RAZVOJ SOFTVERSKE PODRŠKE ZA AHP METODU

DIPLOMSKI RAD

Varaždin, 2018.
Filip Faletar
Matični broj: 45279/16–R
Studij: Informacijsko i programsko inženjerstvo

RAZVOJ SOFTVERSKE PODRŠKE ZA AHP METODU

DIPLOMSKI RAD

Mentor/Mentorica:
Izv. prof. dr. sc. Nina Begićević Ređep

Varaždin, rujan 2018.
Filip Faletar

Izjava o izvornosti

Izjavljujem da je moj završni/diplomski rad izvorni rezultat mojeg rada te da se u izradi istoga nisam koristio drugim izvorima osim onima koji su u njemu navedeni. Za izradu rada su korištene etički prikladne i prihvatljive metode i tehnike rada.

Autor/Autorica potvrdio/potvrđila prihvaćanjem odredbi u sustavu FOI-radovi
Sažetak

Glavni fokus ovog diplomskog rada je razvoj softverske podrške za AHP metodu koja je jedna od najviše korištenih metoda za višekriterijsko odlučivanje. U teorijskom dijelu AHP metoda je predstavljena preko svojih koraka, matematičke osnove te aksioma na kojima se temelji, uz odgovarajuće demonstracijske primjere. U praktičnom dijelu, razvijena je softverska podrška za metodu AHP. Softversko rješenje je web aplikacija koja omogućava unos hijerarhijskog stabla odlučivanja, uspoređivanje u parovima, izračun težina kriterija, lokalnih i globalnih prioriteta alternativa, izračun indeksa nekonzistentnosti, različite vrste analiza osjetljivosti te izradu izvještaja. Posebnosti ove aplikacije u odnosu na druge aplikacije za podršku AHP metodi su: (1) unos matrice odlučivanja, tj. stvarnih vrijednosti alternativa po kriterijima koje se pojavljuju u postupku uspoređivanja u parovima čime se donositelj odluka bolje fokusira na sadržaj uspoređivanja; (2) nešto drugačije analize osjetljivosti (utjecaj promjene veličine pojedinih usporedbi u parovima na prioritetete, dinamička analiza osjetljivosti cijele hijerarhije); te (3) izrada personaliziranog izvještaja kod kojeg donositelj odluke bira što će biti u izvještaju pri čemu u analizi osjetljivosti može spremiti grafove analize osjetljivosti za željene situacije te ih kombinirati u konačni izvještaj.

Ključne riječi: odlučivanje, analitički hijerarhijski proces, AHP, softverska podrška, sustav za podršku odlučivanju, DSS
1. Uvod ... 1
2. Sustavi za potporu odlučivanju .. 3
3. AHP metoda .. 5
 3.1. Višekriterijsko odlučivanje .. 5
 3.2. Uvod u metodu AHP .. 6
 3.3. Koraci provedbe metode AHP .. 8
 3.3.1. Definiranje problema i cilja – razvoj hijerarhijskog modela .. 9
 3.3.2. Uspoređivanje u parovima .. 10
 3.3.3. Izračun lokalnih i globalnih prioriteta hijerarhijske strukture te provjera konzistentnosti .. 11
 3.3.4. Provođenje analize osjetljivosti .. 12
 3.3.5. Izbor alternative .. 12
 3.4. Konzistentnost uspoređivanja u metodi AHP ... 12
 3.5. Aksiomi na kojima se temelji metoda AHP ... 15
 3.5.1. Aksiom reciprocnosti .. 15
 3.5.2. Aksiom hijerarhije ... 16
 3.5.3. Aksiom homogenosti ... 16
 3.5.4. Aksiom očekivanja ... 16
 3.6. Grupno odlučivanje AHP metodom ... 17
4. Razvoj softvera .. 18
 4.1. Opis postojećeg stanja .. 18
 4.2. Korišteni alati, tehnologije i programski jezici .. 19
 4.3. Funkcionalnosti ... 19
 4.4. Osnove razvoja softvera .. 21
 4.5. Mogućnosti proširenja ... 25
 4.6. Pregled softverskih funkcionalnosti .. 26
5. Demonstracija korištenja softver ... 46
 5.1. Strukturiranje problema ... 46
 5.2. Uspoređivanje u parovima .. 50
 5.3. Sinteza rezultata ... 53
 5.4. Analiza osjetljivosti dobivenih rezultata ... 56
 5.4.1. Analiza osjetljivosti konačnog ishoda na promjenu intenziteta važnosti pojedine usporedbе ... 56
 5.4.2. Analiza osjetljivosti performansi .. 57
5.4.3. Dinamička analiza osjetljivosti ... 58
5.4.4. Analiza osjetljivosti odnosa ... 60
6. Zaključak ... 61
7. Popis literature ... 62
8. Popis slika .. 64
9. Popis tablica ... 66
10. Prilozi .. 67
1. Uvod

Donošenje odluka je proces s kojim se svakodnevno susrećemo, nekad i neprimjetno. Bilo da se radi o privatnom ili poslovnom životu, iza nas je mnogo donesenih odluka, no još je više onih s kojima ćemo se tek trebati donijeti. Donesena odluka može rezultirati dobrim ili lošim ishodom. U nekim situacijama su takve odluke dugoročno važne, no postoje i odluke koje ne znače mnogo i kratkoročne su. Naravno, kod svakog donošenja odluke, najbitniji je krajnji ishod koji predstavlja bolju ili lošiju situaciju. Iako toga nismo u potpunosti svjesni, možemo zaključiti da je donošenje odluka vrlo bitan faktor naše svakodnevnice.

U svijetu poslovanja je puno jasnija priča. Gotovo svaka veća odluka je izuzetno značajna za daljnji tijek poslovnih procesa, stoga je vrlo bitno pravovremeno donijeti ispravne i upotrebljive odluke. Kroz svaki poslovni proces unutar neke tvrtke, provlači se i proces donošenja odluka. Zasigurno, glavni cilj tvrtke je ostvariti najveći mogući profit u određenom vremenskom razdoblju. Za konstantno ostvarivanje najvećeg mogućeg profita, tvrtka mora biti dobro organizirana, te mora efikasno i efektivno obavljati djelatnosti za koje je zadužena. Ukoliko to ne radi, konkurentnost postaje najveći problem takve tvrtke. Bilo da se radi o tržištu ili o poslovnim procesima unutar tvrtke, svakako će se često pojavljivati potreba za donošenjem odluka. Izbjegavanje uviđanja potrebe za donošenjem odluka te razumijevanje važnosti istih, karakteristike su one tvrtke koja će se uvijek razlikovati od tvrtke koja ostvaruje najbolje rezultate na tržištu. Stoga, proces donošenja odluka uvijek mora biti jedan od važnijih procesa unutar svake tvrtke. Današnja tržišta sklonih su velikim promjenama koje brzo nastupaju, pa je nakon svake takve promjene potrebno žumno i pravilno reagirati pokretanjem procesa donošenja odluka. U odnosu na one manje, veće tvrtke imaju veću i češću potrebu za donošenjem odluka.

O donošenju odluka ovisi osobni uspjeh, kao i uspjeh tima i/ili tvrtke. Važno je napomenuti da je svako donošenje odluka, bilo da se radi o dobroj ili lošoj odluci, temelj za buduće donošenje odluka. Zašto? Jer od svake dobre ili loše odluke možemo nešto naučiti i to je ono što današnje menadžere čini pravim osobama za planiranje, organiziranje,
upravljanje i koordinaciju poslovanja tvrtke. Naravno, uvijek će postojati neispravne odluke, no pitanje je u kojim količinama. Da bi se one smanjile, tvrtke počinju koristiti računalne programe koji usmjeravaju donositelja odluke k izboru prave alternative.

Bez donošenja odluka, bilo koja funkcija tvrtke nije moguća. Donošenje odluka proteže se kroz sve sektore svake tvrtke, stoga se pojavljuje potreba za kvalitetnijim i preciznijim sustavima za donošenje odluka, no samim time, i za novim metodama za donošenje odluka.

U ovom radu bit će definirani sustavi za potporu odlučivanju te AHP metoda. Zatim će biti navedeni svi koraci razvoja sustava za potporu odlučivanju korištenjem navedene metode, a potom i pojašnjenje gotovog sustava uz primjer korištenja.
2. Sustavi za potporu odlučivanju

Poslovne odluke izuzetno su bitne, kako u procesu stvaranja poslovanja, tako i u procesu održavanja i unaprjeđivanja istog. Ispravno i pravovremeno donošenje odluka je aspekt poslovanja koji čini razliku među tvrtkama na istom tržištu. No, koji dio donošenja odluka čini razliku? Jesu li to pojedinci koji ispravno i pravovremeno odlučuju ili su to ipak sustavi koji daju podršku u odlučivanju. „Poslovno odlučivanje je izbor između dvije ili više inačica rješavanja problema, ali u poslovnim situacijama“. [1].

Prethodno smo zaključili da je poslovno odlučivanje jedan od važnijih aspekata organizacije, u borbi s vlastitom egzistencijom. No, sasvim je normalno da su menadžeri skloni greškama, pa tako i greškama pri donošenju važnih odluka. Kao što je već navedeno, današnje tržište je veoma promjenjivo, stoga je izuzetno teško ostati konkurentan. Da bi se olakšalo donošenje ispravnih odluka, pojavljuju se sustavi za potporu odlučivanju. Takvi sustavi pomažu menadžerima pri donošenju kompleksnih i važnih odluka. Menadžeri u samom procesu odlučivanja dolaze do niza problema, pojavljuje se spoznajno, vremensko i ekonomsko ograničenje. Spoznajno ograničenje odnosi se na nedostatak točnih, pravodobnih i cjelovitih informacija, vremensko ograničenje na nedovoljno vrijeme potrebno za analizu informacija i rješavanja problema, dok se ekonomsko ograničenje odnosi na nemogućnost podnošenja nestabilnih troškova pri procesu odlučivanja [1].

