical Contribution 3.3. Custom Code

1 from CustomCode import *
2 res = canAccessKnArtCheckConnections (self)
3

4 if res is " eitherRoleOrUnit ":
5 return (" Either Role of OrgUnit can access knowledge .", self.

graphObject_)
6 elif res is " RoleWithOrgOnly ":
7 return ("Role can access OrganisationalKnArt only!", self.

graphObject_)
8 elif res is " OrgUnitWithIndivOnly ":
9 return (" OrgUnit can access IndividualKnArt only!", self.

graphObject_)
10 else:
11 return

Listing 3.4: Implementation details of ConstraintKnArt
constraint

1 def canAccessKnArtCheckConnections (self):
2 eIns = NodeOutputsInputs (self , ’in’, ’count ’)
3 if ’Role ’ in eIns and ’OrgUnit ’ in eIns:
4 return ’eitherRoleOrUnit ’
5

6 eOuts = NodeOutputsInputs (self , ’out ’, ’count ’)
7 if ’Role ’ in eIns and ’IndividualKnArt ’ in eOuts:
8 return ’RoleWithOrgOnly ’
9 if ’OrgUnit ’ in eIns and ’OrganisationalKnArt ’ in eOuts:

10 return ’OrgUnitWithIndivOnly ’
11 return

Listing 3.5: Implementation details of
canAccessKnArtCheckConnections function

104

Chapter 3. Practical Contribution 3.3. Custom Code

action is performed, and can therefore assess the situation correctly. If the performed
action is against the constraint, the results of the action, since it is performed already,
are annihilated, and the pre-action state of the model is reinstated.

3.3.1 Multimodel Modelling

One of the earliest problems that were encountered whilst the metamodelling tool was
being developed was that AToM3 canvas would get very crowded and hardly legible even
when only a simple model was being constructed, based on Lamrast−+ metamodel. The
limited, but great in terms of available space in an AToM3 canvas, number of model
elements hindered legibility and usability of the model, since the graphical representation
is, after all, meant for human agents. This problem coupled perfectly with the idea
of modelling organisational units recursively, and made it necessary and opportune to
modify the modelling tool in a way that would support an approach to modelling large-
scale models through many smaller linked models – a multimodel modelling approach.

Since the number of concepts necessary for successful description of a small snippet
of a massively multi-player online role-playing game (MMORPG) world comprising only
one quest, such as the one described in [124, 125, 96, 93, 92], is quite great for the
space available in AToM3 modelling canvas, the idea of defining a model using a number
of models was captivating. Furthermore, it was recognised later that the multimodel
modelling approach is beneficial even for filtering and clustering wanted or temporarily
needed elements, drawing only the necessary out of the whole set of available elements,
i.e. elements that were defined earlier.

Further argument in support of the multimodel modelling approach is derived from
the research in knowledge management, where one of the tendencies is to work towards
knowledge reuse. Building upon the lines of knowledge reuse, it is possible to reuse any of
the previously defined model elements, as long as they come from the active metamodel,
namely from Lamrast−+ metamodel. Some further constraints apply, but the general
idea is achieved.

The multimodel modelling is implemented using a database running in the background
– a ZODB9 database instance written in a file on the client’s computer. A separate file
is created for every model name. Every model database contains all the concepts defined
by the model developer.

The saving side of using ZODB is straightforward, inasmuch as the objects are simply
to be defined, and are ready for storing data. Storing all the relevant data about all the
relevant elements defined in a model based on Lamrast−+ metamodel is handled using
customised code in CustomCode file. The action of saving model elements is triggered
using the Save All button in AToM3 interface when Lamrast−+ metamodel is being

9A Python object-oriented database; for more information, visit http://www.zodb.org/en/latest/
http://www.zodb.org/en/latest/

105

http://www.zodb.org/en/latest/http://www.zodb.org/en/latest/
http://www.zodb.org/en/latest/http://www.zodb.org/en/latest/

Chapter 3. Practical Contribution 3.3. Custom Code

used. Therefore, the SaveAll function is run on the model level, as opposed to being
run at the model element (concept individual) level, as was the case with the functions
described above. The saving process is implemented mainly using Save All function, listed
in Listing 3.6.

Firstly, the name of the model is gathered from the name attribute of the model (line 5),
and a database file is created or opened (lines 6-7) using the name specified. Since all the
nodes (model elements) have to be saved, it is useful to utilise the list of nodes grouped
by node types (concept classes) that is automatically being constructed by AToM3 – Root

.listNodes. The list of types used in the model (the concepts of the individuals used in
the model) is the set of key of the Python dictionary of all the elements of the given
model – Root.listNodes.keys(). Lines 10-15 check if a type is already present in the given
database file, meaning that it can be used further. I case it is not, the given type is
added to the database. Such a logic was designed since it makes it easier to access all
the saved nodes when they are saved in a structured Python-like dictionary where they
are grouped by types. Furthermore, it makes the loading and implementation template
generating processes easier. If no node of the given type has yet been saved (i.e. the
type does not exist in the root of the database file), it is added therein, as a persistent
object of ZODB (line 14). When the type root is found (line 11) or created (lines 14-15),
iteration through all the model nodes of the given type can start, and they can be saved
using SaveNode function. If the node was saved already (recognised by its ID attribute),
an extra argument is sent to SaveNode function (line 19).

When all the nodes are saved, a knowledge base (KB) entry is saved as well, in a Prolog-
like format describing all the Action-Objective (lines 33-36), Role-Action (lines 38-41),
and OrgUnit-Role (lines 43-47) pairs. Therefore, if Wizard role defines CastSpellFireball
action, the associated KB entry would be (’Wizard’, ’hasAction’, ’CastSpellFireball’).
The values used in KB entries are taken from the model (e.g. OrgUnit-Role pairs are
gathered by observing all the canHaveRole individuals, and their in- and outconnections)
or the individual nodes (Role-Action and Action-Objective pairs are populated by reading
their respective node attributes containing role actions, or action objectives respectively,
which are then parsed as individual pair values).

Upon introducing a change to the database file, no changes are saved immediately,
but a sum of changes can be saved and thus committed to the database file using the
transaction.commit() function call, as seen in lines 23 and 50. The changes are therefore
saved in two batches – the first one saving node modifications and additions, and the
second one saving KB modifications.

The second part of saving node data is implemented using SaveNode function listed
in Listing 3.7. The function is called from SaveAll function, and is tasked with saving
all the relevant data of a specific single node (concept individual) in the model. The
function works along two similar paths depending on whether the database entry should

106

Chapter 3. Practical Contribution 3.3. Custom Code

1 def SaveAll (self):
2 global DBname
3 Root = self. ASGroot . getASGbyName (’LSMASOMM_META ’)
4

5 DBname = Root.name. getValue ()
6 db = openDB (DBname)
7 conn = db.open ()
8

9 for nodeType in Root. listNodes .keys ():
10 try:
11 dbRoot = conn.root ()[nodeType]
12 except Exception as e:
13 print e
14 conn.root ()[nodeType] = PersistentMapping ()
15 dbRoot = conn.root ()[nodeType]
16

17 for node in Root. listNodes [nodeType]:
18 if node.ID. getValue () in dbRoot .keys ():
19 SaveNode (node , conn , True)
20 else:
21 SaveNode (node , conn)
22

23 transaction . commit ()
24

25 if ’KB’ not in conn.root ():
26 KB = {
27 ’ActionGoal ’: {},
28 ’RoleAction ’: {},
29 ’UnitRole ’: {}}
30 else:
31 KB = conn.root ()[’KB’]
32

33 for goal in conn.root ()[’Objective ’]. values ():
34 for a in goal.attrs [5]. split(’\n’):
35 if a: # to avoid empty strings
36 KB[’ActionGoal ’][(a, ’canReachGoal ’, goal.attrs[goal.

realOrder .index(’name ’)])] = True
37

38 for role in conn.root ()[’Role ’]. values ():
39 for a in role.attrs [1]. split(’\n’):
40 if a: # to avoid empty strings
41 KB[’RoleAction ’][(role.attrs[role. realOrder .index(’name ’

)], ’hasAction ’, a)] = True
42

43 for link in conn.root ()[’canHaveRole ’]. values ():
44 if ’OrgUnit ’ in link. in_connections_ and ’Role ’ in link.

out_connections_ :
45 for o in link. in_connections_ [’OrgUnit ’]:
46 for r in link. out_connections_ [’Role ’]:
47 KB[’UnitRole ’][(o, ’canHaveRole ’, r)] = True
48

49 conn.root ()[’KB’] = KB
50 transaction . commit ()
51 db.close ()

Listing 3.6: Implementation details of SaveAll function

107

Chapter 3. Practical Contribution 3.3. Custom Code

1 def SaveNode (node , conn , update =False):
2 if update :
3 DBnode = conn.root ()[node. __class__ . __name__][node.ID. getValue ()

]
4 DBnode . updateAttributes (
5 node. getStringValue (),
6 node. copyCoreAttributes () [2:4])
7

8 else:
9 DBnode = savedNode (node. copyCoreAttributes ())

10 DBnode . saveAttributes (
11 node.realOrder ,
12 node. getStringValue ())
13

14 conn.root ()[node. getClass ()]. update (
15 { DBnode .ID: DBnode })

Listing 3.7: Implementation details of SaveNode
function

be created and added or simply modified, as described above. In case the node already
exists, it is found (line 3) and its updateAttributes method is called with two arguments
containing all the attribute values in string format, and select core attributes using the
copyCoreAttributes customised function defined as a method of a node concept. Moreover,
some of the core attributes do not change over time, wherefore only the select core attrib-
utes are needed (line 6).

If the node is not yet present in the database file, it is instantiated from the object
defined for use with ZODB (line 9), and its saveAttributes method is used with the
appropriate arguments containing the list of node attributes, and their values (lines 10-
12). The node is eventually saved in the database file under its type, as a new Python
dictionary entity with the key value of its ID attribute.

The class definition developed for saving node objects in ZODB database file is given
in full in Appendix C.2. A piece of code is listed in Listing 3.8, for explanation pur-
poses. When the node object (in the database context), is initialised as described above
in Listing 3.7, with an argument containing all the node attributes of a given node. When
initialised, the database node instance saves those values (lines 3-14 in Listing 3.8). Fur-
thermore, the saveAttributes method of the database node class is used for saving values
of all the customised attributes (those defined by Lamrast−+ metamodel), as shown in
lines 16-18.

The final element of the model saving process is performed continually, triggered
whenever two model elements are connected to each other in the given model, imple-
mented as a constraint of the model (defined on the metamodel level as a constraint of
the model rather than that of a concept). The function called directly by the constraint
is listed in Listing 3.9. The function opens the database file based on the name of the

108

Chapter 3. Practical Contribution 3.3. Custom Code

1 class savedNode (persistent . Persistent):
2

3 def __init__ (self , coreAttrs):
4 self. graphClass_ = coreAttrs [0]
5 self. isClass = coreAttrs [1]
6 self. in_connections_ = coreAttrs [2]
7 self. out_connections_ = coreAttrs [3]
8 self. containerFrame = coreAttrs [4]
9 self. keyword_ = coreAttrs [5]

10 self. editGGLabel = coreAttrs [6]
11 self. GGset2Any = coreAttrs [7]
12 self. GGLabel = coreAttrs [8]
13 self. objectNumber = coreAttrs [10]
14 self.ID = coreAttrs [11]
15

16 def saveAttributes (self , order , attrValues):
17 self. realOrder = order
18 self.attrs = attrValues

Listing 3.8: Excerpt from CustomCodeDB shown in full
in Appendix C.2

model (as is always the case in customised code), and iterates through all the present
nodes, type by type. If the given node is not present in the database file, it is created and
stored regularly. Every node’s in- and outconnections are scanned for connected nodes,
and if the connected node’s type is not present in the node’s in- or outconnections sets,
it is added. Otherwise, if the connected node is not in its respective set, the initial node
is set for an update of its in- or outconnections sets. This approach is implemented using
lines 16-24 for inconnections, and lines 25-33 for outconnections.

Now that data is stored in a database file, the loading part has to be implemented.
The process of loading nodes onto AToM3 canvas is conditioned by a number of factors:
the name of the model that is edited is the name of the database file being sought after,
just as it was the name of the database file used for saving data; the class of the node
that is to be implemented has to be chosen, with the option of selecting the desired node
the be loaded opening only after the node type (class) is chosen; the nodes can be loaded
one by one or in a set of same-type nodes.

One of the functions necessary for successful implementation of the loading part is con-
cerned with preparing AToM3 data types, since most of the data in ZODB database files
was saved as strings, and AToM3 nodes demand somewhat customised data types. Once
this side-function was implemented, element loading can be successfully implemented.

The node loading feature is implemented using native AToM3 functions for creating
model elements. Once the new node (model element) of the same type as the loaded
node is created, all the core and additional attributes are copied from the stored to the
created node. Furthermore, since connections are stored as well, the model is scanned for
all the nodes designated as those that the stored node was connected to, and if any exist,

109

Chapter 3. Practical Contribution 3.3. Custom Code

1 def addConnectionToDB (self):
2 global DBname
3 if os.path. isfile ("./DB /{}. fs". format (self.name. getValue ())):
4

5 try:
6 db = openDB (DBname)
7 conn = db.open ()
8 except Exception :
9 print " Called from another function (probably when loading

concepts)"
10 return
11

12 for nodeType in self. listNodes .keys ():
13 try:
14 for node in self. listNodes [nodeType]:
15 if node.ID. getValue () in conn.root ()[nodeType]. keys

():
16 if len(node. in_connections_):
17 inNode = node. in_connections_ [-1]
18 DBnode = conn.root ()[nodeType][node.ID.

getValue ()]
19 if inNode . __class__ . __name__ not in DBnode .

in_connections_ :
20 DBnode . in_connections_ [inNode . __class__ .

__name__] = []
21 if inNode .ID. getValue () not in DBnode .

in_connections_ [inNode . __class__ . __name__
]:

22 SaveNode (node , conn , True)
23 DBnode . in_connections_ . _p_changed = 1
24 transaction . commit ()
25 if len(node. out_connections_):
26 outNode = node. out_connections_ [-1]
27 DBnode = conn.root ()[nodeType][node.ID.

getValue ()]
28 if outNode . __class__ . __name__ not in DBnode .

out_connections_ :
29 DBnode . out_connections_ [outNode .

__class__ . __name__] = []
30 if outNode .ID. getValue () not in DBnode .

out_connections_ [outNode . __class__ .
__name__]:

31 SaveNode (node , conn , True)
32 DBnode . out_connections_ . _p_changed = 1
33 transaction . commit ()
34 else:
35 SaveNode (node , conn)
36 transaction . commit ()
37 except Exception :
38 pass
39

40 db.close ()

Listing 3.9: Implementation details of
addConnectionToDB function

110

Chapter 3. Practical Contribution 3.3. Custom Code

the connection is established again. Loading is therefore implemented in the manner of
creating new elements that get the values of their attributes filled in automatically, based
on the saved node which is being loaded.

Thus implemented saving and loading of concept individuals, i.e. model elements,
makes it possible for the model developer to model the wanted system using several
models which focus on varying aspects of the same system, while building a single model
nonetheless. This wholesome model stored in a ZODB database file is used as input for
the application template generating feature described hereinafter.

3.3.2 Application Template Generator

The final aspect of customised code of the metamodelling tool is the implementation
part of the feature of the metamodelling tool using Lamrast−+ metamodel that allows
the model developer to generate application template based on the defined model. This
feature of this research is the most valuable in the context of practical contribution, as it
brings direct benefit to LSMASs’ developers.

The application template generating feature uses the metamodel details saved in the
accompanying ZODB database file, and generates key implementation parts of the mod-
elled system. A couple of features of the modelled system are covered by the generated
template:

• key definitions of modelled organisational units;

• basic code of the modelled actions;

• knowledge base containing OrgUnit-Role, Role-Action, and Action-Objective pairs,
defined as knowledge of organisational units, thus simulating organisation-wide
knowledge of organisational norms;

The process of application template generation is started by the model developer
using the appropriate button in AToM3 model based on Lamrast−+ metamodel. Such
an action simply runs the generateNodeCode function of the file with the customised code.
The definite result of the whole process is created in cooperation of this code external to
model elements, and that of generateCodeSPADE method of nodes (model elements) saved
in the associated ZODB database file. The complete implementation of generateNodeCode

function is listed in Listing 3.10.
Analogous to the functions observed above, the associated ZODB database file is to

be opened first, and a connection established (lines 3-5 in Listing 3.10). Technicalities
are dealt with next, with all generated code being stored in the Code folder which is first
checked if it exists (lines 7-8).

Actions defined in the model are all stored in a single file, RoleBehaviours.py. Action
codes are written according to how they are defined in the model, i.e. in action individuals,

111

Chapter 3. Practical Contribution 3.3. Custom Code

and their respective ActionCode attributes. All action implementation code is used in
sequence, by action individual, and written into the same file, RoleBehaviours.py (lines
16-17).

Afterwards, organisational units are implemented using generateCodeSPADE method of
the customised ZODB database object class. The function call is given an argument
containing the modelled knowledge base, since the knowledge base is expected to be
hardcoded into the organisational unit, for it to be able to use this knowledge from the
beginning. Certainly, the final decision whether the knowledge stays with the organisa-
tional unit after the full process of development is entirely upon the system’s developer.
The implementation side of the application template generating feature creates a new
file for the respective organisational unit individual, where it is implemented using node
attributes (e.g. name and hasActions), and the provided knowledge base. The mentioned
hasActions attribute of an organisational unit individual is not to be confused with the
same-named one which is a part of every role individual. hasActions attribute of an or-
ganisational unit individual defines names of actions that are inherently a part of an
organisational unit, and that can be performed regardless of the role played by the given
organisational unit. One such key action is changeRole which enables the organisational
unit to change the role it plays. Furthermore, such an action can be performed even when,
for example in the beginning, when the system is first launched, the given organisational
unit individual has no other options. This set can be further expanded to, e.g. actions
that choose another objective for the organisational unit to pursue, or similar. The nature
of use of these two similar but different attributes is upon the system or model developer
as well.

Finally, a file combining all the generated files is created, where all the organisational
unit individuals are ready to be run, and all the actions are imported and ready to be
performed by organisational units, along with the details about all the organisational
units and their knowledge bases. The application template thus generated is therefore a
multi-file implementation from the start.

112

Chapter 3. Practical Contribution 3.3. Custom Code

1 def generateNodeCode (self):
2 global DBname
3 Root = self. ASGroot . getASGbyName (’LSMASOMM_META ’)
4 db = openDB (DBname)
5 conn = db.open ()
6

7 if not os.path.isdir("./ Code"):
8 os. mkdir("./ Code")
9

10 filename = ’./ Code/ RoleBehaviours .py’
11 if os.path. isfile (filename):
12 os. rename (filename , ’{}. old ’. format (filename))
13

14 file = open(filename , ’w’)
15

16 for k,v in conn.root ()[’Action ’]. items ():
17 file.write("\n{}". format (v.attrs [0]))
18 file.close ()
19

20 agents = []
21

22 KB = conn.root ()[’KB’][’RoleProcessGoal ’] + conn.root ()[’KB’][’
RoleActions ’]

23

24 for k, v in conn.root ()[’OrgUnit ’]. items ():
25 agents . append (v. generateCodeSPADE (KB))
26

27 db.close ()
28

29 filename = ’./ Code/ TheSystem .py’
30

31 if os.path. isfile (filename):
32 os. rename (filename , ’{}. old ’. format (filename))
33

34 file = open(filename , ’w’)
35 file.write(" import spade\nfrom RoleBehaviours import *\n")
36 for agT in agents :
37 file.write("from {} import *\n". format (agT))
38

39 file.write(’\nif __name__ == " __main__ ":\n’)
40

41 for x in range (0, len(agents)):
42 file.write("""
43 agent {0} = {1}("{1}{0} @127 .0.0.1" , " secret ")
44 agent {0}. start ()
45 """. format (x, agents [x]))
46

47 file.close ()

Listing 3.10: Implementation details of
generateNodeCode function

113

Chapter 4

Examples

The following examples serve the function of Lamrast−+ metamodel evaluation in three
contexts related to the concept of LSMASs. Such an evaluation serves the purpose of
arguing in favour of the metamodel’s meta prefix and its applicability on a scale larger
than that of the domain of MMORPGs.

All the three examples described hereinafter have their context defined first, and the
example described in further detail if necessary, followed by a defined model of the system
or its selected part, with the generated application template at the end. Thus every
example is presented through the three important steps: the observed source system, the
model, and the system that is ready to be implemented.

4.1 recipeWorld

The concept of the recipeWorld is described in [93], with the idea of SPADE implement-
ation of the included concepts referenced in [103], both based on the original paper of the
recipeWorld [43].

Described shortly, the recipeWorld is an agent-based model that simulates the emer-
gence of a network out of a decentralised autonomous interaction. [43] The combination
of agent-based modelling and network analysis, as provided by the recipeWorld model,
is deemed beneficial in the context of raised potential of complexity-based policies. The
key elements of the recipeWorld are recipes, orders, and agents. Recipes are a list of
prerequisites for achieving a certain goal, usually perceived as steps that can vary in num-
ber. The aforementioned goals are named orders, as they represent concretisation in the
form of objects containing technical information and the necessary data that defines order
instances. Agents are problem-solving cores that can provide some services

The model of the described domain can be represented using the Lamrast−+ metamodel
as shown in Fig. 4.1. In the context presented in Section 2.2.1.5, the model of the recipe-
World can be described as follows.

114

Chapter 4. Examples 4.1. recipeWorld

The system is described using only individual organisational units, therefore disal-
lowing them to form organisations beside the top-level one represented by the modelled
system itself. This organisation defines certain norms, some of which are formalised as
roles available in the modelled system (Order and Factory). Objectives are described using
only two top-level objectives pertaining to either a factory or an order. These top-level
objectives are decomposed to objectives that can be achieved by single actions. Objective
decomposition is separately shown in Fig. 4.2, where their proposed order is designated
as well. These defined objectives are achievable by various actions that organisational
units can perform when playing a role of the modelled system. Roles and their respective
actions are, separated from the rest of the system’s model, shown in Fig. 4.3.

This simple-to-understand example is a good starting-point when description of the
Lamrast−+ metamodels is being provided.

The model representing recipeWorld, as shown in Fig. 4.1, was developed using the
metamodelling tool described in this thesis. Various elements are defined in more or
less detail using the available attributes defined at the metamodel level. Editing those
values is similar to editing metamodel concepts described in Section 3.2. Details of action
SearchForFactories is shown in Fig. 4.4, where the associated action implementation code
is shown as well. The implementation code defined here can be used in the application
template generating feature afterwards.

The referenced model is available on GitHub repository of the research of this thesis1.
Upon running the application template generation, three files are created or updated if

they exist already: one with the initial core code for the modelled organisational unit, one
with all the available actions and their respective implementation code (where applicable),
and one combining both of these files with the basic SPADE system.

Knowledge base of the modelled organisational unit consists of related organisational
units, roles, actions, and objectives, and is listed in Listing 4.1, as a part of a SPADE
agent’s _setup method, which is used for adding behaviours (actions) to agents as well,
such as ChangeRole action, as shown in line 3, and more. The knowledge base is to
be interpreted using the following template: property(’from’, ’to’). Thus, hasAction(’

Factory’, ’Produce’) is interpreted to mean that Factory role defines Produce action.
The generated code is not enough for the modelled system to be run though. Nor is

that the intention of the model, and it being modelled using the supplied metamodelling
tool. Implementation details, necessary for the system to be run, are to be supplied and
taken care of by the modelled system’s developer.

It should be noted here that modelling is not uniform, i.e. models depend on the needs
and perspectives of model developers. An example observation based on Fig. 4.1 is that
actions of Order role may have been grouped so that three actions (WaitForFactoryAnswer,
CheckFactoryAvailability, and SearchForFactories) are represented by a single action that

1For more information visit https://github.com/Balannen/LSMASOMM

115

https://github.com/Balannen/LSMASOMM

Chapter 4. Examples 4.1. recipeWorld

Individual

OU|0
Agent

Order

SearchForFactories
CheckFactoryAvailability
WaitForFactoryAnswer
StartProduction
FinishProduction

Factory

AnswerQuery
Produce

SearchForFactories
A

CheckFactoryAvailability
A

WaitForFactoryAnswer
A

StartProduction
A

FinishProduction
A

AnswerQuery
A

Produce
A

ProduceRecipePart

O|0

SelectFactory

O|1

ProductionStarted

O|2

ProductionFinished

O|3

SearchSuitableFactories

O|4

CheckIfFactoryAvailable

O|5

ReceiveAnswer

O|6

ProduceSingleRecipePart

O|7

ReplyToOrder

O|8

ProducePart

O|9

Figure 4.1: The model of the recipeWorld

116

Chapter 4. Examples 4.1. recipeWorld

ProduceRecipePart

O|0

SelectFactory

O|1

ProductionStarted

O|2

ProductionFinished

O|3

SearchSuitableFactories

O|4CheckIfFactoryAvailable

O|5

ReceiveAnswer

O|6

ProduceSingleRecipePart

O|7

ReplyToOrder

O|8

ProducePart

O|9

Figure 4.2: The modelled objectives of the recipeWorld

117

Chapter 4. Examples 4.1. recipeWorld

Order

SearchForFactories

CheckFactoryAvailability

WaitForFactoryAnswer

StartProduction

FinishProduction

Factory

AnswerQuery

Produce

SearchForFactories
A

CheckFactoryAvailability
A

WaitForFactoryAnswer
A

StartProduction
A

FinishProduction
A

AnswerQuery
A

Produce
A

Figure 4.3: The modelled roles, and their actions, of the
recipeWorld

118

Chapter 4. Examples 4.1. recipeWorld

Figure 4.4: Editing attribute values of action Search-
ForFactories

119

Chapter 4. Examples 4.1. recipeWorld

1 def _setup (self):
2 print ’OUOU |0 SimpleUnit : running ’
3 self. addBehaviour (self. ChangeRole (), None)
4

5 self. configureKB (’SWI ’, None , ’swipl ’)
6 self. addBelieve (’canHaveRole (OU|0,R|1) ’)
7 self. addBelieve (’canHaveRole (OU|0,R|0) ’)
8 self. addBelieve (’hasAction (Order , WaitForFactoryAnswer)’)
9 self. addBelieve (’hasAction (Factory , Produce)’)

10 self. addBelieve (’hasAction (Order , FinishProduction)’)
11 self. addBelieve (’hasAction (Order , StartProduction)’)
12 self. addBelieve (’hasAction (Order , CheckFactoryAvailability)’)
13 self. addBelieve (’hasAction (Order , SearchForFactories)’)
14 self. addBelieve (’hasAction (Factory , AnswerQuery)’)
15 self. addBelieve (’canReachGoal (SearchForFactories ,

SearchSuitableFactories)’)
16 self. addBelieve (’canReachGoal (StartProduction , ProductionStarted)’)
17 self. addBelieve (’canReachGoal (ActionName , ReceiveAnswer)’)
18 self. addBelieve (’canReachGoal (ActionName , ProductionFinished)’)
19 self. addBelieve (’canReachGoal (ActionName , SearchSuitableFactories)’)
20 self. addBelieve (’canReachGoal (WaitForFactoryAnswer , ReceiveAnswer)’)
21 self. addBelieve (’canReachGoal (ActionName , ProductionStarted)’)
22 self. addBelieve (’canReachGoal (FinishProduction , ProductionFinished)’)
23 self. addBelieve (’canReachGoal (Produce , ProducePart)’)
24 self. addBelieve (’canReachGoal (ActionName , ReplyToOrder)’)
25 self. addBelieve (’canReachGoal (CheckFactoryAvailability ,

CheckIfFactoryAvailable)’)
26 self. addBelieve (’canReachGoal (AnswerQuery , ReplyToOrder)’)
27 self. addBelieve (’canReachGoal (ActionName , ProducePart)’)

Listing 4.1: Implementation details of
generateNodeCode function

120

Chapter 4. Examples 4.2. The Mana World

could be named CommunicateWithFactory. Such a modelling decision is up to the model
developer and the person implementing the system.

The roles defined for this particular example are derived from the initial description
of recipeWorld. Alternatively, they could be defined using the four-step process presented
by Lhaksmana, Murakami and Ishida [73]. First, roles are to be identified based on the
available description of the modelled system – it is a system consisting of agents playing
as factories and recipes, on their way of creating an interaction network. The defined roles
should be then elaborated, and described in detail, including their properties and other
identified necessary details. Interaction design step is modified a bit from the description
given in [73] – it is less about modelling interaction between agents, agents and roles,
or agents and their environment, but is more about modelling behaviours (i.e. actions)
that can be used by agents in order to interact with their environment. The final step,
assignment, is performed during the modelling process, but can be thought of only as an
initial definition of role assignment, since an agent’s knowledge base is expected to change
while the system is run (a point of view that is described and argued in Section 5.1).

4.2 The Mana World

The Mana World (TMW) is an MMORPG that was used during the Large-Scale Multi-
Agent Modelling of Massively On-Line Role-Playing Games (ModelMMORPG) project.
A quest was designed specifically for the purposes of the project’s research process, which
is described in [92, 96].

The quest, named The Quest for the Dragon Egg, demanded players to cooperate,
utilise social interaction, and engage in strategic planning. In order to successfully com-
plete the quest, a player has to solve a set of objectives: find the exact location of the
Dragon Egg item, retrieve it, transport it to a specific non-player character (NPC), craft
a specific item with a rich ingredient list, use it on the Dragon Egg, and visit another
specific NPC. The Dragon Egg item can be found in one of the three predefined locations
in the in-game world of The Mana World, yet its exact location cannot be known prior
to its spawning time (once every 24 hours), and there can never be two usable Dragon
Eggs at any given point in time. Each of the specific locations are located in a dragon
den, where dragons guard the spawned Dragon Egg item. In order to transport the egg
to the designated NPC, three players have to be present at all times, otherwise the egg is
dropped, and rendered useless, meaning that the next Dragon Egg spawn must be found.

The described quest is a good example of how MMORPGs emphasise interaction and
player cooperation. Further importance of grouping and cooperation is seen in further
constraints of the quest, e.g. once a player initiates the mentioned quests, i.e. pickes
up the Dragon Egg item, only the members of their group (usually called a party) can
complete the quest, and gain the defined rewards (ability to summon a friendly Dragon

121

Chapter 4. Examples 4.2. The Mana World

monster). The key observation in modelling the described quest is the fact that the set of
constraints and roles do not change, regardless of the number of individual agents playing
the game and solving the quest. The modelled example situation is shown visually in
Fig. 4.5.

Concerning the seven organisational perspectives of modelling LSMASs, the built
model can be observed as follows.

It is defined by the model that an individual organisational unit (a single player char-
acter played by an agent) can be a part of an organisational unit – such a relationship
represents party or guild membership. Elements of organisational culture are again por-
trayed indirectly using the concept of knowledge artefacts – storage of normative elements
not included in the definitions of given roles. Speaking of strategies, available actions
within the system are defined, and related to specific roles that can be played by indi-
vidual agents. Furthermore, defined actions have further described affect on the system
environment through their connections to the defined objective elements. Organisational
dynamics are presumed to be an integral part of the system since a relationship exists
between individual organisational unit and a compound organisational unit. More so, a
role that can initialise the process of creating compound organisational units is defined,
with a part of its role in the organisational dynamics process shown in [125]. Inter-
organisational aspects are not present within the example model of this piece of the The
Mana World.

TMW example is utilised to exhibit the multimodel modelling. Namely, the main
part of the model is modelled as usual, but the Objective individuals are loaded from the
appropriate database, since several models were saved in advance, one for each quest of
interest. Two quest models are shown in Figs. 4.6 and 4.7, while only one of the quests is
present in the wholesome model shown in Fig. 4.5.

The noticeable difference in the two modelled quests (sets of objectives) in Figs. 4.6
and 4.7 is their complexity, i.e. the structure of their decomposition. While one is com-
posed of multiple levels of objective grouping, the other is of a simple linear structure.
Their main difference, in the context of implementation and application template gener-
ation, is that the first quest is generated as a set of shorter plans, while the second one
is generated as a plan comprising a longer chain of objectives. This comparison of the
two forms of defining objectives represents the level of customised approach provided by
Lamrast−+ metamodel and the provided tool.

Furthermore, it is shown here how a general model can be built using several models.
Even though the two shown objectives are defined using two separate models that are
working using the same database, the application template generating feature is still
intact. Additional information for the model was provided using other models, such as
the one comprising roles, an organisational unit, and their respective actions. In another
model were actions connected to their appropriate objectives. The final result of using

122

Chapter 4. Examples 4.2. The Mana World

FinishQuestForTheDragonEgg

O|0

HatchDragonEgg

O|1

LearnSpell

O|2

BrewHatchingPotion

O|3

TransportDragonEgg

O|4

FindEggHermit

O|5

FindDragonEgg

O|6

GatherPotionIngredients

O|7

FindItemIngredient

O|8

HarvestItemIngredient

O|9

move
A

harvestItem
A

craftItem
A

learnSpell
A

Scout

move

Maker

harvestItem
craftItem

Wizard

learnSpell

Individual

OU|0
Avatar

Group

OU|1
Party

PartyFounder

PartyMember

AvatarInventory AvatarAttributes

Figure 4.5: The model of the Quest for the Dragon Egg
implemented in TMW

123

Chapter 4. Examples 4.2. The Mana World

FinishTutorial

O|0

answerNPCServerInitial

O|1

goToNPCSorfina

O|2

talkToSorfina

O|3

goToNPCCarpet

O|4

talkToNPCSorfina

O|5

goToLocation2924

O|6

talkToNPCDresser

O|7

equipItemRaggedShorts

O|8

equipItemCottonShirt

O|9

equipItems

O|10

goToNPCSorfina

O|11

talkToNPCSorfina

O|12

goToLocation4431

O|13

Figure 4.6: Tutorial quest breakdown, from The Mana
World

124

Chapter 4. Examples 4.2. The Mana World

FinishMaggots

OMaggots0

talkToNPCTanisha

OMaggots1

equipItemKnife

OMaggots2

goToLocation10287

OMaggots3

killMobMaggot10

OMaggots4

goToNPCTanisha

OMaggots5

talkToNPCTanisha

OMaggots6

Figure 4.7: A quest breakdown, from The Mana World

talkToNPC
A

move
A

equipItem
A

attack
A

Scout

move
talkToNPC

Warrior

attack
equipItem

Individual

OU|0
Agent

Figure 4.8: Roles and their actions that are used to solve
quests from Figs. 4.6 and 4.7, from The Mana World

125

Chapter 4. Examples 4.3. Smart Self-Sustainable Human Settlement with Organisations

1 self. configureKB (’SWI ’, None , ’swipl ’)
2 self. addBelieve (’canHaveRole (OU|0,R|1) ’)
3 self. addBelieve (’canHaveRole (OU|0,R|0) ’)
4 self. addBelieve (’hasAction (Scout , talkToNPC)’)
5 self. addBelieve (’hasAction (Warrior , attack)’)
6 self. addBelieve (’hasAction (Scout ,move)’)
7 self. addBelieve (’hasAction (Warrior , equipItem)’)
8 self. addBelieve (’canReachGoal (equipItem , equipItemRaggedShorts)’)
9 self. addBelieve (’canReachGoal (talkToNPC , talkToSorfina)’)

10 self. addBelieve (’canReachGoal (equipItem , equipItemKnife)’)
11 self. addBelieve (’canReachGoal (move , goToLocation4431)’)
12 self. addBelieve (’canReachGoal (equipItem , equipItemCottonShirt)’)
13 self. addBelieve (’canReachGoal (talkToNPC , talkToNPCSorfina)’)
14 self. addBelieve (’canReachGoal (move , goToNPCCarpet)’)
15 self. addBelieve (’canReachGoal (attack , killMobMaggot10)’)
16 self. addBelieve (’canReachGoal (talkToNPC , answerNPCServerInitial)’)
17 self. addBelieve (’canReachGoal (move , goToNPCSorfina)’)
18 self. addBelieve (’canReachGoal (talkToNPC , talkToNPCDresser)’)
19 self. addBelieve (’canReachGoal (move , goToNPCTanisha)’)
20 self. addBelieve (’canReachGoal (move , goToLocation2924)’)
21 self. addBelieve (’canReachGoal (talkToNPC , talkToNPCTanisha)’)
22 self. addBelieve (’canReachGoal (move , goToLocation10287)’)

Listing 4.2: Knowledge base of an organisational unit

the implementation template generating feature is visible the most in an organisational
unit’s knowledge base, where knowledge of all the modelled roles, actions, and objectives
is stored, as shown in Listing 4.2.

