
A proposal of an ontology-based methodological
framework for multi-platform mobile applications
development

Stapić, Zlatko

Doctoral thesis / Disertacija

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics Varaždin / Sveučilište u Zagrebu, Fakultet
organizacije i informatike Varaždin

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:752249

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-20

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:752249
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:518
https://dabar.srce.hr/islandora/object/foi:518

University of Alcalá
Computer Science Department, Postgraduate School

Doctoral program “Information and Knowledge Engineering”

University of Zagreb
Faculty of Organization and Informatics

Postgraduate doctoral study "Information Sciences"

ZLATKO STAPIĆ

A PROPOSAL OF AN ONTOLOGY-BASED METHODOLOGICAL

FRAMEWORK FOR MULTI-PLATFORM MOBILE APPLICATIONS

DEVELOPMENT

DOCTORAL DISSERTATION

Advisors:

Prof. Vjeran Strahonja

Dr. Luis de Marcos Ortega

Alcalá de Henares & Varaždin, 2013

Sveučilište u Alcalái
Odjel računalnih znanosti, Poslijediplomska škola

Doktorski program “Inženjerstvo informacija i znanja”

Sveučilište u Zagrebu
Fakultet organizacije i informatike

Poslijediplomski doktorski studij “Informacijske znanosti”

ZLATKO STAPIĆ

PRIJEDLOG ONTOLOŠKI UTEMELJENOG METODOLOŠKOG

OKVIRA ZA RAZVOJ VIŠE-PLATFORMSKIH MOBILNIH

APLIKACIJA

DOKTORSKI RAD

Mentori:

Prof.dr.sc. Vjeran Strahonja

Doc.dr.sc. Luis de Marcos Ortega

Alcalá de Henares i Varaždin, 2013

D E P A R T A M E N T O D E

C I E N C I A S D E L A C O M P U T A C I Ó N

Campus Universitario. Edificio Politécnico

28805 Alcalá de Henares (Madrid)

Teléfonos: 91 885 66 51

Fax: 91 885 66 46

U
N

I
V

E
R

S
I

D
A

D

D
E

A

L
C

A
L

Á
,

P

A
T

R
I

M
O

N
I

O

D

E

L

A

H
U

M
A

N
I

D
A

D

Dña. Teresa I. Díez Folledo, Profesora Titular de Universidad del Área de Lenguajes y

Sistemas Informáticos, en calidad de Directora del Departamento de Ciencias de la

Computación.

CERTIFICO: Que la Tesis Doctoral titulada “A Proposal of an Ontology-Based

Methodological Framework for Multi-platform Mobile Applications

Development” realizada por D. Zlatko Stapić y dirigida por el Dr. D. Vjeran Strahonja

y co-dirigida por el Dr. D. Luis de Marcos Ortega, reúne los requisitos para su

presentación y defensa pública habiendo recibido la conformidad del departamento en la

comisión permanente celebrada el día 18 de Septiembre de 2013.

Y para que así conste, firmo la presente en Alcalá de Henares, a 26 de Septiembre de

2013

La Directora del Departamento de Ciencias de la Computación

Dña. Teresa I. Díez Folledo.

DEPARTAMENTO DE
CIENCIAS DE LA COMPUTACIÓN

Dr. D. Vjeran Strahonja, Catedrático de Universidad del Área de Ciencias de la
Información y Comunicación de la Facultad de Organización e Informática de la
Universidad de Zagreb.

Dr. D. Luis de Marcos Ortega, Profesor Ayudante Doctor del Área de Ciencias
de la Computación e Inteligencia Artificial del Departamento de Ciencias de la
Computación de la Universidad de Alcalá.

HACEN CONSTAR:

Que, una vez concluido el trabajo de tesis doctoral titulado: “A proposal of

an ontology-based methodological framework for multi-platform mobile

applications development” realizado por Zlatko Stapić, dicho trabajo tiene
suficientes méritos teóricos, que se han contrastado adecuadamente
mediante validaciones experimentales y que son altamente novedosos. Por
todo ello consideran que procede su defensa pública.

Y para que así conste, firman la presente en Varazdin y Alcalá de Henares, a 22

de julio de 2013.

 El Director de la Tesis El Co-director de la Tesis

 Dr. Vjeran Strahonja Dr. Luis de Marcos Ortega

Onima koji su me naučili sanjati,
koji su mi omogućili krenuti,

koji su vjerovali da ću stići i s ljubavlju bili uz mene.

Mojoj obitelji.

ACKNOWLEDGMENTS

Now, when looking back, I can hardly find words to express my gratitude to those who deserve to be

acknowledged and that have helped me a lot during the years of my work on this dissertation

project.

First of all I want to thank my advisors Prof. Vjeran Strahonja and Dr. Luis de Marcos Ortega, for their

help, patience, advices and support during all this time. Your useful recommendations, experience

and motivation were of great help. Thank you for everything!

Likewise, I want to express my gratefulness to the institutions and staff of the University of Alcalá

(Spain) who have kindly offered their facilities and help during my research stays in 2012 and 2013. I

specially appreciate the scientific and other help provided by mentor Dr. de Marcos and Prof. José

María Gutiérrez Martínez, Prof. José Javier Martínez Herráiz, Ana Maria Privado Rivera and Maria

Begoña Aurrekoetxea from the Computer Science Department at the University of Alcalá.

I would like to acknowledge everyone at the Information Systems Development Department of the

University of Zagreb, Faculty of Organization and Informatics for their help and support during my

work on this thesis. My gratitude also goes to the Croatian Science Foundations for their financial

support of my research project and my stay at the University of Alcalá. This project included

important part of the research performed in this dissertation.

The dissertation language and grammar would be (at least) funny without everybody who helped me

proofread the document. Thank you all, and especially thank you Tea for spending many hours in

reading and suggesting the corrections to this book.

Last, but not the least, this research would never have become reality, without the love, support and

motivation instilled in me by my wife Jelena, my children, mother, brother and the rest of my family.

Dear Jelena, thank you for all your love and support and for always believing in me. Dear Marta and

Emanuel, your smiles wiped away all exhaustion at the end of each day. Without the three of you,

the sun wouldn’t shine the same for me.

ABSTRACT

Software development teams are faced with the lack of interoperability during the development of

mobile applications for two or more target platforms. The development for second and every other

platform means a new project with a need to repeat almost all the phases defined by the chosen

methodology but with a narrow possibility of reuse of the already defined artifacts. The existing

efforts of professional and scientific community to solve this problem have a similar approach (“code

once, run everywhere”) with similar advantages and drawbacks. Thus, this dissertation aims to

propose a different solution and is concerned with: (1) analyzing the methodologies suitable for

mobile applications development, (2) observing the implementation of prototype application in

order to define artifacts that are created during the development process for two target platforms,

(3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition

as a base for methodological interoperability.

The results of a systematic literature review performed on 6761 primary studies, show that current

state-of-the-art literature brings only 22 development methodologies and 7 development

approaches which can be identified as eligible for multi-platform mobile applications development.

Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and

used in the observed development processes for Android and Windows Phone platforms. Total of 71

artifacts were identified and the artifacts reusability level when developing for second target

platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically

described into a single ontological description comprising 213 classes, 14 object properties and 2213

axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and

valid, flexible, reusable and extensible we created the basis for development of an information

system to guide the development teams in a more efficient and interoperable process of multi-

platform mobile applications development.

Keywords: Methodology, mobile, multi-platform, development, ontology.

RESUMEN

Los equipos de desarrollo de software se enfrentan al problema de la falta de interoperabilidad

durante el desarrollo de aplicaciones para dos o más plataformas. El desarrollo para la segunda y

subsiguientes plataformas significa un nuevo proyecto con la necesidad de repetir casi todas las fases

definidas en la metodología elegida, pero con pocas posibilidades de reutilizar los artefactos

definidos. Los esfuerzos realizados por la comunidad científica y profesional para solventar este

problema tienen una aproximación similar (“code once, run everywhere”) también con similares

ventajas e inconvenientes. Esta tesis pretende proponer una solución diferente: (1) analizando las

metodologías adecuadas para el desarrollo de aplicaciones móviles, (2) observando la

implementación de un prototipo de aplicación que sirva para definir los artefactos creados durante el

proceso de desarrollo para dos plataformas, (3) estableciendo una descripción semántica de los

artefactos y su significado, y (4) creando una única definición ontológica como base para la

interoperabilidad metodológica.

Los resultados de una revisión sistemática de la literatura, realizada sobre 6761 estudios primarios,

mostraron que el estado del arte actual cuenta solo con 22 metodologías de desarrollo y 7 enfoques

de desarrollo (development approaches) adecuados para el desarrollo de aplicaciones móviles multi-

plataforma. De entre ellas se seleccionó y empleó la metodología Mobile-D junto con un enfoque

dirigido por las pruebas (test driven development) para estudiar el proceso de desarrollo en las

plataformas Android y Windows Phone. Se identificaron un total de 71 artefactos y el nivel de

reusabilidad de los artefactos durante el desarrollo para la segunda plataforma fue del 66.00%. En la

última fase de la investigación se describieron semánticamente los artefactos para ambas

plataformas en una única descripción ontológica definida en el sublenguaje de expresión ALCRIF DL

que cuenta con 213 clases, 14 propiedades de objeto y 2213 axiomas. Habiendo comprobado la

corrección, validez, flexibilidad, reusabilidad y extensibilidad de la ontología, hemos creado la base

para el desarrollo de un sistema de información que guie a los equipos de desarrollo hacia un

proceso de desarrollo más eficiente e interoperable para la construcción de aplicaciones móviles

multi-plataforma.

Palabras clave: Metodología, móvil, multi-plataforma, desarrollo, ontología

SAŽETAK

Razvojni timovi susredu se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili

više mobilnih platformi. Razvoj aplikacije za drugu i svaku sljededu platformu znači novi projekt u

kojem je potrebno ponovno provesti vedinu faza definiranih odabranom metodikom razvoja, pri

čemu se kreirani artefakti teško ili uopde ponovno ne koriste. Napori profesionalne i znanstvene

zajednice za rješenjem ovog problema imaju sličan pristup („kodiraj jednom, koristi svugdje“), slične

prednosti, ali i zajedničke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov

način i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem

razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije

za dvije ciljane platforme, (3) semantičkim opisivanjem definiranih artefakata i njihovih značenja, te

(4) definiranjem jedinstvene ontološke definicije kao osnove za metodološku interoperabilnost.

Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u

literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj više-platformskih mobilnih

aplikacija. Između identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju vođen

testiranjem, koji su korišteni pri implementaciji prototipnog rješenja za Android i Windows Phone

platformu. Ukupno je identificiran 71 artefakt pri čemu je ponovna iskoristivost artefakata pri razvoju

za drugu platformu bila 66.00%. U posljednjoj su fazi istraživanja artefakti semantički opisani u

zajedničku ontološku definiciju koja u konačnici sadrži 213 klasa, 14 objektnih svojstava i 2213

aksioma definiranih pomodu ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana,

fleksibilna, ponovno iskoristiva i nadogradiva, čime je kreirana osnova za razvoj informacijskog

sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja više-

platformskih mobilnih aplikacija.

Ključne riječi: Metodika, razvoj više-platformskih mobilnih aplikacija, ontologija

I

TABLE OF CONTENTS

List of figures .. V

List of tables .. VII

List of acronyms ... IX

1. Introduction ... 1

1.1. Outlining the problem .. 1

1.1.1. Development of mobile applications .. 1

1.1.2. Existing solutions ... 4

1.1.3. The final remarks on platforms and tools ... 10

1.2. Objectives and hypotheses ... 10

1.2.1. The main goal ... 11

1.2.2. Hypotheses ... 11

1.3. Research scope and methodology.. 11

1.3.1. Scope definition .. 11

1.3.2. Research approach .. 13

1.4. Dissertation disposition ... 15

2. Mobile applications development methodologies: a systematic review 17

2.1. Research method .. 18

2.1.1. Definition of systematic literature review (SLR) ... 19

2.1.2. Steps to be performed ... 20

2.1.3. Advantages and disadvantages of SLR .. 42

2.1.4. Light SLR ... 43

2.1.5. Conclusions on SLR ... 44

2.2. Planning the review ... 44

2.2.1. Defining the basic concepts .. 45

2.2.2. Overview of methodologies targeting development of mobile applications 50

2.2.3. Identification of the need for a review ... 54

2.2.4. Specifying the research questions .. 56

2.2.5. Developing a review protocol .. 57

2.2.6. Evaluating the review protocol .. 62

2.3. Conducting the review ... 62

2.3.1. Identification of research .. 62

2.3.2. Selection of primary studies ... 64

II

2.3.3. Study quality assessment .. 68

2.3.4. Data extraction and monitoring .. 70

2.3.5. Data synthesis ... 71

2.4. Choosing development methodology .. 74

2.5. Relevance of the chapter .. 75

3. Methodology implementation ... 77

3.1. Mobile-D overview.. 77

3.1.1. Introducing Mobile-D .. 77

3.1.2. Mobile-D process ... 78

3.1.3. Mobile-D artifacts .. 79

3.1.4. Test driven development .. 81

3.1.5. Mobile-D reference .. 81

3.2. Explore phase .. 82

3.2.1. Targeted users and stakeholders ... 82

3.2.2. Initial requirements .. 82

3.2.3. Architecture line description .. 82

3.2.4. Project plan ... 83

3.2.5. Documentation ... 84

3.2.6. Monitoring and measurement ... 85

3.2.7. Project plan checklist ... 85

3.3. Initialize phase ... 86

3.3.1. Environment setup .. 86

3.3.2. Project plan and architecture plan .. 86

3.3.3. Initial requirements analysis ... 88

3.3.4. Product backlog .. 88

3.3.5. Acceptance tests ... 89

3.3.6. User interface sketches ... 92

3.3.7. Trial Day .. 92

3.4. Productionize ... 103

3.4.1. First iteration .. 103

3.4.2. Other iterations ... 116

3.5. Stabilize ... 123

3.6. System test & fix ... 123

3.7. Development of Windows Phone application ... 125

3.7.1. Explore phase ... 125

3.7.2. Initialize phase .. 126

3.7.3. Productionize .. 128

III

3.7.4. Stabilize .. 129

3.7.5. System test & fix .. 129

3.8. Conclusions on implementation .. 130

3.9. Relevance of the chapter .. 132

4. Identification of the artifacts ... 133

4.1. Analysis setting.. 133

4.2. Artifacts targeting Android platform ... 137

4.3. Artifacts targeting Windows Phone platform .. 142

4.4. Cross-platform artifacts comparison ... 147

4.4.1. Common artifacts ... 148

4.4.2. Platform dependent artifacts ... 149

4.5. Relevance of the chapter .. 150

5. The ontology for methodological interoperability .. 153

5.1. Ontology .. 154

5.1.1. Definitions .. 154

5.1.2. Uses of ontologies .. 155

5.1.3. Ontologies and semantic interoperability ... 156

5.1.4. Ontology types ... 157

5.1.5. Ontology development methodologies ... 159

5.1.6. Ontology development tools and languages ... 166

5.1.7. Final remarks on ontologies ... 168

5.2. Android artifacts ontology ... 169

5.2.1. The domain and the scope of the ontology .. 170

5.2.2. Reuse of existing ontologies .. 171

5.2.3. Identified terms .. 171

5.2.4. Classes and class hierarchy .. 172

5.2.5. Properties of classes ... 176

5.2.6. Knowledge definition and inference .. 177

5.2.7. Final remarks on Android Case Ontology .. 182

5.3. Windows Phone artifacts ontology .. 182

5.3.1. Existing ontology reuse .. 183

5.3.2. Classes, properties and hierarchy ... 183

5.3.3. Updates in knowledge definition .. 185

5.3.4. Final remarks on Windows Phone Case Ontology ... 187

5.4. Common ontology for methodological interoperability .. 188

5.4.1. The domain and the scope of the ontology .. 189

IV

5.4.2. Merging the existing ontologies ... 190

5.4.3. Updating the basic terms .. 192

5.4.4. Final class and properties hierarchy ... 193

5.4.5. Evaluating and testing the ontology ... 200

5.4.6. Final remarks on proposed ontology for methodological interoperability 210

5.5. Relevance of the chapter .. 211

6. Discussion of results ... 213

6.1. Methodologies for development of mobile applications ... 213

6.1.1. Performing systematic literature review in SE ... 214

6.1.2. Mobile development methodologies and approaches: SLR 216

6.2. Mobile-D implementation ... 218

6.3. Identification of artifacts ... 219

6.4. Ontology for methodological interoperability ... 220

6.5. Summary of the results .. 223

7. Conclusion .. 225

7.1. Research objectives revisited ... 225

7.2. Limitations of the research .. 227

7.3. Possible future research ... 228

7.4. Conclusion ... 230

References .. 233

Appendix A – Papers selected for the SLR Phase 2 analysis ... 245

Appendix B – Papers selected for the SLR Phase 3 analysis ... 260

Appendix C – Study quality assessment table ... 263

Appendix D – Filled data forms for the SLR ... 265

Appendix E – Multi-platform Case Artifacts Ontology ... 291

Extended abstract ... 369

Resumen extendido .. 389

Prošireni sažetak ... 409

Curriculum vitae ... 429

V

LIST OF FIGURES

Figure 1 - Problem - The Big Picture ... 3

Figure 2 - Architecture of some existing solutions .. 4

Figure 3 - MobiVine overview ... 6

Figure 4 - PhoneGap build process .. 7

Figure 5 - Architecture of some possible solutions .. 9

Figure 6 - Possible scope (A) ... 12

Figure 7 - Possible scope (B) ... 12

Figure 8 - Systematic Review Protocol Template .. 27

Figure 9 - Example of study selection process (a) ... 31

Figure 10 - Example of study selection process (b) ... 31

Figure 11 - Example of applying narrative synthesis ... 39

Figure 12 - Agile Risk-based Methodology ... 53

Figure 13 - Mobile-D process .. 78

Figure 14 - Artifacts in Mobile-D .. 79

Figure 15 - Basic project plan .. 84

Figure 16 - Detailed project plan .. 87

Figure 17 - Overall system architecture ... 87

Figure 18 - Mobile application architecture ... 88

Figure 19 - User interface sketches .. 92

Figure 20 - Entity users (trial day) ... 96

Figure 21 - Class diagram (mobile app - trial day) .. 98

Figure 22 - Class diagram (web service - trial day) ... 99

Figure 23 - Test results (trial day) .. 102

Figure 24 - Application screenshots (trial day) .. 102

Figure 25 - Data model (iteration 1) ... 108

Figure 26 - Mobile app class model (iteration 1) ... 110

Figure 27 - Web app class model (iteration 1) ... 111

Figure 28 - Test results (iteration 1) ... 114

Figure 29 - Application screenshots (iteration 1) ... 115

Figure 30 - Final database model ... 118

Figure 31 - Final class model (mobile application) .. 121

Figure 32 - Application screenshots ... 122

Figure 33 - System Test and Fix phase .. 123

Figure 34 - Translating user interface from Android to WP .. 127

file:///F:/Dropbox/Doktorat/Doktorat/The%20Document.docx%23_Toc368446430

VI

Figure 35 - Automated WP unit testing ... 128

Figure 36 - Focusing semantic of artifacts and their origin ... 134

Figure 37 - Guarino's types of ontologies according to generality level 159

Figure 38 - De Nicola‟s UPON framework ... 165

Figure 39 - Android Case ontology top level artifacts ... 172

Figure 40 - Android Case ontology asserted subclasses of Inferred class 173

Figure 41 - Part of inferred model for class Artifact .. 181

Figure 42 - ArtifactOrigin and Artifact in WP ontology .. 184

Figure 43 - Used and Produced Documents asserted class model ... 187

Figure 44 - Used and Produced Documents asserted class model ... 187

Figure 45 - Example of automatically merged ontology .. 191

Figure 46 - Example of merged ontology .. 192

Figure 47 - Top level artifacts .. 194

Figure 48 - Asserted subclasses of Inferred class... 195

Figure 49 - Comparing asserted and by reasoner inferred class hierarchy 204

Figure 50 - OWL 2 Validation report results ... 205

Figure 51 - Ontology Evaluation plug-in ... 206

Figure 52 - Example of defined and executed DL query with reasoning results 207

VII

LIST OF TABLES

Table 1 - Procedures for documenting the search process ... 29

Table 2 - Quality concept definitions ... 33

Table 3 - Types of Bias .. 33

Table 4 - Data collection form template ... 35

Table 5 - Structure and Contents of Reports of Systematic Reviews 40

Table 6 - Mobile-D phases, activities and tasks ... 51

Table 7 - MASAM methodology phases, activities and tasks ... 53

Table 8 - The review protocol .. 58

Table 9 - Search keywords and synonyms ... 62

Table 10 - The list of relevant sources ... 63

Table 11 - Applied procedures in selection process ... 65

Table 12 - The list of relevant studies .. 66

Table 13 - Propagation of relevant studies through phases .. 68

Table 14 - The criteria for unbiased study identification ... 69

Table 15 - Quality assessment checklist .. 70

Table 16 - Excerpt of filled quality assessment form ... 70

Table 17 - Data collection form ... 71

Table 18 - Developed methodologies and approaches ... 72

Table 19 - Used methodologies and approaches .. 73

Table 20 - Methodologies not eligible for multiplatform development 74

Table 21 – Methodologies/approaches targeting specific mobile applications 74

Table 22 - Documents describing Mobile-D methodology .. 75

Table 23 - Mobile-D inputs and outputs .. 80

Table 24 - Project plan checklist - Explore .. 85

Table 25 - Product backlog .. 88

Table 26 - Selected feature for Trial Day ... 92

Table 27 - Web service (users.php) specification .. 97

Table 28 - Project plan checklist – 0 Iteration ... 103

Table 29 - Selected features for first iteration .. 104

Table 30 - Web service (groups.php) specification .. 109

Table 31 - Web service (enrolments.php) specification ... 109

Table 32 - Project plan checklist – 0 Iteration ... 116

Table 33 - Iterations plan with features selection .. 116

Table 34 - Performed tasks ... 117

VIII

Table 35 - Web services specification .. 119

Table 36 - Recognized system limitations ... 124

Table 37 - Duration of planned and real activities ... 130

Table 38 - Mobile-D artifacts by tasks ... 135

Table 39 - Template for describing the identified artifacts .. 137

Table 40 - Identified artifacts in development process for Android 138

Table 41 - Types of artifacts related to Android development .. 142

Table 42 - Identified artifacts in Windows Phone case .. 143

Table 43 - Common artifacts in Android in WP case .. 148

Table 44 - Android and WP specific artifacts .. 150

Table 45 - Basic terms in Android Case Ontology .. 171

Table 46 – Android Case ontology classes and class hierarchy ... 174

Table 47 - Android case ontology object properties description ... 176

Table 48 - DL Queries for inferred classes .. 180

Table 49 - WP case artifacts defined in ontology .. 184

Table 50 - Final list of terms used in Multiplatform ontology ... 193

Table 51 - Classes and class hierarchy ... 196

Table 52 - Object properties description .. 198

IX

LIST OF ACRONYMS

ACM Association for Computing Machinery

API Application Programming Interface

ARR Absolute Risk Reduction

ASD Adaptive Software Development

AUP Agile Unified Process

CMM Capability Maturity Model

CMS Centers for Medicare and Medical Services, Office of information Services

CRD Centre for Reviews and Dissemination, University of York

CRIS Comparative Review of Information Systems Design Methodologies

CWA Close-World Assumptions

DL Description Logic

DSDM Dynamic System Development Method

DSL Domain Specific Language

ERA Entity-Relationships-Attribute model

EUP Enterprise Unified Process

IEEE Institute of Electrical and Electronics Engineers

IFIP International Federation for Information Processing

INSPEC Information Services for the Physics and Engineering Communities

IRI Internationalized Resource Identifiers

JME Java Micro Edition

JSON JavaScript Object Notation

JSR Java Specification Request

LSD Lean Software Development

MASAM Mobile Application Software Development Method

MDD Model Driven Development

ME Micro Edition

MVC Model-View-Controller

MVVM Model-View-ViewModel

NPD New Product Development

OD101 Ontology Development 101

OR Odds Ratio

OWL Web Ontology Language

PDM Platform Dependent Model

X

PHP Hypertext Preprocessor: Open source scripting language

PICOC Population, Intervention, Comparison, Outcomes, Context

PICOS Population, Interventions, Comparators, Outcomes, Study selection

RR Relative Risk

RAD Rapid Application Development

REST Representational State Transfer

RUP Rational Unified Process

SADD Software Architecture and Design Description (document)

SC Story Card – An artifact in Mobile-D methodology.

SCM Software Change Management

SDK Software Development Kit

SDLC Systems Development Life Cycle

SDM Software Development Methodology

SE Software Engineering

SLR Systematic Literature Review

SMD Standardized Mean Difference

SOA Service Oriented Architecture

SPEM Software and Systems Process Engineering Meta-model framework

SPI Software Process Improvement

SW Software

SWEBOK Software Engineering Body of Knowledge

TC Task Card

TDD Test Driven Development

UML Unified Modeling Language

UI User Interface

UP Unified Process (same as USDP)

UPON Unified Process for ONtology building

USDP Unified Software Development Process

XAML EXtensible Application Markup Language

XML EXtensible Markup Language

XP Extreme Programming

WAC Wholesale Applications Community

WMD Weighted Mean Difference

WP Windows Phone

1

1. INTRODUCTION

1.1. Outlining the problem

1.1.1. Development of mobile applications

The development of mobile applications differs from the development of traditional desktop

or web applications in several important aspects (Rahimian and Ramsin, 2008; Spataru,

2010). According to Rahimian and Ramsin (2008), among other challenges, the designer of a

software system for mobile environments has to cope with portability issues, various

standards, protocols and network technologies, limited capabilities of devices and strict time-

to-market requirements. Additionally, development of mobile systems is a challenging task

with a high level of uncertainty, and according to Hosbond (2005), it is a result of two main

sets of challenges that should be addressed in the domain of mobile systems development,

namely business related challenges (e.g. tough competition, conflicting customer interests,

establishment of revenue-share models etc.) and development specific challenges (e.g. rapidly

changing technology, lack of standardization, integration with existing systems etc.).

When discussing the development of mobile applications, the first issue that should be

addressed is the usage of methodology (Rahimian and Ramsin, 2008; Spataru, 2010; La and

Kim, 2009). Classic or agile software development methodologies should be adapted for the

development of mobile applications as the existing ones do not cover the specific mobile

targeted requirements (La and Kim, 2009). There are several attempts from different authors

to create new methodologies in order to cover the gaps in the domain of mobile applications.

Some of them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM

(Jeong et al., 2008), and Mobile-D (Abrahamsson et al., 2004).

Another issue is the use of platform specific and dependent development environments which

are not interoperable in a single way (Agarwal et al., 2009). Additionally, a number of

different (specific) devices which are based on the same platform (Agarwal et al., 2009;

Manjunatha et al., 2010; Ridene et al., 2010) is also an important issue. This includes various

hardware implementations and operating systems capabilities with support on different API

levels (Agarwal et al., 2009) and which are based on different programming languages

(Manjunatha et al., 2010). The problem is also known as fragmentation problem (Agarwal et

2

al., 2009; Manjunatha et al., 2010; Ridene et al., 2010), which states that a fragmentation of

APIs exists even within a single platform.

Subsequently, testing becomes a great problem as simulated or emulated devices usually do

not provide full functionality or are incapable of creating a real life test scenarios (Ridene et

al., 2010). Testing on physical devices is usually too expensive if used to cover up all

important devices and their capabilities. Several projects in this field, such as Device

Anywhere (DeviceAnywhere, 2011) or DSML (Ridene et al., 2010) also do not provide full

and needed functionality. Finally, the deployment and the maintenance phases should not be

forgotten as well as both of them bring a fresh set of specific requirements that are mainly

defined by mobile device producers and their stores.

On the other hand, the development of mobile applications also differs from the development

of web or desktop applications in the number of target platforms. According to Manjunatha et

al. (2010) the fragmentation problem forces the developers of mobile applications to focus on

only specific platforms and versions. As the development of mobile applications primarily

aims the wide range of users, development for only specific platforms and versions is not an

option and the development teams reach for different solutions to this problem. The ideal (i.e.

still nonexistent) solution would be to code once and to deploy (run) the same code to all

target platforms. The fragmentation problem is the result of mobile industry being

continuously highly technology-driven, which means that the focus is on innovation instead of

standardization. This problem was recognized several years ago by Hosbond (2005).

Finally, it is important to notice that the development of mobile applications has some

similarities with the traditional development. For example after performing an extensive

literature review, Hosbond and Nielsen (2005) concluded that the scope of mobile systems

development is an extension of the scope and the body of knowledge on traditional systems

development. However, they also noticed that in the existing literature knowledge about

traditional systems development is largely neglected. Generally, we can conclude that the

reported challenges in the development of mobile applications have strong relation with the

challenges that have accompanied the development in the past as some of the problems have

followed the software development from the very beginning, and some have been gone and

have now re-appeared again (e.g. limited capabilities of screens).

In order to define the problem in the domain of this thesis, several important concepts should

be taken into consideration. The overall picture of a development playground could be

presented as in Figure 1 with the following main parts:

 Teams

 Development environments

 Development methodologies

3

 Mediatory publishing services

 Target devices

The main characteristics of mobile applications development teams could be described in just

a few words. Whether the teams are working on open source or in-house projects concerning

mobile applications, they can be classified as small, flexible, and keen on learning a specific

technology and/or platform. Although the classic interoperability among the team members

and among different teams is not of a specific interest in this thesis, the methodological

interoperability and the existing artifact reuse among team members or teams working on a

same functionality but for a different target devices should be pointed out.

Figure 1 - Problem - The Big Picture

Let us imagine a real business scenario in which a development company wants to produce a

classic business or non-business application that should be runnable on a several different

mobile platforms and devices. The standard approach would be to create several different

teams, each team targeting one specific platform, to adopt several development methodologies

or at least different methods, each of them applicable for a specific platform and to produce

characteristic outputs which will satisfy the requirements specified by the mediatory

application stores or markets (see Figure 1). More experienced teams would probably try to

perform as many as possible unique activities that should be similar or same across all

platforms, or would even try to perform whole Model Driven Development approach through

all phases except in creation of Platform Dependent Model and its implementation.

But, the big question still remains. Is it possible to make this process easier in the sense of

development, interoperability and reusability? Is it possible to code once and run on different

target platforms?

Unfortunately, it is not possible to code once and run on any mobile device. This slogan,

according to Ridene et al. (2010), is not true even for Java, and moreover, the trends in the

4

mobile industry show us that this will not be possible in the short-term future, as mobile

platforms are still closed, locked-in (Manjunatha et al., 2010), and devices are dependent on

them. On the other hand, several different approaches aiming to propose some improvements

in the multi-platform mobile applications development exist. These approaches are

summarized into two main groups and shortly described in the following chapter.

1.1.2. Existing solutions

1.1.2.1. Mediatory transform engine

In the past year or two, the problem of mobile applications development for multiple target

platforms became important in the scientific as well as the professional community. The

results are visible in the form of several existing systems and projects that fairly enough

enable the development teams to use a mediatory language or just mediatory transform engine

and to code for several target platforms. Some of the most influential projects are MobiCloud

(Manjunatha et al., 2010; Services Research Lab and Metadata and Languages Lab, 2011)

from Kno.e.sis Research Group (Kno.e.sis Research Group, 2011), Rhodes (Rhomobile, Inc.,

2011) and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). As Figure

2 shows, reaching for this solution will bring some improvements to development teams. First

of all, project team or project teams will be able to use a single proprietary or open-source

programming language and could try to implement the desired functionality. The mediatory

transform engine will then produce a platform specific code which can be tested and deployed

through specific application store or market.

Figure 2 - Architecture of some existing solutions

5

Code 1 - “Hello World” application written in proprietary DSL

(source: MobiCloud platform)

There are several examples of systems with described functionality. Some of them (e.g.

MobiCloud) use their own domain specific language (DSL) to transform into platform

specific source or, though rarely, even executable code. Other systems (Amanquah and

Eporwei, 2009) transform code written in well-known languages to specific source (or

executable) code. The code snippet (Code 1) shows an example written in proprietary DSL

which is based on implementation of Model-View-Controller (MVC). The output could be

simple “Hello World” application source code for four different platforms.

This approach, however, also has several significant drawbacks (Manjunatha et al., 2010).

The idea of having mediatory transform engine that transforms source code to specific

platforms depends on the efforts invested in the transform engine. The engine depends on

specific platforms and available APIs, and by definition, DSL caters only to a specific domain

(Manjunatha et al., 2010). Even if there is a possibility to enrich the engine with

transformation procedures to all existing APIs, there is an important problem of platform

incompatibilities. For example, it is not possible to use multithreading in Windows Phone 7

while, on the other hand, in other platforms it is not just possible but even desirable. Another

example is Android which does not provide thread sync mechanisms as Symbian does.

Some other drawbacks of this approach are the necessity to learn a specific DSL, the

boundaries defined by the use of any specific languages, the lack of control of generated

source code, the lack of control of user interface design (Manjunatha et al., 2010), the

problems with testing and many others.

1.1.2.2. The use of native application adapters

Another possible solution to the given problem could be the introduction of adapter

applications (adapters) as native applications for every target platform (Agarwal et al., 2009).

According to Agarwal et al. this is one of the two main techniques for handling fragmentation.

As standardization of APIs in mobile world is still not possible, the usage of programming

6

techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct modules which

are then ported across the platforms, is left as the other solution. For example, the same

authors are proposing MobiVine as a solution to handle fragmentation of platform interfaces.

Specifically, the authors have identified that the fragmentation of mobile platform interfaces

results in different syntax and semantics, results in usage of platform specific data structures

and properties, results in throwing platform specific exceptions and is also characterized by

inconsistencies in implementation by different vendors. This has bearing on the portability of

mobile applications across multiple platforms. So, the proposed solution is composed on two

main components: M-Proxies and M-Plugins. M-Proxies component helps abstract

heterogeneities in interfaces across different platforms while binding to the underlying

middleware stack and is used to realize platform specific blocks. The other component, called

M-Plugins, helps integrate MobiVine with the existing tooling and deployment infrastructure

and is used to override the gap between M-Proxy and platform specific APIs.

Figure 3 - MobiVine overview

(Agarwal et al., 2009)

The authors of MobiVine evaluated the usage of MobiVine as middleware layer and they

discussed the achieved improvements in terms of enhancing platform and language

portability, reducing code complexity, making maintenance easier and performance by a

negligible fraction slower. But, they also concluded that MobiVine framework should be

extended to cover other platform interfaces (like working with contact list information), to

include other platforms, and to make the concept of proxy model broader by studying its

applicability to other forms of mobile fragmentation, e.g. screen size and resolution.

Another well-known wrapper is PhoneGap (PhoneGap, 2011). The applications written in

HTML, CSS and JavaScript are wrapped with PhoneGap and then deployed to multiple

platforms. The developers could use free, open-source framework to access some of the native

APIs.

7

After the Adobe Corporation acquired the original PhoneGap‟s creator Nitobi company, they

also announced that they will offer developers the choice of using two powerful solutions for

cross-platform development of native mobile apps, one using HTML5 and JavaScript with

PhoneGap and the other using Adobe Flash® with Adobe AIR® (Adobe Corporation, 2011).

On the other hand, the original PhoneGap approach has not been changed and as the

application takes on extra complexity, more involved logic will require spending more time

on application behavior with specific devices. Even when the same code base is used when

developing for multiple platforms, the separate prepare & build and sometimes porting steps

should be performed to produce the version targeting multiple platforms. According to

(Lunny, 2011) more complicated applications are keen on “surprising” the developers during

the porting process and in these cases, PhoneGap documentation should be consulted. In the

end, there will not be a single code base Java Script file, but rather an application.iphone.js

file containing iPhone implementation along with equivalent application.android.js and

application.blackberry.js files (Lunny, 2011). Finally, there are many different guides and

recommendations that should be followed while developing this way (Lunny, 2011), and we

can generally conclude that taking all of them into consideration means learning a new

programming and development style which is as difficult as learning a new programming

language from scratch.

Figure 4 - PhoneGap build process

(PhoneGap, 2011)

Additionally, there are other attempts and efforts that are undertaken to over-come mobile

platform and interface diversity and fragmentation. These efforts, for example, include the

creation of extensions to Java platform, through Java Specification Requests (JSRs) such as

JSR 248: Mobile Service Architecture (Bektesevic and Rysa, 2008) or JSR 256: Mobile

Sensor API (Niemela, 2009), or the development of Wholesale Applications Community

(WAC) APIs and applications (Apps).

JSRs are designed to provide the set of APIs for specifically targeted use (e.g. for mobile

service architectures or mobile sensors). But, according to Agarwal et al. (2009), along with

8

standard Java Micro Edition (Java ME), mobile platform developers in practice choose to

include different sets of JSRs which results in the diversity even among their own devices.

On the other hand, WAC is an open, global alliance of leading companies in the mobile

telecommunication industry with the goal of providing a different operator network APIs

through single cross-operator API platform. Specifically, this platform is built on the work of

the former Open Mobile Terminal Platform Ltd.'s BONDI project
1
, the Joint Innovation Lab

(JIL) device APIs
2
 and the GSM Association's OneAPI program

3
, and currently WAC

platform offers WAC Apps framework (WAC Application Services Ltd, 2012a) and WAC

Payment API (WAC Application Services Ltd, 2012b). WAC Apps aims to help create the

mobile apps quicker by using existing, familiar web technologies and tools through direct

access to mobile device functionality. According to WAC Application Services Ltd (2012a),

the types of applications that could be published currently are widgets written to the WAC

specifications
4
, native Android applications and HTML5 applications. WAC Payment API

aims to enable developers to be able to access the operator billing capabilities through single

API by using a set of developed Software Development Kits (SDKs) for multiple platforms.

Although this API is useful in some cases, currently it covers only payment options and can

be used for Android, PhoneGap, PHP and JavaScript/HTML5 platforms (WAC Application

Services Ltd, 2012c). WAC announced that they plan to launch additional network APIs over

time to provide the developers with further opportunities to create richer applications (WAC

Application Services Ltd, 2012b).

So generally, the adapter-based approach requests that the adapters should be pre-developed

and published in the specific application store, or as in the case of PhoneGap, deployed along

with the application (PhoneGap, 2011). The general idea of creating adapter is to create a

platform specific application that will bi-directionally convert the specific interfaces of the

target platforms (left-side) into one unique interface that could be used to communicate with

different applications (single, right-side). Every single adapter converts a different target

interface to unique (same) interface, which means that one application really could be

1
 BONDI project (http://bondi.omtp.org/default.aspx) aimed to create a standardized approach for letting web

applications access key local capabilities on the mobile device. [accessed: 18
th

 of May 2012]
2
 Joint Innovation Lab was an initiative of several mobile carriers on developing device APIs and related services

that build upon the W3C Widgets specification. Web page (http://www.jil.org/) is closed and redirected to

WAC's page (http://www.wacapps.net/). [accessed: 18
th

 of May 2012]
3
 “The GSMA OneAPI initiative defines a commonly supported set of lightweight and Web friendly APIs to

allow mobile and other network operators to expose useful network information and capabilities to Web

application developers. It aims to reduce the effort and time needed to create applications and content that is

portable across mobile operators.” (http://oneapi.gsma.com/) [accessed: 18
th

 of May 2012]
4
 WAC Device API specification could be found here: http://specs.wacapps.net/index.html. [accessed: 18

th
 of

May 2012]

9

imported into one or more different adapters and run under one or more different platforms.

The mentioned application could be stored on any web server or even on a cloud as is shown

in Figure 5.

Figure 5 - Architecture of some possible solutions

There are two possible scenarios that could be implemented by adapter developers. (1) The

adapters could be 100% aligned by means of common interface and this scenario would

reduce the number of teams – presented in the Figure 5 – to one. This would be a great

achievement, but on the other hand there is one big drawback too. The functionality of the

future applications would be reduced to the common features that all target platforms support

and to the common features that are implemented into the adapters for all target platforms.

This brings us to the problems presented in the existing solutions and this also makes this

scenario rather unlikely to be feasible. (2) The other scenario introduces some differences in

the adapters by means of common (right-side) interface. If the mentioned interface is not the

same for all platforms, the use of such adapters would provide a more specific functionality

on mobile applications, a scenario more feasible, but also a one that would bring the need to

develop more or less different applications for each target platform.

Almost all of the drawbacks stated for existing solutions that introduce transform engine are

also present in this possible solution. The mentioned PhoneGap (PhoneGap, 2011) platform

allows the development of native applications with web technologies (HTML5, CSS

&JavaScript) enriched with a given set of APIs. According to PhoneGap Documentation
5
 this

5
 PhoneGap API Reference Documentation [accessed: 15

th
 of October 2011]: http://docs.phonegap.com/en/1.1.0/

phonegap_events_events.md.html#backbutton

10

platform supports back button event only on the Android platform despite the fact that the

event exists in several other platforms as well. Although there is some space for research in

this area, especially in the field of interface transformation, the improvements that will bring

the process of development of demanding applications for multiple target platforms through

this approach are also hardly achievable and even feasible.

1.1.3. The final remarks on platforms and tools

As it can be seen, there are several rather different approaches that scientists and experts are

taking to solve the problem of developing for multiple platforms. Each one of them has its

own advantages and disadvantages. But still, one issue remains that is common to almost all

of these approaches. It is impossible to create a transform engine, or adapter application that

would keep all of the advantages of all target platforms and that would provide the range of

possibilities as native development environments do. Also, if we want to preserve the

capability of teams working on the open-source projects, it is necessary to give them the

possibility to work in a native development environment and to develop by using a

programming language they prefer most.

In order to provide such possibilities, this thesis will focus on proposing the solution to

enhance interoperability among teams working on the same application but on different (and

native) development environments. The work on the native development environments will

provide the teams with the full advantages of using the native APIs, the native test

environments and the native generators of the executable code.

1.2. Objectives and hypotheses

This doctoral research focuses on the analysis of this problem and on the proposal of a

solution in a domain of methodological interoperability. The idea is to allow developer teams

to use native development environments (that is, all their advantages for platform specific

mobile application development) by raising the re-usability and interoperability to a higher,

methodological level. Therefore, this dissertation will attempt to answer the following

questions: (1) what methodologies and development approaches can be used in multi-platform

mobile applications development; (2) what artifacts (required inputs and outputs of

methodologically and methodically defined development steps) emerge during mobile

applications development, (3) whether and to what extent there are similarities between these

artifacts, (4) whether it is possible to ontologically describe these artifacts, and create a basis

for developing a system that would support the methodological interoperability.

11

1.2.1. The main goal

The main goal is to ontologically describe artifacts that arise in the methodologically managed

process of mobile application development targeting two or more mobile platforms, and to

create the basis for more efficient and interoperable process of multi-platform mobile

applications development.

1.2.2. Hypotheses

This doctoral thesis focuses on researching and proving the following hypothesis:

H1: It is possible to create ontological description of elements of methodological

interoperability containing structural and semantic aspects of sets of artifacts created in

the development process of a mobile application for two or more target platforms.

1.3. Research scope and methodology

1.3.1. Scope definition

The development for mobile applications is as complex as are other fields in the domain of

software engineering. There are several different perspectives that could be taken to produce a

single mobile application. We can identify at least three dimensions in the space of the

possible approaches the development team can take. If we include other more or less

important elements the space will rapidly become multi-dimensional, and by multi we mean

more than three. So to keep the thesis focused, we will take into consideration the following

dimensions of space S as:

S = {M, A, P} (1.)

M - Development methodology

A - Development approach

P - Target platform

The three mentioned axes could have several different values:

M = {m1, m2, ... mn} (2.)

A = {a1, a2, ... am} (3.)

P = {p1, p2, ... po} (4.)

For example, these values could be:

M = {Extreme programming (XP), SCRUM, Rational Unified process (RUP)}

A = {Model driven development (MDD), Test driven development (TDD), Model

View Controller (MVC) Implementation}

12

P = {Android, Windows Phone 7, Nokia Symbian}

While defining the scope of proposed solution it is wise to bring some logic assumptions that

are based on the real life scenario and the possible usage of results gained throughout this

work. Whether one team will develops multiple applications or several teams develop

different applications, we can assume that the team (teams) will use the same methodology as

they work together and as they want to take advantage of semantic interoperability while

developing same application for different target platforms. Similar, we can assume that the

development approach will be the same for development of a single application for all target

platforms. Of course, the teams will develop application for one or more target platforms, so

the cardinality of sets M, A and P can be described as:

| M | = 1 (5.)

| A | = 1 (6.)

| P | > 1 (7.)

Subsequently, the cardinality of final space S that is focused in this research can be presented

as in Figure 6 or in Figure 7, and can be defined as:

| S | = {(1, 1, n) : n > 1} (8.)

The development process DP presented in those two figures can be described as a set of sub

processes SP i.e. ordered triples.

DP = {SP1, SP2, … SPn : SPi S; SPi = (m, a, pi); 1 < n ≤ |P|;

i = {1, 2, …, n}; m M; a A; p P}. (9.)

So for example, if we want to develop an application for Android, iPhone and Nokia, and we

choose Extreme Programming supported by Model Driven Development, the development

process would be described as DP = {(3, 1, 1), (3, 1, 2), (3, 1, 3)}. Similar, if we use SCRUM

supported by Test Driven Development, the development process could be described as DP =

{(2, 2, 1), (2, 2, 2), (2, 2, 3)}.

Figure 6 - Possible scope (A) Figure 7 - Possible scope (B)

13

Taking into consideration all that was said, we can conclude that all ordered triples (sub

processes) in one development process have the same first two elements, but different third

elements. This different element makes the sub-processes (i.e. development processes for

specific target platforms) rather different.

Within the presented scope, the teams will have the opportunity to work in the preferred

development environments, i.e. platforms (P), and have the chance to take the advantages of

the native development environment and the use of the native code: However, they will also

have to obey the rule of the use of only one methodology and one development approach for

the development for all the target platforms.

Note: If the teams develop an open source product, they might be interested in using specific,

preferred methodology, but this scenario is not covered by this research. Additionally, the

term target platform could be analyzed with greater granularity by defining manufacturer,

platform, device and API but this is also out of the scope of this research.

1.3.2. Research approach

The overall goal of this research is to create the semantic definition of the elements of

methodological interoperability containing structural and semantic aspects of the sets of

artifacts created in the development process of mobile application for at least two specific

target platforms. These semantic definitions can be used to create a general ontology that will

be the base for interoperability and future work on the development of the framework and the

supporting system. The research is divided into three main phases, each of them containing

several stages. These stages, along with the used methodologies are enumerated as follows:

First phase: Choosing development methodology

 Analyze the state-of-the-art of methodologies for mobile development and choose

methodology to use and describe

M = {m} (10.)

 Analyze the state-of-the-art of development approaches for mobile development and

choose the development approach to use and describe

A = {a} (11.)

Second phase: Identifying artifacts sets

 Choose two specific mobile platforms to develop for according to their artifacts and

development process

P = {p1, p2} (12.)

14

 Perform a development process DP by conducting m and a for p1 and p2 in order to

create a prototype application

DP = {SP1, SP2} => DP = {(m, a, p1), (m, a, p2)} (13.)

 Analyze the development process and identify all obligatory and optional tasks along

with the corresponding inputs and outputs:

IOp1 = {Ip1, Op1} => IOp1 = {i1p1, i2p1, ... inp1, o1p1, o2p1, ... omp1,} : n, m N (14.)

IOp2 = {Ip2, Op2} => IOp2 = {i1p2, i2p2, ... inp2, o1p2, o2p2, ... omp2,} : n, m N (15.)

 Define set of artifacts R for each target platform

R = {Rp1, Rp2} => R = {(r1p1, r2p1, ... rnp1), (r1p2, r2p2, ... rmp2)

: rip1 ∈ IOp1; i ≤ n; rjp2 ∈ IOp2; j ≤ m} (16.)

 If differences for p1 and p2 exist, find the differences in tasks, inputs or outputs on as

much higher level of abstraction as possible and define a subset of artifacts that will be

used for ontology definition.

R
‟
 = {R

‟
p1, R

‟
p2 : R

‟
p1⊂ Rp1; R

‟
p2⊂ Rp2} (17.)

Third phase: Creating an ontology

 Analyze the state-of-the-art for ontology development and construction and choose

ontology development method and ontology development language to use.

 Define all ontology elements for SP1 and SP2 with a special attention on the artifacts

set defined in R
‟
.

OE1 = f (SP1, R
’
) (18.)

OE2 = f (SP2, R
’
) (19.)

 Create specific ontologies for SP1 and SP2 and describe them with proper ontology

definition language, with a special attention on the ontology elements defined for

artifacts set defined in R
‟
.

O1 = f (OE1, R
’
) (20.)

O2 = f (OE2, R
’
) (21.)

 Create a common ontology from specific ontologies by defining semantic equality and

diversity; this common ontology will be the base for future interoperability on

methodological level.

O = f (O1, O2, R
’
) (22.)

 Look forward into a future work, framework and system development.

15

1.4. Dissertation disposition

After introducing the problem domain, giving an overview of existing solutions and stating

the objectives, hypotheses and research scope in this chapter, the rest of this document is

organized in additional six chapters as follows.

The second chapter presents the results of the Systematic Literature Review performed in

order to determine the existing body of knowledge of the methodologies for mobile

applications development. As the use of scientific method of SLR in the field of Software

Engineering is still emerging, with a relatively small number of performed reviews, we found

the existing guidelines presented in (Kitchenham and Charters, 2007) could be improved with

the recommendations and inputs from other influential authors in the field, and thus first we

give (in Chapter 2.1) an overview of the method along with discussion and recommendations

as mentioned. Following the enhanced guidelines, that give special focus to method execution

by PhD students, we continued to perform the SLR (Chapters 2.2 and 2.3) which resulted in

identification of 22 development methodologies and 6 development approaches (see Table 18

and Table 19 in Chapter 2.3.5). Finally we discuss and choose Mobile-D methodology

supported by Test Driven Development in Chapter 2.4 for the development of our prototype

application and further analysis.

The second research phase is covered by Chapter 3 and Chapter 4 of this document. The third

chapter gives an overview of Mobile-D methodology (in Chapter 3.1), and then presents the

results of the multi-platform development of prototype application by using the mentioned

methodology (Chapters 3.2 to 3.8). The application is developed for Android and Windows

Phone target platforms, and the focus in this chapter is put on executed phases, activities and

tasks along with created and used artifacts. In the fourth chapter we systemize and analyze the

obtained artifacts. Chapter 4.1 gives the discussion on analysis setting, while the identified

Android artifacts are presented in Chapter 4.2, the identified Windows Phone artifacts are

presented in Chapter 4.3, and the cross-platform analysis is performed and reported in Chapter

4.4. A total of 71 artifacts are identified, out of which more than 70% are common to both

development cases with high a reusability potential of 66% as presented in Table 43.

Chapter 5 is considered to be the most important chapter of this thesis, as it presents the taken

approach along with its results in the third and the final phase of our research process. The

chapter gives an overview of concepts related to ontologies and ontology development

(Chapter 5.1) and then presents the created ontologies. When reporting on the development of

Android Case Artifacts Ontology (chapter 5.2) we put focus on the usage of Ontology

Development 101 methodology and implementation of its seven steps. On the other hand,

when reporting on the development of the second specific ontology, namely WindowsPhone

Case Artifacts Ontology (Chapter 5.3), we put focus on the concepts of reusing and updating

16

the existing ontology. Finally, Chapter 5.4 presents the development of a common ontology

for both cases, and here we put focus on the concepts of merging, extending, evaluating and

testing the ontologies. The created ontology is verified and validated by several different

mechanisms and the results proved its semantic correctness and completeness.

The last two chapters of this document are used for extensive discussion on all research

activities by reflecting on motivation, results contributions, rigor and evaluation (Chapter 6)

and on summarization of contributions and conclusions which emphasize on achieved goals,

open issues and possible further research directions that could be taken continuing from the

results of this research (Chapter 7).

The annexes of the document bring more details on results obtained during each research

phase. Thus Appendix A brings the list of all the papers that are selected for the second phase

of the SLR analysis and similarly Appendix B gives the papers selected for SLR quality

assessment and further analysis, while Appendix C and Appendix D respectively bring the

final study quality assessment table and data extracted form for each selected study. Finally,

Appendix E brings the developed ontology presented in compact and human readable

Manchester syntax.

17

2. MOBILE APPLICATIONS DEVELOPMENT

METHODOLOGIES: A SYSTEMATIC REVIEW

To goal of this chapter is to identify and choose a proper development methodology which is

to be used in the rest of the research process. As, to our knowledge, there are no studies

performed to identify all development methodologies suitable to mobile applications

development, we performed an extensive systematic literature review of the methodologies

and development approaches that are reported in the literature as being created or used

specifically for mobile applications development.

As the method of systematic literature review is rather new in the field of software

engineering, first the best practice in performing such time consuming and comprehensive

method will be analyzed. The guidelines given by Kitchenham and Charters (2007) are

followed and discussed by adding the recommendations and findings from other influential

authors in the field. Special focus is given to the problem of performing the method by PhD

students. This part of the chapter results with structured and detail instructions that can help

researchers and PhD students to decrease the risks and biases and to increase the review

quality.

Following the findings presented in the first part of the chapter we continue to plan and

conduct a systematic literature review and answer two research questions: (1) what

development methodologies and approaches are reported in literature as defined in theory or

used in practice for mobile application development and (2) are the identified methodologies

and approaches applicable in multi-platform mobile applications development? After

analyzing more than 6700 initial sources we found 49 publications to be included in data

extraction process which in the end resulted in identification of 22 methodologies that are

used in development of mobile applications along with 7 development approaches.

Finally, we were able to establish the criteria for choosing one methodology and approach that

are to be used in the rest of the research process. The chosen methodology is Mobile-D

(Abrahamsson et al., 2005a) supported by Test Driven Development as Mobile-D‟s suggested

approach.

18

2.1. Research method

In order to perform comprehensive and thorough analysis of existing methodologies for

development of mobile applications, the systematic approach should be undertaken and

existing methodologies should be reviewed in such a manner which will result in a solid basis

for the rest of the research in the domain of this thesis. Such analysis could be undertaken by

applying different methods and approaches, such as systematic literature review, systematic

mapping studies, tertiary reviews discussed by (Kitchenham and Charters, 2007), or narrative

review, conceptual review, rapid review and several other types presented by (Petticrew and

Roberts, 2005). The systematic mapping study should be used when a topic is either very little

or very broadly covered, and tertiary reviews are most suitable approach if several reviews in

the target domain already exist and should be summarized. The narrative reviews usually do

not set out the scientific methods that aim to limit systematic error. Additionally, the

conceptual review should be used when aiming to provide an overview of literature in the

given field and the rapid review is usually carried out within limited time or with restrictions

in the scope of the research. Subsequently, taking into consideration the undertaken initial

examination of the domain, we decided to use a systematic literature review (SLR) as this

method has been used widely for different analysis in the field of software engineering (SE).

“A systematic literature review is a means of evaluating and interpreting all available research

relevant to a particular research question, topic area, or phenomenon of interest. Systematic

reviews aim to present a fair evaluation of a research topic by using a trustworthy, rigorous,

and auditable methodology.” (Kitchenham and Charters, 2007) The origins of systematic

review can be traced back to the beginning of the 20
th

 century, but during the 1980‟s,

systematic research synthesis and meta-analysis reach an especially distinctive

methodological status in the domain of health sciences (Williams and Carver, 2010). During

this period and as a result of performing similar methods in various other fields, different

synonyms of this method have been used in the literature. Some of them are research review,

research synthesis, research integration and systematic overview (Biolchini et al., 2005).

In the field of software engineering during the last years several primary studies have been

conducted and although these studies are accompanied by an increasing improvement in

methodology, this field is still an area of investigation that remains to be explored and that

could well bring many benefits in terms of mechanisms needed to assist practitioners to adopt

appropriate technologies and methodologies (Biolchini et al., 2005). The guideline for

systematic reviews that aimed to help software engineering researchers was proposed by

(Kitchenham, 2004) and was created as adaptation of several existing guidelines from other

disciplines, mainly medicine. Although the three proposed phases of systematic review,

namely planning the review, conducting the review and reporting the review, in general were

19

not criticized, some authors like Biolchini et al. (2005), Mian et al. (2005) and Staples and

Niazi, (2007) found that Kitchenham described them to a relatively high level which is

partially inappropriate to conduct for researchers in the field of software engineering. In favor

of this goes the fact that Kitchenham in 2007 published a new version of technology report

(Kitchenham and Charters, 2007) with the aim to propose more comprehensive guidelines of

performing a systematic literature review for researchers and PhD students in the field. The

basis for this guideline remained the same: the existing guidelines used by medical

researchers, but was reinforced by several books and discussions with researches from other

fields.

The next sections will cover in detail the systematic literature review methodology as it is

proposed in (Kitchenham and Charters, 2007). The sections will present a methodology and

give summary of all phases and activities that should be performed while conducting

systematic review in the field of software engineering.

2.1.1. Definition of systematic literature review (SLR)

Systematic literature review (SLR) is defined by Kitchenham and Charters (2007) as “a form

of secondary study that uses a well-defined methodology to identify, analyze and interpret all

available evidence related to a specific question in a way that is unbiased and (to a degree)

repeatable”. Dybå and Dingsøyr (2008a) define SLR as “a concise summary of the best

available evidence that uses explicit and rigorous methods to identify, critically appraise, and

synthesize relevant studies on a particular topic”. According to Dybå, these methods should

be defined in advance and documented in a protocol so the others could critically appraise and

replicate the review.

There are different reasons for performing systematic literature review. In general, whenever

a literature review is performed it could be done by applying systematic (following stated

procedures and steps) or unsystematic (just reading and taking notes) approach. The usual

reason to use SLR is to summarize the existing evidence concerning a treatment or a

technology. This is to say that for example, as is the case in this thesis, systematic literature

review can be used to summarize the methodologies that could be used for development of

mobile applications. SLR could also be used to identify any gaps in current research in order

to suggest areas for further investigation or to provide a framework/background in order to

appropriately position new research activities. In addition, there are other general reasons to

use a systematic rather than unsystematic approach, such as the purpose of the research, the

scientific approach, the quality expectations or the existence of previous researches on the

selected topic.

20

According to Dybå and Dingsøyr (2008a) the key feature that distinguishes SLR from

traditional narrative reviews is in its explicit attempt to minimize the chances of making

wrong conclusions which could be the results of biases either in primary studies or in the

review process itself.

2.1.2. Steps to be performed

Although the methodology of SLR is considerably upgraded if compared to the first version

from 2004, the main three phases remain the same. General steps to be performed are also

similar and are defined as follows:

Phase 1: Planning the review

 Identification of the need for a review

 Commissioning a review (optional)

 Specifying the research question(s)

 Developing a review protocol

 Evaluating the review protocol (recommended)

Phase 2: Conducting the review

 Identification of research

 Selection of primary studies

 Study quality assessment

 Data extraction and monitoring

 Data synthesis

Phase 3: Reporting the review

 Specifying dissemination mechanisms

 Formatting the main report

 Evaluating the report (recommended)

According to the author of the review process, Kitchenham, all mentioned activities (stages)

are mandatory except commissioning a review as it depends on the planned commercialization

of review results, as well as evaluating the review protocol and evaluating the report which

are optional as they depend on the quality assurance procedures decided by the author(s) of

the review. In any case, the mentioned activities are recommended.

As one can conclude from the above list, the mentioned stages and phases are sequential.

However, it is important to mention that some of the stages can be repeated more than once

and may involve iteration or reimplementation. For example, the negative evaluation of

review protocol or negative evaluation of the report might result in the need to repeat the part

or the whole review process. Or, the inclusion and exclusion criteria of the relevant studies

21

could be refined after quality criteria are defined. It is important to notice that even

experienced scientists often have to change or adapt the review protocol. To some authors this

provides a reason for criticism of the methodology of the already existing reviews for not

being completely objective or even conducting a fake rational design process. However, there

are authors such as Staples and Niazi (2007) who discuss the need of the protocol even if it is

a subject of constant changes through the whole systematic review process. All that has been

said brings us to a strong general conclusion that the protocol is needed and that it increases

the quality of the process.

In the following sections, each stage of the SLR process will be discussed in detail.

2.1.2.1. Planning the review

The most important activities during the phase of review planning are definition of the review

question(s) and creation of the review protocol. However, the rest of the activities should not

be neglected and also deserve a serious approach. The results of this phase should be a clearly

defined review protocol containing the purpose and the procedures of the review.

The summary of each stage is presented below and is based on guidelines presented in

(Kitchenham and Charters, 2007) and on additional discussions from other authors cited in the

text.

Identification of the need for a review is the first activity in the SLR process. It arises from

the preliminary research in the topic area. When the author(s) has a firsthand knowledge in

the area of interest, then it is possible to conclude whether more thorough and unbiased

research is needed. It is especially important to identify and review the existing systematic

reviews on the same topic. The review of existing SLRs is usually undertaken against

appropriate and previously created evaluation criteria. The most common practice is to create

a checklist or set of questions that should be examined for every existing SLR. There are

several checklists proposed by different authors and organizations, and depending on the level

of complexity, they usually operate with concepts of the quality of defined inclusion and

exclusion criteria or the level of literature and relevant studies coverage along with the

assessment of quality of included studies. For example Centre for Reviews and Dissemination

(2009) in the book Systematic Reviews defines the following set of questions to use while

critically appraising review articles:

 Was the review question clearly defined in terms of population, interventions,

comparators, outcomes and study designs (PICOS)?

 Was the search strategy adequate and appropriate? Were there any restrictions on

language, publication status or on publication date?

22

 Were preventative steps taken to minimize bias and errors in the study selection

process?

 Were appropriate criteria used to assess the quality of the primary studies, and were

preventative steps taken to minimize bias and errors in the quality assessment process?

 Were preventative steps taken to minimize bias and errors in the data extraction

process?

 Were adequate details presented for each of the primary studies?

 Were appropriate methods used for data synthesis? Were differences between studies

assessed? Were the studies pooled, and if so was it appropriate and meaningful to do

so?

 Do the authors‟ conclusions accurately reflect the evidence that was reviewed?

Commissioning a review is an optional task whose inclusion in the process depends on the

type and the stakeholders of the review process. If the review is commissioned by an

organization that has no time or expertise to perform a review by itself, then the organization

must provide a commissioning document that will contain all important information about the

required work such as project name, review questions, timetable, budget or dissemination

strategy.

Scientists and PhD students will not create a commissioning document while performing a

systematic literature review as a part of their own work. The only issue that should be

addressed in this case is that a dissemination strategy should be incorporated in the review

protocol.

Specifying the research question or questions is probably the most important part of the

systematic review process as it is the base for all other activities. The research question

defines which primary studies to include or exclude from the review, and the data that should

be extracted from the reviewed literature. The defined research question should be answered

in the final systematic literature review report.

As Kitchenham emphasizes, there are several types of research questions (adapted from

guidelines in the domain of health care) that can be stated in the domain of software

engineering. These questions may concern, for example, effect of SE technology, cost and

risk factors, the impact of technology on different concepts et cetera. The type of a question

can sometimes determine the guidelines and procedures to be used (as for example in domain

of health care). My opinion is that it is not necessary to create a finite set of types of research

questions, but rather to use a set of guidelines on how to create a research question that has

the appropriate structure. According to Kitchenham, it is important to create a right question,

i.e. a question that is meaningful and important to practitioners and researchers, that will

lead either to changes in current SE practice or to increased confidence in the value of

23

current practice, or that will identify discrepancies between commonly held beliefs and

reality. Finally, the right questions can be the questions that are primarily of interest to

researchers in order to identify and scope the future research activities. For example, such

question could be used in a systematic review performed by a PhD student in order to identify

existing basis and to identify if and where the research fits into the current body of

knowledge.

Usually, authors define more than one research question or they define one high-level

research question and then break it down to several more specific and concrete questions. For

example, in order to characterize software architecture changes by means of a systematic

review, Williams and Carver (2010) created the following high-level question: Can a broad

set of characteristics that encompass changes to software architectures be identified using the

current software engineering body of knowledge and be used to create a comprehensive

change assessment framework? Additionally, the authors created five more specific questions

along with accompanying motivation. The specific questions were:

 What are the attributes of the existing software change classification taxonomies?

 How are software architecture elements and relationships used when determining the

effects of a software change?

 How is the architecture affected by the functional and non-functional changes to the

system requirements?

 How is the impact of architecture changes qualitatively assessed?

 What types of architecture changes can be made to common architectural views?

Another approach is to create a single research question, and in order to clarify its boundaries,

several complementary research questions can be created. For example, in order to review the

reasons for undertaking CMM
6
-based SPI

7
 initiatives in organizations, Staples and Niazi

(2008) defined the following research question: Why do organizations embark on CMM-based

SPI initiatives? And, in order to clarify the question they stated several complementary

questions that were not used during the investigation:

 What motivates individuals to support the adoption of CMM-based SPI in an

organization?

 Why should organizations embark on CMM-based SPI initiatives?

6
 CMM is an acronym for Capability Maturity Model. The CMM was first introduced by Humphrey W. S., as a

model and practical guidance for improving the software development and maintenance process (Humphrey,

1989). CMM is applicable to other processes as well.
7
 SPI is an acronym for Software Process Improvement and referes to an approaches that are intended to improve

the practice of software engineering. One of these approaches is also an CMM-based approach (Staples and

Niazi, 2008).

24

 What reasons for embarking on CMM-based SPI are the most important to

organizations?

 What benefits have organizations received from CMM-based SPI initiatives?

 How do organizations decide to embark on CMM-based SPI initiatives?

 What problems do organizations have at the time that they decide to adopt CMM-

based SPI?

The research questions also depend on the type of review which, according to Noblit and Hare

(1988), can be integrative or interpretative. According to Dybå and Dingsøyr (2008a) the

difference between integrative and interpretative reviews is that integrative reviews are

concerned with combining or summarizing data for the purpose of creating generalizations,

and interpretative reviews achieve synthesis through combination of concepts identified in the

primary studies into a higher-order theoretical structure. This division could be aligned with

the principles of “right questions” mentioned earlier in this chapter.

According to Petticrew and Roberts (2005) it is a good way to start the question writing

process by breaking it down into sub-questions. If the review aims to answer a question about

the effectiveness, the authors suggest using a model called PICOC, defining a population,

intervention, comparison, outcomes and context. These criteria were accepted in

Kitchenham‟s guidelines and discussed from the viewpoint of software engineering as

follows:

 Population in the terms of SE can assume wide range of roles or groups and even

areas, from novice testers, experienced software architects to, for example, control

systems. As the number of undertaken primary studies in the field of SE is relatively

small (comparing to other fields), it is wise to avoid any restriction on the population.

 Intervention should define a software methodology/tool/technology/procedure that the

authors are interested in reviewing and that should address specific issue that is in the

focus of the research. Basically, intervention is the concept that is going to be

observed in the context of the planned systematic review.

 Comparison is the software engineering methodology/tool/technology/procedure with

which the intervention is being compared. If the comparison technology is the

conventional or commonly-used technology, it is often referred to as the “control”

treatment and the control situation must be adequately described.

 Outcomes should relate to factors of importance to practitioners. All relevant outcomes

should be specified, without using surrogate measures that may be misleading.

 Context refers to the context in which the comparison takes place (e.g. academia or

industry), participants taking part (e.g. practitioners, consultants, students) and the

tasks being performed (e.g. small scale, large scale). There are many examples of

25

unrepresentative experiments, i.e. the experiments that are undertaken in academia

using students and small scale tasks, and these should be excluded from serious

systematic reviews.

Developing a review protocol is considered as the most important activity of the whole

planning phase as it determines the rest of the SLR process. The output of this activity should

be a detailed review protocol that specifies the methods that will be used to perform a planned

systematic review. Creating a protocol prior to systematic review is necessary to reduce the

possibility of researcher bias. Staples and Niazi (2007) claim that review protocol, as a

concrete and formal plan of the systematic review, usually insinuates and suggests the

structure of the final report.

Protocol should also describe the background context of the research, the specific research

questions, the planned search strategy, criteria for publication selection, the treatment of

publication quality assessment, the data extraction plan, the data synthesis plan and a project

plan. Although usually it is impossible to predict all the elements and obstacles in the whole

systematic review process, above mentioned parts define it in general. That is why some

authors, for example Staples and Niazi (2007), argue that a protocol is a subject of constant

changes through the whole systematic review process. In the guidelines, Kitchenham suggests

that aspects of the protocol should be piloted during its development. In particular, the search

terms, selection criteria, and data extraction procedures should be tried out before finalizing

the protocol.

Although some elements of the review protocol are already stated, the full list of elements of

the protocol, defined by (Kitchenham and Charters, 2007), is presented here without any

changes:

 Background. The rationale for the survey.

 The research questions that the review is intended to answer.

 The search strategy that will be used to search for primary studies including search

terms and resources to be searched. Resources include digital libraries, specific

journals, and conference proceedings. An initial mapping study can help determine an

appropriate strategy.

 Study selection criteria. Study selection criteria are used to determine which studies

are included in, or excluded from, a systematic review. It is usually helpful to pilot the

selection criteria on a subset of primary studies.

 Study selection procedures. The protocol should describe how the selection criteria

will be applied e. g. how many assessors will evaluate each prospective primary study,

and how disagreements among assessors will be resolved.

26

 Study quality assessment checklists and procedures. The researchers should develop

quality checklists to assess the individual studies. The purpose of the quality

assessment will guide the development of checklists.

 Data extraction strategy. This defines how the information required from each

primary study will be obtained. If the data require manipulation or assumptions and

inferences to be made, the protocol should specify an appropriate validation process.

 Synthesis of the extracted data. This defines the synthesis strategy. This should clarify

whether or not a formal meta-analysis is intended and if so what techniques will be

used.

 Dissemination strategy (if not already included in a commissioning document).

 Project timetable. This should define the review schedule.

Taking into considerations the discussion from other authors, several stated elements are

especially important. For example Dybå and Dingsøyr (2008a) argue that explicit inclusion

and exclusion criteria (which should specify the types of study designs, interventions,

populations and outcomes that will be included in the review) and a systematic search strategy

(which should specify the keyword strings and bibliographic sources defined in a such way to

ensure good topic coverage) are of the most importance. They also state that sometimes it is

even necessary to perform a search of key journal and conference proceedings by hand to

identify relevant studies that are not fully indexed. On the other hand, some authors put focus

on quality assurance elements and on planning, considering them to be critical in order to

mitigate risks of researcher bias (Kitchenham and Charters, 2007) or in order to support the

practical conduct of systematic review (Staples and Niazi, 2007).

In order to make the process of development of review protocol easier, Kitchenham gave an

example of protocol for a tertiary study review. On the other hand, Biolchini et al. (2005)

created a Systematic Review Protocol Template which, even based on the first version of the

Kitchenham‟s guidelines, covers majority of concepts and could be used as a starting point in

creating a review protocol. Except the mentioned guidelines, protocol was also based on the

systematic review protocols developed in the medical area and on the example found in

Protocol for Systematic Review by Mendes E. and Kitchenham B., 2004. (as cited by

Biolchini). Every concept in Biolchini‟s template is described in detail and a pilot study was

conducted in order to evaluate the developed protocol template. The results of the study

showed that usage of template has significantly shortened the time spent on planning against

the review execution time
8
.

8
 More details on mean time spent on systematic review tasks along with simple formula to predict the needed

time are presented in (Petticrew and Roberts, 2005).

27

The Systematic Review Protocol Template created by (Biolchini et al., 2005) is composed of

five main parts. The original template is given in Figure 8 without any changes.

Figure 8 - Systematic Review Protocol Template

(Biolchini et al., 2005)

Evaluating the review protocol is not compulsory, but is a recommended step in the SLR

process in order to improve its quality as the protocol is a critical element of any systematic

review. The researchers must take into consideration several aspects in order to agree on a

procedure for evaluating the protocol. Important aspects are purpose of the research, desired

quality, time, financial construction etc. With regards to these, there are several methods of

evaluating a review protocol which can be used:

 author‟s review (not recommended)

 peer review

 review by supervisor (appropriate for PhD students)

 review by external experts (the best option)

 test of protocol execution

Review by external experts is probably the best option, but it usually depends on the financial

construction of the review project. In this case, the group of external experts should be asked

to review the protocol, and the same group can be asked to review the final report.

Test of protocol execution is a good and widely used alternative method. In this case, the

review of protocol is executed by performing a full cycle of systematic review (following the

28

protocol) but on a reduced set of selected sources. If the gained results are not suitable, or if

any phase of the review reveals unexpected problems, the new version of the protocol must be

created.

2.1.2.2. Conducting the review

According to Kitchenham‟s guidelines, conducting the review phase consists of five

obligatory stages. This phase takes most of the researcher‟s time, and although all five stages

are important, identification of research and selection of primary studies will determine the

rest of reviewing process. In this phase the predefined protocol should be followed and the

phase should result in data extracted, summarized and ready for dissemination.

The summary of each stage is presented below and is based on guidelines presented in

(Kitchenham and Charters, 2007) and on additional discussions from other authors which are

cited in the text.

Identification of research, as a first step in conducting a review, it results in a list of entire

population of publications relevant to the research questions and obtained by performing a

search strategy.