Sustavi za obradu transakcija izvršavaju procese vođenja evidencije, prikupljana informacija i izvještavanja. „Sustavi za obradu transakcija ne omogućuju izravnu potporu odlučivanju, ali osiguravaju evidenciju o osnovnim aktivnostima i transakcijama organizacije, pružaju potporu tekućem zbivanju poslovnih procesa u organizaciji, podupiru procesiranje poslovnih operacija te generiraju dokumente potrebne u poslovanju“ [1]. Za razliku od sustava za obradu transakcija, upravljački informacijski sustavi ipak na neki način sudjeluju u
odlučivanju. Takav sustav ulazne podatke prima iz sustava za obradu transakcija te efikasno pruža informacije za generiranje izvještaja, modela i analiza potrebnih za donošenje odluka. Sustavi za potporu grupnom odlučivanju, kao što i sam naziv predočava, je proširenje sustava za potporu odlučivanju. Iako imaju jednak ulogu i funkcioniraju na isti način, sustavi za potporu odlučivanju ipak olakšavaju kompleksnije donošenje odluka, te omogućava preciznije donošenje istih. Tako pomoću navedenog sustava grupa menadžera može istovremeno pojedinačno odlučivati, a potom se njihovi rezultati komprimiraju u jedan konačni rezultat. Ekspertni sustavi spadaju pod područje umjetne inteligencije. Ekspertni sustavi su računalni programi koji koriste znanje za rješavanje praktičnih problema za koje je inače potrebna ljudska ekspertiza [2].

No, vratimo se na ono važno, sustave za potporu odlučivanju (DSS). Potrebe za takvim sustavima postoji odavno, a svakim danom je sve veća. Zato su se takvi sustavi pojavili još u ranim 70.-im godinama prošlog stoljeća, a danas ih je mnoštvo.

3. AHP metoda

3.1. Višekriterijsko odlučivanje

![Slika 1 Odnos između rješavanja problema i odlučivanja (prilagođeno prema [1])]
Kriterije dijelimo na dvije osnovne vrste: kvalitativni i kvantitativni kriteriji. Postoji i podjela na tipove kriterija: min kriteriji (kriteriji troška) i max kriteriji (kriteriji koristi).

Velič je broj metoda koje se koriste u višekriterijskom odlučivanju: metoda AHP (Analitički Hijerarhijski Proces), metoda ANP (Analitički Mrežni (engl. Network) Proces), Elektra, Prometej, Metoda ekvivalentnih zamjena, Topsis, VIKOR (VIšekriterijumska optimizacija i Kompromisno Rešenje), metoda DEX (Decision EXpert). U ovom radu bavimo se metodom AHP.

Probleme višekriterijskog odlučivanja opisujemo tablicom odlučivanja (Tablica 1).

<table>
<thead>
<tr>
<th></th>
<th>(f_1(.))</th>
<th>(f_2(.))</th>
<th>…</th>
<th>(f_j(.))</th>
<th>…</th>
<th>(f_k(.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_i)</td>
<td>(w_2)</td>
<td>…</td>
<td>(w_j)</td>
<td>…</td>
<td>(w_k)</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(f_1(a_1))</td>
<td>(f_2(a_1))</td>
<td>…</td>
<td>(f_j(a_1))</td>
<td>…</td>
<td>(f_k(a_1))</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(f_1(a_2))</td>
<td>(f_2(a_2))</td>
<td>…</td>
<td>(f_j(a_2))</td>
<td>…</td>
<td>(f_k(a_2))</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>(a_i)</td>
<td>(f_1(a_i))</td>
<td>(f_2(a_i))</td>
<td>…</td>
<td>(f_j(a_i))</td>
<td>…</td>
<td>(f_k(a_i))</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>(a_n)</td>
<td>(f_1(a_n))</td>
<td>(f_2(a_n))</td>
<td>…</td>
<td>(f_j(a_n))</td>
<td>…</td>
<td>(f_k(a_n))</td>
</tr>
</tbody>
</table>

Tablica 1. Opći prikaz tablice odlučivanja [1]

Metode višekriterijskog odlučivanja imaju primjenu u širokom spektru grana znanosti i industrije poput ulaganja u projekte, upravljanju objektima, utjecaju na okoliš, odabiru najpogodnijih lokacija, odabiru najpovoljnijeg prostornog raspredela proizvodnog sustava, odabiru najpovoljnijeg prometnog pravca, internet bankarstvu, odabiru dobavljača, odabiru strategije održavanja i slično

3.2. Uvod u metodu AHP

Analitički hijerarhijski proces (engl. AHP - Analytic Hierarchy Process) je strukturirana matematička tehnika koja olakšava proces donošenja odluka. U zadnjih nekoliko godina izuzetno je popularan među menadžerima unutar većih organizacija, no ubrzano se širi i na ostale sektore poslovanja. Trenutačno spada u najkorištenije metode za višekriterijsko odlučivanje. Bitno je napomenuti da AHP metoda ne može samoistalno odlučivati, već na temelju preferencija menadžera/donositelja odluke, procjenjuje kriterije prema njihovoj
važnosti i prema navedenim procjenama generira izvješća koja menadžeru daju uvid u najoptimalnije alternative. Iako AHP metoda generira konačni poredak uneseni alternativa, nije nužno da se organizacija orijentira prema toj odluci.

AHP metoda je razvijena od strane Thomasa Saaty-a u sedamdesetim godina prošloga stoljeća. Metoda se zasniva na uspoređivanju u parovima, kako kriterija, tako i alternativa. S obzirom da se konačno rješenje dobiveno AHP metodom uglavnom očituje kroz korisničke preferencije, moguća su i veća odstupanja od idealnog rješenja. No, ipak, takva odstupanja ovise o menadžerskim kvalitetama. Dakle, AHP metoda prepoznaje problem i cilj, te strukturira dobivene informacije u cjelinu koja pomaže pri donošenju odluka. Pod cjelinom smatramo razne strukturirane izlazne podatke, kao što su grafovi koji pružaju bolji uvid u realnu situaciju.

Navedena metoda smatra se metodom višekriterijskog odlučivanja jer se temelji na prvotnom definiranju kriterija koji se kasnije uspoređuju u parovima. Vrednovanje kriterija omogućuje raspoznavanje kriterija prema njihovoj važnosti. Elementi AHP metode su cilj, kriteriji, podkriteriji i alternative, gdje svi navedeni elementi predstavljaju ulazne vrijednosti. Svoju popularnost ova metoda u velikoj mjeri zahvaljuje tome što je hijerarhijski model složenog problema odlučivanja, koji se koristi u njoj, blizak načinu na koji ljudi intuitivno analiziraju složene probleme razlažući ih na jednostavnije aspekte. Osobito se primjenjuje u donošenju odluka u grupi odnosno u situacijama kada pojedinci kolektivno donose odluku za jednu od alternativa ispred njih samih. Odluka se tada ne može pripisati jednom pojedincu koji je član grupe zato što svi pojedinci pridonose ishodu. AHP pretvara te procjene na numeričke vrijednosti koje se dalje mogu obrađivati i uspoređivati u cijelom rasponu problema.

Na primjeru Slike 2. je vidljiva jednostavna hijerarhijska struktura koja se sastoji od nužnih elemenata za provođenje AHP metode, cilj, kriteriji i alternative. Također, prikazane su relativne važnosti svakog kriterija i izračunate relativne važnosti alternativa prema navedenim kriterijima. Dakle, u ovom primjeru, cilj je odabrati novog voditelja organizacije, a odlučeno je da su kriteriji po kojima će se odlučivati sljedeći:

- Radno iskustvo (engl. Experience)
- Edukacija (engl. Education)
- Karizma (engl. Charisma)
- Godine (engl. Age)

Vidljivo je da su provođenjem AHP metode definirane relativne važnosti navedenih kriterija. Možemo prepoznati jako visoku relativnu važnost kriterija „Radno iskustvo“, a potom slijede karizma, edukacija i godine, kao kriterij s najmanjom relativnom važnošću.
znači da će donositelji odluke najveću prednost davati natjecateljima koji imaju više iskustva. Izlazni podatak AHP metode su relativne važnosti alternativa u odnosu na kriterije.

AHP: Choosing a Leader

<table>
<thead>
<tr>
<th>Goal:</th>
<th>Choose a Leader 1.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria:</td>
<td>Experience .547</td>
</tr>
<tr>
<td>Alternatives:</td>
<td>Tom .358</td>
</tr>
</tbody>
</table>

Slika 2 Primjer hijerarhijskog modela ([3]–[5])

3.3. Koraci provedbe metode AHP

AHP metoda ima široku primjenu u rješavanju različitih vrsta problema. Ona omogućuje korisnicima da dekompozicijom složenog problema strukturiraju ulazne elemente u hijerarhijsku strukturu te pomoću poznatih aksioma konačno dobiju relativne važnosti alternativa. Primjena AHP metode očituje se kroz nekoliko koraka objašnjenih u nastavku [3].

Četiri su osnovna koraka u provedbi metode AHP [4], [5]:
1. Razvoj hijerarhijskog modela odlučivanja s ciljem na vrhu hijerarhije, kriterijima na idućim razinama te alternativama na zadnjoj razini hijerarhije,
2. Uspoređivanje elemenata iste razine zavisnih od istog elementa u parovima,
3. Izračun prioriteta elemenata (težina kriterija, lokalnih i globalnih prioriteta alternativa),
4. Provodjenje analize osjetljivosti.

3.3.1. Definiranje problema i cilja – razvoj hijerarhijskog modela

Naravno, cijeli proces započinje jasnim definiranjem problema i cilja. Potrebno je detaljno razjasniti problem koji se pojavio, objektivno definirati cilj koji se želi postići AHP metodom. Poželjno je približno definirati elemente koji će se koristiti tijekom cijelog procesa.

AHP metoda pruža značajno razvijen i siguran okvir za strukturiranje problema i definiranje elemenata koji čine problem. Kroz proces se koriste različite tehnike koje sažimaju problem i navedene elemente u cjelinu, s ciljem postizanja konačnog rješenja problema [6]. Također, potrebno je i definirati vanjske elemente koji utječu na konačnu odluku. Primjerice, ukoliko jedan član, iz grupe donositelja odluke, nije u mogućnosti racionalno procijeniti intenzitete važnosti kriterija, tada taj član ne bi trebao sudjelovati u donošenju odluke. Pod hijerarhijskim modelom misli se na skup kriterija razvrstanih po razinama unutar hijerarhije, gdje se na istoj razini nalaze kriteriji koji su međusobno uspoređivii. Također, svaki kriterij unutar navedenog stabla može imati maksimalno jednog roditelja. S obzirom da smo prethodno definirali problem, taj problem je moguće razgranati na nekoliko manjih problema. Potom je iz navedenih problema moguće definirati kriterije koji će utjecati na konačnu odluku koja rješava glavni problem. Za početak je potrebno definirati vrhovne kriterije koji su važni za konačnu odluku, a zatim se ti kriteriji granaju na više podkriterija. Primjerice, ako postoji kriterij „Prostranost automobila” tada se taj kriterij može podijeliti na dva podkriterija „Prostranost unutrašnjosti” i „Prostranost bunkera”. Ako neki kriterij ili podkriterij poprimi procijenjenu relativnu vrijednost u iznosu od 3% ili manje, tada bi se trebalo razmotriti eliminiranje tog kriterija iz hijerarhijskog stabla [5]. Također, Thomas Saaty navodi da je poželjno dodati kriterije u vidu prednosti, mogućnosti, troškova i rizika odluke koje ćemo donijeti. Odnosno, procjenjujemo koji kriteriji bi najviše utjecali na trošak ili koji bi kriteriji najviše utjecali na povećanje rizika. Također, pitamo se što će najviše utjecati na povećanje ili smanjenje prednosti, i koji kriteriji bi mogli povećati mogućnosti kod zadanog problema [7].