The referenced model is available on GitHub repository of the research2 of this thesis as
well. Upon running the application template generator, four files are created or updated if
they exist already: two with the initial core code for the modelled organisational units, one
with all the available actions and their respective implementation code (where applicable),
and one combining both of these files with the basic SPADE system.

4.3 Smart Self-Sustainable Human Settlement with
Organisations

The Smart Self-Sustainable Human Settlement (SSSHS) Framework was developed as
a part of a PhD research, described in detail by Tomičić [135]. The basic idea of the
framework is presented in [136] as follows. A distributed complex self-sustainable system,
comprising individual dwelling units, is interconnected in a network that allows those units
to exchange both resources and pieces of data. Communication can be initiated when an
event leading to one of the two basic scenarios is detected: either resource depletion within
a specific subsystem of the observed system, or resource production overflow.

2For more information visit https://github.com/Balannen/LSMASOMM

126

https://github.com/Balannen/LSMASOMM

Chapter 4. Examples 4.3. Smart Self-Sustainable Human Settlement with Organisations

Every dwelling unit can be composed of several individual agents, each of them playing
one of the specified roles [136]: producer, consumer, or storage. A producer role produces
a resource according to the provided input data distribution. The consumer role consumes
resources according to the given unit’s inner specifics. The storage role is about storing
resources, communicating with other units, triggering the predefined self-sustainability
mechanisms, etc. Every agent enacting the storage role deals with only one resource type
at any given time, and it the main communication point towards other dwelling units, as
it communicates with their storage units of the same resource type.

The above described framework does not inherently recognise the concept of an organ-
isation and organisational behaviour, although, it has been studied later, organisational
behaviour (forming organisations and coordinated work towards a common goal) may
bring benefits to a system comprising smart appliances and similar artificial agents build-
ing a smart city.

Using the context of organisation, a dwelling unit can be observed as an organisational
unit [136]. Further combined with a defined set of roles, and a specific set of organising
criteria (e.g. an objective from the self-sustainability domain, a particular missino, etc.),
a higher-level organisational unit is formed. Utilising the recursive definition of an organ-
isatinoal unit featured in Lamrast−+ ontology and metamodel, a dwelling unit can be
observed as a higher-level organisational unit when compared with individual appliances
(dwelling unit agents that enact either of the three defined roles), or as a lower-level or-
ganisational unit, when a group of dwelling units is observed (e.g. flats in a building).
Ultimately, each organisational unit, regardless of their observed level, can thus be given
a role to play.

The model associated with SSSHS framework shown in Fig. 4.9 is slightly different
than that presented in [136], yet the underlying message is the same. It should be noted
here that actions modelled in Fig. 4.9 may as well be symbolic, as they can be further
developed at the implementation stage, but provide sufficient information at the model
level, and serve well the function of visualised system description. The most significant
change of the model provided here and the one presented in [136] is that the model
in Fig. 4.9 features only two organisational units – one being lower-level and the other
being higher-level – as the model can be applied to various levels of grouping – from the
individual units, to local grouping, to neighbourhood level, and every organisational unit
ultimately plays one of the defined roles, since the framework is defined in such a way.

127

Chapter 4. Examples 4.3. Smart Self-Sustainable Human Settlement with Organisations

Individual

OU|0

IndividualAgent

Group

OU|1

Aggregated

Negotiator

Negotiate

Storage

StoreResource

SupportSelfSustainability

Interact

User

UseResource

Producer

ProduceResource

StoreResource
A

UseResource
A

ProduceResource
A

Negotiate
A

SupportSelfSustainability
A

Interact
A

StoredResource

O|0

UsedResource

O|1

ProducedResource

O|2

MaintainSustainability

O|3

Figure 4.9: SSSHS model

128

Chapter 5

Conclusion

The following chapter provides a discussion on the developed metamodel and the mod-
elling tool, where both are put into perspective of similar research and discussed in the
context of possible improvement. Discussion is followed by the section with concluding
remarks which opens some questions and possible further research directions.

5.1 Discussion

Developed on the bases of relevant already published research, this thesis builds its results
towards modelling LSMASs and the practical use of the defined Lamrast−+ metamodel.
The decision to introduce the practical component to the metamodel definition is based on
numerous examples of theoretical developments without the practical element to support
their development.

The concepts defined in Lamrast−+ metamodel were chosen from all the elements
of the ontology in Section 2.1 for their general application possibilities in the context
of MASs and LSMASs, while providing sufficient levels of specificity to the modelled
system. Furthermore, since one of the key research objectives is to model organisational
concepts applicable to MMORPGs, the selected concepts can be discussed in the context of
MMORPGs as well. With organisational units either as single players or groups of players
that can join into a higher-level grouping concept that is usually called a guild, along with
a concept that is quite a standard occurrence in the domain of MMORPGs – a role which
is often used to describe a player’s avatar’s position in the social and power structure of
the in-game world, or their sets of abilities, skills, and character traits, coupled with role-
dependent actions, and quests in terms of structured sets of objectives – applicability of the
model in the domain of MMORPGs is obvious. However, the constrained expressiveness
can be perceived as a weakness, since further domain elements should be introduced for
an even clearer domain description that would provide further details about an observed
system. Concepts that would directly allow for such more detailed description of the
given application domain were not considered here for their inclusion would not benefit

129

Chapter 5. Conclusion 5.1. Discussion

the system immensely, yet the sense of metamodel’s applicability to application domains
other than MMORPGs would certainly suffer. Ultimately, the goal of this research was not
to create an extremely domain-specific metamodel, but to make it applicable to various
other domains, such as the Internet of Things and similar, as well.

One of the challenges of the research was therefore whether the defined model is in
fact a model or a metamodel, since it has many possible forms or domains of application.
The arguments in favour of the metamodel concept are laid out throughout this thesis,
yet if Lamrast−+ metamodel is used to model the system directly, not taking care of the
implementation, and serving as a tool of describing a given system, the metamodel may
as well be named a model, since its use represents a specific system directly. In other
words, should the example described in Section 2.2.2, which features two specific players
(actually, their avatars), and specific quests, and roles, be described directly and in its
entire specifics, using the concepts defined in Lamrast−+ metamodel, the use resembles
more that of a model. On the other hand, when the metamodel is used to describe a
system, but remains on a certain level of abstraction, e.g. defining a large number of
individual agents as simply and organisational unit, the resulting model (where further
instantiating is necessary before agents themselves are reached), is more similar to the
metamodel-model relationship, as opposed to being a mere model. A further argument
in favour of the model concept lies in the fact that the model level (which describes an
observed system) provides the model developer with the opportunity to include specific
programming code in some of the elements’ attributes – thus, the element is set as a
direct representation of a specific real object (e.g. an action performable by an agent
that can be implemented using the programming code provided as its attribute value).
Still, if the model is provided with features as described in this here paragraph, than the
model defining the used elements and their features and rules of their connections, is a
metamodel, and Lamrast−+ metamodel is exactly that – it provides the definitions and
rules of use for the concepts that are used to describe a specific system comprising agents.

Since complex systems are prone to having complex representations, although not ne-
cessarily actually having them, the multimodel modelling is a welcome addition to the
practical application possibilities of Lamrast−+ metamodel. The differences and similar-
ities of such an approach and the multi-perspective approach were discussed in Section 3.2.
Saving and restoring model elements independently from the saved model itself is bene-
ficial for the purposes of recreating a view of the given model without having to open
the model itself. Furthermore, since elements of a model can be restored independently
of their immediate neighbours, it is possible to create a big model containing most of
the necessary elements, and construct the wanted views afterwards. Furthermore, if an
element is used often, it may be saved (or a set of elements) in a specific template-based
model database, and restored later when needed. Certainly, this approach has its weak-
nesses, such as a great possibility for developing irregularities or invalid situations when

130

Chapter 5. Conclusion 5.1. Discussion

elements are saved or loaded. Furthermore, saving and loading is always performed within
a specific context, and the saving and the loading context can be significantly different.
The modelling tool takes care of some of the aspects of context differences at the moment,
yet further work should be done to further smooth out user experience. The approach as
described in this paragraph is especially important in the context of recursive definition
of an organisational unit, like the one used in this thesis, described by Schatten [118].

The application template generating feature is a welcome addition to the modelling
tool and provides the model developer with an appreciated feature. The generated pro-
gramming code greatly depends on how studious was the model developer, and with
how much information they provided the model. Furthermore, how the model developer
perceives the generated application template depends on their initial expectations when
programming code generation is considered. Although the application template provided
is almost enough for a system to be run, it is still only a template, a skeleton of sort, and
requires substantial further development, if the system is to be implemented according to
the model developer’s expectations. The current version of the modelling tool provides
only simple, proof-of-concept features of application template generation, yet it clearly
shows the potential of its development. The current constraint of implementing only
a system using the specific MASs development platform can be mitigated by including
further implementation options.

Organisational unit individual’s knowledge about the modelled system, i.e. its know-
ledge base, as described in Section 3.3.1, is embedded into the definition of an agent, thus
being defined as its default knowledge. Yet, knowledge of a SPADE agent is not static,
and can be modified through time. Since each individual agent’s knowledge base can
be modified individually, the modelled system can be defined with only a starting set of
organisational constraints, some of which, that are stored in individual agent’s knowledge
bases, can be modified depending on the activity within the system and the behaviour of
individual agents. Therefore, using this feature of agent’s knowledge being modified at
runtime, it can be said that Lamrast−+ metamodel, coupled with SPADE implementa-
tion platform for MASs , can be used for modelling and running complex self-organising
systems. Customisable knowledge base implies dynamic role enactment in this context.

Roles modelled using Lamrast−+ metamodel are defined as a kind of normative con-
straint groups that enable agents to play specific actions towards achieving specific atomic
goals. Roles are not defined on the organisational unit’s basis, nor are they strictly coupled
with specific organisational units. Rather, roles are defined as existent in the modelled
system, and are implemented as behaviours disposable to organisational units. The mod-
elled association of canHaveRole defines roles that an organisational unit can play at the
implemented system’s initiation, as a stored piece of knowledge in organisational units.
When the system is run, this set of roles that can be played by an organisational unit
can be changed if an organisational unit learns about an action of a role the knowledge of

131

Chapter 5. Conclusion 5.1. Discussion

which it did not have before. Such behaviours (i.e. actions) and roles have to be defined
beforehand, while the system is being implemented. Such an approach is in accordance
with the lack of features in existing methodologies for development of MASs described by
Lhaksmana, Murakami and Ishida [73]:

“To model self-organizing MAS with such capability, MAS designers should be able
to design how the agent will adapt itself instead of defining a set of fixed function-
alities at design time. Another required feature for designing self-organizing MAS
is the separation between designing agent behaviors and agent behavior adapta-
tion. The former means designing the actions that can be performed by the agents,
whereas the latter means defining which actions that can (or cannot) be performed
in which situations.” — Lhaksmana, Murakami and Ishida [73]

When Lamrast−+ metamodel is compared to the modern example model bent on
modelling self-organising MASs, described by Lhaksmana, Murakami and Ishida [73], it
is easy to observe that both models have the Role concept at their core, probably since
a role usually represents a set of functionalities, a position of duty or an aggregation
of behaviors to be played by agents [73]. Lamrast−+ metamodel implements the Role

concept using the third offered definition of a role in MASs, possibly coupled with the
first one. Furthermore, four activities towards modelling roles: 1) identification, 2) elab-
oration, 3) interaction design, 4) assignment, can be followed when roles are modelled
using Lamrast−+ metamodel, as shown in Chapter 4. As opposed to the role modelling
metamodel proposed by Lhaksmana, Murakami and Ishida [73], Lamrast−+ metamodel
is not as complex and detailed when roles are considered, since Lamrast−+ metamodel
aims at modelling a wider set of concepts, and in less detail, for the necessary details
are expected to be implemented alongside the detailed system implementation process.
Further metamodels for modelling LSMASs do exist, as presented in Section 1.4.3.

Since Lamrast−+ metamodel is defined as a rather general one, it is possible to develop
extensions to its concepts, thus making it more specific for a given domain, or more
customised for a specific purpose.

Chapter 4 describes three examples that are modelled using the concepts of Lamrast−+
metamodel, and how the features of multimodel modelling and application template gen-
erator work. The examples are chosen from multiple application domains, as opposed to
only a single one (e.g. MMORPGs), in order to show the diversity of application domains
modelling whereof the metamodel can be used. The metamodel is therefore showcased on
a broader spectrum of application domains than initially intended, as defined by one of the
key research questions. Although the benefit of having a generally applicable metamodel
is a benefit in itself, it certainly is a disadvantage in the context of reduced expressiveness
of the model modelled using Lamrast−+ metamodel. The fine line between the two can
be bridged during the implementation phase.

132

Chapter 5. Conclusion 5.2. Future Research

In accordance with what was mentioned earlier in this thesis (namely in Section 2.2),
Lamrast−+ metamodel does not stand alone in the set of available models for model-
ling LSMASs, nor indeed in the context of organisational modelling of LSMASs. The
main improvement upon those other available models is the level at which Lamrast−+
metamodel conforms to the seven perspectives of organisational modelling of LSMASs
laid out by Schatten [118], its efficient combination of organisational concepts with con-
cepts applicable to LSMASs and intelligent virtual environments (IVEs), and the available
modelling tool where the metamodel can be used.

5.2 Future Research

The purpose of research is not only to provide answers to existing questions, but to
uncover some new challenges that can be engaged in and dealt with.

Aside from regular improvements in the terms of programming code optimisation or
visual formatting of the modelling tool, some further groundwork can be performed for
an even better metamodel, and the accompanying modelling tool.

It was mentioned in Section 2.2.1.4 that the Objective concept of the metamodel can
be defined using a number of attributes, two of which are not included in the application
template generator – Reward and Measurement. These attributes are interesting concepts
for future research, since they would provide model developers with even greater model-
ling possibilities and automatising of the modelled system’s development process. Such
a development would demand further improvements in knowledge bases pertaining the
modelled system – those of individual agents, as well as those available in the system that
are not initially accessible to the system’s agents, but have to be discovered. Such an idea
is in complete accordance with the context of LSMASs.

Development and improvement of the knowledge management process supported by
the metamodel, and by succession its modelling tool, would prove useful as well. A part
of the system knowledge that should be modelled is organisational culture – a mixture
of all kinds of knowledge from various domains and of various importance – which is, at
the moment, modelled using non-detailed concepts of knowledge artefacts, which offer a
myriad of opportunities for further research.

One possibility for tackling the knowledge management perspective is knowledge stor-
age in an ontology accessible to organisational units. Such an approach might foster
the process of reasoning to individual organisational units, although selective knowledge
access may prove challenging. Nonetheless, since one of the key aspects of ontologies is
knowledge sharing, this development direction may prove beneficial.

The developed metamodel, and the accompanying ontology, can always be improved,
especially when the metamodel is applied to further application domains of LSMASs.
Enhancement of the metamodel and the ontology is foreseen in the context of special-

133

Chapter 5. Conclusion 5.2. Future Research

isation as well, as opposed to keeping them on the current level of abstraction only. In
the context of computer games, a more specific ontology that could be used for a more
expressive description of a given domain (i.e. a computer game), is deemed as benefi-
cial as it may provide a new approach to modelling MASs applicable to that particular
application domain.

Paired with an implemented application programming interface (API) for a specific
computer game, the metamodel, and especially the modelling tool, may be modified
insomuch as to provide assistance in development of MASs that contain all the actions
necessary for agents to start playing a given game. Such a combination would provide
game developers with the ability to test their games logic- and story-wise, apart from
the currently available load-based testing only. API for TMW is one of the future steps
planned as a research extending that of ModelMMORPG project.

After all, a doctoral thesis and the accompanying research are only an introduction.

134

Bibliography

[1] H. A. Abbas. ‘Exploiting the Overlapping of Higher Order: Entities Within Multi-
Agent Systems’. In: International Journal of Agent Technologies and Systems 6.3
(July 2014), pp. 32–57. issn: 1943-0744. doi: 10.4018/ijats.2014070102.

[2] H. A. Abbas. ‘Realizing the NOSHAPE MAS Organizational Model:’ in: Inter-
national Journal of Agent Technologies and Systems 7.2 (Apr. 2015), pp. 75–104.
issn: 1943-0744. doi: 10.4018/IJATS.2015040103.

[3] H. A. Abbas, S. I. Shaheen and M. H. Amin. ‘Organization of Multi-Agent Systems:
An Overview’. In: International Journal of Intelligent Information Systems 4.3
(2015), p. 46. issn: 2328-7675. doi: 10.11648/j.ijiis.20150403.11.

[4] E. Argente et al. ‘Supporting Agent Organizations’. In: Multi-Agent Systems and
Applications V. Ed. by H.-D. Burkhard et al. Lecture Notes in Computer Science
4696. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. Chap. 24, pp. 236–245.
isbn: 978-3-540-75254-7. doi: 10.1007/978-3-540-75254-7_24.

[5] S. Assar. ‘Meta-Modeling: Concepts, Tools and Applications’. In: IEEE RCIS ’15 :
9th International Conference on Research Challenges in Information Science. 9th
International Conference on Research Challenges in Information Science. Athens,
Greece: IEEE, 2015.

[6] C. Atkinson and T. Kühne. ‘Model-Driven Development: A Metamodeling Found-
ation’. In: (2003), pp. 1–7.

[7] L. Atzori, A. Iera and G. Morabito. ‘The Internet of Things: A Survey’. In: Com-
puter Networks 54.15 (Oct. 2010), pp. 2787–2805. issn: 13891286. doi: 10.1016/
j.comnet.2010.05.010.

[8] A. Barella et al. ‘MAM5: Multi-Agent Model for Intelligent Virtual Environments’.
In: 10th European Workshop on Multi-Agent Systems (EUMAS 2012). 2012, pp. 16–
30.

[9] F. Béhé et al. ‘An Ontology-Based Metamodel for Multiagent-Based Simulations’.
In: Simulation Modelling Practice and Theory 40 (2014), pp. 64–85. issn: 1569190X.
doi: 10.1016/j.simpat.2013.09.002.

135

https://doi.org/10.4018/ijats.2014070102
https://doi.org/10.4018/IJATS.2015040103
https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.1007/978-3-540-75254-7_24
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.simpat.2013.09.002

Bibliography Bibliography

[10] C. Bernava et al. ‘RDF Annotation of Second Life Objects: Knowledge Repres-
entation Meets Social Virtual Reality’. In: Computational and Mathematical Or-
ganization Theory 20.1 (Mar. 2014), pp. 20–35. issn: 1381-298X, 1572-9346. doi:
10.1007/s10588-012-9148-4. arXiv: 1504.02358.

[11] J. Bezivin and O. Gerbe. ‘Towards a Precise Definition of the OMG/MDA Frame-
work’. In: Proceedings 16th Annual International Conference on Automated Soft-
ware Engineering (ASE 2001). San Diego, CA, USA: IEEE Computer Society,
2001, pp. 273–280. isbn: 0-7695-1426-X. doi: 10.1109/ASE.2001.989813.

[12] L. Birdsey, C. Szabo and K. Falkner. ‘Identifying Self-Organization and Adaptab-
ility in Complex Adaptive Systems’. In: 2017 IEEE 11th International Conference
on Self-Adaptive and Self-Organizing Systems (SASO). IEEE, 2017, pp. 131–140.
isbn: 978-1-5090-6555-4. doi: 10.1109/SASO.2017.22.

[13] L. Birdsey, C. Szabo and K. Falkner. ‘Large-Scale Complex Adaptive Systems Us-
ing Multi-Agent Modeling and Simulation’. In: Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems. São Paulo, Brazil: International
Foundation for Autonomous Agents and Multiagent Systems, 2017, pp. 1478–1480.

[14] G. Boella, L. van der Torre and H. Verhagen. ‘Introduction to Normative Mul-
tiagent Systems’. In: Computational & Mathematical Organization Theory 12.2-3
(2006), pp. 71–79. issn: 1862-4405. doi: 10.1007/s10588-006-9537-7.

[15] R. Boero et al. Agent-Based Models of the Economy: From Theories to Applications.
Palgrave Macmillan, 2015. 232 pp. isbn: 978-1-137-33980-5.

[16] J. Boes and F. Migeon. ‘Self-Organizing Multi-Agent Systems for the Control of
Complex Systems’. In: Journal of Systems and Software 134 (Dec. 2017), pp. 12–
28. issn: 01641212. doi: 10.1016/j.jss.2017.08.038.

[17] D. Bork et al. ‘Conceptual Modelling for Smart Cities : A Teaching Case’. In:
Smart City Learning: Opportunities and Challenges 27.1 (2015), pp. 10–28. issn:
22832998 18269745.

[18] D. Bork et al. ‘Using Conceptual Modeling to Support Innovation Challenges in
Smart Cities’. In: 2016 IEEE 18th International Conference on High Performance
Computing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems (HPCC/S-
martCity/DSS). IEEE, Dec. 2016, pp. 1317–1324. isbn: 978-1-5090-4297-5. doi:
10.1109/HPCC-SmartCity-DSS.2016.0187.

[19] J. C. Burguillo. ‘Self-Organization’. In: Self-Organizing Coalitions for Managing
Complexity. Emergence, Complexity and Computation 29. Cham: Springer In-
ternational Publishing, 2018. Chap. 6, pp. 89–100. isbn: 978-3-319-69898-4. doi:
10.1007/978-3-319-69898-4_6.

136

https://doi.org/10.1007/s10588-012-9148-4
http://arxiv.org/abs/1504.02358
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/SASO.2017.22
https://doi.org/10.1007/s10588-006-9537-7
https://doi.org/10.1016/j.jss.2017.08.038
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0187
https://doi.org/10.1007/978-3-319-69898-4_6

Bibliography Bibliography

[20] J. C. Burguillo. Self-Organizing Coalitions for Managing Complexity. Vol. 29. Emer-
gence, Complexity and Computation. Cham: Springer International Publishing,
2018. isbn: 978-3-319-69896-0. doi: 10.1007/978-3-319-69898-4.

[21] C. Cameron et al. ‘Using Self-Organizing Architectures to Mitigate the Impacts of
Denial-of-Service Attacks on Voltage Control Schemes’. In: IEEE Transactions on
Smart Grid (2018), pp. 1–1. issn: 1949-3053. doi: 10.1109/TSG.2018.2817046.

[22] K. M. Carley and L. Gasser. ‘Computational Organization Theory’. In: Multiagent
Systems: A Modern Approach to Distributed Artificial Intelligence. Ed. by G. Weiss.
Cambridge, MA, USA: MIT Press, 1999. Chap. Computatio, pp. 299–330. isbn:
0-262-23203-0.

[23] S. Čaušević, M. Warnier and F. M. Brazier. ‘Dynamic, Self-Organized Clusters
as a Means to Supply and Demand Matching in Large-Scale Energy Systems’.
In: Proceedings of the 2017 IEEE 14th International Conference on Networking,
Sensing and Control, ICNSC 2017 (2017), pp. 568–573. doi: 10.1109/ICNSC.
2017.8000154.

[24] M.-H. Chang and J. E. Harrington Jr. ‘Agent-Based Models of Organizations’.
In: Handbook of Computational Economics. Ed. by L. Tesfatsion and K. L. Judd.
1st ed. Vol. 2. Amsterdam, NL: Elsevier, 2006, pp. 1273–1337. isbn: 978-0-444-
51253-6. doi: 10.1016/S1574-0021(05)02026-5.

[25] P. P. Chen et al. Conceptual Modeling: Current Issues and Future Directions. Ed.
by P. P. Chen et al. Vol. 1565. Lecture Notes in Computer Science 1565. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999. 316 pp. isbn: 978-3-540-65926-6. doi:
10.1007/3-540-48854-5.

[26] J. S. Coleman. Foundations of Social Theory. Harvard University Press, 1998.
993 pp. isbn: 978-0-674-31226-5.

[27] D. D. Corkill and S. E. Lander. ‘Diversity in Agent Organizations’. In: Object
Magazine 8.4 (1998), pp. 41–47.

[28] A. Corradini et al. ‘Algebraic Approaches to Graph Transformation - Part 1: Ba-
sic Concepts and Double Pushout Approach’. In: Handbook of Graph Grammars
and Computing by Graph Transformation. Ed. by G. Rozenberg. Singapore: World
Scientific, 1997. Chap. 3, pp. 163–245. doi: 10.1142/9789812384720_0003.

[29] L. R. Coutinho, J. S. Sichman and O. Boissier. ‘Modelling Dimensions for Agent
Organizations’. In: Handbook of Research on Multi-Agent Systems. Ed. by V. Dignum.
IGI Global, 2009, pp. 18–50. isbn: 978-1-60566-256-5. doi: 10 . 4018 / 978 - 1 -
60566-256-5.ch002.

[30] R. L. Daft. Organization Theory and Design. 10th ed. Cengage Learning, 2010.
isbn: 978-1-133-46394-8.

137

https://doi.org/10.1007/978-3-319-69898-4
https://doi.org/10.1109/TSG.2018.2817046
https://doi.org/10.1109/ICNSC.2017.8000154
https://doi.org/10.1109/ICNSC.2017.8000154
https://doi.org/10.1016/S1574-0021(05)02026-5
https://doi.org/10.1007/3-540-48854-5
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.4018/978-1-60566-256-5.ch002
https://doi.org/10.4018/978-1-60566-256-5.ch002

Bibliography Bibliography

[31] T. De Wolf and T. Holvoet. ‘Emergence Versus Self-Organisation: Different Con-
cepts but Promising When Combined’. In: Engineering Self-Organising Systems.
International Workshop on Engineering Self-Organising Applications. Ed. by S. A.
Brueckner et al. Red. by D. Hutchison et al. Lecture Notes in Computer Science
3464. Berlin, Heidelberg: Springer, 2005, pp. 1–15. isbn: 978-3-540-31901-6. doi:
10.1007/11494676_1.

[32] J. de Lara and H. Vangheluwe. ‘Using AToM as a Meta-CASE Tool’. In: ICEIS.
Vol. 2. 2002, pp. 642–649.

[33] J. de Lara and H. Vangheluwe. ‘Using Meta-Modelling and Graph Grammars
to Process GPSS Models’. In: The European Simulation Multi-Conference. 2002,
pp. 100–107.

[34] K. S. Decker. ‘TÆMS : A Framework for Environment Centered Analysis & Design
of Coordination Mechanisms’. In: Foundations of Distributed Artificial Intelligence.
Ed. by G. M. P. O’Hare and N. R. Jennings. New York, NY, USA: John Wiley &
Sons, Inc, 1996. Chap. 16, pp. 429–448. isbn: 0-471-00675-0. doi: 10.1.1.45.8925.

[35] V. Dignum. ‘A Model for Organizational Interaction: Based on Agents, Founded
in Logic’. Doctoral thesis. Utrecht University, 2004.

[36] V. Dignum. ‘The Role of Organization in Agent Systems’. In: Handbook of Research
on Multi-Agent Systems. Ed. by V. Dignum. IGI Global, 2009, pp. 1–16. isbn: 978-
1-60566-256-5. doi: 10.4018/978-1-60566-256-5.ch001.

[37] H. Ehrig. ‘Introduction to the Algebraic Theory of Graph Grammars (a Survey)’.
In: Graph-Grammars and Their Application to Computer Science and Biology. Ed.
by V. Claus, H. Ehrig and G. Rozenberg. Lecture Notes in Computer Science 73.
Berlin, Heidelberg: Springer, 1979. Chap. 1, pp. 1–69. isbn: 978-3-540-09525-5.
doi: 10.1007/BFb0025714.

[38] D. W. Embley and B. Thalheim, eds. Handbook of Conceptual Modeling: Theory,
Practice, and Research Challenges. Berlin, Heidelberg: Springer, 2011. isbn: 978-
3-642-15864-3. doi: 10.1007/978-3-642-15865-0.

[39] J. Engelfriet and G. Rozenberg. ‘Node Replacement Graph Grammars’. In: Hand-
book of Graph Grammars and Computing by Graph Transformation. Ed. by G.
Rozenberg. River Edge, NJ, USA: World Scientific Publishing, 1997. Chap. 1,
pp. 1–94. isbn: 981-02-2884-8.

[40] M. Esteva, J. Padget and C. Sierra. ‘Formalizing a Language for Institutions and
Norms’. In: Intelligent Agents VIII. Ed. by J.-J. C. Meyer and M. Tambe. Lecture
Notes in Computer Science 2333 2333. Berlin, Heidelberg: Springer, 2002, pp. 348–
366. isbn: 978-3-540-45448-9. doi: 10.1007/3-540-45448-9_26.

138

https://doi.org/10.1007/11494676_1
https://doi.org/10.1.1.45.8925
https://doi.org/10.4018/978-1-60566-256-5.ch001
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/978-3-642-15865-0
https://doi.org/10.1007/3-540-45448-9_26

Bibliography Bibliography

[41] J. Ferber, O. Gutknecht and F. Michel. ‘From Agents to Organizations: An Organ-
izational View of Multi-Agent Systems’. In: Agent-Oriented Software Engineering
(AOSE) IV. Ed. by P. Giorgini, J. P. Müller and J. Odell. Red. by G. Goos,
J. Hartmanis and J. van Leeuwen. Vol. 2935. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 214–230. isbn: 978-3-540-24620-6. doi: 10.1007/978-3-
540-24620-6_15.

[42] M. Fernández-López, A. Gómez-Pérez and N. Juristo. ‘METHONTOLOGY: From
Ontological Art Towards Ontological Engineering’. In: AAAI-97 Spring Symposium
Series SS-97-06 (1997), pp. 33–40. doi: 10.1109/AXMEDIS.2007.19.

[43] M. Fontana and P. Terna. From Agent-Based Models to Network Analysis (and
Return): The Policy-Making Perspective. 201507. Torino, IT: Department of Eco-
nomics and Statistics "Cognetti de Martiis", University of Turin, Jan. 2015, pp. 1–
19.

[44] A. Freitas et al. ‘Semantic Representations of Agent Plans and Planning Problem
Domains’. In: Engineering Multi-Agent Systems. Ed. by F. Dalpiaz, J. Dix and
M. B. van Riemsdijk. Vol. 8758. Cham: Springer International Publishing, 2014,
pp. 351–366. isbn: 978-3-319-14483-2. doi: 10.1007/978-3-319-14484-9_18.

[45] L. W. Friedman. The Simulation Metamodel. 1st ed. Boston, MA, USA: Springer,
1996. isbn: 978-1-4612-8556-4. doi: 10.1007/978-1-4613-1299-4.

[46] L. Gasser. ‘Perspectives on Organizations in Multi-Agent Systems’. In:Multi-Agent
Systems and Applications. Ed. by M. Luck et al. Red. by G. Goos, J. Hartmanis
and J. van Leeuwen. Vol. 2086. Lecture Notes in Computer Science, Vol 2086.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. Chap. 1, pp. 1–16. isbn: 978-
3-540-42312-6. doi: 10.1007/3-540-47745-4_1.

[47] A. S. Gazafroudi et al. ‘Organization-Based Multi-Agent System of Local Elec-
tricity Market: Bottom-Up Approach’. In: Trends in Cyber-Physical Multi-Agent
Systems. The PAAMS Collection - 15th International Conference, PAAMS 2017.
Ed. by F. D. la Prieta et al. 1st ed. Advances in Intelligent Systems and Computing
619. Cham: Springer International Publishing, 2018. Chap. 38, pp. 281–283. doi:
10.1007/978-3-319-61578-3_38.

[48] B. Goertzel et al. Real-World Reasoning: Toward Scalable, Uncertain Spatiotem-
poral, Contextual and Causal Inference. 1st ed. Atlantis Thinking Machines 2 2.
Atlantis Press, 2011. 269 pp. isbn: 978-94-91216-10-7. doi: 10.2991/978- 94-
91216-11-4.

139

https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1007/978-3-540-24620-6_15
https://doi.org/10.1109/AXMEDIS.2007.19
https://doi.org/10.1007/978-3-319-14484-9_18
https://doi.org/10.1007/978-1-4613-1299-4
https://doi.org/10.1007/3-540-47745-4_1
https://doi.org/10.1007/978-3-319-61578-3_38
https://doi.org/10.2991/978-94-91216-11-4
https://doi.org/10.2991/978-94-91216-11-4

Bibliography Bibliography

[49] A. Gómez-Pérez, M. Fernández and A. J. de Vicente. ‘Towards a Method to Con-
ceptualize Domain Ontologies’. In: Proceedings Workshop: Ontological Engineer-
ing. European Conference on Artificial Intelligence. Budapest, HU: Facultad de
Informática (UPM), 1996, pp. 41–51. doi: 10.1.1.24.167.

[50] A. Gómez-Pérez, N. Juristo and J. Pazos. ‘Evaluation and Assessment of Know-
ledge Sharing Technology’. In: Towards Very Large Knowledge Bases: Knowledge
Building & Knowledge Sharing. Ed. by N. J. I. Mars. IOS Press, 1995. Chap. 29,
pp. 289–296.

[51] V. Grimm and S. F. Railsback. Individual-Based Modeling and Ecology. Princeton
University Press, 2005. 448 pp. isbn: 978-0-691-09666-7.

[52] T. R. Gruber. ‘A Translation Approach to Portable Ontology Specifications’. In:
Knowledge Acquisition 5.2 (1993), pp. 199–220. issn: 1042-8143. doi: 10.1006/
knac.1993.1008.

[53] G. Guizzardi. ‘On Ontology, Ontologies, Conceptualizations, Modeling Languages,
and (Meta)Models’. In: Proceedings of the 2007 Conference on Databases and In-
formation Systems IV: Selected Papers from the Seventh International Baltic Con-
ference DB&IS’2006. International Baltic Conference. Amsterdam, The Nether-
lands, The Netherlands: IOS Press, 2007, pp. 18–39. isbn: 978-1-58603-715-4.

[54] G. Guizzardi. ‘Ontological Foundations for Conceptual Modeling with Applica-
tions’. Doctoral thesis. Enschede, NL: University of Twente, 2005. 416 pp.

[55] A. Habel, J. Müller and D. Plump. ‘Double-Pushout Graph Transformation Revis-
ited’. In: Mathematical Structures in Computer Science 11.5 (2001), pp. 637–688.
issn: 0960-1295. doi: 10.1017/S0960129501003425.

[56] R. Hadfi and T. Ito. ‘Holonic Multiagent Simulation of Complex Adaptive Sys-
tems’. In: Highlights of Practical Applications of Scalable Multi-Agent Systems. The
PAAMS Collection. International Conference on Practical Applications of Agents
and Multi-Agent Systems. Ed. by J. Bajo et al. Communications in Computer and
Information Science 616. Cham, CH: Springer, 2016, pp. 137–147. isbn: 978-3-319-
39387-2. doi: 10.1007/978-3-319-39387-2_12.

[57] M. Hadzic et al. Ontology-Based Multi-Agent Systems. Studies in Computational
Intelligence 219 219. Berlin, Heidelberg: Springer, 2009. isbn: 978-3-642-01903-6.
doi: 10.1007/978-3-642-01904-3.

[58] F. Harary. Graph Theory. Advanced Book Program 2787 2787. Addison-Wesley,
1969. 274 pp. isbn: 978-0-201-41033-4. arXiv: 1102.1087.

140

https://doi.org/10.1.1.24.167
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1017/S0960129501003425
https://doi.org/10.1007/978-3-319-39387-2_12
https://doi.org/10.1007/978-3-642-01904-3
http://arxiv.org/abs/1102.1087

Bibliography Bibliography

[59] B. Henderson-Sellers.On the Mathematics of Modelling, Metamodelling, Ontologies
and Modelling Languages. SpringerBriefs in Computer Science. Berlin, Heidelberg:
Springer, 2012. 106 pp. isbn: 978-3-642-29824-0. doi: 10 . 1007 / 978 - 3 - 642 -
29825-7.

[60] B. Horling and V. Lesser. ‘Quantitative Organizational Models for Large-Scale
Agent Systems’. In: Massively Multi-Agent Systems I. First International Work-
shop on Massively Multi-Agent Systems. Ed. by T. Ishida, L. Gasser and H. Na-
kashima. Lecture Notes in Computer Science 3446. Berlin, Heidelberg: Springer,
2005. Chap. Quantitati, pp. 121–135. isbn: 978-3-540-31889-7. doi: 10 . 1007 /
11512073_9.