The search strategy should be the same as stated in the review protocol, and it should be

stated in such a manner that it allows the study to be replicable and open to external review. If

a researcher is not experienced in a creating a search strategy, then he or she should ask for

help (for example from librarian). It is also good to break down the research question and to

identify initial search strings according to population, intervention, comparison, outcomes,

context and study design. On top of that, it is important to create a list of synonyms,

abbreviations and alternative spellings. Apart from results gained from digital libraries, other

sources such as reference lists from relevant primary studies, journals, grey literature (e.g.

technical reports), research registers and the Internet should also be searched (sometimes

manually).

The process of definition of search strategy is usually iterative and should benefit from

preliminary searches, trial searches and consultations with experts in the field.

In order to address publication bias (the problem that positive results are more likely to be

published than negative) and not to allow it to become a systematic bias, Kitchenham suggests

that it is important to take appropriate steps. For example scanning grey literature, conference

proceedings and contacting domain experts could result in addition of studies with “negative”

results.

As the number of identified primary studies may be extensive (some authors, for example

Unterkalmsteiner et al. (2012) have identified more than 10.800 publications), the appropriate

29

reference manager software should be used to keep a record on all of them along with the

links to the potentially useful full papers.

Process of performing a SLR must be transparent and replicable. This means that the whole

process should be properly documented: the review and search must be documented, and

unfiltered search results should be saved and retained for possible reanalysis. Many of these

documents will not be presented in the final report but can also be published and a reference

to them can be given in the final report. Kitchenham proposed the procedures for

documenting the search process according to data source as presented in Table 1.

Table 1 - Procedures for documenting the search process

Data source Documentation

Digital Library Name of database

Search strategy for the database

Date of Search

Years covered by search

Journal hand Searches Name of journal

Years searched

Any issues not searched

Conference proceedings Title of proceedings

Name of conference (if different)

Title translation (if necessary)

Journal name (if published as part of a journal)

Efforts to identify

unpublished studies

Research groups and researches contacted (names and contact details)

Research web sites searched (date and URL)

Other sources Date of search

URL

Any specific conditions pertaining to the search.

Source: (Kitchenham and Charters, 2007)

In an attempt to perform an exhaustive search Brereton et al. (2007) identified seven

electronic sources as most relevant sources to Software Engineers, and they also discuss about

considering the use of additional sources (*) from publishers or bibliographical databases:

 IEEExplore

 ACM Digital library

 Google scholar

 Citeseer library

 INSPEC

 ScienceDirect

 EI Compendex

 *SpringerLink

 *Web of Science

 *Scopus

Unfortunately, the search of many relevant journals can only be performed manually, but is

also an important part of the search process. The usual way to identify relevant journals is to

read papers reference lists or by searching the Internet. Several authors also tried to identify a

list of relevant journals and conferences in the field of software engineering. For example,

30

combining the recommendations from (Hannay et al., 2007; Kitchenham and Charters, 2007),

the list of relevant journals and conferences (ordered alphabetically) could be:

 ACM Transactions on Software Engineering Methodology (TOSEM)

 ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM)
9

 Empirical Software Engineering (EMSE)

 Evaluation and Assessment in Software Engineering (EASE)

 IEEE Computer

 IEEE Software

 IEEE Transaction on Software Engineering (TSE)

 Information and Software Technology (IST)

 International Conference on Software Engineering (ICSE)

 Journal of Software: Evolution and Process (JSEP)
10

 Journal of Software: Practice and Experience (SP&E)

 Journal of Systems and Software (JSS)

Selection of primary studies is performed on all identified (potentially relevant) studies by

applying an inclusion and exclusion criteria in order to assess their actual relevance. The

selection criteria are also decided during the protocol definition but if necessary, they can be

refined during this process. The identification of research will usually end up with a great

number of articles that do not answer to the research question (because the keywords may

have different meanings or may be used in the studies that are not in the focus of SLR

research topic). The inclusion criteria will define which of these studies to include in the set

of relevant ones, and the exclusion criteria can be applied on the already selected studies in

order to identify those that do not meet additional conditions, or on the initial list of studies in

order to remove irrelevant ones. Inclusion and exclusion criteria should be based on the

research question, but could be defined based on study types. For example, only quantitative

studies will be taken into consideration.

Study selection is a multistage and iterative process. If the number of initially obtained studies

is large, the authors usually start with simple criteria and, for example, in the first iteration

include/exclude studies only by reading the title. In the second iteration the abstract is read

9
 ESEM symposium was first held in 2007 as a merge of IEEE International Symposium on Empirical Software

Engineering (ISESE) and IEEE International Symposium on Software Metrics (METRICS), so if searching for

papers prior to 2007 it is wise to check issues of ISESE and METRICS.
10

 JSEP journal was born from two parent journals, Journal of Software Maintenance and Evolution: Research

and Practice and Software Process: Improvement and Practice, and the second one should be searched

separatelly as it was issued until 2009. Issues of the first journal are available on the current JSEP home page.

31

and finally, full papers are read. Two study selection processes are shown in Figure 9

(Unterkalmsteiner et al., 2012) and Figure 10 (Dybå and Dingsøyr, 2008a).

However, some authors advocate a more strict approach. For example, Brereton et al. (2007)

advise the researchers to exclude studies by means of reading the title and the abstract only if

there are no doubts that study can be excluded. Otherwise, they point out that they have learnt

from their own experience that “the standard of IT and software engineering abstract is too

poor to rely on when selecting primary studies”, and they advise reviewing the conclusions as

well. Of course, final set of selected papers should be reviewed in detail.

Figure 9 - Example of study selection process (a)

Figure 10 - Example of study selection process (b)

Kitchenham is familiar with general instructions on keeping the list of excluded papers, but

she suggests that totally irrelevant papers should be excluded first (for example, papers that

have nothing to do with Software Engineering) and then, while analyzing other papers, the list

of exclusions should be kept updated along with the reasons of exclusion.

In order to increase the reliability of inclusion decisions it is possible to perform the same

process by two or more researches. The Cohen Kappa coefficient (Cohen, 1968) can be used

to measure the level of agreement between the researches
11

. If there is a disagreement then it

should be discussed and resolved, but the initial value of Kappa statistics should be preserved

in the final report and used for discussion and conclusions. Alternatively, using test-retest

approach latter researches can evaluate a random sample of the primary studies.

11

 The Cohen Kappa coefficient (Cohen, 1968) is statistical measure of agreement between two observers rating

qualitative items. The simple Kappa coefficient (from 1960) is calculated for nominal scales and it treats all

disagreements between raters equally. But, the Weightet kappa, κw, provides the means of taking into

consideration the ratio-scaled degrees of disagreement between raters. Theoretical Kappa maximum of 1.0

means perfect agreement between raters.

32

On the other hand, a PhD student can use one of the following methods to increase the

reliability of inclusion decisions:

 consultation with advisor

 consultation with expert panel or other researcher

 re-evaluation of a random sample of the primary studies by the test-retest approach

 re-evaluation of a random sample by other researcher while publishing a paper on the

subject

Advisors usually help students to choose an appropriate method and if decided so, the advisor

can review the inclusion decisions or help the student find external experts or perform other

stated methods.

Study quality assessment is the second most important stage in this phase. The idea of this

process is to analyze and assess the quality of each primarily selected study to be finally

included in data extraction and reporting process. In general, the aim of assessing the quality

is to make sure that the study findings are relevant and unbiased. However, this is not a simple

process as, according to Kitchenham, there is no agreed definition of study “quality”. Some

authors, for example Centre for Reviews and Dissemination (2009), discuss that the study

quality assessment procedures mainly depend on the type of the study. For example, in health

sciences, the quality assessment of a study that was conducted by using a randomized

controlled trials method cannot be the same as the assessment of quasi-experimental studies

or observational studies. The mentioned guidelines also state that the following elements

should be assessed regardless of the study type:

 appropriateness of study design to the research objective

 risk of bias

 choice of outcome measure

 statistical issues

 quality of reporting and intervention

 generalizability

Mentioned elements do not have the same importance in every case, but the authors usually

agree that the risk of bias (also known as internal validity) is pernicious as it can easily

obscure intervention effects. Generalizability (also known as applicability or external validity)

considers the extent to which a study is generalizable and how closely a study reflects a

practice (Centre for Reviews and Dissemination, University of York, 2009). Additionally,

Kitchenham states that quality assessment should be used to:

 provide more detailed inclusion/exclusion criteria

 provide explanation for differences in study results

 weigh the importance of individual studies for overall synthesis

33

 guide the interpretation and further research

In this process, Kitchenham also finds that three concepts are important and most closely

related to the study quality. She defines them as follows:

Table 2 - Quality concept definitions

Term Synonyms Definition

Bias Systematic error A tendency to produce results that depart systematically

from the „true‟ results. Unbiased results are internally valid.

Internal validity Validity The extent to which the design and conduct of the study are

likely to prevent systematic error. Internal validity is a

prerequisite for external validity.

External validity Generalizability,

Applicability

The extent to which the effects observed in the study are

applicable outside of the study.

Source: (Kitchenham and Charters, 2007)

The most common tool (quality instrument) used to assess the quality of studies is checklist.

Usage of checklists ensures that all assessed studies are evaluated critically and in a

standardized way. According to Centre for Reviews and Dissemination (2009) there are many

different checklists and scales already available, and they can be used or adapted to meet the

requirements of the review or to cover the bias and validity in the focus of specific research.

In literature several types of biases are recognized that should be addressed in a checklist.

Kitchenham adopted the division and adapted the definitions and protection mechanisms in

order to address software engineering rather than medicine. The identified types of biases

along with definition and protection mechanisms are as follows:

Table 3 - Types of Bias

Type Synonyms Definition Protection mechanism

Selection bias Allocation

bias

Systematic differences between

comparison groups with respect to

treatment.

Randomization of a large number

of subjects with concealment of

the allocation method (e.g.

allocation by computer program

not experimenter choice).

Performance

bias

 Systematic difference is the

conduct of comparison groups

apart from the treatment being

evaluated.

Replication of the studies using

different experimenters.

Use of experimenters with no

personal interest in either

treatment.

Measurement

bias

Detection

bias

Systematic difference between the

groups in how outcomes are

ascertained.

Blinding outcome assessors to the

treatments is sometimes possible.

Attrition bias Exclusion

bias

Systematic differences between

comparison groups in terms of

withdrawals or exclusions of

participants from the study sample.

Reporting of the reasons for all

withdrawals. Sensitivity analysis

including all excluded

participants.

Source: (Kitchenham and Charters, 2007)

34

In addition to these, Higgins and Green (2011) emphasize reporting bias and also recognize

other biases. By reporting bias they discuss systematic differences between reported and

unreported findings, and by other biases they presume other sources of bias that are relevant

in certain circumstances (for example language etc.).

According to Kitchenham, checklist should also include consideration of biases and validity

problems that can occur at the different stages of the study (design, conduct, analysis and

conclusions). Reviewing available papers on the subject of checklists creation for quantitative

studies, and noticing that authors focus on different set of questions, Kitchenham and Charters

(2007) created an accumulated list of 59 questions and organized them with respect to study

stage and study type. These questions cover four mentioned stages and can be used for

quantitative empirical studies, correlation (observational) studies, surveys and experiments.

The same process was conducted in qualitative studies, and resulted in 18 questions that could

be used. These example checklists, which we highly recommend, should not be used literally,

but rather as a pool of questions. The appropriate questions could be taken from the pool for

each specific study.

The review protocol should define quality instruments as well as specify how the quality data

are to be used. In general, there are two rather different but not mutually exclusive ways: (1)

to assist primary study selection and (2) to assist data analysis and synthesis.

There are several limitations the authors should be aware of when attempting to perform a

quality analysis of different studies. First primary studies could be poorly reported, but the

lack of report does not necessarily mean a leak in the procedure. According to Petticrew and

Roberts (2005) the quality checklists should address methodological quality and not reporting

quality. If reporting quality is poor, the researchers should attempt to obtain more information

from the authors of the study. Additionally, Kitchenham argues that a limitation could be a

limited evidence of the relationships between factors that are thought to affect validity and the

actual study outcomes, and that sometimes it is not possible to correct the statistical analysis

as there is usually no access to the original data.

Finally, authors usually point out all undertaken quality assessment procedures and measures,

but only to the level of detail that is suitable for the target publication. For further reading, we

recommend some simple examples of quality assessment of SE studies presented in (Dybå

and Dingsøyr, 2008a), (B Kitchenham et al., 2009), (Barbara Kitchenham et al., 2009) or

(Kitchenham et al., 2010) and especially (Unterkalmsteiner et al., 2012).

Data extraction and monitoring, as a next step in SLR process, aims to accurately and

without bias record the appropriate information from selected papers. Researchers usually,

during the protocol definition phase, define extraction forms which are used in this activity.

35

The design of data extraction forms is not a trivial task while forms should be designed to

collect all information needed to address the review questions and the study quality criteria.

As the quality criteria can be used to identify inclusion/exclusion criteria or/and as a part of

the data analysis, in the first case, the data extraction forms should be separated, and in the

second case, a single form can be used (Kitchenham and Charters, 2007). In any case, the

same authors recommend that the forms should be piloted during the protocol definition

phase, and all researchers who will use the forms should take part in the pilot study in order to

assess completeness of the forms along with possible technical issues.

Basically, as mentioned before, data extraction forms should contain questions needed to

answer the review questions and quality evaluation criteria. There is no firm guidance on how

to define these questions as they are different for every specific SLR process. On the other

hand, there are several elements that are considered to be common to all forms in order to

provide standard information. According to Kitchenham these elements are:

 name of the reviewer

 date of data extraction

 title, authors, journal, publications details

 space for additional notes

Combining the examples presented in (Kitchenham and Charters, 2007) and (Jørgensen,

2007) we can conclude that in general, data extraction form could include parts (sections) as

presented in Table 4.

Table 4 - Data collection form template

Data item Value Additional notes

Extraction information

Data extractor

Data checker

Date of extraction

General study information

Study identifier

Title

Publication details Including authors, journal etc.

Questions to answer review questions

Question 1 These questions could aim to obtain

numerical or descriptive data. Each

review question could be covered by

more questions in data extraction form.

Question 2

Question n

Questions to assess study quality

Question 1 These questions should be related ONLY

to data analysis. Questions related to

inclusion/exclusion criteria should be

Question 2

Question m

36

stated on separate form.

Data summary

Question 1 These questions could aim to collect

summary information from the observed

study.

Question 2

Question p

It is important to notice that the column Additional notes was used to present additional info

on template elements, but it should also be used in extraction forms to present additional info

on the extracted data.

Similarly as in the process of applying inclusion and exclusion criteria, there are different

methods that could be performed to extract the data and to fill the extraction forms. In

guidelines Kitchenham recommends that data extraction should be performed by two or more

researchers, but as stated in (B Kitchenham et al., 2009), in practice she finds that it is useful

that one researcher extracts the data and the other one checks the extraction. If several

researchers are performing a data extraction, the results should be compared, aligned and if

necessary discussed. However, if researchers are performing extraction on different sets of

primary studies, it is important to ensure that it is done in a consistent manner by employing

some cross-checking activities. Additionally, Staples and Niazi (2007) recommend that the

whole process should be done in an iterative manner. PhD students will usually need some

help from advisor or other experts to randomly check their extracted data or they will perform

a re-test of a part of the primary studies.

Incidentally, it is important not to include multiple studies with the same data in a systematic

review in order to avoid results with bias. This could be a serious threat if different sets of

publications are analyzed by different researchers. Conversely, it is also important to contact

the authors if it is identified that some data are missing or were poorly reported.

Finally, the authors should consider using electronic forms as they proved themselves useful

in subsequent data analysis, especially if the extracted data is a set of numerical values and if

statistical or meta-analysis has been performed.

An interesting example of data extraction process can be found in (Unterkalmsteiner et al.,

2012), an example of filled extraction forms can be found in (Jørgensen, 2007) and (Dybå and

Dingsøyr, 2008b) and an example of data extraction forms with a short review on process can

be found in almost all papers mentioned in this chapter.

Data synthesis is the final step in the review conduction phase. During this activity extracted

data are collected and summarized. In general, there are two types of data synthesis:

descriptive (narrative) synthesis and quantitative synthesis (Centre for Reviews and

37

Dissemination, University of York, 2009). In order to draw reliable conclusions, synthesis

should consider the strength of evidence, explore consistency and discuss inconsistencies.

The synthesis approach should be defined by the protocol and is determined by the type of

research questions, but also by the type of available studies and by the quality of data. For

example, it is not wise to perform a statistical analysis on the numerical data if the

publications used are not randomized or do not cover the whole population, or if there are

studies with poor quality and with biased results. In addition, according to CRD‟s guidance

(2009), narrative and quantitative approaches are not mutually exclusive, and according to

(Brereton et al. (2007) “software engineering systematic reviews are likely to be qualitative in

nature”.

Regardless of the synthesis type, the synthesis should begin with a creation of a summary of

included studies. The studies included in the review are usually presented in a table which

covers all their important details (such as type, interventions, number and characteristics of

participants, outcomes etc.). In the same (or in another) table, the elements of study quality

and risk of bias could also be presented. Additionally, this descriptive process should be

explicit, rigorous and should help to conclude if the studies are similar and reliable to

synthesize (Centre for Reviews and Dissemination, University of York, 2009). Kitchenham

and Charters (2007) also add that the extracted data should be tabulated in a manner that is

consistent with the review questions and structured to highlight similarities and differences

between study outcomes.

Synthetizing results of qualitative studies means an integration of materials written in natural

language, with significant possibility of having to understand different meanings of the same

concepts as they were used by different researchers (Kitchenham and Charters, 2007). In

(Noblit and Hare, 1988) the authors propose three approaches to synthesis of qualitative

studies:

 Reciprocal transaction – translation of cases of studies with similar objective into each

of other cases in order to create an additive summary.

 Refutational synthesis – translation of studies along with corresponding refutational

studies in order to analyze the refutations in detail.

 Line of argument synthesis – first, the individual studies which focus the part of some

problem are analyzed and then the set is analyzed as a whole in order to get broader

conclusion on the addressed problem.

According to Petticrew and Roberts (2005) the narrative synthesis can be performed in

several ways, but the most common one is to separate it into three distinct steps: (1)

organizing the description into logical categories, (2) analyzing the findings within each of

the categories and (3) synthesizing the findings across all included studies. The mentioned

38

authors argue that there is no firm guidance on how to organize the categories and that this

could be done according to: intervention, population, design, outcomes etc. The second step

involves a narrative description of the findings for each study. This description may vary in

length and in the level of detail. Finally, the authors discuss the cross-study synthesis and state

that it usually starts with a simple description of the uncovered information, then the summary

information on the effect of mediating variables (if any) can be presented, and at the end the

results of the individual studies are described. The main goal of cross-study synthesis is to

produce an overall summary of study findings taking into considerations the quality and other

variations.

Additionally, same authors describe several other synthesis methods which could be used:

 Best evidence synthesis – “combines the meta-analytic approach of extracting

quantitative information in a common standard format from each study with a

systematic approach to the assessment of study quality and study relevance”.

 Vote counting – the easiest approach which simply compares the number of positive

and negative results on specific issue. This approach is usually inappropriate to use as

it has many disadvantages.

 Cross-design synthesis – in theory combines the complementary strengths of

experimental and non-experimental research – for example by adjusting the results of

random controlled trials (RCTs) by standardizing RCT results to the distributions

obtained from database analyses.

An example of applying a narrative synthesis is presented in (Centre for Reviews and

Dissemination, University of York, 2009) and can be seen in Figure 11.

Quantitative data (as well as qualitative) should be presented in tabular form. The data must

be presented in a comparable way, and according to Kitchenham, it should include:

 sample size for each intervention,

 estimated effect size for intervention with standard error for each effect,

 difference between the mean values for each intervention and the confidence interval

for the difference,

 units used for measuring the effect.

Different effect measures for different types of outcome are proposed in literature.

Kitchenham refers to medical literature and she presents binary outcomes (which can be

measured by effect measures like odds, risk, odds ratio (OR), relative risk (RR), absolute risk

reduction (ARR)) and continuous data (which can be measured by mean difference, weighted

mean difference (WMD) or standardized mean difference (SMD)).

39

Apart from narrative description of results, qualitative results are usually presented and

summarized in a table. Even though “tabulating the data is a useful means of aggregation, it is

necessary to explain how the aggregated data actually answers the research questions”

(Brereton et al., 2007). On the other hand, quantitative results are usually presented by forest

plot (which presents the means and variance of the difference for each study) (Kitchenham

and Charters, 2007) and, of course, additionally narratively discussed and related to the

research questions.

Figure 11 - Example of applying narrative synthesis

(Centre for Reviews and Dissemination, University of York, 2009)

When systematic literature review includes quantitative and qualitative studies, Kitchenham

suggests that researchers should “synthetize the quantitative and qualitative studies separately,

and then attempt to integrate the results by investigating whether the qualitative results can

help explain the quantitative results”. When there is a considerable difference in the quality of

studies, Kitchenham suggests the sensitivity analysis to be performed in order to determine if

the low quality publications have significant impact on synthesis results. Sensitivity analysis

could also be performed on different subsets of primary studies to determine the robustness of

the results.

Examples of different methods and approaches of presentation of systematized data can be

found in Chapter 1.3.5. of (Centre for Reviews and Dissemination, University of York, 2009).

40

2.1.2.3. Reporting the review

The aim of the final phase of the systematic literature review process is to write the results of

the review in a form suitable to dissemination channel and the target audience or parties. The

results are usually written in a form of a systematic review report. The summary of possible

activities is presented below and is based on the guidelines presented in (Kitchenham and

Charters, 2007) and on additional discussions from other authors which are cited in the text.

Specifying dissemination strategy and mechanisms is usually performed during the project

commissioning activities, or if there is no commissioning phase, then dissemination strategy

and mechanisms should be defined in the review protocol. Kitchenham argues that apart from

disseminating the results in academic journals and conferences, scientists should consider

performing other dissemination activities that might include direct communication with

affected bodies, publishing the results on web pages, posters or practitioner-oriented

magazines etc.

If the results are to be published in a conference or journal, or any other publication with

restricted number of pages, then the reference to a document (technical report, PhD thesis or

similar) that contains all information should be provided.

Formatting the main report is the most important activity of this phase. Kitchenham adopted

the suggested structure of systematic review report given in CRD‟s guidelines from 2001.

Although the original guidelines (from 2001) are updated in (Centre for Reviews and

Dissemination, University of York, 2009), the version presented by Kitchenham is sufficient

in the field of software engineering. She also distinguishes reports which are to be published

in technical reports and journals from the reports which are to be published in a PhD

dissertation. The report structure proposed by Kitchenham is presented in Table 5 and

elements marked with the (*) are usually used only in publications and not in PhD

dissertations.

Table 5 - Structure and Contents of Reports of Systematic Reviews

Section Subsection Scope Comments

Title* The title should be short but

informative. It should be based on the

question being asked. In journal papers,

it should indicate that the study is a

systematic review.

Authorship* When research is done collaboratively,

criteria for determining both who

should be credited as an author, and the

order of author‟s names should be

defined in advance. The contribution of

workers not credited as authors should

be noted in the Acknowledgements

section.

Executive Context The importance of the A structured summary or abstract

41

summary or

Structured

abstract*

research questions addressed

by the review.

allows readers to assess quickly the

relevance, quality and generality of a

systematic review. Objectives The questions addressed by

the systematic review.

Methods Data Sources, Study selection,

Quality Assessment and Data

extraction.

Results Main finding including any

meta-analysis results and

sensitivity analyses.

Conclusions Implications for practice and

future research.

Background Justification of the need for

the review.

Summary of previous reviews.

Description of the software engineering

technique being investigated and its

potential importance.

Review

questions

 Each review question should

be specified.

Identify primary and secondary review

questions. Note this section may be

included in the background section.

Review

methods

Data sources

and search

strategy

 This should be based on the research

protocol. Any changes to the original

protocol should be reported.

Study selection

Study quality

assessment

Data extraction

Data synthesis

Included and

excluded

studies

 Inclusion and exclusion

criteria.

List of excluded studies with

rationale for exclusion.

Study inclusion and exclusion criteria

can sometimes best be represented as a

flow diagram because studies will be

excluded at different stages in the

review for different reasons.

Results Findings Description of primary

studies.

Results of any quantitative

summaries.

Details of any meta-analysis.

Non-quantitative summaries should be

provided to summarize each of the

studies and presented in tabular form.

Quantitative summary results should be

presented in tables and graphs.

Sensitivity

analysis

Discussion Principal

findings

 These must correspond to the findings

discussed in the results section.

Strengths and

Weaknesses

Strengths and weaknesses of

the evidence included in the

review.

Relation to other reviews,

particularly considering any

differences in quality and

results.

A discussion of the validity of the

evidence considering bias in the

systematic review allows a reader to

assess the reliance that may be placed

on the collected evidence.

Meaning of

findings

Direction and magnitude of

effect observed in summarized

studies.

Applicability

(generalizability) of the

findings.

Make clear to what extent the results

imply causality by discussing the level

of evidence.

Discuss all benefits, adverse effects

and risks.

Discuss variations in effects and their

reasons (for example are the treatment

effects larger on larger projects).

Conclusions Recommend-

actions

Practical implications for

software development.

What are the implications of the results

for practitioners?

Unanswered questions and

implications for future

42

research.

Acknowledge-

ments*

 All persons who contributed

to the research but did not

fulfill authorship criteria.

Conflict of

interest

 Any secondary interest on the part of

the research (e.g. a financial interest in

the technology being evaluated) should

be declared.

References and

Appendices

 Appendices can be used to list studies

included and excluded from the study,

to document search strategy details,

and to list raw data from the included

studies.

Source: (Kitchenham and Charters, 2007)

Evaluating the report is the final step in the systematic literature review process. This activity

depends mainly on the type of the publication. Papers submitted to a scientific conference or

scientific journal are reviewed by independent peer reviewers. Doctoral dissertations are

reviewed by supervisors and by the committee during the examination process. Finally, if the

publication is a technical review, it is also advisable to subject the materials to an independent

evaluation. In this case, this final review could be done by the same expert panel that was

created to review the research protocol. The results of the review, if negative, can require

repetition of one or more phases in the systematic literature review process.

2.1.3. Advantages and disadvantages of SLR

As every other method and approach, SLR also has several advantages and disadvantages.

Kitchenham identified three main groups of advantages of using systematic literature review.

(1) The methodology is well-defined; (2) it enables researchers to provide the information

available in the wide range of sources; (3) and in the case of quantitative data, it is possible to

perform some meta-analysis and to extract information that single study cannot provide

(Kitchenham and Charters, 2007). Additionally, if compared to unstructured methods, like

simple literature review, the SLR has many advantages (described in the SLR process) that

make the results of such analysis more reliable and more likely to be unbiased.

On the other hand, a major disadvantage of this approach is that it requires much more effort

and time in comparison to simple literature review and this is exacerbated by a large number

of review points: search term pilot reviews, protocol reviews, initial selection reviews, final

selection reviews, data extraction reviews, and data analysis reviews (Staples and Niazi,

2007). Kitchenham also adds that the usage of meta-analysis could be a disadvantage as it can

detect small and unimportant biases. Biolchini discusses that authors are supposed to perform

complex activities and understand (sometimes unknown) specific concepts and terms. This is

why he states that a conduction of SLR in SE is much harder than in other disciplines, for

example medicine (Biolchini et al., 2005). Same authors point out that the overall process is

43

difficult to conduct (in order to help other researchers they prepared a systematic review

conduction process and protocol template), especially the activities of protocol development,

searching and evaluating studies.

Additionally, execution of this method depends on solid literature coverage of the focused

phenomenon, and subsequently it cannot be used to explore new, revolutionary, phenomena

which are not well covered in literature.

Finally, even experienced authors are likely to change the review protocol during the

implementation phase, and that brings the problem of documenting the whole process.

2.1.4. Light SLR

The text in this chapter (Chapter 2.1) is based on the guidelines presented in (Kitchenham and

Charters, 2007) and expanded with the reported feedback of the researchers, mainly from the

field of software engineering. As the guidelines‟ authors themselves also point out, both, the

guidelines and therefore this text too, are mainly created to cover the whole process of

systematic literature review which is supposed to be undertaken by a large group of

researchers. Although the notes for single researchers (like PhD students) throughout the text

have been presented, it is important to point out that not all mentioned activities are

compulsory. Kitchenham suggests that the most important steps (as light SLR) for PhD

students to undertake are:

 Developing a protocol

 Defining the research question(s).

 Specifying what will be done to address the problem of a single researcher applying

inclusion/exclusion criteria and undertaking all the data extraction.

 Defining the search strategy.

 Defining the data to be extracted from each primary study including quality data.

 Maintaining lists of included and excluded studies.

 Using the data synthesis guidelines.

 Using the reporting guidelines.

Specific recommendations are given to PhD students throughout the whole chapter while

discussing specific activities. The most important for PhD students is to understand that the

process should be performed with the restrictions that are normal while performing a PhD

research, but research validity and rigor should not be neglected and should be achieved by

employing available methods and techniques in order to get unbiased results. These include

the adjustment of dissemination strategy, proper review questions that are from interest to the

student, employment of supervisor to review the protocol, consultations with supervisors or

other researcher to increase the reliability of inclusion decisions, implementation of test-retest

44

approach or asking the advisor or other researcher to randomly check the extracted data and

structure the report according remarks given in the guidelines.

2.1.5. Conclusions on SLR

The process of systematic literature review is not easy to perform, but the general opinion of

the authors is that this method is useful and could be used to decrease the biases and to

increase the review quality. Authors also note that the usage of this method has significant

obstacles in the field of software engineering in comparison to other fields, for example, the

field of health sciences. The main differences are the mainly qualitative studies to be reviewed

in SE, the lack of centralized index of existing systematic reviews and the overall literature

searching problem raised by many different sources, with different and questionable quality.

In order to overcome the mentioned obstacles, the authors who performed SLR in the field of

SE suggest that the scope of the review should be limited by choosing clear and narrow

research questions and that the whole process should be in advance well defined by putting a

considerable effort in creation of feasible review protocol.

As SLR method still emerges in the field of software engineering, the SLR authors in the field

of SE welcome the idea of publishing the replications of existing systematic reviews, along

with the idea of creation of a centralized index of the existing literature reviews.

2.2. Planning the review

The previous chapter defining the research method (chapter 2.1) covers the whole SLR

process as defined by Kitchenham and Charters (2007), including the phases of planning the

review, conducting the review and reporting the review along with summarized and

aggregated findings, observations and recommendations from other influential authors in the

SE field.

The following chapters will report the whole process of performing the Systematic Literature

Review in the scope of this research. Firstly, following the mentioned guidelines, the phase of

planning the review will be presented in this chapter (chapter 2.2), while the chapter 2.3 will

give the information on the phase of performing the review and finding the suitable

methodology and chapter 2.4 brings the conclusion of this process and justifies the decision

on the methodology that was used in this research.

45

2.2.1. Defining the basic concepts

Systems development methodologies (SDM) are of an academic interest since the early 1980s

when the IFIP WG8.1
12

 organized three conferences named Comparative Review of

Information Systems Design Methodologies (CRIS). The first conference (Olle et al., 1982)

aimed to present and compare spectrum of methodologies. The second conference (Olle et al.,

1983) had a goal to analyze the features of the methodologies and the third conference (Olle

et al., 1986) put the focus on the evaluation of the methodologies. These conferences also

resulted in the definition and distinction of basic concepts and terms like methodology,

method, tool, approach, and development cycle. However, the used concept of “methodology”

was limited only to the design stage of the system development life-cycle (Gasson, 1995).

Since these origins, different definitions for the term “software development methodology”

which cover full development life-cycle are created. For example, software development

methodologies could be defined as (a) “reference model for the development of software

describing the various statuses of the corresponding software projects” (Dyck and

Majchrzak, 2012), as (b) “framework for applying software engineering practices with the

specific aim of providing the necessary means for timely and orderly execution of the various

finer-grained techniques and methods for developing software-intensive systems” (Ramsin

and Paige, 2008), as (c) “recommended collection of phases, procedures, rules, techniques,

tools, documentation, management, and training used to develop a system” (Avison and

Fitzgerald, 2003) or (d) “software development process by which user needs are translated

into a software product by translating user needs into software requirements, transforming

the software requirements into design, implementing the design in code, testing the code, and

sometimes, installing and checking out the software for operational use” (IEEE Computer

Society, 1991) or as (e) an organized and systematic approach to developing software for a

target computer (SWEBOK V3 - Chapter 10, 2012).

Consequently, SDM could be observed as a noun and as a verb. As a noun, “software

development methodology is a framework that is used to structure, plan, and control the

process of developing an information system” – this includes the pre-definition of specific

deliverables and artifacts that are created and completed by a project team to develop or

maintain an application (Centers for Medicare and Medicaid Services (CMS), Office of

information Services, 2008). As a verb, the software development methodology could be

considered as an approach used by organizations and project teams to apply the software

12

 IFIP WG8.1 – Working group of the International Federation for Information Processing on Design and

Evaluation of Information Systems. The group is part of IFIP's Technical Committee on Information Systems

(TC8). More information is available on the group‟s website: http://research.idi.ntnu.no/ifip-wg81/.

http://research.idi.ntnu.no/ifip-wg81/

46

development methodology framework. Every software development methodology approach

acts as a basis for applying specific frameworks to develop and maintain software. The terms

Systems Development Life Cycle (SDLC) and Software Development Process are used to

represent the meaning of SDM as a verb. According to Elliott (2004) the SDLC can be

considered to be the oldest formalized methodology framework
13

 for building information

systems with the idea of “pursuing the development of information systems in a very

deliberate, structured and methodical way, requiring each stage of the life cycle from

inception of the idea to delivery of the final system, to be carried out rigidly and

sequentially”.

2.2.1.1. Development approaches

Although SDLC is defined as framework, with time and to manage the complexity, a number

of SDLC models or methodologies as approaches have been created. The CMS (2008)

enumerates several software development approaches which have been used since the origin

of information technology. Arguably, this division could be considered as division which

takes into consideration the development cycle, the phases and their order and according to

this viewpoint, all approaches could be stated in one of the three main groups:

 Phase oriented approach – developed at the end of 1960s and the beginning of 1970s

– states that each development phase is performed only once during the whole

development project. In each phase, all required output results are finished and

checked. The verification (in accordance with specification) and validation (by the

user) on the results are performed.

 Partially incremental approach - defines approach in which only several phases are

repeated incrementally, but initial set of phases is performed only once. In this model,

initial phases including requirements specification are usually not repeated, and the

design and subsequent phases are repeated. Other variants of the model exist (e.g.

Incremental implementation only etc.).

 Incremental approach – states that the overall software functionality should be

produced and delivered in small increments. Attention is focused only on essential

features and additional functionality is added only if and when needed. The output

models evolve and they are improved in every increment (iteration).

In comparison, by taking into consideration the basic model to be used to define the product,

the development approaches could be:

13

 Initially it was a framework, but during the time the term changed meaning to specify approach!

47

 Process oriented approach (functional approach) – defines that the specification of

system/software functionality is most important. Using process modeling techniques,

it is possible to formally define process hierarchy, process inner logic, inter processes

relationships, occurring events, and relationships between the process and the

surroundings. The basic concepts that are used in this approach are functional

components (such as functions, processes, sub processes, activities, operations etc.),

data flows and their content, data sources and destinations, data storages and events

that initiate or terminate processes.

 Data oriented approach – assumes that the basic model developed through the overall

process of information / software system development is data model. The data model

is considered to be more stable than process model and that it changes more rarely. In

addition, it is considered that the data manipulation is the only important activity that

is performed by some information systems processes. The basic concepts of this

approach are: data structure definition concepts, data integrity preservation concepts,

operators that can be used to change the state of the data.

 Process and data oriented approach – defines that the data models are equally

important as process models and that these two models cannot be separated. This

approach, which appeared in the beginning of the 1980s, also defines that every data

model belongs to a specific process model, and that these two should be developed in

parallel.

 Object oriented approach – defines the latest approach which semantically unites the

data model and process model into new object models. These models represent

objects, methods serving the objects and messages exchanged between the objects.

They can be used to model the static and dynamic system / software properties. The

basic concepts of these models are: object types, classification and built-in object

structures, attributes with relationships and constraints, events and states, operations

performed on objects (methods), inheritance, encapsulation, polymorphism,

reusability, state pre-conditions and post-conditions, state transitions, messages…

2.2.1.2. Development methodologies

Emerging from 1960s, many different methodologies have been created and developed in

theory and practice and they basically reflect the mentioned approaches. The number of these

methodologies makes the categorization of SDMs not an easy task. Different authors use

different viewpoints while defining categories of SDMs. Avison and Fitzgerald (2003) divide

methodologies into seven broad groups: Structured, Data-oriented, Prototyping, Object-

oriented (OO), Participative, Strategic and Systems. These groups are not mutually excluded.

On the other side, Ramsin and Paige (2008) while focusing only on object oriented

methodologies divide them into three sub-groups: Seminal, Integrated and Agile. In their

48

opinion, seminal
14

 methodologies pioneered the unexplored field of OO analysis and design

and set the basis for further evolution. Many of the concepts introduced by these

methodologies are still widely used today. While the first and the second generation of OO

methodologies is referred to as seminal, the third generation is referred to as integrated
15

.

These methodologies are heavyweight and very complex, offering detailed process

components, patterns, and management and measurement instructions. Furthermore, some of

them propose ideas on seamless development, complexity management and modeling

approaches. Finally, in contrast to heavyweight integrated methodologies, agile
16

methodologies are aiming to be lightweight, based on practices of program design, coding and

testing in order to enhance software development flexibility and productivity.

Similarly, software engineering body of knowledge (SWEBOK, 2004) defines three basic

software engineering methods topic areas, while the new version of the Report, that is now

being in process of review and is soon to be published (SWEBOK V3 - Chapter 10, 2012),

defines four topic areas as follows:

 Heuristic methods – those experience-based software engineering methods that have

been and are fairly widely practiced in the software industry. This topic area contains

three broad discussion categories: structured analysis and design methods, data

modeling methods, and object-oriented analysis and design methods.

 Formal methods – are software engineering methods used to specify, develop, and

verify the software through application of a rigorous mathematically based notation

and language. Through the use of the specification language, the software model can

be checked for consistency (in other words, lack of ambiguity), completeness, and

correctness in a systematic and automated or semi-automated fashion.

 Prototyping methods – Software prototyping is an activity that generally creates

incomplete or minimally functional versions of a software application, usually for

trying out specific new features, soliciting feedback on requirements or user interfaces,

further exploring requirements, design, or implementation options, and/or gaining

some other useful insight into the software. The software engineer selects a

prototyping method to understand the least understood aspects or components of the

software first; this approach is in contrast with other development methods which

usually begin development with the most understood portions first. Typically, the

prototyped product does not become the final software product without extensive

development rework or refactoring.

14

 i.e. influential, had a greate influence on other methodologies.
15

 i.e. combined, unified.
16

 i.e. nimble, responsive.

49

 Agile methods – Agile methods were born in the 1990s out of the need to reduce the

apparent large overhead associated with heavyweight, plan-based development

methods used in large-scale software-development projects. Agile methods are

considered lightweight methods in that they are characterized by short, iterative

development cycles, self-organizing teams, simpler designs, code refactoring, test-

driven development, frequent customer involvement, and an emphasis on creating a

demonstrative working product with each development cycle.

The criterion used to create this classification could be argued. Heuristic methods (a kind of

approach to development based on modeling rather than on heuristics!) have models as

primary artifacts, prototyping methods result in a throw-away prototype and formal methods

result in a formal specification of the system (which should preferably be animated by using

some engine). In this point of view, the main artifact of agile methods is not obvious. In

eXtreme programming these are small releases that have passed unit, integration and

acceptance tests while in Scrum these could be features described through product and sprint

backlogs. Thus, we can conclude that common artifact denominator for agile methods could

be functionality increment which is generated at the end of iteration.

Furthermore, according to (SWEBOK, 2004) at least the first three topics (but we can add and

the forth one, too) are not disjoint but rather they represent distinct concerns. For example, an

OO method may incorporate formal techniques and rely on prototyping for verification and

validation. As methodologies continuously evolve, the SWEBOK 2004 tried as hard as

possible to avoid naming particular methodologies, but new version is likely to make an

exception when it comes to the agile methods, as the new version shortly describes Pair

programming, Rapid application development, eXtreme programming, Scrum and Feature-

driven development. Of course these are not the only agile methodologies, but according to

(SWEBOK V3 - Chapter 10, 2012) they are the most popular ones. Finally, in the body of

knowledge it is stated that the choice of the appropriate method could have a dramatic effect

on the success of the software project.

Every methodological framework is based on some approaches or paradigms (basic model,

the development cycle, the relationship of existing and future systems…) and it describes or

prescribes a pattern of the development cycle, development activities and artifacts. Thus, the

line between methodologies and approaches is a thin one and is often crossed by many

authors, teams and organizations. That is the reason why there is no clear division between

methodologies and approaches. Even Olle et al. back in (1988) pointed out that the term

„methodology‟ is not correctly used. Original meaning of „a study of method‟ was replaced in

common practice with „method‟ and such practice remained till today and is followed in this

dissertation as well. In general, adopting the definition from (Avison and Fitzgerald, 1988) in

50

this thesis, methodology will be considered as “a collection of procedures, techniques, tools

and documentation aids which will help the systems developers in their efforts to implement a

new information system.” Approach will simply be used to define the basic artifacts while

conducting the chosen methodology.

2.2.2. Overview of methodologies targeting development of mobile applications

In accordance with the current state-of-the-art stream, the development of mobile applications

and systems differs from traditional software development in many aspects, as it should

satisfy special requirements and constraints (as elaborated in chapter 1.1.1). As already stated

in previous chapters some of these requirements concern portability, standards, capabilities,

privacy and time-to-market requirements and therefore, the design of mobile software systems

is much more complicated and is forcing developers to reconsider the use of traditional

software development methodologies. Despite the mentioned problems that could be

interesting for the scientific community, a relatively few researches aimed to enhance the

methodologies for mobile application development, and most of the work performed in this

field has been focused on the implementation-oriented aspects of the mobile software

development, while methodology-oriented issues still remain to be properly addressed

(Rahimian and Ramsin, 2008). Additionally, development of mobile systems is a challenging

task with a high level of uncertainty, and according to Hosbond (2005), some of the important

problems are rapid technology development, lack of standardization and short time-to-market.

Hosbond identified that there are two important sets of challenges that should be addressed in

the domain of mobile systems development, and these are business related challenges (e.g.

tough competition, conflicting customer interests, establishment of revenue-share models etc.)

and development specific challenges (e.g. rapidly changing technology, lack of

standardization, integration with existing systems etc.).

Reviewing the existing solutions for mobile application development, we should mention the

Abrahamsson et al. (2004) and their Mobile-D methodology as an agile approach to mobile

application development which is based on combination of eXtreme programming in terms of

practices, Crystal family of methodologies in terms of scalability and Rational Unified

Process in terms of life-cycle coverage (Supan et al., 2013). Initially, as introduced in

(Abrahamsson et al., 2004), the methodology is composed of five iterations i.e. phases: set-up,

core, core2, stabilize and wrap-up. According to technical documents available on the

authors‟ web site, for example (Salo and Koskela, 2004), the methodology included 34

principal inputs and outputs (like action point list, architecture line plan, base process

description, daily status report etc.) and 9 different roles (like customer group, exploration

team, project team, steering group, etc.).

51

The method evolved and according to presently available documents such as web application

presenting the methodology (VTT Technical Research Centre of Finland, 2006a) and set of

documents and templates describing the methodology in detail (VTT Technical Research

Centre of Finland, 2006b) the main phases, activities and tasks are presented in Table 6.

Table 6 - Mobile-D phases, activities and tasks

Mobile-D Phases Development days / Activities Tasks
Explore Stakeholder establishment Customer establishment

Stakeholder group establishment

Scope definition Initial requirements collection

Initial project planning

Project establishment Environment selection

Personnel allocation

Architecture line definition

Process establishment

Initialize Project set-up Environment setup

Training

Customer communication establishment

Planning day in 0 iteration Architecture line planning

Initial requirements analysis

Working day in 0 iteration

Release day in 0 iteration

Productionize Planning day

Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform customer

Release day System integration

Pre-release testing

Acceptance testing

Release ceremonies

Stabilize Planning day Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform Customer

Documentation wrap-up

Release day System integration

Pre-release testing

Acceptance testing

Release ceremonies

52

System test & fix System test System test

Planning day Post-iteration workshop

Requirements analysis

Iteration planning

Acceptance test generation

Acceptance test review

Working day Wrap-up

Test-driven development

Pair programming

Continuous integration

Refactoring

Inform customer

Release day

System integration

Pre-release testing

Acceptance testing

Release ceremonies

Source: (VTT Technical Research Centre of Finland, 2006a)

The practices included in execution of tasks during different phases and activities comprise

nine principal elements which are mainly well-known agile practices specialized for mobile

software development (Abrahamsson et al., 2004; VTT Technical Research Centre of Finland,

2004):

 Phasing and pacing – The projects are performed in iterations of which each begins

with a Planning Day

 Architecture Line – Architecture line approach is utilized together with architectural

patterns and Agile Modeling

 Mobile Test Driven Development – Test-first approach is utilized together with

automated test cases

 Continuous Integration – Effective Software Change Management (SCM) practices

are applied through multiple means

 Pair Programming – Coding, testing and refactoring are carried out in pairs

 Metrics – Few essential metrics are collected rigorously and utilized for feedback and

process improvement purposes

 Agile Software Process Improvement – Post-Iteration workshops are used to

continuously improve the development process

 Off-Site Customer – Customer participates in Planning and Release Days

 User-Centered Focus – Emphasis is placed on identifying and fulfilling end-user

needs

Additionally, a Hybrid Method Engineering Approach was used by Rahimian and Ramsin

(2008) to develop “the ideal software development methodology” named Agile Risk-based

Methodology. The authors utilized general agile practices through New Product Development

(NPD) approach and incorporated the ideas from Adaptive Software Development (ASD).

53

Although the part of methodology development process was based on artifact-oriented

approach, this methodology is defined at the level of activity and additional research should

be performed to specify the finer-grained tasks of the process (Supan et al., 2013).

Figure 12 - Agile Risk-based Methodology

(Rahimian and Ramsin, 2008)

Another methodology developed for mobile software development is MASAM (Mobile

Application Software Development Method). MASAM methodology is created by Jeong et al.

(2008) and it represents the proprietary methodology that was built in on the top of Software

and Systems Process Engineering Meta-model (SPEM) framework.

Being based on SPEM, the MASAM is defined on three different kinds of process assets:

roles, tasks and work products. A role defines a set of related skills, competencies or

responsibilities (e.g. planner, manager, UI designer, developer etc.), a task is an assignable

unit of work (e.g. initial planning, initial analysis, UI design etc.) and work product stands for

task inputs and outputs (e.g. product summary, UI sample, task card etc.).

This agile methodology is comprised of Development preparation phase, Embodiment phase,

Product development phase and Commercialization phase. The methodology defines

activities and tasks for each of the four mentioned phases, as shown in Table 7.

Table 7 - MASAM methodology phases, activities and tasks

MASAM Phase Activity Task
Development preparation Grasping product Defining product summary

Pre-planning

Product concept sharing User definition

Initial product analysis

Project Set-up Development process coordination

Project resource coordination

Pre study

Embodiment User needs understanding Story-card workshop

UI design

Architecting Non-functional requirements analysis

Architecture definition

Pattern management

Product development Implementation preparation Environment setup

Development planning

Release Cycle Release planning

54

Iteration cycle

 Iteration planning

 Implementation cycle

 Face-to-face meeting

 Incremental design

 Test Driven Development

(TDD)

 Refactoring

 Pair programming

 Continuous integration

 Feedback

Release

 Acceptance test

 Feedback

Commercialization System Test Acceptance test

User test

Product Selling Launching test

Product launching

Source: (Jeong et al., 2008)

To conclude, except (a) applying newly developed methods there are two other options. The

company can (b) adopt and use an existing development methodology or (c) can adapt an

existing development methodology to fit the specific organizational culture, company‟s goals

and specific requirements of mobile application development. In any case, it is important to

notice that implementation of the new methodological framework is a serious challenge from

organizational, technical, educational and every other point of view. In fact, it is about the

implementation of a new development system. Although the analysis that would cover all

these concerns is out of scope of this work, the adoption or adaption of a methodology for the

development of mobile applications should not be considered as an easy task and if

performed, should be backed up with serious preliminary research and carefully made

decisions.

This short review does not cover all methodologies, but based on this preliminary review we

can conclude that the authors do agree on several facts that are important for this dissertation.

(1) The development for mobile devices differs from standard development, (2) the agile

approach is widely used in methodologies for mobile devices and (3) neither one of the

presented methodologies is applicable without additional efforts to make the process more

fine-grained or more suitable to specific development environment and mobile application

requirements.

2.2.3. Identification of the need for a review

Preliminary research on the software development methodologies, presented in the previous

chapters can lead us to several important conclusions. Firstly, the field of software

development, during its 50-year-old history, has been interwoven with many different

55

software development methodologies and approaches. This also resulted in the terminology

confusion as many authors mix different concepts such as methodology, approach, framework

and process. Secondly, there are some attempts to create specific software development

methodology that would be suitable for development of mobile applications. Surprisingly,

these attempts are relatively rare, they are not aligned with the current mobile development

demands which have slightly but seriously changed, especially after the introduction of the

mobile application stores back in 2009, and finally some of these methodologies are still not

usable in practice as being defined at relatively high level of abstraction. Thirdly, many

companies have chosen to use the existing and familiar development methodologies while

developing mobile applications. The trends show that agile approach is most suitable and

widely used when developing mobile applications (Abrahamsson et al., 2003; Holler, 2006),

but still, some companies have considerable heritage in using non-agile approaches which

they still find as the most suitable.

The number and complexity of different possibilities indicate that a thorough and unbiased

research method such is systematic literature review is needed in order to get the overall

overview of possible methodologies that could be taken while developing applications for

mobile devices.

Additionally, the preliminary research is performed to identify the existing systematic

literature reviews on software development methodologies for development of mobile

applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar

databases were searched by the following search query: (“literature review” OR

SLR) AND (mobile development)
17

.

Almost all obtained papers
18

 were excluded as not being literature reviews or not being

literature reviews in mobile applications development. Only one paper (Hosbond and Nielsen,

2005) passed the inclusion criteria, but the focus of the SLR performed in this paper was to

review the literature in the domain of four mobile systems development perspectives

(requirements, technology, application, business) but unfortunately did not include

methodologies or approaches to be used when developing mobile applications.

17

 This query implicitly includes „systematic literature review“ phrase. Additionally, more rigorous search

querries, like (“literature review” OR SLR) AND (mobile development methodologies) or similar have been

discarded as returning only a few or no results.
18

 The search returned following number of papers: IEEEExplore (61), ACM Digital library (624), INSPEC (62),

CiteSeerX (22) and GoogleScholar (128). Additionally, the original query on GoogleScholar returned more than

22.300 results, so there was used a narrower concept serching for „mobile development“ as a phrase instead of

searching for both words independently as in other databases.

56

To conclude, according to information available in the mentioned databases, there are no

existing systematic literature reviews covering the subject of software development

methodologies for mobile applications development, which makes the need for such review

even bigger. As an additional proof of this claim, the results of SLRs on Systematic Literature

Reviews in Software Engineering presented in (B Kitchenham et al., 2009) and in

(Kitchenham et al., 2010) show that no literature reviews were conducted in the domain of

software development methodologies or software development methodologies for mobile

devices.

2.2.4. Specifying the research questions

In the previous chapter we discussed the results of preliminary researches performed in order

to identify possible mobile application development methodologies and on existing SLRs

identified the need for the systematic literature review. In order to address the issues

determined in this analysis, this systematic review is aligned to answer the following research

questions:

RQ1 – What development methodologies and approaches are reported in literature as

defined in theory or used in practice for mobile application development?

RQ2 – Are the identified methodologies and approaches applicable for multi-platform

mobile applications development?

Motivation for RQ1 is to identify all existing methodologies and approaches for development

of mobile applications and motivation for RQ2 is to define a set of methodologies and

approaches that could be used for multi-platform mobile applications development.

With respect to RQ1, several important decisions were made. Firstly, as preliminary research

showed, and thus assuming that there are not so many publications in this field, it is decided

not to apply any time filters on the source publications. The fields of software development

methodologies and especially methodologies for development of mobile applications are

considered to be young disciplines and additional time constraints are not necessary.

Secondly, it is important to clearly distinguish methodologies and approaches according to

definitions presented in chapter 2.2.1. Finally, only methodologies and approaches reported to

be used for development of mobile applications and mobile systems should be taken as

relevant and potentially selected for review.

With respect to RQ2, as methodologies or approaches by definition are not platform

dependent, it is important to notice that simple decision parameters will be taken into

consideration in order to determine if identified development methodologies and approaches

are applicable for multi-platform mobile applications development. Actually, we assume that

there might be some methodologies and approaches reported to be developed for specific

57

mobile target platform/s and only these methodologies or approaches (at least unchanged) will

be considered as not applicable for multi-platform mobile applications development.

Secondly, RQ2 is important for the other research activities in this thesis, as only the

applicable methodologies could be used in the following research phases.

Although there are multiple motivations for performing this literature review, both research

questions are defined with the purpose of identifying the existing body-of-knowledge basis

for choosing one mobile application development methodology and one development

approach that will be used in the subsequent research phases performed in this dissertation

project. In order to clarify these research questions the following complementary questions

are defined:

 Is the paper reporting on a software development methodology or a development

approach?

 Is the reported methodology/approach properly defined with clear phases, activities,

tasks, roles, inputs and outputs?

 Are there any specific instructions on how to apply the methodology/approach?

 Are there any specific techniques reported to be used while applying the methodology

or approach?

 Are there any specific instructions on any organizational aspects of teams applying the

methodology/approach?

 Is the methodology/approach developed for any specific mobile target platform?

Only the last complementary question targets RQ2, while all other stated complementary

questions target RQ1.

2.2.5. Developing a review protocol

The review protocol defining this research is created according to instruction presented in the

previous chapters. Additionally, the template used for protocol creation is proposed by

(Biolchini et al., 2005) and further explained by (Mian et al., 2005).

The protocol is firstly defined during the phase of review planning, but due to the

characteristic of some protocol elements to present final or intermediate results, the

information on these elements is inserted in subsequent phases of the systematic literature

review.

Additionally, it is important to mention, that some protocol elements like keywords and

synonyms and search strings are piloted either by using English dictionary and reading the

literature (in case of synonyms definition) or by performing a pilot database search (in case of

search strings definition). Final version of the protocol is presented in Table 8.

58

Table 8 - The review protocol

1. Question formularization

1.1. Question focus To identify software development methodologies and approaches that could be

used for multi-platform mobile applications development.

1.2. Question

quality and

amplitude

Problem: Development of mobile applications differs from development of

traditional desktop or web applications. Not all software development

methodologies are used for development of mobile applications. Special

problem is fragmentation of mobile platforms and devices, and thus the

development process should be performed more than once. None of the

existing approaches to solve this problem is good enough. This research has

the idea to approach the problem differently and to define methodological

interoperability, i.e. interoperability on highest, methodology level. In order to

do that, it is necessary to identify applicable software development

methodologies and approaches that could be used in multi-platform mobile

applications development.

Research questions: RQ1: What development methodologies and approaches

are reported in literature as defined in theory or used in practice for mobile

application development? RQ2: Are the identified methodologies and

approaches applicable for multi-platform mobile applications development?

Keywords and synonyms:

 mobile

 software development: system development, application development,

program development

 methodology: method, approach, framework, process, procedure,

model

Intervention: Software development methodologies and approaches for

mobile applications development.

Effect: Identification of methodologies and approaches for multi-platform

mobile applications development.

Control: Methodologies defined in previous chapters.

Outcome measure: Cardinality of identified set of methodologies.

Population: Publications reporting on intervention and containing defined

keywords.

Application: Subsequent research in this thesis, mobile applications

development companies, researchers.

Experimental design: Statistical method will not be applied.

59

2. Sources selection

2.1. Sources

selection

criteria

definition

Sources recommended by field experts (i.e. Brereton et al. (2007), Hannay et

al. (2007), Kitchenham and Charters (2007)) and enumerated in previous

chapters will be included in the search process. The criteria for sources

selection used by field experts are based on source quality and overall

recognition in the software engineering community.

2.2. Studies

languages

English

2.3. Sources

identification

Sources search methods: Research through web search engines and manual

search.

Search string: (mobile AND ("software development" OR "system

development" OR "application development" OR "program development")

AND (methodology OR method OR approach OR framework OR process OR

procedure OR model))

Sources list: Relevant electronic sources in the field of Software Engineering

identified by Brereton et al. (2007):

1. IEEExplore 5. INSPEC

2. ACM Digital library 6. ScienceDirect

3. Google Scholar 7. EI Compendex (not available)

4. CiteSeerX library

Special focus will be put on following combined list of relevant journals and

proceedings in the field of software engineering which is based on lists given

by Hannay et al. (2007) and by Kitchenham and Charters (2007). Hannay et.

al. explicitly state that journals and conferences chosen by them were chosen

because they were considered to be leaders in software engineering in general

and empirical software engineering in particular:

 ACM Transactions on Software Engineering Methodology (TOSEM)

 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM)

 Empirical Software Engineering (EMSE) in SpringerLink (manual

search)

 Evaluation and Assessment in Software Engineering (EASE) in

ScienceDirect

 IEEE Computer

 IEEE Software

 IEEE Transaction on Software Engineering (TSE)

60

 Information and Software Technology (IST) in ScienceDirect

 International Conference on Software Engineering (ICSE)

in ACM Digital Library and IEEExplore

 Journal of Software: Evolution and Process (JSEP) in Wiley (manual

search)

 Journal of Software: Practice and Experience (SP&E) in Wiley

(manual search)

 Journal of Systems and Software (JSS) in ScienceDirect

If some of the mentioned journals and conference proceedings are not included

in the databases of the enumerated search engines, they will be searched

manually.

2.4. Sources

selection after

evaluation

 All sources listed in 2.3 satisfied quality criteria.

2.5. References

checking

Sources are defined on basis of recommendations of field experts. The final

list of selected sources is also approved by two supervisors.

3. Studies selection

3.1. Studies

definition

Studies inclusion and exclusion criteria: The primary studies describing

software development methodology or approach in theory or reporting their

usage in practice will be included in review process. The studies that do not

provide sufficient information on the phases, activities, tasks, roles, inputs and

outputs (i.e. document templates, expected results, task prerequisites etc.) will

be excluded from the review.

Studies type definition: No filter on type of studies will be applied. All kinds

of studies related to the research topic will be selected.

Procedures for studies selection: After performing an automated search

based on defined keywords and search string, initial set of potential studies for

inclusion will be obtained. The studies will be firstly filtered by applying

inclusion criteria on the study title. The studies that meet inclusion criteria

along with those with unclear or indistinct title will be included in second

phase. Second phase will apply inclusion criteria on the abstract. If abstract

will be unclear or fuzzy, the introduction and conclusion will also be taken in

consideration. Studies that will finally be included will be reviewed in detail

by reading the full text. At last, if necessary, exclusion criteria will be applied

based on information obtained from full text review.

3.2. Selection

execution

Initial studies selection: The complete list of selected studies can be found in

chapter 2.3.2 (Table 12 on page 66 of this document).

61

Studies quality evaluation: The list of studies that passed inclusion and

exclusion criteria can be found in chapter 2.3.3 on page 68 of this document.

Selection review: Study selection process was reviewed and approved by two

supervisors and one of them is field expert.

4. Information extraction

4.1. Information

inclusion and

exclusion

criteria

definition

The extracted information from studies must contain theoretical or practical

description of phases that should be performed during the development process

according to focused methodology.

If studies are reporting new software development approach, then the main

characteristics, values and rules which define focused approach should be

contained in extracted information.

4.2. Data extraction

forms

The template form for data extraction that is defined for this review can be

found in chapter 2.3.4 on page 70, and complete list of filled data extraction

forms on all selected primary studies can be found in Appendix D on page

265.

4.3. Extraction

execution

The results of objective (study identification, study methodology, study results

and study problems) and subjective (information through the authors and

general impressions and abstractions) data extraction are presented in chapter

2.3.4 on page 70.

4.4. Resolution of

divergences

among

reviewers

There were no divergences, as the extraction was performed only by one

author, i.e. author of this thesis.

5. Result summarization

5.1. Results

statistical

calculus

Statistical calculi were not used.

5.2. Results

presentation in

tables

The final results are presented in tables with the following information.

 Studies reporting the creation of new methodology or approach

 Studies reporting the methodology or approach usage

 Methodologies/approaches not eligible for multiplatform development

 Methodologies/approaches targeting specific mobile applications

The stated tables with final reported results could be found in chapter 2.3.5 on

page 71.

5.3. Sensitivity There was no need for sensitivity analysis.

62

analysis

5.4. Plotting There was no need for plotting.

5.5. Final comments Number of studies obtained: 6761

Number of relevant studies: 49

Results application: Mobile-D methodology supported by Test Driven

Development is selected for application in this research.

Recommendations: Identified methodologies could be separately analyzed in

order to determine their quality and applicability. This was not the focus of this

study.

2.2.6. Evaluating the review protocol

The review protocol is evaluated by two supervisors of this thesis project. Also, it is important

to mention that one of the supervisors (prof. Strahonja) is an expert with scientific and

empirical background in the field of software development methodologies. Some minor

requests stated by both supervisors, regarding sources identification and final reporting were

taken in consideration and implemented in the final version of the review protocol.

2.3. Conducting the review

2.3.1. Identification of research

The research is focused on the identification of software development methodologies and

approaches that could be used for multi-platform mobile applications development. In order to

identify primary studies relevant to the stated research questions, the following keywords with

the list of relevant synonyms are used:

Table 9 - Search keywords and synonyms

Keyword Synonyms
mobile -

software development system development

application development

program development

methodology method

approach

framework

process

procedure

model

63

The stated list of synonyms is created according to the results of preliminary literature review

and is based on the empirical knowledge of terms used in the software engineering literature.

The target population consists of the publications reporting the software development

methodologies and approaches for mobile applications development containing the defined

keywords. In order to identify the initial list of publications, the search engines and manual

search have been used. The following query is defined for automatic database search:

(mobile AND ("software development" OR "system development" OR "application

development" OR "program development") AND (methodology OR method OR approach OR

framework OR process OR procedure OR model))

The presented query has been executed on the databases and the relevant journals and

proceedings in the field of software engineering which are recommended by the filed experts

Brereton et al. (2007), Hannay et al. (2007), Kitchenham and Charters (2007) and as

elaborated in chapter 2.1.2.2. The final list of relevant sources is given in the Table 10.

Table 10 - The list of relevant sources

Relevant databases
IEEExplore INSPEC

ACM Digital Library ScienceDirect

Google Scholar EI Compendex (excluded)

CiteSeerX library

Relevant journals and proceedings
ACM Transactions on Software Engineering

Methodology (TOSEM)

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM)

Empirical Software Engineering (EMSE)

in SpringerLink

Evaluation and Assessment in Software Engineering

(EASE) in ScienceDirect

IEEE Computer IEEE Software

IEEE Transaction on Software Engineering (TSE) Information and Software Technology (IST) in

ScienceDirect

International Conference on Software Engineering

(ICSE) in ACM Digital Library and IEEExplore

Journal of Software: Evolution and Process (JSEP) in

Wiley

Journal of Software: Practice and Experience (SP&E)

in Wiley

Journal of Systems and Software (JSS) in

ScienceDirect

The preliminary research showed that majority of mentioned journals and proceedings is

indexed in the stated electronic databases, and manual search has been performed only on the

following databases:

 Empirical Software Engineering (EMSE) in SpringerLink

 Journal of Software: Evolution and Process (JSEP) in Wiley

 Journal of Software: Practice and Experience (SP&E) in Wiley

Additionally, despite the best efforts, the access to the electronic database EI Compendex is

available neither at the University of Alcalá nor at the University of Zagreb, and thus, this

64

database had to be excluded from the list. So the final list of the excluded databases includes

only:

 EI Compendex

As it can be seen from the final set of relevant sources, the focus of this research is only on

the scientific research community. This is mainly due to the time and “personnel” constraints.

The past showed that the industry, as a source of development methodologies should not be

neglected and we strongly recommend that white papers, technical reports and other

unpublished materials should also be included in the future similar literature reviews.

2.3.2. Selection of primary studies

The primary studies describing software development methodology or approach in theory or

reporting their usage in practice have been included in the review process. The studies that do

not provide sufficient information on the phases, activities, tasks, roles, inputs and outputs

(i.e. document templates, expected results, task prerequisites etc.) have been excluded from

the review. The type of studies has not been filtered and all kinds of studies related to the

research topic that have been found by the search have been considered for possible inclusion.

2.3.2.1. Applied procedures in selection process

After the automated search based on defined keywords and search string is performed, the

initial set of the potential studies for inclusion is obtained (see Table 11). The studies are

firstly filtered by applying inclusion criteria on the study title. The studies that met the

inclusion criteria along with those with unclear or indistinct title are included in the second

phase where the inclusion criteria were applied on the abstract. Some of the abstracts were

unclear and fuzzy, and in those cases the introduction and conclusion were also taken into

consideration. The final phase conducted on the included studies was performed by a detailed

analysis and full text reading. During this phase, the exclusion criteria were applied based on

the information obtained from full text review.

As it can be seen in Table 11, in total 6761 initial studies were obtained by automatically

performed database searches. The search of Google Scholar database had to be performed

with specific time constraints, as it was impossible to reach all results given by the original

search query. This was not the only problem faced during the research process, but the faced

problems will be discussed in later chapter. Apart from Google, some other database engines

also had to be parameterized, and the used parameters, date ranges, filters and search

execution date are all reported in Table 11.

65

Table 11 - Applied procedures in selection process

Database Search query
Date range /

other filters

Date of

search

No. of

results
IEEE Xplore ®

("mobile application" OR

"mobile development")

AND ("software

development" OR "system

development" OR

"application development"

OR "program development")

AND (methodology OR

method OR approach OR

framework OR process OR

procedure OR model)

- 05.06.2012. 68

ACM Digital Library

Searched journals,

proceedings and

transactions

06.06.2012. 335

CiteSeerX Citations included 07.06.2012. 55

INSPEC - 07.06.2012. 85

ScienceDirect

Searched fields:

Computer Science,

Engineering, Social

Sciences

07.06.2012. 399

Google Scholar
Full text search

19xx – 2004
08.06.2012. 867

Google Scholar
Full text search;

2005 – 2006
08.06.2012. 661

Google Scholar
Full text search;

2007 – 2008
08.06.2012. 925

Google Scholar
Full text search;

2009
09.06.2012. 694

Google Scholar
Full text search;

2010
09.06.2012. 868

Google Scholar

Full text search;

Filter: “+phone”

2011

11.06.2012. 923

Google Scholar

Full text search;

Filter: “-phone”

2011

11.06.2012. 352

Google Scholar
Full text search;

2012
12.06.2012. 529

Manual search of

Journals

Performed by reading

paper titles and abstracts
2007-2012

13. -

15.06.2012.
0

Total 6761

The full list of all obtained papers is kept only in the reference management software, but the

lists of the identified studies after applying inclusion criteria on the study title and after

applying inclusion criteria on the abstract are documented in the annexes of this document

(see Appendix A and Appendix B). The full text documents are obtained for almost all studies

included in the second identification phase and are also stored in the reference management

software. Additionally, the reference management software contains the exclusion reasons for

all studies excluded in the second and the third iteration. Finally, the list of all studies

considered to be relevant and included in the literature review process results is given in Table

12.

66

Table 12 - The list of relevant studies

Study identifier Study
(Abrahamsson et al.,

2005b)

Abrahamsson, P., Hanhineva, A., Jäälinoja, J., 2005. Improving business agility through technical

solutions: A case study on test-driven development in mobile software development, in: Business

Agility and Information Technology Diffusion. Presented at the IFIP TC8 WG 8.6 International

Working Conference.

(Abrahamsson et al.,

2009)

Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen, P., Salo, O., 2009. Mobile-D for Mobile

Software: How to Use Agile Approaches for the Efficient Development of Mobile Applications.

(Abrahamsson et al.,

2004)

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J.,

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application development, in:

Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming

Systems, Languages, and Applications, OOPSLA ‟04. ACM, New York, NY, USA, pp. 174–175.

(Alyani and Shirzad,

2011)

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application development:

Learning episodes from Tehran and London, in: 2011 Federated Conference on Computer Science

and Information Systems (FedCSIS). Presented at the 2011 Federated Conference on Computer

Science and Information Systems (FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497–504.

(Barnawi et al., 2012) Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and

Wireless Networks Application Development using Hybrid Component Based Development

Model. Arxiv preprint arXiv:1202.2515.

(Bergström and

Engvall, 2011)

Bergström, F., Engvall, G., 2011. Development of handheld mobile applications for the public

sector in Android and iOS using agile Kanban process tool.

(Binsaleh and Hassan,

2011)

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce

Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM) 1, 33–47.

(Biswas et al., 2006) Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006. Assessment

of mobile experience engine, the development toolkit for context aware mobile applications, in:

Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer

Entertainment Technology, ACE ‟06. ACM, New York, NY, USA.

(Charaf, 2011) Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of

Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on

The. p. 2.

(Chen, 2004) Chen, M., 2004. A methodology for building mobile computing applications. International journal

of electronic business 2, 229–243.

(Cuccurullo et al.,

2011)

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the

Development of MicroApps on Mobile Phones, in: Proc. of 3rd International Symposium on End-

User Development. Presented at the 3rd International Symposium on End-User Development,

Brindisi, Italy, pp. 289–294.

(Ejlersen et al., 2008) Ejlersen, A., Knudsen, M.S., Løvgaard, J., Sørensen, M.B., 2008. Using Design Science to

Develop a Mobile Application.

(Forstner et al., 2005) Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T., Charaf, H., 2005. Supporting Rapid

Application Development on Symbian Platform, in: Computer as a Tool, 2005. EUROCON

2005.The International Conference On. pp. 72 –75.

(Forstner et al., 2006) Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, I., Charaf, H., 2006. Model-

based system development for embedded mobile platforms, in: Model-Based Development of

Computer-Based Systems and Model-Based Methodologies for Pervasive and Embedded

Software, 2006. MBD/MOMPES 2006. Fourth and Third International Workshop On. p. 10–pp.

(Gal and Topol, 2005) Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones

Games.

(Hedberg and Iisakka,

2006)

Hedberg, H., Iisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in:

Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347–353.

(Ihme and

Abrahamsson, 2005)

Ihme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software

Development of Mobile Applications.

(Jeong et al., 2008) Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development Process of Mobile Application SW Based

on Agile Methodology, in: Advanced Communication Technology, 2008. ICACT 2008. 10th

International Conference On. pp. 362–366.

(Kaariainen et al.,

2004)

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements

management in extreme programming with tool support - an improvement attempt that failed, in:

Euromicro Conference, 2004. Proceedings. 30th. pp. 342 – 351.

(Khambati et al., 2008) Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of Mobile

Personal Health Care Applications, in: Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, ASE ‟08. IEEE Computer Society, Washington,

DC, USA, pp. 467–470.

(Kim, 2008) Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering

Letters 16.

(Kim et al., 2009) Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for

mobile applications, in: Proceedings of the 3rd International Conference on Ubiquitous

67

Information Management and Communication, ICUIMC ‟09. ACM, New York, NY, USA, pp.

612–617.

(Korkala and

Abrahamsson, 2004)

Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements

management process for an offsite customer. Software Process Improvement 12–22.

(Maharmeh and

Unhelkar, 2009)

Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile

Application Development. Handbook of research in mobile business: technical, methodological,

and social perspectives 194.

(Maia et al., 2010) Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing mobile

applications based on the Capuchin project, in: Proceedings of the 2010 ACM Symposium on

Applied Computing, SAC ‟10. ACM, New York, NY, USA, pp. 575–579.

(Manjunatha et al.,

2010)

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of clouds in your

pocket: An efficient approach for cloud mobile hybrid application development, in: Cloud

Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference

On. pp. 496–503.

(Marinho et al., 2012) Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S., Teixeira, E.,

Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A Nested Software Product

Line for the domain of mobile and context-aware applications. Science of Computer Programming

(Nyström, 2011) Nyström, A., 2011. Agile Solo - Defining and Evaluating an Agile Software Development Process

for a Single Software Developer.

(Ortiz and Prado, 2010) Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile clients

through an aspect-oriented, model-driven approach. Information and Software Technology 52,

1080 – 1093.

(Pauca and Guy, 2012) Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach to

software engineering, in: Proceedings of the 43rd ACM Technical Symposium on Computer

Science Education, SIGCSE ‟12. ACM, New York, NY, USA, pp. 535–540.

(Rahimian and Ramsin,

2008)

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software

development: A hybrid method engineering approach, in: Research Challenges in Information

Science, 2008. RCIS 2008. Second International Conference On. pp. 337–342.

(Rosa and Lucena,Jr.,

2011)

Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart composition of reusable software components in

mobile application product lines, in: Proceedings of the 2nd International Workshop on Product

Line Approaches in Software Engineering, PLEASE ‟11. ACM, New York, NY, USA, pp. 45–49.

(Rupnik, 2009) Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.),

Handbook of Research in Mobile Business: Technical, Methodological, and Social Perspectives.

IGI Global Snippet.