Posljednji korak, prije procesa usporedbe i izračuna, je definiranje alternativa. Poželjno je precizno definiranje mogućih alternativa, a isto tako i precizno definiranje njezinih karakteristika. Alternative predstavljaju karakteristike subjekta kojeg se procjenjuje. Procjena se vrši da bi se bolje razumjele percepcije korisnika.
Prije početka izračuna, za svaku alternativu, u odnosu na neki kriterij, potrebno je što detaljnije objasniti njezinе karakteristike. Navedene karakteristike pomаžu prilikom procjenjivanja intenziteta važnosti alternati ve u usporedbi s drugom alternativom. Što znači da je, ukoliko je cilj odabirati mobilni telefon, poželjno dodati stvarne informacije o internoj memoriji, kameri itd. Da bi procjena bila valjana, potrebno je dodati relevantne podatke koji detaljno opisuju pojedinu alternativu. Nakon ovog koraka, opsežna lista alternativa mora biti pripremljena kako bi se moglo nastaviti s ostalim AHP procesima [7].

Kod strukturiranja problema odlučivanja mogu se koristiti [6]:

- Intervjui s ekspertima u problemskoj domeni,
- Pregled literature (traženje sličnih problema odlučivanja koji su ranije riješeni),
- *Brainstorming* i tehnike kreativnosti – kreiranje novih alternativa (ako nisu poznate),
- Delphi metoda – usuglašavanje popisa kriterija i formiranje hijerarhije,
- Top-down pristup – dekompozicija kriterija u hijerarhiji,
- Bottom-up pristup, metode klasteriranja - grupiranje kriterija u hijerarhiji,
- PrOACT pristup u raščlambi problema odlučivanja.

3.3.2. Uspoređivanje u parovima

Središnji korak metode AHP predstavlja uspoređivanje u parovima. Prilikom uspoređivanja u parovima koristi se Saatyjeva skala relativnih važnosti.

<table>
<thead>
<tr>
<th>Intenzitet važnosti</th>
<th>Definicija</th>
<th>Objašnjenje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jednako važan</td>
<td>Koristi se kada oba faktora jednako djeluju na konačan rezultat</td>
</tr>
<tr>
<td>3</td>
<td>Donekle važniji</td>
<td>Koristi se kada je mala razlika na strani jednog faktora u odnosu na drugi</td>
</tr>
<tr>
<td>5</td>
<td>Mnogo važniji</td>
<td>Koristi se kada je jedan faktor mnogo važniji od drugog faktora</td>
</tr>
<tr>
<td>7</td>
<td>Znatno važniji</td>
<td>Koristi se tamо gdje je jedan faktor puno važniji od drugoga</td>
</tr>
<tr>
<td>9</td>
<td>Apsolutno važniji</td>
<td>Koristi se u slučaju kada je jedna instanca apsolutno važnija od druge instance, bez ikakve dvojbe</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>Međuvrijednosti</td>
<td>Koriste se kada je potreban kompromis između dvije vrijednosti. Odnosno, kada je teško odlučiti između dva neparna intenziteta važnosti</td>
</tr>
</tbody>
</table>

Ako je \(n \) broj prioriteta čije težine \(w_i \) treba odreditи na temelju njihovih omjera oni se izračunavaju na ovakav način [3]:
Od tih omjera formiramo matricu relativnih važnosti A.

$$a_{ij} = \frac{w_i}{w_j}$$

Matrica A za slučaj konzistentnih procjena za koje vrijedi $a_{ij} = a_{jk} \cdot a_{kl}$ zadovoljava jednadžbu $A \cdot w = n \cdot w$ gdje je w vektor prioriteta. Problem rješavanja težina može se riješiti kao problem rješavanja jednadžbe $A \cdot w = \lambda \cdot w$, gdje je λ različit od nule.

$$\begin{bmatrix}
w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\
w_2/w_1 & w_2/w_2 & \cdots & w_2/w_n \\
\vdots & \vdots & \ddots & \vdots \\
w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n
\end{bmatrix} \cdot \begin{bmatrix}w_1 \\w_2 \\\vdots \\w_n\end{bmatrix} = \begin{bmatrix}w_1 \\w_2 \\\vdots \\w_n\end{bmatrix}$$

Matrica A ima svojstva da je pozitivna, i recipročna jer sadrži elemente koji zadovoljavaju jednadžbu $a_{ij} = 1/a_{ji}$. Rang matrice je 1 i svi njezini redovi proporcionalni su prvom redu, zbog čega je samo jedna njezina svojstvena vrijednost različita od 0 i jednaka je n. Budući da je suma svojstvenih vrijednosti pozitivne matrice jednaka tragu te matrice odnosno sumi na dijagonali, svojstvena vrijednost različita od nule ima vrijednost n, tj. $\lambda_{max} = n$. Ukoliko matrica A sadrži nekonzistentnost, vektor težine w se može izračunati sustavom jednadžbi [3].

$$(A - \lambda_{max} \cdot I) \cdot w = 0 \quad \sum_i w_i = 1$$

Na temelju čega slijedi da težina pojedine alternative iznosi:

$$w_i = \frac{1}{n} \sum_ia_{ij}$$

3.3.3. Izračun lokalnih i globalnih prioriteta hijerarhijske strukture te provjera konzistentnosti

Izračun lokalnih i globalnih prioriteta alternativa svodi se na isti princip kao i kod izbora lokalnih i globalnih prioriteta kriterija. Svaka razina ima skup uspoređaba, gdje se kriteriji i alternative uspoređuju u parovima. S jedne strane, kriteriji se uspoređuju u odnosu na vrhovni kriterij ili cilj, dok se alternative uspoređuju u odnosu na kriterije, redom. Donositelj odluke koristi Saatyevu skalu kako bi odredio intenzitet važnosti nekog kriterija ili alternative u odnosu na onu alternativu ili kriterij s kojom se uspoređuje. Za svaku razinu hijerarhijskog stabla provodi se analiza konzistentnosti, a opisana je u sljedećem potpoglavlju.
AHP metode koristi matematički model za izračun lokalnih prioriteta kriterija, podkriterija i alternativa, a potom se isti sintetiziraju u globalne prioritete alternativa. Globalni prioriteti alternativa su izračunati zbrajanjem lokalnih prioriteta navedenih alternativa ponderiranih s težinama elemenata više razine [5], [8].

3.3.4. Provodnje analize osjetljivosti

3.3.5. Izbor alternative

3.4. Konzistentnost uspoređivanja u metodi AHP

AHP metoda svodi se na svega nekoliko računskih tehnika koje se koriste za cjelokupni izračun. Temelji se na izračunu važnosti kriterija i alternativa, a potom se njihovi rezultati koriste kao ulazna jedinica za generiranje izvješća. Primjerice, ako je tvrtka odlučila kupiti nekoliko službenih automobila, mora odlučiti između nekoliko modela. No, najprije je potrebno odlučiti po kojim kriterijima će se birati model automobila. Potom se određuje relativna važnost kriterija. Relativne važnosti kriterija rezultat su usporedbi pojedinih kriterija s ostalim kriterijima, u parovima. Svaka usporedbi svodi se na odabir važnosti kriterija u odnosu na kriterij s kojim se uspoređuje, a odabir se vrši u vidu Saaty-eve skale.
Intenziteti važnosti prikazani u prethodnoj tablici predstavljaju interpretaciju omjera važnosti između dvaju kriterija. Ova skala izvedena je iz osnovnih načela generalizacije usporedaba u kontinuiranim slučajevima, čime kreiramo funkcionalnu jednadžbu, koja je nužan uvjet za rješavanje problema u realnim i složenim domenama [8], [10].

Kod svake usporedbi u parovima (engl. Pairwise comparison), svaki intenzitet važnosti može biti izabran. Naravno, intenzitet važnosti može se izabrati za oba kriterija u usporedbi u parovima. Dakle, ako je prvi kriterij apsolutno važniji od drugog kriterija pri donošenju odluke, tada se prvim kriteriju daje intenzitet važnosti 9 nad prvim kriterijem, dok se drugom kriteriju daje intenzitet važnosti 1/9. Naravno, moguć je izbor intenziteta važnosti od 1 do 9 u korist jednog kriterija nad drugim, no rijetkost je da je jedan kriterij apsolutno važniji od drugog kriterija, stoga se rijetko kojem kriteriju daje prednost intenziteta važnosti 8 ili 9.

Kod uspoređivanja kriterija u parovima, u metodi AHP kreira se i popunjava matrica usporedbi elemenata (kriterija ili alternativa).

Tabela 3 Primjer matrice usporedbi kriterija

<table>
<thead>
<tr>
<th>Odabir modela službenih automobile</th>
<th>Cijena</th>
<th>Izgled</th>
<th>Marka</th>
<th>Prostranost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cijena</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Izgled</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Marka</td>
<td>1/3</td>
<td>1/2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Prostranost</td>
<td>1/4</td>
<td>1/2</td>
<td>1/3</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabela 3 preslika je sljedeće matrice:

\[
C = \begin{bmatrix}
 c_{11} & c_{12} & \ldots & c_{12} \\
 c_{21} & c_{22} & \ldots & c_{22} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{n2}
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
 1 & 2 & 3 & 4 \\
 1/2 & 1 & 2 & 2 \\
 1/3 & 1/2 & 1 & 3 \\
 1/4 & 1/2 & 1/3 & 1 \\
 25/12 & 4 & 19/3 & 10
\end{bmatrix}
\]

Dakle, intenziteti važnosti pojedinih usporedaba postavljaju se na odgovarajuća mjesta unutar matrice. Nakon potpuno kreirane matrice usporedbi elemenata usporedbe,
kreće se na računanje relativnih vrijednosti istih. Uzeti ćemo kao primjer prethodno kreiranu tablicu usporedbi (Tablica 3.). Najprije je potrebno zbrojiti sve vrijednosti svakog stupca. U našem slučaju to su vrijednosti 9/4 za prvi stupac, 9/2 za drugi, 9/2 za treći te 9 za četvrti stupac.