[61] J. F. Hübner, J. S. Sichman and O. Boissier. ‘A Model for the Structural, Func-
tional, and Deontic Specification of Organizations in Multiagent Systems’. In: Ad-
vances in Artificial Intelligence. Brazilian Symposium on Artificial Intelligence.
Ed. by G. Bittencourt and G. L. Ramalho. Lecture Notes in Computer Science
2507. Berlin, Heidelberg: Springer, 2002, pp. 118–128. isbn: 978-3-540-36127-5.
doi: 10.1007/3-540-36127-8_12.

[62] J. F. Hübner, L. Vercouter and O. Boissier. ‘Instrumenting Multi-Agent Organ-
isations with Artifacts to Support Reputation Processes’. In: Coordination, Or-
ganizations, Institutions and Norms in Agent Systems IV. International Workshop
on Coordination, Organization, Institutions and Norms in Agent Systems. Ed.
by J. F. Hübner et al. Lecture Notes in Computer Science 5428. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2009, pp. 96–110. isbn: 978-3-642-00443-8. doi:
10.1007/978-3-642-00443-8_7.

[63] R. Iqbal et al. ‘An Analysis of Ontology Engineering Methodologies: A Literature
Review’. In: Research Journal of Applied Sciences, Engineering and Technology
6.16 (2013), pp. 2993–3000. issn: 20407459.

[64] D. Karagiannis. ‘Agile Modeling Method Engineering’. In: Proceedings of the 19th
Panhellenic Conference on Informatics. Panhellenic Conference on Informatics.
New York, NY, USA: ACM Press, 2015, pp. 5–10. isbn: 978-1-4503-3551-5. doi:
10.1145/2801948.2802040.

[65] D. Karagiannis, H. C. Mayr and J. Mylopoulos, eds. Domain-Specific Conceptual
Modeling: Concepts, Methods and Tools. Cham, CH: Springer, 2016. isbn: 978-3-
319-39416-9. doi: 10.1007/978-3-319-39417-6.

[66] D. Karagiannis et al. ‘Fundamental Conceptual Modeling Languages in OMiLAB’.
In: Domain-Specific Conceptual Modeling. Ed. by D. Karagiannis, H. C. Mayr and
J. Mylopoulos. 1st ed. Cham, CH: Springer, 2016, pp. 3–30. doi: 10.1007/978-
3-319-39417-6_1.

141

https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/978-3-642-29825-7
https://doi.org/10.1007/11512073_9
https://doi.org/10.1007/11512073_9
https://doi.org/10.1007/3-540-36127-8_12
https://doi.org/10.1007/978-3-642-00443-8_7
https://doi.org/10.1145/2801948.2802040
https://doi.org/10.1007/978-3-319-39417-6
https://doi.org/10.1007/978-3-319-39417-6_1
https://doi.org/10.1007/978-3-319-39417-6_1

Bibliography Bibliography

[67] S. A. Kidanu, R. Chbeir and Y. Cardinale. ‘MAS2DES-Onto: Ontology for MAS-
Based Digital Ecosystems’. In: Simposio Latinoamericano de Manejo de Datos e
Información (SLMDI) - JAIIO 46. Simposio Latinoamericano de Manejo de Datos
e Información. Córdoba, AR: Sociedad Argentina de Informática e Investigación
Operativa (SADIO), 2017.

[68] C. Kiourt and D. Kalles. ‘A Platform for Large-Scale Game-Playing Multi-Agent
Systems on a High Performance Computing Infrastructure’. In: Multiagent and
Grid Systems 12.1 (2016), pp. 35–54. issn: 15741702. doi: 10.3233/MGS-160242.

[69] A. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 2008. 240 pp. isbn: 0-321-60647-
7.

[70] K. Kravari and N. Bassiliades. ‘A Survey of Agent Platforms’. In: Journal of Ar-
tificial Societies and Social Simulation 18.1 (2015), pp. 1–18. issn: 14607425. doi:
10.18564/jasss.2661.

[71] V. Krishnan and S. Martínez. ‘Distributed Control for Spatial Self-Organization
of Multi-Agent Swarms’. In: (8th May 2017). arXiv: 1705.03109 [math].

[72] M. A. Laouadi, F. Mokhati and H. Seridi. ‘A Novel Organizational Model for Real
Time MAS: Towards a Formal Specification’. In: Intelligent Systems for Science
and Information. Ed. by L. Chen, S. Kapoor and R. Bhatia. Studies in Compu-
tational Intelligence 542 542. Cham, CH: Springer, 2014. Chap. 10, pp. 171–180.
isbn: 978-3-319-04702-7. doi: 10.1007/978-3-319-04702-7_10.

[73] K. M. Lhaksmana, Y. Murakami and T. Ishida. ‘Role-Based Modeling for Design-
ing Agent Behavior in Self-Organizing Multi-Agent Systems’. In: International
Journal of Software Engineering and Knowledge Engineering 28.01 (2018), pp. 79–
96. issn: 0218-1940. doi: 10.1142/S0218194018500043.

[74] F. J. M. Lizán and C. R. Maestre. ‘Intelligent Buildings: Foundation for Intelligent
Physical Agents’. In: International Journal of Engineering Research and Applica-
tions 7.5 (May 2017), pp. 21–25. issn: 22489622. doi: 10.9790/9622-0705022125.

[75] M. Lopez et al. ‘Building a Chemical Ontology Using Methontology and the On-
tology Design Environment’. In: IEEE Intelligent Systems 14.1 (1999), pp. 37–46.
issn: 1094-7167. doi: 10.1109/5254.747904.

[76] M. Luck and R. Aylett. ‘Applying Artificial Intelligence to Virtual Reality: Intelli-
gent Virtual Environments’. In: Applied Artificial Intelligence 14.1 (2000), pp. 3–
32. issn: 0883-9514, 1087-6545. doi: 10.1080/088395100117142.

[77] C. N. Madu. ‘Simulation in Manufacturing: A Regression Metamodel Approach’.
In: Computers & Industrial Engineering 18.3 (1990), pp. 381–389. issn: 03608352.
doi: 10.1016/0360-8352(90)90060-Y.

142

https://doi.org/10.3233/MGS-160242
https://doi.org/10.18564/jasss.2661
http://arxiv.org/abs/1705.03109
https://doi.org/10.1007/978-3-319-04702-7_10
https://doi.org/10.1142/S0218194018500043
https://doi.org/10.9790/9622-0705022125
https://doi.org/10.1109/5254.747904
https://doi.org/10.1080/088395100117142
https://doi.org/10.1016/0360-8352(90)90060-Y

Bibliography Bibliography

[78] M. A. Mahmoud et al. ‘A Review of Norms and Normative Multiagent Systems’.
In: The Scientific World Journal 2014 (2014), pp. 1–23. issn: 2356-6140. doi:
10.1155/2014/684587.

[79] M. Maleković. ‘Multi-Agent Systems: Incorporating Knowledge and Time’. In:
Journal of Information and Organizational Sciences 22.2 (1998), pp. 97–105.

[80] M. Maleković and M. Schatten. Teorija i primjena baza podataka. 1st ed. Varaždin,
HR: Faculty of Organization and Informatics, University of Zagreb, 2017. 427 pp.
isbn: 978-953-6071-62-3.

[81] J.-J. C. Meyer and R. J. Wieringa, eds. Deontic Logic in Computer Science: Norm-
ative System Specification. Chichester, UK: John Wiley and Sons Ltd., 1993. isbn:
0-471-93743-6.

[82] J. A. Miller, A. P. Sheth and K. J. Kochut. ‘Perspectives in Modeling: Simulation,
Database, and Workflow’. In: Conceptual Modeling: Current Issues and Future
Directions. Ed. by P. P. Chen et al. Lecture Notes in Computer Science 1565
1565. Berlin, Heidelberg: Springer, 1999, pp. 154–167. isbn: 978-3-540-48854-5.
doi: 10.1007/3-540-48854-5_13.

[83] E. Missaoui et al. ‘A Normative Model for Holonic Multi-Agent Systems’. In: IEEE
ICTAI-17. Boston, USA: IEEE, 2017.

[84] S. Mitchell et al. The Internet of Everything for Cities. Cisco, 2013, pp. 1–21.

[85] W. Muhanna and R. Pick. ‘Meta-Modeling Concepts and Tools for Model Manage-
ment: A Systems Approach’. In: Management Science 40.9 (1994), pp. 1093–1123.
issn: 0025-1909. doi: 10.1287/mnsc.40.9.1093.

[86] M. A. Musen. ‘The Protégé Project: A Look Back and a Look Forward’. In: AI
Matters 1.4 (2015), pp. 4–12. issn: 23723483. doi: 10.1145/2757001.2757003.

[87] D. Nadler. Organizational Architecture : Designs for Changing Organizations. Ed.
by D. A. Nadler, M. S. Gerstein and R. B. Shaw. San Francisco, USA: Jossey-Bass,
1992. 284 pp. isbn: 1-55542-443-0.

[88] M. Nagl. ‘Formal Languages of Labelled Graphs’. In: Computing 16.1-2 (1976),
pp. 113–137. issn: 0010485X. doi: 10.1007/BF02241984.

[89] M. Nagl. Graph-Grammatiken. Wiesbaden, DE: Vieweg+Teubner Verlag, 1979.
378 pp. isbn: 978-3-528-03338-5. doi: 10.1007/978-3-663-01443-0.

[90] M. Navarro, V. Julian and V. Botti. ‘jTRASTO: A Development Toolkit for Real-
Time Multi-Agent Systems’. In: Multi-Agent Systems and Applications V. Interna-
tional Central and Eastern European Conference on Multi-Agent Systems. Ed. by
H.-D. Burkhard et al. Lecture Notes in Computer Science 4696. Berlin, Heidelberg:
Springer, 2007. Chap. 39, pp. 325–327. doi: 10.1007/978-3-540-75254-7_39.

143

https://doi.org/10.1155/2014/684587
https://doi.org/10.1007/3-540-48854-5_13
https://doi.org/10.1287/mnsc.40.9.1093
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1007/BF02241984
https://doi.org/10.1007/978-3-663-01443-0
https://doi.org/10.1007/978-3-540-75254-7_39

Bibliography Bibliography

[91] M. Navarro et al. ‘Towards Real-Time Argumentation’. In: ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal 4.4 (2015), pp. 35–58.
doi: 10.14201/ADCAIJ2015443558.

[92] B. Okreša Ðurić. ‘A Novel Approach to Modelling Distributed Systems: Using
Large-Scale Multi-Agent Systems’. In: Software Project Management for Distrib-
uted Computing. Ed. by Z. Mahmood. 1st ed. Springer International Publishing
AG, 2017. Chap. 10, pp. 229–254. isbn: 978-3-319-54325-3. doi: 10.1007/978-3-
319-54325-3_10.

[93] B. Okreša Ðurić. ‘Organisational Metamodel for Large-Scale Multi-Agent Systems:
First Steps Towards Modelling Organisation Dynamics’. In: ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal 6.3 (2017), p. 17. issn:
2255-2863. doi: 10.14201/ADCAIJ2017631727.

[94] B. Okreša Ðurić. ‘Organizational Metamodel for Large-Scale Multi-Agent Sys-
tems’. In: Trends in Practical Applications of Scalable Multi- Agent Systems, the
PAAMS Collection. Ed. by F. de la Prieta et al. Advances in Intelligent Systems
and Computing 473. Seville, ES: Springer International Publishing, 2016. Chap. 8,
pp. 387–390. isbn: 978-3-319-40158-4. doi: 10.1007/978-3-319-40159-1_36.

[95] B. Okreša Ðurić. ‘Semantic Modeling of Business Rules’. MA thesis. University of
Zagreb, 2013. 73 pp.

[96] B. Okreša Ðurić. ‘Towards Modelling Organisational Dynamics for Large-Scale
Multiagent Systems’. In: Trends in Cyber-Physical Multi-Agent Systems. The PAAMS
Collection - 15th International Conference, PAAMS 2017. Ed. by F. De la Prieta
et al. Advances in Intelligent Systems and Computing 619. Cham: Springer Inter-
national Publishing, 16th July 2017, pp. 245–248. isbn: 978-3-319-61578-3. doi:
10.1007/978-3-319-61578-3_28.

[97] B. Okreša Ðurić and M. Konecki. ‘Modeling MMORPG Players’ Behaviour’. In:
Central European Conference on Information and Intelligent Systems. Ed. by T.
Hunjak, V. Kirinić and M. Konecki. Varaždin, HR: University of Zagreb, Faculty
of Organization and Informatics Varaždin, 2015, pp. 177–184.

[98] B. Okreša Ðurić and M. Konecki. ‘Specific OWL-Based RPG Ontology’. In: Central
European Conference on Information and Intelligent Systems. Ed. by T. Hunjak,
V. Kirinić and M. Konecki. Varaždin, HR: University of Zagreb, Faculty of Organ-
ization and Informatics Varaždin, 2015, pp. 185–190.

[99] B. Okreša Ðurić and M. Maleković. ‘How to Manage Knowledge With Domain
Specific and General Conceptual Modelling Examples’. In: Proceedings of the 19th
European Conference on Knowledge Management. European Conference on Know-
ledge Management. Ed. by E. Bolisani, E. Di Maria and E. Scarso. Vol. 2. Reading,

144

https://doi.org/10.14201/ADCAIJ2015443558
https://doi.org/10.1007/978-3-319-54325-3_10
https://doi.org/10.1007/978-3-319-54325-3_10
https://doi.org/10.14201/ADCAIJ2017631727
https://doi.org/10.1007/978-3-319-40159-1_36
https://doi.org/10.1007/978-3-319-61578-3_28

Bibliography Bibliography

UK: Academic Conferences and Publishing International Limited, 6th Sept. 2018,
pp. 615–622. isbn: 978-1-911218-95-1.

[100] B. Okreša Ðurić and M. Maleković. ‘Knowledge Management and Conceptual Mod-
elling Towards Better Business Results’. In: Proceedings of the ENTRENOVA -
ENTerprise REsearch InNOVAtion Conference. ENTerprise REsearch InNOVA-
tion Conference. Ed. by M. Milković et al. Split, HR: Udruga za promicanje ino-
vacija i istraživanja u ekonomiji "IRINET", Zagreb, Croatia, 2018, pp. 239–245.

[101] B. Okreša Ðurić and M. Schatten. ‘Defining Ontology Combining Concepts of
Massive Multi-Player Online Role Playing Games and Organization of Large-Scale
Multi-Agent Systems’. In: 39th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO). Opatija, HR:
IEEE, 2016, pp. 1330–1335. isbn: 978-953-233-086-1. doi: 10.1109/MIPRO.2016.
7522346.

[102] B. Okreša Ðurić and M. Schatten. ‘Modeling Multiagent Knowledge Systems Based
on Implicit Culture’. In: Central European Conference on Information and Intel-
ligent Systems. Ed. by T. Hunjak, S. Lovreňcić and I. Tomı̌cić. Varaždin, HR:
University of Zagreb, Faculty of Organization and Informatics Varaždin, 2012,
pp. 57–61.

[103] B. Okreša Ðurić, I. Tomičić and M. Schatten. ‘Towards Agent-Based Simulation
of Emerging and Large-Scale Social Networks. Examples of the Migrant Crisis
and MMORPGs’. In: European Quarterly of Political Attitudes and Mentalities
EQPAM 5.4 (2016), pp. 1–19.

[104] B. Okreša urić et al. ‘MAMbO5: A New Ontology Approach for Modelling and
Managing Intelligent Virtual Environments Based on Multi-Agent Systems’. In:
Journal of Ambient Intelligence and Humanized Computing (12th Oct. 2018). issn:
1868-5137, 1868-5145. doi: 10.1007/s12652-018-1089-4.

[105] A. Olivé. Conceptual Modeling of Information Systems. Berlin, Heidelberg: Springer,
2007. 471 pp. isbn: 978-3-540-39389-4. doi: 10.1007/978-3-540-39390-0.

[106] A. Omicini, A. Ricci and M. Viroli. ‘Artifacts in the A&A Meta-Model for Multi-
Agent Systems’. In: Autonomous Agents and Multi-Agent Systems 17.3 (2008),
pp. 432–456. issn: 13872532. doi: 10.1007/s10458-008-9053-x.

[107] M. A. Paredes-Valverde et al. ‘ONLI: An Ontology-Based System for Querying
DBpedia Using Natural Language Paradigm’. In: Expert Systems with Applications
42.12 (July 2015), pp. 5163–5176. issn: 09574174. doi: 10.1016/j.eswa.2015.
02.034.

[108] J. Parkkila et al. The Video Game Ontology. 2014. url: http://vocab.linkeddata.
es/vgo/ (visited on 29/07/2018).

145

https://doi.org/10.1109/MIPRO.2016.7522346
https://doi.org/10.1109/MIPRO.2016.7522346
https://doi.org/10.1007/s12652-018-1089-4
https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1016/j.eswa.2015.02.034
https://doi.org/10.1016/j.eswa.2015.02.034
http://vocab.linkeddata.es/vgo/
http://vocab.linkeddata.es/vgo/

Bibliography Bibliography

[109] E. Posse, J. de Lara and H. Vangheluwe. ‘Processing Causal Block Diagrams with
Graphgrammars in Atom3’. In: European Joint Conference on Theory and Practice
of Software (ETAPS), Workshop on Applied Graph Transformation (AGT). 2002,
pp. 23–34.

[110] S. F. Railsback and V. Grimm. Agent-Based and Invidual-Based Modeling. 2012.
329 pp. isbn: 978-0-691-13674-5.

[111] J. A. Rincon, C. Carrascosa and E. Garcia. ‘Developing Intelligent Virtual En-
vironments Using MAM5 Meta-Model’. In: Advances in Practical Applications of
Heterogeneous Multi-Agent Systems. The PAAMS Collection. Ed. by Y. Demazeau
et al. Lecture Notes in Computer Science 8473. Cham, CH: Springer, 2014, pp. 379–
382. isbn: 9783319075501. doi: 10.1007/978-3-319-07551-8_43.

[112] J. A. Rincon et al. ‘Developing Adaptive Agents Situated in Intelligent Virtual En-
vironments’. In: Hybrid Artificial Intelligence Systems. International Conference on
Hybrid Artificial Intelligent Systems. Vol. 8480 LNAI. Lecture Notes in Computer
Science 8480. Cham, CH: Springer, 2014, pp. 98–109. isbn: 9783319076164. doi:
10.1007/978-3-319-07617-1_9.

[113] S. Rodriguez et al. ‘Holonic Multi-Agent Systems’. In: Self-Organising Software:
From Natural to Artificial Adaptation. Ed. by G. Di Marzo Serugendo, M.-P.
Gleizes and A. Karageorgos. Natural Computing Series. Berlin, Heidelberg: Springer,
2011, pp. 251–279. isbn: 978-3-642-17347-9. doi: 10.1007/978-3-642-17348-
6_11.

[114] M. Roman, I. Sandu and S. C. Buraga. ‘OWL-Based Modeling of RPG Games’.
In: Studia Universitatis Babes-Bolyai 56.3 (2011), pp. 83–90.

[115] G. Rozenberg, ed. Handbook of Graph Grammars and Computing by Graph Trans-
formation. River Edge, NJ, USA: World Scientific Publishing, 1997. 572 pp. isbn:
981-238-472-3.

[116] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Ed. by S.
Russell and P. Norvig. 3rd ed. Prentice Hall Series in Artificial Intelligence. New
Jersey, USA: Prentice Hall, 2010. 1132 pp. isbn: 978-0-13-604259-4.

[117] R. G. Sargent. ‘Research Issues in Metamodeling’. In: Proceedings of the 1991
Winter Simulation Conference. Winter Simulation Conference. Ed. by B. L. Nelson,
W. D. Kelton and G. M. Clark. Phoenix, AR, USA: IEEE Computer Society, 1991,
pp. 888–893. isbn: 0-7803-0181-1.

[118] M. Schatten. ‘Organizational Architectures for Large-Scale Multi-Agent Systems’
Development: An Initial Ontology’. In: Advances in Intelligent Systems and Com-
puting 290 (2014). Ed. by S. Omatu et al., pp. 261–268. doi: 10.1007/978-3-
319-07593-8_31.

146

https://doi.org/10.1007/978-3-319-07551-8_43
https://doi.org/10.1007/978-3-319-07617-1_9
https://doi.org/10.1007/978-3-642-17348-6_11
https://doi.org/10.1007/978-3-642-17348-6_11
https://doi.org/10.1007/978-3-319-07593-8_31
https://doi.org/10.1007/978-3-319-07593-8_31

Bibliography Bibliography

[119] M. Schatten. ‘Reorganization in Multi-Agent Architectures: An Active Graph Gram-
mar Approach’. In: Business Systems Research 4.1 (2013), pp. 14–20. issn: 1847-
9375. doi: 10.2478/bsrj-2013-0002.

[120] M. Schatten and B. Okreša Ðurić. ‘A Social Network Analysis of a Massively
Multi-Player On-Line Role Playing Game’. In: Proceedings of the 4th International
Conference on Modeling and Simulation. Ed. by B. Kang. Jeju Island, Korea: IEEE,
2015, pp. 37–42. isbn: 978-1-4673-9828-2. doi: 10.1109/MAS.2015.19.

[121] M. Schatten and B. Okreša Ðurić. ‘Social Networks in "The Mana World" - an
Analysis of Social Ties in an Open Source MMORPG’. In: International Journal
of Multimedia and Ubiquitous Engineering 11.3 (2016), pp. 257–272. doi: 10 .
14257/ijmue.2016.11.3.25.

[122] M. Schatten, J. Ševa and I. Tomičić. ‘A Roadmap for Scalable Agent Organizations
in the Internet of Everything’. In: Journal of Systems and Software 115 (2016),
pp. 31–41. issn: 01641212. doi: 10.1016/j.jss.2016.01.022.

[123] M. Schatten, I. Tomičić and B. Okreša Ðurić. ‘Multi-Agent Modeling Methods
for Massivley Multi-Player On-Line Role-Playing Games’. In: 38th International
Convention on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO). Ed. by P. Biljanović. Opatija, HR: IEEE, 2015, pp. 1256–
1261. isbn: 978-953-233-082-3. doi: 10.1109/MIPRO.2015.7160468.

[124] M. Schatten et al. ‘Agents as Bots – An Initial Attempt Towards Model-Driven
MMORPG Gameplay’. In: Advances in Practical Applications of Cyber-Physical
Multi-Agent Systems: The PAAMS Collection. Ed. by Y. Demazeau et al. Lecture
Notes in Artificial Intelligence 10349. Cham, Switzerland: Springer International
Publishing, 2017, pp. 246–258. isbn: 978-3-319-59930-4. doi: 10.1007/978-3-
319-59930-4_20.

[125] M. Schatten et al. ‘Automated MMORPG Testing – An Agent-Based Approach’.
In: Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The
PAAMS Collection. Ed. by Y. Demazeau et al. Lecture Notes in Artificial Intelli-
gence 10349. Cham, Switzerland: Springer International Publishing, 2017, pp. 359–
363. isbn: 978-3-319-59930-4. doi: 10.1007/978-3-319-59930-4_38.

[126] M. Schatten et al. ‘Towards a Formal Conceptualization of Organizational Design
Techniques for Large Scale Multi Agent Systems’. In: Procedia Technology 15
(2014), pp. 576–585. issn: 22120173. doi: 10.1016/j.protcy.2014.09.018.

[127] M. Schatten et al. ‘Towards an Agent-Based Automated Testing Environment for
Massively Multi-Player Role Playing Games’. In: MIPRO 2017 40th Jubilee Inter-
national Convention Proceedings (2017), pp. 1361–1366. doi: 10.23919/MIPRO.
2017.7973597.

147

https://doi.org/10.2478/bsrj-2013-0002
https://doi.org/10.1109/MAS.2015.19
https://doi.org/10.14257/ijmue.2016.11.3.25
https://doi.org/10.14257/ijmue.2016.11.3.25
https://doi.org/10.1016/j.jss.2016.01.022
https://doi.org/10.1109/MIPRO.2015.7160468
https://doi.org/10.1007/978-3-319-59930-4_20
https://doi.org/10.1007/978-3-319-59930-4_20
https://doi.org/10.1007/978-3-319-59930-4_38
https://doi.org/10.1016/j.protcy.2014.09.018
https://doi.org/10.23919/MIPRO.2017.7973597
https://doi.org/10.23919/MIPRO.2017.7973597

Bibliography Bibliography

[128] G. Schreiber. ‘Knowledge Engineering’. In: Handbook of Knowledge Representation.
Ed. by F. van Harmelen, V. Lifschitz and B. Porter. Foundations of Artificial
Intelligence 3. Elsevier, 2008. Chap. 25, pp. 929–946. isbn: 978-0-444-52211-5. doi:
10.1016/S1574-6526(07)03025-8.

[129] B. Sharp, A. Atkins and H. Kothari. ‘An Ontology Based Multi-Agent System to
Support HABIO Outsourcing Framework’. In: Expert Systems with Applications
38.6 (June 2011), pp. 6949–6956. issn: 09574174. doi: 10.1016/j.eswa.2010.
12.020.

[130] A. Sharpanskykh. ‘Modeling of Agents in Organizational Context’. In: Multi-Agent
Systems and Applications V. International Central and Eastern European Con-
ference on Multi-Agent Systems. Ed. by H.-D. Burkhard et al. Lecture Notes in
Computer Science 4696. Berlin, Heidelberg: Springer, 2007. Chap. 20, pp. 193–203.
doi: 10.1007/978-3-540-75254-7_20.

[131] B. Smith. Ontology and Information Systems. 2002.

[132] L. S. Sterling and K. Taveter. The Art of Agent-Oriented Modeling. Ed. by R. C.
Arkin. London, UK: The MIT Press, 2009. 367 pp. isbn: 978-0-262-26004-6.

[133] G. Sukthankar and J. A. Rodriguez-Aguilar, eds. Autonomous Agents and Mul-
tiagent Systems. Lecture Notes in Computer Science 10642 10642. Cham, CH:
Springer, 2017. isbn: 978-3-319-71681-7. doi: 10.1007/978-3-319-71682-4.

[134] B. Thalheim. ‘The Theory of Conceptual Models, the Theory of Conceptual Mod-
elling and Foundations of Conceptual Modelling’. In: Handbook of Conceptual Mod-
eling: Theory, Practice, and Research Challenges. Ed. by D. W. Embley and B.
Thalheim. Berlin, Heidelberg: Springer, 2011. Chap. 17, pp. 543–577. doi: 10.
1007/978-3-642-15865-0_17.

[135] I. Tomičić. ‘Agent-Based Framework for Modelling and Simulation of Resource
Management in Smart Self-Sustainable Human Settlements’. Doctoral thesis. Varaždin,
HR: University of Zagreb, 2016. 250 pp.

[136] I. Tomičić, B. Okreša Ðurić and M. Schatten. ‘Modeling Smart Self-Sustainable
Cities as Large-Scale Agent Organizations in the IoT Environment’. In: Smart
Cities: Development and Governance Frameworks. Ed. by Z. Mahmood. Computer
Communications and Networks. Cham, CH: Springer, 2018, pp. 3–23. isbn: 978-
3-319-76668-3. doi: 10.1007/978-3-319-76669-0_1.

[137] I. Tomičić and M. Schatten. ‘Agent-Based Framework for Modeling and Simula-
tion of Resources in Self-Sustainable Human Settlements: A Case Study on Water
Management in an Eco-Village Community in Croatia’. In: International Journal
of Sustainable Development & World Ecology 23.6 (2016), pp. 504–513. issn: 1350-
4509. doi: 10.1080/13504509.2016.1153527.

148

https://doi.org/10.1016/S1574-6526(07)03025-8
https://doi.org/10.1016/j.eswa.2010.12.020
https://doi.org/10.1016/j.eswa.2010.12.020
https://doi.org/10.1007/978-3-540-75254-7_20
https://doi.org/10.1007/978-3-319-71682-4
https://doi.org/10.1007/978-3-642-15865-0_17
https://doi.org/10.1007/978-3-642-15865-0_17
https://doi.org/10.1007/978-3-319-76669-0_1
https://doi.org/10.1080/13504509.2016.1153527

Bibliography Bibliography

[138] I. Tomičić et al. ‘Self-Sustainable Agent Organizations in Massively Multi-Player
On-Line Role-Playing Games – A Conceptual Framework’. In: Central European
Conference on Information and Intelligent Systems. Central European Conference
on Information and Intelligent Systems. Ed. by T. Hunjak, V. Kirinić and M. Ko-
necki. Varaždin, HR: University of Zagreb, Faculty of Organization and Informatics
Varaždin, 2016, pp. 213–217.

[139] A. Tsarev and P. Skobelev. ‘Multi-Agent Supply Scheduling System Prototype for
Energy Production and Distribution’. In: Advances in Practical Applications of
Scalable Multi-Agent Systems. The PAAMS Collection. International Conference
on Practical Applications of Scalable Multi-Agent Systems. Ed. by Y. Demazeau et
al. Lecture Notes in Computer Science 9662. Cham, CH: Springer, 2016, pp. 290–
293. isbn: 978-3-319-39324-7. doi: 10.1007/978-3-319-39324-7_33.

[140] M. Uschold and M. Gruninger. ‘Ontologies: Principles, Methods and Applications’.
In: The Knowledge Engineering Review 11.2 (1996), pp. 93–136. doi: 10.1017/
S0269888900007797.

[141] H. Van Dyke Parunak and J. Odell. ‘Representing Social Structures in UML’. In:
Proceedings of the Fifth International Conference on Autonomous Agents. Inter-
national Conference on Autonomous Agents. New York, NY, USA: ACM Press,
2001, pp. 100–101. isbn: 1-58113-326-X. doi: 10.1145/375735.376008.

[142] O. Vermesan et al. Internet of Things Strategic Research Roadmap. Strategic Re-
search Agenda. European Research Cluster on the Internet of Things, 2009, pp. 9–
52.

[143] D. Villatoro. ‘Self-Organization in Decentralized Agent Societies Through Social
Norms’. In: The 10th International Conference on Autonomous Agents and Mul-
tiagent Systems. International Conference on Autonomous Agents and Multiagent
Systems. Vol. 3. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2011, pp. 1373–1374. isbn: 978-0-9826571-7-1.

[144] P. Vlacheas et al. ‘Enabling Smart Cities through a Cognitive Management Frame-
work for the Internet of Things’. In: IEEE Communications Magazine 51.6 (2013),
pp. 102–111. issn: 0163-6804. doi: 10.1109/MCOM.2013.6525602.

[145] W3C. The Organization Ontology. 16th Jan. 2014. url: https://www.w3.org/
TR/vocab-org/ (visited on 22/02/2016).

[146] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(Second Edition). 11th Dec. 2012. url: http://www.w3.org/TR/owl2-overview/
(visited on 14/05/2015).

149

https://doi.org/10.1007/978-3-319-39324-7_33
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.1017/S0269888900007797
https://doi.org/10.1145/375735.376008
https://doi.org/10.1109/MCOM.2013.6525602
https://www.w3.org/TR/vocab-org/
https://www.w3.org/TR/vocab-org/
http://www.w3.org/TR/owl2-overview/

Bibliography Bibliography

[147] W3C OWL Working Group. OWL 2 Web Ontology Language Primer (Second Edi-
tion). 11th Dec. 2012. url: https://www.w3.org/TR/2012/REC-owl2-primer-
20121211/ (visited on 06/06/2018).

[148] Y. Wand. ‘Ontology as a Foundation for Meta-Modelling and Method Engineering’.
In: Information and Software Technology 38.4 (1996), pp. 281–287. issn: 0950-5849.
doi: 10.1016/0950-5849(95)01052-1.

[149] Y. Wand and C. Woo. ‘Object-Oriented Analysis - Is It Really That Simple?’
In: Proceedings of the 3rd Workshop on Information Technologies and Systems.
Orlando, FL, USA, 1993, pp. 186–195.

[150] W. Wang et al. ‘Knowledge Representation in the Internet of Things: Semantic
Modelling and Its Applications’. In: Automatika 54.4 (2013), pp. 388–400. doi:
10.7305/automatika.54-4.414.

[151] G. Weiss, ed. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. 3rd ed. London, UK: The MIT Press, 2001. isbn: 0-262-23203-0.

[152] E. Welbourne et al. ‘Building the Internet of Things Using RFID’. In: IEEE Inter-
net Computing 13.3 (2009), pp. 48–55. issn: 1089-7801. doi: 10.1109/MIC.2009.
52.

[153] M. P. Wellman. ‘Putting the Agent in Agent-Based Modeling’. In: Autonomous
Agents and Multi-Agent Systems 30.6 (2016), pp. 1175–1189. issn: 1387-2532. doi:
10.1007/s10458-016-9336-6.

[154] D. Weyns, R. Haesevoets and A. Helleboogh. ‘The MACODO Organization Model
for Context-Driven Dynamic Agent Organizations’. In: ACM Transactions on Autonom-
ous and Adaptive Systems 5.4 (2010), 16:1–16:29. issn: 15564665. doi: 10.1145/
1867713.1867717.

[155] D. Weyns et al. ‘The MACODO Middleware for Context-Driven Dynamic Agent
Organizations’. In: ACM Transactions on Autonomous and Adaptive Systems 5.1
(2010), 3:1–3:28. issn: 1556-4665. doi: 10.1145/1671948.1671951.

[156] R. J. Wilson. Introduction to Graph Theory. 4th ed. Essex, UK: Addison Wesley
Longman Limited, 1996. isbn: 0-582-24993-7.

[157] M. Žugaj. Znanstvena istraživanja u društvenim znanostima i nastanak znan-
stvenog djela. Varaždinske Toplice, HR: Tonimir, 2007. 215 pp.

150

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://doi.org/10.1016/0950-5849(95)01052-1
https://doi.org/10.7305/automatika.54-4.414
https://doi.org/10.1109/MIC.2009.52
https://doi.org/10.1109/MIC.2009.52
https://doi.org/10.1007/s10458-016-9336-6
https://doi.org/10.1145/1867713.1867717
https://doi.org/10.1145/1867713.1867717
https://doi.org/10.1145/1671948.1671951

Appendices

151

Appendix A

METHONTOLOGY

A.1 Data Dictionary

Table A.1: Acquisition data dictionary entry

Concept name Acquisition
Definition An acquisition is the purchase of all or a portion of a corporate asset

or target company1.
Description An acquisition is, in economical terms, described as, in layman’s

terms, one company buying another. This is usually done using
stocks - the buyer buys most of the target company’s ownership
stakes to assume control of it2. Reasons for performing acquisitions
are numerous, including to achieve economies of scale, greater mar-
ket share, increased synergy, cost reductions, or new niche offerings.

Table A.2: Action data dictionary entry

Concept name Action (C)
Synonyms Activity, Behaviour, Agent Action
Definition An action is the building block of agents’ activities.
Description An action is esentially an agent’s response to tasks. Whereby tasks

are created to be met or reached, an action is the atomic concept
for achieving tasks. In the context of this document, an action is
the building block of a process, and agents’ ability to act towards its
environment in general. Every action can be used to fulfill at least
one task.

Instance/s Attack, PickItem, GoToLocation, BrewPotion, MakeItem

152

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.3: Agent data dictionary entry

Concept name Agent (A)
Synonyms Organisational Individual
Definition A piece of software that can act upon its environment and perceive

it.
Description An agent in the context of this document is a piece of software that

can interact with its environment, act upon it, and, in case of an
intelligent agent, reason upon their accessible knowledge. Indeed, an
agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators.
[116] In the organisational context of this document, a software agent
is essentially a model of a real-life person.

Table A.4: Artefact data dictionary entry

Concept name Artefact
Definition An artefact is an otherwise unclassified element of an organisation

system.
Description An artefact is, as of yet, a somewhat undefined concept, in the con-

text of specifying its domain. Essentially, an artefact can be any-
thing that is not classified using the other classes of this ontology.
Furthermore, an artefact can be phisically representative (e.g. a
chair), or an unphisical concept (e.g. knowledge). Artefacts there-
fore represent various concepts that the agents can interact with, or
that affect the given environment or the given system, i.e. objects
forming the environment.