(Saifudin et al., 2011) Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L., 2011. MMCD Framework and

Methodology for Developing m-Learning Applications. Presented at the International conference

on Teaching & Learning in Higher Education (ICTLHE 2011).

(Salo, 2004) Salo, O., 2004. Improving software process in agile software development projects: results from

two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 310–317.

(Scharff, 2010) Scharff, C., 2010. The Software Engineering of Mobile Application Development.

(Scharff, 2011) Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with

quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-

CS Conference On. pp. 274–283.

(Scharff and Verma,

2010)

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a just-

in-time learning context, in: Proceedings of the 2010 ICSE Workshop on Cooperative and Human

Aspects of Software Engineering, CHASE ‟10. ACM, New York, NY, USA, pp. 25–31.

(Schwieren and

Vossen, 2009)

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID

applications based on the ID-Services middleware architecture, in: Mobile Data Management:

Systems, Services and Middleware, 2009. MDM‟09. Tenth International Conference On. pp. 260–

266.

(Shiratuddin and Sarif,

2008)

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool.

Proceedings of the International MultiConference of Engineers and Computer Scientists 1.

(Shiratuddin and Sarif,

2009)

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile Development

Methodologies, in: Handbook of Research in Mobile Business: Technical, Methodological, and

Social Perspectives. IGI Global, pp. 113–126.

(Su and Scharff, 2010) Su, S.H., Scharff, C., 2010. Know Yourself and Beyond: A Global Software Development Project

Experience with Agile Methodology, in: Proceedings of Student-Faculty Research Day, CSIS.

Pace University.

(Thompson et al., 2010) Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt,

D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application Performance.

(Um et al., 2005) Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A Practical

Approach to Platform-based System Modeling Methodology. Journal of Semiconductor

Technology and Science 5, 89.

(Walkerdine et al.,

2009)

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing

Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation Distributed

Environments: Advancing Conceptual and Algorithmic Applications. pp. 283–301.

68

(Wolkerstorfer et al.,

2008)

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M., Shahzad,

S., 2008. Probing an agile usability process, in: CHI ‟08 Extended Abstracts on Human Factors in

Computing Systems, CHI EA ‟08. ACM, New York, NY, USA, pp. 2151–2158.

(Xiong and Wang,

2010)

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and

case study, in: Information Science and Engineering (ICISE), 2010 2nd International Conference

On. pp. 1–4.

(Zakal et al., 2011) Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in: Applied

Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International Symposium On. pp.

79–81.

(Zeidler et al., 2008) Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for mobile

software. International Journal of Mobile Communications 6, 345–356.

The propagation of relevant studies through the research process is described in Table 13.

Table 13 - Propagation of relevant studies through phases

Database
Identified

studies – P1

Identified

studies – P2

Identified

studies – P3

Relevant studies

(after QA)
 n n n n %’’ %

IEEE Xplore ® 68 25 3 3 4.41 6.12

ACM Digital Library 335 79 13 9 2.69 18.37

CiteSeerX 55 12 0 0 0.00 0.00

INSPEC 85 39 3 1 1.18 2.04

ScienceDirect 399 26 4 2 0.50 4.08

Google Scholar 19xx - 2004 867 40 5 3 - -

Google Scholar 2005 - 2006 661 37 8 6 - -

Google Scholar 2006 - 2008 925 41 7 6 - -

Google Scholar 2009 694 31 6 6 - -

Google Scholar 2010 868 45 6 5 - -

Google Scholar 2011a 923 29 5 4 - -

Google Scholar 2011b 352 21 4 3 - -

Google Scholar 2012 529 14 3 1 - -

Google Scholar Subtotal 5819 258 44 34 0.58 69.39

Subtotal 6761 439 - -

Redundant studies NA 75* - -

Total 6761 364 67 49 0.73 100

* Google Scholar database returned some results that were previously identified in other databases.

%‟‟ Percentage in respect to initial studies pool from the same database

% Percentage in respect to final pool of all relevant studies

As it can be seen from the presented table, 49 studies are identified as relevant which makes it

only a 0.73% of initial 6761 studies. Additionally, Science Direct and Google Scholar are the

databases with the biggest waste factor as more than 99.4% of all initial studies were

discarded as irrelevant. Nevertheless, Google Scholar proved to give 69.39% of all relevant

studies. However, one could discuss the quality of Google Scholar studies in relation to the

studies obtained from other databases, but such analysis is out of the focus of this work.

2.3.3. Study quality assessment

The activities of the study quality assessment were performed carefully through the whole

process of the studies‟ identification. As it was impossible to apply the usage of checklists on

69

all initially identified studies, during the first phase, the focus was put on an unbiased study

selection process, while the later phases additionally included the quality assessment of the

identified studies.

During the first identification phase, considerable efforts were made in order to clearly divide

studies that do not have any connection with software engineering and software development

from those that do. Additionally, in order to assess the quality of each primarily selected study

and to make sure that the study findings are relevant and unbiased, firm criteria were

established in the second and third phase. The complete overview of these criteria is given in

the Table 14.

Table 14 - The criteria for unbiased study identification

Identification of studies - P1

Inclusion Exclusion

Software engineering Other studies undoubtedly not from research domain

Software development

Mobile development

Other studies connected with the topic of interest

Identification of studies – P2

Inclusion Exclusion

Reporting the methodology or approach used in

development or mobile applications development

Defining frameworks for specific purposes (i.e.

security, engine development etc.)

Defining framework or approach for development of

mobile applications

Defining building blocks with or without specific

purpose (i.e. for user interface, tracking, reporting etc.)

Defining framework or approach for specific

development phases

Defining testing frameworks, toolkits or middleware…

Defining framework or approach for development of

applications in specific application area

Defining frameworks for development of part of

application (e.g. adding context awareness, content

awareness etc.)

 Defining or reporting the usage of platforms for

mobile apps development with no concerns on

development process

 Other papers not connected with inclusion criteria.

Identification of studies – P3

Inclusion Exclusion

Checklist result positive Checklist result negative

As the studies observed in this systematic review process are oriented on software

development and development methodologies and approaches, they are usually not based on

the usage of experimental design and statistical methods. This means that the specific quality

assessment checklist applicable for studies in the domain of software engineering and

particularly for this research had to be built. This checklist was created according to approach

given by (Dybå and Dingsøyr, 2008b) who defined three main issues pertaining to quality that

need to be considered when appraising the qualitative studies identified in the review: rigour,

credibility and relevance. In addition to these, the advice to include the screening criteria is

70

accepted in order to assess study rationale, aims and context. The created checklist is

presented in Table 15.

Table 15 - Quality assessment checklist

ID Quality assessment question Possible results
Q1 Study reports existing methodology or approach used in mobile application

development?

Yes/No

Q2 Study defines new methodology or approach for mobile applications development? Yes/No

Q3 Research design is appropriate to address the study context? Yes/Partially/No

Q4 Researches have experience in software development and mobile applications

development?

Yes/Partially/No

Q5 The reported or created process is clearly defined to the applicable level? Yes/Partially/No

Q6 The study provided value for research and practice? Yes/Partially/No

The first two questions which define the screening criteria are used as the basis for including

or excluding the studies. The studies that were answered with No on both questions were

excluded, and of the 67 papers assessed for the quality, the number of included papers for the

final data extraction and synthesis was 49 (73.13%).

Subsequently, the questions labeled Q3 to Q6 aimed to assess the quality of the study and thus

included the assessment of research design, the assessment of created or reported

development process, the assessment of applicability of the results and finally assessment of

researchers‟ experience. The possible answers for these questions included mark “Partially”

which was given in cases when the assessed criterion was not focused in the study, but jet

could not be discarded as negative. The exception is question Q4 as the experience of

researchers was assessed out of the context as only few papers included written evidence on

experience.

Table 16 contains an excerpt of quality assessment form as the table containing all data on

performed quality assessment is given in the Appendix C.

Table 16 - Excerpt of filled quality assessment form

Study / Question Q1 Q2 Q3 Q4 Q5 Q6
QA

score
(Charaf, 2011) Yes No Yes Yes Partially Partially 3.0

(Alyani and Shirzad, 2011) Yes Yes Partially Yes Partially Partially 2.5

(Maharmeh and Unhelkar, 2009) No Yes Partially Yes Partially Yes 3.0

(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5

(Ranabahu et al., 2011) No No

(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0

…

2.3.4. Data extraction and monitoring

The data extraction forms used in this research are created by combining the examples and

following the instruction given by Kitchenham and Charters (2007) and Jørgensen (2007). As

71

discussed in chapter 2.1.2.2, the aim of data extraction process is to accurately and without

bias record the appropriate information from the selected papers. Based on the data collection

form template presented in Table 4, the final developed data collection form is adapted for

this particular research. Full list of all filled data extraction forms can be found in Appendix D

on page 265. The example of filled data collection form with extracted data from (Xiong and

Wang, 2010) is presented in Table 17.

Table 17 - Data collection form

Data item Value Notes
Study identifier (Xiong and Wang, 2010)

Title
A new combined method for UCD and software development and case

study

Publication details

Y. Xiong and A. Wang, “A new combined method for UCD and

software development and case study,” in Information Science and

Engineering (ICISE), 2010 2nd International Conference on, 2010, pp.

1–4.

Study type New methodology

Name of methodology /

approach
Inter-combined Model

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Inter-combined Model aims to shorten the knowledge transfer from

designers to developers. The model has four parts:

- Requirement analysis and user study

- Model establishment and function map specification

- Design and background engine implementation

- System integration and coding

Additional resources on

methodology /

approach description

Each phase was described in additional details, but not to the level of

activities, tasks, inputs and outputs.

Report on methodology

/ approach example

implementation

Mobile Karaoke project.

Organizational aspects

on implementation

Researchers stated that Inter-combined Model has positive effect on

human resource arrangement and cost reduction.

Project management

aspects on

implementation

Some implications on human resource arrangements.

The presented data extraction form consists of three parts. The first part aims to extract

general data on each study, the second part directly responds to research questions, and the

third part gives more details on the study quality but only related to data analysis and not

inclusion and exclusion criteria.

2.3.5. Data synthesis

As the research questions in this systematic literature review are straightforward and easy to

answer from of extracted data, the activities of the data synthesis are performed according to

instructions given by Petticrew and Roberts (2005).

72

The data are synthesized into the following groups

 Studies reporting the creation of new methodology or approach

 Studies reporting the methodology or approach usage

 Methodologies/approaches not eligible for multiplatform development

 Methodologies/approaches targeting specific mobile applications

Lists of potential methodologies and approaches that could be used in the subsequent phases

of this research process are given in Table 18 and Table 19. The total of 14 methodologies

and 2 approaches are identified as new while 9 methodologies and 4 approaches are identified

as being used in development of mobile applications. Methodologies are marked as type M

and approaches as type A in the following tables.

Table 18 - Developed methodologies and approaches

Name Type Study
QA

score
Agile Methodology for Mobile Software Development M (Rahimian and Ramsin, 2008) 3.0

Agile Solo M (Nyström, 2011) 2.0

Agile usability process M (Wolkerstorfer et al., 2008) 2.0

DEAL M (Alyani and Shirzad, 2011) 2.5

Integrated Product Development Process for Mobile Software M (Zeidler et al., 2008) 2.0

Inter-combined Model M (Xiong and Wang, 2010) 3.0

MASAM methodology M (Jeong et al., 2008) 2.5

Methodology for Building Enterprise-Wide Mobile Applications M (Chen, 2004) 4.0

MicroApp visual approach M (Cuccurullo et al., 2011) 2.5

Mobile Application Development Methodology M (Rupnik, 2009) 1.5

Mobile-D M
(Abrahamsson et al., 2004) 2.5

(Abrahamsson et al., 2009) 1.0

New media application prototyping M (Biswas et al., 2006) 3.0

Systems Development Methodology M (Binsaleh and Hassan, 2011) 4.0

ViP (Virtual Platform) M (Um et al., 2005) 4.0

Composite Application Software Development Process Framework A (Maharmeh and Unhelkar, 2009) 3.0

MobiLine A (Marinho et al., 2012) 4.0

Type: M - Methodology, A - Approach

There are several facts that should be pointed out and are related to the identified new

methodologies and approaches. First of all, only one methodology was covered by more than

one study, while all other methodologies are presented in a single identified study. Secondly,

as expected, the methodologies and approaches in the mobile development field are rather

new. Only 4 studies are more than 5 years old, while all the other studies date in the last five

years. The overall study quality assessment score (calculated as explained in chapter 2.3.3),

has the mean value of 2.735 (68.38%) with the standard deviation of 0.903. This can be

interpreted as relatively low study quality with high deviation in quality. But, as the quality

assessment was performed on the studies and not on the reported methodologies, without

additional research it is not possible to order the methodologies according to their quality.

73

On the other hand, as expected, more authors reported the usage of methodology or approach.

Total of 9 methodologies and 4 approaches have been reported as used. The important fact is

that only one methodology (Mobile-D) identified as new was reported to have been used. The

usage of this methodology was reported in five different studies, while all other new

methodologies and approaches were not reported to have been used.

Table 19 - Used methodologies and approaches

Name Type Study
QA

score
Design Science M (Ejlersen et al., 2008) 3.0

Dynamic Channel Model M
(Shiratuddin and Sarif, 2008) 2.5

(Shiratuddin and Sarif, 2009) 2.0

Extreme Programming M

(Korkala and Abrahamsson, 2004) 3.0

(Kaariainen et al., 2004) 2.0

(Salo, 2004) 3.0

Kanban A (Bergström and Engvall, 2011) 1.5

Mobile-D M

(Shiratuddin and Sarif, 2008) 2.5

(Shiratuddin and Sarif, 2009) 2.0

(Korkala and Abrahamsson, 2004) 3.0

(Hedberg and Iisakka, 2006) 4.0

(Ihme and Abrahamsson, 2005) 3.5

Mobile Engineering (MobE) M
(Shiratuddin and Sarif, 2008) 2.5

(Shiratuddin and Sarif, 2009) 2.0

Mobile RAD M
(Shiratuddin and Sarif, 2008) 2.5

(Shiratuddin and Sarif, 2009) 2.0

Rapid Application Development M (Forstner et al., 2005) 2.0

Scrum M

(Su and Scharff, 2010) 2.0

(Pauca and Guy, 2012) 1.0

(Scharff and Verma, 2010) 2.5

(Scharff, 2010) 2.5

(Alyani and Shirzad, 2011) 2.5

(Scharff, 2011) 2.0

Model Driven Development A

(Charaf, 2011) 3.0

(Kim, 2008) 2.5

(Ortiz and Prado, 2010) 3.0

(Forstner et al., 2006) 2.5

(Thompson et al., 2010) 1.0

(Khambati et al., 2008) 2.5

Model Driven Product Lines A (Zakal et al., 2011) 2.0

Software Product Lines A (Rosa and Lucena,Jr., 2011) 2.0

Test Driven Development A

(Nyström, 2011) 2.0

(Abrahamsson et al., 2005b) 4.0

(Kim et al., 2009) 1.5

(Hedberg and Iisakka, 2006) 4.0

Type: M - Methodology, A - Approach

It was hard to predict the number of methodologies that would target specific mobile

platforms, and it turned out that only one methodology (see Table 20) cannot be used in multi-

platform mobile application development as it targets only those platforms which support

Flash technology. Actually, the paper presents a development process for interactive mobile

applications based on Sony Ericssons‟s Capuchin project which aimed to bring together the

74

advantages of Java Micro Edition (JME) and Flash Lite. The methodology in particular deals

with specific issues raised by this approach and this marks the stated methodology as not

eligible to be used in this research process.

Table 20 - Methodologies not eligible for multiplatform development

Name Type Study
QA

score
Development process of Caputchin applications

Targeting platforms supporting Flash only
M (Maia et al., 2010) 1.0

Type: M - Methodology, A - Approach

The stated groups are defined in accordance with the research process that has been

performed in this thesis and that is the reason why some methodologies and approaches had to

be separately reported as targeting only specific or specialized mobile applications (Table 21).

These methodologies were also not applicable to be used in this research process, but are

worth mentioning as being developed for mobile applications.

Table 21 – Methodologies/approaches targeting specific mobile applications

Name Type Study
QA

score
Component Based Model for IP Multimedia Subsystem

Targeting IP multimedia subsystems only
M (Barnawi et al., 2012) 4.0

Design and Development Methodology for mobile RFID applications

Targeting only RFID applications
M (Schwieren and Vossen, 2009) 0.5

MMCD Methodology

Targeting only m-Learning applications
M (Saifudin et al., 2011) 1.5

PEPERS Development Methodology (PDM)

Targeting only P2P applications
M (Walkerdine et al., 2009) 3.0

2TUP - 2 Tracks Unified Process

Targeting only mobile games development
M (Gal and Topol, 2005) 3.0

MobiCloud

Targeting generation of a cloud mobile hybrid applications
A (Manjunatha et al., 2010) 2.5

Type: M - Methodology, A - Approach

2.4. Choosing development methodology

As stated before, the total of 22 development methodologies and 7 development approaches

were identified as eligible to be used in the development process.

As the starting-point assumption of this research is to provide the teams with a possibility of

using native development environments and preferred development methodology, the

research should not be dependent on any special characteristics that a chosen methodology

consists of. In the other words, any identified methodology could be used.

However, the established criterion used to choose development methodology was reported

applicability. Cross-analysis of the results presented in Table 18 and Table 19 shows that

75

Mobile-D was the only methodology specifically created for mobile applications development

that was reported to be used in practice. In addition, we performed a small research to identify

other sources published by the methodology creators and found that this methodology is

thoroughly and in detail defined. The documents that are officially available and that describe

the Mobile-D development methodology are presented in the following table (Table 22).

Table 22 - Documents describing Mobile-D methodology

Year Document

(2005a) P. Abrahamsson, A. Hanhineva, H. Hulkko, J. Jäälinoja, K. Komulainen, M. Korkala, J.

Koskela, P. Kyllönen, and O. Salo, “Agile Development of Embedded Systems: Mobile-D,”

ITEA, Agile Deliverable D.2.3, 2005.

(2006) T. Kynkäänniemi and K. Komulainen, “Agile Documentation in Mobile-D Projects,” 2006.

(2004) O. Salo and J. Koskela, “Mobile-D Glossary, VTT Technical Research Centre of Finland,

Available at: http://agile.vtt.fi/mobile-d.zip.” VTT Technical Research Centre of Finland,

2004.

(2006a) VTT Technical Research Centre of Finland, “Mobile-D Online Presentation (Web

Application),” AGILE Software Technologies Research Programme, 2008. [Online].

Available: http://agile.vtt.fi/mobiled.html. [Accessed: 16-May-2012].

(2004) P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. Korkala, J. Koskela, P.

Kyllönen, and O. Salo, “Mobile-D: an agile approach for mobile application development,” in

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications, New York, NY, USA, 2004, pp. 174–175.

The obtained papers and other documents that include detailed guidelines are sufficient to

make this methodology fully applicable and usable throughout this research. Additionally, as

the Mobile-D is leaning on, and is strongly connected with, Test Driven Development

approach, this approach will be used in the following phases as well.

To conclude, systematic literature review resulted in the lists of different methodologies

reported to be used, or created specifically for mobile applications development. But, the

analysis on reported applicability showed that Mobile-D with Test Driven Development is the

only newly created methodology already used in practice and that is the reason for choosing

this methodology and approach in the research phases that follow.

2.5. Relevance of the chapter

To recapitulate, first we explored the state of the art in performing a systematic literature

review in the field of software engineering. The three-phase guidelines given by Kitchenham

and Charters (2007) are followed and discussed by adding the recommendations and findings

from other influential authors in the field. The results of the discussion are a contribution to

the knowledge and could be used either by researchers or by PhD students in order to employ

suitable methods and techniques and to lower the biases and increase the quality of review.

76

Following these recommendations, second part of the chapter presented the conduction of

SLR which in the end brings the identification of 22 development methodologies and 7

development approaches that could be used for multi-platform mobile applications

development. Among identified methodologies, our analysis showed that Mobile-D is the

most suitable methodology and it will be used along with Test Driven Development in the rest

of this research process.

Having the methodology and approach chosen, we have finished the first phase of our

research process. Now we move to the second phase with the goal of identifying the artifacts

arising in the methodologically driven development processes for two target platforms.

77

3. METHODOLOGY IMPLEMENTATION

After performing systematic literature review, identifying and choosing the development

methodology to be used in this research, in this chapter we will report in detail the

development process and Mobile-D methodology implementation. As the report of such

process is not a trivial task, first we will introduce the basics of Mobile-D methodology and

accompanying approach called Test Driven Development in order to give an overview of the

performed phases. Additionally, we will define the term „artifact‟ to clearly denote the point

of view to be taken while reading this chapter.

The mobile application that is developed is named KnowLedge. It is a simple social network

application designed to share knowledge among participants grouped in groups of interest.

The application is designed to cover the main functional development requirements and thus

to represent the vast majority of mobile applications. Such requirements in general cover

distinct development concerns, including UI features, local database, device API-s,

connection to web services and 3
rd

 party features.

The report of the development process presented in this chapter focuses on the created

artifacts and their connection to each other along with their connections to the performed

activities. In the Android case we bring a detailed description of the whole process along with

the examples of the artifacts created. Even so, in the Windows Phone case, we decided not to

report the whole process in detail again, but rather to discuss the possibility of reusing the

existing artifacts. We found that many artifacts can be completely or partially reused.

3.1. Mobile-D overview

3.1.1. Introducing Mobile-D

The methodology was first presented by Abrahamsson at al. (2004) and after that it slightly

evolved to the final version which is in detail presented in technical specification which

includes the complete glossary, the description of all phases, stages, tasks and practices along

with templates (Abrahamsson et al., 2005a). Additionally, the VTT Technical Research

Centre of Finland created and published a web application which can be used to easily

78

navigate through methodology phases and to obtain the relevant specification documents

(VTT Technical Research Centre of Finland, 2006a).

3.1.2. Mobile-D process

The short overview of this methodology is already given in the chapter 2.2.2 while describing

methodologies for development of mobile application. A more detailed overview of the

process will be given here in order to create a basis for the implementation that follows.

Mobile-D process (see Figure 13) includes five phases that are executed in partially

incremental order. The aim of the first phase, called Explore, is to prepare the foundation for

future development. The Initialize phase should describe and prepare all components of the

application as well as to predict possible critical issues of the project. Initialize phase is

usually called a zero iteration (0-iteration) phase as it in addition to project set-up includes the

stages of planning day, working day and release day which are also used in Productionize

phase. The idea of the 0-iteration phase is to assure the functionality of the technical

development environment through the implementation of some representative features.

Additionally, in this phase some prototyping can be done in order to decide which

technological solution would be the most appropriate for the rest of the development process.

Figure 13 - Mobile-D process

The Productionize and Stabilize phases are executed iteratively in order to develop all other

features of the mobile product. Iterations start with planning day in Productionize phase. The

first activity is post-iteration workshop which aims to enhance the development process to

better fit the needs of the current software development team. The requirements analysis,

iteration planning and acceptance test generation tasks follow and are executed during the

planning day. The working day is based on implementation through test driven development,

pair programming, continuous integration and refactoring. This day ends with the task of

informing the customer on new functionality. Finally, the release day includes the activities of

integration and testing. The Stabilize phase has the goal to finalize the implementation,

including integrating subsystems if needed. As this phase can contain additional programming

and development, the activities are very similar to the activities in the Productionize phase.

N iterations

Explore Initialize Productionize Stabilize
System Test

and Fix

79

Only additional activity concerns documentation wrap-up. Iterations should result in a

working piece of functionality at the user level.

Finally, System Test and Fix phase aims to detect if the produced system correctly implements

the customer defined functionality. It also provides the project team feedback on the systems

functionality and the defect information for last fixing iteration of the Mobile-D process. This

last iteration is not obligatory, but when fixing is needed it consists of the same activities as

other implementation iterations already explained.

While observing the whole Mobile-D process we can conclude that it is an agile approach to

mobile application development which is based on combination of eXtreme programming in

terms of practices, Crystal family of methodologies in terms of scalability and Rational

Unified Process in the terms of life-cycle coverage. In paper (Supan et al., 2013) we have

discussed the challenges and issues that accompany the use of this methodology that

companies or small teams should be aware of before introducing it in everyday practice.

3.1.3. Mobile-D artifacts

An artifact may be defined as “an object that has been intentionally made or produced for a

certain purpose” (Hilpinen, 2011) or it may refer to “one of many kinds of tangible byproduct

produced during the development of software” (Parker, 2011). The artifacts that arise in the

process of mobile application development are from special interest in this research and thus

we have adopted the definition of an artifact as “any piece of software (i.e.

models/descriptions) developed and used during software development and maintenance.”

(Conradi, 2004)

Conceptual model (Figure 14) comprises the Mobile-D process, its activities and tasks that are

performed by utilizing some methods and practices and using some tools resulting in artifacts

as final outputs. Thus, artifacts are results of performed activities, but they are also used as

inputs to perform other activities and tasks.

Figure 14 - Artifacts in Mobile-D

To give an overall picture, Table 23 shows all inputs and outputs that are defined by the

methodology and are connected with the five mentioned phases.

Inputs

Outputs

Producing Using some

Performed by

utilizing

Consists of Mobile-D

Process

Activities

and Tasks

Methods and

Practices
Tools Artifacts

80

Table 23 - Mobile-D inputs and outputs

Source: (Supan et al., 2013)

81

The artifacts that we are interested in this research do not concern only the direct results of

performing the activities, but also the specific outputs that are connected with the

development for a specific target platform.

3.1.4. Test driven development

Mobile-D strongly suggests the usage of Test Driven Development which is connected to all

Mobile-D phases. The basics and the state of the art on TDD can be found in (Hammond and

Umphress, 2012). To make the understanding of the following chapters easier, we bring a

quick overview of this development approach.

The practice of test driven development requests the developer to write a failing automated

test case and then to write the production code that will pass the test. In general TDD process

can be summed up into five main steps (Beck, 2002):

1. Write a new test case.

2. Run all the test cases and see the new one fail.

3. Write just enough code to make the test pass.

4. Re-run the test cases and see them all pass.

5. Refactor code to remove duplication.

In Mobile-D, the purpose of TDD is to give the developers confidence that the code they

produce works as well as to guide the design of the code to an easily testable structure.

Additionally, the refactoring practice is also based on TDD to ensure that changes made to the

code did not break any functionality (Abrahamsson et al., 2005a). Finally, being the main

practice of any working day, test driven development is used in all phases except the first

(Explore) phase.

3.1.5. Mobile-D reference

The most important source of information on how to perform Mobile-D methodology for this

research is the already mentioned technical report presented in (Abrahamsson et al., 2005a).

As the document contains detailed information on Mobile-D phases, stages, activities, tasks,

practices, patterns and other relevant concepts, we recommend having a glance at it before

reading the following sections and having it at disposal while reading. All other documents

mentioned in Table 22 are also a relevant source of information and can be used to gain more

comprehensive knowledge on Mobile-D.

The following sections report on the conduction of Mobile-D methodology in creation of a

prototype application for two target platforms.

82

3.2. Explore phase

3.2.1. Targeted users and stakeholders

The application KnowLedge does not have any specific target groups. It is aimed to be

distributed freely through online stores to all interested parties. Additionally, as the nature of

the application was to serve as an experiment in a research process, there are no classical

stakeholders recognized. The only participating individuals in the process were two thesis

supervisors included as process specialists, and the researcher himself who conducted all of

the activities.

3.2.2. Initial requirements

The application is intended to enable users to learn and/or share knowledge in an interactive

and social manner. The basic usage should include the following functional requirements:

 Browsing through the categories to find existing knowledge on a topic

 Placing the request for new explanation/instructions/tutorial

 Creation of new knowledge (either answering unsolved requests or creating a new

topic)

 Sharing the knowledge in groups

 Sharing location data among group members

 Android and Windows Phone native look and feel

 Different user privacy levels

The presented list does not include nonfunctional requirements as nonfunctional requirements

analysis was not performed for this prototype application.

3.2.3. Architecture line description

The goal for internal product quality: an evolutionary prototype.

System context: the application is intended to be a standalone mobile application dependent

on internet connection and on supporting web services. The optional dependency (not being a

part of the core features) is fine or coarse GPS location. Only one interface to the external

entities should be developed in order to join the mobile application with web services. There

is no need for any other interfaces as the system does not include other enterprise,

infrastructure or legacy subsystems.

Technological domain includes the nonfunctional requirements of application being runnable

on any Android 2.2 or newer device. According to currently available data (Android

83

Developers, 2013), more than 95% of all Android devices are covered by this inclusion

criterion.

Architectural risks: variety of android devices and supporting API-s. Different device

capabilities and significant differences in device screen size could become problem in testing

and implementation of user interface.

Using a somewhat old version of API-a (version 8) could result in constraints in application of

suitable user interface and other features.

Architectural skills: sufficient, as the main researcher has been involved in mobile

applications development for Android during the last several years.

Architectural training needs: not necessary.

Software architecture: multilayered software architecture with separated business logic, user

interface and database connectivity layers. The idea was to capture the core architectural

abstractions for the whole system as soon as possible, on the basis of the experience of the

project team, and to do a constant architectural refactoring by using pattern-based core

abstractions.

Software architecture documentation: described software architecture documentation process

supported by developer-level models, sketches and short documents used in the development

process.

Templates for SW architecture and Design Description document: Several specific templates

aligned with UML modeling language were created. The architecture and design were

described at least with UML Class diagrams and ERA models. As the chosen methodology

specifies, some other typical agile tools were also used in order to describe the features and

planned tasks. These tools include UI sketches, product backlog, story and task cards et

cetera. Typical software architecture that was used is multi-layered software architecture.

3.2.4. Project plan

Due to the project‟s specific requirements and its background, it did not include any financial

or resources constraints. The basic project plan was defined as a set of phases and stages and

the overall project duration was set to 20 weeks. The team responsible for the conduction of

the project was composed of a researcher and supervisors, although the supervisors‟ roles

were very limited and included few activities during the project establishment, mainly quality

checking and final validation.

The initial project plan is given in the following picture including the identified iterations and

graphical representation on Gantt chart.

84

Figure 15 - Basic project plan

In this phase it was impossible to determine the iterations that will be necessary in the Fix

phase as those are dependent on the overall quality of the development process, and on some

unpredictable technological issues.

3.2.5. Documentation

The documentation includes two distinct sets of documents. First set considers the documents

related to the project implementation and project management. Aligned with the agile

practices, this set contains the documents that are considered to be the necessary minimum in

every project development process. This group contains:

 Initial requirements document

 Project plan document

 Software architecture and design description document

 System test plan

 Product backlog

 System test report

The second group of documents includes documents related to the research that is conducted.

This set includes the following documents:

 Identified artifacts and description

 Historical data on every document

 Notes on the development process

The iterative updating approach of producing the documents with preservation of versions

was used. This approach is aligned with the agile practices and is suitable for a project of this

type.

85

3.2.6. Monitoring and measurement

As our project did not deal with resource (human, time, money) management, the monitoring

activities were not in our focus. Thus, the monitoring of the development process was

conducted only by identifying the level of agreement between planed and conducted

activities. Additionally, the duration of the activities was measured and noted for future

comparison with subsequent development processes. The overall goal for this process was not

to exceed the planned duration of the project, but this was not a crucial requirement and it did

not affect the research goals.

Additionally, the quality assurance was conducted by acceptance tests, validation, usage of

coding standards, process validation by supervisors and finally product verification on the

market.

3.2.7. Project plan checklist

Taken from the Mobile-D process library (VTT Technical Research Centre of Finland,

2006b), the following table represents the project plan checklist for the Explore phase.

Table 24 - Project plan checklist - Explore

Project Plan Checklist

Explore

Initial requirements Yes No NA

All the initial functional requirements have been included in the project plan x

All the initial non-functional requirements have been included in the project plan x

Schedule & Rhythm

The overall schedule has been included in the project plan x

The planned rhythm (phases and its iterations) have been defined in the project plan x

Resources

Project plan has been updated with the identified interest groups and their members x

Project plan has been updated of the information concerning the selected software

development tools, terminals, etc.
x

Project plan has been updated with the identified project team members x

Training

Training needs of project team have been included in the project plan x

Schedule of training has been included in the project plan x

Documentation

The documents to be produced in the project have been included in the project plan x

The life span of each document has been included in the project plan x

Quality Assurance

86

The quality assurance procedures have been defined in the project plan for each work

product (documentation, code and product) including the actors and schedule
x

The checklists showed that during the Explore phase, three aspects of Mobile-D methodology

were not applicable (NA) in the context of this mobile project (as explained in previous

chapters). All other elements are marked positively which makes this phase successfully

completed.

3.3. Initialize phase

3.3.1. Environment setup

The software development environment was prepared for development of Android

applications. Although the installation of base tools on the machine (including browser, PDF

viewer, picture viewer etc.) and the installation of specific tools for project management

(GantProject) and reporting tools (Microsoft Office) was performed during the project

preparation and explore phase, the implementation tools (Case Studio, Sprintometer, Visual

Paradigm for UML, SQLite Professional…) and development (Java Development Kit, Eclipse

IDE, Android Development Tools, Android SDK…) had to be installed in this phase.

Additionally, the drivers for testing devices were also downloaded and installed and the

devices were connected to the development environments. The development environment was

tested and simple Android application was produced and deployed on a mobile device.

Finally, the subscription to servers for hosting database and services was obtained and tested.

All mentioned tools were free or obtained through relevant institutional subscription of the

University of Zagreb and/or the University of Alcala.

There was no need for environment setup for the purpose of training or customer

communication.

3.3.2. Project plan and architecture plan

The basics for overall project execution plan remained the same at the end of this phase, but

taking into consideration a more detailed requirements analysis it was possible to define a

more fine grained iterations including the planning, working and release days. The updated

project plan can be seen in Figure 16. As there was no need for personal resources or financial

planning, these tasks were skipped. Additionally, extensive risk planning which usually takes

place in organizational environment was not necessary.

87

Figure 16 - Detailed project plan

The planned system architecture is defined on two abstraction levels. First (upper) abstraction

level, as shown in Figure 17, presents the overall system architecture which includes the main

system participants and components. The identified components are mobile application, and

web and database servers, while the infrastructure is based on connectivity (Internet) and GPS

data. Although, the main system functionality is not visible from this diagram, the important

requirement of enabling the users to form the groups is presented here.

Figure 17 - Overall system architecture

The second architectural diagram shows the mobile application detailed architecture as it is

presented in Figure 18. The idea was that the mobile application should, accordingly,

communicate with web service and lean on native (i.e. Android) and 3
rd

 party API-s in order

to deliver the required functionality. It should be based on multi-layered architecture with

88

three distinct and connected layers. The internal cohesion (see (Miller, 2008)) of the presented

modules should be high, and at the same time the external coupling should be kept low.

Figure 18 - Mobile application architecture

3.3.3. Initial requirements analysis

The initial requirements analysis task was performed, and the results include product backlog,

the user interface sketches and the generated acceptance tests for each requirement presented

in next chapter.

3.3.4. Product backlog

Product backlog describes application features presented through user stories. Every feature

has an assigned importance level. They are scaled from 1 being not important to 5 being very

important.

Table 25 - Product backlog

Features / stories Importance

F1.1

When the application is started the news should be displayed. News should include any

unread answers to the user‟s questions; news on activities in user‟s groups and other

information important for current user.

3

F1.2
The news presented on the first application screen should be “links” to corresponding

application functionality.
3

F2.1

Current user should be able to check all his questions, including those that have been

answered already. Questions should be presented by title and short description. Other

details about every question should be presented in new window after user clicks on it.

5

F2.2

User should be capable to add a new question. New questions should be defined in

separate windows which should include all important information about the question (title,

text and images). The images should be taken by the phone camera.

5

F2.3
User should be capable to delete his/her own question. The deletion should not be

performed without user‟s explicit confirmation on deletion action.
3

Android APIs

3rd party APIs

Local Database

Program Logic

User Interface

Web

service

interface

Web

service

Mobile Application

89

F2.4
User should be capable to change his/her own question. The process of question changing

should be similar to process of question adding.
1

F2.5 User should be capable to add answers to his/her own and others‟ questions. 5

F2.6 The owner of the question should be able to mark a question as answered. 5

F2.7
User should be able to apply the filter by root-searching the list of questions available to

him.
2

F3.1
User should be able to set/change own profile. The profile should include the basic

information about the user (visible) to other group members.
5

F3.2

User should be able to set/change application settings. The settings should include the

possibility to deny further invitations to groups, to set privacy level (of showing or no

emails to other users and of showing or no current location to other users).

2

F4.1 User should be able to see the list of all groups currently enrolled to. 5

F4.2
User should be able to apply the filter by root-searching the available groups according to

their title and description. All groups should be observed by search.
2

F4.3

User should be able to see the details on any group he is enrolled to, including the list of

other members. User should NOT be able to see the list of other members (except their

number) for the groups he is not enrolled to.

4

F4.4 User should be able to join any existing group by sending the application to group owner. 5

F4.5

User should be able to leave any group he is enrolled to. Other group members should

only be notified on that. Owner cannot leave the group and the group should be deleted

manually (see F5.4).

1

F5.1 User should be able to create a new group. 5

F5.2
User should be able to invite new members to his group by inviting them via in

application email.
2

F5.3 User should be able to invite new members to his group by sending them email. 1

F5.4 User should be able to delete any group he owns. 2

F6.1
User should be able to see all members of the groups he is enrolled to on the map. If group

member has disabled this privacy setting, it will be excluded from the view.
3

F7.1 User should be able to read a general help about the application usage. 1

3.3.5. Acceptance tests

The template sheets for acceptance tests proposed by Mobile-D (Abrahamsson et al., 2005a)

were used and the tests are defined for each application requirement defined in the product

backlog. Each acceptance test was to be approved at the end of development process, and it

includes the definition and remarks on the test of final functionality in different contexts. The

following test descriptions are examples of acceptance tests created in this step.

Acceptance test F1.1

Displaying news for current user

When the application is started the news should be displayed. News should include any

unread answers to the user‟s questions; news on activities in user‟s groups and other

information important for current user.

90

Context 1

Application executed for the first time or user did not created his profile yet.

Expected output

Title Description
Welcome Welcome to KnowLedge application. To begin click to set up your user profile.

Context 2

User is not member of any group and there are no activities to display.

Expected output

Title Description
No news There are no news to display. Use application menu to join groups and become part

of KnowLedge community.

Context 3

User actively uses the application and has news in several categories.

Expected output

Title Description
New answer Your question %questionTitle has been answered by %firstName.

%questionTitle %description. [up to 50 chars]

New invitation You have invitation by %firstName to join the group %groupName.

Application accepted Your application to join the group %groupName is accepted.

New member %firstName joint the group %groupName.

Acceptance test F1.2

Linking news

The news presented on the first application screen should be “links” to corresponding

application functionality.

Context

News presented on the first screen.

Expected output

News Link
Welcome Users profile page.

No news -

New answer Question %questionTitle page.

%questionTitle Question %questionTitle page.

New invitation Invitation dialog followed by group page.

Application accepted Group %groupName page.

New member New member profile page.

91

Acceptance test F2.1

My questions

Current user should be able to check all his questions, including those that have been

answered already. Questions should be presented by title and short description. Other details

about every question should be presented in new window after user clicks on it.

Context 1

User clicks on “My questions” option.

Expected output

Question title Question description [up to 50 chars]
Title 1 Description 1.

Title 2 This description cannot fit into 50 chars and wi…

Example question What is the name of this bird?

Context 2

User clicks on any question presented in the list.

Expected output

Question

title

Question description [full] Asked by; Group Answers

Title 1 Description contained from text and images.

In single description, text and image could be

presented multiple times.

%firstName

%lastName

 %

groupName

List of

answers.

Title 2 This description cannot fit into 50 chars and

will be shortened in list view but in question

view should be written fully.

%firstName

%lastName

 %

groupName

List of

answers.

Example

question

What is the name of this bird?

I sow it yesterday in our park. It looks like

some kind of a parrot.

John

Johnson

Nature -

Acceptance test F7.1

Help

User should be able to read a general help about the application usage.

Context

User clicks on “Help” option.

Expected output:

The new view with textual help appears. The help contains information on all application

features.

92

3.3.6. User interface sketches

In order to align the user requirements with the technological implementation and possibilities

provided by a target platform, user interface sketches were created. These sketches also

enabled the team to get a full picture of the desired functionality. After several iterations, the

sketches were finished. Figure 19 shows an example of the created document.

Figure 19 - User interface sketches

3.3.7. Trial Day

The selected feature that was to be implemented in this trial day is F3.1. The idea of

performing trial day was to create functionality that will cover (at least in basic aspects) most

of the architectural design elements and also to create the base for other features. As the

application is user oriented, having information on the current user was a prerequisite for

almost all other features which made this feature a core functionality of the system.

Table 26 - Selected feature for Trial Day

Features / stories Importance

F3.1
User should be able to set/change own profile. The profile should include the basic

information about the user (visible) to other group members.
5

93

Finally, the goal of this day was also to assure the functionality of the technical development

environment through the implementation of the feature. The following tables present defined

story cards (SC) and task cards (TC). These documents were defined during the planning day,

but were refined during the implementation and documentation wrap-up.

3.3.7.1. Story and task cards

Story card F3.1

F3.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New H H 4 5 5

Description

User should be able to set/change own profile. The profile should include the basic information about the user

(visible) to other group members.

The basic information about the user should include first name, last name and mail address. The information

should be stored in local database and synchronized with information on web service.

Date Status Comment

11.7.2012 Defined

This story is taken to be implemented during the trial day. This will introduce the

execution of tasks concerning preparation and validation activities and thus will

be slightly different than in implementation of other stories.

12.7.2012 Implementing

The implementation is taking longer than expected. There are many decisions that

are to be made but after some initial research is performed. This research include

prototyping and writing the code that is to be discarded, searching and reading the

available sources, looking through finished projects etc.

16.7.2012 Done

The basic architecture of this project is created. The database, business logic, user

interface, web service and helping layers are established. The automatic tests

including unit and integration testing are created.

16.7.2012 Verified
All test, including unit, integration and acceptance testing are performed and

successful.

* This story card, as all other SCs, was defined during the planning day but was refined during the

implementation.

Task card TC-0-1 - Create initial test cases

TC-0-1
Type

Difficulty Confi-

dence
Notes

Before After

New 5 5 3

Description

Initial test cases for this functionality should be created.

Date Status Comment

11.7.2012 Defined

12.7.2012 Implementing

After choosing from several existing testing frameworks, the core functionality

will be tested by native android.test framework, and the robotic testing of

application usage will be performed by robotium free framework

(code.google.com/p/robotium/).

12.7.2012 Done

Some core tests are created. Other tests and robotic integration testing will be

defined at the end of the stage. The problems experienced include the lack of

knowledge on the platform capabilities.

16.7.2012 Verified All tests succeeded.

* This task card, as all other TCs, was defined during the planning day but was refined during the

implementation.

94

Task card TC-0-2 - Create database model

TC-0-2
Type

Difficulty Confi-

dence
Notes

Before After

New 1 1 5

Description

The database model for mobile and web service part of the system should be created. The model should be easy as

it is only a trial of whole database model that is to be implemented in later phases.

Date Status Comment

11.7.2012 Defined

12.7.2012 Implementing
The part of database model important for this story is created for mobile

application and for web service.

13.7.2012 Done
The database containing defined entities is up and running on hosting provider.

The model on mobile application will be deployed through database layer.

16.7.2012 Verified All tests on mobile application succeeded.

Task card TC-0-3 - Create database layer in mobile app

TC-0-3
Type

Difficulty Confi-

dence
Notes

Before After

New 3 3 5

Description

The database layer is a set of classes that are responsible to create and maintain local SQLite database, as well as

to provide the access to the data (i.e. create, read, update or delete) data.

Date Status Comment

11.7.2012 Defined

12.7.2012 Implementing

The database layer is relatively easy to create but hard to test as it should be

tested in context of other application functionality. This will be done while

implementing task of defining synchronization layer.

13.7.2012 Done
Currently layer contains base class for accessing database, plus entity class user

for accessing the information on user in database.

16.7.2012 Verified All test succeeded.

Task card TC-0-4 - Create database layer in web app

TC-0-4
Type

Difficulty Confi-

dence
Notes

Before After

New 5 5 3

Description

The database layer is a set of classes that are responsible to create and maintain local MySQL database, as well as

to provide the access to the data (i.e. create, read, update or delete) data. The classes should be accessible through

exposed web services with corresponding exposed methods.

Date Status Comment

11.7.2012 Defined

12.7.2012 Implementing
Using phpMyAdmin, the database is successfully created on MySQL server.

Additionally, web service and supporting classes are being developed.

13.7.2012 Done

The exposed web service along with supporting classes are created and tested

locally. The security mechanisms are not included as these are not required by

user requirements.

16.7.2012 Verified Integration and acceptance tests succeeded.

95

Task card TC-0-5 – Implement and connect user interface

TC-0-5
Type

Difficulty Confi-

dence
Notes

Before After

New 2 2 5

Description

Corresponding user interface for entering the data in mobile application should be created. The elements of user

interface, as well as other messages communicated to the user should be language independent, but implemented

in English. The functionality of user interface should through corresponding activity classes be connected to

database layer.

Date Status Comment

11.7.2012 Defined

12.7.2012 Implementing

As the user interface for profile is not the first screen in the application, auxiliary

operations were implemented in order to be able to navigate to target page.

activity_profile.xml is being created and should be connected to business logic

layer class ProfileActivity.java.

13.7.2012 Done
The user interface is created and is language independent, screen size

independent and orientation independent.

16.7.2012 Verified All tests including acceptance test succeeded.

Task card TC-0-6 – Add synchronization layer

TC-0-6
Type

Difficulty Confi-

dence
Notes

Before After

New 3 5 4

Description

The data stored in local database should be automatically synchronized to web service.

Date Status Comment

11.7.2012 Defined

13.7.2012 Implementing

The classes and behavior necessary for data synchronization between application

and web service are created. KnowledgeService.java and JsonAdapter.java are

created and ProfileActivity.java is seriously improved.

13.7.2012 Done

The data cannot be stored in local database unless the user is created by web

service which returns the user id.

After the user is created, it can be only updated.

16.7.2012 Verified All tests succeeded.

Task card TC-0-7 – Finalize tests

TC-0-7
Type

Difficulty Confi-

dence
Notes

Before After

Enhance 5 5 3

Description

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and

saved. If necessary, code should be updated and fixed.

Date Status Comment

11.7.2012 Defined

13.7.2012 Implementing

Some tests concerning core functionality were defined in previous task. Now

other tests dependent on technological specifications should be defined, and

finally the test defining robotized integration testing of application is to be

created.

16.7.2012 Done 17 fully automatic tests are created. Code is refactored and fixed. More than 100

96

assertions in included in 16 unit (more than 85) and 1 integration (more than 15)

tests.

16.7.2012 Verified All tests succeeded.

Task card TC-0-8 – Optimize and refactor

TC-0-8
Type

Difficulty Confi-

dence
Notes

Before After

Enhance 1 1 5

Description

Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment

11.7.2012 Defined

16.7.2012 Implementing

Considerable efforts were made during the implementation, so there was no much

work to do during the refactoring task. Instead, the classes and methods are fully

commented.

16.7.2012 Done

16.7.2012 Verified All tests succeeded.

3.3.7.2. Data model

The requirements analysis showed that this trial day concerns only the functionality regarding

one entity in data model. User entity was defined as follows.

Figure 20 - Entity users (trial day)

The same data model was deployed on mobile database and on web service database hosted

online.

3.3.7.3. Created web service

Exposed web service covering the functionality of managing the system users is exposed and

can be accessed by the URL: http://knowledge.uphero.com/users.php. The frontend part of the

web application is accessible to the mobile application through several methods that are

described in Table 27. Other functionality is defined in the backend and cannot be accessed

http://knowledge.uphero.com/users.php

97

directly, but still plays a crucial role in the functionality of the web service. The model of the

whole web application (with web service) is presented in the next chapter.

Table 27 - Web service (users.php) specification

http://knowledge.uphero.com/users.php

method json* response** description

create firstName

lastName

email

[description]

responseId

responseText

[newUserId]

Creates a new user in database. Compulsory data

in post include method name and the data about

new user packed into JSON format.

Web service will return JSON formatted string. If

everything was OK the string will contain

additional data on newUserId.

update id

firstName

lastName

email

[description]

responseId

responseText

Updates an existing user in the database.

Compulsory data in post include method name

and the updated data about user packed into

JSON format.

Web service returns JSON formatted string

containing the operation result id and text.

delete id responseId

responseText

Deletes and existing user from the database.

Compulsory data in post include method name

and user id.

Web service returns JSON formatted string

containing the operation result id and text.

* json – parameter name. Should contain all stated elements in JSON format.

** response – String response from web service. Contains all stated attributes in JSON format.

3.3.7.4. Created class models

As the feature selected for the trial day spans vertically through the whole system architecture,

the class model designed and created during this phase is not so simple. The model contains

classes for database connectivity layer, business logic layer, user interface layer plus some

helper classes to connect to web service. The model of the mobile application is presented in

Figure 21.

http://knowledge.uphero.com/users.php

98

Figure 21 - Class diagram (mobile app - trial day)

Class NewsActivity was used only to provide the functionality of opening the target

ProfileActivity class and thus is not defined at this phase. Additionally, some classes extend

native Android classes, but these are not presented unless it was necessary in order to

understand the navigability through the model (e.g. AsyncTask provides method execute

which was called by ProfileActivity, as the method in SaveUserAsyncTask are protected and

thus inaccessible from mentioned ProfileActivity class). The private attributes are hidden in

the diagram as they are irrelevant in this report. Finally, many classes use native Android

classes which are not shown in this diagram in order to make it clean and simple and direct

the focus only on the architectural design.

On the other hand, as presented in Figure 22, web application comprises of one exposed web

service (users.php) which is backed up by several classes providing the means of accessing

and storing the data and loading the necessary configuration.

99

Figure 22 - Class diagram (web service - trial day)

3.3.7.5. Implementation

During the implementation tasks, the classes presented in the above figures were implemented

in Java and PHP. According to the Mobile-D methodology, very strict coding standards were

applied, and at the end of the implementation process, the code was commented. An example

of a part of a commented class is shown in Code 2. As it can be seen, the comments include

the description and the tags defining the author, date, connecting task and other elements

usual for code comments (such as see also, code etc.).

package foi.uah.knowledge.entities;
import foi.uah.knowledge.database.UsersAdapter;

/**
 * Class represents an User entity. When ever in application the information about
 * the user should be used it should be provided by this class. As the application
 * can only have one user, the behavior of this class is some-what specific.
 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC-0-2
 */
public class User {
 private static User currentUser;
 private int id;
 private String firstName = "";
 private String lastName = "";
 private String email = "";
 private String description = "";

 /**
 * Constructor which creates new user according to given parameters.
 *
 * @param id User id. The value should be obtained from web service.
 * @param firstName First name. Compulsory.
 * @param lastName Last name. Compulsory.
 * @param email Email address. Compulsory.
 * @param description An optional description of user to be created.
 *

100

 * @author Zlatko
 * @date 13.7.2012.
 * @task TC-0-2
 * @changes
 */
 public User(int id, String firstName, String lastName, String email, String

description)
 {
 setId(id);
 setFirstName(firstName);
 setLastName(lastName);
 setEmail(email);
 setDescription(description);
 }

 /**
 * Static method returns object with information on current user written in

 * database. If data in database is changed, the information on current user
 * will not change automatically, and thus the

 * refreshCurrentUser method should be used.
 *
 * @see #refreshCurrentUser()
 * @return An object with information on current user, if such exist in

 * database.
 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC-2-2
 * @changes
 */
 public static User getCurrentUser()
 {
 if (currentUser == null)
 {
 UsersAdapter ua = UsersAdapter.getInstance();
 currentUser = ua.getCurrentUser();
 }
 return currentUser;
 }

 /**
 * Static method which refreshes the current object with the latest data on

 * user in database. This method should be called whenever the database
 * information is changed.

 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC-0-2
 * @changes
 */
 public static void refreshCurrentUser()
 {
 currentUser = null;
 UsersAdapter ua = UsersAdapter.getInstance();
 currentUser = ua.getCurrentUser();
 }
...
...

}

Code 2 - Commented class

101

Additionally, the best practices of object oriented programming (abstraction, inheritance,

encapsulation, polymorphism, error handling etc.) were used (Mitchell, 2003), which resulted

in a high internal cohesion (Miller, 2008) and at the same time the external coupling was kept

low. Although the trial day resulted in a relatively small number of classes, the same

principles were applied during the whole development process.

3.3.7.6. Testing

As the Mobile-D methodology suggests (Abrahamsson et al., 2005a), the whole development

process was based on Test Driven Development (TDD) (Hammond and Umphress, 2012). As

it is visible from the defined tasks, the working day began with the activities of writing the

unit tests for core functionality. As some of the technological aspects were not familiar to the

implementer of this task (i.e. me, a PhD student), the task resulted with only a few basic unit

tests regarding already familiar and known classes.

Other unit tests were written during the development and the TC-0-7 (Finalize tests) task. The

whole process resulted in 16 unit tests which completely automatically asserted more than 85

different conditions.

The integration testing was also automatized by defining the Robotium test (Reda, 2012)

which robotically runs the application on mobile phone or on simulator and performs all

possible actions including creation of the user, inaccurate attempts of updating the user,

accurate updating tests and similar. The integration testing thus included the tests of some

features that were impossible to test by unit testing (like asynchronous behavior of some

classes).

In the end, and after the refactoring, all 17 tests (16 unit tests + one integration test) were

successfully run, and more than 100 assertions gave expected results as shown in Figure 23.

As it can be seen from the test results, only two tests were time consuming. The web service

test took more than 10 seconds as it called the web service more than 15 times. Additionally,

the automated integration robotic test took more than 40 seconds, as it tested the application

as a user would. These results were expected and also confirmed that there were no other

time-heavy objects.

102

Figure 23 - Test results (trial day)

Finally, all tests were designed by accepting the Mobile-D recommendations (Abrahamsson et

al., 2005a) on performing the test driven development. Additionally the tests were designed in

such a manner that the order of execution of tests was not important, the tests were not

dependent on any existing system configuration and revert original data in local database and

thus did not interfere with manual testing performed during the development.

3.3.7.7. Application screenshots

Figure 24 - Application screenshots (trial day)

103

Above figure shows several screenshots taken at the end of the trial day. These screenshots

show only one use case which was implemented during this phase and do not cover the whole

implemented functionality. The whole functionality was successfully tested during the

execution of the corresponding acceptance test.

3.3.7.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release

day. All tests including the acceptance test were performed successfully and the

documentation including the artifacts of everything that was done was wrapped up. Finally in

order to check if everything was done correctly, the requirements defined by the Mobile-D

and stated in the check list (see Table 28) were checked.

Table 28 - Project plan checklist – 0 Iteration

0 Iteration Yes No NA

Requirements

The project plan has been updated concerning the selected trial requirements for 0

iteration
X

The project plan has been updated concerning the realization of the selected trial

requirements for the 0 iteration
X

Architecture line definition has been included in the project plan X

3.4. Productionize

3.4.1. First iteration

The selected features to be implemented in this iteration are presented in Table 29 and mainly

concern the manipulation of groups owned by user. The reason for having these features

selected is that the functionality regarding group management set up the basis for other

functionalities. As stated in the project backlog, the importance of F5.1 and F4.1 is very high,

which also justifies the decision. Although the F5.3 is currently not important, the email

invitations are easy to implement and tightly connected with F5.2 and thus this easy task is

included in this iteration as well. As it can be seen in the following table, the order of the

execution was slightly changed.

104

Table 29 - Selected features for first iteration

Features / stories Importance

F5.1 User should be able to create a new group. 5

F4.1 User should be able to see the list of all groups currently enrolled to. 5

F5.4 User should be able to delete any group he owns. 2

F5.2
User should be able to invite new members to his group by inviting them via in

application email.
2

F5.3 User should be able to invite new members to his group by sending them email. 1

3.4.1.1. Story cards and task cards

Story card F5.1

F5.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New L M 4 5 5

Description

User should be able to create a new group.

The basic information about the group should include name, description and creator. The information should be

stored in web database and downloaded locally when necessary through web service.

Date Status Comment

17.7.2012 Defined

This functionality is prerequisite for most of other functionality of this iteration

as well as of following iterations. It should be implemented by calling appropriate

web service and displaying the results.

19.7.2012 Implementing

The approach established during the trial day is taken in implementation of this

feature. The only difference is that groups should not be stored in local database

after created and confirmed from the web service.

23.7.2012 Done The functionality is created.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made

simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F4.1

F4.1
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New L M 4 5 5 Partial implementation!

Description

User should be able to see the list of all groups currently enrolled to.

The basic information about the group should include name, description and number of members. The information

should be stored in web database and downloaded locally when necessary through web service. This functionality

will be partially implemented in this phase as currently there is no possibility to see invitations and to accept them

and thus user will not be enrolled in any group except own groups.

Date Status Comment

17.7.2012 Defined

This functionality is prerequisite for most of other functionality of this iteration

as well as of following iterations. It should be implemented by calling appropriate

web service and displaying the results.

19.7.2012 Implementing
The implementation of web role is focused in this task as it performs the most

important logic. The mobile application will receive and display the data.

24.7.2012 Done

It took us little bit longer than expected to finish this task. The web service role

was hard to debug. This problem should not be neglected while preparing the

implementation of other requirements.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made

simple but sill functional.

105

27.7.2012 Verified All tests succeeded.

Story card F5.4

F5.4
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New L L 3 4 2

Description

User should be able to delete any group he owns.

The group will not be deleted from the web service, but it will be rather marked as deleted and will stay in

database for analytical purposes.

Date Status Comment

17.7.2012 Defined
Appropriate web service should be called and the data in database should be

marked as deleted but kept for analytical purposes.

19.7.2012 Implementing
The mobile side of the system should do the majority of work including the

communication with the user and preparation of data to be sent to web service.

25.7.2012 Done
The user is asked to confirm the action and after the parameters are sent to web

service which logically marks the group as deleted.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made

simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F5.2

F5.2
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New L M 3 4 2

Description

User should be able to invite new members to his group by inviting them via in application email.

In-application emails should be implemented through web database. This means that the email should be “sent”

by marking the information in database, and “read” after the client application will ask for news feed. This news

should include “emails”.

Date Status Comment

17.7.2012 Defined
Appropriate web service should be called and the email should marked in

appropriate database entity.

19.7.2012 Implementing
The mobile side of the system should do the majority of work including the

communication with the user and preparation of data to be sent to web service.

26.7.2012 Done The data collected from UI and local objects is sent to web service.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made

simple but sill functional.

27.7.2012 Verified All tests succeeded.

Story card F5.3

F5.3
Type

Difficulty Effort
Priority Notes

Before After Estim. Spent

New L l 2 2 1

Description

User should be able to invite new members to his group by sending them email.

The simple email should be sent from the web server and it should contain the information that there is new

invitation to group. In the application, the user should see the invitation after contacting the web service for news

again as described in F5.2.

106

Date Status Comment

17.7.2012 Defined
The email should be sent automatically after calling the web service in F5.2 if

appropriate parameter is present.

19.7.2012 Implementing
The implementation of this requirement will be realized through the

implementation of F5.2 requirement.

26.7.2012 Done

The necessary changes in existing functionality of mobile and web service are

created. Web service is enhanced with the functionality of preparing and sending

the e-mail messages.

26.7.2012 Enhanced
The refactoring was made and the code is significantly improved and made

simple but sill functional.

27.7.2012 Verified All tests succeeded.

By analyzing the aforementioned user stories, we concluded that the best approach is to

combine all five of them into a single sequence of tasks. This decision was made as the

functionality described in these user stories is strongly interconnected and interdependent.

The tasks identified are described by the following task cards.

Task card TC-1-1 - Create initial test cases

TC-1-1
Type

Difficulty Confi-

dence
Notes

Before After

New 5 5 3

Description

Initial test cases for these functionalities should be created.

Date Status Comment

17.7.2012 Defined The agreed and tried android.test and robotium framework should be used.

19.7.2012 Implementing

The analysis showed that there are not many new classes in mobile application

suitable for unit testing, but on the other hand the test for web services should be

prepared.

19.7.2012 Done
The unit tests concerning the functionality of mobile application classes and

synchronous communication with web services are created.

27.7.2012 Verified The tests are finalized and successful in run.

Task card TC-1-2 – Update database model

TC-1-2
Type

Difficulty Confi-

dence
Notes

Before After

Enhance 1 1 5

Description

Web application database model should be updated. It should be an easy task as there will probably be no changes

on existing model. On the other hand, several more entities should be created in order to cover all functionality for

this iteration.

Date Status Comment

17.7.2012 Defined

19.7.2012 Implementing It is not necessary to alter existing model.

20.7.2012 Done

New model includes entities users, groups and enrolments and is capable of

storing data on users and on active and inactive (canceled) groups and

enrolments.

27.7.2012 Verified All tests succeeded and the model is suitable for current requirements.

107

Task card TC-1-3 – Implement server side functionality

TC-1-3
Type

Difficulty Confi-

dence
Notes

Before After

New 4 4 4

Description

Web service leaning on the upgraded data model should be written. It should include exposed methods as well as

backend supporting functionality. The approach created during the trial day should be used.

Date Status Comment

17.7.2012 Defined

20.7.2012 Implementing
All features in this iteration are counting on web service support. Thus the

planned services should be carefully implemented and error free.

23.7.2012 Done

This task took longer than expected to be finished. The majority of functionality

is supported by web services and the development of those is time consuming and

hard to debug. In any case the planned services are developed and ready for

usage.

27.7.2012 Verified All tests succeeded.

Task card TC-1-4 – Implement mobile app functionality

TC-1-4
Type

Difficulty Confi-

dence
Notes

Before After

New 4 5 4

Description

Using the basics of infrastructure created during the trial day, new classes should be developed and connected to

display the data in appropriate user interface (see UI sketches). The information should be downloaded from the

web services in real time.

Date Status Comment

17.7.2012 Defined

23.7.2012 Implementing

There are several new concepts which are not tried (prototyped) but are to be

developed. These concepts include the usage of custom dialogs, the handling of

user actions and hardware keys etc.

26.7.2012 Done

This task also took longer than expected. The main reason is the development of

not trialed concepts and little bit complicated infrastructure that resulted in

asynchronous communication. This source should be refactored.

26.7.2012 Enhanced

The source is heavily refactored. The service layer is made free of business logic

and is now only used for communication with web services. This reduced the

number of classes in service layer.

27.7.2012 Verified All tests succeeded.

Task card TC-1-5 – Finalize tests

TC-1-5
Type

Difficulty Confi-

dence
Notes

Before After

Enhance 5 5 3

Description

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and

saved. If necessary, code should be updated and fixed.

Date Status Comment

17.7.2012 Defined The agreed and tried android.test and robotium framework should be used.

26.7.2012 Implementing
This task should include the preparation of integration tests. During the test

design is concluded that isolation of test cases could be the problem.

26.7.2012 Done All integration tests are created in one sequence. Although this is not good

108

approach, the execution of isolated test cases proved to be very time consuming

as every test case has to prepare the context from scratch.

27.7.2012 Verified All tests succeeded.

Task card TC-1-6 – Optimize and refactor

TC-1-6
Type

Difficulty Confi-

dence
Notes

Before After

Enhance 1 2 5

Description

Created code should be optimized, commented and refactored. All tests should execute successfully at the end.

Date Status Comment

17.7.2012 Defined

26.7.2012 Implementing

The asynchronous nature of the communication with web service and wrong

infrastructure design made the service layer very heavy. Current class-per-

service-call environment is dealing with preparation of data and business logic.

This is not good.

27.7.2012 Done

The preparation of data and business logic was moved to the real business logic

layer which made the service layer very simple. This resulted in several new

classes which ensure proper communication between these two layers.

27.7.2012 Verified All tests succeeded.

3.4.1.2. Database model

Updated database model was initially created during the planning day, and slightly updated

during the working days. The final version satisfying all requirements of this phase can be

seen in the following picture. Only the database model representing server side functionality

was updated.

Figure 25 - Data model (iteration 1)

The important information was stored in groups and enrolments entities. These entities are

designed to store information on currently active, but also on inactive groups and enrolments.

109

After the group is created, the owner is automatically enrolled into a group (enrolled = 1 and

enrolmentStart = currentDate). After the owner invites another member, a new record is

added to the enrolments table, but the information keeping attribute this time is invitationDate

which is set to currentDate, and other attributes await for user to accept (or reject) the

invitation. After the group is deleted, its deletionDate is set up and for all members of that

group, enrollment is canceled by setting the enrolled to 0 and enrolmentFinish to currentDate.

Thus, the database model ensures proper navigability and information preservation and can be

considered as valid.

3.4.1.3. Created web services

The following tables describe created web services, their methods and corresponding

parameters sent and received in JSON format. Some of the listed web services are still not

used and thus not included in any test.

Table 30 - Web service (groups.php) specification

http://knowledge.uphero.com/groups.php

method json response description

create name

description

ownerId

responseId

responseText

[newGroupId]

Creates a new group in database. The owner of the

group is automatically enrolled in the new group.

If everything was OK the return string will contain

additional data on newGroupId.

update id

name

description

responseId

responseText

Updates an existing group in the database. Only name

and description are allowed to be changed.

Web service returns usual response.

delete id responseId

responseText

Logically deletes existing group from the database by

setting the deletionDate value. All memberships are

automatically canceled by setting the enrolled = 0 and

enrolmentFinished valued.

Web service returns usual response.

my ownerId responseId

responseText

[groups]

Returns JSON string containing an array of groups

owned by given user. The information contains a

number of members in every group.

Table 31 - Web service (enrolments.php) specification

http://knowledge.uphero.com/enrolments.php

method json* response** description

inviteUser groupId

inviterId

email

[sendEmail]

responseId

responseText

Adds new enrolment invitation in database. Optional

data includes parameter sendEmail that defines if

normal email invitation should be sent or not. Only

invitationDate and optionally emailDate attributes are

defined.

Web service returns usual response.

enroll groupId responseId Enrolls user in a group. In this iteration the method is

http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php

110

userId responseText not used, thus it is not jet tested by service or

integration tests.

Web service returns usual response.

cancel groupId

userId

responseId

responseText

Cancels the user‟s enrolment by setting the enrolled to

false and noting down the withdraw date. This service

is not jet used and thus is not tested.

Web service returns usual response.

3.4.1.4. Created class models

During the planning day, the technology independent class model was created, but during the

working days it was slightly improved to fit the target platform. The second version of the

class model included some technology dependent classes like AsyncTask which are specific

for Android platform. In any case, the specific focus was given so the class model can be re-

used during the development of application for other target platforms.

Figure 26 - Mobile app class model (iteration 1)

Although a little complicated, the architecture of the mobile application was still flexible and

modular. As it can be seen, activity classes are the most important part of the functionality.

Those classes execute tasks by ServiceAsyncTask class which asynchronously communicates

with web service, and sends the result through AsyncTaskCallback interface that is

implemented by the caller.

111

The new entity added in this iteration was Group entity. This class is simple as it is just used

to encapsulate the data download from the web service.

JsonAdapter is a static class providing helpful functionality when working with JSON objects

and strings, and finally, the only class that deals with local database is class User which

provides information on the current user.

Figure 27 - Web app class model (iteration 1)

In the web application, the infrastructure was not changed. The web services were backed up

with adapters which communicate with the web database.

3.4.1.5. Implementation

The most important infrastructural functionality developed in this phase concerns the

communication with the web services. The implementation protocols and practices

established and described during the trial day phase were closely followed in this phase as

well. The model developed during the trial day was insufficiently flexible and had to be

improved as there were many calls to the web services. The following example shows the new

approach in solving this problem.

112

/**
 * The method coordinates the web service call/response. The data is obtained,
 * prepared and sent to service proxy. The results will be asynchronously received
 * by AsyncCallbackTask pointed when calling the proxy.
 *
 * @author Zlatko
 * @date 13.7.2012.
 * @task TC-0-6
 * @changes 26.7.2012
 */
private void saveUserData()
{
 try{
 //getting the data
 strFirstName = txtFirstName.getText().toString();
 strLastName = txtLastName.getText().toString();
 strEmail = txtEmail.getText().toString();
 strDescription = txtDescription.getText().toString();

 String method = "";
 String responseAttribute = "";

 //preparing json object
 JSONObject jsonObject = new JSONObject();
 jsonObject.put("firstName", strFirstName);
 jsonObject.put("lastName", strLastName);
 jsonObject.put("email", strEmail);
 jsonObject.put("description", strDescription);

 if (User.getCurrentUser() == null) {
 method = "create";
 responseAttribute = "newUserId";
 }
 else {
 method = "update";
 jsonObject.put("id", User.getCurrentUser().getId());
 }
 String jsonString = JsonAdapter.getJsonArrayString(jsonObject);

 //calling the service and showing progress dialog
 ServiceAsyncTask asyncTask = new ServiceAsyncTask();
 ProgressDialog dialog = ProgressDialog.show(this, "",
 getResources().getString(R.string.dialogSaving), true, true);
 Object params[] = new Object[]{this, jsonString, "users", method,
 responseAttribute, dialog, saveUserDataNotification};
 asyncTask.execute(params);
 }
 catch (JSONException e) { }
}

/**
 * This callback task is called after web service returns the results. According
 * to the results, it is necessary to perform synchronization with local databas
 * and to inform the user on actions performed. The data will be stored in
 * local database only if web service request responds with message 100 (OK). The
 * method inserts data in local database
 * only first time and after that it only updates the data.
 *
 * @author Zlatko
 * @date 26.7.2012.
 * @task TC-1-6
 * @changes
 */
AsyncTaskCallback saveUserDataNotification = new AsyncTaskCallback() {

 @Override

113

 public void acceptNotification(String result, boolean ok) {
 if (ok) {
 if (User.getCurrentUser() == null){
 //create new user in local database
 int id = Integer.parseInt(result);
 User user = new User(id, strFirstName, strLastName,
 strEmail, strDescription);
 UsersAdapter.getInstance().insertUser(user);
 Toast.makeText(context, getResources().getString (R.
 string.msgUserCreated), Toast.LENGTH_LONG).show();
 }
 else{
 //update data in local database
 int id = User.getCurrentUser().getId();
 User user = new User(id, strFirstName, strLastName,
 strEmail, strDescription);
 UsersAdapter.getInstance().updateUser(user);
 Toast.makeText(context, getResources().getString(R.
 string.msgUserUpdated), Toast.LENGTH_LONG).show();
 }
 setEditable(false);
 }else{
 Toast.makeText(context, result, Toast.LENGTH_LONG).show();
 }
 }

 };

Code 3 - Handling web service call and response

The code example shows the basic approach taken in handling web service call and response.

Before calling the asyncTask, the data is obtained and prepared into JSON object.

Additionally, other parameters are also prepared, along with JSON data packed into a single

object with a predefined structure, and sent to the proxy to communicate with web service.

After gaining the async callback, the results are analyzed and the data is synchronized with

the local database. This approach allows similar communication with web service from any

object in mobile application.

3.4.1.6. Testing

During the implementation of the respective tasks concerning testing, we faced several

important challenges. The implementation resulted in few classes suitable for unit testing.

Despite that, the unit tests were created in advance for all classes which were used in the

application except the classes which deal with asynchronous communication with web

services. Additionally, the complete suite of unit tests was created to test the web services

directly.

On the other hand, asynchronous behavior was also tested, but through the sequential fully

automatized integration test which additionally tests the behavior of activities. At the end of

the iteration, a total of 26 tests with approximately 200 assertions were run and were

completely successful.

114

Figure 28 - Test results (iteration 1)

115

3.4.1.7. Application screenshots

Figure 29 - Application screenshots (iteration 1)

Above figure shows several screenshots taken at the end of the first iteration.

3.4.1.8. Project plan checklist

At the end of this stage there was no need for performing the usual activities of the release

day. All tests including the acceptance tests are performed successfully, the documentation

including artifacts of everything that is done is wrapped up, and finally in order to check if

everything is done correctly, the requirements defined by the Mobile-D and stated in the

check list (see Table 32) are checked.

116

Table 32 - Project plan checklist – 0 Iteration

Productionize Iteration(s)

Requirements

The project plan has been updated concerning the selected requirements for the current

iteration
X

The project plan has been updated concerning the realization of the selected requirements

for the current iteration
X

The project plan has been updated concerning any changes in, e.g., the schedule, rhythm,

requirements, and resources
X

The project plan has been updated concerning the realization of quality assurance activities

in current iteration
X

3.4.2. Other iterations

As had been planned, all other iterations were performed in a similar manner. As the objective

was to identify the artifacts, there is no need to report all the iterations in detail here. Rather,

this chapter will present the summary information on the performed tasks and outputs, as well

as give the final versions of some important documents.

3.4.2.1. Iterations overview

According to iterations plan which was a part of the overall project plan, the four remaining

iterations included the implementation of user stories (features) as presented in Table 33.

Table 33 - Iterations plan with features selection

Features / stories Importance

I2 - Second iteration - Enrollment

F4.2
User should be able to apply the filter by root-searching the available groups according to

their title and description. All groups should be observed by search.
2

F4.3

User should be able to see the details on any group he is enrolled to, including the list of

other members. User should NOT be able to see the list of other members (except their

number) for the groups he is not enrolled to.