Zatim se vrijednost svake češije matrice dijeli sa zbrojem stupca u kojemu se nalazi. Nakon navedenog izračuna dobijemo sljedeću matricu:

\[
D = \begin{bmatrix}
12/25 & 1/2 & 9/19 & 2/5 \\
6/25 & 1/4 & 6/19 & 1/5 \\
4/25 & 1/8 & 3/19 & 3/10 \\
3/25 & 1/8 & 1/19 & 1/10
\end{bmatrix}
\]

\[\Rightarrow \Rightarrow E = \begin{bmatrix}
0.463 \\
0.251 \\
0.186 \\
0.1
\end{bmatrix} \]

Sada se izračunava prosječna vrijednost svakog retka (matrica E). Što znači da zbrojimo sve češije u pojedinom retku i podijelimo s brojem češije tog retka. Dobili smo relativne vrijednosti svakog elementa, a iznose redom 0.463, 0.251, 0.186, 0.1. Ovaj postupak zove se još približni postupak.

Slijedi izračun konzistentnosti kojom provjeravamo je li donositelj odluke dao intenzitete važnosti kriterija/alternativa koji su međusobno konzistentni. Ako je element \(x \) važniji od elementa \(y \), a element \(y \) važniji od element \(z \), tada zasigurno element \(x \) mora biti važniji od elementa \(z \).

U prethodnom primjeru je lako prepoznati konzistentnost, no u nekim slučajevima biti će mnogo više elemenata pa se takva konzistentnost računa pomoću indeksa konzistentnosti AHP metode.

\[
CI = \frac{\lambda_{max} - n}{n - 1}
\]
Navedena formula se koristi za izračun konzistentnosti nekog skupa elemenata. Dakle, λ_{max} predstavlja maksimalnu svojstvenu vrijednost matrice usporedbi, dok n predstavlja broj redova dane matrice.

Omjer konzistentnosti se računa sljedećom formulom:

$$CR = \frac{CI}{RI}$$

gdje je RI slučajni indeks konzistentnosti kojeg možemo iščitati iz Tabele 4.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
RI & 0 & 0 & 0.58 & 0.9 & 1.12 & 1.24 & 1.32 & 1.41 & 1.45 & 1.49 \\
\hline
\end{array}
\]

Ukoliko je nakon navedenog izračuna vrijednost varijable CR manja od 0.1, tada su elementi konzistentni, odnosno donositelj odluke je ispravno unio intenzitete važnosti. U slučaju da je CR veći od 0.1, tada možemo zaključiti da uneseni intenziteti važnosti elemenata nisu konzistentni, stoga je potrebno promijeniti pojedine.

3.5. Aksiomi na kojima se temelji metoda AHP

Četiri su aksioma na kojima se temelji metoda AHP:

- Aksiom recipročnosti,
- Aksiom hijerarhije (zavisnosti),
- Aksiom homogenosti,
- Aksiom očekivanja.

3.5.1. Aksiom recipročnosti

Kada god radimo usporedbu u parovima, u obzir uzimamo oba člana kako bismo procijenili relativnu važnost jednog člana u odnosu na drugog. U prvom koraku moramo procijeniti koji je član važniji u usporedbi s drugim. Zatim procjenjujemo intenzitet razine njegove važnosti u odnosu na član s kojim se uspoređuje. Thomas L. Saaty je sljedećim aksiomom objasnio navedeno [8].

Ako je α skup n alternativa, a E skup kriterija u odnosu na koje se uspoređuje skup alternativa α. Za svaki $A_i, A_i \in \alpha$ i $C \in E$ vrijedi:
3.5.2. Aksiom hijerarhije

Djelomično uređeni skup je skup S s binarnom relacijom \leq ako zadovoljava sljedeće uvjete:

- Skup je refleksivan:
 Za sve $x \in S$, $x \leq x$

- Skup je tranzitivan
 Za sve $x, y, z \in S$,
 ako vrijedi $x \leq y$ i $y \leq z$
 tada vrijedi $x \leq z$

- Skup je antisimetričan
 Za sve $x, y \in S$,
 ako vrijedi $x \leq y$ i $y \leq x$
 tada vrijedi $x = z$ (x i y se podudaraju)

Dekompozicija nalaže utjecaj nadelemenata na elemente pojedine razine, ukoliko postoji nadrazina. Što znači da elementi neke razine ovise o elementima druge razine, ukoliko pripadaju toj razini, te se s time postiže hijerarhijska struktura što je glavno sredstvo AHP metode. Stoga se proces usporedbe elemenata odvija prema razinama, gdje se prvo uspoređuju elementi određene razine u odnosu na elemente više razine, ukoliko viša razina postoji. Ipak, ako ne postoji viša razina određenog skupa elemenata, tada se vrši usporedba tih elemenata u odnosu na cilj.

3.5.3. Aksiom homogenosti

Aksiom homogenosti nalaže obaveznu homogenost svih elemenata koji sudjeluju u usporedbi, odnosno dopušta uspoređivanje članova samo ako su ti članovi usporedivi. Ukoliko se članovi ne nalaze na istoj razini neke hijerarhije, tada vršenje usporedbi tih članova nije moguće.

3.5.4. Aksiom očekivanja

Aksiom očekivanja kaže da nakon svake promjene hijerarhijske strukture mora slijediti ponovni izračun prioriteta novonastale hijerarhije. Primjerice, ako se članovi jedne razine međusobno uspoređuju u odnosu na njihovog roditelja u hijerarhijskoj strukturi, tada
se moraju ispuniti očekivanja da će zbroj svih stvarnih relativnih važnosti neke razine biti jednak stvarnoj relativnoj važnosti roditelja članova te razine. Ukoliko se članovi neke razine uspoređuju u odnosu na cilj, tada pojedinačne stvarne relativne važnosti svih članova iznose koliko i relativne važnosti istih, što znači da je njihov zbroj 1.

3.6. Grupno odlučivanje AHP metodom

Razlikujemo pozitivne i negativne aspekte grupnog donošenja odluka. U pozitivne aspekte svakako možemo uvrstiti da grupa često bolje razumije zašto postoji potreba za donošenjem odluke, znanje grupe je često veće od znanja pojedinca, grupa obično generira veći broj alternativa za rješavanje problema, participacija u odlučivanju povećava prihvaćanje odluke od strane članova grupe i odgovornost i rizik se dijele na članove grupe. Negativni aspekti grupnog odlučivanja su: dulje trajanje procesa donošenja odluke, opasnost od dominacije autoritativnog člana grupe ili skupnog mišljenja, pritisci za slaganjem mogu ograničavati i sputavati članove grupe, mogućnost konfliktika i neslaganja između članova grupe, konkurencija između članova grupe može postati važnija od samog problema i postoji tendencija prihvaćanja prvog prihvatljivog rješenja [3].

U nastavku slijedi demonstracija izračuna matrice zajedničkih usporedbi temeljem 4 matrice individualnih procjena. Pored identične procjene agregiraju se u grupnu procjenu geometrijskom sredinom [11]. Primjer izračuna zajedničke procjene za prvi redak, drugi stupac: $\sqrt[3]{3 \cdot 2 \cdot 3 \cdot 4} = 2.91$

\[
\begin{bmatrix}
1 & 3 & 6 & 8 \\
1/3 & 1 & 3 & 4 \\
1/6 & 1/3 & 1 & 1 \\
1/8 & 1/4 & 1/2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 5 & 7 \\
1/2 & 1 & 2 & 5 \\
1/5 & 1/2 & 1 & 1 \\
1/7 & 1/5 & 1/2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 3 & 4 & 7 \\
1/3 & 1 & 3 & 6 \\
1/4 & 1/3 & 1 & 1 \\
1/7 & 1/6 & 1/2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 4 & 5 & 6 \\
1/4 & 1 & 3 & 5 \\
1/5 & 1/3 & 1 & 1 \\
1/6 & 1/5 & 1/2 & 1 \\
\end{bmatrix}
\]

Agregirana matrica.

\[
\begin{bmatrix}
1 & 2.91 & 4.95 & 6.96 \\
0.34 & 1 & 2.71 & 4.73 \\
0.2 & 0.37 & 1 & 1 \\
0.14 & 0.21 & 0.5 & 1 \\
\end{bmatrix}
\]

Nakon što je provedeno grupno odlučivanje, dobivaju se rezultati koji se dalje mogu analizirati i implementirati posebno za svakog sudionika procesa ili grupno kao sinteza rezultata sudionika procesa grupnog odlučivanja.
4. Razvoj softvera

4.1. Opis postojećeg stanja

Uz pomoć mentora, prepoznata je potreba za razvijanje softvera za podršku pri odlučivanju. Planirano je da se navedeni softver za početak koristi u sklopu Fakulteta organizacije i informatike, no ne odbacuje se mogućnost širenja na višu razinu. Softver je prvotno namijenjen za potrebe studenata Fakulteta organizacije i informatike na kolegijima čiji nastavni plan uključuje odlučivanje pomoću AHP metode. No, ne odbacuje se i mogućnost uvođenja novih tehnika odlučivanja u navedenu aplikaciju.

Da bismo lakše prepoznali važnost pojedinih koraka u razvoju ovog softvera, potrebno je shvatiti problem koji potiče razvitak istoga. Iako trenutno postoji mnogo aplikacija koje se bave ovom tematikom, smatram da esencijalnost strateškog odlučivanja u današnjem svijetu zahtjeva njih mnogo više. Pronašao sam nekoliko navedenih aplikacija koje ne pružaju dovoljno funkcionalnosti za neometano korisničko iskustvo pri donošenju odluka.

Kroz zadnjih nekoliko godina vidjeli smo nagli porast količine web i mobilnih aplikacija, dok se desktop aplikacije sve manje koriste, a samim time i razvijaju. Iako su desktop aplikacije mnogo bolje po pitanju sigurnosti, web aplikacije stječu prednost u pogledu prenosivosti (engl. Portability) i održivosti. Primjerice, desktop aplikacije, za razlika od web aplikacija, zahtijevaju manualno ažuriranje aplikacije što je velika mana. Isto tako, desktop aplikacije se posebno razvijaju za svaku platformu, dok je za pokretanje web aplikacija potreban moderni poslužitelj. Kako bih bio u skladu s trendom, odlučio sam ovaj softver razvijati u obliku web aplikacije. Smatram da ću na taj način omogućiti lakši pristup aplikaciji, te time ostvariti i veći broj potencijalnih korisnika.
4.2. Korišteni alati, tehnologije i programski jezici

Danas je najkorištenija MVC arhitektura (engl. Model, view, controller architecture) za razvoj web aplikacija, pa sam se tako i ja odlučio za istu. MVC je arhitektura koja razdvaja programski kod u tri dijela, čineći tako funkcionalnu cjelinu čiji je programski kod čitljiviji nego kod običnih arhitektura. MVC tako dijeli aplikaciju na Model koji je zaslužan za definiranje modela baze podataka, View koji je uglavnom napisan u HTML-u, CSS-u i Javascriptu te predstavlja prezentacijski sloj aplikacije, te Controller u kojemu se nalazi poslovna logika aplikacije.