Table A.5: Criteria of Organising data dictionary entry

Concept name Criteria of Organising
Definition
Description This concept comes from the OOVASIS ontology [118, 126] where

it represents varius criteria of organising agents within an organisa-
tion. One of the criteria is ..., another Therefore, this concept
determines what are the grounds for creating the given organisation
in the first place, and governs the decision flow in the context of
deciding which organisational features (starting from architecture)
are most suitable for the given criteria of organising.

153

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.6: Design Factor data dictionary entry

Concept name Design Factor
Definition A design factor is an internal or an external factor with significant

influence on the design of an organisation.
Description Everything that influences the design of an organisation on a non-

neglectable level is considered a design factor. Design factors can be
internal and external, relative to the given organisation. [126].

Instance/s development of science and technology, human resources, market,
size of organisation, strategy, etc.

Table A.7: Design Method data dictionary entry

Concept name Design Method
Synonyms Organisational Design Method
Definition A design method is a common organisational design practice dealing

with various aspects of organisational architecture.
Description Every design method addresses a number of aspects of organisational

architecture. A design method is esentially a common organisational
design practice. [126]

Instance/s business process reingeneering, kaizen, six sigma, lean management,
knowledge management, etc.

Table A.8: Goal data dictionary entry

Concept name Goal (G)
Definition A goal is a result towards which effort is directed - an end to be met.
Description A goal is broadly defined as a result or achievement towards which

effort is directed3. In the context of this document, a goal is a form
of an objective. A goal is an end to be met or reached, and can
consist of several sub-goals.

154

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.9: Heterarchical Organisational Structure data
dictionary entry

Concept name Heterarchical Organisational Structure
Definition Heterarchical organisational structure is an organisational structude

without a single clearly defined pyramid-like structure.
Description When there is no single clear pyramid-like line of control in an or-

ganisation, the given organisation can be described as having a het-
erarchical organisational structure. As opposed to hierarchical or-
ganisational structure, heterarchical organisational structure can be
visualised as an oriented forest [4], or essentially using a network-
based visualisation [126].

Instance/s fishnet structure, Hollywood structure, spaghetti structure, etc.

Table A.10: Hierarchical Organisational Structure data
dictionary entry

Concept name Hierarchical Organisational Structure
Definition Hierarchical organisational structure is an organisational structude

with a single clearly defined pyramid-like structure.
Description In contrast to the heterarchical organisational structure, hierarch-

ical organisational structure can be identified by its basic pyramid-
like form fostering hierarchical relations between organisation units.
Such an organisational structure can be visualised using an oriented
tree [4].

Instance/s functional structure, project-oriented structure, matrix, etc.

Table A.11: Human Immersed Agent data dictionary
entry

Concept name Human Immersed Agent
Definition Real-world agents that are represented in a IVE using their wearable

tecchnology gadgets.
Description Humans can be represented within a IVE and be available for in-

teraction with the digital agents within the environment using di-
gital aids, most prominently featured as wearable technology items,
such as smartwatches and similar. Such agents are dubbed human
immersed agents, since they are real-life people represented in the
digital world using their attached piece of wearable discreet equip-
ment.

155

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.12: Hybrid Organisational Structure data dic-
tionary entry

Concept name Hybrid Organisational Structure
Definition Having mixed aspects of both heterarchical and hierarchical organ-

isational structures, a hybrid organisational structure is a blend of
the two.

Description Having mixed aspects of both heterarchical and hierarchical organ-
isational structures, a hybrid organisational structure is a blend of
the two.

Instance/s academic structure, front-back structure, inverted structure, etc.

Table A.13: Inhabitant Agent data dictionary entry

Concept name Inhabitant Agent
Definition Every agent that is can be represented as phisically present in an

IVE is considered an inhabitant agent.
Description Agents that can be phisically represented within a IVE are called

inhabitant agents. These agents can be of artificial or real-world
nature. Usually various IVE artefacts exist within the IVE that
represent various inhabitant agents [112]. It could be said that these
agents have their habitats within their respective IVEs.

Instance/s Archmage, Hermit, Sorfina, mali_agent13

Table A.14: Intelligent Virtual Environment data dic-
tionary entry

Concept name Intelligent Virtual Environment (IVE)
Definition An intelligent virtual environment is a virtual environment that sim-

ulates the real world, and is populated by autonomous intelligent
entities. [111]

Description Intelligent virtual environments are researched as an area on the
intersection of two aspects pertaining to the concept of artificial in-
telligence, if only but marginally: intelligent tools and techniques
that are embodied in autonomous agents (real-life and digital alike),
and effective ways of representing them, along with various means
of achieving different kinds of interaction amongst them [111, 76].
In other words, a IVE is a concepte that represents a virtual envir-
onment whose main goal is simulating a segment of the real world,
populated by artificial autonomous entities (agents). [111]

Instance/s modified version of The Mana World

156

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.15: IVE Law data dictionary entry

Concept name IVE Law
Definition A IVE law is a norm that is valid only within a specified physical

space (a IVE workspace).
Description A special kind of a norm, an IVE law is a norm that is constrained

by its applicability to a specific physical space, i.e. a specific IVE
workspace. Being applicable to only a restricted area means that
every IVE law is valid only within the bounds of the given area (a
IVE workspace), and never outside of that specified space. This
kind of a norm is the key constraint of the concept of a situated
organisational unit.

Instance/s When a character is located on a map with at least 75% of tiles of
type Frozen, they are more suspectible to Damage of type Ice.

Table A.16: IVE Workspace data dictionary entry

Concept name IVE Workspace
Definition
Description Complimentary to the concept of a workspace, a IVE workspace

represents a physical location, or a physically describable location.

Table A.17: Knowledge Artefact data dictionary entry

Concept name Knowledge Artefact (KnArt)
Definition Knowledge artefact is a piece of knowledge of an agent or an organ-

isation.
Description A knowledge artefact is a piece of knowledge, or a set of knowledge

terms available to agents within the system or within the IVE. De-
pending on the wanted level of abstraction, a knowledge artefact
may represent a database containing various pieces of knowledge ac-
cessible by sets of agents, or individual pieces of knowledge. In the
terms of rather undefined artefact class, knowledge artefacts are yet
to be perfected in the context of knowledge representation and their
suitability for representing knowledge of a IVE or a MAS.

Instance/s organisational culture rulebook
Attributes isAccessibleTo

157

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.18: Manual data dictionary entry

Concept name Manual
Definition
Description A manual defines the interface between individual agents and arte-

facts of a IVE. Including such a concept in the description of a IVE
domain helps reduce unnecessary clutter in the context of setting
ground-rules of how to use an artefact up front. The agents there-
fore immediately learn of the possibilities and applications of a given
artefact without the need for exploring its possible uses.

Table A.19: Merger data dictionary entry

Concept name Merger
Definition A merger is the process of organisational integration.
Description In standard economical terms, a merger is a combination of more

than one company by the transfer of the properties to one surviving
company4. In the context of this document, merger can simply be
regarded as an organisational integration.

Table A.20: Norm data dictionary entry

Concept name Norm
Definition Norms are informal rules that are socially enforced. [78]
Description Norms in general are not very different from the definition of a rule,

their more generic counterpart. Used in a context of a population of
a community, be it a natural or an artificial one, norms are expres-
sions of desirable behaviour generally understood as rules indicating
actions that are expected to be pursued. Norms are basically di-
vided in three types: obligatory, prohibitive, and permissive. In the
context of normative MASs though, there are three different terms
associated with norms: conventions, social norms, and social laws
[78, 143], and two categories [26]: conventions and essential norms.

Instance/s Formal Dress Code, The Dragon Egg item is usable for at most 23
hours after being laid.

158

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.21: Normative System data dictionary entry

Concept name Normative System
Definition Systems in the behaviour of which norms play a role and which need

normative concepts in order to be described or specified [. . .] [14,
81]

Description A normative system is a system built on norms and their enfonrce-
ment upon the system, or system’s definition of architecture based
on the said norms. In the context of computer science, a normat-
ive system is described as a system whose behaviour is influenced
by norms, and whose description or specification depencds on using
normative concepts [14, 81].

Table A.22: Objective data dictionary entry

Concept name Objective (O)
Definition An objective is a high-level goal the be met, suitable for the context

of strategic planning.
Description An objective is more general than a goal, although their definitions

are rather similar. Fulfilling several goals can lead an organisational
unit towards fulfilling a set objective. Thus, an objective is more
suitable in the context of strategic planning, while a goal is more
suitably used in the context of short-term planning.

Instance/s LearnSpell, FindDragonEgg, Brew Hatching Potion
Attributes triggers, hasCriteriaOfOrganizing, isAchievedBy

Table A.23: Observable Property data dictionary entry

Concept name Observable Property
Definition An observable property is a peroperty of an artefact that can be

observed by agents in the same IVE.
Description This is a property of an artefact located in a IVE that is observable

by other agents located within the same IVE. These are tighly
connected to the concept of observable events, and can be influenced
upon by an operation.

159

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.24: Organisation data dictionary entry

Concept name Organisation
Definition An organisation is generally a group of agents structured according

to a set criteria, with the basic goal of overcoming limitations of
individual agency and achieving an organisation goal.

Description An apt definition is given in [22] where an organisation is defined
using several characteristics, including large-scale problem solving
technology, composition of multiple agents, systems of goal-directed
activities, etc. Furthermore, an essential benefit of organisations is
identified in overcoming limitations of individual agency, especially
cognitive, physical, temporal, and institutional.

Table A.25: Organisational Architecture data dictionary
entry

Concept name Organisational Architecture
Definition In the context of this document, organisational architecture is the

superclass for all the organisation-related concepts that deal with
more than one aspect of organisational architecture.

Description All those concepts that deal with more than one aspect of organ-
isational architecture, i.e. are not specialised as for example con-
cepts that describe organisational structure only, are classified as
belonging to the organisational architecture concept. [126] therefore
identifies 15 such concepts.

Instance/s Shamrock organisation, strategic organisation, information-based
organisation, learning organisation, open organisation, etc.

Table A.26: Organisational Change data dictionary
entry

Concept name Organisational Change
Synonyms Organisational Dynamics
Definition
Description The concept of organisational change is closely tied to the intension

of the concept of orgnaisational dynamics, since both concepts de-
scribe change to the established agent organisations. A change in
the context of organisational change definition can be influenced by
an organisational design method, yet unmistakingly it affects the
organisational architecture of the given organisation. A change as
defined here can adhere to one of the identified types of change (e.g.
structural, cultural, strategic, etc.), can be attributed an impact of
change, reason why the change started, and a key influence area (e.g.
organisational memory) [126].

160

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.27: Organisational Culture data dictionary
entry

Concept name Organisational Culture
Definition Organizational culture defines important intangible aspects of an or-

ganization including knowledge, social norms, reward systems, lan-
guage and similar. [122, 118]

Description The concept of organisational culture encompasses all the intan-
gible aspects of an organisation, such as knowledge, various types of
norms, a system of rewards, languages used in the organisation, etc.
Organisational culture is therefore a concept that is mostly based in
the organisational units, i.e. in the individual agents forming the or-
ganisation, and is thus the most fuzzy concept of all the perspectives
of an organisation. [122, 126] provide a quick overview of various
conceptualisations of organisational architecture, where it is visible
that organisational culture is an important part of an organisation.

Table A.28: Organisational Environment data diction-
ary entry

Concept name Organisational Environment
Definition Organisational environment are all the external factors that have

the capacity to influence an organisation.
Description The concept of organisational environment encompasses all the con-

cepts that represent factors external to an organisation that have
a potential to influence the given organisation, such as external or-
ganisations or individuals, or external events. Main concerns when
organisational environment is considered are directed towards identi-
fying constraints imposed on the given organisation by the environ-
ment, and demands of the environment towards the given organisa-
tion. [122]

Table A.29: Organisational Knowledge Network data
dictionary entry

Concept name Organisational Knowledge Network
Definition Organisational knowledge network is a network created by intercon-

nected pieces of organisational knowledge.
Description A network connecting all the pieces of organisational knowledge is

considered to build an organisational knowledge network that ef-
fectively collects and intertwines all the knowledge of an organisa-
tion, thus fostering knowledge sharing and reuse amongst the organ-
isational units of the given organisation, i.e. ultimately individual
agents.

161

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.30: Organisational Structure data dictionary
entry

Concept name Organisational Structure
Definition Organisational structure is a concept comprising various aspects and

forms f structuring organisational units.
Description Concepts used for describing various aspects and forms of structur-

ing organisational units are categorised as belonging to the concept
of organisational structure. Based on two different approaches,
two criteria for classifying concepts of organisational structuring are
used. The first depends on whether the given structure is the main
structure or is it laid over the organisation, as a form of a super-
structure. The second is based on the form of the structure, i.e. is
it a hierarchical or heterarchical, or a mix of both.

Instance/s Hierarchical, heterarchical

Table A.31: Organisational Unit data dictionary entry

Concept name Organisational Unit (OU)
Definition An organisational unit is the key elementary unit in the context of

forming an organisation.
Description An organisational unit is the elementary unit of an organisation

that, under the influence of the other organisational concepts, forms
an organisation. In the context of this document, and the area of
LSMASs, an organisational unit is usually considered to represent
an individual agent. Using the recursive definition though, an or-
ganisational unit that comprises multiple organisational units can
be, under circumstances specified in [118], considered as an organ-
isational unit. Using a more graphic explanation, a department or-
ganisational unit that comprises individual agents can be considered
as individual organisational unit on a higher level of organisational
hierarchy, where department organisational units form a higher-level
organisational unit of a faculty.

Instance/s maliAgent13
Attributes definesRoles, hasRelation, hasRole, hasRelationship, definesRoles,

hasCriteriaOfOrganizing, consistsOf, isPartOf

162

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.32: Physical Artefact data dictionary entry

Concept name Physical Artefact
Synonyms IVE Artefact
Definition Physical artefacts are all the concepts that can be physically repres-

ented and included in a IVE.
Description Every concept that describes objects that can be physically repres-

ented (e.g. a top hat), i.e. embodied and positioned on a topological
map, and as such included in a IVE are classified as physical arte-
facts. Such elements have their role to play in the given IVE and
usually contain a defined interface that governs the process of inter-
action of an agent with the given physical artefact.

Table A.33: Physical Property data dictionary entry

Concept name Physical Property
Definition
Description Physical properties are key elements of physical artefacts, i.e. arte-

facts that can be visualised in a physical space. Usually when an
artefact is used, a physical event is generated, and a physical prop-
erty is modified.

Table A.34: Plan data dictionary entry

Concept name Plan
Definition A plan is a finite set of actions that leads to a specified goal.
Description A plan is a finite set of actions that leads to a specified goal. An

optimal plan cannot be made shorter if the same goal is retained in
the process. The plan concept is especially useful when observing
belief-desire-intention (BDI) agents, since it is driven by agents’ de-
sires and intentions.

Instance/s How to solve the Quest for the DragonEgg

Table A.35: Process data dictionary entry

Concept name Process (P)
Synonyms Organisational Processes
Definition A set of connected atomic actions.
Description A process is in the context of this document defined as a set of atomic

actions. Every process itself can be a part of another process, thus
creating the recursive relation. A process can be performed in order
for a goal to be met. It represents an activity or a procedure of an
organisation [122].

Instance/s RandomWalk

163

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.36: Quest data dictionary entry

Concept name Quest (Q)
Definition A quest is similar to a goal, but has a defined starting and ending

situations.
Description A quest is a similar to a goal, but it has a defined beginning and a

defined end, i.e. a starting situation, and an ending situation5. In
the context of MMORPGs, a quest is what drives a story, and, in
principle, motivates the player to continue playing the game. Fur-
thermore, a quest is often given to the player by an in-game charac-
ter. A quest usually has various stages, and represents a challenge
for the given player, thus embarking them on an adventure.

Instance/s The Quest for the Dragon Egg

Table A.37: Role data dictionary entry

Concept name Role (R)
Definition A role is a set of norms with a common denominator.
Description In the context of this document, a role is defined as a set of normative

rules that are applicable to a particular part of the given organisa-
tion. Such normative rules are parts of the organisation’s normative
system, and can be grouped by specific criteria, thus forming roles.
Roles are played by agents. When an agent plays a role, the role’s
constraints are applied to them, therefore constraining their possible
actions, their perceivable goals, and their possibilities in general.

Instance/s Wizard, Warrior, Ranged, Rogue
Attributes isRoleIn, isRoleOf

Table A.38: Rule data dictionary entry

Concept name Rule
Definition Rules are elementary forms of constraints in normative systems, as

they pose a basic aspect of defining standards.
Description A rule is an atomic building block of a normative system. Rules are

usually built in a general if-then form, meaning that two statements
are connected with a causal link, thus regulating what happens (then
part: consequent) if something else happens beforehand (if part:
antecedent). Other forms of rules are possible as well, but are not
used as often. For the most part, rules pose constraints on the given
subject. Rules are commonly used for devising appropriate logical
conditions for introducing modalities. [78]

164

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.39: Situated Organisational Unit data diction-
ary entry

Concept name Situated Organisational Unit
Definition Every organisational unit that is tied to a location through a situated

norm is considered a situated organisational unit.
Description An organisational unit that is tied to a specific IVE, or a specific

geographic or otherwise place, is a situated organisational unit. Fur-
thermore, such an organisational unit has some situated norms that
refer to it. The place that is essential to the situated relation of
a situated organisational unit can be physical or digital, but can
usually be represented visually, following the description of an in-
habitant agent.

Table A.40: Strategic Alliance data dictionary entry

Concept name Strategic Alliance
Definition Strategic alliance is a form of a long-lasting partnership of organ-

isations of various forms, formed around a shared strategy, or a
strategic goal.

Description An alliance that is aimed at forming long-lasting partnerships con-
sisting of organisations of various forms is dubbed a strategic alli-
ance. A strategic alliance is formed around a strategy as a long-term
objective that is shared amongst the strategic alliance members.
Norms and regulations governing the expected behaviour within the
strategic alliance are expected to be accepted by all the members,
old and new alike.

Table A.41: Strategy data dictionary entry

Concept name Strategy
Synonyms Organisational Strategy
Definition Strategy defines the long term objectives of an organization, action

plans for their realization as well as tools on how to measure success.
[122, 126]

Description A strategy is, in the context of planning and shared organisational
values, a long-term objective that is specified mosotly as a vision. It
may consist of a number of objectives, quests, and similar. Strategy
is therefore tentative in the context of plans of achieving it, but is
versatile in terms of temporal likeness to change. Since it represents
a long-term planning concept, a strategy is the main driving force
of strategic alliances as agent coalitions meant to provide long-term
suport to its members.

165

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.42: Super Structure data dictionary entry

Concept name Super Structure
Definition An inter-organisational structure formed above the conventional or-

ganisational structure.
Description When organisations form structures comprising other organisations,

a super-structure is formed. In the context of this document, a
super-structure is thus described as an organisation of organisations,
esentially spanning further than the usual reaches of a given average
organisation. Such an inter-organisational structure is formed above
the conventional organisational structure.

Table A.43: Task data dictionary entry

Concept name Task
Definition A task is the building block of a quest.
Description A task is the building block of a quest, i.e. its elementary part. A

quest is built of atomic tasks that are easier to follow in execution
phase, rather than the overview provided by the main definition of a
quest. In MMORPGs a quest could demand an item to be retrieved,
yet such a simple-sounding quest could consist of various tasks that
have to be fulfilled in order for the main quest to be finished. The
relation of quest and task concepts can be recursive6.

Table A.44: Time Dependent Norm data dictionary
entry

Concept name Time Dependent Norm
Definition A norm that is dependent on the temporal aspect of the world is a

time dependent norm.
Description A time dependent norm is essentially a norm, but with an added

temporal constraint. Particularly, a time dependent norm is con-
strained to a specific period in time, be it for its designated activity
period, period during which the given norm is applicable, or simply
the timeframe or a deadline when a change of the norm, or caused
by the norm, is to be expected.

Instance/s Every 24 hours the Dragon Egg item is created again, rendering the
old one useless.

166

Appendix A. METHONTOLOGY A.1. Data Dictionary

Table A.45: Workspace data dictionary entry

Concept name Workspace (W)
Definition A workspace is the union of all the elements of a system, including

agents, artefacts, etc.
Description A workspace is the complete environment of a given system, in-

cluding all the agents, artefacts, etc. What sets the concept of a
workspace apart from the concept of an environment is the extent
of the involved concepts, i.e. a workspace contains all the elements
of an organisation and the whole system, while environment com-
prises only the elements that are external to the given organisation.
It is worth noting that elements of the environment are an integral
part of the whole system, since the life and activities of the given
organisation are influenced by them.

167

Appendix A. METHONTOLOGY A.2. Instance Properties

A.2 Instance Properties

Table A.46: isAchievedBy instance property table

Property name isAchievedBy
Description What is the activity that can be used to achieve this particular

goal is governed by this property. It further allows for inference
on the topic of actions useful towards achieving a specific goal
when an organisational unit is faced with achieving the given goal.
Furthermore, knowing which action is to be undertaken in order
to achieve the given goal, an organisational unit can reason and
deduce the role it has to play, for it to have the particular action
on its disposal.

Value Type Domain Range Cardinality
object Objective Behaviour, Agent ac-

tion, Activity
1..1

Table A.47: triggers instance property table

Property name triggers
Description Any goal can be a part of a greater chain of goals that are grouped

into a quest, or an objective. Therefore this property can be
used to determine that a goal triggers another goal that has to
be achieved.

Value Type Domain Range Cardinality
object Objective Process 0..*

168

Appendix A. METHONTOLOGY A.2. Instance Properties

Table A.48: isAccessibleTo instance property table

Property name isAccessibleTo
Description A knowledge artefact can be defined to be accessible to certain

other concepts of a system, most notably any organisational unit
or a role. Further in the metamodel the distinction between an in-
dividual knowledge artefact and an organisational knowledge arte-
fact is introduced, along with its constraints. Since not all know-
ledge is available to and accessible by all the entities of a system,
this property introduces further constraints on the mentioned.

Value Type Domain Range Cardinality
object Knowledge artefact Organisational unit,

Role
0..*

Table A.49: definesRoles instance property table

Property name definesRoles
Description Organisation is by definition a set of organisational units that can

be described using various organisational features, but one of the
distinctive featues is that an organisation can define various roles.
These roles are to be played by organisational units of the given
organisation, in order to achieve shared organisational goals.

Value Type Domain Range Cardinality
object Organisation Role 1..*

Table A.50: hasCriteriaOfOrganizing instance property
table

Property name hasCriteriaOfOrganizing
Description An organisation has to be motivated into existance using a criteria

of organising. Such a criteria is what drived the included organ-
isational units towards forming an organisation. In MMORPG
domain, the most commmon criteria are quests, yet excellence can
have a great effect on the process of organising and the structure
of an organisation and its organisational units.

Value Type Domain Range Cardinality
object Organisational unit,

Process, Strategy
Criteria of organising 1..1

169

Appendix A. METHONTOLOGY A.2. Instance Properties

Table A.51: isPartOf instance property table

Property name isPartOf
Description As per the definition of an organisatioanl unit laid out in [118], an

organisational unit can represent either an individual agent, or a
group of organisational units. Ultimately, since an organisational
unit can comprise several organisational units, it may be a group of
groups of agents. Therefore, this property is important in under-
standing the nature of a given organisational unit. Furthermore,
various organisational features are applicable to the members of
the given organisation, thus it is valuable to know explicity what
are the organisational units included in a given organisation. Ob-
viously, an organisational unit, i.e. an individual agent, can be
isolated and work alone, not being a party of an organisatioanl
unit of a higher level.

Value Type Domain Range Cardinality
object Organisational unit Organisational unit 0..*

Table A.52: hasRole instance property table

Property name hasRole
Description Every organisational unit can play a number of roles at any given

point in time. This property designates roles that are defined
within an organisational unit, that are playable by its organisa-
tional units.

Value Type Domain Range Cardinality
object Organisational unit Role 0..*

Table A.53: playsRole instance property table

Property name playsRole
Description Based on the norms of the given organisation, an organisational

unit can play one or more roles simultaneously. This property
describes which roles are played by an organisational unit at the
given moment.

Value Type Domain Range Cardinality
object Organisational unit Role 0..*

170

Appendix B

Theoretical Background

B.1 Graphs

In general context of mathematics, a graph is a mathematical construct comprising a set
of nodes and a set of edges between the nodes.

Formally [156], a graph G is defined by a finite set V (G) : V (G) 6= ∅, called vertices,
and a finite set E(G) that includes unordered pairs of distinct elements of V (G) called
edges. V (G) is therefore called the vertex set, and E(G) is called the edge set of G. Two
vertices v, w are joined by an edge {v, w}.

Two graphs G1 and G2 are said to be isomorphic, G1 ∼= G2 if their respective vertex
sets and edges sets are corresponding, insomuch that the number of edges joining any two
vertices of G1 is equal to the number of edges joining the corresponding vertices of G2.
[156]

Should those edges have a direction, i.e. have designated source and target nodes, the
given graph is a directed graph. A directed graph is thus defined analogously to a graph,
with the key difference being the ordered pairs of distinct edges:

“A directed graph or digraph D consists of a finite nonempty set V of points together
with a prescribed collection X of ordered pairs of distinct points. The elements of
X are directed lines or arcs.” — Harary [58]

When labels are added to edges, thus rendering edges uniquely identifiable by four
characteristics (source, target, label, index), the graph is a labeled graph.

“A graph G is labeled when the p points are distinguished from one another by
names such as v1, v2, . . . , vp.” — Harary [58]

A graph that is a directed graph and all its nodes represent types, and all edges
represent relationship types, is a typed graph.

“A type graph is a combination of

171

Appendix B. Theoretical Background B.2. Graph Grammars

• A set of nodes which may include data types

• A set of edges

• A source function from edges to nodes, which gives the source node of an edge

• A target function from edges to nodes, which gives the target node of an edge

• An inheritance relationship between nodes (a reflexive partial ordering)

” — Kleppe [69]

Using graph theory, a model can be defined as a number of constraints applied to a
type graph.

“A model is a combination of a type graph and a set of constraints of various types.”
— Kleppe [69]

Continuing with graph theory, an instance of a model is a labeled graph the type of
whose every node is a node in the model, and every edge’s source and target are typed
over the source and target of the edge’s type in the type graph [69].

“An instance of a model M is a labeled graph that can be typed over the type graph
of M and satisfies all the constraints in M’s constraint set.” — Kleppe [69]

The following is the mentioned set of constraint types (further described in [69]):
multiplicities, bidirectinality, ordering, uniqueness, acyclic, unshared, redefinition, subset,
union.

B.2 Graph Grammars

This Appendix contains theoretical background necessary for clear understanding of the
description of organisational dynamics in Section 2.2.2. The following overview of graph
grammars mostly follows the account on graph grammars by Engelfriet and Rozenberg
[39] and Corradini et al. [28].

Graph grammars are mechanisms that allow for mathematical modelling of graph
transformations, with the main component being a finite set of productions. A production
is defined as a triple (M,D,E), where M and D are graphs, and E is an embedding
mechanism. A production is applied to graph H called a host if graph M occurs in H.
A production is applied by (1) removing the occurence of M from H, (2) replacing it by
D (or its isomorphic copy), and (3) attaching D to the remainder of H (denoted as H−)
using the defined embedding mechanism E. [39]

Two distinguishable types of embedding are gluing and connecting. As the name
suggests, gluing requires that some parts of D, i.e. nodes or edges, are found in H−,

172

Appendix B. Theoretical Background B.2. Graph Grammars

i.e. they are identified with some parts of M . Naturally, the identified parts have to be
isomorphic. On the other hand, connecting creates new edges that are used for connecting
D toH− – such edges make the nodes fromD andH− neighbouring nodes. Edges between
nodes in M and H are therefore removed when M is removed.

Two approaches stem from these two types of embedding: the gluing approach and
the connecting approach. Based on the mathematical techniques used by a particular
approach, they are known as the algebraic approach and the algorithmic approach, re-
spectively. The approach used in this thesis, for the purposes of modelling organisational
dynamics (Section 2.2.2), is algebraic approach, which is further detailed below. More
specifically, the used graph grammars are of the node replacement type.

Node replacement graph grammars are described as a specific case of graph grammars
where the mother graph M is a single node of the host graph H, although the daoughter
graph D is still a graph. In other words, one is talking about local transformations,
althogh iteration of the process leads to global transformation of the graph [39].

“A typical, very simple, example of a node-replacement mechanism is the Node
Label Controlled mechanism, or NLC mechanism. In the NLC framework one re-
writes undirected node-labeled graphs. The productions are node-replacing produc-
tions and the embedding connection instructions connect the daughter graph to the
neighbourhood of the mother node – hence the rewriting process is completely local.
In the NLC approach “everything” is based on node labels.”

— Engelfriet and Rozenberg [39]

“An NLC graph grammar is a system G = (σ,∆, P, C, S) where Σ−∆ and ∆ (with
∆ ⊆ Σ) are the alphabets of nonterminal and terminal node labels, respectively, P
is a finite set of NLC productions, C is a connection relation, i.e., a binary relation
over Σ, and S is the initial graph (usually with a single node).”

— Engelfriet and Rozenberg [39]

The above excerpts from [39] state that NLC mechanism and NLC productions are
to be used with undirected graphs. Graphs that are produced using the Lamrast−+
metamodel are directed. Therefore, an upgraded mechanism is needed, where direction
of considered edges can be taken into account and expressed accordingly. Furthermore,
NLC distinguishes types of nodes, based on their labels only. An upgrade is useful, where
individual nodes can be distinguished – graph grammars with neighbourhood controlled
embedding (NCE) [39].

The extension of NLC to directed graphs with labelled nodes is introduced simply by
extending the NLC connection relation with edge direction.

“The connection relation C now consists of triples (µ, δ, d) , where d ∈ in, out, to deal
with the incoming edges and the outgoing edges of the mother node, respectively.

173

Appendix B. Theoretical Background B.2. Graph Grammars

These connection instructions are used in an obvious way. Thus, a connection
instruction (µ, δ, in) means that the embedding process should establish an edge to
each node labeled δ in the daughter graph D from each node labeled µ that is an
“in-neighbour” of the mother node m (where the in-neighbours of m are all nodes
n for which there is an edge from n to m in the host graph).”

— Engelfriet and Rozenberg [39]

Further extension of the NLC mechanism is given as a dynamic edge relabeling.

“This leads to connection instructions of the form (µ, p/q, δ) , where p and q are
edge labels, and µ and δ are node labels as before. The meaning of this connection
instruction is that the embedding process should establish an edge with label q
between each µ-labeled p-neighbour of the mother node and each δ-labeled node in
the daughter graph. Thus, edge label p is changed into edge label q.”

— Engelfriet and Rozenberg [39]

Finally, the extension that can work with both labelled edges (e) and a directed graph
(d) in the context of neighbourhood controlled embedding, i.e. edNCE grammar [89,
88] referenced in [39], is defined in terms of productions and connection instructions as
follows.

“Each production of an edNCE grammar is of the form X → (D,C), and each
connection instruction in C is of the form (µ, p/q, x, d), where µ is a node label, p
and q are edge labels, x is a node of D, and d ∈ {in, out}. If, say, d = in, then
this instruction is interpreted as follows: the embedding process should establish an
edge with label q to node x of D from each µ-labeled p-neighbour of m that is an
in-neighbour of m.” — Engelfriet and Rozenberg [39]

Node replacement graph grammar type can be discussed in terms of its counterpart
in the graph-replacement domain. Such a graph grammar, using the connecting approach
(as opposed to gluing), if also discussed in [39]:

“For an arbitrary graph grammar that uses the connecting approach to embedding,
the productions of the grammar are of the form (M,D,C) where M and D are
graphs (the mother and the daughter graph, respectively) and C is a set of connec-
tion instructions. Such an instruction is applied to a graph H by removing from H

an induced subgraph (isomorphic to) M , replacing it by (a copy of) D, and embed-
ding D in the remainder H− of H by the connection instructions from C.”

— Engelfriet and Rozenberg [39]

This is further propagated to connection instructions for edNCE grammars, in the
domain of graph-replacement graph grammars:

174

Appendix B. Theoretical Background B.2. Graph Grammars

“[...] for edNCE grammars a connection instruction is of the form (m,µ, p/q, x, d)
with obvious meaning: a q-labeled edge should be established between x and every
µ-labeled node of H− that is a p-neighbour of m (preserving direction d).”

— Engelfriet and Rozenberg [39]

Using formal definitions, one can define the above edNCE concepts as follows:

“Let Σ be an alphabet of node labels and Γ an alphabet of edge labels. A graph
over Σ and Γ is a tuple H = (V,E, λ), where V is the finite set of nodes, E ⊆
{(v, γ, w)‖v, w ∈ V, v 6= w, γ ∈ Γ} is the set of edges, and λ : V → Σ is the node
labeling function.

[. . .]

A graph is undirected if for every (u, γ, w) ∈ E, also (w, γ, u) ∈ E.

[. . .]

graph with (neighbourhood controlled) embedding over Σ and Γ is a pair (H,C)
with H ∈ GRΣ,Γ and C ⊆ Σ× Γ× Γ× VH × {in,out}. C is the connection relation
of (H,C), and each element (δ, β, γ, x, d) of C (with δ ∈ Σ, β, γ ∈ Γ, x ∈ VH ,
and d ∈ {in,out}) is a connection instruction of (H,C). To improve readability, a
connection instruction (δ, β, γ, x, d) will always be written as (δ, β/γ, x, d).”

— Engelfriet and Rozenberg [39]

From the stated above, and in the light of the models constructed using the Lamrast−+
metamodel are directed graphs, it can be concluded that, ∀(u, γ, w) : (u, γ, w) ∈ E ⇒
(w, γ, u) /∈ E

Since the Lamrast−+ metamodel creates graphs for which gluing approach is more
useful, the algebraic approach is the more interesting one to be observed in more detail.

The basic element is again a production, i.e. a graph transformation rule, defined as
p : L R, where both L and R are graphs, on left- and right-hand side respectively.
When there is a match m that fixes an occurrence of L in a given graph G, then the direct
derivation where p is applied to G leading to a derived graph H is denoted as G p,m==⇒ H.
Simply put, replacing the occurrence of L in G by R leads to H. Therefore it can be said
that a graph production p : L R prescribes which nodes and edges are to be preserved,
which deleted, and which created, by defining a partial correspondence between elements
of its left- and right-hand sides. A production p has its graph homomorphism in match
m : L→ G which maps nodes and edges of L to G preserving graphical structure and the
labels along the way. The relationship of the mentioned graphs thus far, and connected
concepts, is as follows.

“A match m : L→ G for a production p is a graph homomorphism, mapping nodes
and edges of L to G, in such a way that the graphical structure and the labels are

175

Appendix B. Theoretical Background B.2. Graph Grammars

(L K R)

(G D H)

(1) (2)

p :

p∗ :

l

m

l∗

d

r

m∗

r∗

Figure B.1: More detailed direct derivation as a DPO
construction, according to [28]

preserved. The match m1 : L1 → G1 of the direct derivation (1) maps each element
of L1 to the element of G1 carrying the same number. Applying production p1 to
graph G1 at match m1 we have to delete every object from G1 which matches an
element of L1 that has no corresponding element in R1 [. . .]. Symmetrically, we
add to G1 each element of R1 that has no corresponding element in L1 [. . .].”

— Corradini et al. [28]

Therefore, when there all the nodes of L and R are the same, the situation is clear.
Intuitively, when there are nodes in R that are not in L, these nodes have to be added to
H. Contrariwise, nodes that are in L, but are not in R have to be removed from H.

Fig. B.1 shows schematic representation of the direct derivation from G to H which
is a result of production p being applied to a match m, denoted by d = (G p,m==⇒ H).

Two slightly different approaches are available in the domain of algebraic approaches,
where direct derivations (rule applications) are modelled using gluing constructions of
graphs. These constructions are formally characterised as pushouts having graphs as
objects and graph homomorphisms as arrows. These two approaches are double-pushout
(DPO), and single-pushout (SPO) approach. DPO is notably more strict than SPO,
since it does not allow rewriting in problematic solutions where instructions are unclear
or incomplete. A production in DPO is defined using a pair of graph homomorphisms, as
follows.