4

F4.4 User should be able to join any existing group by sending the application to group owner. 5

F4.5

User should be able to leave any group he is enrolled to. Other group members should

only be notified on that. Owner cannot leave the group and the group should be deleted

manually (see F5.4).

1

F6.1
User should be able to see all members of the groups he is enrolled to on the map. If group

member has disabled this privacy setting, it will be excluded from the view.
3

I3 - Third iteration – Questions management

F2.2

User should be capable to add new question. New questions should be defined in separate

windows which should include all important information about the question (title, text and

images). The images should be taken by the phone camera.

5

F2.1 Current user should be able to check all his questions, including those that have been

answered already. Questions should be presented by title and short description. Other
5

117

details about every question should be presented in new window after user clicks on it.

F2.7
User should be able to apply the filter by root-searching the list of questions available to

him.
2

F2.3
User should be capable to delete own question. The deletion should not be performed

without user‟s explicit confirmation on deletion action.
3

F2.4
User should be capable to change own question. The process of changing question should

be similar to process of adding new question.
1

F2.5 User should be capable to add answers to own and others‟ questions. 5

F2.6 The owner of the question should be able to mark a question as answered. 5

I4 - Fourth iteration – News feed

F1.1

When the application is started the news should be displayed. News should include any

unread answers to the user‟s questions; news on activities in user‟s groups and other

information important for current user.

3

F1.2
The news presented on the first application screen should be “links” to corresponding

application functionality.
3

I5 - Fifth iteration – Settings and help

F3.2

User should be able to set/change application settings. The settings should include the

possibility to deny further invitations to groups, to set privacy level (of showing or no

emails to other users and of showing or no current location to other users).

2

F7.1 User should be able to read a general help about the application usage. 1

All iterations included planning, working and release days. Thus, the working days were

navigated through the series of predefined tasks, which described along with other documents

can be found in the documents library. The summary of the performed tasks during the

implementation is presented in the following table.

Table 34 - Performed tasks

Id Task card Type
Difficulty Confi-

dence

Date

finished Before After

I2 - Second iteration - Enrollment

TC-2-1 Create initial test cases New 5 5 3 1.8.2012

TC-2-2 Implement supporting web services Enhance 4 3 5 2.8.2012

TC-2-3 Implement group searching and viewing New 5 5 4 3.8.2012

TC-2-4 Implement group enrolment and leaving Enhance 3 3 4 6.8.2012

TC-2-5 Implement map view New 3 4 4 7.8.2012

TC-2-6 Finalize tests Enhance 5 5 3 8.8.2012

TC-2-7 Optimize and refactor Enhance 2 2 5 8.8.2012

I3 - Third iteration – Questions management

TC-3-1 Create initial test cases New 5 5 4 17.8.2012

TC-3-2 Update database model Enhance 1 1 5 20.8.2012

TC-3-3 Implement supporting web services New 3 3 5 22.8.2012

TC-3-4 Develop questions management New 5 5 5 27.8.2012

TC-3-5 Develop answers management New 4 5 5 29.8.2012

TC-3-6 Finalize tests Enhance 5 5 3 31.8.2012

TC-3-7 Optimize and refactor Enhance 2 2 5 3.9.2012

I4 - Fourth iteration – News feed

TC-4-1 Create initial test cases New 5 5 4 11.9.2012

118

TC-4-2 Update database model Enhance 1 1 5 11.9.2012

TC-4-3 Implement supporting web services New 3 3 5 13.9.2012

TC-4-4 Implement mobile app functionality New 5 5 5 17.9.2012

TC-4-5 Finalize tests Enhance 5 5 3 19.9.2012

TC-4-6 Optimize and refactor Enhance 2 2 5 20.9.2012

I5 - Fifth iteration – Settings and help

TC-5-1 Create initial test cases New 5 5 4 28.9.2012

TC-5-2 Update database model Enhance 1 2 5 1.10.2012

TC-5-3 Update web services Enhance 3 4 5 3.10.2012

TC-5-4 Implement settings management New 3 3 5 5.10.2012

TC-5-5 Update groups management Enhance 2 3 5 9.10.2012

TC-5-6 Update profile management Enhance 2 3 5 11.10.2012

TC-5-7 Define help content New 1 2 5 12.10.2012

TC-5-8 Develop help functionality New 3 3 5 15.10.2012

TC-5-9 Finalize tests Enhance 5 5 3 17.10.2012

TC-5-10 Optimize and refactor Enhance 2 2 5 18.10.2012

3.4.2.2. Final database model

The final version of the database model, which has gone through tree additional iterations, is

presented in the Figure 30. The presented model completely satisfies user requirements for the

whole system, it is “open” and not tied to any technology, and is flexible to be updated or

changed if necessary during the project lifecycle.

Figure 30 - Final database model

119

The model is created in the well-known Crow’s foot notation (also known as James Martin‟s

notation (Martin, 1986)). As it can be seen, three entities are considered to be weak entity

types: enrolments, readNews and answers. These entity types are dependent on other strong

entity types. Additionally, some relationships were made non-identifying by purpose of easier

navigability and indexing, but also because of the idea of putting the read news into a specific

entity in order to be excluded from the news feeds. Finally, special focus was put to

relationships, role naming and cardinality in order to define those according to the best

practices in data modeling.

3.4.2.3. Created web services

The final list of web services developed during the whole development process is shown in

Table 35. The services developed in early development cycles were already described in

detail. All other mentioned web services use the same Representational State Transfer (REST)

communication protocol (Fielding, 2000), accept JSON formatted data and respond with

JSON formatted response (Crockford, 2006). This approach was initially chosen as platform

independent and is most likely to prove useful for other platforms as well.

Table 35 - Web services specification

Method JSON formatted request JSON formatted response

USERS (http://knowledge.uphero.com/users.php)

create firstName, lastName, email, [description] responseId, responseText, [newUserId]

update id, firstName, lastName, email, [description] responseId, responseText

delete id responseId, responseText

position id, longitude, latitude responseId, responseText

settings id, inviteMe, showEmail, showLocation responseId, responseText

GROUPS (http://knowledge.uphero.com/groups.php)

create name, description, ownerId responseId, responseText, [newGroupId]

update id, name, description responseId, responseText

delete id responseId, responseText

my ownerId responseId, responseText, [groups]

search keyword responseId, responseText, [groups]

ENROLMENTS (http://knowledge.uphero.com/enrolments.php)

inviteUser groupId, inviterId, email, [sendEmail] responseId, responseText

enroll groupId, userId, [action] responseId, responseText

cancel groupId, userId, [action] responseId, responseText

members groupId, userId responseId, responseText, [users]

apply groupId, userId responseId, responseText

userLocations userId responseId, responseText, [users]

QUESTIONS (http://knowledge.uphero.com/questions.php)

create name, question, userId, groupId responseId, responseText, [newQuestionId]

update id, name, question, groupId responseId, responseText

delete id responseId, responseText

searchByUser userId responseId, responseText, [questions]

http://knowledge.uphero.com/users.php
http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php
http://knowledge.uphero.com/questions.php

120

searchByGroup groupId responseId, responseText, [questions]

searchByString userId, keyword responseId, responseText, [questions]

searchById id responseId, responseText, [questions (full)]

ANSWERS (http://knowledge.uphero.com/answers.php)

create answer, userId, questionId responseId, responseText, [newAnswerId]

update id, answer responseId, responseText

searchByQuestion questionId responseId, responseText, [answers]

markAnswer id responseId, responseText

NEWS (http://knowledge.uphero.com/news.php)

markRead userId, typeId, value, [value2] responseId, responseText

getByUser userId responseId, responseText, [news]

The usage of Service Oriented Architecture (SOA) in mobile application development got the

acceleration during the last several years. This is a result of a wider Internet availability on

mobile devices and of improved capabilities of mobile devices in terms of hardware. There

are many projects that propose different SOA frameworks that could be used in development

of mobile applications (Papageorgiou et al., 2009; Yee et al., 2009). Although our prototype

application has Service Oriented Architecture, it is important to notice that the whole web part

of this prototyping system is developed only for supporting purposes, and many concepts that

should be implemented in commercial projects were not implemented here. Thus, the stated

web services are stripped off of any session keeping, security checking, logging etc.

3.4.2.4. Class models

The alignment between planned and implemented system architecture can be observed

through the final version of the class diagram. As it can be seen in Figure 31, it contains more

than 25 classes, and it is unreasonable to present it in detail thus it is presented on the level of

class names and relationships. The important conclusions that arise in this point are that

during the development, the business logic layer which contains the activity and service

classes become heavy but easy to maintain. The previously explained infrastructure was

followed through all five iterations, and it is easy to notice that asynchronous calls to web

services made the almost all activity classes to lean on ServiceAsyncTask and to receive the

results through AsyncTaskCallback interface. The obtained results were later transformed into

readable entity object through JsonAdapter object.

http://knowledge.uphero.com/answers.php
http://knowledge.uphero.com/news.php

121

Figure 31 - Final class model (mobile application)

122

3.4.2.5. Application screenshots

The glimpse view of several use cases of final application functionality can be seen in the

following figure containing the application screenshots. The presented functionality is fully

tested, and all unit test as well as acceptance tests resulted in success.

Figure 32 - Application screenshots

123

3.5. Stabilize

By definition, the purpose of this phase is to integrate smaller subsystems developed by

different teams into a single product. Activities that were performed during this phase are

exactly the same to the activities performed during the working days and thus artifacts the

teams usually create are semantically same as artifacts we created in the earlier phases. As our

mobile application was not divided into subsystems, there was no need to perform integration

activities.

The additional task that characterizes this phase of mobile application development is called

“Documentation wrap-up” task. Although the documentation was created during the whole

development process, especially during the planning days of each phase and iteration, this

task is specific as it produces the documentation for the project stakeholders and not for the

agile team. Thus, the outputs of this task are finalized architectural, design and UI documents.

Following the rules given in (Abrahamsson et al., 2005a) we produced the mentioned

documents that are salient, short and useful.

3.6. System test & fix

The important phase in the development of our project was System Test and Fix phase. As it

can be seen in figure (Figure 33) taken from VTT‟s web application (2006a), the most

important task is System Test task which comprises the activities of updating the test plan,

executing the tests, logging the results and reporting the defects.

Figure 33 - System Test and Fix phase

124

As defined in Mobile-D methodology, this activity is performed only once (i.e. after the

implementation phase of the project). The activities largely depend on the test results and

sometimes no fixes are necessary. Some artifacts used in this phase were only updated as they

had been already presented (UI tests, Acceptance tests, Integration Test, Unit tests) while

others were newly created (final release, documentation of found defects).

As identified during the testing, and described in the minutes of the post iterations workshops,

the following elements (see Table 36) of the mobile system functionality could be improved.

Table 36 - Recognized system limitations

Identified limitation of KnowLedge system

1 The system does not treat email as unique. This might reflect on problems with sending the email

invitation.

2 User cannot be invited or apply to join to a group repeatedly.

3 It is not possible to send email invitations to the users which are not already registered in KnowLedge

system. This might slowdown the progression in getting new users.

4 Not all news should be canceled manually, as there are some news that should be automatically canceled

(like notification of user leaving a group or similar).

5 Some data storage and data transfer optimization should be made. The existing content should not be

downloaded repeatedly.

6 In some cases, the possibility of changing an existing answer could be useful. This should be carefully

designed and planed with implementation of proper control.

The removal of these limitations would not have any influence on the identified set of artifacts

but would significantly extend the development process. As these functionalities were not

included in the user requirements, it was decided to leave them for some future versions of

this system. Thus, the activities of fixing the application were not necessary.

Finally, we moved forward to publish the final version of the application on Google Play

store. The process of publishing is straightforward and easy if all development activities are

performed carefully and application manifest entries are correct. Google does not perform any

manual application testing, and the only criteria that are to be satisfied concern the automated

testing of application package. Having this in mind, we had to create an application icon in

several formats, sign and publish the application by a wizard, and prepare the application

screenshots and description. After uploading these documents to Google Play, our

development process was officially finished. The application is available for download at

http://barok.foi.hr/~zstapic/knowledge/android.

http://barok.foi.hr/~zstapic/knowledge/android

125

3.7. Development of Windows Phone application

The development of KnowLedge application for Windows Phone (WP) target platform was

conducted after the development targeting Android platform. We used same Mobile-D

methodology and same Test Driven Development approach.

Expectedly, from the methodological perspective, the development process was much easier

as many artifacts developed earlier were completely or partially reused in this process. This

possibility of reusing the artifacts was of our specific interest, as the overall goal of this

research was to discover the similarities and to semantically describe them. While some

artifacts remained the same, the other could be reused only as templates and the last group

was formed from the artifacts that had to be built from scratch.

On the other hand, the development process was unexpectedly time-consuming. Although we

were completely familiar with the desired application functionality, and although we reused

some code templates, still the development for a new platform was a very challenging task

which brought many obstacles. WP technology is very different from Android technology,

and as can be seen from the description that follows, some aspects of the implementation

approach (for example, in user interface, in communication with web service, in internal

application structure) had to be reconsidered from scratch.

Additionally, although some artifacts were built from scratch their structure is very similar to

the structure of the artifacts we have already presented. Thus we find no reason to report the

whole process in detail again. Having this in mind, the following chapters discuss the

performed development phases, but from the point of view focusing on the similarities and

differences. Only completely new artifacts will be presented here.

3.7.1. Explore phase

The activities of stakeholder establishment, the scope definition and project establishment

were almost completely omitted in the development process for the second target platform. In

this phase, we didn‟t have to redefine the target users, stakeholders or initial requirements and

architecture line description as these remained the same as for the Android target platform.

The only activities that we had to perform included the definition of technological domain,

redefinition of technology related risks and needed skills.

Regarding the technology, we decided to define a requirement of the application being

runnable on any device running Windows Phone 7.5 (API level 7.1) or newer. The reasons for

choosing this API level are guided by the principle of targeting as many devices as possible.

As we do not need any capabilities of newer APIs, targeting 7.1 was a reasonable choice.

126

In a similar manner, the software architecture, project plan, documentation, and monitoring

measures remained the same as for Android. The planned duration was not changed by

purpose of making comparisons at the end of both development processes.

3.7.2. Initialize phase

The initialize phase took the same activities that we performed in the first development

process. The existing virtual machine along with the set of tools not related to the

development was reused, but the development environment for WP had to be established from

scratch. We installed Microsoft Visual Studio, WP7.1 SDK, WP Toolkit, Microsoft Zune and

connectivity software for our test devices. Finally, the testing of the development environment

was performed by creating test project and deploying it to the testing device.

On the other hand, the activities that were supposed to produce updated project plan,

architecture line plan and product backlog were unnecessary. All these artifacts including the

system architectural diagrams, definition of features and the first version of acceptance tests

remained the same and were reused. Thus again, we ended up with a product backlog

containing the description of 22 features to be implemented in this development process.

The only document that we had to build again was the document containing the user interface

sketches. The comparison of UI elements that are used in Android with those that could be

used in WP showed that the relationships are not always direct. The in-detail analysis of the

problem of automatic UI transformation was not in the focus of this research, but we found

this software engineering challenge very interesting and thus tried to identify the elements that

should be used in WP in order to give the user WP native look and feel along with the same

functionality. In Figure 34 we can see that, for example, list (in the background of the

Android sketch) can be translated to the same concept of list in the WP. But, the custom

dialog does not have a WP implementation and we can either use another screen, or make

changes in design of the existing form in a way that filter option will be a part of the main

screen.

127

.

Figure 34 - Translating user interface from Android to WP

In the same sense we had to find different solutions to translate some other concepts like

Android‟s toast message and progress dialogs.

The purpose of a trial day in this 0-iteration remained the same. The plans of features that

ought to be implemented in order to trial and establish the internal application infrastructure

remained the same. We also reused the data model completely and the story card and task

cards as partially reused artifacts. Even without the need to design and develop the supporting

backend system, the implementation of WP functionality took more time than planned and

much more time than for Android. There are many reasons for this, mostly concerning

platform restrictions and a narrowed set of usable features when compared to Android.

Additionally, the recommended practice in development of WP applications is to use

MVVM
19

 pattern which requests a significant increase in development efforts. The use of this

pattern helps in making a strong distinguishing line between the application layers in a multi-

layered architecture.

Finally, another problem in WP development is the application of TDD approach. Although

there are several 3
rd

 party unit testing frameworks available for use, we found them to be out

of date or without any maintenance and support – abandoned. The official Microsoft testing

framework for Windows Phone was released very recently (as a part of Visual Studio 2012

Update 2) and targets the testing of Windows Phone 8 mobile applications. Thus, we had to

use a limited functionality of Microsoft test framework that targets testing of .Net

19

 MVVM stands for Model View ViewModel architectural pattern from Microsoft. This pattern is largely based

on MVC pattern, but with the focus on event-driven programming of UI development platforms.

128

applications. This limited the testing functionality only on Core classes and not on the user

interface classes.

Figure 35 - Automated WP unit testing

The automated integration testing of WP was and still is impossible. There is no framework

that might provide the features of automatic or robotized testing of Windows Phone

applications, especially not for testing on devices. The only possible solution was to use a

software that is capable of recording mouse and keyboard events. As this solution did not

provide any possibility of making assertions we had to reject it and perform manual

integration testing at the end of iteration.

3.7.3. Productionize

The approach and issues that we faced during the four Productionize iterations were very

similar to the approach and issues we faced during the 0-iteration. We reused many artifacts

which were related to project plan, iteration plans, product backlog, acceptance tests and other

documentation. We also partially reused artifacts which were connected to activities of noting

the current tasks such as story and task cards.

There was not need to make any changes to existing web service and remote database, which

can bring us to conclude that the development process of these parts of the systems was

thorough and with good quality.

129

While developing the WP application, we found the Android classes that were used to define

entities very useful and we simply converted them to model classes in the new architecture.

Additionally, some classes that were classified as libraries and were used to manipulate with

JSON strings or to do housekeeping were also reused and easily translated to .Net. The

process of localizing the mobile application reused all keys and values, but the original XML

document had to be manually translated into a .Net resource file. We kept almost all the keys,

and used exactly the same translations in both applications. Finally, the logic used to prepare

the web service requests and to analyze the results was also reused and simply translated to

the new programming language.

On the other hand, the existing code related to user interface manipulation, as well as the code

related to web service asynchronous call and response had to be completely rejected. The .Net

architecture made it easier to implement this functionality by using the events and delegates.

3.7.4. Stabilize

As the exhausting testing was performed during the development which initially included the

integration with existing web services, at the end of the iterations the stabilize activities turned

out to relate only to finishing of the documentation by performing wrap-ups. The final (but

manual) integration testing was performed in this phase and as the results were positive we

were capable of finishing the architectural, design and UI documents and move forward in the

next iteration.

3.7.5. System test & fix

After having all iterations performed, the system test & fix activities were on schedule.

Similar to the Android case, unit, integration and acceptance tests were positive. As the initial

requirements were the same, the list of functionality that could be improved was also the

same. As the removal of these limitations would not have any influence on the identified set

of artifacts, we again decided to leave it for some future version of this system.

The process of publishing the finalized application on the Windows Market resulted in some

new artifacts. We were obliged to use Marketplace Test Kit tool, to package application into a

.XAP document and to provide the Market with icons and screenshots in different format than

those for Android. After the testing process, the application will be available for download at

http://barok.foi.hr/~zstapic/knowledge/wp.

http://barok.foi.hr/~zstapic/knowledge/wp

130

3.8. Conclusions on implementation

By observing the whole development process again we can conclude that the implemented

activities are well aligned with the planned activities. The following table (Table 37) displays

the planned and realized activities and only differences from the Android case are in the

duration of some activities while the overall project duration was shortened for 14 working

days, but all activities had to be performed.

Table 37 - Duration of planned and real activities

Stage/Phase/Activity
Duration in days

Planned Android WP
KnowLedge 101 87 71

Explore 5 4 1

 Stake holder establishment 2 1 0

 Scope definition 2 2 0,5

 Project establishment 1 1 0,5

Initialize 9 7 5

 Project set-up 3 2 1

 Planning day 0 3 2 0

 Working day 0 3 3 4

Productionize 73 69 62

 Iteration 1 – Group management 8 9 9

 Planning day 2 2 1

 Working day 5 6 7

 Release day 1 1 1

 Iteration 2 – Enrolment 8 9 10

 Planning day 2 2 1

 Working day 5 6 8

 Release day 1 1 1

 Iteration 3 – Question management 22 19 22

 Planning day 5 4 2

 Working day 15 13 17

 Release day 2 2 3

 Iteration 4 – News feed 22 12 11

 Planning day 5 3 2

 Working day 15 8 8

 Release day 2 1 1

 Iteration 5 – Settings and help 13 20 10

 Planning day 2 3 1

 Working day 10 16 8

 Release day 1 1 1

Stabilize 12 4 2

 Planning day 1 0 0

 Working day 5 0 0

 Documentation wrap-up 5 4 2

 Release day 1 0 0

System Test & Fix 2+ 1 1

 System test 2 1 1

The duration of the development process in WP case is shorter for 30 working days if

compared to the planned duration and is shorter for 16 working days (18.4%) if compared to

131

the Android development case. Such improvements in performance could be the result of the

fact that we had already been familiar with the system requirements, that the backend system

had already been developed and that different artifacts were partially or fully reused. On the

other hand, we stated that the development time was not significantly reduced as we

experienced many development issues and that the improvements could be result of our

approach. As this is not important for the rest of the research we did not performed detailed

analysis.

As serious testing had been done through all the iterations, the final tests were successfully

executed in both development cases and there was no need for any changes in the system

during the System Test and Fix phase. In any case, the overall development process was

conducted in such manner that all activities and artifacts defined by Mobile-D methodology

were performed and created.

Mobile application KnowLedge was designed to, by its purpose, cover the main and most

common functional development requirements, and as such, it is a representative of the vast

majority of mobile applications. Such requirements in general cover distinct development

concerns, including UI features, local database, device API-s, connection to web services and

3
rd

 party features.

As Mobile-D methodology is well defined, it was not hard to follow the development process

through all Mobile-D phases. Still, as the developed project was rather small and developed

solely by the researcher with some minor help from his supervisors, small and acceptable

divergence and misalignment with the Mobile-D was necessary. Still, we think that the

performed process faithfully demonstrates the development process that would be performed

by any small company developing a mobile application.

While developing Windows Phone application, the whole process was performed again. As

the structure of the created artifacts along with the development process was the same as the

one presented for the Android case, we found no reasons to report it again in detail. Thus, we

reported the development process from the point of view in which we discussed the

possibilities of reusing the existing artifacts. We found that many artifacts concerning the

planning activities were reusable. Some of them concerning the product backlog, source code,

resources and inner application logic were partially reusable, and of course, some had to be

created from scratch. We also found that the backend part of our system requested no changes

and although this lowered the overall workload the total development time was not shortened

as we experienced some WP platform specific issues and some testing issues.

All empirical evidence created during the implementation was used in the next phases of this

research process in order to identify their semantics, relationships and similarity between the

two target platforms.

132

3.9. Relevance of the chapter

This section reported the development of mobile application KnowLedge by implementing

Mobile-D methodology and Test Driven Development. First we gave a short overview of the

methodology and approach and we defined the point of view in which the created artifacts

took the most important role. Then, in the Android case, the performed phases were reported

in detail along with the created outputs and their connections. The Mobile-D process with its

clear technical specification was well documented and easy to follow and the overall

development process took less time than initially planned.

In the case of Windows Phone application development, the whole process was performed

again, but as the structure of the created artifacts was the same as the one presented in the

Android case, we found no reason to report it again in detail. Thus, we reported the

development process from the point of view in which we discussed the possibilities of reusing

the existing artifacts. We found that many of the artifacts were completely or partially

reusable.

We think that the performed process faithfully demonstrates the development process that

would be performed by any small company developing mobile applications. The empirical

evidence collected during this development was used in the subsequent research process of

identifying the methodological interoperability and semantically similar artifacts.

133

4. IDENTIFICATION OF THE ARTIFACTS

In this chapter we will look back on the implementation results but from the artifact

identification point of view. All artifacts that arose in the development sub-processes are

enumerated and systematized in order to prepare the inputs for the next phase of the semantic

description.

In order to perform a straightforward and unbiased analysis, first we defined the setting which

includes the definition of artifacts, the relations with other methodological concepts that will

be observed and the template that is to be used for the artifact description. As the artifacts

were observed as “any piece of software developed and used during software development

and maintenance” we found the list of Mobile-D artifacts related to the process tasks not

sufficient and thus we performed our own analysis.

Thus, we observed the development process for each target platform separately and identified

more than 70 artifacts that we initially grouped in 12 categories. After performing the cross-

platform analysis we found that more than 70% of all identified artifacts were in common to

both platforms and 66% percent of them are partially or completely reusable.

4.1. Analysis setting

In Chapter 3.1.3 we defined the conceptual model and gave a definition of artifacts that arise

in the development process which utilizes some development methodology. In our case,

Mobile-D methodology was chosen. For this research we adopted the Conradi‟s (2004)

definition of the artifacts as “any piece of software (i.e. models/descriptions) developed and

used during software development and maintenance. Examples are requirements

specifications, architecture and design models, source and executable code (programs),

configuration directives, test data, test scripts, process models, project plans, documentation

etc.”

The conceptual model given in the mentioned chapter introduces the position of the artifacts

in the overall development process. As the goal of this research was to analyze only the

structural and semantic aspects of these sets of artifacts, we performed an analysis only from

the semantic concept view, while other possible views, such as procedural concept view or

134

pragmatic concept view are not covered by it. Thus, we only observed the artifacts and their

connection to the activities and tasks. The semantic of this connection was reduced to the

concept of affiliation (e.g. which artifact is produced and used in which activity or task).

Figure 36 - Focusing semantic of artifacts and their origin

In this setting, the semantic concept view which describes the facts and the knowledge about

the observed world was used. Additionally, by applying a procedural concept view, the

analysis could be enhanced with procedural knowledge such as states, intentions, plans and

rules and by applying a pragmatic concept view it could be additionally described by

intentions, obligations or pragmatics of action. As we aimed to describe the concepts on

artifacts in order to enhance the reusability while developing for second and other target

platforms, the last two concept views are out of the scope of this research.

Mobile-D methodology, as described in chapter 3.1, comprises development process of five

phases which are executed in combined sequential and incremental manner. Table 23 given in

Chapter 3.1.3 presents inputs and outputs that were used in these phases. The list was created

according to the Mobile-D process library and it includes documents and other deliverables,

but also presents them at a very high level of abstraction and as completely platform-

independent. After summarizing the information given in the Mobile-D process library

(Abrahamsson et al., 2005a) and after correcting logical errors found in the existing overview,

the mentioned artifacts were read (R), updated (U) or created (C) in tasks as presented in

Table 38.

On the other hand, our analysis included only those documents that were used in the

development of our prototype projects and introduced specific platform dependent

deliverables. In this sense, our analysis, for example, provides a more specific description

than the output “implemented functionality” states or specifies exact standards that were used

rather than just specifying “relevant standards” as artifacts.

Producing Using some

Performed by

utilizing

Consists of Mobile-D

Process

Methods and

Practices
Tools

Inputs

Outputs Activities

and Tasks

Artifacts

135

Table 38 - Mobile-D artifacts by tasks

PHASE:

I - Explore

II - Initialize

III - Productionize

IV - Stabilize

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C

Task input R Read C Create

Task output U Update

R
e

le
as

e
 C

e
re

m
o

n
ie

s

Sy
st

e
m

 I
n

te
gr

at
io

n

D
o

cu
m

e
n

ta
ti

o
n

 w
ra

p
-u

p

Sy
st

e
m

 t
e

st

R
e

fa
ct

o
ri

n
g

Te
st

-d
ri

ve
n

 d
e

ve
lo

p
m

e
n

t

W
ra

p
-u

p
s

A
cc

e
p

ta
n

ce
 t

e
st

in
g

P
re

-r
e

le
as

e
 t

e
st

in
g

P
o

st
-i

te
ra

ti
o

n
 w

o
rk

sh
o

p

R
e

q
u

ir
e

m
e

m
e

n
ts

 a
n

al
ys

is

C
o

n
ti

n
u

o
u

s
in

te
gr

at
io

n

In
fo

rm
 c

u
st

o
m

e
r

P
ai

r
p

ro
gr

am
m

in
g

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 a

n
al

ys
is

A
cc

e
p

ta
n

ce
 t

e
st

 r
e

vi
e

w

A
cc

e
p

ta
n

ce
 t

e
st

 g
e

n
e

ra
ti

o
n

It
e

ra
ti

o
n

 p
la

n
n

in
g

A
rc

h
it

e
ct

u
re

 l
in

e
 d

e
fi

n
it

io
n

P
ro

ce
ss

 e
st

ab
li

sh
m

e
n

t

C
u

st
o

m
e

r
co

m
m

u
n

ic
at

io
n

e
st

ab
li

sh
m

e
n

t

A
rc

h
it

e
ct

u
re

 l
in

e
 p

la
n

n
in

g

 C
u

st
o

m
e

r
e

st
ab

li
sh

m
e

n
t

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 c

o
ll

e
ct

io
n

In
it

ia
l

p
ro

je
ct

 p
la

n
n

in
g

I III IV VII

136

(Table 38 continued)

Source: Based on information from (Abrahamsson et al., 2005a)

PHASE:

I - Explore

II - Initialize

III - Productionize

IV - Stabilize

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C

Task input R Read C Create

Task output U Update

R
e

le
as

e
 C

e
re

m
o

n
ie

s

Sy
st

e
m

 I
n

te
gr

at
io

n

D
o

cu
m

e
n

ta
ti

o
n

 w
ra

p
-u

p

Sy
st

e
m

 t
e

st

R
e

fa
ct

o
ri

n
g

Te
st

-d
ri

ve
n

 d
e

ve
lo

p
m

e
n

t

W
ra

p
-u

p
s

A
cc

e
p

ta
n

ce
 t

e
st

in
g

P
re

-r
e

le
as

e
 t

e
st

in
g

P
o

st
-i

te
ra

ti
o

n
 w

o
rk

sh
o

p

R
e

q
u

ir
e

m
e

m
e

n
ts

 a
n

al
ys

is

C
o

n
ti

n
u

o
u

s
in

te
gr

at
io

n

In
fo

rm
 c

u
st

o
m

e
r

P
ai

r
p

ro
gr

am
m

in
g

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 a

n
al

ys
is

A
cc

e
p

ta
n

ce
 t

e
st

 r
e

vi
e

w

A
cc

e
p

ta
n

ce
 t

e
st

 g
e

n
e

ra
ti

o
n

It
e

ra
ti

o
n

 p
la

n
n

in
g

A
rc

h
it

e
ct

u
re

 l
in

e
 d

e
fi

n
it

io
n

P
ro

ce
ss

 e
st

ab
li

sh
m

e
n

t

C
u

st
o

m
e

r
co

m
m

u
n

ic
at

io
n

e
st

ab
li

sh
m

e
n

t

A
rc

h
it

e
ct

u
re

 l
in

e
 p

la
n

n
in

g

 C
u

st
o

m
e

r
e

st
ab

li
sh

m
e

n
t

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 c

o
ll

e
ct

io
n

In
it

ia
l

p
ro

je
ct

 p
la

n
n

in
g

I III IV VII

PHASE:

I - Explore

II - Initialize

III - Productionize

IV - Stabilize

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C

- Task input R - Read C - Create

- Task output U - Update

R
e

le
as

e
 C

e
re

m
o

n
ie

s

Sy
st

e
m

 I
n

te
gr

at
io

n

D
o

cu
m

e
n

ta
ti

o
n

 w
ra

p
-u

p

Sy
st

e
m

 t
e

st

R
e

fa
ct

o
ri

n
g

Te
st

-d
ri

ve
n

 d
e

ve
lo

p
m

e
n

t

W
ra

p
-u

p
s

A
cc

e
p

ta
n

ce
 t

e
st

in
g

P
re

-r
e

le
as

e
 t

e
st

in
g

P
o

st
-i

te
ra

ti
o

n
 w

o
rk

sh
o

p

R
e

q
u

ir
e

m
e

m
e

n
ts

 a
n

al
ys

is

C
o

n
ti

n
u

o
u

s
in

te
gr

at
io

n

In
fo

rm
 c

u
st

o
m

e
r

P
ai

r
p

ro
gr

am
m

in
g

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 a

n
al

ys
is

A
cc

e
p

ta
n

ce
 t

e
st

 r
e

vi
e

w

A
cc

e
p

ta
n

ce
 t

e
st

 g
e

n
e

ra
ti

o
n

It
e

ra
ti

o
n

 p
la

n
n

in
g

A
rc

h
it

e
ct

u
re

 l
in

e
 d

e
fi

n
it

io
n

P
ro

ce
ss

 e
st

ab
li

sh
m

e
n

t

C
u

st
o

m
e

r
co

m
m

u
n

ic
at

io
n

e
st

ab
li

sh
m

e
n

t

A
rc

h
it

e
ct

u
re

 l
in

e
 p

la
n

n
in

g

 C
u

st
o

m
e

r
e

st
ab

li
sh

m
e

n
t

In
it

ia
l

re
q

u
ir

e
m

e
n

ts
 c

o
ll

e
ct

io
n

In
it

ia
l

p
ro

je
ct

 p
la

n
n

in
g

I III IV VII

137

Additionally, this agile methodology uses main concepts of planning, working and release day

through several phases. The activities and tasks, and thus the artifacts as well, are very similar

regardless of the phase they are created or used in. This means that the approach of

identifying and grouping the artifacts only according to the phases of the origin would not be

a good way. Thus, while identifying the artifacts, we initially collected the data that included

name, type/category, description and usage of the artifacts as presented in the following

template (Table 39).

Table 39 - Template for describing the identified artifacts

Artifact name Type Description I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

4.2. Artifacts targeting Android platform

After establishing the point of view we had decided to take in this research phase, we will

move forward to identify and summarize the artifacts that emerged in the Android

development process of our prototype mobile application. Although this has already been

stated, it should be highlighted again that the development process itself was pretty much

straightforward in following the Mobile-D methodology (see chapter 3.8) with only a slight

misalignment in the organizational point of view – the project was not developed in an

organization but by the researcher himself. Although this might have some negative and

arguable influences, we assumed that the possibility of taking notes and observing the

development process from the “inside” offers more advantages. We strived to follow all

practices as they have been defined by the professional community and/or Mobile-D

methodology, and we also developed a final and publishable product – the same as a company

would do.

Thus, from the conceptual point of view, we created a solid basis for identifying not only the

documents that had been created, but also other artifacts that might be hard to identify if the

project was performed outside the laboratory.

The table presented below shows the list of identified artifacts, along with their initial

classification, description and connection with the Mobile-D phases. We used standard CRU

notation for denoting the artifacts that were created (C), used/read (R) and updated (U).

138

Table 40 - Identified artifacts in development process for Android

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Mobile-D process

library
Document

Process library describing the Mobile-D

methodology in detail. Used as

methodology guidelines in every phase.

(Abrahamsson et al., 2005a)

R R R R R

Product proposal Document

Generated before the development process.

Describes the initial and general idea on

the product.

R

Initial requirements

document
Document

Created according to product proposal, but

later updated with information on

stakeholders and functional system

requirements. It is also updated during the

planning phase in 0-iteration and

subsequent iterations.

 C R U R U R R

Project plan Document

Contains all information on project

including definition of customer group,

scope, planned activities and their duration,

plans on documentation etc. Aligned with

agile practices, this document is also

updated during the iterations.

 C R U R U

Project plan

checklist

Document

artifact

Mobile-D project plan checklist. This

document is part of project plan.
 C U U U U

Project plan

checklist template
Template

Mobile-D project plan checklist

(Abrahamsson et al., 2005a)
R

Project plan Gantt

chart
Model

Model containing the graphical

information on project plan iterations,

activities and their duration. It is used in

Project plan document.

 C U U

Measurement plan
Document

artifact

Includes the metrics and plan for

monitoring of the project. In our case we

recorded only the duration of activities and

compared them with plan. This document

is part of project plan.

 C R U R U R U R U

Architecture line

description

Document

artifact

Created during the architecture line

definition task and updated in architecture

line planning activity. Contains the

information on system context,

technological scope, architectural risks etc.

This document is part of project plan.

 C R U R

Software

architecture and

design description

document (SADD)

Document
Contains the technical documentation on

the developed product.
 C R U R U

Architecture line

plan

Document

artifact

Contains the information on planned

system architecture. Created after the

prototyping is finished. This document is

part of SADD document.

 C

UI-illustrations
Document

artifact

Describes the illustrations of mobile

application user interface. It is part of

SADD document.

 C R U R R

139

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Data model (mobile) Model

Entity-Relationship-Attribute model of the

mobile database. It is presented in SADD

document.

 C R

Data model (web) Model

Entity-Relationship-Attribute model of the

web application. It is presented in SADD

document.

 C R U R

Web service

specification

Document

artifact

Contains information on exposed web

services along with available methods,

their parameters and other communication

elements. Part of SADD document.

 C R U R

Class model

(mobile)
Model

UML class diagram describing the mobile

application internal structure and created

classes. This model is used in SADD

document.

 C R U R

Class model (web) Model

UML class diagram describing the web

application internal structure and created

classes. This model is used in SADD

document.

 C R U R

Class
Model

element

UML model element used to describe a

new class that is to be implemented.
 C R U R

Android class
Model

element

UML model element used to describe an

existing Android class that is to be used.
 R R R

System Test plan Document
Contains the information on purpose, plan

and definitions of system test.
 C R U R U R R

Acceptance test
Document

artifact

Created during initial requirements

analysis. Contains the information on

acceptance test of one product feature. Can

include different contexts, and test

scenarios with sample data. The document

is part of System Test Plan document.

 C R U R R U

Acceptance test

template sheet
Template

Mobile-D acceptance test template sheet

(Abrahamsson et al., 2005a)
 R

Prototype

functionality
Code

Developed functionality during the trial

day. It prototypes some of the main

application functionalities and is used to

define the basic approach for implementing

the similar functionalities in other

iterations.

 C R

Product backlog Document

Contains the information on features that

are (to be) implemented in the

development process, through several

iterations. Users can contribute in defining

the features/stories.

 C R U R U

Story card
Document

artifact

Basic documentation card containing

information on one feature that is

implemented. It is defined during the

planning day but is refined during the

implementation and wrap-up. It is part of

the Product backlog document.

 C R U R U

Story card template Template
Mobile-D story card template

(Abrahamsson et al., 2005a)
 R

140

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Task card
Document

artifact

Basic documentation card containing the

information on one task that is to be

performed during the iteration. it is defined

during the planning day and refined during

implementation and wrap-up. It is part of

the Product backlog document.

 C R U R U

Task card template Template
Mobile-D task card template

(Abrahamsson et al., 2005a)
 R

Iterations plan
Document

artifact

Contains the information about planned

iterations along with selected features for

specific iteration. This document is part of

Product backlog document.

 R C R

Iteration backlog
Document

artifact

Contains the information on specific

iteration including story and task cards.

Each iteration document is created from

scratch. It is part of Product backlog

document.

 C C U

System test report Document

Final document on testing. Contains

information on performed tests and issues

detected.

 C

Test results
Document

artifact

Results are obtained during the whole

development process testing tasks. At the

end this document becomes part of System

test report.

 C R U R U R U

Defect list
Document

artifact

Document created after testing is

performed. It contains found issues and

planned activities. At the end this

document becomes part of System test

report document.

 C R U R U

Unit test Code

Unit test tests a single unit of code. It is

created in separate project and references

main project while performing different

assertions.

 C R U R R

Integration test Code
Robotized test which tests application

integrated functionality.
 C R U R R

API documentation Example
Android API documentation from

developers.android.com
 R R R

Example code Example
Android example code on different topics

found on the internet from various sources.
 R R R

Development

unrelated software

tools

Software

These software tools support the main

operations performed by project team. For

example these include office suit, PDF

reader, image editor etc.

 C

Project management

software tool
Software The tool used for project management. C

Drivers Software
Set of drivers used to install the device

connectivity for testing purposes.
 C

Development

environment
Software

Set of applications used for Android

development. We used Eclipse base SDK.
 C

Throw-away

prototype
Code

Project created to test development

environment and connected devices. This

project is discarded.

 C

141

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Web application

development

environment

Software
The web application development and

hosting environment had to be set up.
 C

Mobile application Product
The mobile application created in the

development process.
 C U U

Web service Product
The web part of the system created in the

development process.
 C U

Java code Code
Java code developed during the

implementation activities.
 C R U R R

PHP code Code
PHP code developed during the

implementation activities.
 C R U

XML resource Code
XML code describing application layout,

menus, localized strings etc.
 C R U

Application

manifest
Code

XML document containing the information

on application. This document is most

important code artifact.

 C U R

Google Play

Services
Code

Google library containing the classes

necessary if using Google Maps.
 R

Activity Code

Represents java class that inherits Android

Activity class with the purpose of

controlling the application view.

 C R U R

Layout Code
Represents XML code that is used to

describe user interface form or screen.
 C R U

Layout element Code

Represents XML code that is used to

describe any user interface element such as

text box, list box, button etc.

 C R U

Localization strings Code

Represent XML code that is used to

provide localized translation of values

according to value unique key.

 C R U R

Google API Key License

Google license identifying the developer as

unique person. This key is application

specific and is used when using Google

Maps API.

 R C

IEEE Standard No.

RFC4627 (JSON)
Standard

Standard defining the JSON format.

(Crockford, 2006)
 R R

Application

screenshot
Resource

Application screenshots are created as

needed for publishing process.
 C U U

Application icon Resource
Application icon is designed as needed for

publishing process.
 C

Application

description
Resource

Short but important description used for

publishing process. It includes the

information on application, category,

authors etc.

 C

Deployment

package
Resource APK file created for publishing purposes. C

C – Created, R – Read/used, U - Updated

142

The identification process resulted in total of 60 different artifacts that are grouped in 12

groups according to their type. From our point of view, which is based on conceptual analysis

of semantic interoperability among different target platforms, we identified the following

types related to Android development:

Table 41 - Types of artifacts related to Android development

Artifact type Description

Document
Represents used documents or created artifacts that are published as documents during

or at the end of development process.

Document artifact
Represents document that could be observed as stand-alone artifact, but is usually

included in some other document.

Template Represents templates that are used to create some artifacts.

Model
Represents models that are created during the development process. Models could be

observed as stand-alone artifacts, but are usually presented as a part of some document.

Model element
Represents the atomic level (i.e. integral) artifact that could be observed as stand-alone

and is used to create models.

Code
Represents any artifact created during the implementation and is written in any

programming or description language.

Example
Represents code artifacts created by third party and used as examples of implemented

functionality or to solve some programming issue.

Software Represents software tools used during the entire project.

License
Represents individual-specific unique key that is obtained or used during the

development process.

Standard
Represents document containing formal and internationally recognized description of

some concept or element.

Publishing resource
Represents resources that are created during the development process and are used in

publishing purposes.

Product Represents final product as most important project deliverable.

Although some semantic links between the identified artifact types are obvious, the detailed

semantic analysis, the definition of the relationships and the hierarchy among the artifacts and

the identified types was performed in the next research phase and hence they were not focused

on in this phase. In order to facilitate understanding, at this point it should be pointed out that

some documents contain parts (document artifact) that should be observed separately which is

why we identified them as a specific (new) type. Similarly, the model element could be

observed as a stand-alone artifact used to build more complex models.

4.3. Artifacts targeting Windows Phone platform

As has been reported in Chapter 3.7, the development of mobile application targeting

Windows Phone (WP) platform aimed to analyze if the existing artifacts from the Android

case can be reused. This resulted in the fact that several activities in the Explore phase were

completely omitted and some other activities were simplified due to the artifacts partial reuse.

But, although all used artifacts were not created in the windows phone development process,

143

we nevertheless consider them as artifacts that belong to this process and subsequently they

were included in the following table.

The cross-platform comparison and analysis of the artifacts similarity was performed later and

is not in focus of this chapter. We bring here the list of the identified artifacts that were used

in the Windows Phone development case. Again, we used the standard CRU notation for

denoting the artifacts that were created (C), used/read (R) and updated (U).

Table 42 - Identified artifacts in Windows Phone case

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Mobile-D process

library
Document

Process library describing the Mobile-D

methodology in detail. Used as

methodology guidelines in every phase.

(Abrahamsson et al., 2005a)

R R R R R

Product proposal Document

Generated before the development process.

Describes the initial and general idea on

the product.

R

Initial requirements

document
Document

Created according to product proposal, but

later updated with information on

stakeholders and functional system

requirements. It is also updated during the

planning phase in 0-iteration and

subsequent iterations.

 C R U R U R R

Project plan Document

Contains all information on project

including definition of customer group,

scope, planned activities and their duration,

plans on documentation etc. Aligned with

agile practices, this document is also

updated during the iterations.

 C R U R U

Project plan

checklist

Document

artifact

Mobile-D project plan checklist. This

document is part of project plan.
 C U U U U

Project plan

checklist template
Template

Mobile-D project plan checklist

(Abrahamsson et al., 2005a)
R

Project plan Gantt

chart
Model

Model containing the graphical

information on project plan iterations,

activities and their duration. It is used in

Project plan document.

 C U U

Measurement plan
Document

artifact

Includes the metrics and plan for

monitoring of the project. In our case we

recorded only the duration of activities and

compared them with plan. This document

is part of project plan.

 C R U R U R U R U

Architecture line

description

Document

artifact

Created during the architecture line

definition task and updated in architecture

line planning activity. Contains the

information on system context,

technological scope, architectural risks etc.

This document is part of project plan.

 C R U R

144

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Software

architecture and

design description

document (SADD)

Document
Contains the technical documentation on

the developed product.
 C R U R U

Architecture line

plan

Document

artifact

Contains the information on planned

system architecture. Created after the

prototyping is finished. This document is

part of SADD document.

 C

UI-illustrations
Document

artifact

Describes the illustrations of mobile

application user interface. It is part of

SADD document.

 C R U R R

Data model (mobile) Model

Entity-Relationship-Attribute model of the

mobile database. It is presented in SADD

document.

 C R

Data model (web) Model

Entity-Relationship-Attribute model of the

web application. It is presented in SADD

document.

 C R U R

Web service

specification

Document

artifact

Contains information on exposed web

services along with available methods,

their parameters and other communication

elements. Part of SADD document.

 C R U R

Class model

(mobile)
Model

UML class diagram describing the mobile

application internal structure and created

classes. This model is used in SADD

document.

 C R U R

Class model (web) Model

UML class diagram describing the web

application internal structure and created

classes. This model is used in SADD

document.

 C R U R

Class
Model

element

UML model element used to describe a

new class that is to be implemented.
 C R U R

.Net class
Model

element

UML model element used to describe an

existing .Net class that is to be used.
 R R R

System test plan Document
Contains the information on purpose, plan

and definitions of tests.
 C R U R U R R

Acceptance test
Document

artifact

Created during initial requirements

analysis. Contains the information on

acceptance test of one product feature. Can

include different contexts, and test

scenarios with sample data. The document

is part of System Test Plan document.

 C R U R R U

Acceptance test

template sheet
Template

Mobile-D acceptance test template sheet

(Abrahamsson et al., 2005a)
 R

Prototype

functionality
Code

Developed functionality during the trial

day. It prototypes some of the main

application functionalities and is used to

define the basic approach for implementing

the similar functionalities in other

iterations.

 C R

145

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Product backlog Document

Contains the information on features that

are (to be) implemented in the

development process, through several

iterations. Users can contribute in defining

the features/stories.

 C R U R U

Story card
Document

artifact

Basic documentation card containing

information on one feature that is

implemented. It is defined during the

planning day but is refined during the

implementation and wrap-up. It is part of

the Product backlog document.

 C R U R U

Story card template Template
Mobile-D story card template

(Abrahamsson et al., 2005a)
 R

Task card
Document

artifact

Basic documentation card containing the

information on one task that is to be

performed during the iteration. it is defined

during the planning day and refined during

implementation and wrap-up. It is part of

the Product backlog document.

 C R U R U

Task card template Template
Mobile-D task card template

(Abrahamsson et al., 2005a)
 R

Iterations plan
Document

artifact

Contains the information about planned

iterations along with selected features for

specific iteration. This document is part of

Product backlog document.

 R C R

Iteration backlog
Document

artifact

Contains the information on specific

iteration including story and task cards.

Each iteration document is created from

scratch. It is part of Product backlog

document.

 C C U

System test report Document

Final document on testing. Contains

information on performed tests and issues

detected.

 C

Test results
Document

artifact

Results are obtained during the whole

development process testing tasks. At the

end this document becomes part of System

test report.

 C R U R U R U

Defect list
Document

artifact

Document created after testing is

performed. It contains found issues and

planned activities. At the end this

document becomes part of System test

report document.

 C R U R U

Unit test Code

Unit test tests a single unit of code. It is

created in separate project and references

main project while performing different

assertions.

 C R U R R

Integration test
Document

artifact

Represents the description and results of

integration test that is performed manually.

This document is part of System Test Plan

document.

 C R U R R

API documentation Example
WP API documentation from

http://msdn.microsoft.com
 R R R

146

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Example code Example
WP example code on different topics

found on the internet from various sources.
 R R R

Development

unrelated software

tools

Software

These software tools support the main

operations performed by project team. For

example these include office suit, PDF

reader, image editor etc.

 C

Project management

software tool
Software The tool used for project management. C

Drivers Software
Set of drivers used to install the device

connectivity for testing purposes.
 C

Development

environment
Software

Set of applications used for Windows

Phone development and integrated in

Visual Studio.

 C

Throw-away

prototype
Code

Project created to test development

environment and connected devices. This

project is discarded.

 C

Web application

development

environment

Software
The web application development and

hosting environment had to be set up.
 C

Mobile application Product
The mobile application created in the

development process.
 C U U

Web service Product
The web part of the system created in the

development process.
 C U

C# code Code
C# code developed during the

implementation activities.
 C R U R R

PHP code Code
PHP code developed during the

implementation activities.
 C R U

XAML description Code
XML based XAML code describing

application layout and layout elements.
 C R U

WMAppManifest Code

XML document containing the information

on application. It includes the information

on some application resources. It is created

automatically.

 C R

Microsoft Phone

Controls Toolkit
Code

Library containing the classes necessary

for adding some basic and advanced

controls.

 R R

Silverlight Map

Control
Code

Library containing the classes necessary

for using Bing maps in WP application.
 R

Page (C#) Code
Represents C# class that has the purpose of

controlling the application view.
 C R U R

Page (XAML) Code
Represents XAML code that is used to

describe user interface form or screen.
 C R U

Page element Code

Represents XAML code that is used to

describe any user interface element such as

text box, list box, button etc.

 C R U

Resource file Code

Represents code that is used to provide the

application with resources (strings, images,

icons, audio, files and other). We used it to

provide the application with localized

translation for two languages.

 C R U R

147

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Bing maps key License

Microsoft license identifying the developer

as unique person. This key is application

specific and is used when using Silverlight

Map Control.

 R C

IEEE Standard No.

RFC4627 (JSON)
Standard

Standard defining the JSON format.

(Crockford, 2006)
 R R

Application

screenshot
Resource

Application screenshots are created as

needed for publishing process.
 C U U

Application icons Resource
Application icons are designed as needed

for publishing process.
 C

Application

description
Resource

Short but important description used for

publishing process. It includes the

information on application, category,

authors etc.

 C

Deployment

package
Resource XAP file created for publishing purposes. C

C – Created, R – Read/used, U - Updated

The total of 61 artifacts were identified and described. All artifacts are classified according to

the same classification of 12 different artifact types recognized in the first development case.

In the following chapter, a cross-platform analysis will be performed in order to identify

common, specific, and partially reusable artifacts in both development processes.

4.4. Cross-platform artifacts comparison

The undertaken activities of identifying and describing the artifacts that were used in the two

development cases resulted in a list of 60 artifacts in the Android case and 61 artifacts in the

Windows Phone case. The initial classification of these artifacts resulted in 12 different types.

The purpose of this chapter is not to perform a detailed semantic analysis of the artifacts

relations, but rather to do a cross-platform comparison in order to separate those that are

common to both platforms from those that are specific to one or the other and those that are

partially reusable.

We strongly believe that the order of execution of the development cases did not have any

influence on the identified set of artifacts. We also believe that the artifacts that were reusable

in our presented scenario would also be reusable if we developed for Windows Phone first.

However, having only this development case, we cannot make strong conclusions, but the

evidence collected in this scenario indicates on this characteristic. This could be another

positive aspect of the approach taken in this dissertation.

148

4.4.1. Common artifacts

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are

common to both development cases. Thus, we named them common artifacts. These artifacts

are enumerated in Table 43.

Table 43 - Common artifacts in Android in WP case

Artifact name Identical
Partially

reused
Different

Mobile-D process library X

Product proposal X

Initial requirements document X

Project plan X

Project plan checklist X

Project plan checklist template X

Project plan Gantt chart X

Measurement plan X

Architecture line description X

Software architecture and design description document X

Architecture line plan X

UI illustrations X

Data model (mobile) X

Data model (web) X

Web service specification X

Class model (mobile) X

Class model (web) X

Class X

System test plan X

Acceptance tests X

Acceptance test template sheet X

Prototype functionality X

Product backlog X

Story card X

Story card template X

Task card X

Task card template X

Iterations plan X

Iterations backlog X

System test report X

Test results X

Defect list X

Unit test X

Integration test X

API documentation X

Example code X

Development unrelated software tools X

Project management software tool X

Drivers X

Development environment X

Throw-away prototype X

Web application development environment X

Mobile application X

Web service X

PHP code X

IEEE standard No.RFC4627 (JSON) X

Application screenshot X

149

Application icon X

Application description X

Deployment package X

TOTAL (50) 20 13 17

Additionally, many of these common artifacts are platform independent as being products of

methodological approach. In total, 20 out of 50 identified artifacts (40.00%) have been

created or obtained only once, as these were identical in both development processes. In this

group, it is important to distinguish between those artifacts that were only used as inputs

while performing the methodology (like Mobile-D process library, various templates,

standards, tools) and those that had to be created by a development team, but only once (like

artifacts concerning some aspects of project planning activities, testing or backend system

development activities). A proper reuse of these artifacts will give the development team the

first fruits of taking the approach we are proposing in this dissertation.

On the other hand, there are 13 artifacts (26.00%) that could be partially reused while

performing the development process for the second or any other target platform. There are

various reuse levels that we recognized in this group (from reusing artifact creation approach,

reusing content inner logic, to reusing some parts of content itself). We believe that a different

additional analysis should be performed in this direction and that the results could give a more

specific knowledge on reusable artifact elements, which, in the end, could result in more

specific and easier to follow instructions and thus better results for development teams.

Finally, we recognized 17 artifacts (34.00% of all common artifacts) with a very low level of

possible reuse. They were classified as ones that should be developed from scratch for every

target platform.

The results presented in this chapter are very encouraging and we can conclude that they

create a strong basis and motivation for additional research and analyses. In this dissertation,

we have covered only one possible approach, but as has been stated before, other approaches

are also welcome.

4.4.2. Platform dependent artifacts

The artifacts that are characteristic for one target platform and are significantly different from

artifacts of other target platform are classified as platform dependent artifacts. As presented in

Table 44 there are 10 Android specific artifacts and 11 Windows phone specific artifacts that

were created in this particular development case.

150

Table 44 - Android and WP specific artifacts

Android specific artifacts

Android class

Java code

XML resource

Application manifest

Google Play Services

Activity

Layout

Layout element

Localization strings

Google API Key

TOTAL (10)

Windows Phone specific artifacts

.Net class

C# code

XAML description

WMAppManifest

Microsoft Pone Controls Toolkit

Silverlight Map Control

Page (C#)

Page (XAML)

Page element

Resource file

Bing maps key

TOTAL (11)

If we carefully observe and compare these platform specific artifacts, we can conclude that

even in this case there are some semantic similarities. For example, Java code and C# code

are separate artifacts but they might have reusable parts like sequencing, iterations, algorithms

etc. Thus we did not reject them as irrelevant for the rest of the research, and have used them

as well in the next phase of the semantic analysis.

4.5. Relevance of the chapter

To summarize, in this chapter we have identified all artifacts that arose in our development

process for two target platforms: Android and Windows Phone. The artifacts are observed as

“any piece of software developed and used during software development and maintenance”

(Conradi, 2004), and thus we first created a list of artifacts that were specific for Mobile-D

methodology and then enhanced it with the artifacts identified in our development cases. The

total of 71 artifacts were recognized and initially classified in 12 different categories.

Our cross-platform analysis showed that 50 artifacts (70.42%) are common to both

development cases. We found that 20 artifacts are exactly the same in both cases and another

13 artifacts are partially reusable. Thus, in total the 33 artifacts (66.00% of the common

151

artifacts) are completely or partially reusable. This brought us to the conclusion that these

results provide a solid basis and motivation for the semantic analysis that follows.

With the identification and cross-platform analysis of the artifacts we have concluded the

second phase of our research process. We now move to the third phase where we will

semantically and ontologically describe these artifacts.

153

5. THE ONTOLOGY FOR METHODOLOGICAL

INTEROPERABILITY

The main goal of this research is to ontologically describe artifacts that arise in the

methodologically managed process of mobile application development targeting two or more

mobile platforms, and to create the basis for more efficient and interoperable process of multi-

platform mobile applications development.

In the previous chapters we analyzed the state of the art in the usage of methodologies for

mobile applications development, and also performed a development process for two different

target platforms by utilizing Mobile-D methodology, and based on the gathered empirical

evidence we identified more than 70 different artifacts that arose in these two development

cases.

In this chapter we will move on to our last research phase in order to semantically describe

the identified artifacts, their meaning and relations and finally to create a formal ontology

containing the knowledge on possibilities of artifacts reuse in multi-platform mobile

application development.

The chapter is organized in four parts. First, we will introduce and define the concept of

ontology, discuss possible usages, types, development methodologies and tools, in order to

determine the type of our ontology along with the environment that will be used to develop

and describe the ontology. Secondly, we will develop an ontology describing the development

for Android platform and in this part we will focus on ontology development by utilizing an

ontology development methodology. In the third part we will define the second ontology

describing the development for Windows Phone target platform and in this part we will put

focus on the concepts of ontology reuse and update.

Finally, in the fourth part we will present the development of the common ontological

description for both platforms, and in this chapter we will focus on the concepts of ontology

merging, extension, evaluation and testing.

154

5.1. Ontology

5.1.1. Definitions

The term ontology is a philosophical term that has its roots in Greek words “on” (genitive

“ontos”) - “being”, and “logia” - “writing about, study of”. It is often stated that Greek

philosophers Parmenides, who argued about nothingness, and Aristotle, who argued about

theory of being in his work Metaphysics, begot the concept of ontology in the 4
th

 century BC.

Since then, many other philosophers have used the concept and the term. In philosophy

ontology is defined as “a branch of metaphysics concerned with identifying, in the most

general terms, the kinds of things that actually exist. Thus, the ontological commitments of a

philosophical position include both its explicit assertions and its implicit presuppositions

about the existence of entities, substances or beings of particular kinds” (Kabilan, 2007). In

other words, ontology is the theory of existence.

From our perspective, we are more interested in the concept of ontology that is currently used

in some other disciplines including Artificial Intelligence, Knowledge Management,

Information Systems and Software Engineering. Gruber (1993a) defined ontology as “an

explicit specification of conceptualization”. To put it another way and according to Gruber,

ontology is a specification of a representational vocabulary for a shared domain of discourse

and it includes definitions of classes, relations, functions and other objects. According to

Gong et al. (2006), ontology is a general conceptualization of a specific domain in a format

readable to humans and to machines. Same authors define Process Description Ontology as a

formal semantics to traditional process modeling elements, such as entities, objects and

activities, their relationships et cetera.

Following Gruber‟s definition, Studer et al. (1998) defined ontology as “a formal, explicit

specification of a shared conceptualization.” This definition includes: the term

conceptualization as an abstract modeling of some phenomenon and identification of its

relevant concepts; the term shared representing that the knowledge included in the ontology

should be consensual and shared; the term formal to exclude the use of natural languages and

to make the ontology machine readable: and the term explicit denoting that the concepts and

the constraints on their use should be explicitly defined.

On the other hand, based on their experience Noy and McGuinness (2001) took the pragmatic

approach and defined the ontology as “a formal explicit description of concepts in a domain

of discourse (classes (sometimes called concepts)), properties of each concept describing

various features and attributes of the concept (slots (sometimes called roles or properties)),

and restrictions on slots (facets (sometimes called role restrictions))”.

155

According to Hilera et al. (2010) ontology is a knowledge representation tool, and the

knowledge representation tools can be classified at four different levels. Dictionaries,

taxonomies, thesauri and ontologies are respective representatives of these levels. The last

one, the ontology level, includes definitions of concepts (dictionaries), implicit or explicit

vocabulary, as well as descriptions of specialized relationships between concepts

(taxonomies), lexical and equivalence relationships (thesaurus), and combination of

relationships with other more complex relationships between concepts to completely represent

a certain knowledge domain.

As we can see, the term “ontology” was taken from philosophy, but its use and meaning in

Computer Science got a new and adapted perspective. As there is no consensus on the

definition of ontology, in the context of this research we consider ontology as an explicit

formal conceptualization of a shared understanding of the domain of interest which includes

vocabulary of terms for describing the domain elements, semantics in order to define the

relationships of the domain elements and pragmatics in order to define possible usages of

these elements.

5.1.2. Uses of ontologies

The use of ontologies in the domain of Computer Science grew rapidly in the last two

decades. Firstly, ontologies were used mainly as tools in the area of Artificial Intelligence, but

now, their usage become popular in many other fields as they provided the domain experts the

possibility of categorizing the domain knowledge.

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use

of ontologies. They found following reasons which are here shortly explained and

demonstrated on our example:

 To share common understanding of the structure of information among people or

software agents. In our case, after having the ontology of artifacts that arose in the

development process defined, we created a basis for development of an automated

system or software agent that could provide teams with information on requested

queries or event in order to guide them in the development process.

 To enable reuse of domain knowledge. This is one of the strongest reasons for

ontology usage. For example, if we need a detailed description of the Android

operating system in our ontology, we can simply reuse the existing ontology if one

exists. Additionally, we might consider using an existing general ontology and

extending it to the knowledge describing our domain.

 To make domain assumptions explicit. Explicit assumptions bring several advantages

in terms of understanding, improving or correcting knowledge. Thus, the assumptions

156

created in our ontology of artifacts can be changed without the need to change the

system that uses them, and will still be readable to people without any knowledge

about the design of the system that is based on the ontology.

 To separate domain knowledge from the operational knowledge. This is another

common use of ontologies. In our example, we could describe the artifacts and their

relationships separately from describing the operational knowledge on using those

artifacts. Thus, the system built on this operational knowledge could be easily fed with

some other ontology of artifacts without the need to be changed.

 To analyze domain knowledge. The process of creating ontologies is possible only

when the domain terms are declaratively specified. The ontological description thus

enhances declarative description and makes the knowledge formal and reusable.

In the end, it is important to notice that ontology should not have a purpose in itself. The

ontologies should be built with an existing idea of their application. The desired application

always has an influence on the ontology structure and its final form. Thus, the ontological

description of artifacts that arise in the methodologically driven development process would

not be the same if we build it with the idea of using the application in teaching on

methodological process and if we build it with the idea of using the application to advise and

help on artifact reuse when developing for different platforms.

5.1.3. Ontologies and semantic interoperability

Interoperability is in nature multilateral and can be best understood as a shared value of the

community. According to European Interoperability Framework for European Public Services

(EIF) (European Commission, 2010) the interoperability within the context of European

Public Services delivery can be defined as “ability of disparate and diverse organizations to

interact towards mutually beneficial and agreed common goals, involving the sharing of

information and knowledge between the organizations, through the business processes they

support, by means of the exchange of data between their respective ICT systems.” Also, the

EIF defines Interoperability framework as “an agreed approach to interoperability for

organizations that wish to work together towards the joint delivery of public services. Within

its scope of applicability, it specifies a set of common elements such as vocabulary, concepts,

principles, policies, guidelines, recommendations, standards, specifications and practices.”

In the context of this research, the IEEE definition of interoperability will be adopted and

extended. The original definition (IEEE Computer Society., 1990) says that interoperability is

“the ability of two or more systems or components to use the information that has been

exchanged”. The definition of interoperability will be extended with the methodological and

social component to “the ability of two or more systems, components, teams or team members

157

to use and exchange the information and methodological artifacts that have been created

during the mobile application development process”.

Observing from different points of view, we can talk about several types of interoperability.

The most suitable division for this research is the one that defines two types of

interoperability. Several authors are talking about semantic and syntactic interoperability

(Park and Ram, 2004). So, according to Park and Ram semantic interoperability is the

knowledge-level interoperability which provides the interoperable systems with a possibility

to bridge the semantic conflicts, and syntactic interoperability is the application-level

interoperability that allows interoperable systems to cooperate regardless of their

implementation techniques (Park and Ram, 2004). This thesis will deal only with semantic

interoperability.

Additionally, Park and Ram define three different areas of semantic interoperability.

Mapping-based approach creates mappings between semantically related information

sources, intermediary-based approach depends on the use of intermediary mechanisms to

achieve interoperability, and query-oriented approach is based on interoperable languages

(Park and Ram, 2004) (Gong et al., 2006). The mapping-based approach is not designed to be

independent of particular schemas and applications; the query-oriented approach requires the

users to understand all underlying local databases; so the most promising approach is the

intermediary-based approach as it uses intermediary mechanisms such as mediators or

ontologies, which may have domain-specific knowledge, mapping knowledge, or rules

specifically developed for coordinating various and autonomous information sources (Park

and Ram, 2004).

According to Paulheim and Probst (2010), interoperability can be performed on different

levels, and subsequently they define integration on data source level, integration on the

business logic level and integration on the user interface level.

Surprisingly, interoperability on the methodological level is rarely mentioned in literature.

Thus, the goal of this research is to create an ontological definition that can be used as a

knowledge source for information system guiding the development teams to increase the

methodological interoperability by reusing the artifacts that are created in the development

process of mobile application for the second and every other target platform.

5.1.4. Ontology types

There is no single point of view which could be taken when defining ontology types.

According to Lovrenčić (2007) ontologies can be grouped in accordance with their forms, the

volume and the type of conceptualization structure, the conceptualization subject and the

richness of described content. The same author emphasizes that the most common

158

classification is according to the conceptualization subject. Upon adapting the classification

from (Gómez-Pérez, 2004) she describes the following eight categories of ontology types

(Lovrenčić, 2007):

 Knowledge representation ontologies aim to represent the domain knowledge by

utilizing a knowledge representation paradigm. These ontologies are built from

common modeling artifacts – classes, relationships and attributes. The most commonly

used knowledge representation paradigms are Frame Ontology, Resource Description

Framework (RDF), RDF Schema (RDFS), Ontology Interface Layer (OIL), DARPA

Agent Markup Language + OIL (DAML+OIL) and Web Ontology Language (OWL).

 General/Common Ontologies describe the common knowledge that can be used in

different domains. These ontologies define different general concepts like time, space,

events and similar.

 Top-level Ontologies describe abstract concepts which are related to the specific

concepts used in ontologies at lower abstraction level. These ontologies should be

universal and expressive. Some of well-known upper-level ontologies are Cyc (aims to

describe the whole human consensual knowledge) and SUMO (Suggested Upper

Merged Ontology supported by IEEE).

 Domain Ontologies describe concepts belonging to one specific domain. The domain

should be described at the highest possible abstraction level so the ontology could be

reused while developing other ontologies in the same domain. Some of the domains

could be Education, Law, Knowledge Management, Medicine, Engineering et cetera.

As the number of domains grew, the need for structured ontology libraries resulted in

several well-known libraries like Protégé Ontology Library, DAML Ontology Library

and others.

 Task Ontologies describe the concepts that are related to a specific task or activity and

needed to solve the problems related to that task.

 Domain Task Ontologies are similar to Task Ontologies, but are reusable in the same

domain. We consider these ontologies as more general.

 Method Ontologies give the description of the concepts that are used in the

specification of the process of decision making in order to solve a task.

 Application Ontologies define the concepts related to the knowledge in a specific

application. These ontologies are dependent on their appliance and usually extend

other domain and task ontologies related to the observed application.

As it can be seen from the listed ontology types, the main difference between the ontologies is

in the level of abstraction of the described concepts. They form a continuum that covers

concepts ranging from being very specific to being very general and abstract. The level of

abstraction is directly connected to the possibility of ontology reusability as general

159

ontologies are highly reusable and those describing specific concepts are not (Lovrenčić,

2007).

Similar ontology classification created upon ontology generality was created by Guarino

(1998). He defined four types of ontologies we already mentioned: Top-level Ontology,

Domain Ontology, Task and Problem Solving Ontology and Application Ontology. These

types are, according to Guarino, hierarchically ordered as it is shown in Figure 37.

Figure 37 - Guarino's types of ontologies according to generality level

As domain ontology can be defined as a network of domain model concepts (topics,

knowledge elements) that defines the elements and the semantic relationships between them

(Brusilovsky et al., 2005), the use of domain ontologies is suitable to describe all content

regarding development methodology and approach, and thus, the ontology that is a subject of

this research is classified as domain ontology as well. In this way, the adaptive Web-based

system, which we plan to develop on the base of the results of this research, will be able to

select and recommend the most relevant reusable content during the development of multi-

platform mobile application.

5.1.5. Ontology development methodologies

Gruber (1993b) defined five principles that became de facto standard in the ontology design

not only in the Artificial Intelligence field but also in other fields where ontologies are used.

These five principles include clarity, coherence, extendibility, minimal encoding bias and

minimal ontological commitment. We will give a glance overview of these principles as they

are the goals that should be achieved in every ontology development activity. According to

(Gruber, 1993b) the principles can be described as:

Application

Ontology

Domain Ontology
Task and Problem

Solving Ontology

Top-level

Ontology

160

 Clarity: Ontology should be able to transmit the encapsulated knowledge and the

meaning to its users through objective and complete definitions. Documentation of

definitions should be written in a natural language.

 Coherence: Ontology should be logically coherent at the level of axioms as well as

informally coherent in concepts that are described for instance in a natural language or

in examples. Subsequently, the inferred knowledge should be coherent to that

described in the documentation.

 Extendibility: Ontology should be designed to anticipate the usage of a shared

vocabulary in such a way that it should be possible to extend the ontology with new

terms that are based on the existing vocabulary without the need of changing the

existing definitions.

 Minimal encoding bias: The conceptualization should be specified at the knowledge

level without depending upon any symbol or language encoding. This will enable the

automatic transformation of ontology among different encoding styles and will enable

the usage of ontology in knowledge-sharing agents implemented in different

representation systems.

 Minimal ontological commitment: Ontology should make as few claims as possible

about the world being modeled. This is done by defining only essential terms needed

for communication of the knowledge. Subsequently, this will enable further

specialization and instantiation of the ontology as needed.

Gruber concluded his criteria definition with discussion about the necessity of having some

trade-offs among the stated criteria. Although the criteria are not diagonally opposite, some

trade-offs are necessary. But, as we can see, Gruber did not give any guidelines on how to

achieve these criteria in a methodological manner. He did not provide a cookbook that we can

use while designing the ontology. Additionally, these criteria define only the requirements

regarding the creation of ontology artifacts, but do not reflect upon the intended purpose of

the ontology.

In addition to the stated, Kabilan (2007) defined specific design choices that are to be made

while designing domain ontologies. She defined the following questions:

 Which concepts are relevant and necessary to be included in the proposed ontology?

 What is the optimum design architecture for the proposed ontology?

 What kind of design strategy is best suited for the given domain and given purposes?

 How to be consistent in the conceptualization of similar categories of concepts?

 How to match the functional requirements of the targeted application with the goals of

ontology design? How do these functional requirements influence the ontology design

choices?

161

 What is the minimum required level of knowledge formalization?

 Which knowledge representation formalism/language to choose?

 Once the above design decisions are taken, how should a designer actually proceed in

capturing, analyzing and representing the implicit and explicit domain knowledge?

 What tools, methods, other knowledge sources, models may be chosen to help in the

knowledge modeling process?

Providing answers to all of these questions is not a trivial task. It is obvious that a structured

and guided approach is necessary. Thus, during these 20 years since the earlier mentioned

design principles have been stated, a number of ontology development methodologies have

been proposed.

There are several papers that give an extensive overview of ontology design methodologies,

such as (Dahlem, 2011), (Lovrenčić, 2007) and (Kabilan, 2007). Dahlem compared sixteen

ontology design methodologies and he concluded that three of them have their roots in the

creation of Knowledge Based Systems (CommonKADS, Cyc and KBSI IDEF5), five of them

aim at the construction of ontologies from scratch (Grűninger and Fox, Uschold and King,

METHONTOLOGY, Ontology Development 101 and UPON), two of them emphasize the

collaborative evolution of ontologies (DILIGENT and HCOME), three of them are focusing

on reuse of existing knowledge (SENSUS, KACTUS and ONIONS) and the remaining three

are inspired with database engineering (DOGMA), wiki-based systems (mOnt) and

Knowledge Management (On-To-Knowledge). Although the list of compared methodologies

is not an exhausting one and there are many other methodologies described in literature, in the

case of our research, methodologies that aim at construction of ontologies from scratch (as it

is later elaborated in Chapter 5.2.2) are from our specific interest, and they will be shortly

described in the following paragraphs.

5.1.5.1. METHONTOLOGY

After identifying the lack of standardized procedures in the ontology development process,

Fernandez-Lopez et al. (1997) defined an ontology development methodology – namely

METHONTOLOGY – as the methodology that is based on software development process.