![MVC arhitektura][1]

Slika 4 MVC arhitektura [15]

4.3. Funkcionalnosti

Jasno je da ovakav softver nudi široki spektar mogućnosti razvoja. Iako je prvotni plan bio razvoj softvera za provođenje AHP metode, ne isključuje se mogućnost širenja u vidu ostalih metoda za podršku pri odlučivanju. Tijekom pisanja ovog diplomskog rada,
Kreiranje novog projekta te ažuriranje i brisanje postojećeg: Prilikom kreiranja projekta korisnik ima mogućnost upisati naziv novog projekta te ga ukratko opisati. Naziv i opis projekta je moguće naknadno ažurirati, a projekt se može i obrisati.

Dodavanje, ažuriranje i brisanje alternativa: Za pojedini projekt moguće je dodati neograničeni broj alternativa. Prilikom kreiranja alternativa korisnik može upisati naziv i opis alternative. Također, naziv i opis alternative moguće je naknadno ažurirati.

Dodavanje i brisanje kriterija: Za početak se kriteriji dodaju u odnosu na glavni cilj projekta, a zatim je moguće dodati kriterije na neograničeni broj razina. Bitno je da je na jednoj razini minimalno dva kriterijske strukture.

Definiranje stvarnih vrijednosti alternativa po svim kriterijima: Za svaku alternativu moguće je definirati stvarne vrijednosti svih kriterija, primjerice količina RAM memorije za određenu alternativu mobilnog uređaja.

Uspoređivanje kriterija u parovima kroz sve razine: Na svakoj razini kreirane hijerarhijske strukture potrebno je usporediti svaki kriterij sa svakim. Pri tome se mora paziti da su usporedbi konzistentne. Kod svake promjene intenziteta važnosti usporedbi mijenja se i konzistentnost kriterija te upozorava korisnika ukoliko razina nije konzistentna. Usporedbе se vrše prema Saaty-еvoj skali.

Računanje globalnih vrijednosti alternativa i prikaz rezultata: Nakon uspešnih provedbi usporedbi u parovima, korisniku se prikazuje konačni poredak alternativa te izračunate globalne vrijednosti. Također, korisniku je prikazan plot dijagram za lakše prepoznavanje razlike između globalnih vrijednosti alternativa.

Analize osjetljivosti: Nakon prikaza rezultata korisnik ima mogućnost analizirati osjetljivost donesene odluke. Dakle, analizom osjetljivosti korisnik provjerava mijenja li se konačni poredak alternativa promjenom vrijednosti kriterija. U aplikaciji su dostupni Head-To-Head sensitivity dijagram, Performance sensitivity dijagram, Dynamic sensitivity dijagram te jedan prilagođeni dijagram. Osim Head-To-Head, sve analize osjetljivosti su dinamičke, odnosno omogućuju interakciju korisnika.
• Spremanje analiza osjetljivosti za kasnije korištenje: Kako bi se analiza osjetljivosti mogla naknadno pregledavati i dodavati u izvještaj, aplikacija, korisničkim pritiskom na gumb, sprema pojedinu analizu osjetljivosti u obliku png slike.

• Kreiranje projektnog izvještaja: Nakon uspješne provedbe usporedbi kriterija i alternativa te analize osjetljivosti, korisnik može izabrati opciju za kreiranje izvještaja. Aplikacija potom kreira izvještaj prilagođen željama korisnika. U izvještaj su uključeni:
 - naziv i opis projekta
 - popis kriterija te njihovih globalnih i lokalnih vrijednosti
 - prikaz usporedba kriterija u parovima
 - popis alternativa
 - konačni poredak alternativa uz prikaz globalnih vrijednosti
 - prikaz stvarnih vrijednosti alternativa prema kriterijima
 - dodane analize osjetljivosti

4.4. Osnove razvoja softvera

Razvoj softvera za podršku odlučivanju korištenjem AHP metode započeo je definiranjem ERA modela. Iako se sve češće koristi Code first pristup razvoja baze podataka, u ovom projektu odlučio sam koristiti Database first pristup. Kao što sam naziv kaže, Database first pristup razvoju projekta temelji se na početnom definiranje baze podataka na temelju koje se kasnije razvija projekt. Za početak sam kreirao osnovne entitete unutar baze podataka, no dodavši nove funkcionalnosti aplikaciji, paralelno sam dodavao i entitete za kojima se pojavila potreba. Na slici 5. prikazan je ERA model baze podataka koji se sastoji od svega 16 entiteta, od kojih je 7 slabih entiteta.

Dijagram slučajeva korištenja je jednostavan oblik prezentacije korisničke interakcije sa sustavom (Slika 6.). Preciznije, prikazuje mogućnosti interakcije učesnika sa navedenim sustavom te pojašnjava kako sustav reagira na korisničku interakciju. Na dijagramu je vidljivo da sustav ima nekoliko glavnih funkcionalnosti koje se dijele na više podfunkcionalnosti. Glavne funkcionalnosti sustava, iz perspektive studenta kao korisnika, su:

- Registracija na sustav
- Pregledavanje vlastitih projekata
- Upravljanje projektima (kreiranje i ažuriranje projekata)
- Evaluacija projekta

Ažuriranje projekata uključuje funkcionalnosti ažuriranja naziva i opisa projekata, kreiranje i ažuriranje alternativa te kriterija, kreiranje podkriterija i brisanje projekata. Kreiranje prilagođenih izvještaja proširuje funkcionalnost pregleda postojećih projekata. Funkcionalnost evaluacije projekata uključuje uspoređivanje kriterija u parovima, uspoređivanje alternativa u parovima u odnosu na kriterij, pregledavanje poretka alternativa prema izračunatim globalnim vrijednostima. Također, u navedenu funkcionalnost je uključeno analiziranje osjetljivosti koje je prošireno funkcionalnošću spremanja kreiranih analiza osjetljivosti u obliku slika.
Slika 6 Dijagram slučajeva korištenja
4.5. Mogućnosti proširenja

Postoje razne mogućnosti proširenja kreiranog sustava za podršku odlučivanju. Možemo započeti s ciljanom skupinom korisnika. Primjerice, za početak je planirano prezentiranje ovog projekta studentima koji na Fakultetu organizacije i informatike pohađaju kolegije čiji nastavni plan uključuje odlučivanje korištenjem AHP metode. Naknadno, ovaj sustav je moguće razviti do razine u kojem će ga koristiti i studenti s ostalih fakulteta. Isto tako, ne isključuje se mogućnost korištenja u poslovne svrhe, npr. donošenje strateških odluka unutar organizacija radi unaprijeđenja poslovanja.

Iako se nalazi na samom vrhu zbog svih njezinih kvaliteta, AHP metoda ima i svoje mane, što je sasvim normalno. Mnogo znanstvenika tvrdi da tablica indeksa konzistentnosti nije precizno definirana. Tako se pojavila FAHP ideja koja koristi takozvane nejasne brojeve (engl. Fuzzy numbers) [12]. Stoga, smatram da je s vremenom moguće nadograditi aplikaciju u vidu dodavanja funkcionalnosti korištenja nejasnih brojeva umjesto definiranih indeksa konzistentnosti.

Moguća su razna proširenja u vidu konzistentnosti intenziteta važnosti kriterija i alternativa. Jedno od njih je mogućnost razvijanja podsustava za prepoznavanje elemenata s visokim intenzitetom osjetljivosti. Takav sustav bi prepoznao elemente s visokim intenzitetom osjetljivosti te upozorio korisnika na potrebu za što preciznijim definiranjem intenziteta važnosti u usporedbama u parovima. Uz to, mogao bi korisniku pokazati na koji način odrediti intenzitet važnosti nekog elementa u odnosu na drugog, a da pritom ne njegova odluka ne utječe na rušenje praga konzistentnosti.

Grupno odlučivanje je zasigurno najpotrebnijsi potencijalno proširenje ovog sustava za potporu odlučivanju. Grupno odlučivanje provođenjem AHP metode svodi se na pojedinačno uspoređivanje kriterija i alternativa u parovima, koje rezultira dobivanjem lokalnih vrijednosti. Potom se izračunate lokalne vrijednosti svakog člana sintetiziraju u konačne globalne vrijednosti kriterija, koje se koriste za izračun globalnih vrijednosti alternativa. Iako još nije dokazano, smatra se da je grupno odlučivanje preciznije od pojedinačnog. Grupa ljudi ima tendenciju donošenja odluke koje su ekstremnije od onih koje donose pojedinci, u smjeru individualnih sklonosti [13]. Osim prethodno definiranih mogućnosti proširenja softvera, postoje i opća proširenja. Npr. dodavanje novih analiza osjetljivosti, mogućnost prijave na sustav preko posrednika za prijavu, kao što su Facebook, Google ili AAI@EduHr.
4.6. Pregled softverskih funkcionalnosti

U ovom poglavlju pokušati ću u što kraćim crtama prikazati kreirani sustav za potporu odlučivanju. Aplikacija je minimalističkog dizajna, bez mnoštva nepotrebno prikazanih podataka i opcija, a pristup aplikaciji imaju samo registrirani korisnici. Na slici 7 prikazan je obrazac za prijavu i registraciju korisnika.

Nakon prijave u sustav, korisnik se preusmjerava na početnu stranicu koja predstavlja pregled postojećih projekata korisnika. Na ovoj stranici, svaki projekt definirane je nazivom, opisom, fazom u kojoj se nalazi, vremenom kreiranja projekta te brojem alternativa i kriterija. Postoje sljedeće faze projekta:

- Kreiran – opisuje projekte koji su kreirani, no nemaju definiranih alternativa i kriterija
- U izradi – uključuje projekte koji imaju dodatne alternative i kriterije, no konačni rezultat još nije dobiven
- Završen – opisuje projekte koji imaju definirane alternative i kriterije, izračunate lokalne i globalne vrijednosti istih, te konačan rezultat

Na Slici 9 prikazan je obrazac za dodavanje novog projekta, gdje je potrebno dodati naziv i opis projekta. Nakon što je korisnik dodao novi projekt, isti se pojavio u listi postojećih projekata. Ako korisnik odabere pojedini projekt iz liste svojih projekata, otvara mu se početna stranica tog projekta. Na početnoj stranici su prikazane osnovne informacije o projektu, lista alternativa i hijerarhijski pregled kriterija (Slika 9. i 10.). Na početnoj stranici projekta postoje razne opcije za upravljanje projektom, alternativama i kriterijima. Primjerice, moguće je dodavanje karakteristika postojećim alternativama za svaki kriterij (Slika 12.), ažuriranje naziva i opisa projekta, dodavanje kriterija i podkriterija, itd.
Slika 7 Obrasci za registraciju i prijavu korisnika
Početna Pregled svih projekata

+ Novi projekt

Odabir mobitela

CIJ je donošenja odluke o kupovini najoptimalnijeg mobilnog telefona.