“A production in the DPO approach is given by a pair L l←− K
r−→ R of graph

homomorphisms from a common interface graph K, and a direct derivation consists
of two gluing diagrams of graphs and total graph morphisms, as (1) and (2) in the
diagram [in Fig. B.1]. The context graph D is obtained from the given graph G by
deleting all elements of G which have a pre-image in L, but none in K. Via diagram
(1) this deletion is described as an inverse gluing operation, while the second gluing
diagram (2) models the actual insertion into H of all elements of R that do not have
a pre-image in K.” — Corradini et al. [28]

When a production is set as above, and DPO approach is observed, the match m must
satisfy an application condition, called the the gluing condition. The mentioned condition
is a set of two parts: dangling condition and identification condition.

176

Appendix B. Theoretical Background B.2. Graph Grammars

In the context of DPO and the defined production of this approach, the following is a
description of graph grammar system.

“A graph grammar G consists of a set of productions P and a start graph G0. A
sequence of direct derivations ρ = (G0

p1=⇒ G1
p2=⇒ . . .

pn=⇒ Gn) constitutes a derivation
of the grammar, also denoted by G0 ⇒∗ Gn. The language L(G) generated by the
grammar G is the set of all graphs Gn such that G0 ⇒∗ Gn, is a derivation of the
grammar.” — Corradini et al. [28]

177

Appendix C

Full Listings

C.1 Logical Production System

1 maxTime (20).
2

3 fluents
4 skills (_,_,_,_),
5 hasSkill (_,_,_),
6 availableQuest (_),
7 hasQuest (_,_),
8 isAvailable (_),
9 solvedQuest (_,_),

10 party(_,_),
11 questAvailable (_,_).
12 events
13 makeAvailable (_),
14 assignQuest (_,_).
15 actions
16 modifySkill (_,_,_,_),
17 assignQuest (_,_),
18 solveQuest (_,_),
19 initiateParty (_).
20

21 initially skills (alice ,0 ,0 ,0) , isAvailable (alice).
22 initially skills (bob , 0,0,0).
23 initially questAvailable (killMaggots ,alice).
24 initially questAvailable (killMaggots ,bob).
25

26 % player (Name , Agility , Strength , Intelligence).
27 player (bob).
28 player (alice).
29 % quest(Name , Duration).
30 % reward / requirement (Quest , Agility , Strength , Intelligence).
31 quest(killMaggots , 4).

178

Appendix C. Full Listings C.1. Logical Production System

32 reward (killMaggots , 1,1,0).
33 requirement (killMaggots , 0,0,0).
34 quest(seekPotion , 2).
35 reward (seekPotion , 0,1,1).
36 requirement (seekPotion , 0,1,0).
37 quest(dragonEgg , 6).
38 reward (dragonEgg , 3,1,0).
39 requirement (dragonEgg , 2,2,1).
40

41 follows (killMaggots , seekPotion).
42 follows (seekPotion , dragonEgg).
43

44 % stop validity of previous skill level ,
45 % and initiate the new , increased by the given value
46 modifySkill (P,_,_,_)
47 terminates skills (P, _, _, _).
48 modifySkill (P,L1 ,L2 ,L3) initiates skills (P,L1new ,L2new ,L3new)
49 if skills (P,L1old ,L2old ,L3old),
50 L1new is L1old + L1 ,
51 L2new is L2old + L2 ,
52 L3new is L3old + L3.
53 modifySkill (P,_,_,_) initiates isAvailable (P).
54

55 if isAvailable (P), quest(Q,_)
56 then considerQuest (P, Q) from T1 to T2.
57

58 considerQuest (P,Q) from T1 to T2 if
59 skills (P,L1 ,L2 ,L3),
60 quest(Q,_),
61 questAvailable (Q,P),
62 not solvedQuest (P,Q),
63 requirement (Q,R1 ,R2 ,R3),
64 L1 >= R1 , L2 >= R2 , L3 >= R3 ,
65 goOnQuest (P,Q) from T1 to T2.
66

67 considerQuest (P,Q) from T1 to T2 if
68 skills (P,L1 ,L2 ,L3),
69 quest(Q,_),
70 questAvailable (Q,P),
71 not solvedQuest (P,Q),
72 requirement (Q,R1 ,R2 ,R3),
73 (L1 < R1; L2 < R2; L3 < R3),
74 initiateParty (P) from T1 to T2.
75

76 % quest solving process - assign and solve the quest after Tq moments
77 goOnQuest (P,Q) from T1 to T4 if
78 assignQuest (P,Q) from T1 to T2 ,

179

Appendix C. Full Listings C.1. Logical Production System

79 quest(Q,Tq),
80 player (P),
81 T3 is T1 + Tq ,
82 solveQuest (P,Q) from T3 to T4.
83

84 assignQuest (P, Q) initiates hasQuest (P, Q).
85 assignQuest (P, _) terminates isAvailable (P).
86

87 solveQuest (P,Q) terminates hasQuest (P,Q).
88 solveQuest (P,Q) terminates questAvailable (Q,P).
89 solveQuest (P,Q) initiates solvedQuest (P,Q).
90 solveQuest (P,Q), follows (Q,Q1) initiates questAvailable (Q1 ,P).
91 if solveQuest (P,Q) from T1 to T2 , reward (Q,L1 ,L2 ,L3)
92 then
93 modifySkill (P,L1 ,L2 ,L3) from T2 to T3.
94

95 makeAvailable (P)
96 initiates isAvailable (P).
97 initiateParty (P)
98 initiates party(P,[P]).
99

100 false assignQuest (P,_), not isAvailable (P).
101 false assignQuest (P,Q), solvedQuest (P,Q).
102 false initiateParty (P), hasQuest (P,_).
103

104 observe makeAvailable (bob) from 3 to 4.

180

Appendix C. Full Listings C.2. ZODB Object Definition

C.2 ZODB Object Definition

1 import persistent
2 import os
3

4

5 class savedNode (persistent . Persistent):
6 """ This is a class containing all the data specifying a Node in a

specific ASG """
7

8 def __init__ (self , coreAttrs):
9 """ Initialise the savedNode object with values for all the

default attributes ."""
10 self. graphClass_ = coreAttrs [0]
11 self. isClass = coreAttrs [1]
12 self. in_connections_ = coreAttrs [2]
13 self. out_connections_ = coreAttrs [3]
14 self. containerFrame = coreAttrs [4]
15 self. keyword_ = coreAttrs [5]
16 self. editGGLabel = coreAttrs [6]
17 self. GGset2Any = coreAttrs [7]
18 self. GGLabel = coreAttrs [8]
19 # self. rootNode = coreAttrs [9]
20 self. objectNumber = coreAttrs [10]
21 self.ID = coreAttrs [11]
22

23 def saveAttributes (self , order , attrValues):
24 """ Save custom attributes of the Node."""
25 self. realOrder = order
26 self.attrs = attrValues
27

28 print self.attrs
29

30 def updateAttributes (self , attrValues , connections):
31 """ Update custom attributes of the Node."""
32 self.attrs = attrValues
33

34 print connections
35

36 modelInCs = connections [0]
37 modelOutCs = connections [1]
38

39 for nodeType in modelInCs .keys ():
40 newConn = [
41 x for x in modelInCs [nodeType]
42 if x not in self. in_connections_ [nodeType]]
43 if len(newConn):

181

Appendix C. Full Listings C.2. ZODB Object Definition

44 self. in_connections_ [nodeType]. append (newConn [0])
45 # print ’{} added to {}’. format (newConn , self.attrs[self

. realOrder .index(’name ’)])
46

47 for nodeType in modelOutCs .keys ():
48 newConn = [
49 x for x in modelOutCs [nodeType]
50 if x not in self. out_connections_ [nodeType]]
51 if len(newConn):
52 self. out_connections_ [nodeType]. append (newConn [0])
53 # print ’{} added to {}’. format (newConn , self.attrs[self

. realOrder .index(’name ’)])
54

55 print self.attrs
56

57 def getAttribute (self , attrName):
58 if hasattr (self , attrName):
59 return self.attrs[self. realOrder .index(attrName)]
60

61 def generateCodeSPADE (self , KB=None):
62 """ Generate code for the Node."""
63

64 print " Generating stuff ...", self. isClass
65

66 # templates for agents ang behaviours
67 agent = [
68 """
69 class {0}(spade.Agent.Agent):
70 ’’’Bear skeleton for agent type {0}’’’
71 """ ,
72 """
73 def _setup (self):
74 print ’{0}: running ’
75 self. addBehaviour (self. ChangeRole (), None)
76

77 """]
78 behaviour = """
79 class {0}(spade. Behaviour . OneShotBehaviour):
80 ’’’Behaviour {0} of {2} {1}’’’
81 def _process (self):
82 print ’{1}: behaving {0}’
83 """
84

85 if hasattr (self , ’isClass ’) and self. isClass in [’OrgUnit ’]:
86 # beginning of generated code
87 code = " import spade\nfrom RoleBehaviours import *\n"
88

182

Appendix C. Full Listings C.2. ZODB Object Definition

89 nodeName = "OU {}{}". format (
90 self.ID ,
91 self.attrs[self. realOrder .index(’name ’)])
92

93 file = open("./ Code /{}. py". format (nodeName), ’w’)
94

95 # nodeName = "{}{}". format (
96 # self.isClass ,
97 # self.attrs[self. realOrder .index(’name ’)])
98

99 code = code + agent [0]. format (nodeName)
100

101 print self. attrs[self. realOrder .index(’hasActions ’)]
102

103 for behav in self.attrs[self. realOrder .index(’hasActions ’)].
split("\n")[: -1]:

104 # code = code + "\n{}\n". format (behav. getValue ())
105 code = code + behaviour . format (
106 behav ,
107 self. attrs[self. realOrder .index(’name ’)],
108 self. isClass)
109

110 code = code + agent [1]. format (nodeName)
111

112

113 if KB:
114 code = code + """
115 self. configureKB (’SWI ’, None , ’swipl ’)"""
116 for x in KB:
117 code = code + """
118 self. addBelieve (’{0[1]}({0[0]} ,{0[2]}) ’)""". format (x)
119

120 file.write(code)
121 file.close ()
122

123 print nodeName
124

125 return nodeName

183

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

C.3 OWL Functional Syntax Ontology Rendering

1 Prefix (:=<http: // www. semanticweb .org/ bogdan / ontologies /2018/5/ untitled -
ontology -125# >)

2 Prefix (owl:=<http: // www.w3.org /2002/07/ owl#>)
3 Prefix (rdf:=<http: // www.w3.org /1999/02/22 - rdf -syntax -ns#>)
4 Prefix (xml:=<http: // www.w3.org/XML /1998/ namespace >)
5 Prefix (xsd:=<http: // www.w3.org /2001/ XMLSchema #>)
6 Prefix (rdfs:=<http: // www.w3.org /2000/01/ rdf - schema #>)
7 Prefix (OOVASIS: =<http: //ai.foi.hr/ modelmmorpg / ooooaflsmas .owl#>)
8 Prefix (MAM5:=<http: // users.dsic.upv.es /%7 ecarrasco / JaCalIVE_Ontology #>)
9 Prefix (MAMbO5: =<http: // www. semanticweb .org/ bogdan / ontologies /2016/11/

MAMbO5 #>)
10

11

12 Ontology (<http: // www. semanticweb .org/ bogdan / ontologies /2018/5/ untitled -
ontology -125 >

13

14 Declaration (Class(<OOVASIS # AcademicStructure >))
15 Declaration (Class(<OOVASIS # AcquisitionStructure >))
16 Declaration (Class(<OOVASIS # Activity >))
17 Declaration (Class(<OOVASIS # AdhocracyStructure >))
18 Declaration (Class(<OOVASIS #Agent >))
19 Declaration (Class(<OOVASIS # AmoebaStructure >))
20 Declaration (Class(<OOVASIS # Behavior >))
21 Declaration (Class(<OOVASIS # BioteamingOrganization >))
22 Declaration (Class(<OOVASIS # BusinessProcessReengineering >))
23 Declaration (Class(<OOVASIS # ClientServerBehavior >))
24 Declaration (Class(<OOVASIS # ClusterStructure >))
25 Declaration (Class(<OOVASIS # CommunitiesOfPractice >))
26 Declaration (Class(<OOVASIS # ComplexAnalyticalMethod >))
27 Declaration (Class(<OOVASIS # CriteriaOfOrganizing >))
28 Declaration (Class(<OOVASIS # Culture >))
29 Declaration (Class(<OOVASIS # CultureRelation >))
30 Declaration (Class(<OOVASIS # CustomerOrientedStructure >))
31 Declaration (Class(<OOVASIS # DivisionalStructure >))
32 Declaration (Class(<OOVASIS # DynamicNetworkStructure >))
33 Declaration (Class(<OOVASIS # EmpoweredOrganization >))
34 Declaration (Class(<OOVASIS # FiniteStateMachineBehavior >))
35 Declaration (Class(<OOVASIS # FishnetStructure >))
36 Declaration (Class(<OOVASIS # FractalStructure >))
37 Declaration (Class(<OOVASIS # FrontBackStructure >))
38 Declaration (Class(<OOVASIS # FunctionalStructure >))
39 Declaration (Class(<OOVASIS # HeterarchicalStructure >))
40 Declaration (Class(<OOVASIS # HierarchicalStructure >))
41 Declaration (Class(<OOVASIS # HybridStructure >))
42 Declaration (Class(<OOVASIS # HypertextOrganization >))

184

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

43 Declaration (Class(<OOVASIS # InfiniteFlatHierarchyStructure >))
44 Declaration (Class(<OOVASIS # InternalMarketStructure >))
45 Declaration (Class(<OOVASIS # InvertedStructure >))
46 Declaration (Class(<OOVASIS # ItineraryBehavior >))
47 Declaration (Class(<OOVASIS # Kaizen >))
48 Declaration (Class(<OOVASIS # KnowledgeArtifact >))
49 Declaration (Class(<OOVASIS # LeanManagement >))
50 Declaration (Class(<OOVASIS # LearningOrganization >))
51 Declaration (Class(<OOVASIS # ListenerBehavior >))
52 Declaration (Class(<OOVASIS # MatrixStructure >))
53 Declaration (Class(<OOVASIS # MergerStructure >))
54 Declaration (Class(<OOVASIS #Norm >))
55 Declaration (Class(<OOVASIS # NormativeSystem >))
56 Declaration (Class(<OOVASIS # Objective >))
57 Declaration (Class(<OOVASIS # ObserverBehavior >))
58 Declaration (Class(<OOVASIS # OneShotBehavior >))
59 Declaration (Class(<OOVASIS # OpenOrganization >))
60 Declaration (Class(<OOVASIS # OrganizationalArchitecture >))
61 Declaration (Class(<OOVASIS # OrganizationalChange >))
62 Declaration (Class(<OOVASIS # OrganizationalCulture >))
63 Declaration (Class(<OOVASIS # OrganizationalDesignMethod >))
64 Declaration (Class(<OOVASIS # OrganizationalEnvironment >))
65 Declaration (Class(<OOVASIS # OrganizationalIndividuals >))
66 Declaration (Class(<OOVASIS # OrganizationalKnowledgeNetwork >))
67 Declaration (Class(<OOVASIS # OrganizationalMemory >))
68 Declaration (Class(<OOVASIS # OrganizationalProcesses >))
69 Declaration (Class(<OOVASIS # OrganizationalStrategy >))
70 Declaration (Class(<OOVASIS # OrganizationalStructure >))
71 Declaration (Class(<OOVASIS # OrganizationalUnit >))
72 Declaration (Class(<OOVASIS # ParallelBehavior >))
73 Declaration (Class(<OOVASIS # PeriodicBehavior >))
74 Declaration (Class(<OOVASIS # PlatformOrganization >))
75 Declaration (Class(<OOVASIS # Process >))
76 Declaration (Class(<OOVASIS # ProcessRelation >))
77 Declaration (Class(<OOVASIS # ProductDivisionalStructure >))
78 Declaration (Class(<OOVASIS # ProjectOrientedStructure >))
79 Declaration (Class(<OOVASIS # RelationValuePartition >))
80 Declaration (Class(<OOVASIS #Role >))
81 Declaration (Class(<OOVASIS # RoleFactoryBehavior >))
82 Declaration (Class(<OOVASIS # SequentialBehavior >))
83 Declaration (Class(<OOVASIS # ShamrockOrganization >))
84 Declaration (Class(<OOVASIS # SixSigma >))
85 Declaration (Class(<OOVASIS # StableSuperStructure >))
86 Declaration (Class(<OOVASIS # StarburstStructure >))
87 Declaration (Class(<OOVASIS # StaticNetworkStructure >))
88 Declaration (Class(<OOVASIS # StrategicAllianceStructure >))
89 Declaration (Class(<OOVASIS # StrategicOrganization >))

185

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

90 Declaration (Class(<OOVASIS # Strategy >))
91 Declaration (Class(<OOVASIS # StrategyRelation >))
92 Declaration (Class(<OOVASIS # StructuralRelation >))
93 Declaration (Class(<OOVASIS # SuperStructure >))
94 Declaration (Class(<OOVASIS # TaguchiMethod >))
95 Declaration (Class(<OOVASIS # TeamBasedStructure >))
96 Declaration (Class(<OOVASIS # TensorStructure >))
97 Declaration (Class(<OOVASIS # TeritorialStructure >))
98 Declaration (Class(<OOVASIS # TotalQualityManagement >))
99 Declaration (Class(<OOVASIS # ValuePartition >))

100 Declaration (Class(<OOVASIS # VirtualStructure >))
101 Declaration (Class(<MAM5# Action >))
102 Declaration (Class(<MAM5# Action_Rule >))
103 Declaration (Class(<MAM5#Agent >))
104 Declaration (Class(<MAM5# Agent_Action >))
105 Declaration (Class(<MAM5# Artifact >))
106 Declaration (Class(<MAM5# Human_Immersed_Agent >))
107 Declaration (Class(<MAM5#IVE >))
108 Declaration (Class(<MAM5# IVE_Artifact >))
109 Declaration (Class(<MAM5# IVE_Law >))
110 Declaration (Class(<MAM5# IVE_Law_Condition >))
111 Declaration (Class(<MAM5# IVE_Law_Type >))
112 Declaration (Class(<MAM5# IVE_Workspace >))
113 Declaration (Class(<MAM5# Inhabitant_Agent >))
114 Declaration (Class(<MAM5# Observable_Event >))
115 Declaration (Class(<MAM5# Observable_Property >))
116 Declaration (Class(<MAM5# Operation >))
117 Declaration (Class(<MAM5# Physical_Artifact >))
118 Declaration (Class(<MAM5# Physical_Event >))
119 Declaration (Class(<MAM5# Physical_Property >))
120 Declaration (Class(<MAM5#Plan >))
121 Declaration (Class(<MAM5# Signal >))
122 Declaration (Class(<MAM5# SimpleType >))
123 Declaration (Class(<MAM5# Smart_Resource_Artifact >))
124 Declaration (Class(<MAM5# Vector3D >))
125 Declaration (Class(<MAM5# Workspace >))
126 Declaration (Class(<MAMbO5 # SituatedOrganizationalUnit >))
127 Declaration (Class(<MAMbO5 # TimeDependentNorm >))
128 Declaration (ObjectProperty (<OOVASIS # accepts >))
129 Declaration (ObjectProperty (<OOVASIS # achieves >))
130 Declaration (ObjectProperty (<OOVASIS # definesRoles >))
131 Declaration (ObjectProperty (<OOVASIS # hasAccessTo >))
132 Declaration (ObjectProperty (<OOVASIS # hasChange >))
133 Declaration (ObjectProperty (<OOVASIS # hasCriteriaOfOrganizing >))
134 Declaration (ObjectProperty (<OOVASIS # hasCulture >))
135 Declaration (ObjectProperty (<OOVASIS # hasEnvironment >))
136 Declaration (ObjectProperty (<OOVASIS # hasIndividuals >))

186

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

137 Declaration (ObjectProperty (<OOVASIS # hasProcesses >))
138 Declaration (ObjectProperty (<OOVASIS # hasRelation >))
139 Declaration (ObjectProperty (<OOVASIS # hasRole >))
140 Declaration (ObjectProperty (<OOVASIS # hasStrategy >))
141 Declaration (ObjectProperty (<OOVASIS # hasStructure >))
142 Declaration (ObjectProperty (<OOVASIS # isAcceptedBy >))
143 Declaration (ObjectProperty (<OOVASIS # isAccessibleTo >))
144 Declaration (ObjectProperty (<OOVASIS # isAchievedBy >))
145 Declaration (ObjectProperty (<OOVASIS # isCriteriaOfOrganizingFor >))
146 Declaration (ObjectProperty (<OOVASIS # isPerformedBy >))
147 Declaration (ObjectProperty (<OOVASIS # isRelationOf >))
148 Declaration (ObjectProperty (<OOVASIS # isRoleIn >))
149 Declaration (ObjectProperty (<OOVASIS # isRoleOf >))
150 Declaration (ObjectProperty (<OOVASIS # isTriggeredBy >))
151 Declaration (ObjectProperty (<OOVASIS # modelIndividualsFor >))
152 Declaration (ObjectProperty (<OOVASIS # modelProcessesFor >))
153 Declaration (ObjectProperty (<OOVASIS # modelsChangeFor >))
154 Declaration (ObjectProperty (<OOVASIS # modelsCultureFor >))
155 Declaration (ObjectProperty (<OOVASIS # modelsEnvironmentFor >))
156 Declaration (ObjectProperty (<OOVASIS # modelsStrategyFor >))
157 Declaration (ObjectProperty (<OOVASIS # modelsStructureFor >))
158 Declaration (ObjectProperty (<OOVASIS # performs >))
159 Declaration (ObjectProperty (<OOVASIS # triggers >))
160 Declaration (ObjectProperty (<OOVASIS # usesAgents >))
161 Declaration (ObjectProperty (<OOVASIS # usesChange >))
162 Declaration (ObjectProperty (<OOVASIS # usesCulture >))
163 Declaration (ObjectProperty (<OOVASIS # usesEnvironment >))
164 Declaration (ObjectProperty (<OOVASIS # usesProcesses >))
165 Declaration (ObjectProperty (<OOVASIS # usesStrategy >))
166 Declaration (ObjectProperty (<OOVASIS # usesStructure >))
167 Declaration (ObjectProperty (<MAM5# generates_Signal >))
168 Declaration (ObjectProperty (<MAM5# has_Acceleration >))
169 Declaration (ObjectProperty (<MAM5# has_Action >))
170 Declaration (ObjectProperty (<MAM5# has_Action_Rule >))
171 Declaration (ObjectProperty (<MAM5# has_Agent >))
172 Declaration (ObjectProperty (<MAM5# has_Agent_Action >))
173 Declaration (ObjectProperty (<MAM5# has_Arguments >))
174 Declaration (ObjectProperty (<MAM5# has_Artifact >))
175 Declaration (ObjectProperty (<MAM5# has_Attribute >))
176 Declaration (ObjectProperty (<MAM5# has_Body_Artifact >))
177 Declaration (ObjectProperty (<MAM5# has_Component >))
178 Declaration (ObjectProperty (<MAM5# has_Do_Action >))
179 Declaration (ObjectProperty (<MAM5# has_IVE_Artifact >))
180 Declaration (ObjectProperty (<MAM5# has_IVE_Law >))
181 Declaration (ObjectProperty (<MAM5# has_IVE_Law_Cond_Type >))
182 Declaration (ObjectProperty (<MAM5# has_IVE_Law_Type >))
183 Declaration (ObjectProperty (<MAM5# has_IVE_Workspace >))

187

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

184 Declaration (ObjectProperty (<MAM5# has_Inh_Attribute >))
185 Declaration (ObjectProperty (<MAM5# has_Inhabitant_Agent >))
186 Declaration (ObjectProperty (<MAM5# has_Joint >))
187 Declaration (ObjectProperty (<MAM5# has_Observable_Property >))
188 Declaration (ObjectProperty (<MAM5# has_Operation >))
189 Declaration (ObjectProperty (<MAM5# has_Physical_Event >))
190 Declaration (ObjectProperty (<MAM5# has_Physical_Property >))
191 Declaration (ObjectProperty (<MAM5# has_Plan >))
192 Declaration (ObjectProperty (<MAM5# has_Position >))
193 Declaration (ObjectProperty (<MAM5# has_PreCondition >))
194 Declaration (ObjectProperty (<MAM5# has_Velocity >))
195 Declaration (ObjectProperty (<MAM5# has_Workspace >))
196 Declaration (ObjectProperty (<MAM5# is_Action_of >))
197 Declaration (ObjectProperty (<MAM5# is_Agent_Action_of >))
198 Declaration (ObjectProperty (<MAM5# is_Agent_of >))
199 Declaration (ObjectProperty (<MAM5# is_Artifact_of >))
200 Declaration (ObjectProperty (<MAM5# is_Body_Artifact_of >))
201 Declaration (ObjectProperty (<MAM5# is_Component_of >))
202 Declaration (ObjectProperty (<MAM5# is_IVE_Artifact_of >))
203 Declaration (ObjectProperty (<MAM5# is_IVE_Law_of >))
204 Declaration (ObjectProperty (<MAM5# is_IVE_Workspace_of >))
205 Declaration (ObjectProperty (<MAM5# is_Inhabitant_Agent_of >))
206 Declaration (ObjectProperty (<MAM5# is_Observable_Property_of >))
207 Declaration (ObjectProperty (<MAM5# is_Operation_of >))
208 Declaration (ObjectProperty (<MAM5# is_Physical_Property_of >))
209 Declaration (ObjectProperty (<MAM5# is_Plan_of >))
210 Declaration (ObjectProperty (<MAM5# is_Signal_generated_by >))
211 Declaration (ObjectProperty (<MAM5# is_Workspace_of >))
212 Declaration (ObjectProperty (<MAMbO5 # EnvironmentIsUsedBy >))
213 Declaration (ObjectProperty (<MAMbO5 # consistsOf >))
214 Declaration (ObjectProperty (<MAMbO5 # hasActiveNorms >))
215 Declaration (ObjectProperty (<MAMbO5 # isActiveWithin >))
216 Declaration (ObjectProperty (<MAMbO5 # isPartOf >))
217 Declaration (ObjectProperty (<http: // www. semanticweb .org/ bogdan / ontologies

/2017/4/ MAMbO5ExampleScenario # playsRole >))
218 Declaration (DataProperty (<MAM5# Action >))
219 Declaration (DataProperty (<MAM5# Agent_Code_File >))
220 Declaration (DataProperty (<MAM5#Angle >))
221 Declaration (DataProperty (<MAM5# Artifact_Code_File >))
222 Declaration (DataProperty (<MAM5# Condition >))
223 Declaration (DataProperty (<MAM5#File >))
224 Declaration (DataProperty (<MAM5# IVE_Law_Action >))
225 Declaration (DataProperty (<MAM5# IVE_Law_Condition >))
226 Declaration (DataProperty (<MAM5# IVE_Law_Sentence >))
227 Declaration (DataProperty (<MAM5# IVE_Law_Type >))
228 Declaration (DataProperty (<MAM5# Linkeable >))
229 Declaration (DataProperty (<MAM5# Manual >))

188

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

230 Declaration (DataProperty (<MAM5#Mass >))
231 Declaration (DataProperty (<MAM5#Name >))
232 Declaration (DataProperty (<MAM5# Operand_Type >))
233 Declaration (DataProperty (<MAM5# Physical_Property_Type >))
234 Declaration (DataProperty (<MAM5#Shape >))
235 Declaration (DataProperty (<MAM5#X>))
236 Declaration (DataProperty (<MAM5#Y>))
237 Declaration (DataProperty (<MAM5#Z>))
238 Declaration (DataProperty (<MAM5# has_SimpleValue >))
239 Declaration (DataProperty (<MAMbO5 #hasID >))
240 Declaration (DataProperty (<MAMbO5 # isRelevantAtTime >))
241 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # ABattery >))
242 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # AElectricity >))
243 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # ATelevision >))
244 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Alice >))
245 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Bob >))
246 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # COInteraction >))
247 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # Charlie >))
248 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Child >))
249 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Clerk >))
250 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # Consumer >))
251 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # Customer >))
252 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Diana >))
253 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario #Edgar >))
254 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # Felipe >))
255 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # Gonzalez >))
256 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # OUAcme >))
257 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # OUBlue >))
258 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /

ontologies /2017/4/ MAMbO5ExampleScenario # OUFamily >))

189

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

259 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUGreen >))

260 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUGreen3 >))

261 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUNeighbourhood >))

262 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario #OURed >))

263 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OURed6 >))

264 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OURoommates >))

265 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUShop >))

266 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUSmartBatteryGreen3 >))

267 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUSmartBatteryRed6 >))

268 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUSmartPVPanelGreen3 >))

269 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUSmartPVPanelRed6 >))

270 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # OUSmartTVRed6 >))

271 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # Parent >))

272 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # Producer >))

273 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # Roommate >))

274 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # Storage >))

275 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # StructuralRelation >))

276 Declaration (NamedIndividual (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # TopRole >))

277

278 ############################
279 # Object Properties
280 ############################
281

282 # Object Property: <OOVASIS # accepts > (<OOVASIS # accepts >)
283

284 InverseObjectProperties (<OOVASIS # accepts > <OOVASIS # isAcceptedBy >)
285 ObjectPropertyDomain (<OOVASIS # accepts > <OOVASIS # NormativeSystem >)
286 ObjectPropertyRange (<OOVASIS # accepts > <OOVASIS # Behavior >)
287

190

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

288 # Object Property: <OOVASIS # achieves > (<OOVASIS # achieves >)
289

290 InverseObjectProperties (<OOVASIS # achieves > <OOVASIS # isAchievedBy >)
291 ObjectPropertyDomain (<OOVASIS # achieves > <OOVASIS # Activity >)
292 ObjectPropertyRange (<OOVASIS # achieves > <OOVASIS # Objective >)
293

294 # Object Property: <OOVASIS # definesRoles > (<OOVASIS # definesRoles >)
295

296 InverseObjectProperties (<OOVASIS # definesRoles > <OOVASIS # isRoleIn >)
297 AsymmetricObjectProperty (<OOVASIS # definesRoles >)
298 IrreflexiveObjectProperty (<OOVASIS # definesRoles >)
299 ObjectPropertyDomain (<OOVASIS # definesRoles > <OOVASIS # OrganizationalUnit >

)
300 ObjectPropertyRange (<OOVASIS # definesRoles > <OOVASIS #Role >)
301

302 # Object Property: <OOVASIS # hasAccessTo > (<OOVASIS # hasAccessTo >)
303

304 InverseObjectProperties (<OOVASIS # hasAccessTo > <OOVASIS # isAccessibleTo >)
305 ObjectPropertyDomain (<OOVASIS # hasAccessTo > <OOVASIS #Agent >)
306 ObjectPropertyRange (<OOVASIS # hasAccessTo > <OOVASIS # KnowledgeArtifact >)
307

308 # Object Property: <OOVASIS # hasChange > (<OOVASIS # hasChange >)
309

310 InverseObjectProperties (<OOVASIS # hasChange > <OOVASIS # modelsChangeFor >)
311

312 # Object Property: <OOVASIS # hasCriteriaOfOrganizing > (<OOVASIS #
hasCriteriaOfOrganizing >)

313

314 InverseObjectProperties (<OOVASIS # hasCriteriaOfOrganizing > <OOVASIS #
isCriteriaOfOrganizingFor >)

315 FunctionalObjectProperty (<OOVASIS # hasCriteriaOfOrganizing >)
316 ObjectPropertyDomain (<OOVASIS # hasCriteriaOfOrganizing > ObjectUnionOf (<

OOVASIS # OrganizationalUnit > <OOVASIS # Process > <OOVASIS # Strategy >))
317 ObjectPropertyRange (<OOVASIS # hasCriteriaOfOrganizing > <OOVASIS #

CriteriaOfOrganizing >)
318

319 # Object Property: <OOVASIS # hasCulture > (<OOVASIS # hasCulture >)
320

321 InverseObjectProperties (<OOVASIS # hasCulture > <OOVASIS # modelsCultureFor >)
322

323 # Object Property: <OOVASIS # hasEnvironment > (<OOVASIS # hasEnvironment >)
324

325 InverseObjectProperties (<OOVASIS # hasEnvironment > <OOVASIS #
modelsEnvironmentFor >)

326

327 # Object Property: <OOVASIS # hasIndividuals > (<OOVASIS # hasIndividuals >)
328

191

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

329 InverseObjectProperties (<OOVASIS # hasIndividuals > <OOVASIS #
modelIndividualsFor >)

330

331 # Object Property: <OOVASIS # hasProcesses > (<OOVASIS # hasProcesses >)
332

333 InverseObjectProperties (<OOVASIS # hasProcesses > <OOVASIS #
modelProcessesFor >)

334

335 # Object Property: <OOVASIS # hasRelation > (<OOVASIS # hasRelation >)
336

337 InverseObjectProperties (<OOVASIS # hasRelation > <OOVASIS # isRelationOf >)
338 FunctionalObjectProperty (<OOVASIS # hasRelation >)
339 ObjectPropertyRange (<OOVASIS # hasRelation > <OOVASIS #

RelationValuePartition >)
340

341 # Object Property: <OOVASIS # hasRole > (<OOVASIS # hasRole >)
342

343 AnnotationAssertion (rdfs:comment <OOVASIS # hasRole > " Defines which roles
can be played by which agents , i.e. organizational units , depending
on the organization they are a part of , i.e. at any given point in
time.")