Their method is based on the execution of the following phases which provide the activities

for building an ontology from scratch:

1. Specification – The idea of this phase is to produce informal, semi-formal, or formal

specification document written in natural language including information on the

purpose of the ontology, users, scenarios of use, the level of formality of future

ontology and the scope which includes a set of terms to be represented, its

characteristics and granularity.

162

2. Knowledge acquisition – The activities of knowledge acquisition are independent

activities in the ontology development process, but are performed simultaneously with

specification and other phases.

3. Conceptualization – This phase should result in conceptually structured domain

knowledge in terms of the domain vocabulary identified in the ontology specification

phase. Glossary of Terms should be created in this phase and it should include

concepts, instances, verbs and properties. The following activities include: grouping

activity where concepts and terms are grouped according to their inner cohesion; the

activities of concepts description, verbs description and tables of formulas and rules

creation.

4. Integration – As a result of this activity, METHONTOLOGY proposes the

development of an integration document, summarizing the meta-ontology that will be

used along with detailed links between terms that are to be used and the terms defined

in conceptual model.

5. Implementation – This phase should result in the ontology codified in a formal

language. The activities of this phase should be supported by ontology development

environment which should at least provide: a lexical and syntactic analyzer,

translators, an editor, a browser, a searcher, evaluators and so on.

6. Evaluation – In the METHONTOLOGY, evaluation assumes the terms of verification

which refer to technical process that guarantee the correctness of the ontology and

validation which checks if the ontology corresponds to the system that they supposed

to represent.

7. Documentation – This support activity should be done through the whole ontology

development process. After mentioned phases, the documentation activities include

the creation of a requirements specification document, a knowledge acquisition

document, a conceptual model document, a formalization document, an integration

document, an implementation document and an evaluation document.

The mentioned activities can be divided into two main groups: the technical activities and the

support activities. Technical activities include specification, conceptualization and

implementation, while the remaining are support activities.

Although the presented methodology slightly evolved during the time, its basic approach

remained the same.

5.1.5.2. Ontology Development 101

Another well-known and often used methodology for ontology development is Ontology

Development 101 (Noy and McGuinness, 2001). This methodology describes iterative

approach in ontology development, and is created as one possible approach that can be used.

163

The approach gained popularity mainly because of its simplicity, clarity and focus on the

results.

Basic assumptions built into the Ontology Development 101 (OD101) methodology are: there

is no single correct way to model a domain and the best solution always depends on the

application and the expected extensions of the ontology; ontology development is necessarily

an iterative process; the concepts in the ontology should be close to objects (nouns) and

relationships (verbs) in the domain of interest (in the sentences that describe the domain). The

whole methodology is comprised in execution of 7 steps as described in (Noy and

McGuinness, 2001):

 Step 1. Determine the domain and the scope of the ontology. In order to define a

domain and the scope of the ontology, OD101 proposes the list of basic questions that

should be answered. The list includes questions like: What is the domain that the

ontology will cover? For what are we going to use the ontology? Who will use and

maintain the ontology? The answers to these questions aim at limiting the scope of the

model. Additionally, the OD101 authors suggest the creation of a list of competency

questions that a knowledge base, based on the ontology, should be able to answer. In

our case, the competency questions list could contain questions like: What artifacts do

I need in this development step? What are the outputs of this step? Is the class

diagram presented in the test plan document or software design and description

document? What artifacts can I reuse in this phase?

 Step 2. Consider reusing existing ontologies. There are different libraries containing

already developed ontologies that can be reusable in our particular case. Additionally,

if our system needs to interact with other applications that have already committed to

particular ontologies or vocabularies, it is necessary to reuse and build upon these

ontologies and vocabularies.

 Step 3. Enumerate important terms in the ontology. The list of terms that arise in our

domain of interest should be created. This list will be updated in all iterations and

while building it we can think of: what terms we would like to talk about, what

properties do those terms have and what would we like to say about those terms? For

example, some terms that could be interesting to our ontology are: artifact, phase,

activity, task, input, output et cetera.

 Step 4. Define the classes and the class hierarchy. This step and step 5 are closely

connected and are always performed in parallel by defining a few definitions of the

concepts in the hierarchy and then continue by describing properties on those

concepts. These two steps are also two most important steps in the ontology design

process.

There are three basic approaches that can be taken while developing a class hierarchy:

164

 A top-down development process starts with the definition of the most general

concepts in the observed domain and continues with subsequent specialization of the

concepts.

 A bottom-up development process starts with the definition of the most specific

classes and then groups them into more general concepts.

 A combination development process combines a top-down and bottom-up approach.

The idea of this approach is to define more salient concepts first and then to make

generalization or specialization as needed. The Uschold and Gruninger (1996) (who

define this approach as “middle-out approach”) argue that top-down and bottom-up

approaches have a number of negative effects (like over-detailed ontologies, high

efforts needed, less stability) and they find a middle-out approach as a balanced

approach that they used successfully in practice.

In any case, the terms are in this step converted into classes which are then organized

into a hierarchy. A class should become a subclass if all instances of that class are also

instances of its super class.

 Step 5. Define the properties of classes – slots. In this step the internal structure of the

concepts is created. As the classes from the list of terms created in Step 2 are already

selected, most of the remaining terms are properties of these classes. In general, there

are several types of properties that could be created: intrinsic properties, extrinsic

properties, structure properties, and relationships. The mentioned properties should

be attached to the most general class that can have that property.

 Step 6. Define the facets of the properties. Each defined property should be described

in detail by defining some additional restrictions like the type of its value, cardinality,

domain (classes that property describes) and range (allowed classes of instances),

 Step 7. Create instances. This is the last step in an ontology creation process. It results

in a list of individual instances of classes in the hierarchy.

By the characteristics of the presented methodology (simplicity, focus on results and iterative

approach) we can call this methodology an agile ontology development methodology, and that

is why we find this methodology as the most suitable for our research process and we will use

it in defining our ontology.

5.1.5.3. UPON

Unified Process for ONtology building (UPON) is an ontology building methodology based

on the Unified Process (UP). The methodology is proposed by De Nicola et al. (2005) who

tried to show that the basic phases in developing a software system could be the same when

building an ontology. They also propose the reuse of UML modeling language to model some

aspects of ontologies as they find them use-case driven, iterative and incremental.

165

Similar to UP, UPON also defines cycles, phases, iterations and workflows. Each cycle

consists of inception, elaboration, construction and transition and results in the release of a

new version of the ontology. Each phase is further subdivided into iterations where five

workflows take place: requirements, analysis, design, implementation and test (see Figure

38).

Figure 38 - De Nicola’s UPON framework

(De Nicola et al., 2005)

5.1.5.4. Uschold and King

Back in 1995, Uschold and King defined a skeleton for a methodology for building

ontologies. The skeleton consisted of four main phases which are defined as follows (Uschold

and King, 1995):

 Identify Purpose

 Building the Ontology

 Ontology capture

 Ontology coding

 Integrating Existing Ontologies

 Evaluation

 Documentation

If compared to other methodologies created later, we can conclude that this simple

methodology created the basis for its successors. By describing other mentioned

methodologies we already described all concepts that were focused by Uschold and King as

well.

166

5.1.5.5. Grűninger and Fox

The ontology development methodology presented by Grűninger and Fox (1995) is based on

the activities that transform Informal Competency Questions through specification of

Terminology in First-Order Logic, to Formal Competency Questions and finally to

specification of Axioms in First-Order Logic. The procedure is finished after the

Completeness of Theorems is checked. This methodology defines formal approach in

ontologies development and provides a framework for evaluating the adequacy of created

ontologies by proving the completeness of theorems for the ontologies with respect to the

formal competency questions.

Similarly to Uschold and King‟s methodology that highly influenced the methodologies for

development of semi-formal
20

 ontologies, this methodology highly influenced the

development of other methodologies for development of formal (also known as rigidly

formal) ontologies.

5.1.6. Ontology development tools and languages

Prior to moving forward in our research process we have to state what ontology representation

language and what ontology development tool we will use. The ontology representation

language and tools are usually related to ontology design methodology. Starting from

Ontolingua which is proposed by Gruber (1993a), there are many such languages like LOOM,

OCML or OWL. These languages vary in the degrees of formality and expressive power

(Corcho et al., 2003). OWL – Web Ontology Language
21

 created by W3C Web Ontology

Working Group, became the most widely used language and is supported by most generic

tools, such as editors or reasoning systems (Lumsden et al., 2011). Current version of OWL is

OWL2
22

.

In the same manner, many ontology development tools exist. Among many analyses and

comparisons of these tools we point out the analysis performed by Youn and McLeod (2006)

who compared fourteen ontology development tools by seven criteria. Although many of

these tools evolved a lot during the last years, it might be important to notice the authors‟

conclusion that all of them have their advantages and disadvantages. The authors did not

propose any tool as the best solution.

20

 Uschold and Gruninger (1996) classified ontologies upon their formality and complexity and they defined four

major categories as follows: highly informal are ontologies expressed in natural language; semi-informal are

ontologies expressed in structured form of natural language; semi-formal are expressed in artificially formally

defined language; and rigidly formal are those ontologies that have terms defined with semantics, theorems and

proofs.
21

 http://www.w3.org/2004/OWL/
22

 http://www.w3.org/TR/owl2-overview/

167

On the other hand, Khondoker and Mueller (2010) analyzed the usage of ontology editors and

found that SWOOP, TopBraid Composer, OntoTrack, Internet Business Logic, Protégé and

IHMC Cmap Ontology Editor are the only tools used by participants they questioned. Their

results show that 75% of all participants used Protégé and 41.95% of participants created the

ontologies in the domain of Information System Design. This gives us a solid basis to accept

the Protégé
23

 as the most commonly used tool and the one to use in our ontology

development.

As Protégé natively works with Frames and OWL (and from version 4 it also supports

OWL2), we had to decide whether to use Frames or OWL as our ontology representation

language. According to Wang et al. (2006) the main difference between them is that Frames is

used when close-world assumptions (CWA) are suitable and OWL otherwise. The concept of

CWA represents the semantics with the presumptions that what is not currently known to be

true is false. On the other hand, capabilities and expressiveness of OWL are needed to deliver

the functional requirements, when we need Description Logic (DL) reasoning to ensure

logical consistency of ontologies, when we aim to create robust terminologies or when

classification is a paradigm for reasoning in applications. Although it is possible to use both

languages in our case, we find the use of OWL representation language more appropriate.

OWL is a language for defining and instantiating ontologies by defining descriptions of

classes, properties and their instances. It provides three increasingly expressive sublanguages

(W3C Web Ontology Working Group, 2004). OWL Lite supports classification hierarchy and

simple constrains features, OWL DL supports maximum expressiveness without losing

computational completeness and decidability of reasoning system, while OWL Full is meant

for users who want maximum expressiveness and freedom but with no computational

guarantee and with no full reasoning support. Although OWL DL has to include constructs

with some restrictions, in our ontology we need full reasoning support, and thus we will use

OWL DL representation language.

Besides defining the abstract structure of the ontology, OWL provides the ways in defining

their meaning in terms of formal semantic description which specifies how to derive the

logical consequences out of the ontology, i.e. facts not literally presented in the ontology but

entailed by the semantics. In OWL2 we can use two alternative ways of assigning meaning to

the ontologies: Direct Semantics
24

 and RDF-Based Semantics
25

. According to (W3C OWL

Working Group, 2012), “OWL2 DL is used informally to refer to ontologies interpreted using

23

 Protégé is a free, open-source, plugin-based platform that provides suite of tools to construct domain models

and knowledge-based applications with ontologies. It can be obtained for free from http://protege.stanford.edu/
24

 http://www.w3.org/TR/owl2-direct-semantics/
25

 http://www.w3.org/TR/owl2-rdf-based-semantics/

http://protege.stanford.edu/

168

the Direct Semantics and OWL2 Full is used informally to refer to RDF graphs considered as

ontologies and interpreted using the RDF-Based Semantics“. This means that we are more

interested in capabilities of Direct Semantics reasoning which assigns meaning directly to

ontology structures, resulting in semantics compatible with the model theoretic semantics of

the SROIQ
26

 description logic. This also brings the necessity of placing some restrictions
27

 on

ontology structures in order to ensure that they can be translated into SROIQ knowledge base.

Finally, concrete syntax is needed in order to store OWL2 ontologies and to exchange them

among tools and applications. The primary exchange syntax for OWL2 is RDF/XML
28

 but

other concrete syntaxes may also be used. These include alternative RDF serializations, such

as Turtle
29

; an XML serialization
30

; and a more readable syntax, called the Manchester

Syntax
31

. As Protégé supports all mentioned syntaxes along with automatic translation among

them, we can later decide which of these alternatives to use while exporting our ontology into

a human readable format.

5.1.7. Final remarks on ontologies

Ontologies gained a huge popularity during the last two decades and are currently used in

different scientific fields. As they provide means of explicit and formal specification of

knowledge and conceptualization, which is readable to humans and to machines, we also

found it appropriate to use the ontologies as a tool in defining our framework for

methodological interoperability in multi-platform mobile applications development.

In previous chapters, we tried to give a short overview of a several concepts that are related to

ontologies and ontology development. First, for the purpose of this research we defined

ontology as an explicit formal conceptualization of a shared understanding of the domain of

interest which includes the vocabulary of terms in order to describe the domain elements,

semantics in order to define the relationships of the domain elements and pragmatics in order

to define possible usages of these elements.

26

 SROIQ represents fragment of first order logic with useful computational properties. An overview of DL

languages can be seen in (Belcar and Lovrenčić, 2012). Belcar and Lovrenčić defined SROIQ languages as

follows: S – AL and C with transitive properties; AL – base attributive language that allows atomic negation,

concept intersection, universal restriction and limited existential quantification; C – complex concept negation; R

– limited complex role inclusion axioms, reflexivity and irreflexivity, role disjointness; O – nominals

(enumerated classes or object value restrictions); I – inverse properties; Q – qualified cardinality (number)

restrictions.
27

 The details on restrictions are given in Section 3 of OWL 2 Structural Specification document which can be

obtained at http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Ontologies
28

 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
29

 http://www.w3.org/TR/turtle/
30

 http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/
31

 http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/

169

We also presented the most common reasons for the use of an ontology and we argued about

their classification in accordance with different points of view. In this context we concluded

that in this research we will create domain ontology in order to semantically describe concepts

belonging to one specific domain – development of mobile applications for specific

platforms. The goal of such ontology is to create a knowledge basis for information system

that could guide the development teams in increasing the methodological interoperability by

reusing the created artifacts.

In order to choose an ontology development methodology, we gave a short overview of

several influencing ontology development methodologies which are either commonly used

today or made a great influence on the development of other methodologies. In this context,

we decided to use Noy and McGuiness‟ methodology, namely Ontology Development 101,

which by its characteristics can be described as agile ontology development methodology.

This methodology consists of seven steps which are designed as guidelines in iterative

ontology development from scratch to final ontology.

Finally, we argued about the possibilities of using different ontology development tools and

ontology development languages. The research performed by Khondoker and Mueller (2010)

showed that by far the most widely used tool is Protégé tool developed at Stanford University.

As Protégé is aligned with the OD101 methodology, and being widely used from scientists

and practitioners in, among others, fields of Information Systems Development and

Knowledge Management, we decided to use it in our research as well. Subsequently, as

Protégé works with two ontology representation languages, Frames and OWL, we discussed

both and selected OWL2 DL as the most appropriate language in our case.

Having selected the ontology development methodology, development tool and representation

language we can advance to the next step in our research process – to define the ontology for

Android and Windows phone artifacts created in Mobile-D managed development process.

5.2. Android artifacts ontology

This chapter presents the development process and the final ontology describing the artifacts

that arose in the development of our prototype application for Android target platform by

using Mobile-D methodology. As described in previous chapters, we decided to use Noy‟s

and McGuinness‟s Ontology Development 101 (OD101) methodology as the guidelines for

development process. We also decided to use Protégé tool and to develop OWL2 DL

ontology.

170

The mentioned OD101 methodology is in detail described in (Noy and McGuinness, 2001) as

an iterative approach in ontology development that gained popularity mainly because of its

simplicity, clarity and focus on the results. Basic assumptions incorporated into the OD101

methodology include that there is no single correct way to model a domain; the best solution

always depends on the application and the expected extensions of the ontology; that ontology

development is necessarily an iterative process; and that concepts in the ontology should be

close to objects (nouns) and relationships (verbs) in the domain of interest (in the sentences

that describe the domain).

As we described in chapter 5.1.5.2, the whole methodology consists of execution of seven

steps. The following sections describe the final results obtained at the end of iterative

ontology development process.

5.2.1. The domain and the scope of the ontology

The domain and the scope of our ontology are clearly defined from the beginning of this

research process and there was no need for us to define it from scratch. As stated in our

research goals, the ontological description should describe the elements of methodological

interoperability containing structural and semantic aspects of sets of artifacts created in the

development process of (in this case) Android mobile application. Such ontology will be

reused in subsequent research steps to develop a common ontology for two target platforms

that aim to help in achieving higher methodological interoperability.

In order to precisely direct the ontology development process, we also defined a set of

competency questions that a knowledge base, based on this ontology, should be able to

answer:

 What are development phases, activities and tasks in Mobile-D methodology?

 As Mobile-D is an iterative process, what are the exact tasks performed in every

activity?

 What artifacts arise in the development process of Android mobile application?

 What artifacts originate from the used development methodology and what from

Android target platform?

 What are the categories that these artifacts can be categorized into?

 What artifacts are classified in any specific category?

 In what tasks are the specific artifacts created, updated or used?

 How are the artifacts mutually connected?

 What is the hierarchy among the identified artifacts?

 What are the final products in the development process?

 What artifacts are only used and not created in the process?

171

As it can be seen from the list of defined questions, the ontology should be capable of

answering the questions regarding the structural aspects of methodological phases, activities

and tasks, structural aspects of the identified artifacts and the semantic aspects regarding the

origin, type and use of artifacts.

5.2.2. Reuse of existing ontologies

We performed research and went through several ontology libraries (including Protégé

Ontology Library
32

, DAML Ontology Library
33

 and ONKI Ontology Library Service
34

) but

were not able to find any existing ontology that deals with mobile applications development,

android development, software development artifacts or software development methodologies

that were suitable for reuse in our case. We have been able to reuse some vocabulary from top

level (upper) ontologies, but as our vocabulary was simple and in this case we do not put

specific focus to the vocabulary, we decided to build an ontology from scratch.

5.2.3. Identified terms

The list of terms that arise in our domain of interest was incrementally created during the

whole ontology development process. The final list of terms that are the base for our ontology

includes: phase, activity, task, artifact, task input, task output, artifact type, artifact origin,

artifact usage, artifacts hierarchy. Mentioned terms are described in Table 45.

Table 45 - Basic terms in Android Case Ontology

Term Context
Phase Mobile-D phases.

Activity Mobile-D activities structured according to phases.

Task Mobile-D tasks structured according to activities.

Task input Artifacts that are used as input while performing specific tasks.

Task output Artifacts that are produced or updated while performing specific tasks.

Artifact Any piece of software developed and used during software development and

maintenance. It includes models, tools, templates, documents et cetera.

Artifact type Characteristic types of artifacts that could be recognized in order to classify all identified

artifacts.

Artifact origin In terms of reusability, artifacts origin becomes important. It defines the origin of

artifacts such as identifying those artifacts that are defined (or requested) by used

methodology or those that are products specific for target platform.

Artifact usage The most important term. It includes knowledge on creation, usage and update of the

artifacts in concrete tasks.

Artifact hierarchy Defines hierarchy among artifacts if it exists.

32

 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
33

 http://www.daml.org/ontologies/
34

 http://onki.fi/en/browser/

172

5.2.4. Classes and class hierarchy

In the process of class and hierarchy definition, we followed the advice from Uschold and

Gruninger (1996) and used middle-out approach by first defining more salient concepts and

then making generalizations and specializations as needed. The approach resulted in total

definition of 152 classes that are organized in 7 top level classes (see Figure 39).

Figure 39 - Android Case ontology top level artifacts

The above figure focuses class Artifact which is top level class (hasParent Thing) but also has

connections with defined classes Task, ArtifactType, ArtifactOrigin and itself. Although

existing, the relationships among other top level classes are not presented in this figure.

We believe that at this point, two additional explanations are needed regarding the presented

classes. First, class Inferred represents all classes defined only by using Description Logic

(DL). These classes are populated by respective equivalent classes by the reasoning tool. This

is one possible approach in extracting knowledge from ontology definition. Figure 40 shows

asserted sub-model of Inferred class.

173

Figure 40 - Android Case ontology asserted subclasses of Inferred class

Secondly, classes ArtifactOrigin and ArtifactType presented in Figure 39 are created by using

the so-called Value Partition pattern. This pattern uses a covering axiom in order to define a

class with finite number of subclasses. In our case, classes have finite number of types and

origins.

All other classes created and defined in the ontology, along with the class hierarchy are

presented in Table 46.

174

Table 46 – Android Case ontology classes and class hierarchy

Thing Phase Activity Task Artifact
Artifact

Type

Artifact

Origin
Inferred

Phase Explore
Documentation

Wrap-up

Acceptance Test

Generation
Acceptance Test

Acceptance Test

Template Sheet
Code Android Artifact

Activities by

Phases (5)

Activity Initialize Planning Day Acceptance Testing Android Activity Android Class Document
Methodological

Artifact

Android

Artifacts

Task Productionize
Planning Day In

0 Iteration

Acceptance Test

Review
API Documentation

Application

Description

Document

Element
Other Artifact

Borrowed

Artifacts

Artifact Stabilize
Project

Establishment

Architecture Line

Definition
Application Icon Application Manifest Example Service Artifact

Final

Documentation

Artifact

Type

System Text

And Fix
Project Set-up

Architecture Line

Planning

Application

Screenshot

Architecture Line

Description
License Final Products

Artifact

Origin
 Release Day

Continuous

Integration

Architecture Line

Plan
Class Model Mobile Model

Methodological

Artifacts

Inferred Scope Definition

Customer

Communication

Establishment

Class Model Web Data Model Mobile
Model

Element
 Other Artifacts

Stake Holder

Establishment

Customer

Establishment
Data Model Web Defect List Product

Service

Artifacts

 System Test

Documentation

Wrap-up
Deployment Package

Development

Environment
Resource

Tasks by

Activities (11)

 Working Day Environment Set-up

Development

Unrelated Software

Tool

Driver Software

Used and

Produced

Documents

Working Day In

0 Iteration
Inform Customer Example Code Google API Key Standard

Initial Project

Planning
Google Play Services

Initial Requirements

Document
Template

Initial

Requirements

Analysis

Integration Test Iteration Backlog

Initial

Requirements

Collection

Iteration Plan Java Code

 Iteration Planning JSON Standard Layout

175

Pair Programming

Practice
Layout Element Localization String

Post Iteration

Workshop
Measurement Plan Mobile Application

 Pre Release Testing

Mobile-D Process

Library
PHP Code

Process

Establishment
Product Backlog Product Proposal

 Publish Application

Project Management

Software Tool
Project Plan

Refactoring

Practice

Project Plan

Checklist

Project Plan

Checklist Template

Release

Ceremonies

Project Plan Gantt

Chart

Prototype

Functionality

Requirements

Analysis
SADD Document Story Card

 System Integration Story Card Template System Test Plan

 System Test System Test Report Task Card

Test Driven

Development

Practice

Task Card Template Test Results

 Wrap-up

Throwaway

Prototype
UI Illustrations

 UML Class Unit Test

Web Development

Environment
Web Service

Web Service

Specification
XML Resources

176

All classes are presented in alphabetical order. Class names are made easier to read by

removing suffixes and presenting the names in multiple-word format rather than in a single-

word format (so-called CamelCase) that is used in the ontology. Additionally, in the ontology,

the classes are described by several annotations including labeling and commenting. Where

applicable, description of Mobile-D elements is taken from (Abrahamsson et al., 2005a),

while other classes (especially artifacts) are described as presented in chapter 4.2. Additional

details on defined classes and the ontology in general including description logic can be found

in OWLDoc documentation available at http://barok.foi.hr/~zstapic/ont/acao/doc/.

5.2.5. Properties of classes

Defined properties are closely connected with classes. We define a concept of property as a

binary relation between two things. In ontology definition, properties should be observed as

relations between individuals that are described through relation between two classes of

individuals. Our resulting ontology contains only object properties and annotation properties,

as we had no need to use datatype properties.

As annotation properties are used to provide ways of describing other ontology elements (for

human reading), in this chapter we will put focus on created object properties. In order to

define knowledge on structure, semantics and usage of ontology elements we defined 12

object properties. Table 47 shows properties and their detailed description.

Table 47 - Android case ontology object properties description

Property Facets Description
consistsOf Domain:

Activity or Phase

Range:

Task or Activity

Property connecting individual Activities that are performed

in specific Phases and individual Tasks that are performed

during specific Activities. Logically, this property is inverse

property of isPerformedIn, but we explicitly defined it in

order to have the information available even in the original

model.

createsArtifact Inverse Of:

isCreatedByTask

Domain: Task

Range: Artifact

Inversed property of isCreatedByTask. It connects Task

individuals and created specific Artifact individuals.

hasArtifactOrigin Characteristics:

Functional

Domain: Artifact

Range: ArtifactOrigin

Property connecting individual Artifact and individual in

definite class ArtifactOrigin which defines several possible

types of Artifact origin. This property is used to classify

artifacts by types but from different point of view than

property hasArtifactType.

hasArtifactType Characteristics:

Functional

Domain: Artifact

Range: ArtifactType

Property connecting specific Artifact individuals with

ArtifactType individuals. It defines type of the specific

Artifact according to defined classification according to

artifact usage.

includesArtifact Characteristics:

Asymmetric

Inverse Of:

isPartOfArtifact

Domain and Range:

Inverse property of isPartOfArtifact. It defines individual

Artifacts that are included in observed Artifact.

http://barok.foi.hr/~zstapic/ont/acao/doc/

177

Artifact

isCreatedByTask Inverse Of:

createsArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that create specific

Artifact individuals. Creating the artifact logically means it

usage even if it is not explicitly stated.

isPartOfArtifact Characteristics:

Asymmetric

Inverse Of:

includesArtifact

Domain: Artifact

Range: Artifact

Property connecting individual Artifacts into hierarchy. This

property is Asymmetric as two individuals cannot be both part

of each other.

isPerformedIn Domain:

Activity or Task

Range:

Phase or Activity

Property defines relationship between specific Task

individuals and owning Activity. Logically, this property is

inverse of consistsOf property, but we defined both separate

to have the information available even in the original model.

isUpdatedByTask Inverse Of:

updatesArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that update specific

Artifact individuals.

isUsedByTask Inverse Of:

usesArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that read specific

Artifact individuals.

updatesArtifact Inverse Of:

isUpdatedByTask

Domain: Task

Range: Artifact

Inversed property of isUpdatedByTask. It connects Task

individuals and updated specific Artifact individuals.

usesArtifact Inverse Of:

isUsedByTask

Domain: Task

Range: Artifact

Inversed property of isUsedByTask. It connects Task

individuals and used specific Artifact individuals.

The restrictions defined by Description Logic (DL) used in OWL 2 DL had some influence on

defined object properties. For instance, transitive properties cannot be defined as asymmetric

or irreflexive, functional properties cannot be transitive etc. But, all concepts that are

restricted by direct definition can be modeled alternatively and thus we had no problems that

would threaten our logical model.

5.2.6. Knowledge definition and inference

Connecting the instances of classes with defined properties we had to follow OWL 2 DL

restrictions, rules and syntax. Additionally, OWL DL is based on Open World Assumption

(OWA) logic paradigm, and as we have already stated, the OWA paradigm assumes that we

cannot conclude that something does not exist until it is explicitly stated that it does not exist.

In other words, we cannot assume that something is false just because it is not stated to be

true. Thus, for example, logical definition of artifact MobileDProcessLibrary would be

insufficient as presented in Code 4 example.

178

SubClass Of:

Artifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType some Document

isUsedByTask some Task

Code 4 - Insufficient class description in OWA paradigm

As stated in Code 4 we defined MobileDProcessLibrary artifact to be the subclass of a named

class Artifact, but also to be a subclass of unnamed classes of things that have origin as

MethodologicalArtifact, or that are of type Document or used by any Task. The good side of

OWA is that in this case we cannot conclude that our artifact is equivalent to other artifacts

that for instance have origin as MethodologicalArtifact. Such conclusion, even if possible,

would be wrong. But, on the other hand, although we only stated that our artifact is used by a

Task we cannot conclude that it was not created and was not used by some (the same or

another) Task
35

. Thus, query searching for all artifacts that are only used in our process, as

presented in Code 5, would not obtain the correct answer.

Artifact

 and (not (isCreatedByTask some Task))

 and (not (isUpdatedByTask some Task))

 and (isUsedByTask some Task)

Code 5 - Query searching for used but not created Artifacts

In order to completely define the mentioned artifacts we have to use closure axioms and to

explicitly state that such artifacts were not created and not modified in our development

process. Thus, the complete description looks like the one presented in Code 6. Of course,

there are additional possibilities of “closing” open world logic in OWL but we will not

elaborate on them here.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only Document

hasArtifactType some Document

isUsedByTask only Task

isUsedByTask some Task

not (isCreatedByTask some Task)

not (isUpdatedByTask some Task)

Code 6 - Sufficient class description in OWA paradigm

Using the same approach, we described every class defined in our ontology. Other examples

are more complicated only if many properties are applied. For example (see Code 7),

35

 For instance, this would be possible in CWA paradigm.

179

SystemTestPlan artifact is defined by six different properties and some of them describe

“more than one” cardinality relationship.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only Document

hasArtifactType some Document

isCreatedByTask only InitialProjectPlanningTask

isCreatedByTask some InitialProjectPlanningTask

isUpdatedByTask only

 (InitialRequirementsAnalysisTask

 or PostIterationWorkshopTask

 or ProcessEstablishmentTask

 or SystemTestTask)

isUpdatedByTask some InitialRequirementsAnalysisTask

isUpdatedByTask some PostIterationWorkshopTask

isUpdatedByTask some ProcessEstablishmentTask

isUpdatedByTask some SystemTestTask

isUsedByTask only

 (ArchitectureLineDefinitionTask

 or ArchitectureLinePlanningTask

 or DocumentationWrapUpTask

 or IterationPlanningTask

 or ProcessEstablishmentTask

 or SystemTestTask

 or TestDrivenDevelopmentPractice)

isUsedByTask some ArchitectureLineDefinitionTask

isUsedByTask some ArchitectureLinePlanningTask

isUsedByTask some DocumentationWrapUpTask

isUsedByTask some IterationPlanningTask

isUsedByTask some ProcessEstablishmentTask

isUsedByTask some SystemTestTask

isUsedByTask some TestDrivenDevelopmentPractice

not (isPartOfArtifact some Artifact)

Code 7 - Example class description in OWL2 DL

Similarly, DL queries are used to define the already mentioned inferred classes of objects that

are from our specific interest in this ontology. We defined 24 DL queries that answer the

competency questions stated earlier in this chapter. The examples of created description logic

queries are presented in Table 48.

180

Table 48 - DL Queries for inferred classes

Inferred class DL Query

Activities by Phases (5) isPerformedIn some Explore

Android Artifacts hasArtifactOrigin some AndroidArtifact

Borrowed Artifacts

Artifact

 and (not (isCreatedByTask some Task))

 and (not (isUpdatedByTask some Task))

 and (isUsedByTask some Task)

Final Documentation

Artifact

 and (not (BorrowedArtifacts))

 and (not (isPartOfArtifact some Artifact))

 and (hasArtifactType some Document)

Final Products

Artifact

 and (not (BorrowedArtifacts))

 and (not (isPartOfArtifact some Artifact))

 and (hasArtifactType some Product)

Methodological Artifacts hasArtifactOrigin some MethodologicalArtifact

Other Artifacts

Artifact

 and (not (AndroidArtifacts

 or MethodologicalArtifacts

 or ServiceArtifacts))

Service Artifacts hasArtifactOrigin some ServiceArtifact

Tasks by Activities (11) isPerformedIn some PlanningDayActivity

Used and Produced

Documents

Artifact

 and (not (isPartOfArtifact some Artifact))

 and (hasArtifactType some Document)

A part of inferred model for class Artifact is presented in Figure 41
36

. As we can see, the

reasoning system rearranged the artifacts and grouped them according to the defined classes

for inference.

Full OWL Documentation for Android Case Ontology which contains DL description of all

classes and queries is available as OWLDoc on http://barok.foi.hr/~zstapic/ont/acao/doc/.

36

 Full inferred model is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png

181

Full picture is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png

Figure 41 - Part of inferred model for class Artifact

http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png

182

5.2.7. Final remarks on Android Case Ontology

By following Ontology Development Methodology 101 (Noy and McGuinness, 2001) we

have created an ontology which describes the development process of our prototype android

mobile application by utilizing Mobile-D methodology. The point of view taken in this

ontology development process, as argued in chapter 4.1, puts the artifacts created and used in

this process in a special focus.

The resulting ontology comprises of 152 classes, 12 object properties and 1692 axioms

defined by ALCRIF description logic expressivity sub-language
37

. The ALCRIF DL

expressivity states that the ontology uses constructs of (AL) Attributive language atomic

negation, concept intersection, universal restriction, limited existential qualification, (C)

complex concept negation, (R) limited complex role inclusion axioms, reflexivity and

irreflexivity, role disjointness, (I) Inverse properties and (F) functional properties.

Due to their size and complexity, we decided not to put Android and Windows Phone

ontologies as appendixes to this thesis
38

, but to make the ontologies and their full OWLDoc

documentation available online. Android Case Artifacts Ontology OWLDoc documentation is

available at http://barok.foi.hr/~zstapic/ont/acao/doc/ and ontology in OWL/XML format is

available at http://barok.foi.hr/~zstapic/ont/acao.owl.

The ontology syntax and logical correctness was tested by several reasoners, including

FaCT++, HermiT 1.3.8, Pellet and RacerPro. Additionally, the inferred knowledge was

carefully observed and corrected by the author and the supervisors until we have got errorless

results.

This ontology will, along with Windows Phone Case Artifacts Ontology, be used in the last

step of our research process the goal of which is to define a common ontological description

of multi-platform mobile application development with special focus on artifact reusability.

5.3. Windows Phone artifacts ontology

This chapter presents the development process and the final ontology describing the artifacts

that arose in the development of our prototype application for Windows Phone target platform

by using Mobile-D methodology. The development of this, second, ontology was a straight-

forward task that was performed with a great level of reusability of the existing ontological

description created in the Android case. Although we followed again the same ontology

37

 Results are taken from Ontology metrics Protégé plugin.
38

 Final, upperlevel ontology which aims for methodological interoperability is presented in Appendix E.

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao.owl

183

development methodology (OD101), the first two steps were skipped as the domain and the

scope of this ontology are basically the same as described in the first case. In the same

manner, competency questions regarding the development methodology, development

process, artifacts, their classification and categorization, hierarchy, use etc., also remained

unchanged. Finally, the goal of this ontology is also to reason about the mentioned questions,

and to use it in the next research step while defining a common ontological description.

5.3.1. Existing ontology reuse

In contrast to the development of the first ontology from scratch, in the second case we were

able to reuse our existing ontology. Due to the characteristics and the need of a later ontology

merging, the unique ontology element identifiers called Internationalized Resource Identifiers

(IRI) should not be changed unless a described concept is logically different from the existing

concept.

Thus, we imported an existing ontology, and maximally tried to reuse it while developing the

second ontology. Our approach was to change the existing Android elements into applicable

Windows Phone elements rather than deleting the Android and creating a new Windows

Phone element. The changed concepts got new IRIs, while physically unchanged concepts

preserved IRIs created in the Android Case ontology development.

By using Protégé‟s tool for ontology comparisons and by comparing the first and the second

ontology, we can see that 10 ontological elements were renamed, 1 element was added, 16

additional were updated and their IRIs were changed which resulted in small changes in 39

additional elements but their IRIs were not changed. These elements are mainly artifacts and

concepts very strictly connected to artifacts.

Having these numbers in mind, we can conclude that 66 concepts out of 165 were changed,

and that the rest were reused. Additionally, the comparison was not performed at the level of

axioms, but a rough analysis shows that about less than 10% of all axioms (1708) were

changed and that the rest were reused.

5.3.2. Classes, properties and hierarchy

The overall asserted class hierarchy defined in the first ontology was not changed in our

second case. Only two sets of classes were updated: ArtifactOrigin and Artifact. As it can be

seen in Figure 42, the context of Artifact did not change (we changed its subclass structure not

visible in this image), while the subclass structure of ArtifactOrigin now includes

WindowsPhoneArtifact class of instances.

184

Figure 42 - ArtifactOrigin and Artifact in WP ontology

The most important changes and updates were created in the class of Artifacts, where all

Android specific classes have been replaced with Windows Phone specific classes. An

interesting point here is that direct mapping between similar concepts in these two platforms

was done in 10 out of 11 cases. Only one completely new artifact was identified in Windows

Phone environment. Table 49 brings an enumeration of all 61 artifacts that were recognized in

WP development case and described in the ontology.

Table 49 - WP case artifacts defined in ontology

Artifact

Acceptance Test
Acceptance Test

Template Sheet
API Documentation Application Description

Application Icon Application Screenshot
Architecture Line

Description
Architecture Line Plan

Bing Maps Key Class Model Mobile Class Model Web CS Code

Data Model Mobile Data Model Web Defect List Deployment Package

Development

Environment

Development Unrelated

Software Tool
DotNet Class Driver

185

Example Code
Initial Requirements

Document
Integration Test Iteration Backlog

Iteration Plan JSON Standard Measurement Plan
Microsoft Phone Controls

Toolkit

Mobile Application
Mobile-D Process

Library
Page CS Page XAML

Page XAML Element PHP Code Product Backlog Product Proposal

Project Management

Software Tool
Project Plan Project Plan Checklist

Project Plan Checklist

Template

Project Plan Gantt Chart Prototype Functionality Resource File Silverlight Map Control

SADD Document Story Card Story Card Template System Test Plan

System Test Report Task Card Task Card Template Test Results

Throwaway Prototype UI Illustrations UML Class Unit Test

Web Development

Environment
Web Service

Web Service

Specification
WMAppManifest

XAML Description

 Mapping between Android and WP concepts possible New concept in WP

On the other hand, we reused all property definitions and there was no need to change or

update any property (see Table 47 for details on all 12 properties) at this point. This brings us

to the conclusion that basic ontological model describing development process for single

platform is well defined. This also suggests that the model could be easily reused in definition

of development process for other platforms without the need for changing any infrastructural

semantic constructs.

The OWLDoc document containing details on defined classes and on the Windows Phone

Case Artifacts Ontology in general is available at http://barok.foi.hr/~zstapic/ont/wpcao/doc/.

Additionally, figure representing asserted class model along with named DL queries is

available at http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png.

5.3.3. Updates in knowledge definition

Except the artifacts marked as completely updated or new there are several other artifacts that

have undergone some semantic changes in this ontology. It is important to have these changes

in mind for the preparation of the ontologies merge and the creation of a common ontology

for multi-platform development, as these could be the most hidden sources of future errors

and misleading logic.

For example, as shown in Code 8, Integration Test artifact (which was classified as Code

artifact in Android case) is now defined as Document Artifact due to the fact that there are no

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png

186

available automatic or robotized integration testing tools. Although the artifact name

remained the same, the new definition included changes in other relations as well, including

the Tasks creating, using and updating this artifact and its hierarchy in the artifacts graph.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only DocumentElement

hasArtifactType some DocumentElement

isCreatedByTask only TestDrivenDevelopmentPractice

isCreatedByTask some TestDrivenDevelopmentPractice

isPartOfArtifact only SystemTestPlan

isPartOfArtifact some SystemTestPlan

isUpdatedByTask only

 (ContinuousIntegrationPractice

 or PreReleaseTestingTask

 or SystemIntegrationTask)

isUpdatedByTask some ContinuousIntegrationPractice

isUpdatedByTask some PreReleaseTestingTask

isUpdatedByTask some SystemIntegrationTask

isUsedByTask only

 (ContinuousIntegrationPractice

 or PreReleaseTestingTask

 or SystemIntegrationTask

 or SystemTestTask)

isUsedByTask some ContinuousIntegrationPractice

isUsedByTask some PreReleaseTestingTask

isUsedByTask some SystemIntegrationTask

isUsedByTask some SystemTestTask

 Code 8 - Updated Integration Test artifact

Other similar changes include different position in hierarchy of Resource File artifact if

compared to Android artifact with similar purpose (Localization string) and changes in

description of many artifacts. All these changes will have to be properly addressed in

common multi-platform ontology.

All other semantic constructs querying knowledge from the described ontology (as presented

in Table 48) remained the same and the mentioned changes in artifacts definition did not

influence on them.

For example, the DL query on Used and Produced Documents is given in Table 48 and

graphical representation of asserted class description is presented in Figure 43. These

assertions are created to be populated by a reasoner using the ontologically defined

knowledge.

187

Figure 43 - Used and Produced Documents asserted class model

Thus the inferred model (obtained after performing reasoning on the ontology definition and

queries) presented in Figure 44 shows that query named Used And Produced Documents is

classified as Artifact and that it consists of two asserted classes defining documents that are

used as inputs in whole Mobile-D process (Mobile-D Process Library and Product Proposal),

and another query named Final Documentation that is populated by classes defining Mobile-

D produced documents. Asserted classes are light-yellow in presented figures and named DL

queries which aim to extract knowledge from the ontology are colored light-brown.

Figure 44 - Used and Produced Documents asserted class model

As the inference in this case, and in all other DL queries, resulted in semantically correct

information, we can conclude that this ontology, although upgraded and updated is still

logically consistent and valid. This proves extensible and updatable design of our ontology.

5.3.4. Final remarks on Windows Phone Case Ontology

In this chapter we presented the specifics of the created Windows Phone Case Artifacts

Ontology. Although we followed OD101 methodology, several steps in ontology definition

process were skipped and the results were reused from similar process performed for the

Android Case. The most important factor in ontology development process was the possibility

of partial reuse of an existing ontology. The basic ontology structure, the properties definition

and knowledge extraction DL queries were completely reused, while some classes were

reused and other were updated or created from scratch.

The resulting ontology comprises 153 classes, 12 object properties and 1708 axioms defined

in the ALCRIF DL expressivity sub-language. Similar to the Android case ontology, due to its

size and complexity, we decided not to put the ontology definition as appendix to this thesis,

but to make the ontology and its full OWLDoc documentation available online. Windows

188

Phone Case Artifacts Ontology OWLDoc documentation is available at

http://barok.foi.hr/~zstapic/ont/wpcao/doc/ and ontology in OWL/XML format is available at

http://barok.foi.hr/~zstapic/ont/wpcao.owl web location.

Another important aspect of this ontology development process is that it proved the validity

and flexibility of the existing Android ontology and thus it validated the conceptual model

that is the base for our ontologies targeting single platforms. As we argued in the previous

chapters, during the update of the existing imported ontology into a new ontology targeting

different mobile platforms, there was no need for us to change or update any properties, basic

ontology structure, defined classes or DL queries. We just had to redefine several primitive

classes and to align the ontology with the artifact use, types and origin. The tests and the

reasoning performed by several reasoners showed that the model is still valid and that the

outputs and the results are as expected. This proves the extensibility and updatability of the

designed ontology.

This ontology will, along with Android Case Artifacts Ontology, be used in the last step of

our research process where we will define a common ontological description of multi-

platform mobile application development with a special focus on artifact reusability.

5.4. Common ontology for methodological interoperability

Having the two ontologies describing the development of the same mobile application for two

target platforms, we can now move forward and define a new upper-level ontology. This

ontology will combine the already described existing knowledge with the new axioms on

reusability and thus result in an ontological specification capable of providing the information

on methodological interoperability achieved through the artifact reuse.

In this sense, this chapter presents the development process and the final ontology describing

the artifacts that arose in the development of our prototype application for two target

platforms by using Mobile-D methodology. The chapter presents two distinct sets of activities

that were performed during this development. First we merged the two existing ontologies

and then created an additional conceptualization related to artifact reusability. In this sense,

we had to enhance the methodology that was used in the development of specific ontologies –

Ontology Development 101 (Noy and McGuiness, 2001) – as it does not include any tasks

related to ontology merging.

In the end of the ontology development process, the ontology was evaluated by seven

different mechanisms, including the execution of the sequence of knowledge acquisition

queries which gave semantically correct results validated by domain experts.

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao.owl

189

5.4.1. The domain and the scope of the ontology

The domain and the scope of the ontology were defined at the beginning of our research

process. We aimed to ontologically describe the elements of methodological interoperability

containing structural and semantic aspects of sets of artifacts created in the development

process of multi-platform mobile application.

By structural aspects we presume the modeling and knowledge of connections and hierarchy

that occur among artifacts (inter-artifact), along with those that occur in relationships of

artifact-task, task-activity and activity-phase in the selected development methodology. By

semantic aspects we imply the conceptualization of knowledge that includes artifact‟s

meaning, its content, classification and possibility of reuse. The combined structural and

semantic knowledge should provide solid basis capable of answering competency questions.

We already defined competency questions related to application development targeting any

single platform. Those questions should be answerable with this ontology as well, and they

include:

 What are development phases, activities and tasks in Mobile-D methodology?

 As Mobile-D is iterative process, what are the exact tasks performed in every activity?

 What artifacts arise in the development process of Android mobile application?

 What artifacts originate from used development methodology and what from Android

target platform?

 What are the categories that these artifacts can be categorized into?

 What artifacts are classified in any specific category?

 In what tasks are the specific artifacts created, updated or used?

 How are the artifacts mutually connected?

 What is the hierarchy among the identified artifacts?

 What are the final products in development process?

 What artifacts are only used and not created in the process?

We updated this list with an additional set of questions regarding the artifact reusability

semantics. These new questions that guided us when enhancing the existing merged

ontologies are stated as follows:

 What platform specific artifacts are classified as reusable?

 What artifacts can be reused in any given development phase?

 What artifacts can be reused in any given development activity or task?

 What artifacts are reusable in accordance with their type or origin?

The list of defined questions can be extended if necessary, but for the purpose of this research

and in accordance with our research goals we found it sufficient to include the knowledge

190

regarding the structural aspects of methodological phases, activities and tasks, structural

aspects of the identified artifacts, semantic aspects regarding the origin, type, use and reuse of

artifacts. Although it is not in the scope of this research, we sincerely encourage the analysis

of another semantic aspect – intra-artifact aspect – which should answer questions like

“Which part of any partially reusable artifact can be reused and which does not?” or “How

specific artifact is reusable: by its structure, content, inner logic or their combination?”

5.4.2. Merging the existing ontologies

The development process of the upper-level ontology (namely Multiplatform Case Artifacts

Ontology) was significantly determined by the fact that we had already developed two

platform specific ontologies which should be reused and thus the ontology development

process included two rather distinct tasks: reusing the existing ontologies and semantically

enhancing the new one.

Although the Ontology Development 101 (Noy and McGuiness, 2001) advises the reuse of

existing ontologies, it does not provide any instructions on how to implement existing

ontologies into a new one. The decision is left to the developer, and in general there are two

main approaches that can be taken: existing ontology/ontologies import or existing ontologies

merge. The import is usually a better option if the existing ontologies are distinct (e.g. disjoint

by their constructs) and if there is no need for changing them. In our case, the existing

ontologies overlapped significantly semantically and even physically and additionally, it was

necessary for us to add new knowledge regarding reusability in existing constructs. On top of

that, while developing the Windows Phone Case Artifacts Ontology we put a significant effort

in properly reusing the Android Case Artifacts Ontology in order to make the merging process

easier.

The two mentioned ontologies were merged by Protégé‟s Ontology merging tool. This tool, as

well as other ontology merging tools, does not provide many merging options. No effort was

done to automatically resolve any conflicts, and no effort was done either to provide the user

with report on these conflicts as well. The tool simply merges concepts with exactly the same

IRI into one concept, and all other concepts are left intact.

However, this lack in ontology merging tools had no significant influence on our merging

process, as all platform independent artifacts had the same (reused) IRI, while other, platform

dependent artifacts had platform specific IRIs, which ensured that all platform specific

artifacts were preserved in the new ontology. An example of automatically merged ontology

is given in Figure 45.

191

Figure 45 - Example of automatically merged ontology

As it can be seen from the above Figure, when it comes to merging of the artifacts, we had

three specific cases. First, the most common case represents the merge of the two already

reused constructs, which resulted in a single new construct. This case covers all classes

regarding phases, activities, tasks, inferred knowledge and platform independent artifacts. In

the second and the third case, we had different (but semantically similar) constructs, and in

both cases, all artifacts were preserved, only this time the artifacts were reused representations

of the existing artifacts. We use the word representation to denote that these are new artifacts

in any case.

However, a semantically similar construct was still not connected by any means of class or

property connection. Thus, our first step was to resolve the lack of connection between the

logical pairs of artifacts and to properly describe them. Out of many possible approaches, we

decided to create a super class for every pair of artifacts and to connect them by making them

members of the same class. The resulting ontology, at this point, looked as it is shown in

example Figure 46. Finally, we extracted the existing but common ontological description of

the elements of each pair and we assigned this description to the newly defined super classes.

In total 22 new classes have been created.

acao:

ProductBacklog

acao:

UnitTest

acao:

ProductBacklog

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

 – reused construct

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont.

192

Figure 46 - Example of merged ontology

This completed our activities of merging the existing ontologies into a single upper-level

ontology. As the single ontology inherited (and will enhance) all conceptualization from the

previously created Android Case and WP Case ontologies, we can say that our ontologies

describing specific cases are now deprecated and should not be used. In favor of this goes the

fact that it is generally much easier to update upper-level ontology with the knowledge on an

additional target platform than to create a new ontology from scratch.

5.4.3. Updating the basic terms

While proceeding to enhance the merged ontology with the semantic information on

reusability, we continued to follow the Ontology Development 101 methodology. This

process (which consists of 7 steps) was described in detail in the previous chapters (see

chapters 5.1.5.2 and 5.2 on pages 162 and 169) and thus we will not discuss it here. Rather,

we will present its results and point out all important aspects of the process itself and of the

created ontology.

The basic terms defined for the Android Case ontology were reused in Windows Phone Case

ontology and thus are included in this ontology as well. As we aim to enhance the ontology

with the conceptualization on artifact reusability, we had to introduce a couple of new

important terms. The final list, containing both, previously stated and the new set of terms is

presented in Table 50.

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

mcao – IRI prefix of http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts#

– reused construct

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

Automatically merged ontology

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

mcao:

UnitTest

mcao:

SourceCode

Multi-platform Case Artifact Ontology

193

Table 50 - Final list of terms used in Multiplatform ontology

Term Context
Phase Mobile-D phases.

Activity Mobile-D activities structured according to phases.

Task Mobile-D tasks structured according to activities.

Task input Artifacts that are used as input while performing specific tasks.

Task output Artifacts that are produced or updated while performing specific tasks.

Artifact Any piece of software developed and used during software development and

maintenance. It includes models, tools, templates, documents et cetera.

Artifact type Characteristic types of artifacts that could be recognized in order to classify all

identified artifacts.

Artifact origin In terms of reusability, artifacts origin becomes important. It defines the origin of

artifacts such as identifying those artifacts that are defined (or requested) by used

methodology or those that are products specific for target platform.

Artifact usage Term includes knowledge on creation, usage and update of the artifacts in concrete

tasks.

Artifact hierarchy Defines hierarchy among artifacts if it exists.

Reusability Identified artifact reusability levels which denote if artifacts are completely, partially

or not reusable.

Artifact similarity Defines mutual reusability among artifacts.

As we can see, the reusability and artifact similarity are two newly added terms. The first

term relates to the concepts of levels of reusability and as defined in chapter 4.4, we classified

all the artifacts into three reusability levels: partially reusable, completely reusable and not

reusable artifacts. The other concept relates to inter-artifact similarity defining pairs of

similar artifacts.

5.4.4. Final class and properties hierarchy

The new model of top-level classes with the focus on the Artifact class is given in Figure 47.

If compared to Figure 39 there are not many changes at the top level classes of the ontology.

The set of top level concepts remained the same, while the only difference is addition of a

new value partition class ReuseLevel. The figure describing the new ontology shows that

Artifact is finally connected with Task, ArtifactOrigin, ArtifactType and ReuseLevel. Among

these relationships, the relationship with Task is the strongest as it is defined with three

properties (each of them having inversed property). Although existing, the relationships

among other top level classes are not presented in this figure in order to make it focus on

artifacts only.

194

Figure 47 - Top level artifacts

The completed ontology consists of 213 classes, 14 properties and 2213 axioms. Important

classes to mention here are the classes organized under Inferred class. As we have already

discussed in the chapter on the Android Case ontology development, these classes are defined

only by using Description Logic (DL). These classes are populated by their respective

equivalent classes by reasoning tool, and this is one possible approach in extracting

knowledge from the ontology definition. The final version of asserted sub-model of Inferred

class is presented in Figure 48.

Secondly, classes ArtifactOrigin and ArtifactType and ReuseLevel presented in Figure 47 are

created by using the so-called Value Partition pattern. This pattern uses a covering axiom in

order to define a class with a finite number of subclasses. In our case, classes have finite

number of types, origins and levels.

All other classes created and defined in the final ontology, along with class hierarchy are

presented in Table 51. Due to space constraints and table size, we decided not to present the

leafage of the platform specific artifacts and inferred classes as these have already been

presented in the thesis. Instead, we present here in light gray color those artifacts that have

specific subclasses for each platform. The number of subclasses is presented in braces.

195

Figure 48 - Asserted subclasses of Inferred class

196

Table 51 - Classes and class hierarchy

Thing Phase Activity Task Artifact Artifact Type Artifact Origin Reuse Level Inferred

Phase Explore
Documentation

Wrap-up

Acceptance Test

Generation
Acceptance Test

Acceptance Test

Template Sheet
Code

Android

Artifact
Completely

Activities by

Phases (5)

Activity Initialize Planning Day
Acceptance

Testing

API

Documentation

(2)

APP Description

(2)
Document

Methodological

Artifact
None

Artifacts Origin

(5)

Task Productionize
Planning Day In 0

Iteration

Acceptance Test

Review
App Icon (2) App Manifest (2)

Document

Element
Other Artifact Partially

Artifact

Reusability (4)

Artifact Stabilize
Project

Establishment

Architecture Line

Definition

App Prototype

Functionality (2)
App Reference (4) Example Service Artifact

Artifacts Usage

(6)

Artifact

Type

System Text

And Fix
Project Set-up

Architecture Line

Planning
App Resource (4)

App Screenshot

(2)
License

Task by

Activities (11)

Artifact

Origin
 Release Day

Continuous

Integration

Architecture Line

Description

Architecture Line

Plan
Model

Reuse

Level
 Scope Definition

Customer

Communication

Establishment

Class Model

Mobile
Class Model Web Model Element

Inferred
Stake Holder

Establishment

Customer

Establishment

Data Model

Mobile
Data Model Web Product

 System Test

Documentation

Wrap-up
Defect List

Deployment

Package (2)
Resource

 Working Day

Environment Set-

up

Development

Environment (2)

Development

Unrelated

Software Tool

Software

Working Day In 0

Iteration
Inform Customer Example Code (2)

Initial

Requirements

Document

Standard

Initial Project

Planning

Integration Test

(2)
Iteration Backlog Template

Initial

Requirements

Analysis

Iteration Plan JSON Standard

Initial

Requirements

Collection

Maps Key (2)
Measurement

Plan

 Iteration Planning

Mobile

Application (2)

Mobile-D Process

Library

Pair Programming

Practice
PHP Code Product Backlog

197

Post Iteration

Workshop
Product Proposal

Project

Management

Software Tool

Pre Release

Testing
Project Plan

Project Plan

Checklist

Process

Establishment

Project Plan

Checklist

Template

Project Plan Gantt

Chart

Publish

Application
SADD Document Source Code (2)

Refactoring

Practice
Story Card

Story Card

Template

Release

Ceremonies
System Test Plan

System Test

Report

Requirements

Analysis
Task Card

Task Card

Template

System

Integration

Test Device

Driver (2)
Test Results

 System Test

Throwaway

Prototype (2)
UI Illustrations

Test Driven

Development

Practice

UML Class
UML Class SDK

(2)

 Wrap-up Unit Test (2) View (2)

View Controller

(2)
View Element (2)

Web

Development

Environment

Web Service

Web Service

Specification

 Classes having additional sub-classes not presented in this table.

Number of subclasses is denoted in braces.

198

The approach in class naming and description defined in development of platform specific

ontologies was also reused in the merged ontology. Thus, the classes are named in CamelCase

style and described with several annotation properties including labeling, commenting and

notes making. Where applicable, description of Mobile-D elements is taken from

(Abrahamsson et al., 2005a), while other classes (especially artifacts) are described as

presented in Chapter 4.

In addition to the 213 classes, the conceptualization is created with 14 object properties. We

already discussed the types of properties and concluded that our ontology does not need

datatype properties, but only object properties which are defined as relationship between two

classes of individuals. The properties defined for platform specific ontologies are reused and

updated with isSimilarToArtifact and hasReusabilityLevel properties. The mentioned two

properties are used to describe the knowledge on artifacts reusability and similarity with other

artifacts. The final list of all the properties created and used in our ontology is presented in

Table 52.

Table 52 - Object properties description

Property Facets Description
consistsOf Domain:

Activity or Phase

Range:

Task or Activity

Property connecting individual Activities that are performed

in specific Phases and individual Tasks that are performed

during specific Activities. Logically, this property is inverse

property of isPerformedIn, but we explicitly defined it in

order to have the information available even in the original

model.

createsArtifact Inverse Of:

isCreatedByTask

Domain: Task

Range: Artifact

Inversed property of isCreatedByTask. It connects Task

individuals and created specific Artifact individuals.

hasArtifactOrigin Characteristics:

Functional

Domain: Artifact

Range: ArtifactOrigin

Property connecting individual Artifact and individual in

definite class ArtifactOrigin which defines several possible

types of Artifact origin. This property is used to classify

artifacts by types but from different point of view than

property hasArtifactType.

hasArtifactType Characteristics:

Functional

Domain: Artifact

Range: ArtifactType

Property connecting specific Artifact individuals with

ArtifactType individuals. It defines type of the specific

Artifact according to defined classification according to

artifact usage.

includesArtifact Characteristics:

Asymmetric

Inverse Of:

isPartOfArtifact

Domain and Range:

Artifact

Inverse property of isPartOfArtifact. It defines individual

Artifacts that are included in observed Artifact.

hasReusabilityLevel Characteristics:

Functional

Domain: Artifact

Range: ReuseLevel

Property connecting specific Artifact individuals with one of

predefined reusability levels. This property classifies artifacts

into completely, partially or unreusable classes.

isCreatedByTask Inverse Of:

createsArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that create specific

Artifact individuals. Creating the artifact logically means it

usage even if it is not explicitly stated.

199

isPartOfArtifact Characteristics:

Asymmetric

Inverse Of:

includesArtifact

Domain: Artifact

Range: Artifact

Property connecting individual Artifacts into hierarchy. This

property is Asymmetric as two individuals cannot be both part

of each other.

isPerformedIn Domain:

Activity or Task

Range:

Phase or Activity

Property defines relationship between specific Task

individuals and owning Activity. Logically, this property is

inverse property of consistsOf property, but we defined both

separate to have the information available even in the original

model.

isSimilarToArtifact Characteristics:

Symmetric

Inverse Of:

isSimilarToArtifact

Domain and Range:

Artifact

Property connecting the individuals of class Artifact with

other similar individuals of the same class. Usually, all

artifacts in the same class, if class is reusable, are reusable,

but this is not a rule. Sometimes, pairs of artifacts in the same

class can be mutually reusable, but not reusable with other

artifacts of pairs.

isUpdatedByTask Inverse Of:

updatesArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that update specific

Artifact individuals.

isUsedByTask Inverse Of:

usesArtifact

Domain: Artifact

Range: Task

Property connecting the Task individuals that read specific

Artifact individuals.

updatesArtifact Inverse Of:

isUpdatedByTask

Domain: Task

Range: Artifact

Inversed property of isUpdatedByTask. It connects Task

individuals and updated specific Artifact individuals.

usesArtifact Inverse Of:

isUsedByTask

Domain: Task

Range: Artifact

Inversed property of isUsedByTask. It connects Task

individuals and used specific Artifact individuals.

As we have argued in the chapter on Android Case ontology, there are some restrictions on

property definitions defined by OWL 2 DL. Each time we broke a restriction on properties,

the reasoners started to behave unexpectedly, sometimes reporting the use of unsupported

logic and sometimes just crashing without any explanation. For instance, querying the

knowledge out of the ontology would be much easier if there was a possibility of defining the

same property to be symmetric and transitive or defining functional property to be transitive

et cetera. However, when needed, we used other approaches and assured that our logical

model is safe and that the ontological description is correct.

The complete ontological definition presented in Manchester OWL Syntax format
39

 and

containing the details on classes, properties, class and property description and semantics can

39

 The Manchester syntax is a user-friendly compact syntax for OWL 2 ontologies (Horridge and Patel-

Schneider, 2009). Although it is frame-based, as opposed to the axiom-based other syntaxes for OWL 2, we find

it to be the most compact and human readable syntax that can be easily and automatically converted in other

OWL 2 syntaxes.

200

be found in Appendix E of this document. We also generated a full OWLDoc documentation

on the created ontology and made it available for access and analysis at http://barok.foi.hr/

~zstapic/ont/mcao/doc/.

5.4.5. Evaluating and testing the ontology

5.4.5.1. Ontology evaluation

Ontology evaluation means to judge the ontologies against a reference framework during each

phase and between phases of its life cycle (Gómez-Pérez, 2001). Examples of reference

frameworks (according to the same author) can be real world, a set of requirements and a set

of competency questions. However, Gómez-Pérez argues, that there are few ontology

development methodologies that have evaluation included throughout the entire lifetime of

the ontology development process. In the terms of classifying the ontologies according to

their formalization level (Uschold and Gruninger, 1996), integrated formal evaluation is

possible only in development process of rigidly formal ontologies, while in all other

ontologies, we need different and other approaches.

According to Brank et al. (2005), most evaluation approaches fall into one of the following

categories:

 evaluation based on comparing the ontology to a “golden standard” which may itself

be an ontology, syntax specification or any other representation that is considered to

be a good representation of the concepts of the problem domain under consideration,

 evaluation based on using the ontology in an application and evaluating the results,

 evaluation involving comparison with a source of data (e.g. a collection of documents

about the domain to be covered by the ontology,

 or evaluation done by humans who try to assess how well the ontology meets a set of

predefined criteria, standards, requirements et cetera.

Performing a review of existing ontology evaluating techniques Brank et al. (2005) concluded

that ontology evaluation is an important open problem with no single best or preferred

approach to ontology evaluation. Additionally, Brank thinks that the choice of a suitable

approach must depend on the purpose of evaluation, the application in which the ontology is

to be used, and on what aspect of the ontology we are trying to evaluate. Finally, Brank stated

that automated ontology evaluation should be the focus of future researches.

This research took place in 2005, but since then not many researches were performed. There

were some tools and techniques developed, but those were developed for specific ontology

development environment or representation languages. In our opinion, Protégé Frames had

http://barok.foi.hr/~zstapic/ont/mcao/doc/
http://barok.foi.hr/~zstapic/ont/mcao/doc/

201

good support for ontology evaluation in several tools, including those created in CO-Ode

project and OntoClean methodology
40

. On the other hand, current support in automatic

evaluation tools for Protégé OWL is insufficient. CO-Ode project developed OWL Lint
41

framework for defining and running tests against a set of OWL ontologies for quality control,

debugging, best practices, and other purposes. Unfortunately, the project is closed and the

resources on this tool are unavailable and not aligned with the current version of Protégé.

Similarly, OntoCheck
42

, a simple plugin for verifying the ontology naming conventions and

metadata completeness developed at University of Freiburg, is also not aligned with the

current version of Protégé.

However, there are some tools that allow basic syntax checking of the ontology, ontology

alignment with the OWL standard and consistency of the ontology through check of

syntactical ontology elements. In our case, we used two of them: OWL Validator
43

 developed

at the University of Manchester which is used as official W3C OWL validating tool and

Ontology Evaluation
44

, an open source plug-in developed at Aristotle University of

Thessaloniki which is currently the only evaluation plugin supported by Protégé OWL version

4.3. We will come back to these tools later in this chapter.

Ontology Development 101 methodology (Noy and McGuinness, 2001), that we used in our

development process, also lacks formal ontology evaluation activities and mechanisms.

Instead of formal evaluation tasks, the description of the methodological steps is intertwined

with recommendations and advices on performing the tasks and evaluating their results.

Additionally, the competency questions are used as a background for development process

and for the final evaluation of the results through the ontology application. As the focus

through the whole methodology is placed on (1) utilization of good practices in ontology

development, (2) on human checking of intermittent and final results and (3) on the

assessment of the quality of the final ontology by using it in applications for which it was

designed, it is hard to choose in which of the four categories defined by Brank et al. (2005)

this methodology falls into.

Observing the definition of ontology evaluation again, we can conclude that complete and

automatic evaluation throughout all phases is still not possible. Rather, it is a human-centric

process which is done in every ontology development task with some minor help from the

reasoners and syntax checking tools.

40

 http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html
41

 http://protegewiki.stanford.edu/wiki/OWL_Lint
42

 http://protegewiki.stanford.edu/wiki/OntoCheck
43

 http://www.w3.org/2001/sw/wiki/OWL_Validator and http://owl.cs.manchester.ac.uk/validator/
44

 http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html
http://protegewiki.stanford.edu/wiki/OWL_Lint
http://protegewiki.stanford.edu/wiki/OntoCheck
http://www.w3.org/2001/sw/wiki/OWL_Validator
http://owl.cs.manchester.ac.uk/validator/
http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

202

However, we should not forget that evaluation actually subsumes the execution of two steps:

verification and validation (Gómez-Pérez, 2004). Ontology verification deals with building

the ontology correctly, that is ensuring that its definitions implement correctly the

requirements, and ontology validation refers to whether the meaning of the definitions really

models the real world for which the ontology was created (Vrandečić, 2009). To make the

definitions simpler we will also refer to Vrandečić who says that ontology verification

answers if the ontology was built in the right way, whereas ontology validation answers if the

right ontology was built.

Finally, in this short introduction to the concepts related to ontology evaluation, we have to

point out the role of domain experts. As ontology validation is usually the only way to assure

the correctness of ontologically described knowledge, which usually cannot be performed

automatically, it is an important part of assessing the quality of an ontology to have the

domain experts validating the ontology.

5.4.5.2. Used evaluation mechanisms

In order to verify and validate our ontology, throughout the whole development process

lifecycle, we have performed the following seven verification and validation mechanisms:

1. Methodologically driven ontology development process

2. Followed recommendation and advices from other authors

3. Using reasoning tools to verify the ontology in each iteration

4. Using W3C OWL validating tool

5. Using the Ontology evaluation plug-in

6. Using DL queries to obtain information via inference on ontology knowledge

7. Checking the results by domain experts

The first five evaluating mechanisms are connected with ontology verification and are used to

lower the risks of making any syntactical and basic semantic errors throughout the whole

ontology development process.

The last two mechanisms are connected with ontology validation. These two mechanisms

have been used in the end of development process to check if the created ontology represents

the domain knowledge in semantically correct way.

By performing the methodologically driven ontology development process and utilizing the

Ontology Development 101, we ensured that our approach was systematic and guided by the

experience of researchers who already used it. As we have described and discussed in Chapter

5.2, the whole development process had seven steps which were implemented iteratively

through several iterations. We followed the recommendation from Uschold and Gruninger

(1996) and used middle-out approach in class and class-hierarchy definition. This enabled us

203

to focus on more salient classes first and then to classify them in super or subclasses as

needed. This approach, however, increases the risk of omitting some classes, but we dealt

with it through other verification mechanisms.

Noy and McGuinness (2001) put special focus in tasks related to classes and properties

definition and they gave a set of recommendations and advices that we tried to follow in our

development process. For instance, they gave us advice on measures that should been taken to

ensure that the class hierarchy is correct, on analyzing siblings in a class hierarchy, on taking

care of multiple inheritances, when to introduce a new class or property or instance of a class,

on limiting the scope of the ontology and dealing with disjoint classes. They also gave advice

on properties creation and their relationships through facets and on some general issues

regarding the ontology creation like the choice of naming convention, of using singular or

plural, of using prefixes and suffixes and on use of reserved names and abbreviations. We

also consulted the recommendations presented in (Horridge, 2011) who took practical point of

view and discussed the advantages and disadvantages of different approaches in solving the

most common issues in ontology development.

Throughout the whole incremental development process we used reasoning tool to verify the

newly added concepts and their influence on the already defined concepts. In general,

Description Logic reasoners check the consistency of ontology and automatically compute the

ontology class hierarchy. In this document we referred to computed class hierarchy as to

inferred class hierarchy. Additionally, a reasoner can check whether or not all of the

statements and definitions in the ontology are mutually consistent (Horridge, 2011). If we add

the reasoners‟ possibility to detect and report any syntax errors, then we can conclude that a

consistent use of reasoners in development process represents a solid ontology verification

mechanism.

We used FaCT++, HermiT 1.3.8 and Pallet reasoners which are available through Protégé

installation or through standard plug-in installation procedure. All used reasoners classified

our ontology in the same way and returned the same inference results. For the examples

presented in this chapter, we used FaCT++ as native Protégé reasoner.

Figure 49 presents comparison of a part of asserted and a part of inferred class hierarchy. As

we can see on the left hand side of the figure, asserted hierarchy does not group artifacts into

specific super classes regarding their type or usage. However, we used Description Logic to

define a set of Inferred classes (marked with icon) to access knowledge that is encoded in

the ontology. During the ontology definition, some of these classes were automatically

classified as sub-classes of class Artifact, but as we can see, they are without any child

elements. Same classes, along with the rest of ontological description, were used by the

204

reasoner in order to create a new class hierarchy, as presented on the right hand side of the

mentioned Figure 49.

Figure 49 - Comparing asserted and by reasoner inferred class hierarchy

205

Additionally, as it can be seen on the right hand side, all DL defined classes are now

populated with inferred subclasses. In the above example, expanded class

MethodologicalArtifacts is populated with those artifacts that originate in Mobile-D

methodology. Similarly, all other named queries and defined classes are populated with

appropriate sub-classes. The asserted and inferred models were in the end assessed by the

thesis supervisors who agreed on their consistency and semantic correctness.

In order to evaluate the ontology syntax, we also used two different tools that evaluate the

ontology automatically. OWL Validator is developed at the University of Manchester, and it

is currently an official W3C OWL validating tool (Horridge, 2009). Figure 50 shows the

evaluation results stating that the ontology and all of its imports are in the OWL 2 DL profile.

Figure 50 - OWL 2 Validation report results

The other used tool is Ontology Evaluation
45

 (Tantsis, 2013), a plug-in developed as a Master

Thesis project at Aristotle University of Thessaloniki. Although without technical or any

other formal documentation and support, except information written in the thesis itself, the

plugin is currently, as far as our knowledge reaches, the only evaluation plugin supported by

Protégé OWL version 4.3. Thus, even if the quality of the evaluation engine may be

questionable, it can help in the evaluation of the ontology according to several parameters

including naming conventions, class hierarchy, property hierarchy, property restrictions,

similar concepts, documentation and visualization, domain and range of properties and

restrictions on disjointness. An example of performed tests on class hierarchy and

documentation (see Figure 51) showed that there are no problems with class hierarchy, but

45

 http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

206

some concepts needed improvements in documentation. After additional analysis, it turned

out that some mid-level classes were not documented.

Figure 51 - Ontology Evaluation plug-in

The mentioned evaluation tool, along with the evaluation results creates a set of

recommendations that could be used to improve the ontology quality. These recommendations

are based on simple evaluation result parameters without any contextual input, and thus

should be taken with significant precaution and placed in the context of every particular

ontology. For example, the tool advised us to create “some datatype properties” just because

we did not have any. In our case, as we argued in Chapter 5.2.5, these properties are not

necessary and by missing them the ontology does not lose any quality. On the other hand, the

advice on possible duplication of concepts was very welcomed.

Finally, in order to validate the ontology against its usage in the future application, we created

a series of DL queries which aimed to extract direct and indirect knowledge out of the

ontology, by using a reasoning engine. The results obtained by these queries have been

validated by the supervisors of this thesis, and one of them (prof. Vjeran Strahonja) is a

domain expert in the field of software engineering methodologies.

The following sections present several queries executed upon our ontology with their

Description Logic representation and the finally obtained results.

207

 What platform specific artifacts are classified as reusable?

In order to get the artifacts that are platform specific we can create several different queries

that would be based on different concepts already built into the ontology. Thus, we can use

only basic classes like Artifact and their properties, or we might use already defined named

queries which would, in our case, be logically connected sub queries.

Figure 52 - Example of defined and executed DL query with reasoning results

DL query obtaining only Android reusable artifacts could look like this:

Artifact

 and (hasArtifactOrigin some AndroidArtifact)

 and ((hasReusabilityLevel some Completely)

 or (hasReusabilityLevel some Partially))

Code 9 - Android reusable artifacts

If using already defined concepts which classify all Android and reusable artifacts, we can use

this query:

Artifact and (AndroidArtifacts) and (ReusableArtifacts)

Code 10 - Android reusable artifacts with already defined named queries

In both cases, the result is the same and it contains the following enumerated artifacts (see

Figure 52).