6 alternative 13 kriterija

Odabir automobila

3 alternative 3 kriterija

Odabir fakulteta

0 alternative 0 kriterija

Vrijeme kreiranja: 19.07.2018. 10:09:45

© 2018 - My ASP.NET Application

Slika 8 Početna stranica - pregled postojećih projekata
Slika 9 Obrazac za kreiranje novog projekta
Slika 10 Pregled osnovnih informacija projekta i alternativa
Slika 11 Pregled kriterija

<table>
<thead>
<tr>
<th>Kriterij</th>
<th>Izgled</th>
<th>Gumbi</th>
<th>12,69%</th>
<th>Ekran</th>
<th>M 31,9%</th>
<th>83,33%</th>
<th>Performanse</th>
<th>CPU</th>
<th>15,32%</th>
<th>19,55%</th>
<th>RAM</th>
<th>5,06%</th>
<th>17,34%</th>
<th>Memorija</th>
<th>13,79%</th>
<th>43,21%</th>
<th>Kamera</th>
<th>6,23%</th>
<th>19,55%</th>
<th>Marke</th>
<th>8,04%</th>
<th>8,04%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marka</td>
<td></td>
</tr>
<tr>
<td>Cijena</td>
<td></td>
</tr>
<tr>
<td>Staklo</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Zvučnici</td>
<td></td>
</tr>
</tbody>
</table>
Karakteristike Samsung S8 prema kriterijima

<table>
<thead>
<tr>
<th>Marka</th>
<th>Samsung</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>i7</td>
</tr>
<tr>
<td>RAM</td>
<td>8 gb</td>
</tr>
<tr>
<td>Gumbi</td>
<td>Stvarna vrijednost alternative po kriteriju</td>
</tr>
<tr>
<td>Ekran</td>
<td>Stvarna vrijednost alternative po kriteriju</td>
</tr>
<tr>
<td>Cijena</td>
<td>7200 kn</td>
</tr>
<tr>
<td>Staklo</td>
<td>Gorilla glass Premium</td>
</tr>
<tr>
<td>Memorija</td>
<td>32 gb (proširivo do 64 gb)</td>
</tr>
<tr>
<td>Kamera</td>
<td>12 mgpx</td>
</tr>
<tr>
<td>Software</td>
<td>Android</td>
</tr>
<tr>
<td>Zvučnici</td>
<td>Premium</td>
</tr>
</tbody>
</table>

Slika 12 Ažuriranje karakteristika alternativa prema kriterijima
Najvažniji dio ove web aplikacije je sustav za evaluaciju koji se sastoji od četiri koraka. Prvi korak je dio za usporedbu kriterija u parovima, gdje se svaki kriterij uspoređuje s kriterijima na istoj razini hijerarhijskog stabla. Konzistentnost svake razine prikazan je u gornjem lijevom kutu (Slika 13.). Na vrhu evaluacijskog obrasca vidljiva je konzistentnost svih kriterija unutar projekta. Ukoliko je vrijednost veća od 10%, projekt nije konzistentan. Treći korak evaluacije je „Rezultat“. U ovom koraku prikazan je poredak alternativa prema izračunatim globalnim vrijednostima. Također, prikazan je i dijagram koji nam daje bolji uvid vrijednosti alternativa (Slika 15.)

Posljednji korak evaluacije uključuje dosad nepoznatu analizu osjetljivosti koja prikazuje utjecaj promjene veličine pojedinih usporedbi u parovima na prioritet. Ovaj graf je dinamički. Dakle, promjenom pojedine usporedbi u paru, ažurirane se graf, te nam pokazuje koliki utjecaj navedena promjena ima na krajnji poredak alternativa (Slika 16.). Vodoravne crte su fiksne i predstavljaju globalne vrijednosti alternativa temeljene na stvarnim rezultatima evaluacije. Stupci predstavljaju jednake vrijednosti, no oni su dinamični, što znači da reagiraju na korisničku promjenu intenziteta važnosti pojedine usporedbi kriterija. Vidljivo je da vrijednost alternative „Samsung Note 9“ pala za nekoliko posto nakon korisničke interakcije. Također, iznad grafa vidljiv je gumb „Spremi za izvoz“. Pritiskom na taj gumb korisniku se otvara obrazac pomoću kojeg definira naziv i opis slike koju je upravo spremino (Slika 17.). Spremljena slika kasnije se može koristiti za kreiranje izvještaja.
Slika 13 Uspoređivanje kriterija u parovima
Memorija

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Samsung S8 (32 gb)</th>
<th>Samsung S8 (64 gb)</th>
<th>iPhone 8S (32 gb)</th>
<th>Huawei P10 (32 gb)</th>
<th>Iphone 4 (32 gb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 8 7 6 5 4 3 2 1 2</td>
<td>9 8 7 6 5 4 3 2 1 2</td>
<td>9 8 7 6 5 4 3 2 1 2</td>
<td>9 8 7 6 5 4 3 2 1 2</td>
<td>9 8 7 6 5 4 3 2 1 2</td>
</tr>
</tbody>
</table>

Slika 14 Uspoređivanje alternativa u parovima, u odnosu na kriterij „Memorija“
1. **Samsung Note 9**

 Samsung Galaxy Note 9 donas je službeno predstavljen i hrvatskim medijima u Zagrebu. Na hrvatskom tržištu Galaxy Note 9 bit će dostupan od 24. kolovoza 2018. u tri boce.

 23,05%

2. **Samsung S8**

 17,47%

3. **Huawei P10**

 16,33%

4. **Huawei 20 Pro**

 Huawei P20 i P20 Pro modeli spadaju među najnaširene mobilne na tržištu.

 16,23%

Slika 15 Rezultat evaluacije
Slika 16 Analiza osjetljivosti konačnih rezultata na promjenu intenziteta važnosti kod pojedinih usporedba kriterija u paru
Slika 17 Obrazac za spremanje dinamičkog grafa za izvještaj

Kod svake korisničke interakcije kod navedenih dijagrama, slike istih je moguće spremiti pritiskom na gumb „Spremi za izvoz“. Tada se slike pohranjuju na poslužitelj te im je moguće pristupiti prilikom kreiranja izvještaja, što će biti objašnjeno u nastavku.

Nakon odabira sadržaja izvještaja, izvještaj se otvara u obliku *Word* dokumenta. Izvještaj sadrži naslovnu stranicu, naziv i opis projekta. Zatim je prikazan popis kriterija (Slika 22) i alternativa (Slika 23). U nastavku izvještaja, možemo vidjeti sve usporedbe kriterija koje je korisnik napravio tijekom evaluacije. Potom slijedi prikaz konačnih rezultata evaluacije (Slika 25), a zatim i analize osjetljivosti koje smo odabrali prilikom kreiranja izvještaja.
Slika 18 Analiza osjetljivosti performansi
Slika 19 Dinamička analiza osjetljivosti
Slika 20 Head-To-Head analiza osjetljivosti
Kreiraj izvještaj

Performance sensitivity

Dynamic sensitivity

Head to head sensitivity

Slika 21 Obrazac za kreiranje izvještaja
Kriteriji

<table>
<thead>
<tr>
<th>Naziv kriterija</th>
<th>Naziv roditelja</th>
<th>Globalna vrijednost (Lokalna vrijednost)</th>
<th>Konzistentnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izgled</td>
<td></td>
<td>(15,22%)</td>
<td></td>
</tr>
<tr>
<td>Kriterij izgled svodi se na usporedbu alternativa prema podkriterijima Gumbli i Ekran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gumbli</td>
<td>Izgled</td>
<td>2,54% (16,67%)</td>
<td></td>
</tr>
<tr>
<td>Ekran</td>
<td>Izgled</td>
<td>12,69% (83,33%)</td>
<td></td>
</tr>
<tr>
<td>Performanse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td>Performanse</td>
<td>6,23% (19,52%)</td>
<td></td>
</tr>
<tr>
<td>RAM</td>
<td>Performanse</td>
<td>5,66% (17,74%)</td>
<td></td>
</tr>
<tr>
<td>Memorija</td>
<td>Performanse</td>
<td>13,79% (43,21%)</td>
<td></td>
</tr>
<tr>
<td>Kamera</td>
<td>Performanse</td>
<td>6,23% (19,52%)</td>
<td></td>
</tr>
<tr>
<td>Marka</td>
<td></td>
<td>8,04% (8,04%)</td>
<td></td>
</tr>
<tr>
<td>Cijena</td>
<td></td>
<td>12,53% (12,53%)</td>
<td></td>
</tr>
<tr>
<td>Staklo</td>
<td></td>
<td>8,25% (8,25%)</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td>15,79% (15,79%)</td>
<td></td>
</tr>
<tr>
<td>Zvučnici</td>
<td></td>
<td>8,25% (8,25%)</td>
<td></td>
</tr>
</tbody>
</table>

Slika 22 Prikaz kriterija u generiranom izvještaju

Alternative

<table>
<thead>
<tr>
<th>Naziv alternative</th>
<th>Opis alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung S8</td>
<td></td>
</tr>
<tr>
<td>iPhone 8S</td>
<td></td>
</tr>
<tr>
<td>Huawei P10</td>
<td></td>
</tr>
<tr>
<td>iPhone 4</td>
<td></td>
</tr>
<tr>
<td>Huawei 20 Pro</td>
<td>Huawei P20 i P20 Pro modeli spadaju među najnaprednije mobitele na tržištu.</td>
</tr>
<tr>
<td>Samsung Note 9</td>
<td>Samsung Galaxy Note 9 danas je službeno predstavljen hrvatskim medijima u Zagrebu. Na hrvatskom tržištu Galaxy Note 9 bit će dostupan od 24. kolovoza 2018. u tri boje</td>
</tr>
</tbody>
</table>

Slika 23 Prikaz alternativa u generiranom izvještaju
Karakteristike alternativa prema kriterijima