344 InverseObjectProperties (<OOVASIS # hasRole > <OOVASIS # isRoleOf >)
345 AsymmetricObjectProperty (<OOVASIS # hasRole >)
346 IrreflexiveObjectProperty (<OOVASIS # hasRole >)
347 ObjectPropertyDomain (<OOVASIS # hasRole > <OOVASIS # OrganizationalUnit >)
348 ObjectPropertyRange (<OOVASIS # hasRole > <OOVASIS #Role >)
349

350 # Object Property: <OOVASIS # hasStrategy > (<OOVASIS # hasStrategy >)
351

352 InverseObjectProperties (<OOVASIS # hasStrategy > <OOVASIS # modelsStrategyFor
>)

353

354 # Object Property: <OOVASIS # hasStructure > (<OOVASIS # hasStructure >)
355

356 InverseObjectProperties (<OOVASIS # hasStructure > <OOVASIS #
modelsStructureFor >)

357

358 # Object Property: <OOVASIS # isCriteriaOfOrganizingFor > (<OOVASIS #
isCriteriaOfOrganizingFor >)

359

360 InverseFunctionalObjectProperty (<OOVASIS # isCriteriaOfOrganizingFor >)
361 ObjectPropertyDomain (<OOVASIS # isCriteriaOfOrganizingFor > <OOVASIS #

CriteriaOfOrganizing >)
362 ObjectPropertyRange (<OOVASIS # isCriteriaOfOrganizingFor > ObjectUnionOf (<

OOVASIS # OrganizationalUnit > <OOVASIS # Process > <OOVASIS # Strategy >))
363

364 # Object Property: <OOVASIS # isPerformedBy > (<OOVASIS # isPerformedBy >)

192

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

365

366 InverseObjectProperties (<OOVASIS # isPerformedBy > <OOVASIS # performs >)
367 FunctionalObjectProperty (<OOVASIS # isPerformedBy >)
368 AsymmetricObjectProperty (<OOVASIS # isPerformedBy >)
369 IrreflexiveObjectProperty (<OOVASIS # isPerformedBy >)
370 ObjectPropertyDomain (<OOVASIS # isPerformedBy > <OOVASIS # Activity >)
371 ObjectPropertyRange (<OOVASIS # isPerformedBy > <OOVASIS #Agent >)
372

373 # Object Property: <OOVASIS # isRelationOf > (<OOVASIS # isRelationOf >)
374

375 InverseFunctionalObjectProperty (<OOVASIS # isRelationOf >)
376 ObjectPropertyDomain (<OOVASIS # isRelationOf > <OOVASIS #

RelationValuePartition >)
377

378 # Object Property: <OOVASIS # isRoleIn > (<OOVASIS # isRoleIn >)
379

380 AsymmetricObjectProperty (<OOVASIS # isRoleIn >)
381 IrreflexiveObjectProperty (<OOVASIS # isRoleIn >)
382 ObjectPropertyDomain (<OOVASIS # isRoleIn > <OOVASIS #Role >)
383 ObjectPropertyRange (<OOVASIS # isRoleIn > <OOVASIS # OrganizationalUnit >)
384

385 # Object Property: <OOVASIS # isRoleOf > (<OOVASIS # isRoleOf >)
386

387 AsymmetricObjectProperty (<OOVASIS # isRoleOf >)
388 IrreflexiveObjectProperty (<OOVASIS # isRoleOf >)
389 ObjectPropertyDomain (<OOVASIS # isRoleOf > <OOVASIS #Role >)
390 ObjectPropertyRange (<OOVASIS # isRoleOf > <OOVASIS # OrganizationalUnit >)
391

392 # Object Property: <OOVASIS # isTriggeredBy > (<OOVASIS # isTriggeredBy >)
393

394 InverseObjectProperties (<OOVASIS # isTriggeredBy > <OOVASIS # triggers >)
395 ObjectPropertyDomain (<OOVASIS # isTriggeredBy > <OOVASIS # Process >)
396 ObjectPropertyRange (<OOVASIS # isTriggeredBy > <OOVASIS # Strategy >)
397

398 # Object Property: <OOVASIS # modelIndividualsFor > (<OOVASIS #
modelIndividualsFor >)

399

400 ObjectPropertyDomain (<OOVASIS # modelIndividualsFor > <OOVASIS #
OrganizationalIndividuals >)

401 ObjectPropertyRange (<OOVASIS # modelIndividualsFor > <OOVASIS #
OrganizationalArchitecture >)

402

403 # Object Property: <OOVASIS # modelProcessesFor > (<OOVASIS #
modelProcessesFor >)

404

405 ObjectPropertyDomain (<OOVASIS # modelProcessesFor > <OOVASIS #
OrganizationalProcesses >)

193

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

406 ObjectPropertyRange (<OOVASIS # modelProcessesFor > <OOVASIS #
OrganizationalArchitecture >)

407

408 # Object Property: <OOVASIS # modelsChangeFor > (<OOVASIS # modelsChangeFor >)
409

410 ObjectPropertyDomain (<OOVASIS # modelsChangeFor > <OOVASIS #
OrganizationalChange >)

411 ObjectPropertyRange (<OOVASIS # modelsChangeFor > <OOVASIS #
OrganizationalArchitecture >)

412

413 # Object Property: <OOVASIS # modelsCultureFor > (<OOVASIS # modelsCultureFor
>)

414

415 ObjectPropertyDomain (<OOVASIS # modelsCultureFor > <OOVASIS #
OrganizationalCulture >)

416 ObjectPropertyRange (<OOVASIS # modelsCultureFor > <OOVASIS #
OrganizationalArchitecture >)

417

418 # Object Property: <OOVASIS # modelsEnvironmentFor > (<OOVASIS #
modelsEnvironmentFor >)

419

420 ObjectPropertyDomain (<OOVASIS # modelsEnvironmentFor > <OOVASIS #
OrganizationalEnvironment >)

421 ObjectPropertyRange (<OOVASIS # modelsEnvironmentFor > <OOVASIS #
OrganizationalArchitecture >)

422

423 # Object Property: <OOVASIS # modelsStrategyFor > (<OOVASIS #
modelsStrategyFor >)

424

425 ObjectPropertyDomain (<OOVASIS # modelsStrategyFor > <OOVASIS #
OrganizationalStrategy >)

426 ObjectPropertyRange (<OOVASIS # modelsStrategyFor > <OOVASIS #
OrganizationalArchitecture >)

427

428 # Object Property: <OOVASIS # modelsStructureFor > (<OOVASIS #
modelsStructureFor >)

429

430 ObjectPropertyDomain (<OOVASIS # modelsStructureFor > <OOVASIS #
OrganizationalStructure >)

431 ObjectPropertyRange (<OOVASIS # modelsStructureFor > <OOVASIS #
OrganizationalArchitecture >)

432

433 # Object Property: <OOVASIS # performs > (<OOVASIS # performs >)
434

435 InverseFunctionalObjectProperty (<OOVASIS # performs >)
436 AsymmetricObjectProperty (<OOVASIS # performs >)
437 IrreflexiveObjectProperty (<OOVASIS # performs >)

194

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

438 ObjectPropertyDomain (<OOVASIS # performs > <OOVASIS #Agent >)
439 ObjectPropertyRange (<OOVASIS # performs > <OOVASIS # Activity >)
440

441 # Object Property: <OOVASIS # usesAgents > (<OOVASIS # usesAgents >)
442

443 ObjectPropertyDomain (<OOVASIS # usesAgents > <OOVASIS #
OrganizationalIndividuals >)

444 ObjectPropertyRange (<OOVASIS # usesAgents > <OOVASIS #Agent >)
445

446 # Object Property: <OOVASIS # usesCulture > (<OOVASIS # usesCulture >)
447

448 ObjectPropertyDomain (<OOVASIS # usesCulture > <OOVASIS #
OrganizationalCulture >)

449 ObjectPropertyRange (<OOVASIS # usesCulture > <OOVASIS # Culture >)
450

451 # Object Property: <OOVASIS # usesEnvironment > (<OOVASIS # usesEnvironment >)
452

453 InverseObjectProperties (<OOVASIS # usesEnvironment > <MAMbO5 #
EnvironmentIsUsedBy >)

454 ObjectPropertyDomain (<OOVASIS # usesEnvironment > <OOVASIS #
OrganizationalEnvironment >)

455 ObjectPropertyRange (<OOVASIS # usesEnvironment > <OOVASIS #Agent >)
456

457 # Object Property: <OOVASIS # usesProcesses > (<OOVASIS # usesProcesses >)
458

459 ObjectPropertyDomain (<OOVASIS # usesProcesses > <OOVASIS #
OrganizationalProcesses >)

460 ObjectPropertyRange (<OOVASIS # usesProcesses > <OOVASIS # Process >)
461

462 # Object Property: <OOVASIS # usesStrategy > (<OOVASIS # usesStrategy >)
463

464 ObjectPropertyDomain (<OOVASIS # usesStrategy > <OOVASIS #
OrganizationalStrategy >)

465 ObjectPropertyRange (<OOVASIS # usesStrategy > <OOVASIS # Strategy >)
466

467 # Object Property: <OOVASIS # usesStructure > (<OOVASIS # usesStructure >)
468

469 ObjectPropertyDomain (<OOVASIS # usesStructure > <OOVASIS #
OrganizationalStructure >)

470 ObjectPropertyRange (<OOVASIS # usesStructure > <OOVASIS # OrganizationalUnit >
)

471

472 # Object Property: <MAM5# generates_Signal > (<MAM5# generates_Signal >)
473

474 InverseObjectProperties (<MAM5# generates_Signal > <MAM5#
is_Signal_generated_by >)

475 ObjectPropertyDomain (<MAM5# generates_Signal > <MAM5# Artifact >)

195

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

476 ObjectPropertyRange (<MAM5# generates_Signal > <MAM5# Signal >)
477

478 # Object Property: <MAM5# has_Acceleration > (<MAM5# has_Acceleration >)
479

480 ObjectPropertyDomain (<MAM5# has_Acceleration > <MAM5# Physical_Property >)
481 ObjectPropertyRange (<MAM5# has_Acceleration > <MAM5# Vector3D >)
482

483 # Object Property: <MAM5# has_Action > (<MAM5# has_Action >)
484

485 InverseObjectProperties (<MAM5# has_Action > <MAM5# is_Action_of >)
486 ObjectPropertyDomain (<MAM5# has_Action > <MAM5# IVE_Artifact >)
487 ObjectPropertyRange (<MAM5# has_Action > <MAM5# Action >)
488

489 # Object Property: <MAM5# has_Action_Rule > (<MAM5# has_Action_Rule >)
490

491 ObjectPropertyDomain (<MAM5# has_Action_Rule > <MAM5# Action >)
492 ObjectPropertyRange (<MAM5# has_Action_Rule > <MAM5# Action_Rule >)
493

494 # Object Property: <MAM5# has_Agent > (<MAM5# has_Agent >)
495

496 InverseObjectProperties (<MAM5# has_Agent > <MAM5# is_Agent_of >)
497 ObjectPropertyDomain (<MAM5# has_Agent > <MAM5# Workspace >)
498 ObjectPropertyRange (<MAM5# has_Agent > <MAM5#Agent >)
499

500 # Object Property: <MAM5# has_Agent_Action > (<MAM5# has_Agent_Action >)
501

502 InverseObjectProperties (<MAM5# has_Agent_Action > <MAM5# is_Agent_Action_of
>)

503 ObjectPropertyDomain (<MAM5# has_Agent_Action > <MAM5#Agent >)
504 ObjectPropertyRange (<MAM5# has_Agent_Action > <MAM5# Agent_Action >)
505

506 # Object Property: <MAM5# has_Arguments > (<MAM5# has_Arguments >)
507

508 ObjectPropertyDomain (<MAM5# has_Arguments > <MAM5# Action >)
509

510 # Object Property: <MAM5# has_Artifact > (<MAM5# has_Artifact >)
511

512 InverseObjectProperties (<MAM5# has_Artifact > <MAM5# is_Artifact_of >)
513 ObjectPropertyDomain (<MAM5# has_Artifact > <MAM5# Workspace >)
514 ObjectPropertyRange (<MAM5# has_Artifact > <MAM5# Artifact >)
515

516 # Object Property: <MAM5# has_Attribute > (<MAM5# has_Attribute >)
517

518 ObjectPropertyDomain (<MAM5# has_Attribute > <MAM5# Artifact >)
519

520 # Object Property: <MAM5# has_Body_Artifact > (<MAM5# has_Body_Artifact >)
521

196

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

522 InverseObjectProperties (<MAM5# has_Body_Artifact > <MAM5#
is_Body_Artifact_of >)

523 ObjectPropertyDomain (<MAM5# has_Body_Artifact > <MAM5# Inhabitant_Agent >)
524 ObjectPropertyRange (<MAM5# has_Body_Artifact > <MAM5# IVE_Artifact >)
525

526 # Object Property: <MAM5# has_Component > (<MAM5# has_Component >)
527

528 InverseObjectProperties (<MAM5# has_Component > <MAM5# is_Component_of >)
529 ObjectPropertyDomain (<MAM5# has_Component > <MAM5# IVE_Artifact >)
530 ObjectPropertyRange (<MAM5# has_Component > <MAM5# IVE_Artifact >)
531

532 # Object Property: <MAM5# has_Do_Action > (<MAM5# has_Do_Action >)
533

534 ObjectPropertyDomain (<MAM5# has_Do_Action > <MAM5# Action_Rule >)
535

536 # Object Property: <MAM5# has_IVE_Artifact > (<MAM5# has_IVE_Artifact >)
537

538 InverseObjectProperties (<MAM5# has_IVE_Artifact > <MAM5# is_IVE_Artifact_of
>)

539 ObjectPropertyDomain (<MAM5# has_IVE_Artifact > <MAM5# IVE_Workspace >)
540 ObjectPropertyRange (<MAM5# has_IVE_Artifact > <MAM5# IVE_Artifact >)
541

542 # Object Property: <MAM5# has_IVE_Law > (<MAM5# has_IVE_Law >)
543

544 InverseObjectProperties (<MAM5# has_IVE_Law > <MAM5# is_IVE_Law_of >)
545 ObjectPropertyDomain (<MAM5# has_IVE_Law > <MAM5# IVE_Workspace >)
546 ObjectPropertyRange (<MAM5# has_IVE_Law > <MAM5# IVE_Law >)
547

548 # Object Property: <MAM5# has_IVE_Law_Cond_Type > (<MAM5#
has_IVE_Law_Cond_Type >)

549

550 ObjectPropertyDomain (<MAM5# has_IVE_Law_Cond_Type > <MAM5# IVE_Law >)
551 ObjectPropertyRange (<MAM5# has_IVE_Law_Cond_Type > <MAM5# IVE_Law_Condition

>)
552

553 # Object Property: <MAM5# has_IVE_Law_Type > (<MAM5# has_IVE_Law_Type >)
554

555 ObjectPropertyDomain (<MAM5# has_IVE_Law_Type > <MAM5# IVE_Law_Type >)
556 ObjectPropertyRange (<MAM5# has_IVE_Law_Type > ObjectUnionOf (<MAM5#

SimpleType > <MAM5# Vector3D >))
557

558 # Object Property: <MAM5# has_IVE_Workspace > (<MAM5# has_IVE_Workspace >)
559

560 InverseObjectProperties (<MAM5# has_IVE_Workspace > <MAM5#
is_IVE_Workspace_of >)

561 ObjectPropertyDomain (<MAM5# has_IVE_Workspace > <MAM5#IVE >)
562 ObjectPropertyRange (<MAM5# has_IVE_Workspace > <MAM5# IVE_Workspace >)

197

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

563

564 # Object Property: <MAM5# has_Inh_Attribute > (<MAM5# has_Inh_Attribute >)
565

566 ObjectPropertyDomain (<MAM5# has_Inh_Attribute > <MAM5# Inhabitant_Agent >)
567

568 # Object Property: <MAM5# has_Inhabitant_Agent > (<MAM5#
has_Inhabitant_Agent >)

569

570 InverseObjectProperties (<MAM5# has_Inhabitant_Agent > <MAM5#
is_Inhabitant_Agent_of >)

571 ObjectPropertyDomain (<MAM5# has_Inhabitant_Agent > <MAM5# IVE_Workspace >)
572 ObjectPropertyRange (<MAM5# has_Inhabitant_Agent > <MAM5# Inhabitant_Agent >)
573

574 # Object Property: <MAM5# has_Joint > (<MAM5# has_Joint >)
575

576 ObjectPropertyDomain (<MAM5# has_Joint > <MAM5# Physical_Property >)
577 ObjectPropertyRange (<MAM5# has_Joint > <MAM5# Vector3D >)
578

579 # Object Property: <MAM5# has_Observable_Property > (<MAM5#
has_Observable_Property >)

580

581 InverseObjectProperties (<MAM5# has_Observable_Property > <MAM5#
is_Observable_Property_of >)

582 ObjectPropertyDomain (<MAM5# has_Observable_Property > <MAM5# Artifact >)
583 ObjectPropertyRange (<MAM5# has_Observable_Property > <MAM5#

Observable_Property >)
584

585 # Object Property: <MAM5# has_Operation > (<MAM5# has_Operation >)
586

587 InverseObjectProperties (<MAM5# has_Operation > <MAM5# is_Operation_of >)
588 ObjectPropertyDomain (<MAM5# has_Operation > <MAM5# Artifact >)
589 ObjectPropertyRange (<MAM5# has_Operation > <MAM5# Operation >)
590

591 # Object Property: <MAM5# has_Physical_Event > (<MAM5# has_Physical_Event >)
592

593 ObjectPropertyDomain (<MAM5# has_Physical_Event > <MAM5# Action >)
594 ObjectPropertyRange (<MAM5# has_Physical_Event > <MAM5# Physical_Event >)
595

596 # Object Property: <MAM5# has_Physical_Property > (<MAM5#
has_Physical_Property >)

597

598 InverseObjectProperties (<MAM5# has_Physical_Property > <MAM5#
is_Physical_Property_of >)

599 ObjectPropertyDomain (<MAM5# has_Physical_Property > <MAM5# IVE_Artifact >)
600 ObjectPropertyRange (<MAM5# has_Physical_Property > <MAM5# Physical_Property

>)
601

198

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

602 # Object Property: <MAM5# has_Plan > (<MAM5# has_Plan >)
603

604 InverseObjectProperties (<MAM5# has_Plan > <MAM5# is_Plan_of >)
605 ObjectPropertyDomain (<MAM5# has_Plan > <MAM5#Agent >)
606 ObjectPropertyRange (<MAM5# has_Plan > <MAM5#Plan >)
607

608 # Object Property: <MAM5# has_Position > (<MAM5# has_Position >)
609

610 ObjectPropertyDomain (<MAM5# has_Position > <MAM5# Physical_Property >)
611 ObjectPropertyRange (<MAM5# has_Position > <MAM5# Vector3D >)
612

613 # Object Property: <MAM5# has_PreCondition > (<MAM5# has_PreCondition >)
614

615 ObjectPropertyDomain (<MAM5# has_PreCondition > <MAM5# Action_Rule >)
616

617 # Object Property: <MAM5# has_Velocity > (<MAM5# has_Velocity >)
618

619 ObjectPropertyDomain (<MAM5# has_Velocity > <MAM5# Physical_Property >)
620 ObjectPropertyRange (<MAM5# has_Velocity > <MAM5# Vector3D >)
621

622 # Object Property: <MAM5# has_Workspace > (<MAM5# has_Workspace >)
623

624 InverseObjectProperties (<MAM5# has_Workspace > <MAM5# is_Workspace_of >)
625 ObjectPropertyDomain (<MAM5# has_Workspace > <MAM5#IVE >)
626 ObjectPropertyRange (<MAM5# has_Workspace > <MAM5# Workspace >)
627

628 # Object Property: <MAM5# is_Action_of > (<MAM5# is_Action_of >)
629

630 ObjectPropertyDomain (<MAM5# is_Action_of > <MAM5# Action >)
631 ObjectPropertyRange (<MAM5# is_Action_of > <MAM5# IVE_Artifact >)
632

633 # Object Property: <MAM5# is_Agent_Action_of > (<MAM5# is_Agent_Action_of >)
634

635 ObjectPropertyDomain (<MAM5# is_Agent_Action_of > <MAM5# Agent_Action >)
636 ObjectPropertyRange (<MAM5# is_Agent_Action_of > <MAM5#Agent >)
637

638 # Object Property: <MAM5# is_Agent_of > (<MAM5# is_Agent_of >)
639

640 ObjectPropertyDomain (<MAM5# is_Agent_of > <MAM5#Agent >)
641 ObjectPropertyRange (<MAM5# is_Agent_of > <MAM5# Workspace >)
642

643 # Object Property: <MAM5# is_Artifact_of > (<MAM5# is_Artifact_of >)
644

645 ObjectPropertyDomain (<MAM5# is_Artifact_of > <MAM5# Artifact >)
646 ObjectPropertyRange (<MAM5# is_Artifact_of > <MAM5# Workspace >)
647

199

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

648 # Object Property: <MAM5# is_Body_Artifact_of > (<MAM5# is_Body_Artifact_of
>)

649

650 ObjectPropertyDomain (<MAM5# is_Body_Artifact_of > <MAM5# IVE_Artifact >)
651 ObjectPropertyRange (<MAM5# is_Body_Artifact_of > <MAM5# Inhabitant_Agent >)
652

653 # Object Property: <MAM5# is_Component_of > (<MAM5# is_Component_of >)
654

655 ObjectPropertyDomain (<MAM5# is_Component_of > <MAM5# IVE_Artifact >)
656 ObjectPropertyRange (<MAM5# is_Component_of > <MAM5# IVE_Artifact >)
657

658 # Object Property: <MAM5# is_IVE_Artifact_of > (<MAM5# is_IVE_Artifact_of >)
659

660 ObjectPropertyDomain (<MAM5# is_IVE_Artifact_of > <MAM5# IVE_Artifact >)
661 ObjectPropertyRange (<MAM5# is_IVE_Artifact_of > <MAM5# IVE_Workspace >)
662

663 # Object Property: <MAM5# is_IVE_Law_of > (<MAM5# is_IVE_Law_of >)
664

665 ObjectPropertyDomain (<MAM5# is_IVE_Law_of > <MAM5# IVE_Law >)
666 ObjectPropertyRange (<MAM5# is_IVE_Law_of > <MAM5# IVE_Workspace >)
667

668 # Object Property: <MAM5# is_IVE_Workspace_of > (<MAM5# is_IVE_Workspace_of
>)

669

670 ObjectPropertyDomain (<MAM5# is_IVE_Workspace_of > <MAM5# IVE_Workspace >)
671 ObjectPropertyRange (<MAM5# is_IVE_Workspace_of > <MAM5#IVE >)
672

673 # Object Property: <MAM5# is_Inhabitant_Agent_of > (<MAM5#
is_Inhabitant_Agent_of >)

674

675 ObjectPropertyDomain (<MAM5# is_Inhabitant_Agent_of > <MAM5#
Inhabitant_Agent >)

676 ObjectPropertyRange (<MAM5# is_Inhabitant_Agent_of > <MAM5# IVE_Workspace >)
677

678 # Object Property: <MAM5# is_Observable_Property_of > (<MAM5#
is_Observable_Property_of >)

679

680 ObjectPropertyDomain (<MAM5# is_Observable_Property_of > <MAM5#
Observable_Property >)

681 ObjectPropertyRange (<MAM5# is_Observable_Property_of > <MAM5# Artifact >)
682

683 # Object Property: <MAM5# is_Operation_of > (<MAM5# is_Operation_of >)
684

685 ObjectPropertyDomain (<MAM5# is_Operation_of > <MAM5# Operation >)
686 ObjectPropertyRange (<MAM5# is_Operation_of > <MAM5# Artifact >)
687

200

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

688 # Object Property: <MAM5# is_Physical_Property_of > (<MAM5#
is_Physical_Property_of >)

689

690 ObjectPropertyDomain (<MAM5# is_Physical_Property_of > <MAM5#
Physical_Property >)

691 ObjectPropertyRange (<MAM5# is_Physical_Property_of > <MAM5# IVE_Artifact >)
692

693 # Object Property: <MAM5# is_Plan_of > (<MAM5# is_Plan_of >)
694

695 ObjectPropertyDomain (<MAM5# is_Plan_of > <MAM5#Plan >)
696 ObjectPropertyRange (<MAM5# is_Plan_of > <MAM5#Agent >)
697

698 # Object Property: <MAM5# is_Signal_generated_by > (<MAM5#
is_Signal_generated_by >)

699

700 ObjectPropertyDomain (<MAM5# is_Signal_generated_by > <MAM5# Signal >)
701 ObjectPropertyRange (<MAM5# is_Signal_generated_by > <MAM5# Artifact >)
702

703 # Object Property: <MAM5# is_Workspace_of > (<MAM5# is_Workspace_of >)
704

705 ObjectPropertyDomain (<MAM5# is_Workspace_of > <MAM5# Workspace >)
706 ObjectPropertyRange (<MAM5# is_Workspace_of > <MAM5#IVE >)
707

708 # Object Property: <MAMbO5 # consistsOf > (<MAMbO5 # consistsOf >)
709

710 InverseObjectProperties (<MAMbO5 # consistsOf > <MAMbO5 # isPartOf >)
711 ObjectPropertyDomain (<MAMbO5 # consistsOf > <OOVASIS # OrganizationalUnit >)
712 ObjectPropertyRange (<MAMbO5 # consistsOf > <OOVASIS # OrganizationalUnit >)
713

714 # Object Property: <MAMbO5 # hasActiveNorms > (<MAMbO5 # hasActiveNorms >)
715

716 InverseObjectProperties (<MAMbO5 # hasActiveNorms > <MAMbO5 # isActiveWithin >)
717

718 # Object Property: <MAMbO5 # isActiveWithin > (<MAMbO5 # isActiveWithin >)
719

720 ObjectPropertyDomain (<MAMbO5 # isActiveWithin > <MAM5# IVE_Law >)
721 ObjectPropertyRange (<MAMbO5 # isActiveWithin > <MAM5# IVE_Workspace >)
722

723 # Object Property: <http: // www. semanticweb .org/ bogdan / ontologies /2017/4/
MAMbO5ExampleScenario # playsRole > (<http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # playsRole >)

724

725 AnnotationAssertion (rdfs:comment <http: // www. semanticweb .org/ bogdan /
ontologies /2017/4/ MAMbO5ExampleScenario # playsRole > " Defines which
role is played by which agent at the moment of modelling .")

726 SubObjectPropertyOf (<http: // www. semanticweb .org/ bogdan / ontologies
/2017/4/ MAMbO5ExampleScenario # playsRole > <OOVASIS # hasRole >)

201

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

727 AsymmetricObjectProperty (<http: // www. semanticweb .org/ bogdan / ontologies
/2017/4/ MAMbO5ExampleScenario # playsRole >)

728 IrreflexiveObjectProperty (<http: // www. semanticweb .org/ bogdan / ontologies
/2017/4/ MAMbO5ExampleScenario # playsRole >)

729

730

731 ############################
732 # Data Properties
733 ############################
734

735 # Data Property: <MAM5# Action > (<MAM5# Action >)
736

737 AnnotationAssertion (rdfs:comment <MAM5# Action > " Action as an effect -
inducing function of an artefact ."@en)

738 DataPropertyDomain (<MAM5# Action > <MAM5# IVE_Law >)
739 DataPropertyRange (<MAM5# Action > xsd:string)
740

741 # Data Property: <MAM5# Agent_Code_File > (<MAM5# Agent_Code_File >)
742

743 DataPropertyDomain (<MAM5# Agent_Code_File > <MAM5#Agent >)
744 DataPropertyRange (<MAM5# Agent_Code_File > xsd:string)
745

746 # Data Property: <MAM5#Angle > (<MAM5#Angle >)
747

748 DataPropertyDomain (<MAM5#Angle > <MAM5# Physical_Property >)
749 DataPropertyRange (<MAM5#Angle > xsd:float)
750

751 # Data Property: <MAM5# Artifact_Code_File > (<MAM5# Artifact_Code_File >)
752

753 DataPropertyDomain (<MAM5# Artifact_Code_File > <MAM5# Artifact >)
754 DataPropertyRange (<MAM5# Artifact_Code_File > xsd:string)
755

756 # Data Property: <MAM5# Condition > (<MAM5# Condition >)
757

758 DataPropertyDomain (<MAM5# Condition > <MAM5# IVE_Law >)
759 DataPropertyRange (<MAM5# Condition > xsd:string)
760

761 # Data Property: <MAM5#File > (<MAM5#File >)
762

763 DataPropertyDomain (<MAM5#File > owl:Thing)
764 DataPropertyRange (<MAM5#File > xsd:string)
765

766 # Data Property: <MAM5# IVE_Law_Action > (<MAM5# IVE_Law_Action >)
767

768 DataPropertyDomain (<MAM5# IVE_Law_Action > <MAM5# IVE_Law >)
769 DataPropertyRange (<MAM5# IVE_Law_Action > xsd:string)
770

202

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

771 # Data Property: <MAM5# IVE_Law_Condition > (<MAM5# IVE_Law_Condition >)
772

773 DataPropertyDomain (<MAM5# IVE_Law_Condition > <MAM5# IVE_Law_Condition >)
774 DataPropertyRange (<MAM5# IVE_Law_Condition > xsd:string)
775

776 # Data Property: <MAM5# IVE_Law_Sentence > (<MAM5# IVE_Law_Sentence >)
777

778 DataPropertyDomain (<MAM5# IVE_Law_Sentence > <MAM5# IVE_Law_Condition >)
779 DataPropertyRange (<MAM5# IVE_Law_Sentence > xsd:string)
780

781 # Data Property: <MAM5# IVE_Law_Type > (<MAM5# IVE_Law_Type >)
782

783 DataPropertyDomain (<MAM5# IVE_Law_Type > <MAM5# IVE_Law >)
784 DataPropertyRange (<MAM5# IVE_Law_Type > DataUnionOf (xsd:boolean xsd:double

xsd:float xsd:int xsd:string))
785

786 # Data Property: <MAM5# Linkeable > (<MAM5# Linkeable >)
787

788 DataPropertyDomain (<MAM5# Linkeable > <MAM5# Artifact >)
789 DataPropertyRange (<MAM5# Linkeable > xsd:string)
790

791 # Data Property: <MAM5# Manual > (<MAM5# Manual >)
792

793 AnnotationAssertion (rdfs:comment <MAM5# Manual > "Used to define Artifacts
and describe how to use them."@en)

794 DataPropertyDomain (<MAM5# Manual > <MAM5# Artifact >)
795 DataPropertyRange (<MAM5# Manual > xsd:string)
796

797 # Data Property: <MAM5#Mass > (<MAM5#Mass >)
798

799 DataPropertyDomain (<MAM5#Mass > <MAM5# Physical_Property >)
800 DataPropertyRange (<MAM5#Mass > xsd:float)
801

802 # Data Property: <MAM5#Name > (<MAM5#Name >)
803

804 DataPropertyDomain (<MAM5#Name > owl:Thing)
805 DataPropertyRange (<MAM5#Name > xsd:string)
806

807 # Data Property: <MAM5# Operand_Type > (<MAM5# Operand_Type >)
808

809 DataPropertyDomain (<MAM5# Operand_Type > owl:Thing)
810 DataPropertyRange (<MAM5# Operand_Type > DataOneOf ("ADD" "AND" " BOOLEAN_VAL

" " DIVIDE " " DOUBLE_VAL " " ELEMENT_ATT " " ELEMENT_PROP " "EQUAL" "
FLOAT_VAL " " GREATERTHAN " " INT_VAL " " LESSTHAN " "MOD" " MULTIPLY " "OR" "
PARAMETER " " STRING_VAL " " SUBSTRACT " " UNEQUAL "))

811

203

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

812 # Data Property: <MAM5# Physical_Property_Type > (<MAM5#
Physical_Property_Type >)

813

814 DataPropertyDomain (<MAM5# Physical_Property_Type > <MAM5# Physical_Property
>)

815 DataPropertyRange (<MAM5# Physical_Property_Type > DataOneOf (" Internal " "
Perceivable "))

816

817 # Data Property: <MAM5#Shape > (<MAM5#Shape >)
818

819 DataPropertyDomain (<MAM5#Shape > <MAM5# Physical_Property >)
820 DataPropertyRange (<MAM5#Shape > xsd:string)
821

822 # Data Property: <MAM5#X> (<MAM5#X>)
823

824 DataPropertyDomain (<MAM5#X> <MAM5# Vector3D >)
825 DataPropertyRange (<MAM5#X> xsd:float)
826

827 # Data Property: <MAM5#Y> (<MAM5#Y>)
828

829 DataPropertyDomain (<MAM5#Y> <MAM5# Vector3D >)
830 DataPropertyRange (<MAM5#Y> xsd:float)
831

832 # Data Property: <MAM5#Z> (<MAM5#Z>)
833

834 DataPropertyDomain (<MAM5#Z> <MAM5# Vector3D >)
835 DataPropertyRange (<MAM5#Z> xsd:float)
836

837 # Data Property: <MAM5# has_SimpleValue > (<MAM5# has_SimpleValue >)
838

839 DataPropertyDomain (<MAM5# has_SimpleValue > <MAM5# SimpleType >)
840 DataPropertyRange (<MAM5# has_SimpleValue > DataUnionOf (xsd:boolean

xsd:double xsd:float xsd:integer xsd:string))
841

842 # Data Property: <MAMbO5 #hasID > (<MAMbO5 #hasID >)
843

844 SubDataPropertyOf (<MAMbO5 #hasID > <MAM5#Name >)
845 FunctionalDataProperty (<MAMbO5 #hasID >)
846

847 # Data Property: <MAMbO5 # isRelevantAtTime > (<MAMbO5 # isRelevantAtTime >)
848

849 DataPropertyDomain (<MAMbO5 # isRelevantAtTime > <MAMbO5 # TimeDependentNorm >)
850 DataPropertyRange (<MAMbO5 # isRelevantAtTime > xsd:dateTime)
851

852

853

854 ############################

204

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

855 # Classes
856 ############################
857

858 # Class: <OOVASIS # AcademicStructure > (<OOVASIS # AcademicStructure >)
859

860 AnnotationAssertion (rdfs:comment <OOVASIS # AcademicStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Akademska %20 organizacijska %20 struktura for details ")

861 SubClassOf (<OOVASIS # AcademicStructure > <OOVASIS # HybridStructure >)
862

863 # Class: <OOVASIS # AcquisitionStructure > (<OOVASIS # AcquisitionStructure >)
864

865 AnnotationAssertion (rdfs:comment <OOVASIS # AcquisitionStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Spajanja %20i%20 preuzimanja for details ")

866 SubClassOf (<OOVASIS # AcquisitionStructure > <OOVASIS # SuperStructure >)
867

868 # Class: <OOVASIS # Activity > (<OOVASIS # Activity >)
869

870 AnnotationAssertion (rdfs:comment <OOVASIS # Activity > "Any atomic activity
performed by some individual agent

871 ")
872 EquivalentClasses (<OOVASIS # Activity > <OOVASIS # Behavior >)
873 EquivalentClasses (<OOVASIS # Activity > <OOVASIS # Behavior > <MAM5#

Agent_Action >)
874 SubClassOf (<OOVASIS # Activity > <OOVASIS # Process >)
875 SubClassOf (<OOVASIS # Activity > ObjectIntersectionOf (ObjectMinCardinality

(1 <OOVASIS # achieves > <OOVASIS # Objective >) ObjectExactCardinality (1 <
OOVASIS # isPerformedBy > <OOVASIS #Agent >)))

876 DisjointClasses (<OOVASIS # Activity > <OOVASIS #Agent >)
877 DisjointClasses (<OOVASIS # Activity > <OOVASIS # CriteriaOfOrganizing >)
878 DisjointClasses (<OOVASIS # Activity > <OOVASIS # OrganizationalUnit >)
879 DisjointClasses (<OOVASIS # Activity > <OOVASIS #Role >)
880

881 # Class: <OOVASIS # AdhocracyStructure > (<OOVASIS # AdhocracyStructure >)
882

883 AnnotationAssertion (rdfs:comment <OOVASIS # AdhocracyStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=Ad -
hoc %20 suprastrukture %20(ad -hoc - kracije) for details ")

884 SubClassOf (<OOVASIS # AdhocracyStructure > <OOVASIS # SuperStructure >)
885

886 # Class: <OOVASIS #Agent > (<OOVASIS #Agent >)
887

888 AnnotationAssertion (rdfs:comment <OOVASIS #Agent > "A person or thing (or
piece of software of course) that takes an active role or produces a
specified effect ")

889 SubClassOf (<OOVASIS #Agent > <OOVASIS # OrganizationalUnit >)

205

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

890 SubClassOf (<OOVASIS #Agent > ObjectIntersectionOf (ObjectSomeValuesFrom (<
OOVASIS # hasAccessTo > <OOVASIS # KnowledgeArtifact >)
ObjectSomeValuesFrom (<OOVASIS # performs > <OOVASIS # Activity >)
ObjectAllValuesFrom (<OOVASIS # hasAccessTo > <OOVASIS # KnowledgeArtifact >
) ObjectAllValuesFrom (<OOVASIS # performs > <OOVASIS # Activity >)))

891 DisjointClasses (<OOVASIS #Agent > <OOVASIS # CriteriaOfOrganizing >)
892 DisjointClasses (<OOVASIS #Agent > <OOVASIS # Process >)
893 DisjointClasses (<OOVASIS #Agent > <OOVASIS #Role >)
894

895 # Class: <OOVASIS # AmoebaStructure > (<OOVASIS # AmoebaStructure >)
896

897 AnnotationAssertion (rdfs:comment <OOVASIS # AmoebaStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Organizacijska %20 struktura %20 amebe for details ")

898 SubClassOf (<OOVASIS # AmoebaStructure > <OOVASIS # AdhocracyStructure >)
899

900 # Class: <OOVASIS # Behavior > (<OOVASIS # Behavior >)
901

902 AnnotationAssertion (rdfs:comment <OOVASIS # Behavior > "An agent behavior
is some kind of activity performed by some agent. It has to be
acceptable by a normative system the agent belongs to.")