AndroidActivity, AndroidClass, ApplicationDescription, ApplicationIcon,

JavaCode, Layout, LayoutElement, LocalizationString, UnitTest, XMLResources

In similar manner, we could ask for Windows Phone artifacts only or for reusable artifacts that

originate from Mobile-D methodology et cetera.

208

 What artifacts can be reused in any given development activity or task?

For example, in order to obtain all reusable artifacts that were used, created or updated during

the Iteration Planning task we can use a query like this:

Artifact

 and ((isUsedByTask some IterationPlanningTask)

 or (isCreatedByTask some IterationPlanningTask)

 or (isUpdatedByTask some IterationPlanningTask))

 and (ReusableArtifacts)

Code 11 - Reusable artifacts by task

The query result:

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan,

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart,

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate

On the other hand, if we want to enumerate all artifacts that are an output of any task

performed during the Working Day activity we can use a query like this:

Artifact

 and ((isUpdatedByTask some WorkingDayTasks)

 or (isCreatedByTask some WorkingDayTasks))

 and (ReusableArtifacts)

Code 12 - Reusable artifacts by activity

The query result:

AppResource, ClassModelWeb, DataModelMobile, DataModelWeb, IterationBacklog,

IterationsPlan, MeasurementPlan, PHPCode, ProductBacklog,

ProjectPlanChecklist, SourceCode, StoryCard, TaskCard, UMLClass, UnitTest,

View, ViewController, ViewElement, WebService, WebServiceSpecification

 What artifacts can be reused in any given development phase?

The following query results in a set of artifacts that are reusable and created, updated or used

in Explore phase. The artifacts were additionally filtered with their origin in order to exclude

Other Artifacts that are not connected to development methodology or target platform.

Artifact

 and((isCreatedByTask some (isPerformedIn some (isPerformedIn some Explore)))

 or (isUpdatedByTask some (isPerformedIn some (isPerformedIn some Explore)))

 or (isUsedByTask some (isPerformedIn some (isPerformedIn some Explore))))

and (ReusableArtifacts)

and (not (OtherArtifacts))

Code 13 - Reusable artifacts by phase and origin filter

209

The query result:

InitialRequirementsDocument, MeasurementPlan, ProductProposal, ProjectPlan,

ProjectPlanChecklist, ProjectPlanChecklistTemplate, ProjectPlanGanttChart

In the above example we used nested queries to reach all artifact that are created by some

Task that was performed in some Activity performed in some Phase. Another approach in

ontological modeling of such problems can be the usage of transitive properties.

 What artifacts are reusable in accordance with their type or origin?

The following query enumerates artifacts with specific type of Document that are completely

or partially reusable.

Artifact

 and (hasArtifactType some Document)

 and ((hasReusabilityLevel some Completely)

 or (hasReusabilityLevel some Partially))

Code 14 - Reusable artifacts by their type

The query result:

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog,

ProductProposal, ProjectPlan

The artifacts that are completely or partially reusable are recognized as sub class of Reusable

Artifacts, which we used in other examples presented previously.

Except the queries that answer our competency questions stated at the beginning of the

ontology development process, by using the built vocabulary of classes, properties, value

partitions and named queries, we can build any other query in order to obtain other specific

knowledge encoded in the ontology. These queries can be specific focusing on any particular

artifact, or general and focus on groups of artifacts.

For example, the following query asks for any reusable artifact that is used in creation of

Software Architecture and Design Description Document.

Artifact

 and (isPartOfArtifact some SADDDocument)

 and (ReusableArtifacts)

Code 15 - Reusable artifacts used in specific document

The query result:

AppDescription, ArchitectureLinePlan, ClassModelWeb, DataModelMobile,

DataModelWeb, WebServiceSpecification

210

By answering all competency questions defined at the beginning of our ontology development

process, we proved the completeness of the created ontology. As presented in previous

examples, DL queries are flexible and the ontology is capable of answering a wide range of

questions regarding any concept that is used in its creation. Additionally, queries and results

were observed by domain experts who finally validated the ontology and agreed on its

completeness.

Such an ontology represents a solid basis for creation of information system that can guide the

development team or development teams in achieving methodological interoperability by

reusing artifacts created in multi-platform mobile application development process.

5.4.6. Final remarks on proposed ontology for methodological interoperability

The development process of development of an ontology for methodological interoperability,

namely Multi-platform Case Artifacts Ontology, was performed in two phases. First, we

created two specific ontologies targeting Android and Windows Phone application

development and secondly, we merged these two ontologies into a new ontology which we

enhanced with multi-platform and reusability conceptualization.

The created ontology comprises 213 classes, 14 object properties and 2213 axioms defined in

ALCRIF DL expression sub-language. Generated in Manchester OWL Syntax format it can be

found in Appendix E of this document. Also, the ontology in native OWL/XML format can

be downloaded from http://barok.foi.hr/~zstapic/ont/mcao.owl, while full OWLDoc ontology

documentation can be accessed and analyzed at http://barok.foi.hr/~zstapic/ont/mcao/doc/.

The whole development process was guided by Ontology Development 101 methodology and

recommendations in ontology development given by Noy and McGuinness (2001) and

Horridge (2011). We also put special focus in reusing the existing knowledge while building

the second and the third (i.e. the final) ontology, and the proof of the ontology‟s quality was

the possibility of reusing the Android ontology without the need to change any infrastructural

elements while building a Windows Phone ontology. Additionally, after merging the two

ontologies, we had no redundancy to deal with, and had no problems in updating the ontology

with a new conceptualization. This proves that the ontology is both reusable and extendable.

A special focus was put on the ontology evaluation through its development and final testing.

We used seven evaluation mechanisms, and as the most important one, we tested the ontology

with series of Description Logic queries which asked different questions including all

competency questions stated at the beginning of the ontology development. The results were

then analyzed by the two thesis supervisors, and one of them is a domain expert. The use of

evaluation mechanisms throughout the development process and positive validation are the

proof of ontology‟s quality and completeness.

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

211

This brings us to the final conclusion that developed Multi-platform Case Artifacts Ontology

represents a knowledge base that can be used in development of information system aiming to

guide development teams in achieving methodological interoperability by reusing artifacts

created in the process of multi-platform mobile application development.

5.5. Relevance of the chapter

This chapter presented the results and the approach taken in our last research phase –

Ontology Development Phase.

As development of ontologies is not a trivial task, first we introduced the concepts of the

ontologies by looking into the origins of the term in Philosophy, and then by defining it in

Computer Science. Finally we agreed to use the definition of ontology saying that ontology is

an explicit formal conceptualization of a shared understanding of the domain of interest

which includes the vocabulary of terms in order to describe the domain elements, semantics

in order to define the relationships of the domain elements and pragmatics in order to define

possible usages of these elements.

After discussing different types of ontologies, their possible usages and presenting in detail

several the most commonly used and the most important ontology development

methodologies, tools and languages, we decided to create a domain ontology in order to

semantically describe concepts belonging to the domain of development of mobile application

for specific target platforms. Additionally, we argued the reasons for using the Noy and

McGuiness‟ Ontology Development 101 methodology, as the best option suitable in our case,

and finally, we decided to use Protégé ontology development tool and OWL2 DL as the most

appropriate ontology language in our case.

The chapter also presents in detail the usage of Ontology Development 101 methodology

while developing Android Case Artifacts Ontology. We have put focus on reusability when

developing WindowsPhone Case Artifacts Ontology, and finally, on ontology merging,

updating and evaluation when developing Multi-platform Case Artifacts Ontology.

The results showed that our ontologies are reusable, extensible and updatable as we

performed all these tasks without the need of changing any existing infrastructural elements.

The final ontology is additionally verified and validated with several automatic and manual

evaluation mechanisms including the validation by domain experts who analyzed the results

of the executed DL queries. The validation results showed that ontology is valid and complete

and thus can be used in future development of an information system that would help

212

development teams to achieve methodological interoperability by reusing the artifacts created

in the process of multi-platform mobile application development.

This concludes our three phase research process which resulted in (1) Systematic Literature

Review performed in order to identify and choose a mobile development methodology

applicable in multi-platform development, (2) the implementation of a prototype application

by utilizing the selected methodology performed in order to identify all artifacts that arose in

the development process, and (3) ontology development in order to ontologically describe the

empirical and theoretical knowledge and thus make it usable for future development of

information systems targeting the increase of methodological interoperability in the

development of mobile application for multiple platforms.

213

6. DISCUSSION OF RESULTS

This multidisciplinary research composed of systematic literature review, analysis of artifacts

created in methodologically driven mobile application development, and development of an

ontological description of artifacts reusability is presented in the previous chapters. Through

every research phase we gave an overview and analysis of the existing body of knowledge,

performed a research and reported on the results that were obtained in it.

In this chapter we would like to review, assess and recapitulate the results that were produced

during the presented research process. This discussion includes review of the results on

performing Systematic Literature Review in the field of software engineering with special

focus on the aspects regarding the execution of this method by doctoral students.

Additionally, we discuss the identified development methodologies and approaches with

special focus on multi-platform development. The artifacts that arise in the development

process targeting multiple-platforms are identified during the second phase of the research as

a result of performed two development cases. These artifacts are analyzed and finally

ontologically described in the last research phase.

All these results are argued and assessed in this chapter where we put special focus on the

research motivation, results, contributions, rigor and evaluation. By research motivation we

would like to emphasize the reasons for performing the research activities. By results and

contribution we aim to systematize the obtained results and the contribution to knowledge.

Discussing the research rigor we would like to point out our approach and its main

characteristics, and discussing the evaluation we would like to underline the evaluation

mechanisms that are used in order to verify and validate the used approach and the obtained

results.

Finally, we encompass the discussion with evidence on testing the stated research hypothesis.

6.1. Methodologies for development of mobile applications

In Chapter 2.1 of this thesis we gave a detailed analysis of Systematic Literature Review

(SLR) methodology as it is proposed by Kitchenham and Charters (2007). We presented the

methodology and gave summary of all phases and activities that should be performed while

214

conducting the SLR in the field of software engineering. Later, in Chapters 2.2 and 2.3 we

reported our literature review on methodologies for development of mobile applications.

In this chapter we would like to emphasize several characteristics of this research phase, with

the focus on mentioned views: motivation, results, contributions, rigor and evaluation.

6.1.1. Performing systematic literature review in SE

Motivation: The method of SLR is a well-known method of assessing and summarizing the

existing body of knowledge on a particular research question or questions. Although the

origins of SLR can be traced back to the beginning of the 20
th

 century, it emerged in the field

of software engineering (SE) during last several years. As there are important differences in

performing the SLR in SE and performing it in other fields, the authors who performed the

method generally agree that this field is still an area of investigation that remains to be

explored and that could well bring many benefits (Biolchini et al., 2005). The guidelines

presented by Kitchenham and Charters (2007) are created by adaptation of several existing

guidelines from other disciplines, mainly medicine, and thus are partially inappropriate for the

field of SE. Several authors, including Biolchini et al. (2005), Mian et al. (2005) and Staples

and Niazi, (2007) criticized the mentioned guidelines as explained above. As the methodology

of SLR as described in the guidelines is comprehensive, but time consuming, risky and

inappropriate for conduction by a single researcher, we decided to perform the analysis of the

reports and recommendations given by other authors and to enhance the guidelines in this

manner. Specifically, we focused on possible approaches that could be taken by PhD students

in order to overcome the most important obstacles they usually run on during the execution of

this method.

Results: As presented in Chapter 2.1, three phases of SLR are discussed in detail and

recommendations from other authors are given. In the review planning phase, the most

important tasks are concerned with specification of research questions and development of

review protocol. PhD students will usually define such research questions that aim to identify

the scope of future research activities. Additionally, PhD students will usually break-down the

research question into sub-questions by utilizing the PICOC model, i.e. defining the

population, intervention, comparison, outcomes and context. On the other hand, the

development of review protocol is not a trivial task, which according to some authors (e.g.

Staples and Niazi (2007)) is a subject of constant changes throughout the whole SLR process.

In this context, we found the template proposed by Biolchini et al. (2005) as an important

artifact which defines structure of the protocol along with the explanation of its elements.

Some protocol elements should be defined upon execution of pilot studies, and thus this task

can be time consuming. Subsequently, evaluation of review protocol is a key activity that

215

should be done by field experts or in the case of doctoral students, at least by thesis

supervisors. Other often used evaluation method is test of protocol execution.

In the conducting the review phase predefined protocol should be followed. This is the most

time-consuming phase which ends up with data extracted, summarized and ready for

dissemination. PhD students should use appropriate tools like appropriate reference manager

software in order to keep record on all of the identified studies through all review phases. One

of the key quality criteria is the transparency and the replicability of the review. In order to

identify relevant studies, doctoral students should strictly use predefined inclusion and

exclusion criteria, and lists of relevant sources for the field of software engineering can be

adopted from other authors, like for example from (Hannay et al., 2007) or (Kitchenham and

Charters, 2007). Depending on the number of initially obtained studies, different approaches

can be taken in their filtering. Less strict approach would be to, in the first step, exclude some

studies only by reading their title. This is sometimes the only approach as the number of

initial studies could be more than 10.000. On the other hand, Brereton et al. (2007) advocate a

more strict approach where exclusion by title should be avoided and used only if exclusion is

obvious. Reliability of inclusion and exclusion decisions is important, and doctoral students

can use several methods to increase it. Consultations with the advisor, the expert panel or

other researchers, re-evaluation of a random sample of the primary studies by test-retest

approach or re-evaluation by other researcher are some of the methods recommended for PhD

students. The study quality assessment procedures mainly depend on the type of the study, but

one method is particularly often used in SE – the use of checklists with defined quality

criteria. Finally, data extraction and synthesis are the last activities of this phase. The most

usual approach in data extraction is the usage of extraction forms. Examples of extraction

form can be found in (Kitchenham and Charters, 2007) and (Jørgensen, 2007), or in Table 4

of this document.

The mentioned data synthesis can be qualitative and quantitative, but in both cases, results

presented in an appropriate (e.g. table, graph or figure) manner should be narratively

explained. Doctoral students will probably report their findings in their dissertation, but prior

to that, proper evaluation of the results should be carried out. In this evaluation, help from a

supervisor, prior to submitting the dissertation to be evaluated by committee is welcomed. On

the other hand, the evaluation of scientific papers is done by scientific peer review.

Contributions: The body of knowledge on performing the systematic literature review in the

field of software engineering as proposed by Kitchenham and Charters (2007) is presented

and enhanced with a discussion, observation and recommendations synthetized from other

influential authors in the field. The three-phase-process along with stages and tasks is

analyzed in detail, and special focus is put on making the execution of this comprehensive

216

method easier for single researchers, like PhD students. Enhanced guidelines that can be used

while performing the systematic literature review are the main result of this research activity.

Rigor: A comprehensive analysis of available papers on how to perform SLR in the field of

SE was performed. The results showed that one document, the guidelines from Kitchenham

from (2004) which were updated by Kitchenham and Charters in (2007) is used as the

knowledge base on how to perform the method in all other reported reviews. However, we

carefully analyzed and compared the mentioned document with the reports and

recommendations from other influencing authors in the field. Each recommendation given in

our report has theoretical or practical proof that is found in the cited literature.

Evaluation: A short paper on the results presented in this chapter is already published at the

Central European Conference on Information and Intelligent Systems (Stapić et al., 2012),

while the full paper is currently under the review. Additionally, the presented enhanced

guidelines were evaluated by the thesis supervisors and were used in the SLR process

performed in this research.

6.1.2. Mobile development methodologies and approaches: SLR

Motivation: In Chapter 2.2, we defined the basic concepts that are connected with the

software development methodologies, and also we gave an overview of methodologies

targeting the development of mobile applications and concluded that it differs from the

standard development, that the agile approach is widely used in methodologies for mobile

devices and that all presented methodologies should be more fine grained and suitable for

specific development environment. Thus, even there are some attempts to create a specific

software development methodology that would be suitable for development of mobile

applications, these attempts are relatively rare and they are not aligned with the current mobile

development demands. So, many companies choose to use the existing and familiar

development methodologies in while developing mobile applications. These methodologies

are often adapted and changed, and a proper analysis of all of these possibilities was needed.

We also performed a research in order to identify the existing SLR from the domain of

interest and found that there are no existing SLRs targeting mobile application development

methodologies, which makes the need for such a review even bigger.

Results: In our systematic literature review, we aimed to answer two research questions. First,

we wanted to know what development methodologies and approaches are reported in

literature as defined in theory or used in practice for mobile application development, and

second, we aimed to analyze if these methodologies and approaches are applicable for multi-

platform mobile applications development. After having the review protocol developed and

validated by the thesis supervisors, we performed automatic and manual search on the

217

selected sources and obtained 6761 initial studies which were then analyzed through several

phases by applying strictly defined exclusion and inclusion criteria (see Table 14). The review

resulted in 49 relevant studies that were analyzed and data extraction was performed on them.

We finally identified 22 development methodologies and 7 development approaches that can

be used in the development of mobile applications (see Table 17 and Table 18). On the other

hand, only one methodology was not eligible according to the second research question, as it

targeted specific platform capabilities. After analyzing the obtained results and comparing the

reported use and available documentation on identified methodologies, Mobile-D

methodology along with Test Driven Development emerged as the most suitable (although

still not fully applicable without changes) methodology-approach pair to be used in the

following research phases.

Contributions: During the time of writing this thesis and to our knowledge, there are no

Systematic Literature Reviews performed in the field of Software Engineering that assess the

software development methodologies in general or specifically for mobile applications

development. Thus, in our research we performed SLR in order to identify development

methodologies and approaches that are reported to be used in mobile applications

development. Specific focus is placed on the assessment of included studies quality. Although

the average study quality is not very good, the results showed that 22 methodologies and 7

approaches are reported to be used in development of mobile applications.

Rigor: The method of Systematic Literature Review is performed by consistently following

the guidelines which are usually used in the process of SLR implementation in the field of

Software engineering. The mentioned guidelines are additionally enforced with the

recommendations from influential authors in the field. Every step is taken upon strictly

defined and evaluated procedure and with explicitly defined criteria. Where applicable,

references to the theoretical or practical background of all used artifacts are provided. All

included studies have undergone quality assessment, which resulted in elimination of 18 (out

of 67) studies. The remaining 49 studies were analyzed and data was extracted in accordance

with template specifically developed to provide sufficient information regarding the research

questions. All performed activities along with the results are reported as requested by SLR

methodology.

Evaluation: The SLR process is by its nature sequential. But, having the evaluation

procedures at every milestone, it can be considered as iterative process as well. By following

the methodology requirements and systematized recommendations from other authors, strict

evaluation mechanisms were applied at this research phase. Thus, the review questions,

created protocol, created search string, selected sources and other elements were evaluated

during or at the end of the planning phase. During the execution phase, the inclusion and

218

exclusion criteria were applied by the main researcher and then evaluated either by test-retest

method or by evaluation of the results by the research supervisors. Finally, the report results

were again evaluated in accordance with dissemination mechanisms and media.

6.2. Mobile-D implementation

The first part of the second research phase is presented in Chapter 3. First we gave an

overview of the chosen development methodology and then we utilized the methodology in

two development cases. The results contain documented development process for two target

platforms with the focus on the used and created artifacts. These results were used in

subsequent research phases.

Motivation: The identification of artifacts that arise in the development process for two or

more target platforms could be done either by analyzing some existing data on development

processes performed in practice (e.g. in company, or by individual developers), or by

performing a development in a laboratory environment. Although both approaches have their

advantages and disadvantages, we had to choose the second option, as it proves to be more

flexible and fully controlled by the researcher himself. The development of fully functional

application for two target platforms is a time consuming work, but it brings the benefits of

executing the process with careful analysis of all performed phases, activities and tasks along

with all artifacts that were created in the process.

Results: After almost 160 working days, two versions of the same application were created.

During the development process we put special focus on the artifacts that were created in the

process and on their reusability. Specifically, while developing the mobile application for the

first target platform, the artifacts were observed from methodological point of view. The

methodological approach along with the connected artifacts was reported in detail. On the

other hand, while developing for the second target platform, artifacts were observed from the

reusability point of view. Although we had some implementation problems which made some

phases in the second development case unexpectedly long, the reusability at methodological

level resulted in a development process shortened for 18.4% (see Table 37). If we remove the

technology related issues, the time saved with this approach would be even bigger.

Contributions: The performed process faithfully demonstrates the development process that

would be performed by any small company. The finished product with all planned

functionality implemented and tested is a proof of completeness of our approach. The

empirical evidence collected during such development represents valuable scientific

knowledge base which we used in the rest of this research and which can be used for different

additional analyzes in the future.

219

Rigor: The Mobile-D methodology as described in (Abrahamsson et al., 2005a) was strictly

followed in both development cases. All activities were carefully noted and the development

process is made transparent and reported in this document.

Evaluation: Test Driven Development represents continuous evaluation of created project

throughout the whole development process. This product evaluation includes execution of

unit tests on units of code, integration tests on integrated components of the system, system

test on final product and acceptance test on required functionality. On the other hand, the

alignment of development process with Mobile-D methodology is evaluated according to

methodology implementation instructions given in (Abrahamsson et al., 2005a). The final

evaluation was performed by the thesis supervisors who are experts in the field of software

engineering and development.

6.3. Identification of artifacts

Chapter 4 represents the second part of second research phase where we analyze and compare

the artifacts that arose in methodologically driven process mobile application development for

two target platforms. This chapter uses the empirical evidence and created artifacts collected

during the implementation phase and identifies Android development case artifacts and

Windows Phone development case artifacts, and the analysis shows a great level of

reusability.

Motivation: We consider Mobile-D as being a well-documented methodology for

development of mobile applications. We used several documents describing the methodology,

but the most important one is definitely a guide presented in (Abrahamsson et al., 2005a)

which in detail describes the whole development process, and it also enumerates all artifacts

that arise in such methodologically driven process. However, the overall picture on the use of

these artifacts by phases and tasks is hard to read from the mentioned document. Additionally,

these are not the only artifacts that we are interested in. From the point of view taken in this

research, platform specific artifacts and development unrelated artifacts could also be reusable

in different ways and on different reusability levels. Thus, comprehensive analysis of all

artifacts that arise in such development process is needed. Additionally, once identified, such

artifacts should be analyzed, compared, cross-platform compared and connected to the

development phases, activities and tasks.

Results: In order to perform straight format and unbiased analysis, first we defined the

analysis setting (see Chapter 4.1) which includes the definition of artifacts, the relations with

other methodological concepts that will be observed and the template that is to be used for

artifact description. As the artifacts are observed as “any piece of software developed and

220

used during software development and maintenance” we found the list of Mobile-D artifacts

(see Table 38) related to process tasks not sufficient and thus we performed our own analysis.

During the analysis, we observed the development process for each target platform separately

and we identified 71 different artifacts that we initially grouped in 12 categories (see chapters

4.2 and 4.3). After performing a cross-platform analysis we found that more than 70% of all

identified artifacts are common to both platforms and 66% of them are partially or completely

reusable (see chapter 4.4).

Contributions: Our analysis included artifacts that originate from the selected methodology,

from the specific target platform or are necessary as supportive in performing other

development unrelated tasks like communicating, reporting or project management. Another

important contribution of this research phase are the results of cross-platform analysis

showing high level of reusability among artifacts created during the development for two

target platforms. These results are very encouraging and we can conclude that they create a

strong basis and motivation for additional research and analyses.

Rigor: This research phase is performed by a careful analysis of empirical evidence collected

during the research process and by systematic analysis of the Mobile-D documentation. In

cross-platform analysis, three levels of reusability were created and all artifacts were

evaluated according to the same criteria in order to be placed in „completely‟, „partially‟ or

„none‟ level.

Evaluation: Three different evaluation mechanisms were used in this phase. First, we

compared our matrixes showing the Android and Windows Phone artifacts (Table 40 and

Table 42) with the Mobile-D artifacts matrix (Table 38). Although not all artifacts are present

in both matrixes, we could evaluate our results at least for methodological artifacts. Secondly,

the cross-platform analysis results were compared against the development notes that had

been created during the implementation process. In the end, as usual, the results were

additionally evaluated by the two thesis supervisors.

6.4. Ontology for methodological interoperability

The last research phase is presented in Chapter 5. This chapter presents a background for

ontology development (see chapter 5.1) by defining: the ontology, its types and usages,

connections with our proposed methodological interoperability, ontology development

methodologies, tools and languages. Having the background established first we developed

Android Case Artifacts Ontology (see 5.2), then we reused it in the development of

WindowsPhone Case Artifacts Ontology (see 5.3), and finally we merged these two ontologies

221

and enhanced the resulting ontology into Multiplatform Case Artifacts Ontology which

focuses on artifacts reusability (see 5.4).

Motivation: The main goal of this research was to ontologically describe artifacts that arise in

a methodologically managed process of mobile application development targeting two or

more mobile platforms, and to create the basis for more efficient and interoperable process of

multi-platform mobile applications development. As we argued in the Chapter 1.1 of this

thesis, the development for mobile devices brings different new challenges, and although

there are several rather different approaches that scientists and experts are taking to solve

these problems, their common characteristic is also their main disadvantage: all of them are

based on paradigm “code once – run anywhere” which is unachievable and which takes away

a native development environment possibilities. This motivated us to propose a novel

approach by enhancing the interoperability among teams working on the same application

targeting different platforms by moving the focus to the methodological interoperability that

would be achieved through the reuse of artifacts created in such process. Having this in mind,

and as described in Chapter 5.1.3, ontologies are a natural solution and tool in achieving

semantic interoperability.

Results: First, we tried to give a short overview of several concepts that are related to

ontologies and ontology development (see Chapter 5.1). For the purpose of this research we

defined ontology as an explicit formal conceptualization of a shared understanding of the

domain of interest which includes the vocabulary of terms in order to describe the domain

elements, semantics in order to define the relationships of the domain elements and

pragmatics in order to define possible usages of these elements. We also presented the most

common reasons for ontology usages and we argued about their classification in accordance

with different points of view. As important result of this research, we created a connection

between ontologies and methodological interoperability that is proposed by this thesis.

Additionally, we gave a short overview of several influencing ontology development

methodologies which are either commonly used today or had a great influence on the

development of other methodologies. Finally, we argued about the possibilities of using

different ontology development tools and ontology development languages.

By implementation of Ontology Development 101 methodology (Noy and McGuinness,

2001) we created two platform specific ontologies and one upper level common ontology for

multi-platform development. The development of the first ontology was performed from

scratch and the focus in the report presented in Chapter 5.2 was put on the ontology

development process. During the development of the second platform specific ontology (see

Chapter 5.3), we focused on the reusability and ontology update. The results showed that no

infrastructural changes on the existing ontology were necessary while converting it into an

222

ontology targeting a different platform. On the other hand, the development of the final

ontology targeting multi-platform development and reusability focused on the ontology

merging, enhancing, evaluating and testing concepts. Two existing ontologies were merged

and again there was no need for any infrastructural changes or conflict resolutions (see

Chapter 5.4.2). The merged ontology was finally enhanced with a conceptualization regarding

the artifacts reusability.

The final ontological description encodes the information on 213 classes (see Table 51), 14

properties (see Table 52) and 2213 axioms. A full ontological description is available in

Appendix E of this document, in OWL/XML format at http://barok.foi.hr/~zstapic/ont/

mcao.owl and as OWLDoc documentation at http://barok.foi.hr/~zstapic/ont/mcao/doc/.

Special focus in this chapter is placed on ontology testing and evaluation. The ontology is

tested with series of Description Logic queries which aimed to answer all competency

questions stated at the beginning of development process. More on testing and evaluation is

given in subsequent evaluation paragraph.

Contributions: This chapter contributes to knowledge in several aspects. First we presented

the most important concepts in ontology development. Although these are not new concepts,

the use of ontologies in achieving a methodological interoperability is a novel approach

in solving the mobile platform and device fragmentation problem. Additionally, we

argued about the use of specific methodologies, tools, languages and approaches in ontology

development. Such discussion along with the in detail presented ontology development

process that was taken in this research, could be useful in future ontology development

projects. The Multi-platform Case Artifacts Ontology represents a unique ontological

description which is created to be a knowledge base for any information system that

aims to help development teams in increasing interoperability at methodological level by

reusing the artifacts that arise in multi-platform development process.

Rigor: In the development of all three ontologies we followed the OD101 methodology (Noy

and McGuinness, 2001), the recommendations given in (Horridge, 2011) and middle-out

approach in class development as proposed by Uschold and Gruninger (1996). Additionally,

during the whole development we kept the ontology in consistent logical, syntactic and

semantic state by performing the continuous evaluation by several mechanisms presented in

the following paragraph. As it can be seen from the obtained results, the created ontologies

are flexible, reusable and updatable.

Evaluation: As created ontology is one of the main contributions of this thesis, the special

focus was put in its verification and validation throughout the whole development process

(see Chapter 5.4.5). We used seven different automatic and manual evaluation mechanisms

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

223

that aimed to verify that the ontology was built correctly and to validate its content quality

and completeness.

First, the ontologies were built by following methodological development process which

ensured that our approach was systematic. We also followed the recommendations given in

(Noy and McGuinness, 2001) and in (Horridge, 2011) in order to avoid mistakes that are often

made and to solve the most common issues in ontology development. Third, throughout the

whole incremental development process we used reasoning tools to verify the newly added

concepts and their influence on the already defined concepts. Reasoners detect any syntax

errors, check the consistency of the ontology and automatically compute the inferred class

hierarchy model and as such are strong evaluation tool.

Additionally, we used two different tools that automatically evaluate the created ontologies:

OWL Validator (Horridge, 2009) which formally validated the ontology syntax and Ontology

evaluation plugin (Tantsis, 2013) which automatically evaluated the ontology according to

eight properties and gave us some insights and recommendations in possible inconsistencies

in the created ontology.

As the sixth and probably the most important evaluation mechanism, in order to validate the

ontology against its usage in future application, we created a series of Description Logic

queries which aimed to extract direct and indirect knowledge out of the ontology, by using a

reasoning engine. We created queries to test the ontology against all competency questions

that were created at the beginning of ontology development process and that were used as a

ontology guiding thread. The results obtained by these queries have been validated by thesis

supervisors - prof. Strahonja who is a domain expert in the field of Software Engineering

Methodologies, and dr. de-Marcos as an expert in Artificial Intelligence.

The created ontology is successfully verified and positively validated, and as such it

represents a solid basis for creation of an appropriate information system.

6.5. Summary of the results

Taking into consideration all what was said in the previous chapters we can conclude that the

research process was performed in the planned scope and within the planned research

framework defined at the beginning of the research process (see Chapter 1.3).

Following this framework we identified the methodologies that could be used for

development of mobile applications; we implemented the chosen methodology and approach

and created a mobile application targeting two target platforms; we identified and analyzed

the artifacts that were created in this development process, and we created the ontological

224

definition that describes the artifacts in accordance with Mobile-D methodology and from the

reusability point of view.

According to the results that were obtained during the ontology evaluation and testing, we can

conclude that such ontological description, that encodes the knowledge with OWL 2 and

Description Logic defined axioms and queries, represents a solid basis that can be used in

development of information system aiming to guide the development teams in achieving the

methodological interoperability by reusing artifacts created in the process of multi-platform

mobile application development. Additionally, we proved that our ontological description is

highly flexible and extensible, which allows us to update it with information on new platform

specific or platform independent artifacts without the need of changing the underling

infrastructure defined by the main class hierarchy elements, defined value partitions or

properties. Finally, the model allows the creation of Description Logic queries which can be

used to acquire direct or indirect information encoded in ontology knowledge. We showed the

examples of such queries which among other aimed to reach the information regarding the

competency questions stated at the beginning of the ontology development.

Therefore, we can conclude that it is possible to create ontological description of elements

of methodological interoperability containing structural and semantic aspects of sets of

artifacts created in the development process of a mobile application for two or more

target platforms, which makes our H1 hypothesis confirmed.

This opens different possibilities for further research in this field – starting from building

additional ontological descriptions, building the different information systems that would

utilize such knowledge, designing and creating the integrated systems that would not only

guide the developers, but also provide them with interoperable artifacts management

environment.

225

7. CONCLUSION

7.1. Research objectives revisited

As we described in the introductory chapters of this thesis, this research focuses on the

analysis of the problem of multi-platform mobile applications development, and on the

proposal of a novel solution in the domain of ontology-based methodological interoperability.

Thus the stated goals included the acquisition of answers to the following questions: (1) what

methodologies and development approaches can be used in multi-platform mobile

applications development; (2) what artifacts (required inputs and outputs of methodologically

and methodically defined development steps) emerge during mobile applications

development, (3) whether and to what extent there are similarities between these artifacts, (4)

whether it is possible to ontologically describe these artifacts, and create a basis for

developing a system that would support the methodological interoperability.

Thus, the main goal of the research is connected to the last stated question, and it was to

ontologically describe artifacts that arise in the methodologically managed process of mobile

application development targeting two or more mobile platforms, and to create the basis for a

more efficient and interoperable process of multi-platform mobile applications development.

In this chapter we would like to have a glance look back on the performed research and to

emphasize its results by answering the stated questions and by aligning the results with the

main goal of this research.

 What methodologies and development approaches can be used in multi-platform

mobile applications development?

After creating a comprehensive analysis of how to perform a Systematic Literature Review in

the field of Software Engineering (Chapter 2.1) we performed an SLR with the goal to answer

the stated research question (Chapters 2.2 and 2.3). Reviewing more than 6700 initially

obtained studies through a set of predefined phases, we identified a total of 49 studies that are

found to be relevant to our question. Finally, we identified 22 development methodologies

and 7 development approaches that can be used in multi-platform mobile applications

development (see Table 17 and Table 18).

226

 What artifacts (required inputs and outputs of methodologically and methodically

defined development steps) emerge during mobile applications development?

Out of 22 identified methodologies, we argued and choose Mobile-D methodology to be the

most suitable for development of our mobile application for two target platforms (see Chapter

2.4). In the next research phase, we performed the development in order to identify the

artifacts that arise in such development process (see Chapters 3 and 4). After analyzing the

empirical and theoretical evidence we identified a total of 71 artifacts (60 in Android case and

61 in WP case) that were used or created in the mentioned development process. The artifacts

are enumerated and described in Table 40 and Table 42.

 Whether and to what extent are there similarities between these artifacts?

The cross-platform analysis of the identified artifacts showed significant similarities between

the artifacts used in the two development cases (see Chapter 4.4). After performing a cross-

platform analysis we found that more than 70% of all identified artifacts are common to both

development cases, that 66% of these common artifacts are completely or partially reusable,

and that the remaining platform specific artifacts also have some similarities.

 Whether it is possible to ontologically describe these artifacts, and create a basis for

developing a system that would support the methodological interoperability

Having the artifacts identified, we moved to the process of their ontological description. First

we created an ontological description of artifacts targeting Android development (see Chapter

5.2), then we created an ontological description targeting Windows Phone development (see

Chapter 5.3), and finally we merged these two in a common ontological description that is

additionally enhanced with the conceptualization of artifacts reusability (see Chapter 5.4). The

whole process of creation was methodologically driven and evaluated with several evaluation

mechanisms (see Chapter 5.4.5) which proved its correctness, validity and completeness.

With all this, we can conclude that we ontologically described the artifacts that arise in a

methodologically managed process of mobile application development targeting two or

more mobile platforms. Having this ontology proved to be correct and valid, flexible,

reusable and extensible we created the basis for development of an information system

to guide the development teams in a more efficient and interoperable process of multi-

platform mobile applications development, and thus the main research goal is

accomplished.

227

7.2. Limitations of the research

In this research several limitations can be identified. For example, the biggest challenge that

we faced in the first research phase was the execution of a complicated and time-consuming

scientific method of Systematic Literature Review by a single researcher. The SLR is

originally created and defined to be performed by a team of researchers, and the execution by

a single researcher (a doctoral student) makes the process of eliminating the research bias

more complicated and, of course, very time-consuming. In order to deal with this limitation

we defined very narrow research questions strictly focusing on the necessities of this thesis,

and we tried to strictly follow the recommendations on performing the Light SLR that are

given by the methodology creators and other influential authors. Finally, the role of the thesis

supervisors in elimination of research bias was the most important as they evaluated the

research results at every reached milestone.

The institutional subscriptions to the available scientific sources are very poor in Croatia and

somewhat better in Spain. However, the restrictions on accessing several databases (including

the newest volumes from Springer, some volumes from Wiley and the whole EI Compendex

database) are also identified as limitations in this research. In the end, we believe that the lack

of several sources did not significantly influence the overall literature review results as in

some cases we contacted the authors of the studies who gladly sent us their findings. I would

like to take this opportunity to thank all of them for this.

In the second research phase, the most important limitation was the lack of information on

performed projects of development of mobile application in development companies that are

targeting two or more target platforms. Our attempts to get such information for scientific

purposes were politely refused and we had to turn to laboratory development environment in

order to acquire empirical evidence that would be used in the later research phases. Although

we performed a rigorous development process that was evaluated by several different

mechanisms we find such approach as a possible limitation of this research. The main

difference from the development process in a company is lack of organization hierarchy and

roles, along with the lack of standard organizational processes that are intertwined with

development processes. However, we had this in mind while defining the requirements of the

mobile application and we tried to require the development of an application that would

represent a vast majority of today‟s mobile applications developed by software companies. In

this manner, we could talk about other differences that could be found when comparing a

development performed by a single developer and development performed by a company that

has a history, with its legacy systems, specific organization culture et cetera. Although, the

development of a mobile application with or without a legacy system only influences the

228

development process and not the methodological aspects, we believe that other mentioned

differences could be taken as additional limitation of this research.

Regarding the third research phase we are aware that the proposed ontology presents only the

development of one application for two target platforms, and that the identified set of artifacts

in general could include many other platform specific artifacts and even some methodology

specific artifacts. Additionally, as stated in our scope definition (Chapter 1.3.1) we covered

only one development methodology supported by one development approach and targeting for

two mobile platforms. All mentioned issues can be recognized as the limitations of this

research, but we have to keep in mind that this research process had the main goal of

proposing a new framework or approach that can be used in solving the mobile platform

fragmentation problem. As argued in the previous chapter, this goal is fully achieved.

In the next chapter we will elaborate on the possible future research directions that could be

taken in order to overcome some of the above mentioned limitations or/and to enhance the

framework and make it usable in a concrete information system.

7.3. Possible future research

This research presents a comprehensive set of activities which resulted in a final product that

is usable in its current state. However, by extending the contexts of using such ontology we

can identify other possible research activities or even research directions that could be taken.

Even though throughout the whole research, including the section on research limitations, we

have pointed out the possible additional approaches that could be taken in order to enhance

the results, or to take a different point of view in analyzing some concept of interest, in this

chapter we would like to emphasize some of these possibilities.

In general, we recognize two main fields where this research sets the basis for future scientific

and professional activities. Those fields are Software Engineering with particular focus on

mobile engineering and, secondly, Knowledge Engineering with particular focus on ontology

development.

Let us start with the second one. The created ontology defines the basic infrastructure and

elements in the proposed framework of methodological interoperability, but currently it

covers only one development methodology and one development approach and it targets two

mobile platforms. As we have already discussed, the ontology is reusable and updatable but

with limits on adding new artifacts targeting different mobile platforms. If we want to move

to a completely new methodology, few of the existing classes would be reusable. Thus we

think that some improvements in this sense could be achieved with different ontology

229

structure. Perhaps, building parts for the ontology should not be specific ontologies targeting

specific platform, but rather distinct ontologies describing the methodology on one side and

the target platform on the other side. This would raise the level of reusability and it definitely

needs more scientific attention.

In addition to knowledge regarding the structural aspects of methodological phases, activities

and tasks, structural aspects of the identified artifacts, semantic aspects regarding the origin,

type, use and reuse of artifacts, only the inter-artifact relationships were described in the

approach taken in this research. To get more fine grained results would include also an intra-

artifact description describing its content in detail. Such analysis should answer questions like

“Which part of any partially reusable artifact could be reused and which does not?” or “How

specific artifact is reusable: by its structure, content, inner logic or their combination?”

Having this information on artifact inner content, the proposed framework would have

additional useful functionalities which would enable development teams to even better reuse

existing outputs and to additionally reduce development time.

An interesting research activity could be to compare the existing methodologies for the

development of mobile applications and to ontologically describe such acquired knowledge.

Such ontological description could be used in creation of ontologies in our framework, but

would also provide many different possibilities that are connected with mobile application

development, like how to choose proper methodology in a specific context, or how to

implement a new methodology that is unfamiliar to the team members.

On the other side, when talking about research activities in the field of software engineering,

we have already mentioned the necessity of moving this research to a new phase where a

proper information system for guiding the artifacts reuse would be developed. The

development of such a novel system is not a trivial task and it gives many research

possibilities in the domain of its design, functionality, relationship with the ontological

knowledge base et cetera. We also mentioned other systems that could be developed and that

are connected with artifacts management or even automatic transformation. Both these topics

open a set of new research fields and possibilities.

Finally, there are different research activities that could be connected to the performed

systematic literature review. As our research questions were rather narrow, similar review

could be performed in order to identify the methodologies and compare their main activities,

phases and tasks. Also, the data extraction forms, used in our research, contain some

information that we currently did not need, but we extracted it as we presumed it would be

useful for additional analysis. Such information, for example, relates to details on identified

methodology, its organizational or project management aspects et cetera. The analysis of this

information, along with the analysis of assessed studies quality could give new and interesting

230

results in this domain. As the SLR still emerges in the field of software engineering, an

analysis of the performed researches along with recommendations and conclusions is also

very welcomed.

In this short look into possible research directions in the future we presented only the most

important research activities that could be performed, but as we have already said, many

different and small enhancements of our research are possible and they are discussed

throughout the dissertation text.

7.4. Conclusion

This doctoral research tried to propose a different approach in solving the mobile platform

fragmentation problem with particular focus on multi-platform mobile application

development. It is a multidisciplinary research positioned inside the intersection of Software

and Knowledge Engineering fields. By utilizing ontologies, we proved that such formal

specification of conceptualization represents a solid basis for the development of an

information system that could guide development teams in a more efficient and

methodologically interoperable process of multi-platform mobile application development by

reusing the already created artifacts.

Three research phases were performed in order to identify the methodologies that are used for

multi-platform mobile application development, to identify the artifacts that arise in such

development process and to semantically describe those artifacts into a correct and valid

ontological description. Thus, the overall scientific contributions of this research can be

described as:

 Systematization of recommendations in performing the Systematic Literature Review

process in the field of Software Engineering with special focus given to the execution

of SLR by a single researcher (like doctoral students).

 Identification of available development methodologies and development approaches

that are reported in literature as created or used for mobile applications development.

The identification is performed by means of Systematic Literature Review.

 Systematization of knowledge and concepts in the field of application development for

mobile devices, identifying artifacts created and used while developing for mobile

devices with the consistent implementation of the selected development methodology.

 Classification of identified artifacts according to their reusability level, type and

origin. This classification implies semantic description of the artifacts, description of

231

the connection between the artifact and development tasks, activities and phases along

with description of inter-artifact relationships.

 A new ontological description of the artifacts that can be used as a knowledge basis

for developing a system that would support methodological interoperability and

therefore make development of applications for multiple mobile platforms more

efficient.

 Guidelines and recommendations for improving the development of multi-platform

applications for mobile devices through the utilization of an ontology-based

framework proposed by this research.

Although there are ontologies defined to provide interoperability at different levels of an

application development process, this novel approach aims to define interoperability at, until

now unexplored, methodological level. Semantic descriptions created and evaluated in this

thesis proved that the proposed approach and the supporting framework represent a solid basis

for performing additional research in this field. However, developing this ontology is only the

first step in the chain of activities to be implemented in order to develop a semantically

supported system for methodological interoperability.

233

REFERENCES

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J.,

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application

development, in: Companion to the 19th Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ‟04.

ACM, New York, NY, USA, pp. 174–175.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Jäälinoja, J., Komulainen, K., Korkala, M.,

Koskela, J., Kyllönen, P., Eporwei, O.T., 2005a. Agile Development of Embedded

Systems: Mobile-D (Agile Deliverable No. D.2.3). ITEA.

Abrahamsson, P., Hanhineva, A., Jäälinoja, J., 2005b. Improving business agility through

technical solutions: A case study on test-driven development in mobile software

development, in: Business Agility and Information Technology Diffusion. Presented

at the IFIP TC8 WG 8.6 International Working Conference.

Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen, P., Salo, O., 2009. Mobile-D for

Mobile Software: How to Use Agile Approaches for the Efficient Development of

Mobile Applications.

Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., 2003. New directions on agile

methods: a comparative analysis. IEEE, pp. 244–254.

Adobe Corporation, 2011. Adobe Announces Agreement to Acquire Nitobi, Creator of

PhoneGap [WWW Document]. Adobe.com - Press releases. URL

http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresN

itobi.html (accessed 18-May-12).

Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., 2009. MobiVine: a middleware layer to

handle fragmentation of platform interfaces for mobile applications, in: Proceedings of

the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

‟09. Springer-Verlag New York, Inc., New York, NY, USA, pp. 24:1–24:10.

Ahtinen, A., Nurminen, J.K., Häkkilä, J., 2007. Developing a mobile reporting system for

road maintenance: user research perspective, in: Proceedings of the 4th International

Conference on Mobile Technology, Applications, and Systems and the 1st

International Symposium on Computer Human Interaction in Mobile Technology,

Mobility ‟07. ACM, New York, NY, USA, pp. 1–7.

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application

development: Learning episodes from Tehran and London, in: 2011 Federated

Conference on Computer Science and Information Systems (FedCSIS). Presented at

the 2011 Federated Conference on Computer Science and Information Systems

(FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497–504.

Amanquah, N., Eporwei, O.T., 2009. Rapid application development for mobile terminals, in:

2nd International Conference on Adaptive Science & Technology (ICAST). Presented

at the Technology (ICAST), Accra, Ghana, pp. 410–417.

Android Developers, 2013. Platform Versions [WWW Document]. Dashboards | Android

Developers. URL http://developer.android.com/about/dashboards/index.html

(accessed 3-Jul-13).

234

Avison, D.E., Fitzgerald, G., 1988. Information systems development: methodologies,

techniques, and tools, Information systems series. Blackwell Scientific Publications,

Oxford [England] ; Boston.

Avison, D.E., Fitzgerald, G., 2003. Where now for development methodologies?

Communications of the ACM 46, 78–82.

Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-Driven Development of Mobile

Applications, in: Proceedings of the 2008 23rd IEEE/ACM International Conference

on Automated Software Engineering, ASE ‟08. IEEE Computer Society, Washington,

DC, USA, pp. 509–512.

Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and

Wireless Networks Application Development using Hybrid Component Based

Development Model. Arxiv preprint arXiv:1202.2515.

Beck, K., 2002. Test-driven development: by example, The Addison-Wesley signature series.

Addison-Wesley, Boston.

Bektesevic, E., Rysa, E., 2008. JSR 248: Mobile Service Architecture [WWW Document].

The Java Community Process(SM) Program - JSRs: Java Specification Requests. URL

http://jcp.org/en/jsr/detail?id=248 (accessed 17-May-12).

Belcar, T., Lovrenčić, S., 2012. Use of Description Logics Expressive Power in Ontologies,

in: Proceedings of 23rd Central European Conference on Information and Intelligent

Systems. Presented at the CECIIS 2012, Varaždin, pp. 23–28.

Bergström, F., Engvall, G., 2011. Development of handheld mobile applications for the public

sector in Android and iOS using agile Kanban process tool.

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce

Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM)

1, 33–47.

Biolchini, J., Gomes Mian, P., Candida Cruz Natali, A., Horta Travassos, G., 2005.

Systematic Review in Software Engineering (Technical report No. RT - ES 679 / 05).

PESC, Rio de Janeiro.

Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006.

Assessment of mobile experience engine, the development toolkit for context aware

mobile applications, in: Proceedings of the 2006 ACM SIGCHI International

Conference on Advances in Computer Entertainment Technology, ACE ‟06. ACM,

New York, NY, USA.

Bowen, J., Hinze, A., 2011. Supporting Mobile Application Development with Model-Driven

Emulation. Electronic Communications of the EASST 45.

Brank, J., Grobelnik, M., Mladenić, D., 2005. A survey of ontology evaluation techniques, in:

In In Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD

2005.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from

applying the systematic literature review process within the software engineering

domain. Journal of Systems and Software 80, 571–583.

Brusilovsky, P., Sosnovsky, S., Yudelson, M., 2005. Ontology-based Framework for User

Model Interoperability in Distributed Learning Environments, in: World Conference

on ELearning, E-Learn 2005. AACE, pp. 2851–2855.

235

Centers for Medicare and Medicaid Services (CMS), Office of information Services, 2008.

Selecting a development approach.

Centre for Reviews and Dissemination, University of York, 2009. Systematic reviews: CRD‟s

guidance for undertaking reviews in health care. Centre for Reviews and

Dissemination, York.

Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of

Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional

Conference on The. p. 2.

Chen, M., 2004. A methodology for building mobile computing applications. International

journal of electronic business 2, 229–243.

Cohen, J., 1968. Weighted kappa: Nominal scale agreement provision for scaled disagreement

or partial credit. Psychological Bulletin 70, 213–220.

Conradi, R., 2004. Software engineering mini glossary [WWW Document]. URL

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (accessed 5-May-12).

Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A., 2003. Methodologies, tools and

languages for building ontologies. Where is their meeting point? Data & Knowledge

Engineering 46, 41–64.

Cristani, M., Cuel, R., 2004. A Comprehensive Guideline for Building a Domain Ontology

from Scratch, in: Proceedings of I-KNOW ‟04. Presented at the I-KNOW ‟04, Graz,

Austria.

Crockford, D., 2006. The application/json Media Type for JavaScript Object Notation (JSON)

(IEEE Standard No. RFC4627). Network Working Group.

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the

Development of MicroApps on Mobile Phones, in: Proc. of 3rd International

Symposium on End-User Development. Presented at the 3rd International Symposium

on End-User Development, Brindisi, Italy, pp. 289–294.

Dahlem, N., 2011. OntoClippy: A User-Friendly Ontology Design and Creation

Methodology. International Journal of Intelligent Information Technologies 7, 15–32.

De Nicola, A., Missikoff, M., Navigli, R., 2005. A proposal for a Unified Process for

ONtology building: UPON, in: In Proceedings of 16th International Conference on

Database and Expert Systems Applications (DEXA.

DeviceAnywhere, 2011. DeviceAnywhere - Test Center Enterprise Automation [WWW

Document]. Automated Testing on Smartphones and Tablets. URL

http://tiny.cc/DeviceAnywhere (accessed 27-Aug-11).

Dybå, T., Dingsøyr, T., 2008a. Strength of evidence in systematic reviews in software

engineering. ACM Press, pp. 178–187.

Dybå, T., Dingsøyr, T., 2008b. Empirical studies of agile software development: A systematic

review. Information and Software Technology 50, 833–859.

Dyck, S., Majchrzak, T.A., 2012. Identifying Common Characteristics in Fundamental,

Integrated, and Agile Software Development Methodologies. IEEE, pp. 5299–5308.

Ejlersen, A., Knudsen, M.S., Løvgaard, J., Sørensen, M.B., 2008. Using Design Science to

Develop a Mobile Application.

236

Elliott, G., 2004. Global business information technology: an integrated systems approach.

Pearson Addison Wesley, Harlow, England; New York.

European Commission, 2010. European Interoperability Framework (EIF 2.0) (COM(2010)

744 final).

Fernandez-Lopez, M., Gomez-Perez, A., Juristo, N., 1997. METHONTOLOGY: from

Ontological Art towards Ontological Engineering, in: Proceedings of the AAAI97

Spring Symposium. Stanford, USA, pp. 33–40.

Fielding, R.T., 2000. Architectural styles and the design of network-based software

architectures. University of California, Irvine.

Fjellheim, T., Milliner, S., Dumas, M., Vayssière, J., 2007. A process-based methodology for

designing event-based mobile composite applications. Data & Knowledge

Engineering 61, 6 – 22.

Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T., Charaf, H., 2005. Supporting Rapid

Application Development on Symbian Platform, in: Computer as a Tool, 2005.

EUROCON 2005.The International Conference On. pp. 72 –75.

Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, I., Charaf, H., 2006. Model-

based system development for embedded mobile platforms, in: Model-Based

Development of Computer-Based Systems and Model-Based Methodologies for

Pervasive and Embedded Software, 2006. MBD/MOMPES 2006. Fourth and Third

International Workshop On. p. 10–pp.

Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones

Games.

Gasson, S., 1995. The role of methodologies in IT-related organisational change, in:

Proceedings of BCS Specialist Group on IS Methodologies, 3rd Annual Conference,

The Application of Methodologies in Industrial and Business Change. Presented at the

3rd Annual Conference, The Application of Methodologies in Industrial and Business

Change, North East Wales Institute, Wrexham.

Gómez-Pérez, A., 2001. Evaluation of ontologies. International Journal of Intelligent Systems

16, 391–409.

Gómez-Pérez, A., 2004. Ontological engineering: with examples from the areas of knowledge

management, e-commerce and the Semantic Web, Advanced information and

knowledge processing. Springer, London ; New York.

Gómez-Pérez, A., 2004. Ontology Evaluation, in: Handbook on Ontologies, International

Handbooks on Information Systems. Springer, pp. 251–274.

Gong, R., Li, Q., Ning, K., Chen, Y., O‟Sullivan, D., 2006. Business process collaboration

using semantic interoperability: Review and framework, in: Mizoguchi, R., Shi, Z.,

Giunchiglia, F. (Eds.), SEMANTIC WEB - ASWC 2006, PROCEEDINGS,

LECTURE NOTES IN COMPUTER SCIENCE. pp. 191–204.

Gruber, T.R., 1993a. A translation approach to portable ontology specifications.

KNOWLEDGE ACQUISITION 5, 199–220.

Gruber, T.R., 1993b. Toward principles for the design of ontologies used for knowledge

sharing (Technical report No. KSL-93-04). Stanford University, Stanford.

237

Grüninger, M., Fox, M.S., 1995. Methodology for the Design and Evaluation of Ontologies,

in: Workshop on Basic Ontological Issues in Knowledge Sharing. Presented at the

Workshop on Basic Ontological Issues in Knowledge Sharing, Montreal.

Guarino, N., 1998. Formal Ontology and Information Systems, in: Proceedings of the 1st

International Conference on Formal Ontology in Information Systems. Trento, Italy,

pp. 3–15.

Guide to the software engineering body of knowledge (SWEBOK V3) - Software engineering

models and methods (Chapter 10 - Unpublished - In Review) (Technical report No. ?),

2012.

Guide to the software engineering body of knowledge 2004 version: SWEBOK (Technical

report No. ISO/IEC TR 19759), 2004. . Los Alamitos, CA.

Hammond, S., Umphress, D., 2012. Test driven development. ACM Press, p. 158.

Hannay, J., Sjoberg, D., Dyba, T., 2007. A Systematic Review of Theory Use in Software

Engineering Experiments. IEEE Transactions on Software Engineering 33, 87–107.

Hedberg, H., Iisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in:

Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347–353.

Higgins, J.P.., Green, S. (Eds.), 2011. Cochrane Handbook for Systematic Reviews of

Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration.

Available from http://www.cochrane-handbook.org/.

Hilera, J.R., Pages, C., Martinez, J.J., Gutierrez, J.A., de-Marcos, L., 2010. An evolutive

process to convert glossaries into ontologies. Information Technology and Libraries

29, 195–204.

Hilpinen, R., 2011. Artifact [WWW Document]. Stanford Encyclopedia of Philosophy. URL

http://plato.stanford.edu/entries/artifact/ (accessed 5-May-12).

Holler, R., 2006. Mobile Application Development: A Natural Fit with Agile Methodologies.

Horridge, M., 2009. OWL 2 Validator [WWW Document]. University of Manchester. URL

http://owl.cs.manchester.ac.uk/validator/ (accessed 20-Jun-13).

Horridge, M., 2011. A Practical Guide To Building OWL Ontologies Using Protégé 4 and

CO-ODE Tools.

Horridge, M., Patel-Schneider, P.F., 2009. Manchester Syntax - OWL (W3C Document).

W3C.

Hosbond, J.H., 2005. Mobile Systems Development: Challenges, Implications and Issues, in:

Krogstie, J., Kautz, K., Allen, D. (Eds.), Mobile Information Systems II, IFIP

International Federation for Information Processing. Springer Boston, pp. 279–286.

Hosbond, J.H., Nielsen, P.A., 2005. Mobile Systems Development - A literature review, in:

Proceedings of IFIP 8.2 Annual Conference.

Humphrey, W.S., 1989. Managing the software process. Addison-Wesley, Reading, Mass.

IEEE Computer Society, 1991. IEEE Standard Computer Dictionary. A Compilation of IEEE

Standard Computer Glossaries (610-1991) (IEEE Std No. 610-1991).

IEEE Computer Society., 1990. IEEE standard computer dictionary : a compilation of IEEE

standard computer glossaries, 610. Institute of Electrical and Electronics Engineers,

New York NY USA.

238

Ihme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software

Development of Mobile Applications.

Jeong, Y.-J., Lee, J.-H., Shin, G.-S., 2008. Development Process of Mobile Application SW

Based on Agile Methodology, in: Proceedings of 10th International Conference on

Advanced Communication Technology, (ICACT 2008). IEEE, Gangwon-Do, pp.

362–366.

Jørgensen, M., 2007. Estimation of Software Development Work Effort:Evidence on Expert

Judgment and Formal Models. International Journal of Forecasting 23, 449–462.

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements

management in extreme programming with tool support - an improvement attempt that

failed, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 342 – 351.

Kabilan, V., 2007. Ontology for information systems (04IS) design methodology:

conceptualizing, designing and representing domain ontologies. Data- och

systemvetenskap, Kungliga Tekniska högskolan, Kista.

Kangas, E., Kinnunen, T., 2005. Applying user-centered design to mobile application

development. Communications of the ACM 48, 55–59.

Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of

Mobile Personal Health Care Applications, in: Proceedings of the 2008 23rd

IEEE/ACM International Conference on Automated Software Engineering, ASE ‟08.

IEEE Computer Society, Washington, DC, USA, pp. 467–470.

Khan, U.A., 2008. Improved Iterative Software Development Method for Game Design.

Khondoker, R.M., Mueller, P., 2010. Comparing Ontology Development Tools Based on an

Online Survey, in: Proceedings of the World Congress on Engineering. Presented at

the WCE 2010, London.

Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for

mobile applications, in: Proceedings of the 3rd International Conference on

Ubiquitous Information Management and Communication, ICUIMC ‟09. ACM, New

York, NY, USA, pp. 612–617.

Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering

Letters 16.

Kim, W.Y., Son, H.S., Kim, J.S., Kim, R.Y., 2010. Development of Windows Mobile

Applications using Model Transformation Techniques. Journal of KISS: Computing

Practices 16, 1091–5.

Kitchenham, B., 2004. Procedures for Performing Systematic Reviews (Technical report No.

Keele University Technical Report TR/SE-0401; NICTA Technical Report

0400011T.1). Software Engineering Group; National ICT Australia Ltd., Keele;

Eversleigh.

Kitchenham, Barbara, Brereton, P., Turner, M., Niazi, M., Linkman, S., Pretorius, R.,

Budgen, D., 2009. The impact of limited search procedures for systematic literature

reviews - A participant-observer case study. IEEE, pp. 336–345.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews

in Software Engineering Version 2.3 (Technical report No. EBSE-2007-01). Keele

University and University of Durham.

239

Kitchenham, B, Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S., 2009.

Systematic literature reviews in software engineering – A systematic literature review.

Information and Software Technology 51, 7–15.

Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner, M., Niazi, M.,

Linkman, S., 2010. Systematic literature reviews in software engineering - A tertiary

study. Information and Software Technology 52, 792–805.

Kno.e.sis Research Group, 2011. Welcome to Kno.e.sis [WWW Document]. URL

http://knoesis.wright.edu/ (accessed 27-Aug-11).

Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements

management process for an offsite customer. Software Process Improvement 12–22.

Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J., 2007. Gulliver - a framework for building

smart speech-based applications, in: Proceedings of the 40th Annual Hawaii

International Conference on System Sciences. Waikoloa, HI, USA.

Kynkäänniemi, T., Komulainen, K., 2006. Agile Documentation in Mobile-D Projects (Agile

Deliverable No. D.2.10), Agile Software Development of Embedded Systems.

La, H.J., Kim, S.D., 2009. A service-based approach to developing Android Mobile Internet

Device (MID) applications. 2009 IEEE International Conference on Service-Oriented

Computing and Applications (SOCA) 00, 1–7.

La, H.J., Lee, H.J., Kim, S.D., 2011. An efficiency-centric design methodology for mobile

application architectures, in: Wireless and Mobile Computing, Networking and

Communications (WiMob), 2011 IEEE 7th International Conference On. pp. 272–279.

Lovrenčić, S., 2007. Formalna ontologija sveučilišnih studija (Doctoral dissertation).

University of Zagreb, Varazdin, Croatia.

Lumsden, J., Hall, H., Cruickshank, P., 2011. Ontology definition and construction, and

epistemological adequacy for systems interoperability: A practitioner analysis. Journal

of Information Science 37, 246–253.

Lunny, A., 2011. Phonegap beginner‟s guide: build cross-platform mobile applications with

the PhoneGap open source development framework. Packt Publishing Limited,

Birmingham, UK.

Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A., Prasad, S.K., Bourgeois, A., 2010. A

methodology for engineering collaborative and ad-hoc mobile applications using SyD

middleware. Journal of Network and Computer Applications 33, 542 – 555.

Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile

Application Development. Handbook of research in mobile business: technical,

methodological, and social perspectives 194.

Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing

mobile applications based on the Capuchin project, in: Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ‟10. ACM, New York, NY, USA, pp. 575–

579.

Makunga, L., Church, K., 2002. Software Development in Mobile Computing Applications.

INFORMATION TECHNOLOGY ON THE MOVE 257.

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of Clouds in Your

Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,

240

in: 2010 IEEE Second International Conference on Cloud Computing Technology and

Science. pp. 496–503.

Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S.,

Teixeira, E., Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A

Nested Software Product Line for the domain of mobile and context-aware

applications. Science of Computer Programming -.

Martin, J., 1986. Information Engineering. Savant Research Studies, Lancashire.

Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G., 2005. A Systematic Review

Process for Software Engineering, in: ESELAW ‟05: 2nd Experimental Software

Engineering Latin American Workshop.

Miller, J., 2008. Cohesion And Coupling. MSDN Magazine - The Microsoft Journal for

Developers 23.

Mitchell, J.C., 2003. Concepts in programming languages. Cambridge University Press,

Cambridge, UK ; New York.

Niemela, P., 2009. JSR 256: Mobile Sensor API [WWW Document]. The Java Community

Process(SM) Program - JSRs: Java Specification Requests. URL

http://jcp.org/en/jsr/detail?id=248 (accessed 17-May-12).

Noblit, G.W., Hare, R.D., 1988. Meta-ethnography: synthesizing qualitative studies. SAGE,

London.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: AGuide to Creating Your

First Ontology (Technical report No. KSL-01-05; SMI-2001-0880), Stanford

Knowledge Systems Laboratory and Stanfrod Medical Informatics Technical Report.

Stanford University, Stanfrod.

Nyström, A., 2011. Agile Solo - Defining and Evaluating an Agile Software Development

Process for a Single Software Developer.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.J.M.,

Verrijn-Stuart, A.A., 1988. Information systems methodologies: a framework for

understanding. Addison-Wesley Pub. Co, Wokingham, England ; Reading, Mass.

Olle, T.W., Sol, H.G., Tully, C.J. (Eds.), 1983. Information systems design methodologies: a

feature analysis: Proceedings of the IFIP WG 8.1 Working Conference on Feature

Analysis of Information Systems Design Methodologies, York, U.K., 5-7 July, 1983.

North-Holland ; Sole distributors for the U.S.A. and Canada, Elsevier Science Pub.

Co, Amsterdam ; New York : New York, N.Y.

Olle, T.W., Sol, H.G., Verrijn Stuart, A.A. (Eds.), 1982. Information systems design

methodologies: a comparative review: proceedings of the IFIP WG 8.1 Working

Conference on Comparative Review of Information Systems Design Methodologies,

Noordwijkerhout, The Netherlands, 10-14 May 1982. North-Holland Pub. Co. ; Sole

distributors for the U.S.A. and Canada, Elsevier Science Pub. Co, Amsterdam ; New

York : New York, N.Y.

Olle, T.W., Sol, H.G., Verrijn Stuart, A.A. (Eds.), 1986. Information systems design

methodologies: improving the practice: proceedings of the IFIP WG 8.1 Working

Conference on Comparative Review of Information Systems Design Methodologies,

Improving the Practice, Noordwijkerhout, The Netherlands, 5-7 May, 1986, Post-

conference ed. ed. North-Holland Pub. Co. ; Sole distributors for the U.S.A. and

Canada, Elsevier Science Pub. Co, Amsterdam ; New York : New York, N.Y.

241

Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile

clients through an aspect-oriented, model-driven approach. Information and Software

Technology 52, 1080 – 1093.

Papageorgiou, A., Leferink, B., Eckert, J., Repp, N., Steinmetz, R., 2009. Bridging the gaps

towards structured mobile SOA. ACM Press, p. 288.

Park, J., Ram, S., 2004. Information systems interoperability: What lies beneath? ACM

TRANSACTIONS ON INFORMATION SYSTEMS 22, 595–632.

Parker, P.M., 2011. Definition of artifact [WWW Document]. Webster‟s Online Dictionary.

Url http://www.websters-online-dictionary.org/definitions/artifact (accessed 5-Jul-11).

Paspallis, N., Papadopoulos, G.A., 2006. An approach for developing adaptive, mobile

applications with separation of concerns, in: Computer Software and Applications

Conference, 2006. COMPSAC‟06. 30th Annual International. pp. 299–306.

Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach

to software engineering, in: Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education, SIGCSE ‟12. ACM, New York, NY, USA, pp. 535–

540.

Paulheim, H., Probst, F., 2010. Application integration on the user interface level: An

ontology-based approach. DATA & KNOWLEDGE ENGINEERING 69, 1103–1116.

Petticrew, M., Roberts, H., 2005. Systematic reviews in the social sciences: a practical guide.

Blackwell Pub., Malden, MA.

PhoneGap, 2011. Take the pain out of compiling mobile apps for multiple platforms [WWW

Document]. PhoneGap Build. URL https://build.phonegap.com (accessed 27-Aug-11).

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software

development: A hybrid method engineering approach, in: Proceedings of Second

International Conference on Research Challenges in Information Science, RCIS

(2008). IEEE, Marrakech, pp. 337–342.

Ramsin, R., Paige, R.F., 2008. Process-centered review of object oriented software

development methodologies. ACM Computing Surveys 40, 1–89.

Ranabahu, A.H., Maximilien, E.M., Sheth, A.P., Thirunarayan, K., 2011. A domain specific

language for enterprise grade cloud-mobile hybrid applications, in: Proceedings of the

Compilation of the Co-located Workshops on DSM‟11, TMC‟11, AGERE!‟11,

AOOPES‟11, NEAT‟11, & VMIL‟11, SPLASH ‟11 Workshops. ACM, New

York, NY, USA, pp. 77–84.

Reda, R., 2012. Robotium - The world‟s leading Android
TM

 test automation framework

[WWW Document]. URL http://code.google.com/p/robotium/ (accessed 6-Jun-12).

Rhomobile, Inc., 2011. Smartphone Enterprise Application Integration, White paper [WWW

Document]. URL http://tiny.cc/rhomobile (accessed 20-Aug-11).

Ridene, Y., Belloir, N., Barbier, F., Couture, N., 2010. A DSML For Mobile Phone

Applications Testing, in: Proceedings of 10th Workshop on Domain-Specific

Modeling in SPLASH. France.

Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart composition of reusable software components

in mobile application product lines, in: Proceedings of the 2nd International Workshop

on Product Line Approaches in Software Engineering, PLEASE ‟11. ACM, New

York, NY, USA, pp. 45–49.

242

Rossi, M., Tuunanen, T., 2010. A method and tool for rapid consumer application

development. International Journal of Organisational Design and Engineering 1, 109–

125.

Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.),

Handbook of Research in Mobile Business: Technical, Methodological, and Social

Perspectives. IGI Global Snippet.

Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L., 2011. MMCD Framework and

Methodology for Developing m-Learning Applications. Presented at the International

conference on Teaching & Learning in Higher Education (ICTLHE 2011).

Salo, O., 2004. Improving software process in agile software development projects: results

from two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp.

310–317.

Salo, O., Koskela, J., 2004. Mobile-D Glossary, VTT Technical Research Centre of Finland,

Available at: http://agile.vtt.fi/mobile-d.zip.

Scharff, C., 2010. The Software Engineering of Mobile Application Development.

Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with

quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011

24th IEEE-CS Conference On. pp. 274–283.

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a

just-in-time learning context, in: Proceedings of the 2010 ICSE Workshop on

Cooperative and Human Aspects of Software Engineering, CHASE ‟10. ACM, New

York, NY, USA, pp. 25–31.

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID

applications based on the ID-Services middleware architecture, in: Mobile Data

Management: Systems, Services and Middleware, 2009. MDM‟09. Tenth International

Conference On. pp. 260–266.

Services Research Lab, Metadata and Languages Lab, 2011. Cloud-Mobile Hybrid

Application Generator [WWW Document]. MobiCloud. URL http://mobicloud-

classic.knoesis.org/ (accessed 27-Aug-11).

Shah, M., Mears, B., Chakrabarti, C., Spanias, A., Center, S., Tempe, A., 2012. A Top-Down

Design Methodology Using Virtual Platforms for Concept Development.

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool.

Proceedings of the International MultiConference of Engineers and Computer

Scientists 1.

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile

Development Methodologies, in: Handbook of Research in Mobile Business:

Technical, Methodological, and Social Perspectives. IGI Global, pp. 113–126.

Simonsen, A., 2004. Developing mobile applications.

Spataru, A.C., 2010. Agile Development Methods for Mobile Applications (PhD Thesis,

University of Edinburgh). The University of Edinburgh, Edinburgh.

Stapić, Z., López, E.G., Cabot, A.G., de Marcos Ortega, L., Strahonja, V., 2012. Performing

Systematic Literature Review in Software Engineering, in: Proceedings of 23rd

Central European Conference on Information and Intelligent Systems. Presented at the

243

Central European Conference on Information and Intelligent Systems - CECIIS,

Faculty of Organization and Informatics, Varaždin, pp. 441–447.

Staples, M., Niazi, M., 2007. Experiences using systematic review guidelines. Journal of

Systems and Software 80, 1425–1437.

Staples, M., Niazi, M., 2008. Systematic review of organizational motivations for adopting

CMM-based SPI. Information and Software Technology 50, 605–620.

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: Principles and

methods. Data & Knowledge Engineering 25, 161–197.

Su, S.H., Scharff, C., 2010. Know Yourself and Beyond: A Global Software Development

Project Experience with Agile Methodology, in: Proceedings of Student-Faculty

Research Day, CSIS. Pace University.

Supan, D., Teković, K., Škalec, J., Stapić, Z., 2013. Using Mobile-D methodology in

development of mobile applications: challenges and issues, in: Razvoj Poslovnih i

Informatičkih Sustava CASE 25. Presented at the Razvoj poslovnih i informatičkih

sustava CASE 25, CASE d.o.o, Rijeka, pp. 91–98.

Tantsis, G., 2013. Ontology evaluation plug-in for the Protege software (Master Thesis).

Aristotle University of Thessaloniki, Thessaloniki.

Terani, N.S., 2012. IPhone Application Development Challenges and Solutions.

CALIFORNIA STATE UNIVERSITY.

Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt,

D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application

Performance.

Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A

Practical Approach to Platform-based System Modeling Methodology. Journal of

Semiconductor Technology and Science 5, 89.

Unterkalmsteiner, M., Gorschek, T., Islam, A.K.M.M., Cheng, C.K., Permadi, R.B., Feldt, R.,

2012. Evaluation and Measurement of Software Process Improvement - A Systematic

Literature Review. IEEE Transactions on Software Engineering.

Uschold, M., Gruninger, M., 1996. Ontologies: Principles, methods and applications.

Knowledge Engineering Review 11, 93–136.

Uschold, M., King, M., 1995. Towards a Methodology for Building Ontologies, in: In

Workshop on Basic Ontological Issues in Knowledge Sharing, Held in Conjunction

with IJCAI-95.

Vrandečić, D., 2009. Ontology Evaluation, in: Handbook on Ontologies, International

Handbooks on Information Systems. Springer, pp. 293–313.

VTT Technical Research Centre of Finland, 2004. Mobile-D Product Description [WWW

Document]. AGILE Software Technologies Research Programme. URL

http://agile.vtt.fi/prodserv.html (accessed 16-May-12).

VTT Technical Research Centre of Finland, 2006a. Mobile-D Online Presentation (Web

Application) [WWW Document]. AGILE Software Technologies Research

Programme. URL http://agile.vtt.fi/mobiled.html (accessed 16-May-12).

VTT Technical Research Centre of Finland, 2006b. Mobile-D Description and Templates

(ZIP Archive Document), Available at: http://agile.vtt.fi/mobile-d.zip.