<table>
<thead>
<tr>
<th></th>
<th>Samsung S8</th>
<th>iPhone 8S</th>
<th>Huawei P10</th>
<th>Iphone 4</th>
<th>Huawei 20 Pro</th>
<th>Samsung Note 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumbi</td>
<td>Senzor naprijed, uobičajeno</td>
<td>Senzor otraga, naprijed nema gumba</td>
<td>Senzor otraga, jedan gumb naprijed</td>
<td>Staromodno</td>
<td>Senzor naprijed</td>
<td></td>
</tr>
<tr>
<td>Ekran</td>
<td>8"x12</td>
<td>7.5"x12</td>
<td>7"x11.5</td>
<td>6"x10</td>
<td>7"x12 cm</td>
<td>8"x12.5</td>
</tr>
<tr>
<td>CPU</td>
<td>i7</td>
<td>i7</td>
<td>i7</td>
<td>i3</td>
<td>i7</td>
<td>i9</td>
</tr>
<tr>
<td>RAM</td>
<td>8 gb</td>
<td>8 gb</td>
<td>8 gb</td>
<td>8 gb</td>
<td>8 gb</td>
<td>12 gb</td>
</tr>
<tr>
<td>Memorijski</td>
<td>32 gb (proširivo do 64 gb)</td>
<td>32 gb (proširivo do 128 gb)</td>
<td>8 gb</td>
<td>32 gb (proširivo do 128 gb)</td>
<td>64 gb (proširivo)</td>
<td></td>
</tr>
<tr>
<td>Kamera</td>
<td>12 mgpx</td>
<td>12 mgpx</td>
<td>12 mgpx</td>
<td>8 mgpx</td>
<td>Tri kamere, 12 mgpx</td>
<td>18 mgpx, Dual</td>
</tr>
<tr>
<td>Marka</td>
<td>Samsung</td>
<td>iPhone</td>
<td>Huawei</td>
<td>Iphone</td>
<td>Huawei</td>
<td>Samsung</td>
</tr>
<tr>
<td>Cijena</td>
<td>7200 kn</td>
<td>7800 kn</td>
<td>6300 kn</td>
<td>2800 kn</td>
<td>7500 kn</td>
<td>9500 kn</td>
</tr>
<tr>
<td>Staklo</td>
<td>Gorilla glass Premium</td>
<td>Gorilla glass high quality premium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>Android</td>
<td>iOS</td>
<td>Android</td>
<td>IOS</td>
<td>Android</td>
<td>Android</td>
</tr>
<tr>
<td>Zvučnici</td>
<td>Premium</td>
<td>Good</td>
<td>Good</td>
<td>Low quality</td>
<td>Good</td>
<td>Premium Plus</td>
</tr>
</tbody>
</table>

Slika 24 Karakteristike alternativa prema kriterijima

Analiza rezultata

1. **Samsung Note 9**
 Samsung Galaxy Note 9 danas je službeno predstavljen hrvatskim medijima u Zagrebu. Na hrvatskom tržištu Galaxy Note 9 bit će dostupan od 24. kolovoza 2018. u tri boje
 23,05%

2. **Samsung S8**
 17,47%

3. **Huawei P10**
 16,33%

4. **Huawei 20 Pro**
 Huawei P20 i P20 Pro modeli spadaju među najnaprednije mobitelne na tržištu.
 16,23%

5. **iPhone 8S**
 13,94%

6. **iPhone 4**
 12,98%

Slika 25 Prikaz konačnih rezultata - poredak alternativa prema globalnim vrijednostima
5. Demonstracija korištenja softver

5.1. Strukturiranje problema

U ovom poglavlju ću demonstrirati korištenje sustava pomoću primjera. U primjeru ću pokušati odrediti najoptimalnije rješenja za kupnju novog osobnog automobila [14].

Projekt smo kreirali upisivanjem naziva i opisa projekta, odnosno glavnog cilja projekta. Alternative odabiremo prema osobnim preferencijama, odnosno dodajemo sve one alternative koje možemo vidjeti kao konačni odabir. Da bismo započeli s projektom, moramo dodati alternative (Slika 26):

- Audi A3 Sportback – 1.5 TFSI
- BMW X5
- Open Insignia GSI
- Mercedes-Benz CLA Coupe

Slika 26 Prikaz alternativa unutar aplikacije

Potom smo kreirali hijerarhijsku strukturu kriterija pomoću kojih ćemo izabrati najoptimalniju alternativu (Slika 27). Radi jednostavnosti ove demonstracije, nisam definirao još mnogo važnih kriterija, primjerice snaga automobila, CO_2 emisija, maksimalna brzina, tip motora, vrsta mjenjača, itd. Definirali smo četiri osnovna kriterija:

- Trošak
- Sigurnost
- Stil
- Kapacitet
Navedeni kriteriji dijele se na još nekoliko podkriterija, a kreirano hijerarhijsko stablo sastoji se od samo dvije razine. Kriterij Trošak, podijeljen je na kriterije Cijena kupovine, Potrošnja goriva, Trošak održavanja, Održiva vrijednost. Stil smo podijelili na kriterije Masu i Dizajn, dok kriterij Kapacitet dijelimo na kapacitet prtljažnika i broj putnika koji stane u automobil. Na slici su vidljive lokalne vrijednosti koje je aplikacija samostalno pridružila dodanim kriterijima i to ravnopravno svim kriterijima po razinama. Tako, na razini s četiri kriterija, svaki kriterij ima početni lokalni intenzitet važnosti 25 posto, dok na razini s ukupno dva kriterija, svaki kriterij ima početni lokalni intenzitet važnosti 50%.

Da bismo kasnije lakše vršili usporedbu alternativa u parovima, u odnosu na kriterije, dodati ćemo karakteristike alternativa prema tim kriterijima (Slika 28).
Slika 27 Hijerarhijska struktura kriterija
Karakteristike Audi A3 Sportback - 1.5 TFSI prema kriterijima

<table>
<thead>
<tr>
<th>Kriterij</th>
<th>vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigurnost</td>
<td>Dobra</td>
</tr>
<tr>
<td>Cijena kupovine</td>
<td>168.000 kn</td>
</tr>
<tr>
<td>Potrošnja goriva</td>
<td>5 l/100km</td>
</tr>
<tr>
<td>Trošak održavanja</td>
<td>Vrlo dobar</td>
</tr>
<tr>
<td>Održiva vrijednost</td>
<td>Dobar</td>
</tr>
<tr>
<td>Masa</td>
<td>1305 kg</td>
</tr>
<tr>
<td>Dizajn</td>
<td>Vrlo dobar</td>
</tr>
<tr>
<td>Prtljažnik</td>
<td>Dovoljan</td>
</tr>
<tr>
<td>Putnici</td>
<td>5 (tišesno)</td>
</tr>
</tbody>
</table>
5.2. Uspoređivanje u parovima

S ovako uspoređenim kriterijima, aplikacija nas izvještava da je konzistentnost prolazna, a iznosi 3.92%. S obzirom da je kriterij Trošak, po upisanom intenzitetu važnosti, važniji od sva tri ostala kriterija, možemo zaključiti da će ovaj kriterij imati najveću globalnu vrijednost. Zatim slijedi kriterij Sigurnost, te posljednje mjesto dijele kriteriji Stil i Kapacitet.

Nakon usporedba kriterija svake razine, možemo započeti uspoređivanje alternativa. Prethodno unesene karakteristike svake alternative za definirane kriterije, postupak uspoređivanja alternativa nam čini puno jednostavnijim (Slika 30). S obzirom da znamo cijenu svakog automobila, u našem primjeru vrlo lako možemo procijeniti intenzitete važnosti svake alternative. Nakon prvog kriterija, usporedbe alternativa radimo i u odnosu na ostale kriterije.
Početne usporedbе

<table>
<thead>
<tr>
<th>Trošak</th>
<th>Sigurnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trošak</th>
<th>Stil</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trošak</th>
<th>Kapacitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sigurnost</th>
<th>Stil</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sigurnost</th>
<th>Kapacitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stil</th>
<th>Kapacitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 8 7 6 5 4 3</td>
<td>2 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

Slika 29 Uspoređivanje kriterija najviše razine u odnosu na cilj
Slika 30 Uspoređivanje alternativa u odnosu na kriterij Cijena kupovine
5.3. Sinteza rezultata

Nakon što smo napravili usporedbu svih alternativa i kriterija, aplikacija je izračunala sve globalne vrijednosti kriterija (Slika 31), te možemo krenuti na analizu rezultata (Slika 32). Aplikacija pokazuje sljedeći redoslijed automobila poredanih prema globalnom intenzitetu važnosti:

- Mercedes-Benz CLA Coupe (27,69%)
- BMW X5 (26,92%)
- Audi A3 Sportback – 1.5 TFSI (26,11%)
- Opel Insignia GSI (19,27%)

Konzistentnost kriterija najviše razine je 3.92%. S obzirom da je svaka konzistentnost ispod 10% prihvatljiva, ovaj rezultat je odličan. Razlike između prve tri alternative u konačnom poretku su manje od 1%, što znači da je možda čak samo jedna usporedba odlučila o optimalnom odabiru. U ovoj situaciji dobro je provesti analizu osjetljivosti, kako bismo sitnim promjenama vrijednosti kriterija mogli raspoznati sitne promjene konačnog poretku alternativa. Analiza osjetljivosti je proučavanje kako se nesigurnost izlaza matematičkog modela može podijeliti na različite izvore nesigurnosti [15].
<table>
<thead>
<tr>
<th>Kriterij</th>
<th>Trošak</th>
<th>Crna kupovina</th>
<th>21,07%</th>
<th>50,55%</th>
<th>+</th>
<th>Potrošnja goriva</th>
<th>4,72%</th>
<th>11,32%</th>
<th>+</th>
<th>Trošak održavanja</th>
<th>10,38%</th>
<th>24,9%</th>
<th>+</th>
<th>Održiva vrijednost</th>
<th>5,51%</th>
<th>13,22%</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stiglomast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masa</td>
<td></td>
<td>6,96%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dizajn</td>
<td></td>
<td>4,96%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kapacitet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prtljažnik</td>
<td></td>
<td>2,44%</td>
<td>16,67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Putnici</td>
<td></td>
<td>17,19%</td>
<td>83,13%</td>
<td></td>
</tr>
</tbody>
</table>

Slika 31 Pregled kriterija s izračunatim globalnim vrijednostima
Slika 32 Pregled konačnog poretka alternativa

1. **Mercedes-Benz CLA Coupe**

 CLA je novi model u impresivno velikoj gani Mercedes-Benza, na samom startu
 hraneckih ponuda (tako CLA klasi Mercedes vodi kao coupe) kod nas onljene
 27,69%