903 EquivalentClasses (<OOVASIS # Behavior > <MAM5# Agent_Action >)
904 SubClassOf (<OOVASIS # Behavior > <OOVASIS # Process >)
905 SubClassOf (<OOVASIS # Behavior > ObjectIntersectionOf (ObjectSomeValuesFrom (

<OOVASIS # isAcceptedBy > <OOVASIS # NormativeSystem >) ObjectAllValuesFrom
(<OOVASIS # isAcceptedBy > <OOVASIS # NormativeSystem >)))

906

907 # Class: <OOVASIS # BioteamingOrganization > (<OOVASIS #
BioteamingOrganization >)

908

909 AnnotationAssertion (rdfs:comment <OOVASIS # BioteamingOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Biotimovi for details ")

910 SubClassOf (<OOVASIS # BioteamingOrganization > <OOVASIS #
OrganizationalArchitecture >)

911

912 # Class: <OOVASIS # BusinessProcessReengineering > (<OOVASIS #
BusinessProcessReengineering >)

913

914 AnnotationAssertion (rdfs:comment <OOVASIS # BusinessProcessReengineering >
"See http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&
page=Rein%C5% BEenjering %20 poslovnih %20 procesa for details ")

915 SubClassOf (<OOVASIS # BusinessProcessReengineering > <OOVASIS #
OrganizationalDesignMethod >)

916

917 # Class: <OOVASIS # ClientServerBehavior > (<OOVASIS # ClientServerBehavior >)
918

206

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

919 AnnotationAssertion (rdfs:comment <OOVASIS # ClientServerBehavior > "
Behavior which resembles the client - server model , e.g. the client
sends requests , the server responds to them")

920 SubClassOf (<OOVASIS # ClientServerBehavior > <OOVASIS # Activity >)
921 SubClassOf (<OOVASIS # ClientServerBehavior > <OOVASIS # Behavior >)
922 SubClassOf (<OOVASIS # ClientServerBehavior > <MAM5# Agent_Action >)
923

924 # Class: <OOVASIS # ClusterStructure > (<OOVASIS # ClusterStructure >)
925

926 AnnotationAssertion (rdfs:comment <OOVASIS # ClusterStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page= Klaster
%20 organizacijska %20 struktura for details ")

927 SubClassOf (<OOVASIS # ClusterStructure > <OOVASIS # StableSuperStructure >)
928 DisjointClasses (<OOVASIS # ClusterStructure > <OOVASIS # StarburstStructure >)
929

930 # Class: <OOVASIS # CommunitiesOfPractice > (<OOVASIS # CommunitiesOfPractice
>)

931

932 AnnotationAssertion (rdfs:comment <OOVASIS # CommunitiesOfPractice > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Dru%C5%A1tva %20 razmjene %20 najboljih %20 praksi for details ")

933 SubClassOf (<OOVASIS # CommunitiesOfPractice > <OOVASIS #
OrganizationalDesignMethod >)

934

935 # Class: <OOVASIS # ComplexAnalyticalMethod > (<OOVASIS #
ComplexAnalyticalMethod >)

936

937 AnnotationAssertion (rdfs:comment <OOVASIS # ComplexAnalyticalMethod > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Kompleksna %20 analiti %C4%8 Dka %20 metoda for details ")

938 SubClassOf (<OOVASIS # ComplexAnalyticalMethod > <OOVASIS #
OrganizationalDesignMethod >)

939

940 # Class: <OOVASIS # CriteriaOfOrganizing > (<OOVASIS # CriteriaOfOrganizing >)
941

942 AnnotationAssertion (rdfs:comment <OOVASIS # CriteriaOfOrganizing > "A
particular criteria for organizing things like processes ,
organizational units , strategies or cultural artifacts .")

943 DisjointClasses (<OOVASIS # CriteriaOfOrganizing > <OOVASIS #
OrganizationalUnit >)

944 DisjointClasses (<OOVASIS # CriteriaOfOrganizing > <OOVASIS # Process >)
945 DisjointClasses (<OOVASIS # CriteriaOfOrganizing > <OOVASIS #Role >)
946

947 # Class: <OOVASIS # Culture > (<OOVASIS # Culture >)
948

949 AnnotationAssertion (rdfs:comment <OOVASIS # Culture > " Organizational
culture in organizations is a complex cybernetic system that deals

207

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

with various intangible aspects of organizational behavior including
but not limited to language , symbols , rituals , customs , norms ,
methods of problem solving , knowledge , learning etc.

950 ")
951

952 # Class: <OOVASIS # CultureRelation > (<OOVASIS # CultureRelation >)
953

954 AnnotationAssertion (rdfs:comment <OOVASIS # CultureRelation > "A relation
between cultural artifacts (e.g. knowledge , norms etc .) in the
organizational culture perspective ")

955 SubClassOf (<OOVASIS # CultureRelation > <OOVASIS # RelationValuePartition >)
956

957 # Class: <OOVASIS # CustomerOrientedStructure > (<OOVASIS #
CustomerOrientedStructure >)

958

959 AnnotationAssertion (rdfs:comment <OOVASIS # CustomerOrientedStructure > "
See http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&
page= Organizacijska %20 struktura %20 orijentirana %20 prema %20 potro%C5%A1a
%C4%8 Dima for details ")

960 SubClassOf (<OOVASIS # CustomerOrientedStructure > <OOVASIS #
DivisionalStructure >)

961

962 # Class: <OOVASIS # DivisionalStructure > (<OOVASIS # DivisionalStructure >)
963

964 AnnotationAssertion (rdfs:comment <OOVASIS # DivisionalStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Divizionalna %20 organizacijska %20 struktura for details ")

965 SubClassOf (<OOVASIS # DivisionalStructure > <OOVASIS # HierarchicalStructure >
)

966

967 # Class: <OOVASIS # DynamicNetworkStructure > (<OOVASIS #
DynamicNetworkStructure >)

968

969 AnnotationAssertion (rdfs:comment <OOVASIS # DynamicNetworkStructure > "See:
970 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Dinami %C4%8 Dna %20 mre%C5%BEa
971 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page =%C5

% A0pageti %20 organizacijska %20 struktura
972 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Hollywoodska %20 organizacijska %20 struktura
973 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Umre%C5%BEena %20 organizacijska %20 struktura
974 for details ")
975 SubClassOf (<OOVASIS # DynamicNetworkStructure > <OOVASIS #

HeterarchicalStructure >)
976

208

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

977 # Class: <OOVASIS # EmpoweredOrganization > (<OOVASIS # EmpoweredOrganization
>)

978

979 AnnotationAssertion (rdfs:comment <OOVASIS # EmpoweredOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Osna%C5%BEena %20 organizacija for details ")

980 SubClassOf (<OOVASIS # EmpoweredOrganization > <OOVASIS #
OrganizationalArchitecture >)

981

982 # Class: <OOVASIS # FiniteStateMachineBehavior > (<OOVASIS #
FiniteStateMachineBehavior >)

983

984 AnnotationAssertion (rdfs:comment <OOVASIS # FiniteStateMachineBehavior > "A
behavior which resembles a finite state machine in which every node

is
985 an activity to be performed ")
986 SubClassOf (<OOVASIS # FiniteStateMachineBehavior > <OOVASIS # Activity >)
987 SubClassOf (<OOVASIS # FiniteStateMachineBehavior > <OOVASIS # Behavior >)
988 SubClassOf (<OOVASIS # FiniteStateMachineBehavior > <MAM5# Agent_Action >)
989

990 # Class: <OOVASIS # FishnetStructure > (<OOVASIS # FishnetStructure >)
991

992 AnnotationAssertion (rdfs:comment <OOVASIS # FishnetStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Organizacijska %20 struktura %20 ribarske %20 mre%C5%BEe for details ")

993 SubClassOf (<OOVASIS # FishnetStructure > <OOVASIS # HeterarchicalStructure >)
994

995 # Class: <OOVASIS # FractalStructure > (<OOVASIS # FractalStructure >)
996

997 AnnotationAssertion (rdfs:comment <OOVASIS # FractalStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Fraktalna %20 organizacijska %20 struktura %20i%20 koncept %20 kaosa %20u%20
organizaciji for details ")

998 SubClassOf (<OOVASIS # FractalStructure > <OOVASIS # SuperStructure >)
999

1000 # Class: <OOVASIS # FrontBackStructure > (<OOVASIS # FrontBackStructure >)
1001

1002 AnnotationAssertion (rdfs:comment <OOVASIS # FrontBackStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Pramac /krma %20 organizacijska %20 struktura for details ")

1003 SubClassOf (<OOVASIS # FrontBackStructure > <OOVASIS # HybridStructure >)
1004

1005 # Class: <OOVASIS # FunctionalStructure > (<OOVASIS # FunctionalStructure >)
1006

1007 AnnotationAssertion (rdfs:comment <OOVASIS # FunctionalStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Funkcionalna %20 organizacijska %20 struktura for details ")

209

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1008 SubClassOf (<OOVASIS # FunctionalStructure > <OOVASIS # HierarchicalStructure >
)

1009

1010 # Class: <OOVASIS # HeterarchicalStructure > (<OOVASIS #
HeterarchicalStructure >)

1011

1012 AnnotationAssertion (rdfs:comment <OOVASIS # HeterarchicalStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Heterarhijske %20 strukture for details ")

1013 SubClassOf (<OOVASIS # HeterarchicalStructure > <OOVASIS #
OrganizationalStructure >)

1014

1015 # Class: <OOVASIS # HierarchicalStructure > (<OOVASIS # HierarchicalStructure
>)

1016

1017 AnnotationAssertion (rdfs:comment <OOVASIS # HierarchicalStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Hijerarhijske %20 strukture for details ")

1018 SubClassOf (<OOVASIS # HierarchicalStructure > <OOVASIS #
OrganizationalStructure >)

1019

1020 # Class: <OOVASIS # HybridStructure > (<OOVASIS # HybridStructure >)
1021

1022 AnnotationAssertion (rdfs:comment <OOVASIS # HybridStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Hibridne %20 strukture for details ")

1023 SubClassOf (<OOVASIS # HybridStructure > <OOVASIS # OrganizationalStructure >)
1024

1025 # Class: <OOVASIS # HypertextOrganization > (<OOVASIS # HypertextOrganization
>)

1026

1027 AnnotationAssertion (rdfs:comment <OOVASIS # HypertextOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Hipertekst %20 organizacija for details ")

1028 SubClassOf (<OOVASIS # HypertextOrganization > <OOVASIS #
OrganizationalArchitecture >)

1029

1030 # Class: <OOVASIS # InfiniteFlatHierarchyStructure > (<OOVASIS #
InfiniteFlatHierarchyStructure >)

1031

1032 AnnotationAssertion (rdfs:comment <OOVASIS # InfiniteFlatHierarchyStructure
> "See http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =
NULL&page= Beskona %C4%8 Dno %20 plitka %20 organizacijska %20 struktura for
details ")

1033 SubClassOf (<OOVASIS # InfiniteFlatHierarchyStructure > <OOVASIS #
HeterarchicalStructure >)

1034

210

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1035 # Class: <OOVASIS # InternalMarketStructure > (<OOVASIS #
InternalMarketStructure >)

1036

1037 AnnotationAssertion (rdfs:comment <OOVASIS # InternalMarketStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Unutarnja %20 tr%C5%BEi%C5%A1ta for details ")

1038 SubClassOf (<OOVASIS # InternalMarketStructure > <OOVASIS #
HeterarchicalStructure >)

1039

1040 # Class: <OOVASIS # InvertedStructure > (<OOVASIS # InvertedStructure >)
1041

1042 AnnotationAssertion (rdfs:comment <OOVASIS # InvertedStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Izvrnuta %20 organizacijska %20 struktura for details ")

1043 SubClassOf (<OOVASIS # InvertedStructure > <OOVASIS # HybridStructure >)
1044

1045 # Class: <OOVASIS # ItineraryBehavior > (<OOVASIS # ItineraryBehavior >)
1046

1047 AnnotationAssertion (rdfs:comment <OOVASIS # ItineraryBehavior > " Behavior
which allows mobile agents to travel across various locations and
perform tasks")

1048 SubClassOf (<OOVASIS # ItineraryBehavior > <OOVASIS # Activity >)
1049 SubClassOf (<OOVASIS # ItineraryBehavior > <OOVASIS # Behavior >)
1050 SubClassOf (<OOVASIS # ItineraryBehavior > <MAM5# Agent_Action >)
1051

1052 # Class: <OOVASIS # Kaizen > (<OOVASIS # Kaizen >)
1053

1054 AnnotationAssertion (rdfs:comment <OOVASIS # Kaizen > "See http: //ai.foi.hr/
oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page= Kaizen for
details ")

1055 SubClassOf (<OOVASIS # Kaizen > <OOVASIS # OrganizationalDesignMethod >)
1056

1057 # Class: <OOVASIS # KnowledgeArtifact > (<OOVASIS # KnowledgeArtifact >)
1058

1059 AnnotationAssertion (rdfs:comment <OOVASIS # KnowledgeArtifact > "By
knowledge artifact we understand a wide range of explicit knowledge
in which we assume that it is queriable by the agent , including but
not limited to data and knowledge bases , neural networks and machine
learning architectures , various information services etc.

1060 ")
1061 SubClassOf (<OOVASIS # KnowledgeArtifact > <OOVASIS #

OrganizationalKnowledgeNetwork >)
1062 SubClassOf (<OOVASIS # KnowledgeArtifact > <MAM5# Artifact >)
1063 SubClassOf (<OOVASIS # KnowledgeArtifact > ObjectIntersectionOf (

ObjectSomeValuesFrom (<OOVASIS # isAccessibleTo > <OOVASIS #Agent >)
ObjectAllValuesFrom (<OOVASIS # isAccessibleTo > <OOVASIS #Agent >)))

1064

211

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1065 # Class: <OOVASIS # LeanManagement > (<OOVASIS # LeanManagement >)
1066

1067 AnnotationAssertion (rdfs:comment <OOVASIS # LeanManagement > "See http: //ai
.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=Vitki %20
menad%C5% BEment for details ")

1068 SubClassOf (<OOVASIS # LeanManagement > <OOVASIS # OrganizationalDesignMethod >
)

1069

1070 # Class: <OOVASIS # LearningOrganization > (<OOVASIS # LearningOrganization >)
1071

1072 AnnotationAssertion (rdfs:comment <OOVASIS # LearningOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Organizacija %20 koja %20u%C4%8Di for details ")

1073 SubClassOf (<OOVASIS # LearningOrganization > <OOVASIS #
OrganizationalArchitecture >)

1074

1075 # Class: <OOVASIS # ListenerBehavior > (<OOVASIS # ListenerBehavior >)
1076

1077 AnnotationAssertion (rdfs:comment <OOVASIS # ListenerBehavior > "A special
type of observer behavior in which and agent awaits a message of some

other agent")
1078 SubClassOf (<OOVASIS # ListenerBehavior > <OOVASIS # ObserverBehavior >)
1079

1080 # Class: <OOVASIS # MatrixStructure > (<OOVASIS # MatrixStructure >)
1081

1082 AnnotationAssertion (rdfs:comment <OOVASIS # MatrixStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=Matri%
C4%8 Dna %20 organizacijska %20 struktura for details ")

1083 SubClassOf (<OOVASIS # MatrixStructure > <OOVASIS # HierarchicalStructure >)
1084

1085 # Class: <OOVASIS # MergerStructure > (<OOVASIS # MergerStructure >)
1086

1087 AnnotationAssertion (rdfs:comment <OOVASIS # MergerStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Spajanja %20i%20 preuzimanja for details ")

1088 SubClassOf (<OOVASIS # MergerStructure > <OOVASIS # SuperStructure >)
1089

1090 # Class: <OOVASIS #Norm > (<OOVASIS #Norm >)
1091

1092 AnnotationAssertion (rdfs:comment <OOVASIS #Norm > "Norms are defined as (
socially) accepted behavior in a defined group and represent a
blueprint for behaving in said group")

1093 SubClassOf (<OOVASIS #Norm > <OOVASIS # KnowledgeArtifact >)
1094

1095 # Class: <OOVASIS # NormativeSystem > (<OOVASIS # NormativeSystem >)
1096

212

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1097 AnnotationAssertion (rdfs:comment <OOVASIS # NormativeSystem > "A normative
system is a system of norms which apply to some organizational unit")

1098 SubClassOf (<OOVASIS # NormativeSystem > <OOVASIS #
OrganizationalKnowledgeNetwork >)

1099

1100 # Class: <OOVASIS # Objective > (<OOVASIS # Objective >)
1101

1102 AnnotationAssertion (rdfs:comment <OOVASIS # Objective > "Any measurable
objective that can be achieved by an atomic activity . Objectives can
trigger processes .

1103 ")
1104 SubClassOf (<OOVASIS # Objective > <OOVASIS # Strategy >)
1105 SubClassOf (<OOVASIS # Objective > ObjectIntersectionOf (ObjectSomeValuesFrom

(<OOVASIS # isAchievedBy > <OOVASIS # Activity >) ObjectSomeValuesFrom (<
OOVASIS # triggers > <OOVASIS # Process >) ObjectAllValuesFrom (<OOVASIS #
triggers > <OOVASIS # Process >)))

1106

1107 # Class: <OOVASIS # ObserverBehavior > (<OOVASIS # ObserverBehavior >)
1108

1109 AnnotationAssertion (rdfs:comment <OOVASIS # ObserverBehavior > " Behavior in
which an agents awaits an event in order to perform its actions ")

1110 SubClassOf (<OOVASIS # ObserverBehavior > <OOVASIS # Activity >)
1111 SubClassOf (<OOVASIS # ObserverBehavior > <OOVASIS # Behavior >)
1112 SubClassOf (<OOVASIS # ObserverBehavior > <MAM5# Agent_Action >)
1113

1114 # Class: <OOVASIS # OneShotBehavior > (<OOVASIS # OneShotBehavior >)
1115

1116 AnnotationAssertion (rdfs:comment <OOVASIS # OneShotBehavior > "A behavior
which represents a simple task or activity which is stopped after
performance ")

1117 SubClassOf (<OOVASIS # OneShotBehavior > <OOVASIS # Activity >)
1118 SubClassOf (<OOVASIS # OneShotBehavior > <OOVASIS # Behavior >)
1119 SubClassOf (<OOVASIS # OneShotBehavior > <MAM5# Agent_Action >)
1120

1121 # Class: <OOVASIS # OpenOrganization > (<OOVASIS # OpenOrganization >)
1122

1123 AnnotationAssertion (rdfs:comment <OOVASIS # OpenOrganization > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Otvorena %20 organizacija for details ")

1124 SubClassOf (<OOVASIS # OpenOrganization > <OOVASIS #
OrganizationalArchitecture >)

1125

1126 # Class: <OOVASIS # OrganizationalArchitecture > (<OOVASIS #
OrganizationalArchitecture >)

1127

1128 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalArchitecture > "A
model of an agent organization consisting of various perspectives

213

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

including structure , culture , processes , strategy and individuals .")
1129 EquivalentClasses (<OOVASIS # OrganizationalArchitecture >

ObjectIntersectionOf (ObjectMinCardinality (1 <OOVASIS # hasChange > <
OOVASIS # OrganizationalChange >) ObjectMinCardinality (1 <OOVASIS #
hasCulture > <OOVASIS # OrganizationalCulture >) ObjectMinCardinality (1 <
OOVASIS # hasEnvironment > <OOVASIS # OrganizationalEnvironment >)
ObjectMinCardinality (1 <OOVASIS # hasIndividuals > <OOVASIS #
OrganizationalIndividuals >) ObjectMinCardinality (1 <OOVASIS #
hasProcesses > <OOVASIS # OrganizationalProcesses >) ObjectMinCardinality
(1 <OOVASIS # hasStrategy > <OOVASIS # OrganizationalStrategy >)
ObjectMinCardinality (1 <OOVASIS # hasStructure > <OOVASIS #
OrganizationalStructure >)))

1130

1131 # Class: <OOVASIS # OrganizationalChange > (<OOVASIS # OrganizationalChange >)
1132

1133 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalChange > "A model
of organizational change in some agent organization (possibly

influenced by some organizational design method)")
1134 EquivalentClasses (<OOVASIS # OrganizationalChange > ObjectIntersectionOf (

ObjectSomeValuesFrom (<OOVASIS # modelsChangeFor > <OOVASIS #
OrganizationalArchitecture >) ObjectSomeValuesFrom (<OOVASIS # usesChange
> <OOVASIS # OrganizationalDesignMethod >) ObjectAllValuesFrom (<OOVASIS #
modelsChangeFor > <OOVASIS # OrganizationalArchitecture >)))

1135

1136 # Class: <OOVASIS # OrganizationalCulture > (<OOVASIS # OrganizationalCulture
>)

1137

1138 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalCulture > "A
model of an agent organization ’s culture ")

1139 EquivalentClasses (<OOVASIS # OrganizationalCulture > ObjectIntersectionOf (
ObjectSomeValuesFrom (<OOVASIS # modelsCultureFor > <OOVASIS #
OrganizationalArchitecture >) ObjectAllValuesFrom (<OOVASIS #
modelsCultureFor > <OOVASIS # OrganizationalArchitecture >)
ObjectAllValuesFrom (<OOVASIS # usesCulture > <OOVASIS # Culture >)))

1140

1141 # Class: <OOVASIS # OrganizationalDesignMethod > (<OOVASIS #
OrganizationalDesignMethod >)

1142

1143 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalDesignMethod > "A
method which brings change in and influences any part of an agent

organization ")
1144

1145 # Class: <OOVASIS # OrganizationalEnvironment > (<OOVASIS #
OrganizationalEnvironment >)

1146

1147 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalEnvironment > "A
model of the organizational environment of some agent organization (

214

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

includes besides the environemnt the organization is located in also
other organizations which are engaged in some way)")

1148 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalEnvironment > "
Everything outside of the modelled system that can affect the
modelled system . E.g. outside forces and agents that will not
bemodelled in detail at the moment ."@en)

1149 EquivalentClasses (<OOVASIS # OrganizationalEnvironment >
ObjectIntersectionOf (ObjectSomeValuesFrom (<OOVASIS #
modelsEnvironmentFor > <OOVASIS # OrganizationalArchitecture >)
ObjectSomeValuesFrom (<OOVASIS # usesEnvironment > <OOVASIS #Agent >)
ObjectAllValuesFrom (<OOVASIS # modelsEnvironmentFor > <OOVASIS #
OrganizationalArchitecture >)))

1150

1151 # Class: <OOVASIS # OrganizationalIndividuals > (<OOVASIS #
OrganizationalIndividuals >)

1152

1153 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalIndividuals > "A
model of an agent organization ’s individuals (agents)")

1154 EquivalentClasses (<OOVASIS # OrganizationalIndividuals >
ObjectIntersectionOf (ObjectSomeValuesFrom (<OOVASIS #
modelIndividualsFor > <OOVASIS # OrganizationalArchitecture >)
ObjectAllValuesFrom (<OOVASIS # modelIndividualsFor > <OOVASIS #
OrganizationalArchitecture >) ObjectAllValuesFrom (<OOVASIS # usesAgents >

<OOVASIS #Agent >)))
1155

1156 # Class: <OOVASIS # OrganizationalKnowledgeNetwork > (<OOVASIS #
OrganizationalKnowledgeNetwork >)

1157

1158 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalKnowledgeNetwork
> "Agent organizations can be seen as a network of knowledge
artifacts which are accessible by particular agents . We will denote
these with the label organizational knowldge network . Special cases
of knowledge artifacts are norms which establish the rules of
interaction between agents and values which influence decision making

and selection of objectives
1159 ")
1160 EquivalentClasses (<OOVASIS # OrganizationalKnowledgeNetwork > ObjectUnionOf

(<OOVASIS # KnowledgeArtifact > ObjectIntersectionOf (
ObjectSomeValuesFrom (<OOVASIS # hasRelation > <OOVASIS # CultureRelation >)

ObjectAllValuesFrom (<OOVASIS # hasRelation > <OOVASIS # CultureRelation >)
ObjectExactCardinality (1 <OOVASIS # hasCriteriaOfOrganizing > <OOVASIS #

CriteriaOfOrganizing >))))
1161 SubClassOf (<OOVASIS # OrganizationalKnowledgeNetwork > <OOVASIS # Culture >)
1162

1163 # Class: <OOVASIS # OrganizationalMemory > (<OOVASIS # OrganizationalMemory >)
1164

215

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1165 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalMemory > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Organizacijska %20 memorija for details ")

1166 SubClassOf (<OOVASIS # OrganizationalMemory > <OOVASIS #
OrganizationalDesignMethod >)

1167

1168 # Class: <OOVASIS # OrganizationalProcesses > (<OOVASIS #
OrganizationalProcesses >)

1169

1170 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalProcesses > "A
model of an agent organization ’s processes ")

1171 EquivalentClasses (<OOVASIS # OrganizationalProcesses > ObjectIntersectionOf
(ObjectSomeValuesFrom (<OOVASIS # modelProcessesFor > <OOVASIS #
OrganizationalArchitecture >) ObjectAllValuesFrom (<OOVASIS #
modelProcessesFor > <OOVASIS # OrganizationalArchitecture >)
ObjectAllValuesFrom (<OOVASIS # usesProcesses > <OOVASIS # Process >)))

1172

1173 # Class: <OOVASIS # OrganizationalStrategy > (<OOVASIS #
OrganizationalStrategy >)

1174

1175 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalStrategy > "A
model of an agent organization ’s strategy ")

1176 EquivalentClasses (<OOVASIS # OrganizationalStrategy > ObjectIntersectionOf (
ObjectSomeValuesFrom (<OOVASIS # modelsStrategyFor > <OOVASIS #
OrganizationalArchitecture >) ObjectAllValuesFrom (<OOVASIS #
modelsStrategyFor > <OOVASIS # OrganizationalArchitecture >)
ObjectAllValuesFrom (<OOVASIS # usesStrategy > <OOVASIS # Strategy >)))

1177

1178 # Class: <OOVASIS # OrganizationalStructure > (<OOVASIS #
OrganizationalStructure >)

1179

1180 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalStructure > "A
model of an agent organization ’s structure ")

1181 EquivalentClasses (<OOVASIS # OrganizationalStructure > ObjectIntersectionOf
(ObjectSomeValuesFrom (<OOVASIS # modelsStructureFor > <OOVASIS #
OrganizationalArchitecture >) ObjectAllValuesFrom (<OOVASIS #
modelsStructureFor > <OOVASIS # OrganizationalArchitecture >)
ObjectAllValuesFrom (<OOVASIS # usesStructure > <OOVASIS #
OrganizationalUnit >)))

1182

1183 # Class: <OOVASIS # OrganizationalUnit > (<OOVASIS # OrganizationalUnit >)
1184

1185 AnnotationAssertion (rdfs:comment <OOVASIS # OrganizationalUnit > "An
organizational unit is (1) a network of agents (or lower level units)
, (2) which are organized according to some organizational criteria
and (3) in which roles for lower level units are defined . This
definition has an important implication: it allows us to deal with

216

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

agents , groups and teams of agents , organizations of agents , networks
of organizations of agents (or organizations of organizations) as

well as virtual organizations of agents (as overlay structures) in
the same way. This in particular means that organizational units may
form a lattice structure in which each unit can belong to several
super -units and/or be composed of several subunits . The criteria of
organizing could for example be an objective , function , goal , mission
, unit name , higher -order role etc.

1186 ")
1187 EquivalentClasses (<OOVASIS # OrganizationalUnit > ObjectUnionOf (<OOVASIS #

Agent > ObjectIntersectionOf (ObjectSomeValuesFrom (<OOVASIS #
definesRoles > <OOVASIS #Role >) ObjectSomeValuesFrom (<OOVASIS #
hasRelation > <OOVASIS # StructuralRelation >) ObjectSomeValuesFrom (<
OOVASIS # hasRole > <OOVASIS #Role >) ObjectAllValuesFrom (<OOVASIS #
hasRelation > <OOVASIS # StructuralRelation >) ObjectMinCardinality (1 <
OOVASIS # definesRoles > <OOVASIS #Role >) ObjectExactCardinality (1 <
OOVASIS # hasCriteriaOfOrganizing > <OOVASIS # CriteriaOfOrganizing >))))

1188 SubClassOf (<OOVASIS # OrganizationalUnit > <MAM5#Agent >)
1189 DisjointClasses (<OOVASIS # OrganizationalUnit > <OOVASIS # Process >)
1190 DisjointClasses (<OOVASIS # OrganizationalUnit > <OOVASIS #Role >)
1191

1192 # Class: <OOVASIS # ParallelBehavior > (<OOVASIS # ParallelBehavior >)
1193

1194 AnnotationAssertion (rdfs:comment <OOVASIS # ParallelBehavior > " Various
behaviors are run in parallel ")

1195 SubClassOf (<OOVASIS # ParallelBehavior > <OOVASIS # Activity >)
1196 SubClassOf (<OOVASIS # ParallelBehavior > <OOVASIS # Behavior >)
1197 SubClassOf (<OOVASIS # ParallelBehavior > <MAM5# Agent_Action >)
1198

1199 # Class: <OOVASIS # PeriodicBehavior > (<OOVASIS # PeriodicBehavior >)
1200

1201 AnnotationAssertion (rdfs:comment <OOVASIS # PeriodicBehavior > "A behavior
which is looped possibly with a given period of time intervals
between iterations ")

1202 SubClassOf (<OOVASIS # PeriodicBehavior > <OOVASIS # Activity >)
1203 SubClassOf (<OOVASIS # PeriodicBehavior > <OOVASIS # Behavior >)
1204 SubClassOf (<OOVASIS # PeriodicBehavior > <MAM5# Agent_Action >)
1205

1206 # Class: <OOVASIS # PlatformOrganization > (<OOVASIS # PlatformOrganization >)
1207

1208 AnnotationAssertion (rdfs:comment <OOVASIS # PlatformOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Platformska %20 organizacija for details ")

1209 SubClassOf (<OOVASIS # PlatformOrganization > <OOVASIS #
OrganizationalArchitecture >)

1210

1211 # Class: <OOVASIS # Process > (<OOVASIS # Process >)

217

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1212

1213 AnnotationAssertion (rdfs:comment <OOVASIS # Process > "A process is (1) a
network of activities (or lower level processes) (2) according to
some criteria of organizing and (3) triggered by some strategy . The
given definition allows for modeling organizations as networks of
processes which can be defined in a number of ways. For example , the
criteria for organizing might be that one process uses inputs from
another or that two processes are using the same resources , or even
that two processes are performed by the same organizational unit or
that they are crucial for the same organizational goal.

1214 ")
1215 EquivalentClasses (<OOVASIS # Process > ObjectUnionOf (<OOVASIS # Activity >

ObjectIntersectionOf (ObjectSomeValuesFrom (<OOVASIS # hasRelation > <
OOVASIS # ProcessRelation >) ObjectSomeValuesFrom (<OOVASIS # isTriggeredBy
> <OOVASIS # Strategy >) ObjectAllValuesFrom (<OOVASIS # hasRelation > <
OOVASIS # ProcessRelation >) ObjectAllValuesFrom (<OOVASIS # isTriggeredBy >

<OOVASIS # Strategy >) ObjectExactCardinality (1 <OOVASIS #
hasCriteriaOfOrganizing > <OOVASIS # CriteriaOfOrganizing >))))

1216 DisjointClasses (<OOVASIS # Process > <OOVASIS #Role >)
1217

1218 # Class: <OOVASIS # ProcessRelation > (<OOVASIS # ProcessRelation >)
1219

1220 AnnotationAssertion (rdfs:comment <OOVASIS # ProcessRelation > "A relation
between two processes in the processes perspective ")

1221 SubClassOf (<OOVASIS # ProcessRelation > <OOVASIS # RelationValuePartition >)
1222

1223 # Class: <OOVASIS # ProductDivisionalStructure > (<OOVASIS #
ProductDivisionalStructure >)

1224

1225 AnnotationAssertion (rdfs:comment <OOVASIS # ProductDivisionalStructure > "
See http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&
page= Predmetna %20 divizionalna %20 organizacijska %20 struktura for
details ")

1226 SubClassOf (<OOVASIS # ProductDivisionalStructure > <OOVASIS #
DivisionalStructure >)

1227

1228 # Class: <OOVASIS # ProjectOrientedStructure > (<OOVASIS #
ProjectOrientedStructure >)

1229

1230 AnnotationAssertion (rdfs:comment <OOVASIS # ProjectOrientedStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page

= Projektna %20 organizacijska %20 struktura for details ")
1231 SubClassOf (<OOVASIS # ProjectOrientedStructure > <OOVASIS #

HierarchicalStructure >)
1232

1233 # Class: <OOVASIS # RelationValuePartition > (<OOVASIS #
RelationValuePartition >)

218

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1234

1235 AnnotationAssertion (rdfs:comment <OOVASIS # RelationValuePartition > "Value
partition for the various organizational networks in some

organizational architecture ")
1236 EquivalentClasses (<OOVASIS # RelationValuePartition > ObjectUnionOf (<

OOVASIS # CultureRelation > <OOVASIS # ProcessRelation > <OOVASIS #
StrategyRelation > <OOVASIS # StructuralRelation >))

1237 SubClassOf (<OOVASIS # RelationValuePartition > <OOVASIS # ValuePartition >)
1238

1239 # Class: <OOVASIS #Role > (<OOVASIS #Role >)
1240

1241 AnnotationAssertion (rdfs:comment <OOVASIS #Role > "A prescribed or
expected behavior associated with a particular position or status in
a group or organization ")

1242 EquivalentClasses (<OOVASIS #Role > ObjectMinCardinality (1 <OOVASIS #
isRoleIn > <OOVASIS # OrganizationalUnit >))

1243 SubClassOf (<OOVASIS #Role > <OOVASIS #Norm >)
1244

1245 # Class: <OOVASIS # RoleFactoryBehavior > (<OOVASIS # RoleFactoryBehavior >)
1246

1247 AnnotationAssertion (rdfs:comment <OOVASIS # RoleFactoryBehavior > " Behavior
added at runtime and then enacted by the agent")

1248 SubClassOf (<OOVASIS # RoleFactoryBehavior > <OOVASIS # Activity >)
1249 SubClassOf (<OOVASIS # RoleFactoryBehavior > <OOVASIS # Behavior >)
1250 SubClassOf (<OOVASIS # RoleFactoryBehavior > <MAM5# Agent_Action >)
1251

1252 # Class: <OOVASIS # SequentialBehavior > (<OOVASIS # SequentialBehavior >)
1253

1254 AnnotationAssertion (rdfs:comment <OOVASIS # SequentialBehavior > "A
sequence of other behaviors ")

1255 SubClassOf (<OOVASIS # SequentialBehavior > <OOVASIS # Activity >)
1256 SubClassOf (<OOVASIS # SequentialBehavior > <OOVASIS # Behavior >)
1257 SubClassOf (<OOVASIS # SequentialBehavior > <MAM5# Agent_Action >)
1258

1259 # Class: <OOVASIS # ShamrockOrganization > (<OOVASIS # ShamrockOrganization >)
1260

1261 AnnotationAssertion (rdfs:comment <OOVASIS # ShamrockOrganization > "See:
1262 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Organizacija %20 djeteline
1263 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Federalizam
1264 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=

Obrnuta %20 krafna
1265 for details ")
1266 SubClassOf (<OOVASIS # ShamrockOrganization > <OOVASIS #

OrganizationalArchitecture >)
1267

219

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1268 # Class: <OOVASIS # SixSigma > (<OOVASIS # SixSigma >)
1269

1270 AnnotationAssertion (rdfs:comment <OOVASIS # SixSigma > "See http: //ai.foi.
hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page =6%20% CF %83%20(
Six %20 Sigma) for details ")

1271 SubClassOf (<OOVASIS # SixSigma > <OOVASIS # OrganizationalDesignMethod >)
1272

1273 # Class: <OOVASIS # StableSuperStructure > (<OOVASIS # StableSuperStructure >)
1274

1275 AnnotationAssertion (rdfs:comment <OOVASIS # StableSuperStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Stabilne %20 suprastrukture for details ")

1276 SubClassOf (<OOVASIS # StableSuperStructure > <OOVASIS # SuperStructure >)
1277

1278 # Class: <OOVASIS # StarburstStructure > (<OOVASIS # StarburstStructure >)
1279

1280 AnnotationAssertion (rdfs:comment <OOVASIS # StarburstStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Organizacijska %20 struktura %20 raspr%C5%A1ene %20 zvijezde for details ")

1281 SubClassOf (<OOVASIS # StarburstStructure > <OOVASIS # StableSuperStructure >)
1282

1283 # Class: <OOVASIS # StaticNetworkStructure > (<OOVASIS #
StaticNetworkStructure >)

1284

1285 AnnotationAssertion (rdfs:comment <OOVASIS # StaticNetworkStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Stati%C4%8 Dna %20 mre%C5%BEa for details ")

1286 SubClassOf (<OOVASIS # StaticNetworkStructure > <OOVASIS #
HeterarchicalStructure >)

1287

1288 # Class: <OOVASIS # StrategicAllianceStructure > (<OOVASIS #
StrategicAllianceStructure >)

1289

1290 AnnotationAssertion (rdfs:comment <OOVASIS # StrategicAllianceStructure > "
See:

1291 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Strate %C5%A1ki %20 savezi %20i%20 alijanse

1292 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Internetski %20 savezi

1293 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Keiretsu

1294 http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Chaebol

1295 for details ")
1296 SubClassOf (<OOVASIS # StrategicAllianceStructure > <OOVASIS # SuperStructure >

)
1297

220

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1298 # Class: <OOVASIS # StrategicOrganization > (<OOVASIS # StrategicOrganization
>)

1299

1300 AnnotationAssertion (rdfs:comment <OOVASIS # StrategicOrganization > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Strategijska %20 organizacija for details ")

1301 SubClassOf (<OOVASIS # StrategicOrganization > <OOVASIS #
OrganizationalArchitecture >)

1302

1303 # Class: <OOVASIS # Strategy > (<OOVASIS # Strategy >)
1304

1305 AnnotationAssertion (rdfs:comment <OOVASIS # Strategy > " Strategy is closely
bound the the Balanced ScoreCard paradigm . A strategy consists of:

(1) a network of objectives (or other smaller strategies), (2) a
criteria of organizing this network e.g. criteria might be influence
(the outcome of one strategy influences another , for example a
mathematical function), responsibility (two strategies are under the
responsibility of the same organizational unit), achieveability (two
strategies can be achieved by the same organizational process), etc.,

(3) a process which is triggered from the strategy as a response to
some environmental or internal change .