244

W3C OWL Working Group, 2012. OWL 2 Web Ontology Language Document Overview

(Second Edition) (W3C Recommendation No. REC-owl2-overview-20121211).

W3C Web Ontology Working Group, 2004. OWL Web Ontology Language Guide (W3C

Recommendation No. REC-owl-guide-20040210).

WAC Application Services Ltd, 2012a. WAC Apps [WWW Document]. WAC Apps -

Developer Website. URL http://www.wacapps.net/wac-apps (accessed 18-May-12).

WAC Application Services Ltd, 2012b. WAC APIs [WWW Document]. WAC APIs -

Developer Website. URL http://www.wacapps.net/wac-apis (accessed 18-May-12).

WAC Application Services Ltd, 2012c. WAC Payment API SDKs [WWW Document]. WAC

Payment API Resources - Developer Website. URL http://www.wacapps.net/sdks

(accessed 18-May-12).

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing

Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation

Distributed Environments: Advancing Conceptual and Algorithmic Applications. pp.

283–301.

Wang, H.H., Noy, N.F., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S., Tudorache,

T., Drummond, N., Horridge, M., Seidenberg, J., 2006. Frames and OWL Side by

Side. Presented at the The Ninth International Protégé Conference, Stanford

University, Stanford.

Wasserman, A.I., 2010. Software engineering issues for mobile application development, in:

Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research,

FoSER ‟10. ACM, New York, NY, USA, pp. 397–400.

Williams, B.J., Carver, J.C., 2010. Characterizing software architecture changes: A systematic

review. Information and Software Technology 52, 31–51.

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M.,

Shahzad, S., 2008. Probing an agile usability process, in: CHI ‟08 Extended Abstracts

on Human Factors in Computing Systems, CHI EA ‟08. ACM, New York, NY, USA,

pp. 2151–2158.

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and

case study, in: Information Science and Engineering (ICISE), 2010 2nd International

Conference On. pp. 1–4.

Yee, K.Y., Tiong, A.W., Tsai, F.S., Kanagasabai, R., 2009. OntoMobiLe: A Generic

Ontology-Centric Service-Oriented Architecture for Mobile Learning. IEEE, pp. 631–

636.

Youn, S., McLeod, D., 2006. Ontology Development Tools for Ontology Based Knowledge

Management (CREATE Reserach Archive. Non-published Research Reports No.

Paper 100).

Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in:

Applied Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International

Symposium On. pp. 79–81.

Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for

mobile software. International Journal of Mobile Communications 6, 345–356.

245

APPENDIXES

Appendix A – Papers selected for the SLR Phase 2 analysis

S1. Abrahamsson P, Salo O, Ronkainen J, Warsta J, 2002.
Agile software development methods - Review and
Analysis (Report No. VTT Publ. 478). VTT Technical
Research Centre of Finland.

S2. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,
Jäälinoja, J., Korkala, M., Koskela, J., Kyllönen, P., Salo,
O., 2004. Mobile-D: an agile approach for mobile
application development, in: Companion to the 19th
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA ’04. ACM, New York, NY, USA, pp. 174–175.

S3. Abrahamsson, P., Hanhineva, A., Jäälinoja, J., 2005.
Improving business agility through technical solutions:
A case study on test-driven development in mobile
software development, in: Business Agility and
Information Technology Diffusion. Presented at the
IFIP TC8 WG 8.6 International Working Conference.

S4. Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen,
P., Salo, O., 2009. Mobile-D for Mobile Software: How
to Use Agile Approaches for the Efficient
Development of Mobile Applications.

S5. Abrahamsson, P., Still, J., 2007. Agile software
development: theoretical and practical outlook.
Product-Focused Software Process Improvement
410–411.

S6. Abrahamsson, P., Warsta, J., Siponen, M.T.,
Ronkainen, J., 2003. New directions on agile methods:
a comparative analysis, in: Software Engineering,
2003. Proceedings. 25th International Conference On.
pp. 244–254.

S7. Acharya, S., Mohanty, H., Shyamasundar, R., 2003.
MOBICHARTS: a notation to specify mobile computing
applications, in: System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference
On. p. 11–pp.

S8. Ahlgren, R., Markkula, J., 2005. Design patterns and
organisational memory in mobile application
development. Product Focused Software Process
Improvement 1–35.

S9. Ahtinen, A., Nurminen, J.K., Häkkilä, J., 2007.
Developing a mobile reporting system for road
maintenance: user research perspective, in:
Proceedings of the 4th International Conference on
Mobile Technology, Applications, and Systems and
the 1st International Symposium on Computer
Human Interaction in Mobile Technology, Mobility
’07. ACM, New York, NY, USA, pp. 1–7.

S10. Aini, Q., La Katjong, B., dan Kartika Sari Puteri, E.R.,
2011. Application development of mobile
Transjakarta route map: (case study: Jakarta
Indonesia), in: Proceedings of the 9th International
Conference on Advances in Mobile Computing and
Multimedia, MoMM ’11. ACM, New York, NY, USA,
pp. 264–267.

S11. Al Bar, A., Mohamed, E., Akhtar, M.K., Abuhashish, F.,
2011. A preliminary review of implementing
Enterprise Mobile Application in ERP environment.

S12. Alahuhta, P., Löthman, H., Helaakoski, H., Koskela, A.,
Röning, J., 2006. Experiences in developing mobile
applications using the Apricot Agent Platform.
Personal and Ubiquitous Computing 11, 1–10.

S13. Alatalo, P., Järvenoja, J., Karvonen, J., Keronen, A.,
Kuvaja1, P., 2002. Mobile application architectures.
Product Focused Software Process Improvement 572–
586.

S14. Algan, F., Tuğlular, T., 2005. Test Driven Software
Development.

S15. Ali, N., Ramos, I., Solís, C., 2010. Ambient-PRISMA:
Ambients in mobile aspect-oriented software
architecture. Journal of Systems and Software 83, 937
– 958.

S16. Ali, N.N., Mansoor, H., 2011. Cross Platform Mobile
Application Development Framework.

S17. Al-Maharmeh, M., Unhelkar, B., 2009. Applying a
Composite Process Framework (CPF) in Real Life
Software Development Project, in: Information
Technology: New Generations, 2009. ITNG’09. Sixth
International Conference On. pp. 1384–1389.

S18. Alyani, N., Shirzad, S., 2011. Learning to innovate in
distributed mobile application development: Learning
episodes from Tehran and London, in: 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). Presented at the 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE., Piscataway, NJ,
USA, pp. 497–504.

S19. Amanquah, N., Eporwei, O.T., 2009. Rapid application
development for mobile terminals, in: Adaptive
Science Technology, 2009. ICAST 2009. 2nd
International Conference On. pp. 410–417.

S20. Amoroso, D.L., Ogawa, M., 2011. Japan’s Model of
Mobile Ecosystem Success: The Case of NTT DoCoMo.
Journal of Emerging Knowledge on Emerging Markets
3, 27.

246

S21. Andersson, B., Henningsson, S., 2010. Developing
Mobile Information Systems: Managing Additional
Aspects.

S22. Andes, D., Cremer, J., Draxler, B., Dudley, N.,
Haldeman, L., Hsieh, H., Likarish, P., Nguyen, D.T.,
Sarnelli, C., Winet, J., 2011. UCOL – Iowa City UNESCO
City of Literature: mobile application research &
development, in: Proceedings of the 2011
iConference, iConference ’11. ACM, New York, NY,
USA, pp. 636–637.

S23. Aslan, I., Leichtenstern, K., Holleis, P., Wasinger, R.,
Stahl, C., 2010. Tool-support for mobile and pervasive
application development - issues and challenges, in:
Proceedings of the 12th International Conference on
Human Computer Interaction with Mobile Devices
and Services, MobileHCI ’10. ACM, New York, NY,
USA, pp. 499–502.

S24. Ayob, N., Hussin, A.R.C., Dahlan, H.M., 2009. Three
layers design guideline for mobile application, in:
Information Management and Engineering, 2009.
ICIME’09. International Conference On. pp. 427–431.

S25. Azhari, S., Wardoyo, R., Hartati, S., 2008.
Development of distribution application using
intelligent mobile agent approach for accessing the
progress status of enterprise projects. Proceeding The
4th International Conference on Information &
Communication Technology and System (ICTS).

S26. B’far, R., 2005. Mobile Computing Principles:
designing and developing mobile applications with
UML and XML. Cambridge Univ Pr.

S27. Balagtas-Fernandez, F., Hussmann, H., 2009. A
Methodology and Framework to Simplify Usability
Analysis of Mobile Applications, in: Proceedings of the
2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09. IEEE
Computer Society, Washington, DC, USA, pp. 520–
524.

S28. Balagtas-Fernandez, F., Tafelmayer, M., Hussmann,
H., 2010. Mobia Modeler: easing the creation process
of mobile applications for non-technical users, in:
Proceedings of the 15th International Conference on
Intelligent User Interfaces, IUI ’10. ACM, New York,
NY, USA, pp. 269–272.

S29. Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-
Driven Development of Mobile Applications, in:
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE
’08. IEEE Computer Society, Washington, DC, USA, pp.
509–512.

S30. Ballagas, R., Memon, F., Reiners, R., Borchers, J.,
2007. iStuff mobile: rapidly prototyping new mobile
phone interfaces for ubiquitous computing, in:
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’07. ACM, New
York, NY, USA, pp. 1107–1116.

S31. Baloian, N., Zurita, G., Antunez, P., Baytelman, F.,
2007. A Flexible, Lightweight Middleware Supporting
the Development of Distributed Applications across

Platforms, in: Computer Supported Cooperative Work
in Design, 2007. CSCWD 2007. 11th International
Conference On. pp. 92–97.

S32. Bareiss, R., Sedano, T., 2011. Improving Mobile
Application Development, in: Proceedings of 2nd
Annual Workshop on Software Engineering for Mobile
Applications Development. Presented at the 2nd
Annual Workshop on Software Engineering for Mobile
Applications Development, Santa Monica, CA, USA,
pp. 5–8.

S33. Barnawi, A., Al-Talhi, A.H., Qureshi, M., Khan, A.I.,
2012. Novel Component Based Development Model
For Sip-Based Mobile Application. Arxiv preprint
arXiv:1202.2516.

S34. Barnawi, A., Qureshi, M., Khan, A.I., 2012. A
Framework for Next Generation Mobile and Wireless
Networks Application Development using Hybrid
Component Based Development Model. Arxiv
preprint arXiv:1202.2515.

S35. Behrens, H., 2010. MDSD for the iPhone: developing a
domain-specific language and IDE tooling to produce
real world applications for mobile devices, in:
Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems
Languages and Applications Companion, SPLASH ’10.
ACM, New York, NY, USA, pp. 123–128.

S36. Bellotti, F., Berta, R., Gloria, A.D., Margarone, M.,
2003. MADE: developing edutainment applications on
mobile computers. Computers & Graphics 27,
617 – 634.

S37. Bellotti, F., Berta, R., Margarone, M., De Gloria, A.,
2008. oDect: an RFID-based object detection API to
support applications development on mobile devices.
Software: Practice and Experience 38, 1241–1259.

S38. Benou, P., Bitos, V., 2009. Developing mobile
commerce applications. Selected readings on
electronic commerce technologies: contemporary
applications.

S39. Bergström, F., Engvall, G., 2011. Development of
handheld mobile applications for the public sector in
Android and iOS using agile Kanban process tool.

S40. Bertolli, C., Buono, D., Mencagli, G., Vanneschi, M.,
2010. An Approach to Mobile Grid Platforms for the
Development and Support of Complex Ubiquitous
Applications. International Journal of Advanced
Pervasive and Ubiquitous Computing (IJAPUC) 2, 24–
38.

S41. Bhattacharyya, S., 2003. Framework for Developing
Adaptable Applications in Pervasive Environments.

S42. Binsaleh, M., Hassan, S., 2011. Systems Development
Methodology for Mobile Commerce Applications:
Agile vs. Traditional. International Journal of Online
Marketing (IJOM) 1, 33–47.

S43. Biswas, A., Donaldson, T., Singh, J., Diamond, S.,
Gauthier, D., Longford, M., 2006. Assessment of
mobile experience engine, the development toolkit
for context aware mobile applications, in:

247

Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, ACE ’06. ACM, New York, NY, USA.

S44. Blanco, P., Camarero, J., Fumero, A., Werterski, A.,
Rodríguez, P., 2009. Metodología de desarrollo ágil
para sistemas móviles Introducción al desarrollo con
Android y el iPhone.

S45. Blom, S., Book, M., Gruhn, V., Hrushchak, R., Kohler,
A., 2008. Write Once, Run Anywhere A Survey of
Mobile Runtime Environments, in: Grid and Pervasive
Computing Workshops, 2008. GPC Workshops’ 08.
The 3rd International Conference On. pp. 132–137.

S46. Boonma, P., Suzuki, J., 2011. Model-driven
performance engineering for wireless sensor
networks with feature modeling and event calculus,
in: Proceedings of the 3rd Workshop on Biologically
Inspired Algorithms for Distributed Systems, BADS
’11. ACM, New York, NY, USA, pp. 17–24.

S47. Bowen, J., Hinze, A., 2011. Supporting Mobile
Application Development with Model-Driven
Emulation. Electronic Communications of the EASST
45.

S48. Braun, P., Eckhaus, R., 2008. Experiences on model-
driven software development for mobile applications,
in: Engineering of Computer Based Systems, 2008.
ECBS 2008. 15th Annual IEEE International
Conference and Workshop on The. pp. 490–493.

S49. Breivold, H.P., Sundmark, D., Wallin, P., Larsson, S.,
2010. What Does Research Say about Agile and
Architecture?, in: Software Engineering Advances
(ICSEA), 2010 Fifth International Conference On. pp.
32–37.

S50. Bungert, A., 2009. Developing for Mobile Platforms.

S51. Burke, S., Hatfield, A., Mosunov, A., Sajwani, F.,
Shalaby, A., 2012. Open-Source Software
Development.

S52. Burton, B., 2011. Mobile App Development with
Corona: Getting Started. Burtons Media Group.

S53. Carbon, R., Hess, S., 2011. Mobile Business
Applications must be thoroughly engineered!, in: 2nd
Annual Workshop on Software Engineering for Mobile
Application Development.

S54. Carlson, D., Schrader, A., 2011. A wide-area context-
awareness approach for Android, in: Proceedings of
the 13th International Conference on Information
Integration and Web-based Applications and Services,
iiWAS ’11. ACM, New York, NY, USA, pp. 383–386.

S55. Carter, S.A., Mankoff, J., 2005. Momento: Early-Stage
Prototyping and Evaluation for Mobile Applications
(in submission) (Technical report No. UCB/CSD-05-
1380). EECS Department University of California,
Berkeley.

S56. Cha, S., Kurz, J.B., Du, W., 2009. Toward a unified
framework for mobile applications, in:
Communication Networks and Services Research

Conference, 2009. CNSR’09. Seventh Annual. pp. 209–
216.

S57. Chapter, X., 2009. Mobile Applications Development
Methodology. Handbook of research in mobile
business: technical, methodological, and social
perspectives 160.

S58. Charaf, H., 2011. Developing Mobile Applications for
Multiple Platforms, in: Engineering of Computer
Based Systems (ECBS-EERC), 2011 2nd Eastern
European Regional Conference on The. p. 2.

S59. Charland, A., Leroux, B., 2011. Mobile application
development: web vs. native. Communications of the
ACM 54, 49–53.

S60. Chaudhary, A., Bharathan, K., 2011. Component
Based Software Reuse in Mobile Application
Development.

S61. Chen, G., Kotz, D., 2005. Solar: An open platform for
context-aware mobile applications. DTIC Document.

S62. Chen, M., 2004. A methodology for building mobile
computing applications. International journal of
electronic business 2, 229–243.

S63. Cheng, M.C., Yuan, S.M., 2005. An adaptive mobile
application development framework. Embedded and
Ubiquitous Computing–EUC 2005 765–774.

S64. Cheng, M.C., Yuan, S.M., 2007. An Adaptive and
Unified Mobile Application Development Framework
for Java. Journal of Information Science and
Engineering 23, 1391.

S65. Cheung, A., Grandison, T., Johnson, C., Schönauer, S.,
2007. Ïnfïnïty: a generic platform for application
development and information sharing on mobile
devices, in: Sixth International ACM Workshop on
Data Engineering for Wireless and Mobile Access
(MobiDE), MobiDE ’07. ACM, New York, NY, USA, pp.
25–32.

S66. Choi, M., 2012. A Platform-Independent Smartphone
Application Development Framework. Computer
Science and Convergence 787–794.

S67. Choi, Y., Yang, J.S., Jeong, J., 2009. Application
framework for multi platform mobile application
software development, in: Advanced Communication
Technology, 2009. ICACT 2009. 11th International
Conference On. pp. 208–213.

S68. Chowdhary, V., 2011a. Mobile Web Application
Development [WWW Document]. Refulz, Web
Developer’s Blog. URL http://php.refulz.com/mobile-
web-application-development/

S69. Chowdhary, V., 2011b. XUI–Mobile Application
Development Library [WWW Document]. Refulz, Web
Developer’s Blog. URL http://php.refulz.com/xui-
mobile-application-development-library/

S70. Christensen, J.H., 2009. Using RESTful web-services
and cloud computing to create next generation
mobile applications, in: Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented

248

Programming Systems Languages and Applications,
OOPSLA ’09. ACM, New York, NY, USA, pp. 627–634.

S71. Coelho, H.A. de O., Anido, R. de O., Drummond, R.,
2006. QuickFrame - A Fast Development Tool for
Mobile Applications, in: Innovations in Information
Technology, 2006. pp. 1 –5.

S72. Corral, L., Sillitti, A., Succi, G., 2011. Preparing Mobile
Software Development Processes to Meet Mission-
Critical Requirements, in: 2nd Annual Workshop on
Software Engineering for Mobile Application
Development.

S73. Corral, L., Sillitti, A., Succi, G., Garibbo, A., Ramella, P.,
2011. Evolution of Mobile Software Development
from Platform-Specific to Web-Based Multiplatform
Paradigm, in: Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ONWARD
’11. ACM, New York, NY, USA, pp. 181–183.

S74. Cota, É., Carro, L., Duarte, L., Ribeiro, L., Wagner, F.,
2011. XModel: an Unified Effort Towards the
Development of High-Quality Mobile Applications, in:
2nd Annual Workshop on Software Engineering for
Mobile Application Development. Presented at the
2nd Annual Workshop on Software Engineering for
Mobile Application Development, Santa Monica, CA,
USA, p. 1.

S75. Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011.
A Visual Approach supporting the Development of
MicroApps on Mobile Phones, in: Proc. of 3rd
International Symposium on End-User Development.
Presented at the 3rd International Symposium on
End-User Development, Brindisi, Italy, pp. 289–294.

S76. Cunha, T.F.V., Dantas, V.L.L., Andrade, R., 2011.
SLeSS: a Scrum and Lean Six Sigma integration
approach for the development of sofware
customization for mobile phones, in: Software
Engineering (SBES), 2011 25th Brazilian Symposium
On. pp. 283–292.

S77. Dagtas, S., Natchetoi, Y., Wu, H., Hamdi, L., 2008. An
Integrated Lightweight Software Architecture for
Mobile Business Applications, in: Software
Architecture, 2008. WICSA 2008. Seventh Working
IEEE/IFIP Conference On. pp. 41–50.

S78. Dastani, M., El Fallah, S.A., Hubner, J., Leite, J. (Eds.),
2011. Languages, Methodologies, and Development
Tools for Multi-Agent Systems. Third International
Workshop, LADS. Revised Selected Papers.

S79. Davis, V., Gray, J., Jones, J., 2005. Generative
approaches for application tailoring of mobile
devices, in: Proceedings of the 43rd Annual Southeast
Regional Conference - Volume 2, ACM-SE 43. ACM,
New York, NY, USA, pp. 237–241.

S80. De Florio, V., Blondia, C., 2008. On the requirements
of new software development. International Journal
of Business Intelligence and Data Mining 3, 330–349.

S81. de Sá, M., Carriço, L., 2006. Low-fi prototyping for
mobile devices, in: CHI ’06 Extended Abstracts on

Human Factors in Computing Systems, CHI EA ’06.
ACM, New York, NY, USA, pp. 694–699.

S82. de Souza, C.R.B., Redmiles, D.F., 2009. On The Roles
of APIs in the Coordination of Collaborative Software
Development. Computer Supported Cooperative
Work (CSCW) 18, 445–475.

S83. Degrandsart, S., Demeyer, S., Van den Bergh, J.,
Mens, T., 2012. A transformation-based approach to
context-aware modelling. Software and Systems
Modeling 1–18.

S84. Dehlinger, J., Dixon, J., 2011. Mobile Application
Software Engineering: Challenges and Research
Directions, in: 2nd Annual Workshop on Software
Engineering for Mobile Application Development.

S85. Desruelle, H., Blomme, D., Gielen, F., 2011. Adaptive
mobile web applications: a quantitative evaluation
approach. Web Engineering 375–378.

S86. Di Capua, M., Costagliola, G., De Rosa, M., Fuccella,
V., 2011. Rapid prototyping of mobile applications for
augumented reality interactions, in: Visual Languages
and Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium On. pp. 249–250.

S87. Dickson, P.E., 2012. Cabana: a cross-platform mobile
development system, in: Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
529–534.

S88. Diewald, S., Roalter, L., Möller, A., Kranz, M., 2011.
Towards a holistic approach for mobile application
development in intelligent environments, in:
Proceedings of the 10th International Conference on
Mobile and Ubiquitous Multimedia, MUM ’11. ACM,
New York, NY, USA, pp. 73–80.

S89. Dingsøyr, T., Dybå, T., Moe, N.B. (Eds.), 2010. Agile
software development: Current research and future
directions. Springer-Verlag New York Inc.

S90. Dodda, S.R., 2010. The Use of SCRUM in Global
Software Development: An Exploratory Study (Master
thesis).

S91. Doherty, G., McKnight, J., Luz, S., 2010. Fieldwork for
requirements: Frameworks for mobile healthcare
applications. International Journal of Human-
Computer Studies 68, 760 – 776.

S92. Dombroviak, K.M., Ramnath, R., 2007. A taxonomy of
mobile and pervasive applications, in: Proceedings of
the 2007 ACM Symposium on Applied Computing,
SAC ’07. ACM, New York, NY, USA, pp. 1609–1615.

S93. Dörflinger, J., Friedland, C., Merz, C., de Louw, R.,
2009. Requirements of a mobile procurement
framework for rural South Africa, in: Proceedings of
the 6th International Conference on Mobile
Technology, Application & Systems, Mobility ’09.
ACM, New York, NY, USA, pp. 3:1–3:4.

S94. Driver, C., Clarke, S., 2008. An application framework
for mobile, context-aware trails. Pervasive and Mobile
Computing 4, 719 – 736.

249

S95. Dulipala, J., Ramachandran, V., 2009. SCA for context-
aware mobile applications.

S96. Dunkel, J., Bruns, R., 2007. Model-driven architecture
for mobile applications, in: Business Information
Systems. pp. 464–477.

S97. Dustdar, S., Gall, H., 2003. Architectural concerns in
distributed and mobile collaborative systems. Journal
of Systems Architecture 49, 457 – 473.

S98. Dwomoh-Tweneboah, M., 2004. Building applications
for mobile devices with microsoft visual Studio.NET:
tutorial presentation. J. Comput. Sci. Coll. 20, 179–
180.

S99. Ejlersen, A., Knudsen, M.S., Løvgaard, J., Sørensen,
M.B., 2008. Using Design Science to Develop a Mobile
Application.

S100. Emmanouilidis, C., Koutsiamanis, R.-A., Tasidou, A.,
2012. Mobile guides: Taxonomy of architectures,
context awareness, technologies and applications.
Journal of Network and Computer Applications -.

S101. Esfahani, H.C., Cabot, J., Yu, E., 2010. Adopting Agile
Methods: Can Goal-Oriented Social Modeling Help, in:
4th International Conference on Research Challenges
in Information Science (RCIS). IEEE, France.

S102. Feigin, B., 2009. Mobile Application Development.

S103. Feijóo, C., Gómez-Barroso, J.L., Ramos, S., 2010. An
analysis of mobile gaming development, in:
Intelligence in Next Generation Networks (ICIN), 2010
14th International Conference On. pp. 1–7.

S104. Felker, C., Slamova, R., Davis, J., 2012. Integrating UX
with scrum in an undergraduate software
development project, in: Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
301–306.

S105. Fernando, N., Loke, S.W., Rahayu, W., 2012. Mobile
cloud computing: A survey. Future Generation
Computer Systems -.

S106. Ferscha, A., Hechinger, M., Mayrhofer, R.,
Oberhauser, R., 2004. A light-weight component
model for peer-to-peer applications, in: Distributed
Computing Systems Workshops, 2004. Proceedings.
24th International Conference On. pp. 520–527.

S107. Fjellheim, T., Milliner, S., Dumas, M., Vayssière, J.,
2007. A process-based methodology for designing
event-based mobile composite applications. Data
& Knowledge Engineering 61, 6 – 22.

S108. Forgue, M.-C., Hazaël-Massieux, D., 2012. Mobile web
applications: bringing mobile apps and web together,
in: Proceedings of the 21st International Conference
Companion on World Wide Web, WWW ’12
Companion. ACM, New York, NY, USA, pp. 255–258.

S109. Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T.,
Charaf, H., 2005. Supporting Rapid Application
Development on Symbian Platform, in: Computer as a
Tool, 2005. EUROCON 2005.The International
Conference On. pp. 72 –75.

S110. Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G.,
Kelenyi, I., Charaf, H., 2006. Model-based system
development for embedded mobile platforms, in:
Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for
Pervasive and Embedded Software, 2006.
MBD/MOMPES 2006. Fourth and Third International
Workshop On. p. 10–pp.

S111. Franke, D., Elsemann, C., Kowalewski, S., Weise, C.,
2011. Reverse Engineering of Mobile Application
Lifecycles, in: Reverse Engineering (WCRE), 2011 18th
Working Conference On. pp. 283–292.

S112. Frantz, C., Nowostawski, M., Purvis, M.K., 2012.
Augmenting android with AOSE principles for
enhanced functionality reuse in mobile applications,
in: Proceedings of the 10th International Conference
on Advanced Agent Technology, AAMAS’11. Springer-
Verlag, Berlin, Heidelberg, pp. 187–211.

S113. Fraunholz, B., Hoffman, J., Jung, J., 2003. Evaluation
of mobile frameworks-conceptual and technological
aspects, in: Proceedings of the 10th European
Conference on Information Technology Evaluation-
2003. p. 245.

S114. Gaffar, A., 2009. Enumerating mobile enterprise
complexity 21 complexity factors to enhance the
design process, in: Proceedings of the 2009
Conference of the Center for Advanced Studies on
Collaborative Research, CASCON ’09. ACM, New York,
NY, USA, pp. 270–282.

S115. Gal, V., Topol, A., 2005. Experimentation of a Game
Design Methodology for Mobile Phones Games.

S116. Gao, J., Koronios, A., 2010. Mobile Application
Development for Senior Citizens, in: Proceedings of
PACIS 2010, 14th Pacific Asia Conference on
Information Systems, 9-12 July 2010; Taipei, Taiwan.
pp. 214–223.

S117. Gasimov, A., Tan, C.H., Phang, C.W., Sutanto, J., 2010.
Visiting mobile application development: What, how
and where, in: Mobile Business and 2010 Ninth Global
Mobility Roundtable (ICMB-GMR), 2010 Ninth
International Conference On. pp. 74–81.

S118. Gavalas, D., Bellavista, P., Cao, J., Issarny, V., 2011.
Mobile applications: Status and trends. Journal of
Systems and Software 84, 1823 – 1826.

S119. Gavrilovska, A., 2009. Methodology for mobile
application product development: A Case Study for
Wemlin. Presented at the ICT Innovations 2009,
Association for Information and Communication
Technologies ICT-ACT, Ohrid, Macedonia.

S120. Gestwicki, P., Ahmad, K., 2011. App inventor for
Android with studio-based learning. J. Comput. Sci.
Coll. 27, 55–63.

S121. Grassi, V., Mirandola, R., Sabetta, A., 2004. UML
based modeling and performance analysis of mobile
systems, in: Proceedings of the 7th ACM International
Symposium on Modeling, Analysis and Simulation of

250

Wireless and Mobile Systems, MSWiM ’04. ACM,
New York, NY, USA, pp. 95–104.

S122. Green, R., Mazzuchi, T., Sarkani, S., 2010.
Communication and Quality in Distributed Agile
Development: An Empirical Case Study. Proceeding in
World Academy of Science, Engineering and
Technology 61, 322–328.

S123. Grønli, T.-M., Hansen, J., Ghinea, G., 2011. A cloud on
the horizon: the challenge of developing applications
for Android and iPhone, in: Proceedings of the 4th
International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA ’11. ACM,
New York, NY, USA, pp. 64:1–64:2.

S124. Guha, P., Shah, K., Shukla, S.S.P., Singh, S., 2011.
Incorporating Agile with MDA Case Study: Online
Polling System. Arxiv preprint arXiv:1110.6879.

S125. Guo, B., Zhang, D., Imai, M., 2010. Enabling user-
oriented management for ubiquitous computing: The
meta-design approach. Computer Networks 54,
2840–2855.

S126. Guthery, S.B., Cronin, M.J., 2002. Mobile Application
Development with SMS and the SIM Toolkit. McGraw-
Hill.

S127. HALSE, S., PATIL, S., 2011. Paper on Aspect-Oriented
Software Development and its Usage. Journal of
Computer and Mathematical Sciences Vol 2, 581–692.

S128. Hammershoj, A., Sapuppo, A., Tadayoni, R., 2010.
Challenges for mobile application development, in:
Intelligence in Next Generation Networks (ICIN), 2010
14th International Conference On. pp. 1–8.

S129. Harjula, E., Ylianttila, M., Ala-Kurikka, J., Riekki, J.,
Sauvola, J., 2004. Plug-and-play application platform:
towards mobile peer-to-peer, in: Proceedings of the
3rd International Conference on Mobile and
Ubiquitous Multimedia, MUM ’04. ACM, New York,
NY, USA, pp. 63–69.

S130. Hartmann, G., Stead, G., DeGani, A., 2011. Cross-
platform mobile development.

S131. Harun, H., Jailani, N., Bakar, M.A., Zakaria, M.S.,
Abdullah, S., 2009. A generic framework for
developing map-based mobile application, in:
Electrical Engineering and Informatics, 2009. ICEEI
’09. International Conference On. pp. 434 –440.

S132. Hashim, A.S., Ahmad, W.F.W., Rohiza, A., 2010. A
study of design principles and requirements for the
m-learning application development, in: User Science
and Engineering (i-USEr), 2010 International
Conference On. pp. 226–231.

S133. Hedberg, H., Iisakka, J., 2006. Technical Reviews in
Agile Development: Case Mobile-D, in: Quality
Software, 2006. QSIC 2006. Sixth International
Conference On. pp. 347–353.

S134. Hemel, Z., Visser, E., 2011. Declaratively programming
the mobile web with Mobl, in: Proceedings of the
2011 ACM International Conference on Object
Oriented Programming Systems Languages and

Applications, OOPSLA ’11. ACM, New York, NY, USA,
pp. 695–712.

S135. Ho, H.K., 2004. Mobile application using J2ME.

S136. Holleis, P., 2009. Integrating usability models into
pervasive application development.

S137. Holleis, P., Schmidt, A., 2008. Makeit: Integrate user
interaction times in the design process of mobile
applications. Pervasive Computing 56–74.

S138. Holzer, A., Ondrus, J., 2009. Trends in mobile
application development, in: Mobile Wireless
Middleware, Operating Systems, and Applications-
Workshops. pp. 55–64.

S139. Honda, S., Tomiyama, H., Takada, H., 2007. RTOS and
Codesign Toolkit for Multiprocessor Systems-on-Chip,
in: Proceedings of the 2007 Asia and South Pacific
Design Automation Conference, ASP-DAC ’07. IEEE
Computer Society, Washington, DC, USA, pp. 336–
341.

S140. Hosalkar, A., 2002. Building Mobile Applications with
J2EE, J2EE-J2ME and J2EE Extended Application
Servers. Proc. of MASPLAS 2.

S141. Hosbond, J., Nielsen, P., 2005. Mobile systems
development: a literature review. Designing
Ubiquitous Information Environments: Socio-
Technical Issues and Challenges 215–232.

S142. Houssos, N., Alonistioti, N., Merakos, L., 2005.
Specification and dynamic introduction of 3rd party,
service-specific adaptation policies for mobile
applications. Mob. Netw. Appl. 10, 405–421.

S143. Hu, X., Du, W., Spencer, B., 2011. A Multi-Agent
Framework for Ambient Systems Development.
Procedia Computer Science 5, 82 – 89.

S144. Huang, J., Luo, Z., 2010. Research on the Architecture
of Mobile Application Development. Computer 11.

S145. Huang, W.C.D., 2007. Design and implementation of a
mobile wiki: mobile RikWik.

S146. Huopaniemi, A., 2005. Software Lifecycle
Management in Java Environments.

S147. Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S.,
Slany, W., Umgeher, M., Vlk, T., Wolkerstorfer, P.,
2008. User Interface Design for a Mobile Multimedia
Application: An Iterative Approach. IEEE, pp. 189–194.

S148. Hussain, Z., Lechner, M., Milchrahm, H., Shahzad, S.,
Slany, W., Umgeher, M., Wolkerstorfer, P., 2008. Agile
user-centered design applied to a mobile multimedia
streaming application. HCI and Usability for Education
and Work 313–330.

S149. Ihme, T., Abrahamsson, P., 2005. The Use of
Architectural Patterns in the Agile Software
Development of Mobile Applications.

S150. Im, T.S., Guimaraes, M., Kennesaw, G., 2004.
Component based programming in mobile devices:
The future of mobile device development? Inst
Informatics &Systemic 255–259.

251

S151. Jackson, S., Ellis, H., Postner, L., Kurkovsky, S.,
Mustafaraj, E., 2012. Mobile application development
in computing curricula. J. Comput. Sci. Coll. 27, 110–
112.

S152. Jacob, J.T.P.N., Coelho, A.F., 2011. Geo Wars–The
development of a location-based game. Revista
Prisma. Com.

S153. Jadhav, A., Anand, S., Dhangare, N., Wagh, K., 2012.
Universal Mobile Application Development (UMAD)
On Home Automation. Network and Complex Systems
2, 38–45.

S154. Jang, S., Lee, E., 2009. Reliable Mobile Application
Modeling Based on Open API. Advances in Software
Engineering 168–175.

S155. Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development
Process of Mobile Application SW Based on Agile
Methodology, in: Advanced Communication
Technology, 2008. ICACT 2008. 10th International
Conference On. pp. 362–366.

S156. Jiang, M., Yang, Z., 2007. A Model-Driven Approach
for Dependable Software Systems, in: Quality
Software, 2007. QSIC’07. Seventh International
Conference On. pp. 100–106.

S157. Jong-Won Ko, Sung-Ho Sim, Young-Jae Song, 2011.
Test Based Model Transformation Framework for
Mobile Application. IEEE, pp. 1–7.

S158. Joseph, A.D., Kaashoek, M.F., 1997. Building reliable
mobile-aware applications using the Rover toolkit.
Wirel. Netw. 3, 405–419.

S159. Juell, M.A., Nordhaug, G.L., 2011. An approach to
rapid development of modern ubiquitous Internet
applications.

S160. Jugel, U., Preußner, A., 2011. A case study on API
generation, in: Proceedings of the 6th International
Conference on System Analysis and Modeling: About
Models, SAM’10. Springer-Verlag, Berlin, Heidelberg,
pp. 156–172.

S161. Julien, C., Roman, G.C., 2006. Egospaces: Facilitating
rapid development of context-aware mobile
applications. Software Engineering, IEEE Transactions
on 32, 281–298.

S162. Julien, C., Roman, G.C., Huang, Q., 2004. Network
abstractions for simplifying mobile application
development. Technical Report WUCSE-04-37,
Washington University.

S163. Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J.,
2004. Improving requirements management in
extreme programming with tool support - an
improvement attempt that failed, in: Euromicro
Conference, 2004. Proceedings. 30th. pp. 342 – 351.

S164. Kadytė, V., Tétard, F., 2004. The role of usability
evaluation and usability testing techniques in the
development of a mobile system.

S165. Kähkönen, T., 2011. The effect of service oriented
architecture and cloud computing on software testing
(Master thesis).

S166. Kangas, E., Kinnunen, T., 2005. Applying user-
centered design to mobile application development.
Communications of the ACM 48, 55–59.

S167. Kantee, A., Vuolteenaho, H., 2006. Experiences in
Portable Mobile Application Development. Advanced
Software Engineering: Expanding the Frontiers of
Software Technology 138–152.

S168. Karvonen, J., Warsta, J., 2004. Mobile multimedia
services development: value chain perspective, in:
Proceedings of the 3rd International Conference on
Mobile and Ubiquitous Multimedia, MUM ’04. ACM,
New York, NY, USA, pp. 171–178.

S169. Kaufmann, B., Buechley, L., 2010. Amarino: a toolkit
for the rapid prototyping of mobile ubiquitous
computing, in: Proceedings of the 12th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’10. ACM,
New York, NY, USA, pp. 291–298.

S170. Kemper, H.G., Wolf, E., 2002. Iterative process models
for mobile application systems: A framework, in:
Proceedings of the 23th International Conference on
Information System. pp. 401–413.

S171. Keranen, H., Abrahamsson, P., 2005. Naked objects
versus traditional mobile platform development: a
comparative case study, in: Software Engineering and
Advanced Applications, 2005. 31st EUROMICRO
Conference On. pp. 274 – 281.

S172. Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008.
Model-Driven Development of Mobile Personal
Health Care Applications, in: Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08. IEEE
Computer Society, Washington, DC, USA, pp. 467–
470.

S173. Khan, F.H., Khan, Z.H., 2010. A Systematic Approach
for Developing Mobile Information System based on
Location Based Services. Network Protocols and
Algorithms 2, 54–65.

S174. Khan, U.A., 2008. Improved Iterative Software
Development Method for Game Design.

S175. Kim, H., Choi, B., Yoon, S., 2009. Performance testing
based on test-driven development for mobile
applications, in: Proceedings of the 3rd International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’09. ACM, New York,
NY, USA, pp. 612–617.

S176. Kim, H.K., 2008. Frameworks of Process Improvement
for Mobile Applications. Engineering Letters 16.

S177. Kim, M., Jeong, J., Park, S., 2005. From product lines
to self-managed systems: an architecture-based
runtime reconfiguration framework, in: Proceedings
of the 2005 Workshop on Design and Evolution of
Autonomic Application Software, DEAS ’05. ACM,
New York, NY, USA, pp. 1–7.

S178. Kim, W.Y., Son, H.S., Kim, J.S., Kim, R.Y., 2010.
Development of Windows Mobile Applications using

252

Model Transformation Techniques. Journal of KISS:
Computing Practices 16, 1091–5.

S179. Kinzel, J., 2010. A model driven approach to build high
effective and ergonomic mobile business applications,
in: Consumer Electronics (ISCE), 2010 IEEE 14th
International Symposium On. pp. 1–5.

S180. Koch, F., 2005. Towards a Framework for Intelligent
Mobile Service Applications. INFOCOMP Journal of
Computer Science 4, 1–10.

S181. Kokkoniemi, J.K., 2008. Gathering Experience
Knowledge from Iterative Software Development
Processes, in: Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual. pp.
333–333.

S182. Kolko, B., Putnam, C., Rose, E., Johnson, E., 2011.
Reflection on research methodologies for ubicomp in
developing contexts. Personal Ubiquitous Comput.
15, 575–583.

S183. König-Ries, B., 2009. Challenges in mobile application
development. it-Information Technology 51, 69–71.

S184. Korkala, M., Abrahamsson, P., 2004. Extreme
programming: Reassessing the requirements
management process for an offsite customer.
Software Process Improvement 12–22.

S185. Kouici, N., Sabri, N., Conan, D., Bernard, G., 2004.
MADA, a mobile application development approach,
in: Proceedings of the 1st French-speaking
Conference on Mobility and Ubiquity Computing,
UbiMob ’04. ACM, New York, NY, USA, pp. 78–85.

S186. Kraemer, F.A., 2011. Engineering android applications
based on UML activities, in: Proceedings of the 14th
International Conference on Model Driven
Engineering Languages and Systems, MODELS’11.
Springer-Verlag, Berlin, Heidelberg, pp. 183–197.

S187. Kramer, D., Clark, T., Oussena, S., 2010. MobDSL: A
Domain Specific Language for multiple mobile
platform deployment, in: Networked Embedded
Systems for Enterprise Applications (NESEA), 2010
IEEE International Conference On. pp. 1–7.

S188. Krevl, A., Vidmar, T., Pancur, M., Ciglaric, M., Tomazic,
S., Zavec, A., Ciglaric, S., 2006. A Framework for
Developing Mobile Location Based Applications. DTIC
Document.

S189. Kulkarni, H., Dascalu, S.M., Harris, F.C., 2009.
Software Development Aspects of a Mobile Food
Ordering System, in: Proceedings of the ISCA 18th
International Conference on Software Engineering
and Data Engineering (SEDE ’09). Las Vegas, Nevada,
pp. 67–72.

S190. Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J.,
2007. Gulliver - a framework for building smart
speech-based applications, in: Proceedings of the
40th Annual Hawaii International Conference on
System Sciences. Waikoloa, HI, USA.

S191. Kynkäänniemi, T., Komulainen, K., 2006. Agile
Software Development of Embedded Systems
Version: 1.0 Date: 2006.03. 09.

S192. La, H.J., Kim, S.D., 2010. Balanced MVC Architecture
for Developing Service-based Mobile Applications, in:
e-Business Engineering (ICEBE), 2010 IEEE 7th
International Conference On. pp. 292–299.

S193. La, H.J., Lee, H.J., Kim, S.D., 2011. An efficiency-centric
design methodology for mobile application
architectures, in: Wireless and Mobile Computing,
Networking and Communications (WiMob), 2011 IEEE
7th International Conference On. pp. 272–279.

S194. La, H.J., Lee, H.M., Lee, H.J., Kim, S.D., 2010. Technical
issues and lessons learned in developing service-
based mobile applications. IEEE, pp. 1–4.

S195. Laakko, T., Leppanen, J., Lahteenmaki, J., Nummiaho,
A., 2008. Mobile health and wellness application
framework. Methods of Information in Medicine 47,
217–22.

S196. Laitinen, M., Nuckchady, V., Nelimarkka, M., 2008.
MUPE as a Rapid Development Architecture – Case
Wireless Educational Platform. Presented at the The
Nordic Conference of Serious Games.

S197. Lee, S., 2010. Mobile agent based framework for
mobile ubiquitous application development, in:
Information Science and Applications (ICISA), 2010
International Conference On. pp. 1–5.

S198. Lee, V., Schneider, H., Schell, R., 2004. Mobile
applications: Architecture, design, and development.
Prentice Hall PTR.

S199. Leichtenstern, K., André, E., 2010. MoPeDT: features
and evaluation of a user-centred prototyping tool, in:
Proceedings of the 2nd ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, EICS ’10.
ACM, New York, NY, USA, pp. 93–102.

S200. Lengyel, L., Levendovszky, T., Charaf, H., 2008.
Validated model transformation-driven software
development. International Journal of Computer
Applications in Technology 31, 106–119.

S201. Li, Z., Steenkamp, A.L., 2010. Mobile Enterprise
Architecture Framework. International Journal of
Information Technologies and Systems Approach
(IJITSA) 3, 1–20.

S202. Lim, W.M., 2005. Towards More Usable Mobile
Application Development. IEEE, pp. 1–6.

S203. Lin, H.F., 2012. Design and implementation of a
mobile application for personal learning analytics.

S204. Liu, J.J., 2002. Mobile map: A case study in the design
& implementation of a mobile application.

S205. Love, S., 2005. Design issues for mobile systems, in:
Understanding Mobile Human-Computer Interaction.
Butterworth-Heinemann, Oxford, pp. 75 – 98.

S206. Lunn, K., Gidlow, J., Heelas, C., 2002. Mobile
application development, a case study in order
capture. ICWI 669–672.

253

S207. Lutes, K., 2004. Software development for mobile
computers. Pervasive Computing, IEEE 3, 10–14.

S208. Maaløe, L., Wiboe, M., 2011. A Platform-Independent
Framework for Application Development for Smart
Phones.

S209. MacVittie, D., 2004. Crossfire targets multiplatform
development. Network Computing 15, 32–4.

S210. Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A.,
Prasad, S.K., Bourgeois, A., 2010. A methodology for
engineering collaborative and ad-hoc mobile
applications using SyD middleware. Journal of
Network and Computer Applications 33, 542 – 555.

S211. Magdaleno, A.M., Werner, C.M.L., Araujo, R.M. de,
2012. Reconciling software development models: A
quasi-systematic review. Journal of Systems and
Software 85, 351 – 369.

S212. Maharmeh, M., Unhelkar, B., 2009. A Composite
Software Framework Approach for Mobile Application
Development. Handbook of research in mobile
business: technical, methodological, and social
perspectives 194.

S213. Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C.,
2010. Considerations on developing mobile
applications based on the Capuchin project, in:
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10. ACM, New York, NY, USA, pp.
575–579.

S214. Makunga, L., Church, K., 2002. Software Development
in Mobile Computing Applications. INFORMATION
TECHNOLOGY ON THE MOVE 257.

S215. Malek, S., Edwards, G., Brun, Y., Tajalli, H., Garcia, J.,
Krka, I., Medvidovic, N., Mikic-Rakic, M., Sukhatme,
G.S., 2010. An architecture-driven software mobility
framework. Journal of Systems and Software 83, 972–
989.

S216. Manninen, T., 2002. Contextual Virtual Interaction as
Part of Ubiquitous Game Design and Development.
Personal Ubiquitous Comput. 6, 390–406.

S217. Manjunatha, A., Ranabahu, A., Sheth, A.,
Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid
application development, in: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference On. pp. 496–503.

S218. March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M.,
Lee, B.S., 2011. μCloud: Towards a New Paradigm of
Rich Mobile Applications. Procedia Computer Science
5, 618 – 624.

S219. Marinho, F.G., Andrade, R.M.C., Werner, C., Viana,
W., Maia, M.E.F., Rocha, L.S., Teixeira, E., Filho, J.B.F.,
Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A
Nested Software Product Line for the domain of
mobile and context-aware applications. Science of
Computer Programming -.

S220. Marius, P., 2010. Audit Process during Projects for
Development of New Mobile IT Application.
Informatica Economica 14, 34–46.

S221. Martin, S., Diaz, G., Plaza, I., Ruiz, E., Castro, M., Peire,
J., 2011. State of the art of frameworks and
middleware for facilitating mobile and ubiquitous
learning development. Journal of Systems and
Software 84, 1883 – 1891.

S222. Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M.,
Peire, J., Boticki, I., 2010. M2Learn Open Framework:
Developing Mobile Collaborative and Social
Applications, in: UBICOMM 2010, The Fourth
International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies. pp.
59–62.

S223. Mathew, J., 2010. Cross-Platform Application
Development on Symbian.

S224. Matthews, M., Doherty, G., Coyle, D., Sharry, J., 2008.
Designing mobile applications to support mental
health interventions. Handbook of Research on User
Interface Design and Evaluation for Mobile
Technology 635–656.

S225. Mayuk, O., Torabi, T., 2006. Framework for Mobile
Application Development and Content Integration, in:
Wireless, Mobile and Ubiquitous Technology in
Education, 2006. WMUTE ’06. Fourth IEEE
International Workshop On. pp. 69–73.

S226. Mazhelis, O., Markkula, J., Jakobsson, M., 2005.
Specifying patterns for mobile application domain
using general architectural components, in: Product
Focused Software Process Improvement. 6th
International Conference, PROFES 2005. Proceedings
(Lecture Notes in Computer Science Vol. 3547).

S227. Meads, A., Warren, I., 2011. OdinTools–Model-Driven
Development of Intelligent Mobile Services, in:
Services Computing (SCC), 2011 IEEE International
Conference On. pp. 448–455.

S228. Medvidovic, N., Edwards, G., 2010. Software
architecture and mobility: A roadmap. Journal of
Systems and Software 83, 885 – 898.

S229. Meijles, E., Rip, F., Bakker, M., Epema, G., 2005. Do
we speak each others’ language? A methodology for
developing generic GI-competencies, in: 8th AGILE
Conference on GI Science. F. Toppen and M. Painho.
Estoril, Portugal, Universidade Nova De Lisboa,
Lisboa, Portugal.

S230. Miravet, P., Marín, I., Ortín, F., Rionda, A., 2009.
DIMAG: a framework for automatic generation of
mobile applications for multiple platforms, in:
Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems,
Mobility ’09. ACM, New York, NY, USA, pp. 23:1–23:8.

S231. Mishra, J., Dash, S.K., Dash, S., 2012. Mobile-Cloud: A
Framework of Cloud Computing for Mobile
Application. Advances in Computer Science and
Information Technology. Computer Science and
Information Technology 347–356.

254

S232. Mnaouer, A.B., Shekhar, A., Liang, Z.Y., 2004. A
generic framework for rapid application development
of mobile Web services with dynamic workflow
management, in: Services Computing, 2004.(SCC
2004). Proceedings. 2004 IEEE International
Conference On. pp. 165–171.

S233. Morales-Aranda, A.H., Mayora-Ibarra, O., Negrete-
Yankelevich, S., 2004. M-Modeler: a framework
implementation for modeling m-commerce
applications, in: Proceedings of the 6th International
Conference on Electronic Commerce. pp. 596–602.

S234. Motes, G., 2011. US Army Mobile Application
Development: A Coder’s Perspective. DTIC Document.

S235. Munson, J.P., Dewan, P., 1997. Sync: a Java
framework for mobile collaborative applications.
Computer 30, 59–66.

S236. Murthy, V.K., 2001. Seamless mobile transaction
processing: Models, protocols and software tools, in:
Parallel and Distributed Systems, 2001. ICPADS 2001.
Proceedings. Eighth International Conference On. pp.
147–154.

S237. Naevdal, S., 2007. Agile development methodologies
introduced to Norwegian ICT companies. (No.
TDT4520). Norwegian University of Science and
Technology.

S238. Natchetoi, Y., Kaufman, V., Shapiro, A., 2008. Service-
oriented architecture for mobile applications, in:
Proceedings of the 1st International Workshop on
Software Architectures and Mobility, SAM ’08. ACM,
New York, NY, USA, pp. 27–32.

S239. Nguyen, N.T., 2010. How software process
improvement standards and agile methods co-exist in
software organisations?

S240. Northern, C., Mayfield, K., Benito, R., Casagni, M.,
2011. Handbook for Implementing Agile in
Department of Defense Information Technology
Acquisition.

S241. Nugroho, L.E., 2001a. A context-based approach for
mobile application development.

S242. Nugroho, L.E., 2001b. A specification language for
mobile application development, in: Proceedings of
3rd International Conference on Information
Integration and Web Based Applications and Services.
(IIWAS 2001). Presented at the Third International
Conference on Information Integration and Web-
based Applications and Services., pp. 357–64.

S243. Nyström, A., 2011. Agile Solo-Defining and Evaluating
an Agile Software Development Process for a Single
Software Developer.

S244. O’Leary, P., Thiel, S., Botterweck, G., Richardson, I.,
2008. Towards a product derivation process
framework.

S245. ObjectGraph, L., 2010. Creating Mapping Applications
for the iPhone. Cartographic Perspectives 71.

S246. Ocampo, A., Bella, F., MJ" nch, J., 2006. Software
Development Processes. Developing Services for the
Wireless Internet 9–32.

S247. Ogunleye, S., 2009. MobiNET: A framework for
supporting Java mobile application developers
through contextual inquiry.

S248. Olaniyi, O., Ajose, S., Adegoke, M., 2010.
Development of a mobile airline reservation and
payment system. International Journal of Electronic
Finance 4, 372–389.

S249. Olivé, A., Cabot, J., 2007. A research agenda for
conceptual schema-centric development. Conceptual
Modelling in Information Systems Engineering 3, 319.

S250. Omar, S.H., 2000. A mobile code toolkit for adaptive
mobile applications.

S251. Ortiz, G., Prado, A.G.D., 2010. Improving device-
aware Web services and their mobile clients through
an aspect-oriented, model-driven approach.
Information and Software Technology 52, 1080 –
1093.

S252. Palviainen, M., Laakko, T., 2005. Using modular and
generative approaches for implementing adaptable
mobile browser applications, in: Proceedings of the
IADIS International Conference WWW/Internet 2005.
pp. 101–109.

S253. Papageorgiou, A., Leferink, B., Eckert, J., Repp, N.,
Steinmetz, R., 2009. Bridging the gaps towards
structured mobile SOA, in: Proceedings of the 7th
International Conference on Advances in Mobile
Computing and Multimedia, MoMM ’09. ACM, New
York, NY, USA, pp. 288–294.

S254. Paspallis, N., Papadopoulos, G.A., 2006. An approach
for developing adaptive, mobile applications with
separation of concerns, in: Computer Software and
Applications Conference, 2006. COMPSAC’06. 30th
Annual International. pp. 299–306.

S255. Patel, C., Ramachandran, M., 2010. Best Practices
Guidelines for Agile Requirements Engineering
Practices.

S256. Pauca, V.P., Guy, R.T., 2012. Mobile apps for the
greater good: a socially relevant approach to software
engineering, in: Proceedings of the 43rd ACM
Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
535–540.

S257. Pfleging, B., Valderrama Bahamondez, E. del C.,
Schmidt, A., Hermes, M., Nolte, J., 2010. MobiDev: a
mobile development kit for combined paper-based
and in-situ programming on the mobile phone, in:
Proceedings of the 28th of the International
Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’10. ACM, New York, NY,
USA, pp. 3733–3738.

S258. Picco, G.P., Murphy, A.L., Roman, G.-C., 2000.
Developing mobile computing applications with LIME,
in: Proceedings of the 22nd International Conference

255

on Software Engineering, ICSE ’00. ACM, New York,
NY, USA, pp. 766–769.

S259. Pikkarainen, M., 2005. Agile Software Development of
Embedded Systems Version: 1.0 Date: 2005.06. 13.

S260. Pikkarainen, M., Passoja, U., 2005. An approach for
assessing suitability of agile solutions: A case study.
Extreme Programming and Agile Processes in
Software Engineering 1202–1206.

S261. Pikkarainen, M., Salo, O., Kuusela, R., Abrahamsson,
P., 2011. Strengths and barriers behind the successful
agile deployment—insights from the three software
intensive companies in Finland. Empirical Software
Engineering 1–28.

S262. Platzer, E., Petrovic, O., 2011. A learning environment
for developers of mobile apps, in: Global Engineering
Education Conference (EDUCON), 2011 IEEE. pp. 14–
19.

S263. Pocatilu, P., Doinea, M., Ciurea, C., 2010.
Development of distributed mobile learning systems,
in: The 9th WSEAS International Conference on
Circuits, Systems, Electronics, Control & Signal
Processing (CSECS’10), Vouliagmeni, Athens, Greece.

S264. Pohl, T., Kothandaraman, R., Seshasai, V.S., 2007.
Developing Mobile Applications Using SAP NetWever
Mobile. SAP Press.

S265. Pokraev, S., Koolwaaij, J., van Setten, M., Broens, T.,
Costa, P.D., Wibbels, M., Ebben, P., Strating, P., 2005.
Service platform for rapid development and
deployment of context-Aware, mobile applications,
in: Web Services, 2005. ICWS 2005. Proceedings. 2005
IEEE International Conference On.

S266. Polo, J., Delgado, J., 2005. An easy way to develop
mobile and wireless applications. Presented at the
The 7th IFIP International Conference on Mobile and
Wireless Communications Networks, Marrakech,
Marocco.

S267. Pulli, K., Vaarala, J., Miettinen, V., Aarnio, T., Callow,
M., 2005. Developing mobile 3D applications with
OpenGL ES and M3G, in: ACM SIGGRAPH 2005
Courses, SIGGRAPH ’05. ACM, New York, NY, USA.

S268. Qin, Z., Zhang, J., Zhang, X., 2012. An Effective
Partition Approach for Elastic Application
Development on Mobile Cloud Computing. Advances
in Grid and Pervasive Computing 46–53.

S269. Quinton, C., Mosser, S., Parra, C., Duchien, L., 2011.
Using multiple feature models to design applications
for mobile phones, in: Proceedings of the 15th
International Software Product Line Conference,
Volume 2, SPLC ’11. ACM, New York, NY, USA, pp.
23:1–23:8.

S270. Rahimian, V., Ramsin, R., 2008. Designing an agile
methodology for mobile software development: A
hybrid method engineering approach, in: Research
Challenges in Information Science, 2008. RCIS 2008.
Second International Conference On. pp. 337–342.

S271. Ranabahu, A., Sheth, A., Manjunatha, A.,
Thirunarayan, K., 2010. Towards Cloud Mobile Hybrid
Application Generation using Semantically Enriched
Domain Specific Languages, in: International
Workshop on Mobile Computing and Clouds
(MobiCloud 2010).

S272. Ranabahu, A.H., Maximilien, E.M., Sheth, A.P.,
Thirunarayan, K., 2011. A domain specific language
for enterprise grade cloud-mobile hybrid applications,
in: Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11
Workshops. ACM, New York, NY, USA, pp. 77–84.

S273. Rashid, O., Thompson, R., Coulton, P., Edwards, R.,
2004. A comparative study of mobile application
development in symbian and J2ME using example of a
live football results service operating over GPRS, in:
Consumer Electronics, 2004 IEEE International
Symposium On. pp. 203 – 207.

S274. Reinhartz-Berger, I., 2003. Developing web
applications with object-oriented approaches and
object-process methodology.

S275. Ren, H., Duan, Z., 2012. The Study on Device
Application Development and DataSynchonization.
Procedia Engineering 29, 415–419.

S276. Rizvi, S., Hussain, S.Z., Hassan, S.I., 2011. Simplifying
Mobile Application Development with Model-View-
Controller, in: Proceedings of the 5th National
Conference; INDIACom-2011. Bharati Vidyapeeth’s
Institute of Computer Applications and Management,
New Delhi, India.

S277. Rodger, R., 2011. Beginning Building Mobile
Application Development in the Cloud. Wrox.

S278. Rogers, R., 2010. Developing portable mobile web
applications. Linux J. 2010.

S279. Rogov, P., Borisov, N., 2007. Developing a Mobile
Distance Learning System.

S280. Roman, G.C., Picco, G.P., Murphy, A.L., 2000.
Software engineering for mobility: a roadmap, in:
Proceedings of the Conference on the Future of
Software Engineering. pp. 241–258.

S281. Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart
composition of reusable software components in
mobile application product lines, in: Proceedings of
the 2nd International Workshop on Product Line
Approaches in Software Engineering, PLEASE ’11.
ACM, New York, NY, USA, pp. 45–49.

S282. Rosado, D.G., Fernández-Medina, E., López, J.,
Piattini, M., 2011. Systematic design of secure Mobile
Grid systems. Journal of Network and Computer
Applications 34, 1168 – 1183.

S283. Rossi, M., Tuunanen, T., 2010. A method and tool for
rapid consumer application development.
International Journal of Organisational Design and
Engineering 1, 109–125.

256

S284. Roth, J., 2005. The resource framework for mobile
applications. Enterprise Information Systems V 300–
307.

S285. Rukzio, E., Rohs, M., Wagner, D., Hamard, J., 2005.
Development of interactive applications for mobile
devices, in: Proceedings of the 7th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’05. ACM,
New York, NY, USA, pp. 365–366.

S286. Rusu, L., Sarbu, M., Podean, M., 2009. Multilayer
solution using multimap for develope a mobile
application, in: Proceedings of the International
Conference on e-Business. Presented at the
International Conference on e-Business, Milan, Italy,
pp. 135–8.

S287. Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L.,
2011. MMCD Framework and Methodology for
Developing m-Learning Applications. Presented at the
International conference on Teaching & Learning in
Higher Education (ICTLHE 2011).

S288. Salim, A., Mehdi, Q., 2006. Investigation into Mobile
Development Tools and Technology for Mobile
Games and Application.

S289. Salo, O., 2004. Improving software process in agile
software development projects: results from two XP
case studies, in: Euromicro Conference, 2004.
Proceedings. 30th. pp. 310–317.

S290. Salo, O., Abrahamsson, P., 2007. An iterative
improvement process for agile software
development. Software Process: Improvement and
Practice 12, 81–100.

S291. Salvaneschi, G., Ghezzi, C., Pradella, M., 2012.
Context-oriented programming: A software
engineering perspective. Journal of Systems and
Software 85, 1801 – 1817.

S292. Sambasivan, D., John, N., Udayakumar, S., Gupta, R.,
2011. Generic framework for mobile application
development, in: Internet (AH-ICI), 2011 Second Asian
Himalayas International Conference On. pp. 1 –5.

S293. Sánchez, P., Jiménez, M., Rosique, F., Álvarez, B.,
Iborra, A., 2011. A framework for developing home
automation systems: From requirements to code.
Journal of Systems and Software 84, 1008 – 1021.

S294. Santi, A., Guidi, M., Ricci, A., 2010. Exploiting agent-
oriented programming for developing Android
applications, in: Proc. Of.

S295. Sato, D., Goldman, A., Kon, F., 2007. Tracking the
evolution of object-oriented quality metrics on agile
projects, in: Proceedings of the 8th International
Conference on Agile Processes in Software
Engineering and Extreme Programming, XP’07.
Springer-Verlag, Berlin, Heidelberg, pp. 84–92.

S296. Satoh, I., 2000. MobileSpaces: A framework for
building adaptive distributed applications using a
hierarchical mobile agent system, in: Distributed
Computing Systems, 2000. Proceedings. 20th
International Conference On. pp. 161–168.

S297. Scharff, C., 2010. The Software Engineering of Mobile
Application Development.

S298. Scharff, C., 2011. Guiding global software
development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education
and Training (CSEE&T), 2011 24th IEEE-CS Conference
On. pp. 274–283.

S299. Scharff, C., Verma, R., 2010. Scrum to support mobile
application development projects in a just-in-time
learning context, in: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’10. ACM, New York,
NY, USA, pp. 25–31.

S300. Schuster, C., Appeltauer, M., Hirschfeld, R., 2011.
Context-oriented programming for mobile devices:
JCop on Android, in: Proceedings of the 3rd
International Workshop on Context-Oriented
Programming, COP ’11. ACM, New York, NY, USA, pp.
5:1–5:5.

S301. Schwieren, J., Vossen, G., 2009. A design and
development methodology for mobile RFID
applications based on the ID-Services middleware
architecture, in: Mobile Data Management: Systems,
Services and Middleware, 2009. MDM’09. Tenth
International Conference On. pp. 260–266.

S302. Seifert, J., Pfleging, B., del Carmen Valderrama
Bahamóndez, E., Hermes, M., Rukzio, E., Schmidt, A.,
2011. Mobidev: a tool for creating apps on mobile
phones, in: Proceedings of the 13th International
Conference on Human Computer Interaction with
Mobile Devices and Services, MobileHCI ’11. ACM,
New York, NY, USA, pp. 109–112.

S303. Sen, R., 2009. Developing Parallel Programs. TechEd
Special Edition 17.

S304. Serhani, M.A., Benharref, A., Dssouli, R., Mizouni, R.,
2009. Toward an Efficient Framework for Designing,
Developing, and Using Secure Mobile Applications.
the Proceedings of World Academy of Science,
Engineering and Technology 40.

S305. Serm, T., Blanchfield, P., Su, K., 2006. Mobile
Newspaper Development Framework: Guidelines for
newspaper companies for creating usable mobile
news portals, in: Computing & Informatics, 2006.
ICOCI’06. International Conference On. pp. 1–8.

S306. Serral, E., Valderas, P., Pelechano, V., 2010. Towards
the Model Driven Development of context-aware
pervasive systems. Pervasive and Mobile Computing
6, 254 – 280.

S307. Session 4 Abstract: Mobile Application Development,
2008. , in: Mobile Business, 2008. ICMB ’08. 7th
International Conference On. p. xv.

S308. Shah, M., Mears, B., Chakrabarti, C., Spanias, A.,
Center, S., Tempe, A., 2012. A Top-Down Design
Methodology Using Virtual Platforms for Concept
Development.

S309. Shen, J., Sun, P., Guo, C., Yin, Y., Song, S., 2005.
Delivering mobile enterprise applications on iMMS

257

framework, in: Proceedings of the 6th International
Conference on Mobile Data Management, MDM ’05.
ACM, New York, NY, USA, pp. 289–293.

S310. Shen, M., Yang, W., Rong, G., Shao, D., 2012. Applying
Agile Methods to Embedded Software Development:
A Systematic Review. Presented at the The 2nd
International Workshop on Software Engineering for
Embedded Systems, Zurich, Switzerland.

S311. Shetty, K.S., Singh, S., 2011. Cloud Based Application
Development for Mobile Devices for Accessing LBS.
Advances in Parallel Distributed Computing 532–543.

S312. Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile
Application Development Tool. Proceedings of the
International MultiConference of Engineers and
Computer Scientists 1.

S313. Shiratuddin, N., Sarif, S.M., 2009. Construction of
Matrix and eMatrix for Mobile Development
Methodologies. Handbook of research in mobile
business: technical, methodological, and social
perspectives.

S314. Shrestha, A., 2010. MobileSOA Framework for
Context-Aware Mobile Applications, in: Proceedings
of the 2010 Eleventh International Conference on
Mobile Data Management, MDM ’10. IEEE Computer
Society, Washington, DC, USA, pp. 297–298.

S315. Simon, R., Fröhlich, P., 2007. A mobile application
framework for the geospatial web, in: Proceedings of
the 16th International Conference on World Wide
Web, WWW ’07. ACM, New York, NY, USA, pp. 381–
390.

S316. Simonsen, A., 2004. Developing mobile applications.

S317. Simula, K., 2007. Intelligent software agent
framework for customized mobile services, in:
Proceedings of the 4th on Middleware Doctoral
Symposium, MDS ’07. ACM, New York, NY, USA, pp.
15:1–15:6.

S318. Singh, M., Rahmatabadi, G.Y., Ahamed, S.I., 2004.
User Interface and application development
experience on handheld devices, in:
Electro/Information Technology Conference, 2004.
EIT 2004. IEEE. pp. 125–137.

S319. Soroker, D., Cáceres, R., Dig, D., Schade, A.,
Spraragen, S., Tiwari, A., 2006. Pegboard: a
framework for developing mobile applications, in:
Proceedings of the 4th International Conference on
Mobile Systems, Applications and Services, MobiSys
’06. ACM, New York, NY, USA, pp. 138–150.

S320. Soumaya, D., Tabbane, M.S., Jemai, M.A., 2007.
Development of a software mobile banking solution
for S60 phones.

S321. Spataru, A.C., 2010. Agile development methods for
mobile applications.

S322. Srinivasa, K.G., Harish Raddi, C.S., Mohan Krishna,
S.H., Venkatesh, N., 2011. MeghaOS: Cloud based
operating system and a framework for mobile
application development, in: Information and

Communication Technologies (WICT), 2011 World
Congress On. pp. 858 –863.

S323. Srinivasan, J., Dobrin, R., Lundqvist, K., 2009. “State of
the Art”in Using Agile Methods for Embedded
Systems Development, in: Computer Software and
Applications Conference, 2009. COMPSAC’09. 33rd
Annual IEEE International. pp. 522–527.

S324. Su, S.H., Scharff, C., 2010. Know Yourself and Beyond:
A Global Software Development Project Experience
with Agile Methodology, in: Proceedings of Student-
Faculty Research Day, CSIS. Pace University.

S325. Sung, M., Lee, J., 2004. Desirable mobile networking
method for formulating an efficient mobile
conferencing application. Embedded and Ubiquitous
Computing 46–151.

S326. Tang, L., Yu, Z., Zhou, X., Wang, H., Becker, C., 2011.
Supporting rapid design and evaluation of pervasive
applications: challenges and solutions. Personal
Ubiquitous Comput. 15, 253–269.

S327. Tanuan, M., 2007. Using Sybase WorkSpace to build
service oriented architecture (SOA) applications
quickly, in: Companion to the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems
and Applications Companion, OOPSLA ’07. ACM, New
York, NY, USA, pp. 848–849.

S328. Tarnacha, A., Maitland, C.F., 2006. Entrepreneurship
in mobile application development, in: Proceedings of
the 8th International Conference on Electronic
Commerce: The New E-commerce: Innovations for
Conquering Current Barriers, Obstacles and
Limitations to Conducting Successful Business on the
Internet, ICEC ’06. ACM, New York, NY, USA, pp. 589–
593.

S329. Teng, C.C., Helps, R., 2010. Mobile Application
Development: Essential New Directions for IT, in:
Information Technology: New Generations (ITNG),
2010 Seventh International Conference On. pp. 471 –
475.

S330. Terani, N.S., 2012. IPhone Application Development
Challenges and Solutions.

S331. Thompson, C., White, J., Dougherty, B., Schmidt, D.,
2009. Optimizing mobile application performance
with model–driven engineering. Software
Technologies for Embedded and Ubiquitous Systems
36–46.

S332. Thompson, C., White, J., Dougherty, B., Turner, H.,
Campbell, S., Zienkiewicz, K., Schmidt, D.C., 2010.
Model-Driven Architectures for Optimizing Mobile
Application Performance.

S333. Titica, D., Fratu, O., Stanescu, E., Halunga-Fratu, S.,
2007. Simple Location-based Application
Development for Mobile Phones, in:
Telecommunications in Modern Satellite, Cable and

Broadcasting Services, 2007. ℡SIKS 2007. 8th
International Conference On. pp. 15–18.

S334. TRIF, S., VIŞOIU, A., 2011. A Windows Phone 7
Oriented Secure Architecture for Business Intelligence

258

Mobile Applications. Informatica Economică 15, 119–
129.

S335. Ueyama, J., Pinto, V.P.V., Madeira, E.R.M., Grace, P.,
Jonhson, T.M.M., Camargo, R.Y., 2009. Exploiting a
generic approach for constructing mobile device
applications, in: Proceedings of the Fourth
International ICST Conference on COMmunication
System softWAre and middlewaRE, COMSWARE ’09.
ACM, New York, NY, USA, pp. 12:1–12:12.

S336. Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong,
J.T., Eo, S.K., 2005. ViP: A Practical Approach to
Platform-based System Modeling Methodology.
Journal of Semiconductor Technology and Science 5,
89.

S337. Unhelkar, B., Murugesan, S., 2010. The Enterprise
Mobile Applications Development Framework. IT
professional 12, 33–39.

S338. Vara, J.M., Marcos, E., 2012. A framework for model-
driven development of information systems:
Technical decisions and lessons learned. Journal of
Systems and Software -.

S339. Vazquez-Briseno, M., Vincent, P., Nieto-Hipolito, J.I.,
de Dios Sanchez-Lopez, J., 2012. Applying a Modular
Framework to Develop Mobile Applications and
Services. Journal of Universal Computer Science 18,
704–727.

S340. Viana, W., Andrade, R., 2008. XMobile: A MB-UID
environment for semi-automatic generation of
adaptive applications for mobile devices. Journal of
Systems and Software 81, 382–394.

S341. Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool
Supported Methodology For Developing Secure
Mobile P2P Systems, in: Mobile Peer-to-peer
Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic
Applications. pp. 283–301.

S342. Walter, T., Bussard, L., Roudier, Y., Haller, J., Kilian-
Kehr, R., Posegga, J., Robinson, P., 2004. Secure
mobile business applications – framework,
architecture and implementation. Information
Security Technical Report 9, 6 – 21.

S343. Wang, A., Sørensen, C.F., Ramampiaro, H., Le, H.,
Conradi, R., Nyg\aard, M., 2005. Using the MOWAHS
characterisation framework for development of
mobile work applications. Product Focused Software
Process Improvement 111–127.

S344. Wang, M., Hunger, I.A., 2007. Support Agile
Development Process: Exploring Windows
Presentation Foundation Technology Under the
Conceptual Framework of Model-View-Controller.

S345. Wang, Y., 2004. An FSM model for situation-aware
mobile application software systems, in: Proceedings
of the 42nd Annual Southeast Regional Conference,
ACM-SE 42. ACM, New York, NY, USA, pp. 52–57.

S346. Wasserman, A.I., 2010. Software engineering issues
for mobile application development, in: Proceedings
of the FSE/SDP Workshop on Future of Software

Engineering Research, FoSER ’10. ACM, New York,
NY, USA, pp. 397–400.

S347. Weerasekera, P., Abeysinghe, S., 2005. Modular
mobile application development framework for
resource constrained devices.

S348. Wesson, J.L., van der Walt, D.F., 2005. Implementing
mobile services: does the platform really make a
difference?, in: Proceedings of the 2005 Annual
Research Conference of the South African Institute of
Computer Scientists and Information Technologists on
IT Research in Developing Countries, SAICSIT ’05.
South African Institute for Computer Scientists and
Information Technologists, Republic of South Africa,
pp. 208–216.

S349. Wichmann, D., Pielot, M., Boll, S., 2009. Companion
Platform-Modular Software Platform for Rapid
Development of Mobile Applications. IT-Information
Technology 51, 72–78.