2. **BMW X5**

 Voda je stigao i postavlja novu pravilu: potpuno novi BMW X5. Kjergo je pojava
 jasna za sve - uspavanja, urušena i elegantna. Moćna jednodiželjina dvostruka marka
 26,92%

3. **Audi A3 Sportback - 1.5 TFSI**

 Markantna tornado linija uzdiha ruba prozora i dinamična linija iznad pravca
 definiraju njegovu vitku strancu. Popred na stražnji dio vozila je novim
 26,11%

4. **Opel Insignia GSI**

 Insignia GSI Grand Sport spaja snažne, sportske linije s 20" dvobožnim aluminijitim
 naplatcima, kromiranim usluznicima zraka i stražnjim spojlerom koji ističu njen
 19,27%
5.4. Analiza osjetljivosti dobivenih rezultata

Analiza osjetljivosti je proces rekalkulacije ishoda odlučivanja s ciljem određivanja utjecaja pojedinih varijabla analize osjetljivosti na promjenu konačnog ishoda [16]. Postoje razne metode analiziranja osjetljivosti konačnih ishoda odlučivanja, no trenutno je u aplikaciji dostupno ukupno njih četiri, a to su:

- Analiza osjetljivosti konačnog ishoda na promjenu intenziteta važnosti pojedine usporedbi
- Analiza osjetljivosti performans (engl. Performance sensitivity analysis)
- Dinamička analiza osjetljivosti (engl. Dynamic sensitivity analysis)
- Analiza osjetljivosti odnosa (engl. Head-To-Head sensitivity analysis)

5.4.1. Analiza osjetljivosti konačnog ishoda na promjenu intenziteta važnosti pojedine usporedbi

Izjednačavanjem intenziteta važnosti kriterija Trošak i Kapacitet, vidimo veliku promjenu u odnosu na početni ishod alternativa (Slika 33). Iako je alternativa Mercedes-Benz CLA Coupe imala prednost nad alternativom BMW X5, s razlikom od skoro 1%, nakon ove sitne promjene BMW X5 postaje vodeća alternativa, i to čak s razlikom od 2% nad alternativom Mercedes-Benz CLA Coupe.

Slika 33 Prikaz utjecaja promjene intenziteta važnosti usporedbi kriterija Trošak i Kapacitet
Također, promjena intenziteta važnosti kriterija Kapacitet u odnosu na kriterij Stil, uvelike utječe na konačni ishod (Slika 34). Ovom analizom osjetljivosti možemo zaključiti da je kriterij Kapacitet problematičan. Stoga je potrebno učiniti neke strukturne promjene ili promjene izračuna, kako bi sa sigurnošću mogli donijeti odluku.

Slika 34 Prikaz utjecaja promjene intenziteta važnosti usporedbe Kapaciteta i Stila

5.4.2. Analiza osjetljivosti performansi

Slijedi, možda i najkorisnija analiza osjetljivosti po pitanju prikaza dostupnih podataka, analiza osjetljivosti performansi. Odmah je vidljivo da navedena analiza, u odnosu na prethodnu pruža mnogo više informacija koje korisniku mogu biti od velike pomoć. Primjerice, u ovoj analizi korisnik može vidjeti lokalne vrijednosti alternativa. Na grafu (Slika 35) možemo prepoznati veliki utjecaj kriterija Kapacitet na alternativu BMW X5 (plava linija), no isto tako i veliki utjecaj kriterija Trošak, u odnosu na druge kriterije, na alternativa Audi A3.

S obzirom da sam prepoznao važnost kriterija Trošak za alternativu Audi A3, u sljedećem primjeru (Slika 36) sam ažurirao intenzitet važnosti kriterija Trošak. Početni intenzitet važnosti kriterija Trošak je bio 41,67%, a promijenio sam ga na 47,95%. Tom promjenom alternativa Audi A3 Sportback – 1.5 TFSI postala je vodeća s globalnom
vrijednošću 27.71%, a nakon nje slijedi alternativa Mercedes-Benz CLA Coupe s vrijednošću 27.41%.

Slika 35 Početni graf u analizi osjetljivosti performansi

Slika 36 Povećanje kriterija Trošak za 6%

5.4.3. Dinamička analiza osjetljivosti

Kao i kod analize osjetljivosti performansi, dinamička analiza osjetljivosti reagira na interakciju korisnika. Dok je po svojoj funkcionalnosti potpuno ista kao analiza osjetljivosti performansi, ona ne prikazuje lokalne intenzitete važnosti kriterija. No, dinamička analiza osjetljivosti pruža nam puno pregledniji grafički dizajn, što u nekim slučajevima može biti velika prednost (Slika 37).
Slika 37 Početni izgled dijagrama dinamičke analize osjetljivosti
Povećanjem intenziteta važnosti kriterija Kapacitet sa 14,36% na 20%, alternativa BMW X5 zauzima prvo mjesto u poretku alternativa poredanih prema njihovim globalnim vrijednostima (Slika 38).

Slika 38 Utjecaj promjene intenziteta važnosti kriterija Trošak na konačni ishod

5.4.4. Analiza osjetljivosti odnosa

Među navedenim, najjednostavnija analiza je analiza osjetljivosti odnosa (engl. Head-To-Head sensitivity analysis). Pruža nam vrlo pregledan uvid u odnos lokalnih vrijednosti dvaju odabranih kriterija (Slika 39).

Slika 39 Odnos alternativa BMW X5 i Mercede-Benz CLA Coupe prema lokalnim intenzitetima važnosti
6. Zaključak

Iz dana u dan, sve više organizacija započinje informatizaciju poslovnih procesa s ciljem držanja konkurentnosti na tržištu. Ukoliko se želi izbjeći donošenje loših poslovnih odluka, informatizacija ne smije proteći bez uvođenja sustava za potporu pri odlučivanju. Kako se širi potreba za donošenjem ispravnih odluka, tako se širi i potreba za sustavima za potporu odlučivanju. Svaka pravovremena i ispravna odluka donosi uspjeh u poslovnom svijetu.

Kako se širi potreba za sustavima za potporu odlučivanju, tako bi se i razvitak istih morao unaprijeđivati. Ipak, još uvijek ne postoje sustavi koji pružaju sve važne funkcionalnosti za donošenje ispravnih i pravovremenih odluka. I dalje postoje sustavi koji nemaju podržano grupno odlučivanje, analizu osjetljivosti te opciju za definiranje stvarnih vrijednosti alternativa za dodane kriterije.

Kod navedenih sustava postoji veliki potencijal za proširenje funkcionalnosti analiziranja osjetljivosti, odnosno dodavanje novih opcija koje će unaprijetiti krajnje donošenje odluka. Smatram da ovaj sustav ima dobre predispozicije za razvijanje u pravom smjeru, počevši od unaprijeđivanja prijave i registracije korisnika, unaprijeđenja analize osjetljivosti, pa sve do kompleksnog grupnog odlučivanja.
7. Popis literature

8. Popis slika

Slika 1 Odnos između rješavanja problema i odlučivanja (prilagođeno prema [1]) 5
Slika 2 Primjer hijerarhijskog modela ([3]–[5]) 8
Slika 3 Primjer konzistentnih elemenata 14
Slika 4 MVC arhitektura [15] 19
Slika 5 ERA model 23
Slika 6 Dijagram slučajeva korištenja 24
Slika 7 Obrasci za registraciju i prijavu korisnika 27
Slika 8 Početna stranica - pregled postojećih projekata 28
Slika 9 Obrazac za kreiranje novog projekta 29
Slika 10 Pregled osnovnih informacija projekta i alternativa 30
Slika 11 Pregled kriterija 31
Slika 12 Ažuriranje karakteristika alternativa prema kriterijima 32
Slika 13 Uspoređivanje kriterija u parovima 34
Slika 14 Uspoređivanje alternativa u parovima, u odnosu na kriterij „Memorija“ 35
Slika 15 Rezultat evaluacije 36
Slika 16 Analiza osjetljivosti konačnih rezultata na promjenu intenziteta važnosti kod pojedinih usporedba kriterija u paru 37
Slika 17 Obrazac za spremanje dinamičkog grafa za izvještaj 38
Slika 18 Analiza osjetljivosti performansi 40
Slika 19 Dinamička analiza osjetljivosti 41
Slika 20 Head-To-Head analiza osjetljivosti 42
Slika 21 Obrazac za kreiranje izvještaja 43
Slika 22 Prikaz kriterija u generiranom izvještaju 44
Slika 23 Prikaz alternativa u generiranom izvještaju 44
Slika 24 Karakteristike alternativa prema kriterijima 45
Slika 25 Prikaz konačnih rezultata - poredak alternativa prema globalnim vrijednostima 45
Slika 26 Prikaz alternativa unutar aplikacije 46
Slika 27 Hijerarhijska struktura kriterija 48
Slika 28 Obrazac za dodavanje karakteristika alternative prema kriterijima 49
Slika 29 Uspoređivanje kriterija najviše razine u odnosu na cilj 51
Slika 30 Uspoređivanje alternativa u odnosu na kriterij Cijena kupovine 52
Slika 31 Pregled kriterija s izračunatim globalnim vrijednostima 54
Slika 32 Pregled konačnog poredka alternativa 55
Slika 33 Prikaz utjecaja promjene intenziteta važnosti usporedbe kriterija Trošak i Kapacitet 56
Slika 34 Prikaz utjecaja promjene intenziteta važnosti usporedbe Kapaciteta i Stila 57
Slika 35 Početni graf u analizi osjetljivosti performansi 58
Slika 36 Povećanje kriterija Trošak za 6% 58
Slika 37 Početni izgled dijagrama dinamičke analize osjetljivosti 59
Slika 38 Utjecaj promjene intenziteta važnosti kriterija Trošak na konačni ishod 60
Slika 39 Odnos alternativa BMW X5 i Mercede-Benz CLA Coupe prema lokalnim intenzitetima važnosti 60
9. Popis tablica

Tablica 1. Opći prikaz tablice odlučivanja [1] .. 6
Tabela 2 Saatyeva skala - temeljna skala apsolutnih brojeva [8], [9]... 10
Tabela 3 Primjer matrice vrijednosti kriterija .. 13
10. Prilozi

U arhivi, priloženoj uz diplomski rad, nalazi se direktorij s projektom pod nazivom Odluka. Unutar navedenog direktorija, pojedine datoteke se mogu otvoriti samo pomoću aplikacije Visual Studio. Web aplikacija napisana je u C# programskom jeziku, a sva struktura aplikacije dostupna je na navedenom direktoriju.