1306 ")
1307 EquivalentClasses (<OOVASIS # Strategy > ObjectUnionOf (<OOVASIS # Objective >

ObjectIntersectionOf (ObjectSomeValuesFrom (<OOVASIS # hasRelation > <
OOVASIS # StrategyRelation >) ObjectSomeValuesFrom (<OOVASIS # triggers > <
OOVASIS # Process >) ObjectAllValuesFrom (<OOVASIS # hasRelation > <OOVASIS #
StrategyRelation >) ObjectAllValuesFrom (<OOVASIS # triggers > <OOVASIS #
Process >) ObjectExactCardinality (1 <OOVASIS # hasCriteriaOfOrganizing >
<OOVASIS # CriteriaOfOrganizing >))))

1308

1309 # Class: <OOVASIS # StrategyRelation > (<OOVASIS # StrategyRelation >)
1310

1311 AnnotationAssertion (rdfs:comment <OOVASIS # StrategyRelation > "A relation
between two strategies in the strategic perspective ")

1312 SubClassOf (<OOVASIS # StrategyRelation > <OOVASIS # RelationValuePartition >)
1313

1314 # Class: <OOVASIS # StructuralRelation > (<OOVASIS # StructuralRelation >)
1315

1316 AnnotationAssertion (rdfs:comment <OOVASIS # StructuralRelation > "A
relation between two organizational units in the organizational
structure perspective ")

1317 SubClassOf (<OOVASIS # StructuralRelation > <OOVASIS # RelationValuePartition >
)

1318

1319 # Class: <OOVASIS # SuperStructure > (<OOVASIS # SuperStructure >)
1320

221

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1321 AnnotationAssertion (rdfs:comment <OOVASIS # SuperStructure > "See http: //ai
.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Suprastrukture for details ")

1322 SubClassOf (<OOVASIS # SuperStructure > <OOVASIS # OrganizationalStructure >)
1323

1324 # Class: <OOVASIS # TaguchiMethod > (<OOVASIS # TaguchiMethod >)
1325

1326 AnnotationAssertion (rdfs:comment <OOVASIS # TaguchiMethod > "See http: //ai.
foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page= Taguchi %20
metoda for details ")

1327 SubClassOf (<OOVASIS # TaguchiMethod > <OOVASIS # OrganizationalDesignMethod >)
1328

1329 # Class: <OOVASIS # TeamBasedStructure > (<OOVASIS # TeamBasedStructure >)
1330

1331 AnnotationAssertion (rdfs:comment <OOVASIS # TeamBasedStructure > "See http:
//ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Timska %20 organizacijska %20 struktura for details ")

1332 SubClassOf (<OOVASIS # TeamBasedStructure > <OOVASIS # AdhocracyStructure >)
1333

1334 # Class: <OOVASIS # TensorStructure > (<OOVASIS # TensorStructure >)
1335

1336 AnnotationAssertion (rdfs:comment <OOVASIS # TensorStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Tenzorska %20 organizacijska %20 struktura for details ")

1337 SubClassOf (<OOVASIS # TensorStructure > <OOVASIS # HierarchicalStructure >)
1338

1339 # Class: <OOVASIS # TeritorialStructure > (<OOVASIS # TeritorialStructure >)
1340

1341 AnnotationAssertion (rdfs:comment <OOVASIS # TeritorialStructure > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Teritorijalna %20 organizacijska %20 struktura for details ")

1342 SubClassOf (<OOVASIS # TeritorialStructure > <OOVASIS # DivisionalStructure >)
1343

1344 # Class: <OOVASIS # TotalQualityManagement > (<OOVASIS #
TotalQualityManagement >)

1345

1346 AnnotationAssertion (rdfs:comment <OOVASIS # TotalQualityManagement > "See
http: //ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Cjelovito %20 upravljanje %20 kvalitetom for details ")

1347 SubClassOf (<OOVASIS # TotalQualityManagement > <OOVASIS #
OrganizationalDesignMethod >)

1348

1349 # Class: <OOVASIS # ValuePartition > (<OOVASIS # ValuePartition >)
1350

1351 AnnotationAssertion (rdfs:comment <OOVASIS # ValuePartition > "Value
partitions ")

1352

222

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1353 # Class: <OOVASIS # VirtualStructure > (<OOVASIS # VirtualStructure >)
1354

1355 AnnotationAssertion (rdfs:comment <OOVASIS # VirtualStructure > "See http: //
ai.foi.hr/ oovasis /wiki/wiki.php?name= OOVASIS & parent =NULL&page=
Virtualna %20 organizacijska %20 struktura for details ")

1356 SubClassOf (<OOVASIS # VirtualStructure > <OOVASIS # AdhocracyStructure >)
1357

1358 # Class: <MAM5# Action > (<MAM5# Action >)
1359

1360 SubClassOf (<MAM5# Action > ObjectMinCardinality (1 <MAM5# has_Action_Rule > <
MAM5# Action_Rule >))

1361 SubClassOf (<MAM5# Action > ObjectMinCardinality (0 <MAM5# has_Physical_Event
> <MAM5# Physical_Event >))

1362

1363 # Class: <MAM5# Action_Rule > (<MAM5# Action_Rule >)
1364

1365 SubClassOf (<MAM5# Action_Rule > ObjectMinCardinality (1 <MAM5# has_Do_Action
>))

1366 SubClassOf (<MAM5# Action_Rule > ObjectMinCardinality (0 <MAM5#
has_PreCondition >))

1367

1368 # Class: <MAM5# Agent_Action > (<MAM5# Agent_Action >)
1369

1370 SubClassOf (<MAM5# Agent_Action > <OOVASIS # Process >)
1371

1372 # Class: <MAM5# Human_Immersed_Agent > (<MAM5# Human_Immersed_Agent >)
1373

1374 SubClassOf (<MAM5# Human_Immersed_Agent > <MAM5# Inhabitant_Agent >)
1375

1376 # Class: <MAM5#IVE > (<MAM5#IVE >)
1377

1378 AnnotationAssertion (rdfs:comment <MAM5#IVE > " Intelligent Virtual
Environment Definition ")

1379

1380 # Class: <MAM5# IVE_Artifact > (<MAM5# IVE_Artifact >)
1381

1382 SubClassOf (<MAM5# IVE_Artifact > <MAM5# Artifact >)
1383

1384 # Class: <MAM5# IVE_Law > (<MAM5# IVE_Law >)
1385

1386 AnnotationAssertion (rdfs:comment <MAM5# IVE_Law > "A type of norm that is
dependent on a specific Workspace , i.e. it is location -based."@en)

1387 EquivalentClasses (<MAM5# IVE_Law > ObjectIntersectionOf (<OOVASIS #Norm >
ObjectSomeValuesFrom (<MAM5# is_IVE_Law_of > <MAM5# IVE_Workspace >)
ObjectAllValuesFrom (<MAM5# is_IVE_Law_of > <MAM5# IVE_Workspace >)))

1388 SubClassOf (<MAM5# IVE_Law > <OOVASIS #Norm >)

223

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1389 SubClassOf (<MAM5# IVE_Law > DataMinCardinality (1 <MAM5# IVE_Law_Action >
xsd:string))

1390

1391 # Class: <MAM5# IVE_Law_Condition > (<MAM5# IVE_Law_Condition >)
1392

1393 EquivalentClasses (<MAM5# IVE_Law_Condition > <MAM5# IVE_Law_Type >)
1394

1395 # Class: <MAM5# IVE_Workspace > (<MAM5# IVE_Workspace >)
1396

1397 SubClassOf (<MAM5# IVE_Workspace > <MAM5# Workspace >)
1398

1399 # Class: <MAM5# Inhabitant_Agent > (<MAM5# Inhabitant_Agent >)
1400

1401 SubClassOf (<MAM5# Inhabitant_Agent > <MAM5#Agent >)
1402 SubClassOf (<MAM5# Inhabitant_Agent > <MAMbO5 # SituatedOrganizationalUnit >)
1403

1404 # Class: <MAM5# Physical_Artifact > (<MAM5# Physical_Artifact >)
1405

1406 SubClassOf (<MAM5# Physical_Artifact > <MAM5# IVE_Artifact >)
1407

1408 # Class: <MAM5# Physical_Event > (<MAM5# Physical_Event >)
1409

1410 SubClassOf (<MAM5# Physical_Event > <MAM5# Observable_Event >)
1411

1412 # Class: <MAM5# Physical_Property > (<MAM5# Physical_Property >)
1413

1414 SubClassOf (<MAM5# Physical_Property > <MAM5# Observable_Property >)
1415

1416 # Class: <MAM5#Plan > (<MAM5#Plan >)
1417

1418 SubClassOf (<MAM5#Plan > <OOVASIS # Strategy >)
1419

1420 # Class: <MAM5# SimpleType > (<MAM5# SimpleType >)
1421

1422 EquivalentClasses (<MAM5# SimpleType > <MAM5# Vector3D >)
1423

1424 # Class: <MAM5# Smart_Resource_Artifact > (<MAM5# Smart_Resource_Artifact >)
1425

1426 SubClassOf (<MAM5# Smart_Resource_Artifact > <MAM5# Physical_Artifact >)
1427

1428 # Class: <MAM5# Workspace > (<MAM5# Workspace >)
1429

1430 AnnotationAssertion (rdfs:comment <MAM5# Workspace > " Everything that is
being modelled at the moment . May contain Organizational Units (
Individual and Grouped). Does not contain concepts of the system that

are not being modelled at the moment ."@en)
1431

224

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

1432 # Class: <MAMbO5 # SituatedOrganizationalUnit > (<MAMbO5 #
SituatedOrganizationalUnit >)

1433

1434 EquivalentClasses (<MAMbO5 # SituatedOrganizationalUnit > ObjectUnionOf (<
MAM5# Inhabitant_Agent > ObjectIntersectionOf (<OOVASIS #
OrganizationalUnit > ObjectSomeValuesFrom (<MAM5# has_IVE_Law > <MAM5#
IVE_Law >) ObjectAllValuesFrom (<MAM5# has_IVE_Law > <MAM5# IVE_Law >))))

1435 SubClassOf (<MAMbO5 # SituatedOrganizationalUnit > <OOVASIS #
OrganizationalUnit >)

1436

1437 # Class: <MAMbO5 # TimeDependentNorm > (<MAMbO5 # TimeDependentNorm >)
1438

1439 EquivalentClasses (<MAMbO5 # TimeDependentNorm > ObjectIntersectionOf (<
OOVASIS #Norm > DataSomeValuesFrom (<MAMbO5 # isRelevantAtTime >
xsd:dateTime) DataAllValuesFrom (<MAMbO5 # isRelevantAtTime >
xsd:dateTime)))

1440 SubClassOf (<MAMbO5 # TimeDependentNorm > <OOVASIS #Norm >)
1441

1442

1443

1444 DisjointClasses (<OOVASIS # AcademicStructure > <OOVASIS # FrontBackStructure >
<OOVASIS # InvertedStructure >)

1445 DisjointClasses (<OOVASIS # AcquisitionStructure > <OOVASIS #
AdhocracyStructure > <OOVASIS # FractalStructure > <OOVASIS #
MergerStructure > <OOVASIS # StableSuperStructure > <OOVASIS #
StrategicAllianceStructure >)

1446 DisjointClasses (<OOVASIS # AmoebaStructure > <OOVASIS # TeamBasedStructure > <
OOVASIS # VirtualStructure >)

1447 DisjointClasses (<OOVASIS # BioteamingOrganization > <OOVASIS #
EmpoweredOrganization > <OOVASIS # HypertextOrganization > <OOVASIS #
LearningOrganization > <OOVASIS # OpenOrganization > <OOVASIS #
PlatformOrganization > <OOVASIS # ShamrockOrganization > <OOVASIS #
StrategicOrganization >)

1448 DisjointClasses (<OOVASIS # BusinessProcessReengineering > <OOVASIS #
CommunitiesOfPractice > <OOVASIS # ComplexAnalyticalMethod > <OOVASIS #
Kaizen > <OOVASIS # LeanManagement > <OOVASIS # OrganizationalMemory > <
OOVASIS # SixSigma > <OOVASIS # TaguchiMethod > <OOVASIS #
TotalQualityManagement >)

1449 DisjointClasses (<OOVASIS # CultureRelation > <OOVASIS # ProcessRelation > <
OOVASIS # StrategyRelation > <OOVASIS # StructuralRelation >)

1450 DisjointClasses (<OOVASIS # CustomerOrientedStructure > <OOVASIS #
ProductDivisionalStructure > <OOVASIS # TeritorialStructure >)

1451 DisjointClasses (<OOVASIS # DivisionalStructure > <OOVASIS #
FunctionalStructure > <OOVASIS # MatrixStructure > <OOVASIS #
ProjectOrientedStructure > <OOVASIS # TensorStructure >)

1452 DisjointClasses (<OOVASIS # DynamicNetworkStructure > <OOVASIS #
FishnetStructure > <OOVASIS # InfiniteFlatHierarchyStructure > <OOVASIS #

225

Appendix C. Full Listings C.3. OWL Functional Syntax Ontology Rendering

InternalMarketStructure > <OOVASIS # StaticNetworkStructure >)
1453 DisjointClasses (<OOVASIS # HeterarchicalStructure > <OOVASIS #

HierarchicalStructure > <OOVASIS # HybridStructure > <OOVASIS #
SuperStructure >)

1454)

226

Curriculum Vitae

Bogdan Okreša Ðurić was born on 2 February 1989 in the city of Smederevo, Serbia. Since
his young years, he has been living in Varaždin, Croatia, where he attended elementary
and high school. His Bachelor thesis on the topic of database integrity marked the end of
his Bachelor studies Information Systems in year 2010 at the Faculty of Organization and
Informatics at the University of Zagreb. At the same university he finished Master studies
Databases and Knowledge Bases in year 2013 under the mentorship of Markus Schatten,
with the thesis on the topic of semantic modelling of business rules. Recognising the value
of various opportunities, he used international mobility to study at Karl Franzens Uni-
versity in Graz, and fulfil his internship obligations at Jožef Stefan Institute in Ljubljana
and Elettra Sincrotrone in Trieste. After starting his doctoral studies in 2015, as a part of
Large-Scale Multi-Agent Modelling of Massively On-Line Role-Playing Games in Artifi-
cial Intelligence laboratory at the same University following an early start in publications
during his Master studies, he attended as author and delivered oral presentations at in-
ternational and national conferences and a research stay at the Politechnic University of
Valencia. His fields of interest in the context of research are various areas of artificial
intelligence, such as multiagent systems, semantic modelling, social network analysis, and
computer games. Along with the successful academic career, he is an active member of
the local and international society, with a long record of volunteering and active youth
work.

227

Ivana Kukuljevića 20
42000 Varaždin

Croatia
Æ +385 91 8856676
Q dokresa@foi.hr

Bogdan Okreša Ðurić
“Little by little, one travels far” - J.R.R.Tolkien

Education Doctoral Studies in Information Sciences, Faculty of Organi-
zation and Informatics, University of Zagreb, Varaždin.

2015–ongoing

Working on ModelMMORPG project, I continued my academic career under the supervision
of my mentor Markus Schatten, PhD, with research interests in multiagent systems, agent-based
modelling, semantic modelling, knowledge management, social network analysis, etc.

Research Stay, Politechnic University of Valencia, Valencia, Spain. 11/2016–02/2017
Scientific training opportunity with Vicente Julian Inglada, PhD, as mentor, and other members
of Intelligence Research Group of UPV. I further improved collaboration, continued working on
my research, and took two courses.

Master of Informatics, Faculty of Organization and Informatics, Uni-
versity of Zagreb, Varaždin,GPA 4.504.

2010–2013

Awarded with Dean’s Award for humanitarian activities, and for excellence in work in Student
Council. Awarded a SpecialRector’sAward for assisting in the organisation of International Student
Research Symposium.

ERASMUS Exchange Student, School of Business, Economics
and Social Sciences, Karl-Franzens University of Graz, Graz, Austria.

02/2011–06/2011

Bachelor of Science in Information Technology with Dis-
tinction, Faculty of Organization and Informatics, University of Zagreb,
Varaždin,GPA 4.310.

2007–2010

Bachelor Thesis titled Database Integrity, mentored byMirkoMaleković, PhD.

Master Thesis Title: SemanticModeling of Business Rules

Supervisor: Markus Schatten, PhD

Short description: Some possibilities of semantic modelling of business rules, forming
basis of business systems, are shown. Ontology intertwined with business rules allows
for a different approach to business applications. Used standards, including RuleSpeak,
OWL, SWRL, RIF, UML, OCL, and ORM, ensured an up-to-date content.

Experience
Vocational Teaching Assistant,Artificial Intelligence Laboratory, Faculty

of Organization and Informatics, University of Zagreb, Varaždin.
01/2017–ongoing

Continuing my work at ModelMMORPG project as a doctoral student, with a scientific working
title.
Aspects of research:
+ large-scale multi-agent systems, and organisational models;
+ semantic Web;
+ social network analysis.

Nominal Associate Title Teaching Assistant, Faculty of
Organization and Informatics, University of Zagreb, Varaždin.

05/2016–ongoing

I am working for Knowledge Managements course.
Detailed achievements:
+ developed my teaching skills;
+ successfully transferred some of my knowledge.

Expert Associate in Science andHigher Education,Artifi-
cial Intelligence Laboratory, Faculty of Organization and Informatics,
University of Zagreb, Varaždin.

01/2015–12/2016

I am employed at ModelMMORPG project as a doctoral candidate.
Aspects of research:
+ large-scale multi-agent systems, and organizational models;
+ semantic Web;
+ social network analysis.

Business Analyst, Schiedel proizvodnja dimnjaka, Novi
Golubovec.

09/2014–12/2014

My first full-time job. I was introduced to, and used, SAP BI tool to extract data and create reports
for the local and regional management.
Detailed achievements:
+ got to know SAP environment, especially SAP BI module;
+ worked in team, and assisted colleagues in their everyday and ICT-related problems;
+ attended several trainings on SAP BI, and cooperated with regional entities.

ERASMUS+ Trainee, Elettra Sincrotrone Trieste, Trieste. 05/2014–08/2014
After a call, I was selected to participate in Italo-Croatian Mobility in Europlanning (ICroME)
project, as a trainee in Elettra Sincrotrone Trieste.
Detailed achievements:
+ development and affirmation of my project management skills;
+ worked in a new and challenging environment;
+ learned about project funded by the EU.

Intern, Jožef Stefan Institute, Ljubljana. 01/2013–03/2013
See below, similar to ERASMUS Intern.

Student Assistant, Faculty of Organization and Informatics,
University of Zagreb, Varaždin.

03/2009–01/2013

Noncontinuous. I aided students in their academic assignments, practical classes and courses,
namely: Text and Image Formatting, Data Structures, Knowledge-Based Systems, Knowledge Bases
and Semantic Web.
Detailed achievements:
+ developed my teaching skills;
+ helped colleagues achieve course goals;
+ worked with diverse people, altering my approach accordingly.

ERASMUS Intern, Jožef Stefan Institute, Ljubljana. 03/2012–08/2012
Using ERASMUS programme I was an intern for five months. I worked at the Knowledge Tech-
nologies department, using Orange4WS platform, data mining techniques and ClowdFlows plat-
form development, Python, Django, and Orange.
Detailed achievements:
+ had my programming skills challenged;
+ learned about new technologies;
+ worked in a new and multicultural environment;
+ broadened my network of people;
+ practised teamwork.

Miscellaneous Part of the V4EYC2021 Team, Varaždin for European Youth Capi-
tal 2021, Varaždin.

11/2017–ongoing

I am an active member of the team that is working on the Varaždin for European Youth Capital
2021 candidacy project.

Languages Croatian: Native

English: C1-C2 Cambridge CAE
German: B1

Computer Skills Semantic Web: RDF, RDFS, OWL, SWRL, RIF, SPARQL, XML, Protégé

Office tools & publishing: MS Office, Libre Office, LATEX, Adobe InDesign

Programming: Python, C, C++, C#, PHP, SQL, HTML, CSS, JS

Project Management: IBMWebSphere Business Modeler, MS Project

Graphics: CorelDRAW, Inkscape, GIMP

General Skills + by nature friendly, welcoming and communicative to both known and yet-to-be-known
people, flourishing in diverse and international environment

+ opportunity-welcoming achievement-oriented team-player who can lead, motivate, and
innovate

+ planning skills, management and leadership skills developed on various occasions

+ knowledge acquisition, transfer and utilisation skills trained continuously

Interests Research: multi-agent systems, semantic web, ontologies, semantic modelling, conceptual
modelling, social network analysis, data visualisation, international cooperation

Personal: jazz dance, volunteering, choir singing, international relations, travelling

Academic: research, projects, cooperation, teaching, studying

Volunteering President, Youth Council of the City of Varaždin, Varaždin. 11/2017–ongoing

Member, Youth Association Varaždin Underground Club, Varaždin. 11/2015–ongoing

PhD Students’ Representative, Student Council of the Faculty of
Organization and Informatics, University of Zagreb, Varaždin.

10/2015–ongoing

Volunteer andProgrammeCoordinator,VAKUUMClub, Varaždin. 01/2015–02/2017

Performers’ Fellow, Špancirfest, Varaždin. 08/2016

Performers’ Fellow, Špancirfest, Varaždin. 08/2015

Various, Contemporary Dance Days, Varaždin. 06/2015

Performers’ Fellow, Špancirfest, Varaždin. 08/2014

Translator, Various, Triskell, Trieste. 06/2014

Vice-president and Secretary, Student Council of the Faculty of Or-
ganization and Informatics, University of Zagreb, Varaždin.

10/2010–06/2013

In almost three years of active service in the Student Council, along with proactive and innovative
colleagues, we organised several successful projects, of educational, entertainment, or humanitarian
nature. Everything was done free of charge, on voluntary basis.

References References available per request.

Publications List of publications available at Croatian Scientific Bibliography, link.

Published Research

[1] M. Konecki, B. Okreša Ðurić and L. Milić. ‘Using Computer Games as an Aiding
Means in Programming Education’. In: Proceedings of The 5th Multidisciplinary
Academic Conference 2015. Prague, CZ: MAC Prague consulting, 2015, pp. 1–8.

[2] B. Okreša Ðurić. ‘A Novel Approach to Modelling Distributed Systems: Using
Large-Scale Multi-Agent Systems’. In: Software Project Management for Distrib-
uted Computing. Ed. by Z. Mahmood. 1st ed. Springer International Publishing
AG, 2017. Chap. 10, pp. 229–254. isbn: 978-3-319-54325-3. doi: 10.1007/978-3-
319-54325-3_10.

[3] B. Okreša Ðurić. ‘Organisational Metamodel for Large-Scale Multi-Agent Systems:
First Steps Towards Modelling Organisation Dynamics’. In: ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence Journal 6.3 (2017), p. 17. issn:
2255-2863. doi: 10.14201/ADCAIJ2017631727.

[4] B. Okreša Ðurić. ‘Organizational Metamodel for Large-Scale Multi-Agent Sys-
tems’. In: Trends in Practical Applications of Scalable Multi- Agent Systems, the
PAAMS Collection. Ed. by F. de la Prieta et al. Advances in Intelligent Systems
and Computing 473. Seville, ES: Springer International Publishing, 2016. Chap. 8,
pp. 387–390. isbn: 978-3-319-40158-4. doi: 10.1007/978-3-319-40159-1_36.

[5] B. Okreša Ðurić. ‘Towards Modelling Organisational Dynamics for Large-Scale
Multiagent Systems’. In: Trends in Cyber-Physical Multi-Agent Systems. The PAAMS
Collection - 15th International Conference, PAAMS 2017. Ed. by F. De la Prieta
et al. Advances in Intelligent Systems and Computing 619. Cham: Springer Inter-
national Publishing, 16th July 2017, pp. 245–248. isbn: 978-3-319-61578-3. doi:
10.1007/978-3-319-61578-3_28.

[6] B. Okreša Ðurić and M. Konecki. ‘Modeling MMORPG Players’ Behaviour’. In:
Central European Conference on Information and Intelligent Systems. Ed. by T.
Hunjak, V. Kirinić and M. Konecki. Varaždin, HR: University of Zagreb, Faculty
of Organization and Informatics Varaždin, 2015, pp. 177–184.

232

https://doi.org/10.1007/978-3-319-54325-3_10
https://doi.org/10.1007/978-3-319-54325-3_10
https://doi.org/10.14201/ADCAIJ2017631727
https://doi.org/10.1007/978-3-319-40159-1_36
https://doi.org/10.1007/978-3-319-61578-3_28

Published Research Published Research

[7] B. Okreša Ðurić and M. Konecki. ‘Specific OWL-Based RPG Ontology’. In: Central
European Conference on Information and Intelligent Systems. Ed. by T. Hunjak,
V. Kirinić and M. Konecki. Varaždin, HR: University of Zagreb, Faculty of Organ-
ization and Informatics Varaždin, 2015, pp. 185–190.

[8] B. Okreša Ðurić and M. Maleković. ‘How to Manage Knowledge With Domain
Specific and General Conceptual Modelling Examples’. In: Proceedings of the 19th
European Conference on Knowledge Management. European Conference on Know-
ledge Management. Ed. by E. Bolisani, E. Di Maria and E. Scarso. Vol. 2. Reading,
UK: Academic Conferences and Publishing International Limited, 6th Sept. 2018,
pp. 615–622. isbn: 978-1-911218-95-1.

[9] B. Okreša Ðurić and M. Maleković. ‘Knowledge Management and Conceptual Mod-
elling Towards Better Business Results’. In: Proceedings of the ENTRENOVA -
ENTerprise REsearch InNOVAtion Conference. ENTerprise REsearch InNOVA-
tion Conference. Ed. by M. Milković et al. Split, HR: Udruga za promicanje ino-
vacija i istraživanja u ekonomiji "IRINET", Zagreb, Croatia, 2018, pp. 239–245.

[10] B. Okreša Ðurić and M. Schatten. ‘Defining Ontology Combining Concepts of
Massive Multi-Player Online Role Playing Games and Organization of Large-Scale
Multi-Agent Systems’. In: 39th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO). Opatija, HR:
IEEE, 2016, pp. 1330–1335. isbn: 978-953-233-086-1. doi: 10.1109/MIPRO.2016.
7522346.

[11] B. Okreša Ðurić and M. Schatten. ‘Modeling Multiagent Knowledge Systems Based
on Implicit Culture’. In: Central European Conference on Information and Intel-
ligent Systems. Ed. by T. Hunjak, S. Lovreňcić and I. Tomı̌cić. Varaždin, HR:
University of Zagreb, Faculty of Organization and Informatics Varaždin, 2012,
pp. 57–61.

[12] B. Okreša Ðurić, I. Tomičić and M. Schatten. ‘Towards Agent-Based Simulation
of Emerging and Large-Scale Social Networks. Examples of the Migrant Crisis
and MMORPGs’. In: European Quarterly of Political Attitudes and Mentalities
EQPAM 5.4 (2016), pp. 1–19.

[13] B. Okreša Ðurić, I. Tomičić and S. Vukelić. ‘Model Driven Game Quest Scen-
ario Development for Massively Multi-Player Role-Playing Games: A Case Study’.
In: Central European Conference on Information and Intelligent Systems. Central
European Conference on Information and Intelligent Systems. Ed. by V. Strahonja
and V. Kirinić. Varaždin, HR: Faculty of Organization and Informatics, University
of Zagreb, 2017, pp. 207–212.

233

https://doi.org/10.1109/MIPRO.2016.7522346
https://doi.org/10.1109/MIPRO.2016.7522346

Published Research Published Research

[14] B. Okreša Ðurić et al. ‘MAMbO5: A New Ontology Approach for Modelling and
Managing Intelligent Virtual Environments Based on Multi-Agent Systems’. In:
Journal of Ambient Intelligence and Humanized Computing (12th Oct. 2018). issn:
1868-5137, 1868-5145. doi: 10.1007/s12652-018-1089-4.

[15] M. Schatten and B. Okreša Ðurić. ‘A Social Network Analysis of a Massively
Multi-Player On-Line Role Playing Game’. In: Proceedings of the 4th International
Conference on Modeling and Simulation. Ed. by B. Kang. Jeju Island, Korea: IEEE,
2015, pp. 37–42. isbn: 978-1-4673-9828-2. doi: 10.1109/MAS.2015.19.

[16] M. Schatten and B. Okreša Ðurić. ‘Social Networks in "The Mana World" - an
Analysis of Social Ties in an Open Source MMORPG’. In: International Journal
of Multimedia and Ubiquitous Engineering 11.3 (2016), pp. 257–272. doi: 10 .
14257/ijmue.2016.11.3.25.

[17] M. Schatten, B. Okreša Ðurić and I. Tomičić. ‘Towards an Application Program-
ming Interface for Automated Testing of Artificial Intelligence Agents in Massively
Multi-Player On-Line Role-Playing Games’. In: Central European Conference on
Information and Intelligent Systems. Central European Conference on Information
and Intelligent Systems. Ed. by V. Strahonja and V. Kirinić. Varaždin, HR: Faculty
of Organization and Informatics, University of Zagreb, Sept. 2018, pp. 11–15.

[18] M. Schatten, J. Ševa and B. Okreša Ðurić. ‘An Introduction to Social Semantic
Web Mining & Big Data Analytics for Political Attitudes and Mentalities Re-
search’. In: European Quarterly of Political Attitudes and Mentalities EQPAM 4.11
(2015), pp. 40–62.

[19] M. Schatten, J. Ševa and B. Okreša Ðurić. ‘Big Data Analytics and the Social Web
- A Tutorial for the Social Scientist’. In: European Quarterly of Political Attitudes
and Mentalities EQPAM 4.43 (2015), pp. 30–81.

[20] M. Schatten, I. Tomičić and B. Okreša Ðurić. ‘A Review on Application Domains
of Large-Scale Multiagent Systems’. In: Central European Conference on Inform-
ation and Intelligent Systems. Central European Conference on Information and
Intelligent Systems. Ed. by V. Strahonja and V. Kirinić. Varaždin, HR: Faculty of
Organization and Informatics, University of Zagreb, 2017, pp. 201–206.

[21] M. Schatten, I. Tomičić and B. Okreša Ðurić. ‘Multi-Agent Modeling Methods
for Massivley Multi-Player On-Line Role-Playing Games’. In: 38th International
Convention on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO). Ed. by P. Biljanović. Opatija, HR: IEEE, 2015, pp. 1256–
1261. isbn: 978-953-233-082-3. doi: 10.1109/MIPRO.2015.7160468.

234

https://doi.org/10.1007/s12652-018-1089-4
https://doi.org/10.1109/MAS.2015.19
https://doi.org/10.14257/ijmue.2016.11.3.25
https://doi.org/10.14257/ijmue.2016.11.3.25
https://doi.org/10.1109/MIPRO.2015.7160468

Published Research Published Research

[22] M. Schatten et al. ‘Agents as Bots – An Initial Attempt Towards Model-Driven
MMORPG Gameplay’. In: Advances in Practical Applications of Cyber-Physical
Multi-Agent Systems: The PAAMS Collection. Ed. by Y. Demazeau et al. Lecture
Notes in Artificial Intelligence 10349. Cham, Switzerland: Springer International
Publishing, 2017, pp. 246–258. isbn: 978-3-319-59930-4. doi: 10.1007/978-3-
319-59930-4_20.

[23] M. Schatten et al. ‘Automated MMORPG Testing – An Agent-Based Approach’.
In: Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The
PAAMS Collection. Ed. by Y. Demazeau et al. Lecture Notes in Artificial Intelli-
gence 10349. Cham, Switzerland: Springer International Publishing, 2017, pp. 359–
363. isbn: 978-3-319-59930-4. doi: 10.1007/978-3-319-59930-4_38.

[24] M. Schatten et al. ‘Large-Scale Multi-Agent Modelling of Massively Multi-Player
On-Line Role-Playing Games – A Summary’. In: Central European Conference on
Information and Intelligent Systems. Central European Conference on Information
and Intelligent Systems. Ed. by V. Strahonja and V. Kirinić. Varaždin, HR: Faculty
of Organization and Informatics, University of Zagreb, 2017, pp. 193–200.

[25] M. Schatten et al. ‘Towards an Agent-Based Automated Testing Environment for
Massively Multi-Player Role Playing Games’. In: MIPRO 2017 40th Jubilee Inter-
national Convention Proceedings (2017), pp. 1361–1366. doi: 10.23919/MIPRO.
2017.7973597.

[26] J. Ševa, B. Okreša Ðurić and M. Schatten. ‘Visualizing Public Opinion in Croatia
Based on Available Social Network Content’. In: European Quarterly of Political
Attitudes and Mentalities EQPAM 5.1 (2016), pp. 22–35.

[27] I. Tomičić, B. Okreša Ðurić and M. Schatten. ‘Implementing Agent Roles in
Massivley Multi-Player On-Line Role-Playing Games’. In: Central European Con-
ference on Information and Intelligent Systems. Central European Conference on
Information and Intelligent Systems. Ed. by V. Strahonja and V. Kirinić. Varaždin,
HR: Faculty of Organization and Informatics, University of Zagreb, Sept. 2018,
pp. 17–21.

[28] I. Tomičić, B. Okreša Ðurić and M. Schatten. ‘Modeling Smart Self-Sustainable
Cities as Large-Scale Agent Organizations in the IoT Environment’. In: Smart
Cities: Development and Governance Frameworks. Ed. by Z. Mahmood. Computer
Communications and Networks. Cham, CH: Springer, 2018, pp. 3–23. isbn: 978-
3-319-76668-3. doi: 10.1007/978-3-319-76669-0_1.

[29] I. Tomičić et al. ‘Self-Sustainable Agent Organizations in Massively Multi-Player
On-Line Role-Playing Games – A Conceptual Framework’. In: Central European
Conference on Information and Intelligent Systems. Central European Conference

235

https://doi.org/10.1007/978-3-319-59930-4_20
https://doi.org/10.1007/978-3-319-59930-4_20
https://doi.org/10.1007/978-3-319-59930-4_38
https://doi.org/10.23919/MIPRO.2017.7973597
https://doi.org/10.23919/MIPRO.2017.7973597
https://doi.org/10.1007/978-3-319-76669-0_1

Published Research Published Research

on Information and Intelligent Systems. Ed. by T. Hunjak, V. Kirinić and M. Ko-
necki. Varaždin, HR: University of Zagreb, Faculty of Organization and Informatics
Varaždin, 2016, pp. 213–217.

236

	Extended Abstract in Croatian
	Introductory Notes and Related Research
	Motivation
	Introduction
	Research Objectives
	Initial Research Plan

	Conceptual Definitions
	Related Research
	The Concept of Organisation in Multiagent Systems
	The use of Semantic Modelling in Multiagent Systems
	Models in the Domain of Multiagent Systems

	Scientific Contribution
	Semantic Modelling
	Ontology Engineering Methodology

	Metamodelling
	Metamodelling Process
	Organisational Dynamics

	Practical Contribution
	Metamodelling Tool
	Metamodel Implementation
	Basis for the metamodel
	Defining the Metamodel

	Custom Code
	Multimodel Modelling
	Application Template Generator

	Examples
	recipeWorld
	The Mana World
	Smart Self-Sustainable Human Settlement with Organisations

	Conclusion
	Discussion
	Future Research

	Bibliography
	Appendices
	METHONTOLOGY
	Data Dictionary
	Instance Properties

	Theoretical Background
	Graphs
	Graph Grammars

	Full Listings
	Logical Production System
	ZODB Object Definition
	OWL Functional Syntax Ontology Rendering

	Curriculum Vitae
	Published Research