S350. Wikman, J., Nurminen, J.K., 2008. Open Source Web
Application Development Stack for Symbian-Based
Mobile Phones, in: Next Generation Mobile
Applications, Services and Technologies, 2008.
NGMAST’08. The Second International Conference
On. pp. 607–612.

S351. Wolkerstorfer, P., Tscheligi, M., Sefelin, R.,
Milchrahm, H., Hussain, Z., Lechner, M., Shahzad, S.,
2008. Probing an agile usability process, in: CHI ’08
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’08. ACM, New York, NY, USA, pp.
2151–2158.

S352. Wooldridge, D., Schneider, M., 2011. Keys to the
Kingdom: The App Store Submission Process, in: The
Business of iPhone and iPad App Development. pp.
353–398.

S353. Xiong, Y., Wang, A., 2010. A new combined method
for UCD and software development and case study,
in: Information Science and Engineering (ICISE), 2010
2nd International Conference On. pp. 1–4.

S354. Yang, B., 2009. Design and implementation of a novel
mobile application for SMS on demand, in:
Management of e-Commerce and e-Government,
2009. ICMECG’09. International Conference On. pp.
412–415.

S355. Yang, K., Todd, C., Ou, S., 2006. Model-based service
discovery for future generation mobile systems, in:
Proceedings of the 2006 International Conference on
Wireless Communications and Mobile Computing,
IWCMC ’06. ACM, New York, NY, USA, pp. 973–978.

S356. Yao, L., 2003. An Adaptive Mobile Application
Development Framework (CITATION) (Master thesis).

S357. Yu, P., Yu, H., 2004. Lessons learned from the practice
of mobile health application development, in:
Computer Software and Applications Conference,
2004. COMPSAC 2004. Proceedings of the 28th
Annual International. pp. 58–59.

259

S358. Yuen, S.L., 2003. Postponement Strategies for Mobile
Application Development–A Framework. BLED 2003
Proceedings 45.

S359. Zabri, S.N., Awang, A.H., Salahuddin, L., Said, M.M.,
2011. Application development with J2ME for mobile
phone, in: Advanced Communication Technology
(ICACT), 2011 13th International Conference On. pp.
1420 –1423.

S360. Zakál, D., Lengyel, L., 2010. Feature model-driven
software development.

S361. Zakal, D., Lengyel, L., Charaf, H., 2011. Software
Product Lines-based development, in: Applied
Machine Intelligence and Informatics (SAMI), 2011
IEEE 9th International Symposium On. pp. 79–81.

S362. Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated
product development process for mobile software.
International Journal of Mobile Communications 6,
345–356.

S363. Zheng, P., Ni, L., 2006. Mobile Application Challenges,
in: Smart Phone and Next Generation Mobile
Computing. Morgan Kaufmann, Burlington, pp. 407 –
512.

S364. Zimmerman, J.B., 1999. Mobile Computing:
Characteristics, Business benefits, and the mobile
framework. University of Maryland, Browie state,
INSS 960.

260

Appendix B – Papers selected for the SLR Phase 3 analysis

S1. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T.,
Jäälinoja, J., Korkala, M., Koskela, J., Kyllönen, P., Salo,
O., 2004. Mobile-D: an agile approach for mobile
application development, in: Companion to the 19th
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications,
OOPSLA ’04. ACM, New York, NY, USA, pp. 174–175.

S2. Abrahamsson, P., Hanhineva, A., Jäälinoja, J., 2005.
Improving business agility through technical solutions:
A case study on test-driven development in mobile
software development, in: Business Agility and
Information Technology Diffusion. Presented at the
IFIP TC8 WG 8.6 International Working Conference.

S3. Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen,
P., Salo, O., 2009. Mobile-D for Mobile Software: How
to Use Agile Approaches for the Efficient
Development of Mobile Applications.

S4. Ahtinen, A., Nurminen, J.K., Häkkilä, J., 2007.
Developing a mobile reporting system for road
maintenance: user research perspective, in:
Proceedings of the 4th International Conference on
Mobile Technology, Applications, and Systems and
the 1st International Symposium on Computer Human
Interaction in Mobile Technology, Mobility ’07. ACM,
New York, NY, USA, pp. 1–7.

S5. Alyani, N., Shirzad, S., 2011. Learning to innovate in
distributed mobile application development: Learning
episodes from Tehran and London, in: 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). Presented at the 2011
Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE., Piscataway, NJ,
USA, pp. 497–504.

S6. Balagtas-Fernandez, F.T., Hussmann, H., 2008. Model-
Driven Development of Mobile Applications, in:
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE
’08. IEEE Computer Society, Washington, DC, USA, pp.
509–512.

S7. Barnawi, A., Qureshi, M., Khan, A.I., 2012. A
Framework for Next Generation Mobile and Wireless
Networks Application Development using Hybrid
Component Based Development Model. Arxiv
preprint arXiv:1202.2515.

S8. Bergström, F., Engvall, G., 2011. Development of
handheld mobile applications for the public sector in
Android and iOS using agile Kanban process tool.

S9. Binsaleh, M., Hassan, S., 2011. Systems Development
Methodology for Mobile Commerce Applications:
Agile vs. Traditional. International Journal of Online
Marketing (IJOM) 1, 33–47.

S10. Biswas, A., Donaldson, T., Singh, J., Diamond, S.,
Gauthier, D., Longford, M., 2006. Assessment of
mobile experience engine, the development toolkit

for context aware mobile applications, in:
Proceedings of the 2006 ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, ACE ’06. ACM, New York, NY, USA.

S11. Bowen, J., Hinze, A., 2011. Supporting Mobile
Application Development with Model-Driven
Emulation. Electronic Communications of the EASST
45.

S12. Charaf, H., 2011. Developing Mobile Applications for
Multiple Platforms, in: Engineering of Computer
Based Systems (ECBS-EERC), 2011 2nd Eastern
European Regional Conference on The. p. 2.

S13. Chen, M., 2004. A methodology for building mobile
computing applications. International journal of
electronic business 2, 229–243.

S14. Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011.
A Visual Approach supporting the Development of
MicroApps on Mobile Phones, in: Proc. of 3rd
International Symposium on End-User Development.
Presented at the 3rd International Symposium on
End-User Development, Brindisi, Italy, pp. 289–294.

S15. Ejlersen, A., Knudsen, M.S., Løvgaard, J., Sørensen,
M.B., 2008. Using Design Science to Develop a Mobile
Application.

S16. Fjellheim, T., Milliner, S., Dumas, M., Vayssière, J.,
2007. A process-based methodology for designing
event-based mobile composite applications. Data
& Knowledge Engineering 61, 6 – 22.

S17. Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T.,
Charaf, H., 2005. Supporting Rapid Application
Development on Symbian Platform, in: Computer as a
Tool, 2005. EUROCON 2005.The International
Conference On. pp. 72 –75.

S18. Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G.,
Kelenyi, I., Charaf, H., 2006. Model-based system
development for embedded mobile platforms, in:
Model-Based Development of Computer-Based
Systems and Model-Based Methodologies for
Pervasive and Embedded Software, 2006.
MBD/MOMPES 2006. Fourth and Third International
Workshop On. p. 10–pp.

S19. Gal, V., Topol, A., 2005. Experimentation of a Game
Design Methodology for Mobile Phones Games.

S20. Hedberg, H., Iisakka, J., 2006. Technical Reviews in
Agile Development: Case Mobile-D, in: Quality
Software, 2006. QSIC 2006. Sixth International
Conference On. pp. 347–353.

S21. Ihme, T., Abrahamsson, P., 2005. The Use of
Architectural Patterns in the Agile Software
Development of Mobile Applications.

S22. Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development
Process of Mobile Application SW Based on Agile

261

Methodology, in: Advanced Communication
Technology, 2008. ICACT 2008. 10th International
Conference On. pp. 362–366.

S23. Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J.,
2004. Improving requirements management in
extreme programming with tool support - an
improvement attempt that failed, in: Euromicro
Conference, 2004. Proceedings. 30th. pp. 342 – 351.

S24. Kangas, E., Kinnunen, T., 2005. Applying user-
centered design to mobile application development.
Communications of the ACM 48, 55–59.

S25. Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008.
Model-Driven Development of Mobile Personal
Health Care Applications, in: Proceedings of the 2008
23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08. IEEE
Computer Society, Washington, DC, USA, pp. 467–
470.

S26. Khan, U.A., 2008. Improved Iterative Software
Development Method for Game Design.

S27. Kim, H., Choi, B., Yoon, S., 2009. Performance testing
based on test-driven development for mobile
applications, in: Proceedings of the 3rd International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’09. ACM, New York,
NY, USA, pp. 612–617.

S28. Kim, H.K., 2008. Frameworks of Process Improvement
for Mobile Applications. Engineering Letters 16.

S29. Kim, W.Y., Son, H.S., Kim, J.S., Kim, R.Y., 2010.
Development of Windows Mobile Applications using
Model Transformation Techniques. Journal of KISS:
Computing Practices 16, 1091–5.

S30. Korkala, M., Abrahamsson, P., 2004. Extreme
programming: Reassessing the requirements
management process for an offsite customer.
Software Process Improvement 12–22.

S31. Kurschl, W., Mitsch, S., Prokop, R., Schonbock, J.,
2007. Gulliver - a framework for building smart
speech-based applications, in: Proceedings of the
40th Annual Hawaii International Conference on
System Sciences. Waikoloa, HI, USA.

S32. La, H.J., Lee, H.J., Kim, S.D., 2011. An efficiency-centric
design methodology for mobile application
architectures, in: Wireless and Mobile Computing,
Networking and Communications (WiMob), 2011 IEEE
7th International Conference On. pp. 272–279.

S33. Madiraju, P., Malladi, S., Balasooriya, J., Hariharan, A.,
Prasad, S.K., Bourgeois, A., 2010. A methodology for
engineering collaborative and ad-hoc mobile
applications using SyD middleware. Journal of
Network and Computer Applications 33, 542 – 555.

S34. Maharmeh, M., Unhelkar, B., 2009. A Composite
Software Framework Approach for Mobile Application
Development. Handbook of research in mobile
business: technical, methodological, and social
perspectives 194.

S35. Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C.,
2010. Considerations on developing mobile
applications based on the Capuchin project, in:
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10. ACM, New York, NY, USA, pp.
575–579.

S36. Makunga, L., Church, K., 2002. Software Development
in Mobile Computing Applications. INFORMATION
TECHNOLOGY ON THE MOVE 257.

S37. Manjunatha, A., Ranabahu, A., Sheth, A.,
Thirunarayan, K., 2010. Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid
application development, in: Cloud Computing
Technology and Science (CloudCom), 2010 IEEE
Second International Conference On. pp. 496–503.

S38. Marinho, F.G., Andrade, R.M.C., Werner, C., Viana,
W., Maia, M.E.F., Rocha, L.S., Teixeira, E., Filho, J.B.F.,
Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A
Nested Software Product Line for the domain of
mobile and context-aware applications. Science of
Computer Programming -.

S39. Nyström, A., 2011. Agile Solo - Defining and
Evaluating an Agile Software Development Process for
a Single Software Developer.

S40. Ortiz, G., Prado, A.G.D., 2010. Improving device-aware
Web services and their mobile clients through an
aspect-oriented, model-driven approach. Information
and Software Technology 52, 1080 – 1093.

S41. Paspallis, N., Papadopoulos, G.A., 2006. An approach
for developing adaptive, mobile applications with
separation of concerns, in: Computer Software and
Applications Conference, 2006. COMPSAC’06. 30th
Annual International. pp. 299–306.

S42. Pauca, V.P., Guy, R.T., 2012. Mobile apps for the
greater good: a socially relevant approach to software
engineering, in: Proceedings of the 43rd ACM
Technical Symposium on Computer Science
Education, SIGCSE ’12. ACM, New York, NY, USA, pp.
535–540.

S43. Rahimian, V., Ramsin, R., 2008. Designing an agile
methodology for mobile software development: A
hybrid method engineering approach, in: Research
Challenges in Information Science, 2008. RCIS 2008.
Second International Conference On. pp. 337–342.

S44. Ranabahu, A.H., Maximilien, E.M., Sheth, A.P.,
Thirunarayan, K., 2011. A domain specific language
for enterprise grade cloud-mobile hybrid applications,
in: Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11
Workshops. ACM, New York, NY, USA, pp. 77–84.

S45. Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart
composition of reusable software components in
mobile application product lines, in: Proceedings of
the 2nd International Workshop on Product Line
Approaches in Software Engineering, PLEASE ’11.
ACM, New York, NY, USA, pp. 45–49.

262

S46. Rossi, M., Tuunanen, T., 2010. A method and tool for
rapid consumer application development.
International Journal of Organisational Design and
Engineering 1, 109–125.

S47. Rupnik, R., 2009. Mobile Applications Development
Methodology, in: Unhelkar, B. (Ed.), Handbook of
Research in Mobile Business: Technical,
Methodological, and Social Perspectives. IGI Global
Snippet.

S48. Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L.,
2011. MMCD Framework and Methodology for
Developing m-Learning Applications. Presented at the
International conference on Teaching & Learning in
Higher Education (ICTLHE 2011).

S49. Salo, O., 2004. Improving software process in agile
software development projects: results from two XP
case studies, in: Euromicro Conference, 2004.
Proceedings. 30th. pp. 310–317.

S50. Scharff, C., 2010. The Software Engineering of Mobile
Application Development.

S51. Scharff, C., 2011. Guiding global software
development projects using Scrum and Agile with
quality assurance, in: Software Engineering Education
and Training (CSEE&T), 2011 24th IEEE-CS Conference
On. pp. 274–283.

S52. Scharff, C., Verma, R., 2010. Scrum to support mobile
application development projects in a just-in-time
learning context, in: Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’10. ACM, New York,
NY, USA, pp. 25–31.

S53. Schwieren, J., Vossen, G., 2009. A design and
development methodology for mobile RFID
applications based on the ID-Services middleware
architecture, in: Mobile Data Management: Systems,
Services and Middleware, 2009. MDM’09. Tenth
International Conference On. pp. 260–266.

S54. Shah, M., Mears, B., Chakrabarti, C., Spanias, A.,
Center, S., Tempe, A., 2012. A Top-Down Design
Methodology Using Virtual Platforms for Concept
Development.

S55. Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile
Application Development Tool. Proceedings of the
International MultiConference of Engineers and
Computer Scientists 1.

S56. Shiratuddin, N., Sarif, S.M., 2009. Construction of
Matrix and eMatrix for Mobile Development
Methodologies, in: Handbook of Research in Mobile
Business: Technical, Methodological, and Social
Perspectives. IGI Global, pp. 113–126.

S57. Simonsen, A., 2004. Developing mobile applications.

S58. Su, S.H., Scharff, C., 2010. Know Yourself and Beyond:
A Global Software Development Project Experience
with Agile Methodology, in: Proceedings of Student-
Faculty Research Day, CSIS. Pace University.

S59. Terani, N.S., 2012. IPhone Application Development
Challenges and Solutions. CALIFORNIA STATE
UNIVERSITY.

S60. Thompson, C., White, J., Dougherty, B., Turner, H.,
Campbell, S., Zienkiewicz, K., Schmidt, D.C., 2010.
Model-Driven Architectures for Optimizing Mobile
Application Performance.

S61. Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong,
J.T., Eo, S.K., 2005. ViP: A Practical Approach to
Platform-based System Modeling Methodology.
Journal of Semiconductor Technology and Science 5,
89.

S62. Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool
Supported Methodology For Developing Secure
Mobile P2P Systems, in: Mobile Peer-to-peer
Computing for Next Generation Distributed
Environments: Advancing Conceptual and Algorithmic
Applications. pp. 283–301.

S63. Wasserman, A.I., 2010. Software engineering issues
for mobile application development, in: Proceedings
of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10. ACM, New York,
NY, USA, pp. 397–400.

S64. Wolkerstorfer, P., Tscheligi, M., Sefelin, R.,
Milchrahm, H., Hussain, Z., Lechner, M., Shahzad, S.,
2008. Probing an agile usability process, in: CHI ’08
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’08. ACM, New York, NY, USA, pp.
2151–2158.

S65. Xiong, Y., Wang, A., 2010. A new combined method
for UCD and software development and case study,
in: Information Science and Engineering (ICISE), 2010
2nd International Conference On. pp. 1–4.

S66. Zakal, D., Lengyel, L., Charaf, H., 2011. Software
Product Lines-based development, in: Applied
Machine Intelligence and Informatics (SAMI), 2011
IEEE 9th International Symposium On. pp. 79–81.

S67. Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated
product development process for mobile software.
International Journal of Mobile Communications 6,
345–356.

263

Appendix C – Study quality assessment table

ID Quality assessment question Possible results
Q1 Study reports methodology or approach used in mobile application development? Yes/No

Q2 Study defines new methodology or approach for mobile applications development? Yes/No

Q3 Research design is appropriate to address the study context? Yes/Partially/No

Q4 Researches have experience in software development and mobile applications

development?

Yes/Partially/No

Q5 The reported or created process is clearly defined to the applicable level? Yes/Partially/No

Q6 The study provided value for research and practice? Yes/Partially/No

Study / Question Q1 Q2 Q3 Q4 Q5 Q6 Score
(Charaf, 2011) Yes No Yes Yes Partially Partially 3.0

(Alyani and Shirzad, 2011) Yes Yes Partially Yes Partially Partially 2.5

(Maharmeh and Unhelkar, 2009) No Yes Partially Yes Partially Yes 3.0

(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5

(Ranabahu et al., 2011) No No

(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0

(Rossi and Tuunanen, 2010) No No

(Chen, 2004) No Yes Yes Yes Yes Yes 4.0

(Madiraju et al., 2010) No No

(Xiong and Wang, 2010) No Yes Yes Yes Partially Partially 3.0

(Fjellheim et al., 2007) No No

(Walkerdine et al., 2009) No Yes Yes Yes Partially Partially 3.0

(Shah et al., 2012) No No

(Cuccurullo et al., 2011) No Yes Partially Yes Partially Partially 2.5

(Nyström, 2011) Yes Yes Partially Partially Partially Partially 2.0

(Paspallis and Papadopoulos, 2006) No No

(La et al., 2011) No No

(Zeidler et al., 2008) No Yes Partially Yes Partially No 2.0

(Kangas and Kinnunen, 2005) No No

(Biswas et al., 2006) No Yes Yes Yes Yes Partially 3.0

(Maia et al., 2010) No Yes No Yes No No 1.0

(Shiratuddin and Sarif, 2009) Yes No Yes Yes No No 2.0

(Rahimian and Ramsin, 2008) No Yes Yes Yes Partially Partially 3.0

(Ahtinen et al., 2007) No No

(Simonsen, 2004) No No

(Bergström and Engvall, 2011) Yes No Partially Partially Partially No 1.5

(Kim et al., 2010) No No

(Jeong et al., 2008) No Yes Yes Yes Partially No 2.5

(Korkala and Abrahamsson, 2004) Yes No Yes Yes Partially Partially 3.0

(Gal and Topol, 2005) Yes No Yes Yes Partially Partially 3.0

(Kim, 2008) Yes No Partially Yes Partially Partially 2.5

(Scharff, 2011) Yes No Yes Yes No No 2.0

(Kurschl et al., 2007) No No

(Khan, 2008) No No

(Abrahamsson et al., 2005b) Yes No Yes Yes Yes Yes 4.0

(Ortiz and Prado, 2010) Yes No Yes Yes Partially Partially 3.0

(Kaariainen et al., 2004) Yes No Partially Yes Partially No 2.0

(Salo, 2004) Yes No Partially Yes Partially No 3.0

(Terani, 2012) No No

(Su and Scharff, 2010) Yes No Partially Partially Partially Partially 2.0

(Shiratuddin and Sarif, 2008) Yes No Yes Yes Partially No 2.5

(Saifudin et al., 2011) No Yes Partially Yes No No 1.5

(Rupnik, 2009) No Yes Partially Partially Partially No 1.5

264

(Pauca and Guy, 2012) Yes No No Yes No No 1.0

(Abrahamsson et al., 2009) No Yes No Yes No No 1.0

(Abrahamsson et al., 2004) No Yes Partially Yes Partially Partially 2.5

(Marinho et al., 2012) No Yes Yes Yes Yes Yes 4.0

(Forstner et al., 2006) Yes No Partially Yes Partially Partially 2.5

(Thompson et al., 2010) Yes No No Yes No No 1.0

(Balagtas-Fernandez and Hussmann,

2008)

No No

(Khambati et al., 2008) Yes No Partially Yes Partially Partially 2.5

(Kim et al., 2009) Yes No Partially Yes No No 1.5

(Manjunatha et al., 2010) No Yes Partially Yes Partially Partially 2.5

(Wolkerstorfer et al., 2008) No Yes Partially Yes Partially No 2.0

(Scharff and Verma, 2010) Yes No Yes Yes Partially No 2.5

(Rosa and Lucena,Jr., 2011) Yes No Partially Yes Partially No 2.0

(Makunga and Church, 2002) No No

(Wasserman, 2010) No No

(Zakal et al., 2011) Yes No Partially Yes Partially No 2.0

(Bowen and Hinze, 2011) No No

(Forstner et al., 2005) Yes No Partially Yes Partially No 2.0

(Binsaleh and Hassan, 2011) Yes Yes Yes Yes Yes Yes 4.0

(Hedberg and Iisakka, 2006) Yes Yes Yes Yes Yes Yes 4.0

(Scharff, 2010) Yes No Partially Yes Partially Partially 2.5

(Ejlersen et al., 2008) Yes No Yes Yes Partially Partially 3.0

(Ihme and Abrahamsson, 2005) Yes No Partially Yes Partially Partially 3.5

(Um et al., 2005) No Yes Yes Yes Yes Yes 4.0

The study quality score is calculated by summarizing the columns Q3 to Q6 by valuing each

positive answer (Yes) with score of 1 and each answer Partially with the score of 0.5.

265

Appendix D – Filled data forms for the SLR

Data item Value Notes
Study identifier (Charaf, 2011)

Title Developing Mobile Applications Using SAP NetWever Mobile

Publication details
T. Pohl, R. Kothandaraman, and V. S. Seshasai. Developing Mobile

Applications Using SAP NetWever Mobile. SAP Press, 2007.

Study type Approach usage

Name of methodology /

approach
Model Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

This paper introduces the problem of the software development for

incompatible mobile platforms. Moreover, it provides a Model-Driven

Architecture (MDA) and Domain Specific Modeling Language

(DSML)-based solution.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Usage of: Visual Modeling and

Transformation System (VMTS)

Organizational aspects

on implementation
None

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Alyani and Shirzad, 2011)

Title
Learning to innovate in distributed mobile application development:

Learning episodes from Tehran and London

Publication details

N. Alyani and S. Shirzad, “- Learning to innovate in distributed mobile

application development: Learning episodes from Tehran and

London,” in 2011 Federated Conference on Computer Science and

Information Systems (FedCSIS)., Piscataway, NJ, USA, 2011, pp.

497–504.

Study type Methodology usage / New Methodology

Name of methodology /

approach
Scrum / DEAL

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

At the heart of the activities however, we noted a range of processes

which we labeled as DEAL, as an acronym that stands for the cycle of

Design, Execute, Adjust and Learn. Within the DEAL model, various

activities were enhanced via formal and informal knowledge brokering

and knowledge sourcing.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Usage: Real life projects in several years long period.

Proposal: No

Organizational aspects

on implementation
Small and medium sized companies are reffered

Project management None

266

aspects on

implementation

Data item Value Notes
Study identifier (Maharmeh and Unhelkar, 2009)

Title
A Composite Software Framework Approach for Mobile Application

Development

Publication details

M. Maharmeh and B. Unhelkar, “A Composite Software Framework

Approach for Mobile Application Development,” Handbook of

research in mobile business: technical, methodological, and social

perspectives, p. 194, 2009.

Study type New approach

Name of methodology /

approach

Composite Application Software Development Process Framework

(CASDPF)

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

This framework for software development, as its name suggests, is

made up of the waterfall, iterative, and agile approaches to software

development.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation

The composite process framework combines the business rules and

processes that are involved in mobile application development.

Project management

aspects on

implementation

A composite software development process framework retains the

flexible aspects of the agile development approach and, at the same

time, facilitates exchange of information between project stakeholders

(such as business users, developers and testers) during the project life-

cycle. Therefore, the CASDPF increases the chance of project success.

Data item Value Notes
Study identifier (Schwieren and Vossen, 2009)

Title
A design and development methodology for mobile RFID applications

based on the ID-Services middleware architecture

Publication details

J. Schwieren and G. Vossen. “A design and development methodology

for mobile RFID applications based on the ID-Services middleware

architecture,” in Mobile Data Management: Systems, Services and

Middleware, 2009. MDM‟09. Tenth International Conference on,

2009, pp. 260–266.

Study type New methodology

Name of methodology /

approach
Design and Development Methodology for mobile RFID applications

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Basic process model of the proposed design and development

methodology consists of three phases: Analysis, Design and

Implementation. The authors propose basic activities at very high

abstraction level.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

SPCS - Sentry Patrol Control System

267

Organizational aspects

on implementation
None

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Barnawi et al., 2012)

Title

A Framework for Next Generation Mobile and Wireless Networks

Application Development using Hybrid Component Based

Development Model

Publication details

A. Barnawi, M. Qureshi, and A. I. Khan. “A Framework for Next

Generation Mobile and Wireless Networks Application Development

using Hybrid Component Based Development Model,” Arxiv preprint

arXiv:1202.2515, 2012.

Study type New methodology

Name of methodology /

approach
Component Based Model for IP Multimedia Subsystem

CBD Model

for the IMS

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

A new component-based development (CBD) model has

been proposed for an IMS-based mass mobile examination system

as a solution for the research problem. A CBD model is a process

model that provides a framework to develop software from

previously developed components. The main phases of the

improved CBD are „Project Planning‟, „Analysis‟, „Adaptation,

Engineering & Integration‟ and „Testing‟.

Additional resources on

methodology /

approach description

The phases are described in detail. The document used in the process

are also presented and described.

Report on methodology

/ approach example

implementation

MObile Mass EXamination (MOMEX)

Organizational aspects

on implementation
None

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Chen, 2004)

Title A methodology for building mobile computing applications

Publication details

M. Chen, “A methodology for building mobile computing

applications,” International journal of electronic business, vol. 2, no. 3,

pp. 229–243, 2004.

Study type New methodology

Name of methodology /

approach
A Methodology for Building Enterprise-Wide Mobile Applications

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

The five major phases for building mobile computing applications are

described as follows:

1. Develop enterprise-wide mobile strategies

2. Analyze the mobility of business processes

3. Develop an enterprise-wide mobile technical architecture

4. Build mobile applications

268

5. Deploy mobile applications

Additional resources on

methodology /

approach description

Each of stated phases is described in more details.

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation

The proposed methodology in this paper is an attempt to identify some

guidelines and formulate a life-cycle approach to assisting enterprises

in planning and developing enterprise-wide mobile strategies and

applications.

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Xiong and Wang, 2010)

Title
A new combined method for UCD and software development and case

study

Publication details

Y. Xiong and A. Wang, “A new combined method for UCD and

software development and case study,” in Information Science and

Engineering (ICISE), 2010 2nd International Conference on, 2010, pp.

1–4.

Study type New methodology

Name of methodology /

approach
Inter-combined Model

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Inter-combined Model aims to shorten the knowledge transfer from

designers to developers. The model has four parts:

- Requirement analysis and user study

- Model establishment and function map specification

- Design and background engine implementation

- System integration and coding

Additional resources on

methodology /

approach description

Each phase was described in additional details, but not to the level of

activities, tasks, inputs and outputs.

Report on methodology

/ approach example

implementation

Mobile Karaoke project.

Organizational aspects

on implementation

Researchers stated that Inter-combined Model has positive effect on

human resource arrangement and cost reduction.

Project management

aspects on

implementation

Some implications on human resource arrangements.

Data item Value Notes
Study identifier (Walkerdine et al., 2009)

Title
A Tool Supported Methodology For Developing Secure Mobile P2P

Systems

Publication details

J. Walkerdine, P. Phillips, and S. Lock. “A Tool Supported

Methodology For Developing Secure Mobile P2P Systems,” in Mobile

peer-to-peer computing for next generation distributed environments:

advancing conceptual and algorithmic applications, 2009, pp. 283–301.

Study type New methodology

Name of methodology /

approach
PEPERS Development Methodology (PDM)

269

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

PEPERS Development Methodology (PDM), is a tool-supported

methodology that aims to assist designers in developing secure mobile

P2P systems, and encourages them to consider specific mobile P2P

design issues from an early stage. The PDM is based on a 5-stage spiral

model.

• Requirements Elicitation

• Propose P2P system architecture

• Propose sub-system design

• System Implementation

• Verification and Validation

Additional resources on

methodology /

approach description

BANKSEC project

P2P ARCHITECT project

PEPERS project

Report on methodology

/ approach example

implementation

Case study - The Security firm pilot

Organizational aspects

on implementation

Workshops were held with local mobile phone software companies to

obtain additional third-party feedback. These companies were typically

small in size, and so provided a different perspective to the software

development process. Overall the developers found the PDM and

supporting tool to offer significant help in guiding the development of

their secure mobile P2P applications. The smaller industrial companies

were less sure about its use to them, mainly because they do not have

the resources to follow a traditional development process and time to

market is critical to them.

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Cuccurullo et al., 2011)

Title
A Visual Approach supporting the Development of MicroApps on

Mobile Phones

Publication details

S. Cuccurullo, R. Francese, M. Risi, and G. Tortora, “A Visual

Approach supporting the Development of MicroApps on Mobile

Phones,” in Proc. of 3rd International Symposium on End-User

Development, Brindisi, Italy, 2011, pp. 289–294.

Study type New methodology

Name of methodology /

approach
MicroApp visual approach

Application in multi-

platform development Yes

Current

implement.

in Android

Details on defined /

reported methodology /

approach

In this paper, we present a visual approach to enable End-Users to

compose visually their own applications directly on their mobile

phone. It is composed of:

- MicroApp Definition

- MicroApp Modeling

- MicroApp Deployment

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

No

Organizational aspects None User centric

270

on implementation method.

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Nyström, 2011)

Title
Agile Solo - Defining and Evaluating an Agile Software Development

Process for a Single Software Developer

Publication details
A. Nyström. “Agile Solo - Defining and Evaluating an Agile Software

Development Process for a Single Software Developer,” 2011.

Master

thesis

Study type New methodology / Approach usage

Name of methodology /

approach
Agile Solo / Test Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The development process was intended to be helpful for any single

programmer in any project. The defined practices are:

- Weekly Presentations and Updated Priorities, Monthly Deliveries

and Customer Test, Planning an iteration, Test Driven

Development, The Pomodoro Technique, Peer Code Review,

Auto Code Review, Visual Control, Modeling, Compensating for

pair programming, Iteration Task Management

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
No

Single

developer

Project management

aspects on

implementation

Yes. Agile project management.

Data item Value Notes
Study identifier (Zeidler et al., 2008)

Title An integrated product development process for mobile software

Publication details

C. Zeidler, C. Kittl, and O. Petrovic, “An integrated product

development process for mobile software,” International Journal of

Mobile Communications, vol. 6, no. 3, pp. 345–356, 2008.

Study type New methodology

Name of methodology /

approach
An Integrated Product Development Process for Mobile Software

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Based on the extensive research coverage on the new product

development process, we have adapted a holistic product development

approach for mobile services and applications. The resulting process

considers a more dynamic competitive environment and the use of

common tools for strategic analysis and product development. Consists

of five pages:

- Idea generation

- Business model development

- Legal aspects

- Market research and user experience design

271

- Implementation

Additional resources on

methodology /

approach description

Phases are described at relatively the high level of abstraction.

Although, the activities are enumerated.

Report on methodology

/ approach example

implementation

Case study: HEROLD mobile

Organizational aspects

on implementation
The process included the organizational aspects.

Project management

aspects on

implementation

The process includes the project management aspects.

Data item Value Notes
Study identifier (Biswas et al., 2006)

Title
Assessment of mobile experience engine, the development toolkit for

context aware mobile applications

Publication details

A. Biswas, T. Donaldson, J. Singh, S. Diamond, D. Gauthier, and M.

Longford, “Assessment of mobile experience engine, the development

toolkit for context aware mobile applications,” in Proceedings of the

2006 ACM SIGCHI international conference on Advances in computer

entertainment technology, New York, NY, USA, 2006.

Study type Methodology usage

Name of methodology /

approach
New media application prototyping

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Prototyping with multiple iterations is an expensive solution to break

this deadlock. The key bottlenecks in such prototyping are:

contextual/user behavior research; design idea generation; design

transfer from designer/artist to the technologists; system design,

development and testing; and situated validation

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Trickster game application

Deer & Bear game application

Situated editor mobile application

Organizational aspects

on implementation
None

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Maia et al., 2010)

Title
Considerations on developing mobile applications based on the

Capuchin project

Publication details

M. E. F. Maia, C. Celes, R. Castro, and R. M. C. Andrade.

“Considerations on developing mobile applications based on the

Capuchin project,” in Proceedings of the 2010 ACM Symposium on

Applied Computing, New York, NY, USA, 2010, pp. 575–579.

Study type New methodology

Name of methodology /

approach
Development process of Caputchin applications

Name is not

formally

defined

Application in multi- No Platforms

272

platform development supporting

Flash only

Details on defined /

reported methodology /

approach

Paper shows an initial development process for mobile applications

based on the Capuchin project. The defined phases are:

- Application requirements elicitation and user interface draft

- Implement and test the View component based on Flash UI

- Flash/JME division and data transfer format specification

- Implement the controller and model components

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study: Weather application

Organizational aspects

on implementation
Some organizational aspects are discussed

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Shiratuddin and Sarif, 2009)

Title
Construction of Matrix and eMatrix for Mobile Development

Methodologies

Publication details

N. Shiratuddin and S. M. Sarif, “Construction of Matrix and eMatrix

for Mobile Development Methodologies,” in Handbook of research in

mobile business: technical, methodological, and social perspectives,

2nd ed., IGI Global, 2009, pp. 113–126.

Study type Methodology usage

Name of methodology /

approach

Mobile-D

Mobile RAD

Dynamic Channel Model

Mobile Engineering (MobE)

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The study compares the mentioned methodologies in systematic

manner.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Yes. The methodologies are compared based on example projects.

Organizational aspects

on implementation
Partially included in comparison.

Project management

aspects on

implementation

Partially included in comparison.

Data item Value Notes
Study identifier (Rahimian and Ramsin, 2008)

Title
Designing an agile methodology for mobile software development: A

hybrid method engineering approach

Publication details

V. Rahimian and R. Ramsin, “Designing an agile methodology for

mobile software development: A hybrid method engineering

approach,” in Research Challenges in Information Science, 2008. RCIS

273

2008. Second International Conference on, 2008, pp. 337–342.

Study type New methodology

Name of methodology /

approach
Agile Methodology for Mobile Software Development

Formally

not defined

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Paper identifies the main requirements of a mobile software

development methodology, based on which a highlevel methodology

framework was built using the Hybrid Methodology Design approach.

Proposed methodology is an agile risk-based methodology, highly

influenced by the Adaptive Software Development method and New

Product Development approaches.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
Included in methodology.

Project management

aspects on

implementation

Agile project management should be used.

Data item Value Notes
Study identifier (Bergström and Engvall, 2011)

Title
Development of handheld mobile applications for the public sector in

Android and iOS using agile Kanban process tool

Publication details

F. Bergström and G. Engvall, “Development of handheld mobile

applications for the public sector in Android and iOS using agile

Kanban process tool,” 2011.

Study type Approach usage

Name of methodology /

approach
Kanban

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Kanban a lean approach to agile software development and a part of

the lean thinking. The approach is invented by Toyota which used this

process for the visual and physical signaling system that ties together

the whole Lean Production System. However, Kanban in software

development can be divided into three main parts.

- Visualize the workflow

- Limit work in process

- Measure the lead time

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Prototype application

Organizational aspects

on implementation
Not well defined.

Project management

aspects on

implementation

Not well defined.

274

Data item Value Notes
Study identifier (Jeong et al., 2008)

Title
Development Process of Mobile Application SW Based on Agile

Methodology

Publication details

Y. J. Jeong, J. H. Lee, and G. S. Shin, “Development Process of

Mobile Application SW Based on Agile Methodology,” in Advanced

Communication Technology, 2008. ICACT 2008. 10th International

Conference on, 2008, vol. 1, pp. 362–366.

Study type New Methodology

Name of methodology /

approach
MASAM methodology

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The objective of this proprietary methodology is to provide the process

for developing the application SW operated on mobile platform.

Standard process of THE MASAM is comprised of 4 phases:

- Development Preparation Phase,

- Embodiment Phase,

- Product developing Phase, and

- Commercialization Phase.

Paper

written in

poor

English.

Additional resources on

methodology /

approach description

The phases are briefly described.

Report on methodology

/ approach example

implementation

No.

Organizational aspects

on implementation
Partially covered.

Project management

aspects on

implementation

Agile approach should be used.

Data item Value Notes
Study identifier (Korkala and Abrahamsson, 2004)

Title
Extreme programming: Reassessing the requirements management

process for an offsite customer

Publication details

M. Korkala and P. Abrahamsson, “Extreme programming: Reassessing

the requirements management process for an offsite customer,”

Software Process Improvement, pp. 12–22, 2004.

Study type Methodology usage

Name of methodology /

approach
Extreme Programming, Mobile-D

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Brief description is provided on executed process:

- Identify essential requirements

- Evaluation and implementation of enhanced User Storries

- Implement, Report and Feedback

- Iteration Acceptance

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

zOmbie project

Organizational aspects

on implementation
No

Project management Agile approach used.

275

aspects on

implementation

Data item Value Notes
Study identifier (Gal and Topol, 2005)

Title
Experimentation of a Game Design Methodology for Mobile Phones

Games

Publication details
V. Gal and A. Topol, “Experimentation of a Game Design

Methodology for Mobile Phones Games,” 2005.

Study type New methodology

Name of methodology /

approach
2TUP - 2 Tracks Unified Process

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Paper presents the 2TUP method, “2 Tracks Unified Process”. It is

based upon a SPEM modeling architecture in order to conceive elegant

and adapted solutions but also to take advantage of the new techniques

and technologies. 2TUP is a unified process (i.e. a software

development process) built on the UML modeling language. According

to 2TUP the process is modeled by two branches (tracks):

- A functional track (capitalization of knowledge trade)

- A technical track (re-use of a technical knowhow).

Additional resources on

methodology /

approach description

The fair description is given on implementation on own project.

Report on methodology

/ approach example

implementation

Case study.

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Kim, 2008)

Title Frameworks of Process Improvement for Mobile Applications

Publication details
H. K. Kim, “Frameworks of Process Improvement for Mobile

Applications,” Engineering Letters, vol. 16, 2008.

Study type Approach usage

Name of methodology /

approach
Model Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Paper goes through mobile development process and architectural

structures and analysis of these with empirical mobile application

development.

Poor paper

structure.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study.

Organizational aspects

on implementation
No

Project management No

276

aspects on

implementation

Data item Value Notes
Study identifier (Scharff, 2011)

Title
Guiding global software development projects using Scrum and Agile

with quality assurance

Publication details

C. Scharff, “Guiding global software development projects using

Scrum and Agile with quality assurance,” in Software Engineering

Education and Training (CSEE&T), 2011 24th IEEE-CS Conference

on, 2011, pp. 274–283.

Study type Methodology usage

Name of methodology /

approach
Scrum

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The paper describes the usage of Scrum in distributed development

teams as well as for development for different target platforms. The

developers are students.

Additional resources on

methodology /

approach description

Brief description of methodology.

Report on methodology

/ approach example

implementation

Android application

Blackberry application

Java ME Team

Organizational aspects

on implementation
Partially covered.

Project management

aspects on

implementation

Partially covered.

Data item Value Notes
Study identifier (Abrahamsson et al., 2005b)

Title
Improving business agility through technical solutions: A case study on

test-driven development in mobile software development

Publication details

[1]P. Abrahamsson, A. Hanhineva, and J. Jäälinoja, “Improving

business agility through technical solutions: A case study on test-

driven development in mobile software development,” in Business

Agility and Information Technology Diffusion, 2005.

Study type Approach usage

Name of methodology /

approach
Test Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Thorough research was performed on empirical evidence of using the

Test Driven Development in mobile application development process.

Additional resources on

methodology /

approach description

Test Driven Development described.

The references on other researches are given.

Report on methodology

/ approach example

implementation

Case study.

Organizational aspects

on implementation
Included.

Project management Included.

277

aspects on

implementation

Data item Value Notes
Study identifier (Ortiz and Prado, 2010)

Title
Improving device-aware Web services and their mobile clients through

an aspect-oriented, model-driven approach

Publication details

G. Ortiz and A. G. D. Prado, “Improving device-aware Web services

and their mobile clients through an aspect-oriented, model-driven

approach,” Information and Software Technology, vol. 52, no. 10, pp.

1080 – 1093, 2010.

Study type Approach usage.

Name of methodology /

approach
Model Driven Development

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Aspect-Oriented Programming and model-driven development have

been used to reduce both the impact of service and client code

adaptation for multiple devices as well as to facilitate the developer‟s

task.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Kaariainen et al., 2004)

Title
Improving requirements management in extreme programming with

tool support - an improvement attempt that failed

Publication details

J. Kaariainen, J. Koskela, P. Abrahamsson, and J. Takalo, “Improving

requirements management in extreme programming with tool support -

an improvement attempt that failed,” in Euromicro Conference, 2004.

Proceedings. 30th, 2004, pp. 342 – 351.

Study type Methodology usage

Name of methodology /

approach
Extreme Programming

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

The paper mainly focusses on other aspects than on methodology itself.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

zOmbie project

Organizational aspects

on implementation
No

278

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Salo, 2004)

Title
Improving software process in agile software development projects:

results from two XP case studies

Publication details

O. Salo, “Improving software process in agile software development

projects: results from two XP case studies,” in Euromicro Conference,

2004. Proceedings. 30th, 2004, pp. 310–317.

Study type Methodology usage

Name of methodology /

approach
Extreme Programming

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

The paper mainly focusses on other aspects than on methodology itself.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

eXpert project

zOmbie project

Organizational aspects

on implementation
Included in the analysis.

Project management

aspects on

implementation

Included in the analysis.

Data item Value Notes
Study identifier (Su and Scharff, 2010)

Title
Know Yourself and Beyond: A Global Software Development Project

Experience with Agile Methodology

Publication details

S. H. Su and C. Scharff, “Know Yourself and Beyond: A Global

Software Development Project Experience with Agile Methodology,”

in Proceedings of Student-Faculty Research Day, CSIS, 2010.

Study type Methodology usage

Name of methodology /

approach
Scrum

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

The paper describes the usage of Scrum process in a case study

development performed by students.

Additional resources on

methodology /

approach description

Scrum was partially described.

Report on methodology

/ approach example

implementation

Case study: TargetFirstGrade project

Organizational aspects

on implementation
Partially included

Project management

aspects on
Included

279

implementation

Data item Value Notes
Study identifier (Shiratuddin and Sarif, 2008)

Title m
d
-Matrix: Mobile Application Development Tool

Publication details

N. Shiratuddin and S. M. Sarif, “m d-Matrix: Mobile Application

Development Tool,” Proceedings of the International MultiConference

of Engineers and Computer Scientists, vol. 1, 2008.

Study type Methodology usage

Name of methodology /

approach

Mobile-D

Mobile RAD

Dynamic Channel Model

Mobile Engineering (MobE)

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Paper describes the tool that helps novices to choose development

methodology. In that manner, the four mentioned methodologies are

compared.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Yes. The methodologies are compared based on example projects.

Organizational aspects

on implementation
Included in analysis.

Project management

aspects on

implementation

Included in analysis.

Data item Value Notes
Study identifier (Saifudin et al., 2011)

Title
MMCD Framework and Methodology for Developing m-Learning

Applications

Publication details

A. W. S. N. Saifudin, B. S. Salam, and C. M. H. L. Abdullah, “MMCD

Framework and Methodology for Developing m-Learning

Applications,” presented at the International conference on Teaching &

Learning in Higher Education (ICTLHE 2011), 2011.

Study type New methodology

Name of methodology /

approach
MMCD Methodology

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The proposed MMCD Methodology focuses only m-Learning

applications. It comprises of five main components:

 - application idea creation stage,

 - structure analysis stage,

 - process design stage,

 - main function development stages, and

 - testing stage

Additional resources on

methodology /

approach description

Stages are described on abstract level

Report on methodology

/ approach example

implementation

M-Nations m-learning application

Organizational aspects No

280

on implementation

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Rupnik, 2009)

Title Mobile Applications Development Methodology

Publication details

R. Rupnik, “Mobile Applications Development Methodology,” in

Handbook of research in mobile business: technical, methodological,

and social perspectives, Second Edition., B. Unhelkar, Ed. IGI Global

Snippet, 2009.

Study type New methodology

Name of methodology /

approach
Mobile Application Development Methodology

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The book chapter defines new methodology and roughly defines the

main phases, but it lacks the precise and detailed description on

methodology itself. The defined phases are:

- strategy,

- analysis,

- design

- implementation

Additional resources on

methodology /

approach description

Some elements of the stated phases are described.

Report on methodology

/ approach example

implementation

Two projects.

Organizational aspects

on implementation
No.

Project management

aspects on

implementation

No.

Data item Value Notes
Study identifier (Pauca and Guy, 2012)

Title
Mobile apps for the greater good: a socially relevant approach to

software engineering

Publication details

V. P. Pauca and R. T. Guy, “Mobile apps for the greater good: a

socially relevant approach to software engineering,” in Proceedings of

the 43rd ACM technical symposium on Computer Science Education,

New York, NY, USA, 2012, pp. 535–540.

Study type Methodology usage

Name of methodology /

approach
Scrum

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Paper only mentions the usage of Scrum and nothing else.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example
Case study.

281

implementation

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Abrahamsson et al., 2009)

Title
Mobile-D for Mobile Software: How to Use Agile Approaches for the

Efficient Development of Mobile Applications

Publication details

P. Abrahamsson, T. Ihme, K. Kolehmainen, P. Kyllönen, and O. Salo,

“Mobile-D for Mobile Software: How to Use Agile Approaches for the

Efficient Development of Mobile Applications.” 2009.

Tutorial.

Study type New methodology

Name of methodology /

approach
Mobile-D

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

This tutorial seeks to provide an overview on the special characteristics

of mobile software development and introduce a development

approach called Mobile D, which combines several agile approaches

to meet the needs of volatile mobile application development.

Tutorial

materials

unavailable

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Abrahamsson et al., 2004)

Title Mobile-D: an agile approach for mobile application development

Publication details

P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M.

Korkala, J. Koskela, P. Kyllönen, and O. Salo, “Mobile-D: an agile

approach for mobile application development,” in Companion to the

19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, New York, NY,

USA, 2004, pp. 174–175.

First

publication

presenting

Mobile-D

Study type New methodology

Name of methodology /

approach
Mobile-D

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Mobile-D approach is based on Extreme Programming (development

practices), Crystal methodologies (method scalability), and Rational

Unified Process (life-cycle coverage). A development project,

following the Mobile-D approach, is divided into five iterations. These

phases are: set-up, core, core2, stabilize, and wrap-up.

The phases

are later

renamed.

Additional resources on

methodology /

approach description

In this paper the methodology was not well defined.

282

Report on methodology

/ approach example

implementation

The Mobile-D approach has been empirically tested and further

developed in four case studies within the ENERGI laboratory at VTT,

The Technical Research Centre of Finland. These cases

were concerned with new mobile phone extensions of database

systems.

Organizational aspects

on implementation

The Mobile-D approach is optimized for a team of less than ten

developers working in a co-located office space aiming at delivering a

fully functional mobile application in a short time frame. Mobile-D has

been developed in co-operation with three companies developing

mobile software products and services.

Project management

aspects on

implementation

Not included.

Data item Value Notes
Study identifier (Marinho et al., 2012)

Title
MobiLine: A Nested Software Product Line for the domain of mobile

and context-aware applications

Publication details

[1]F. G. Marinho, R. M. C. Andrade, C. Werner, W. Viana, M. E. F.

Maia, L. S. Rocha, E. Teixeira, J. B. F. Filho, V. L. L. Dantas, F. Lima,

and S. Aguiar, “MobiLine: A Nested Software Product Line for the

domain of mobile and context-aware applications,” Science of

Computer Programming, p. -, 2012.

Study type New approach

Name of methodology /

approach
MobiLine

Application in multi-

platform development
Yes

Platform

independant

Details on defined /

reported methodology /

approach

This paper discusses an approach for the development of mobile and

context-aware software using the Software Product Line (SPL)

paradigm. MobiLine - A Nested Software Product Line for the domain

of mobile and context-aware applications.

Additional resources on

methodology /

approach description

MobiLine development approach is well defined.

Report on methodology

/ approach example

implementation

Case studies

Organizational aspects

on implementation
Partially covered.

Project management

aspects on

implementation

Partially covered.

Data item Value Notes
Study identifier (Forstner et al., 2006)

Title Model-based system development for embedded mobile platforms

Publication details

B. Forstner, L. Lengyel, T. Levendovszky, G. Mezei, I. Kelenyi, and

H. Charaf, “Model-based system development for embedded mobile

platforms,” in Model-Based Development of Computer-Based Systems

and Model-Based Methodologies for Pervasive and Embedded

Software, 2006. MBD/MOMPES 2006. Fourth and Third International

Workshop on, 2006, p. 10–pp.

Study type Approach usage

Name of methodology /

approach
Model Driven Development

Application in multi- Yes

283

platform development

Details on defined /

reported methodology /

approach

Paper discuss the relevance of the model-based approach that facilitates

a more efficient software development. Additionally, paper describes

several tools that support model driven development.

.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
None

Project management

aspects on

implementation

None

Data item Value Notes
Study identifier (Thompson et al., 2010)

Title
Model-Driven Architectures for Optimizing Mobile Application

Performance

Publication details

C. Thompson, J. White, B. Dougherty, H. Turner, S. Campbell, K.

Zienkiewicz, and D. C. Schmidt, “Model-Driven Architectures for

Optimizing Mobile Application Performance.” 2010.

Introduction

to the book

Study type Approach usage

Name of methodology /

approach
Model Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Scarce

Additional resources on

methodology /

approach description

Pointing to the Book that was unavailable.

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Khambati et al., 2008)

Title
Model-Driven Development of Mobile Personal Health Care

Applications

Publication details

A. Khambati, J. Grundy, J. Warren, and J. Hosking, “Model-Driven

Development of Mobile Personal Health Care Applications,” in

Proceedings of the 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering, Washington, DC, USA, 2008, pp.

467–470.

Study type Approach usage

Name of methodology /

approach
Model Driven Development

284

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The focus of the paper was not on MDD but rather on tool that was

used to perform MDD.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Kim et al., 2009)

Title
Performance testing based on test-driven development for mobile

applications

Publication details

H. Kim, B. Choi, and S. Yoon, “Performance testing based on test-

driven development for mobile applications,” in Proceedings of the 3rd

International Conference on Ubiquitous Information Management and

Communication, New York, NY, USA, 2009, pp. 612–617.

Study type Approach usage

Name of methodology /

approach
Test Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The goal of this study is to develop a mobile performance unit

testing tool that not only supports the functional testing in the

development process of unit testing environment but also supports

performance unit testing generation and performance automation

in order to improve the quality and reliability of mobile applications.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

MOPAD project

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Manjunatha et al., 2010)

Title
Power of clouds in your pocket: An efficient approach for cloud

mobile hybrid application development

Publication details

A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan, “Power

of clouds in your pocket: An efficient approach for cloud mobile

hybrid application development,” in Cloud Computing Technology and

Science (CloudCom), 2010 IEEE Second International Conference on,

2010, pp. 496–503.

Study type New Approach

285

Name of methodology /

approach
MobiCloud (A cloud mobile hybrid application generation)

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The objective of this research, therefore, is to provide a disciplined

approach to mobile applications development centered around a DSL

based platform agnostic application development paradigm for CMH

applications.

Additional resources on

methodology /

approach description

Approach is well defined.

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Wolkerstorfer et al., 2008)

Title Probing an agile usability process

Publication details

P. Wolkerstorfer, M. Tscheligi, R. Sefelin, H. Milchrahm, Z. Hussain,

M. Lechner, and S. Shahzad, “Probing an agile usability process,” in

CHI ‟08 extended abstracts on Human factors in computing systems,

New York, NY, USA, 2008, pp. 2151–2158.

Study type New methodology

Name of methodology /

approach
Agile usability process

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Paper describes adaptations to the classical Extreme Programming

(XP) process. The approach described integrates HCI (human computer

interaction) instruments. The implemented HCI instruments are: user

studies, extreme personas (a variation of the personas approach),

usability expert evaluations, usability tests, and automated usability

evaluations. By combining XP and UCD (user centered development)

processes it takes advantages of both approaches.

Additional resources on

methodology /

approach description

Short description of the process.

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
Some aspects included.

Project management

aspects on

implementation

Some aspects included.

Data item Value Notes
Study identifier (Scharff and Verma, 2010)

Title
Scrum to support mobile application development projects in a just-in-

time learning context

Publication details
C. Scharff and R. Verma, “Scrum to support mobile application

development projects in a just-in-time learning context,” in

286

Proceedings of the 2010 ICSE Workshop on Cooperative and Human

Aspects of Software Engineering, New York, NY, USA, 2010, pp. 25–

31.

Study type Methodology usage

Name of methodology /

approach
Scrum

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

During this project, we attempted to provide students with a real

experience with Scrum on mobile application development projects.

We defined a model of working to be used in a classroom setting that

involved Scrum teams, a certified Scrum Master, a Product Owner and

a Client.

Additional resources on

methodology /

approach description

Scrum process described.

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
Some elements included.

Project management

aspects on

implementation

Some elements included.

Data item Value Notes
Study identifier (Rosa and Lucena,Jr., 2011)

Title
Smart composition of reusable software components in mobile

application product lines

Publication details

R. E. V. S. Rosa and V. F. Lucena,Jr., “Smart composition of reusable

software components in mobile application product lines,” in

Proceedings of the 2nd International Workshop on Product Line

Approaches in Software Engineering, New York, NY, USA, 2011, pp.

45–49.

Study type Approach usage

Name of methodology /

approach
Software Product Lines

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The Software Product Lines (SPL) approach seems to be an useful

technique to support mobile application development. A way to make

SPL more effective is automating the software components

composition for building mobile applications.

Additional resources on

methodology /

approach description

Scarce

Report on methodology

/ approach example

implementation

AppSpotter project

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Zakal et al., 2011)

287

Title Software Product Lines-based development

Publication details

D. Zakal, L. Lengyel, and H. Charaf, “Software Product Lines-based

development,” in Applied Machine Intelligence and Informatics

(SAMI), 2011 IEEE 9th International Symposium on, 2011, pp. 79–81.

Study type Approach usage

Name of methodology /

approach
Model Driven Product Lines (Software Product Lines)

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Current paper has presented a model-driven approach of Software

Product Lines, suggesting the use of feature models as integral parts of

product family specifications.

Additional resources on

methodology /

approach description

Model Driven Product Lines

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Forstner et al., 2005)

Title Supporting Rapid Application Development on Symbian Platform

Publication details

B. Forstner, L. Lengyel, I. Kelenyi, T. Levendovszky, and H.

Charaf, “Supporting Rapid Application Development on

Symbian Platform,” in Computer as a Tool, 2005. EUROCON

2005.The International Conference on, 2005, vol. 1, pp. 72 –75.

Study type Methodology usage

Name of methodology /

approach
Rapid Application Development

Application in multi-

platform development
Yes

Symbian

reported

Details on defined /

reported methodology /

approach

The paper introduces rapid application development tool set for

Symbian OS. The focus of the paper is not on RAD methodology, but

rather on presented tool set.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Binsaleh and Hassan, 2011)

Title
Systems Development Methodology for Mobile Commerce

Applications: Agile vs. Traditional

288

Publication details

M. Binsaleh and S. Hassan, “Systems Development Methodology for

Mobile Commerce Applications: Agile vs. Traditional,” International

Journal of Online Marketing (IJOM), vol. 1, no. 4, pp. 33–47, 2011.

The full

paper not

completely

available to

the

researcher

Study type New methodology / Methodology usage

Name of methodology /

approach
Systems Development Methodology / N/A

Application in multi-

platform development
Yes

Platform

independent

Details on defined /

reported methodology /

approach

Only portion of the paper is available to the researcher due to the lack

of subscription to Igi-global publishing. The acquired materials state

that comprehensive research was performed in order to determine the

customs of mobile application developers and that the methodology

was proposed based on these results.

Additional resources on

methodology /

approach description

N/A

Report on methodology

/ approach example

implementation

N/A

Organizational aspects

on implementation
N/A

Project management

aspects on

implementation

N/A

Data item Value Notes
Study identifier (Hedberg and Iisakka, 2006)

Title Technical Reviews in Agile Development: Case Mobile-D

Publication details

H. Hedberg and J. Iisakka, “Technical Reviews in Agile Development:

Case Mobile-D,” in Quality Software, 2006. QSIC 2006. Sixth

International Conference on, 2006, pp. 347–353.

Study type Methodology usage / Approach usage

Name of methodology /

approach
Mobile-D / Test Driven Development

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The short description on Mobile-D is available. Although the paper

focuses on another topic it gives lots of references on Mobile-D

process.

Additional resources on

methodology /

approach description

ENERGY laboratory

VTT Research center

Report on methodology

/ approach example

implementation

No

Organizational aspects

on implementation
Partially included.

Project management

aspects on

implementation

Partially included.

Data item Value Notes
Study identifier (Scharff, 2010)

Title The Software Engineering of Mobile Application Development

289

Publication details
C. Scharff, “The Software Engineering of Mobile Application

Development,” Pace University, NY, USA, 2010.
Presentation

Study type Methodology usage

Name of methodology /

approach
Scrum

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Presentation covers several topics and one of them is Scrum. The

process is described and the examples are given.

Additional resources on

methodology /

approach description

Scrum described in detail.

Report on methodology

/ approach example

implementation

Several projects: RestoMobile, TargetFirstGrade, No Ink…

Organizational aspects

on implementation
Partially included.

Project management

aspects on

implementation

Partially included.

Data item Value Notes
Study identifier (Ejlersen et al., 2008)

Title Using Design Science to Develop a Mobile Application

Publication details
A. Ejlersen, M. S. Knudsen, J. Løvgaard, and M. B. Sørensen, “Using

Design Science to Develop a Mobile Application,” 2008.

Study type Methodology usage

Name of methodology /

approach
Design Science

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

The special framework is developed to help the usage of Design

Science components in mobile application development.

Additional resources on

methodology /

approach description

Design Science partially described.

Report on methodology

/ approach example

implementation

Friend Finder mobile application

Organizational aspects

on implementation
Partially included

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Ihme and Abrahamsson, 2005)

Title
The Use of Architectural Patterns in the Agile Software Development

of Mobile Applications

Publication details
T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the

Agile Software Development of Mobile Applications,” 2005.

Study type Methodology usage

Name of methodology /

approach
Mobile-D

290

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Paper reports the usage of Mobile-D methodology, but only in

accordance with design phase in development process.

Additional resources on

methodology /

approach description

No

Report on methodology

/ approach example

implementation

Case studies and projects.

Organizational aspects

on implementation
No

Project management

aspects on

implementation

No

Data item Value Notes
Study identifier (Um et al., 2005)

Title
ViP: A Practical Approach to Platform-based System Modeling

Methodology

Publication details

J. Um, S. Hong, Y. T. Kim, E. Chung, K. M. Choi, J. T. Kong,

and S. K. Eo, “ViP: A Practical Approach to Platform-based

System Modeling Methodology,” Journal of Semiconductor

Technology and Science, vol. 5, no. 2, p. 89, 2005.

Study type New methodology

Name of methodology /

approach
ViP (Virtual Platform)

Application in multi-

platform development
Yes

Details on defined /

reported methodology /

approach

Paper proposes a new transaction-level system modeling methodology,

called ViP (Virtual Platform). ViP has a two-step approach:

- create a ViP for early stage software development

- refine the ViP to increase the cycle accuracy for system

performance analysis and software optimization

The following phases are executed

- IP Modeling

- IP Model verification

- Bus Subsystem Modeling

- Integration

Additional resources on

methodology /

approach description

The special case study for implementation for mobile devices is

created.

Report on methodology

/ approach example

implementation

Case study

Organizational aspects

on implementation
Partially included in report

Project management

aspects on

implementation

Partially included in report

291

Appendix E – Multi-platform Case Artifacts Ontology

The appendix shows Multi-platform Case Artifacts Ontology presented in Manchester OWL

Syntax format. The Manchester syntax is a user-friendly compact syntax for OWL 2

ontologies (Horridge and Patel-Schneider, 2009). Although it is frame-based, as opposed to

the axiom-based other syntaxes for OWL 2, we find it to be the most compact and human

readable syntax. The document presented in this appendix is available at

http://barok.foi.hr/~zstapic/ont/mcao_m.owl, and the same ontology in OWL/XML syntax is

available at http://barok.foi.hr/~zstapic/ont/mcao.owl.

Prefix: : <http://www.w3.org/2002/07/owl#>

Prefix: owl: <http://www.w3.org/2002/07/owl#>

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix: xml: <http://www.w3.org/XML/1998/namespace>

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix: acao: <http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#>

Prefix: mcao: <http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts#>

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Prefix: wpcao: <http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifacts#>

Ontology: <http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts>

Annotations:

 rdfs:comment "The ontology describing the artifacts that arise in the

development of multi-platform prototype mobile application by using

Mobile-D methodology."@en,

 rdfs:isDefinedBy "Zlatko Stapić"

AnnotationProperty: rdfs:isDefinedBy

AnnotationProperty: rdfs:label

AnnotationProperty: mcao:NOTICE

AnnotationProperty: rdfs:comment

AnnotationProperty: acao:inActivity

AnnotationProperty: acao:inPhase

Datatype: rdf:PlainLiteral

ObjectProperty: acao:createsArtifact

 Annotations:

 rdfs:comment "Inversed property of isCreatedByTask. It connects Task

individuals and created specific Artifact individuals."@en

 Domain: acao:Task

 Range: acao:Artifact

 InverseOf: acao:isCreatedByTask

ObjectProperty: acao:isCreatedByTask

 Annotations:

 rdfs:comment "Property connecting the Task individuals that create specific

Artifact individuals. Creating the artifact logically means it usage

even if it is not explicitly stated."@en

 Domain: acao:Artifact

 Range: acao:Task

http://barok.foi.hr/~zstapic/ont/mcao_m.owl
http://barok.foi.hr/~zstapic/ont/mcao.owl

292

 InverseOf: acao:createsArtifact

ObjectProperty: acao:isPartOfArtifact

 Annotations:

 rdfs:comment "Property connecting individual artifacts into hierarchy. This

property is Asymmetric as two individuals cannot be both part of each

other. "@en

 Characteristics: Asymmetric

 Domain: acao:Artifact

 Range: acao:Artifact

 InverseOf: acao:includesArtifact

ObjectProperty: mcao:isSimilarToArtifact

 Annotations:

 rdfs:comment "Property connecting the individuals of class Artifact with

other similar individuals of the same class. Usually, all artifacts in

the same class, if class is reusable, are reusable, but this is not a

rule. Sometimes, pairs of artifacts in the same class can be mutually

reusable, but not reusable with other artifacts of pairs."@en

 Characteristics: Symmetric

 Domain: acao:Artifact

 Range: acao:Artifact

ObjectProperty: acao:isPerformedIn

 Annotations:

 rdfs:comment "Property defines relationship between specific Task

individuals and owning Activity. Logically, this property is inverse

of consistsOf property, but we defined both separate to have the

information available even in the original model."@en

 Domain: acao:Activity or acao:Task

 Range: acao:Activity or acao:Phase

ObjectProperty: acao:isUpdatedByTask

 Annotations:

 rdfs:comment "Property connecting the Task individuals that update specific

Artifact individuals."@en

 Domain: acao:Artifact

 Range: acao:Task

 InverseOf: acao:updatesArtifact

ObjectProperty: acao:isUsedByTask

 Annotations:

 rdfs:comment "Property connecting the Task individuals that read specific

Artifact individuals."@en

 Domain: acao:Artifact

 Range: acao:Task

 InverseOf: acao:usesArtifact

ObjectProperty: acao:usesArtifact

 Annotations:

 rdfs:comment "Inversed property of isUsedByTask. It connects Task

individuals and used specific Artifact individuals."@en

 Domain: acao:Task

 Range: acao:Artifact

 InverseOf: acao:isUsedByTask

ObjectProperty: mcao:hasReusabilityLevel

 Annotations:

293

 rdfs:comment "Property connecting specific Artifact individuals with one of

predefined reusability levels. This property classifies artifacts into

completely, partially or unreusable classes."@en

 Characteristics: Functional

 Domain: acao:Artifact

 Range: mcao:ReuseLevel

ObjectProperty: acao:updatesArtifact

 Annotations:

 rdfs:comment "Inversed property of isUpdatedByTask. It connects Task

individuals and updated specific Artifact individuals."@en

 Domain:

 acao:Task

 Range:

 acao:Artifact

 InverseOf:

 acao:isUpdatedByTask

ObjectProperty: acao:hasArtifactType

 Annotations:

 rdfs:comment "Property connecting specific Artifact individuals with

ArtifactType individuals. It defines type of the specific Artifact

according to defined classification according to artifact usage."@en

 Characteristics: Functional

 Domain: acao:Artifact

 Range: acao:ArtifactType

ObjectProperty: acao:includesArtifact

 Annotations:

 rdfs:comment "Inverse property of isPartOfArtifact. It defines individual

Artifacts that are included in observed Artifact."@en

 Characteristics: Asymmetric

 Domain: acao:Artifact

 Range: acao:Artifact

 InverseOf: acao:isPartOfArtifact

ObjectProperty: acao:consistsOf

 Annotations:

 rdfs:comment "Property connecting individual Activities that are performed

in specific Phases and individual Tasks that are performed during

specific Activities. Logically, this property is inverse property of

isPerformedIn, but we explicitly defined it in order to have the

information available even in the original model."@en

 Domain: acao:Activity or acao:Phase

 Range: acao:Activity or acao:Task

ObjectProperty: acao:hasArtifactOrigin

 Annotations:

 rdfs:comment "Property connecting individual Artifact and individual in

definite class ArtifactOrigin which defines several possible types of

Artifact origin. This property is used to classify artifacts by types

but from different point of view than property hasArtifactType."@en

 Characteristics: Functional

 Domain: acao:Artifact

 Range: acao:ArtifactOrigin

Class: acao:ReleaseCeremoniesTask

 Annotations:

294

 rdfs:comment "The purpose of this task is to confirm that everything has

been done right in the current iteration and the basis for further

development is ensured. Release ceremonies are the final steps before

making a release of the software. In practice, release ceremonies

consist of two essential activities; release audit and baseline

creation."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayActivity>,

 rdfs:label "Release Ceremonies Task"

 SubClassOf:

 acao:isPerformedIn only acao:ReleaseDayActivity,

 acao:isPerformedIn some acao:ReleaseDayActivity,

 acao:Task

Class: acao:ClassModelMobile

 Annotations:

 rdfs:comment "UML class diagram describing the mobile application internal

structure and created classes. This model is used in SADD

document."@en,

 rdfs:label "Class Model (Mobile)"

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 acao:hasArtifactType some acao:Model,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactType only acao:Model,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask),

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask

Class: acao:ApplicationIcon

295

 Annotations:

 rdfs:comment "Application icon is designed as needed for publishing

process."@en,

 rdfs:label "Application Icon Android"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:DeploymentPackage,

 mcao:AppIcon,

 acao:isPartOfArtifact only acao:DeploymentPackage,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:ProductionizeActivities

 EquivalentTo:

 acao:isPerformedIn some acao:Productionize

 SubClassOf:

 acao:ActivitiesByPhases

Class: acao:Software

 Annotations:

 rdfs:comment "Represents software tools used during the entire project."@en

 SubClassOf:

 acao:ArtifactType

Class: mcao:ThrowAwayPrototype

 Annotations:

 rdfs:comment "Platform specific project created to test development

environment and connected devices. This project is discarded."@en,

 rdfs:label "Throw-away Prototype"

 SubClassOf:

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Code,

 not (acao:isUsedByTask some acao:Task),

 acao:hasArtifactType some acao:Code,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 not (acao:isUpdatedByTask some acao:Task),

 acao:isCreatedByTask some acao:EnvironmentSetUpTask,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isCreatedByTask only acao:EnvironmentSetUpTask

Class: acao:InitialRequirementsAnalysisTask

 Annotations:

 rdfs:label "Initial Requirements Analysis Task",

 rdfs:comment "The purpose of this task is to carefully prioritize and

analyze the requirements for finding a set of requirements that force

tocreate the most important components and interfaces of the system. A

296

working architectural skeleton should be found not later than by the

end of the first iteration. "@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn0IterationAct

ivity>

 SubClassOf:

 acao:isPerformedIn only acao:PlanningDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayIn0IterationActivity

Class: acao:PlanningDayIn0IterationTasks

 EquivalentTo:

 acao:isPerformedIn some acao:PlanningDayIn0IterationActivity

 SubClassOf:

 acao:TasksByActivities

Class: acao:ProductProposal

 Annotations:

 rdfs:label "Product Proposal",

 rdfs:comment "Generated before the development process. Describes the

initial and general idea on the product."@en

 SubClassOf:

 acao:isUsedByTask some acao:InitialRequirementsCollectionTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask some acao:ArchitectureLineDefinitionTask,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask only

 (acao:ArchitectureLineDefinitionTask

 or acao:CustomerEstablishmentTask

 or acao:InitialRequirementsCollectionTask

 or acao:ProcessEstablishmentTask),

 acao:isUsedByTask some acao:CustomerEstablishmentTask,

 acao:hasArtifactType some acao:Document,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact some acao:ProductProposal,

 mcao:isSimilarToArtifact only acao:ProductProposal,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:hasArtifactType only acao:Document,

 acao:isUsedByTask some acao:ProcessEstablishmentTask,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:UnitTest

 Annotations:

 rdfs:label "Unit Test Android",

 rdfs:comment "Unit test tests a single unit of code. It is created in

separate project and references main project while performing

different assertions."@en

297

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:UnitTest,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: mcao:ArtifactsOrigin

 SubClassOf:

 acao:Inferred

Class: acao:WorkingDayIn0IterationTasks

 EquivalentTo:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity

 SubClassOf:

 acao:TasksByActivities

Class: wpcao:PageCS

 Annotations:

 rdfs:label "Page (C#)",

 rdfs:comment "Represents C# class that has the purpose of controlling the

application view."@en

 SubClassOf:

 mcao:ViewController,

 acao:isPartOfArtifact some wpcao:CSCode,

 acao:isPartOfArtifact only wpcao:CSCode,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: mcao:SourceCode

 Annotations:

 rdfs:label "Source Code",

 rdfs:comment "Platform specific source code developed during the

implementation activities."@en

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:PublishApplicationTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:hasArtifactType some acao:Code,

298

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 mcao:isSimilarToArtifact some mcao:SourceCode,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:PublishApplicationTask,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 mcao:isSimilarToArtifact only mcao:SourceCode

Class: acao:XMLResources

 Annotations:

 rdfs:comment "XML code describing application layout, menus, localized

strings etc."@en,

 rdfs:label "XML Resources Android"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:isSimilarToArtifact only wpcao:XAMLDescription,

 mcao:AppResource,

 mcao:isSimilarToArtifact some wpcao:XAMLDescription,

 acao:isPartOfArtifact only acao:MobileApplication,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:MobileApplication

Class: acao:Resource

 Annotations:

 rdfs:comment "Represents resources that are created during the development

process and are used in publishing purposes."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:Document

 Annotations:

 rdfs:comment "Represents used documents or created artifacts that are

published as documents during or at the end of development

process."@en

299

 SubClassOf:

 acao:ArtifactType

Class: acao:SystemTestTasks

 EquivalentTo:

 acao:isPerformedIn some acao:SystemTestActivity

 SubClassOf:

 acao:TasksByActivities

Class: mcao:Completely

 SubClassOf:

 mcao:ReuseLevel

Class: acao:DocumentElement

 Annotations:

 rdfs:comment "Represents document that could be observed as stand-alone

artifact, but is usually included in some other document."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:APIDocumentation

 Annotations:

 rdfs:comment "Android API documentation from

http://developers.android.com"@en,

 rdfs:label "API Documentation Android"

 SubClassOf:

 mcao:APIDocumentation,

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:PrototypeFunctionality

 Annotations:

 rdfs:label "Prototype Functionality Android",

 rdfs:comment "Developed functionality during the trial day. It prototypes

some of the main application functionalities and is used to define the

basic approach for implementing the similar functionalities in other

iterations."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 mcao:AppPrototypeFunctionality

Class: acao:DocumentationWrapUpActivity

300

 Annotations:

 rdfs:label "Stabilize",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>,

 rdfs:comment "The purpose of the Stabilize phase pattern is to ensure the

quality of the implementation of the project."@en

 SubClassOf:

 acao:isPerformedIn only

 (acao:Stabilize

 or acao:SystemTestAndFix),

 acao:isPerformedIn some acao:SystemTestAndFix,

 acao:isPerformedIn some acao:Stabilize,

 acao:consistsOf only acao:DocumentationWrapUpTask,

 acao:Activity,

 acao:consistsOf some acao:DocumentationWrapUpTask

Class: acao:SystemTestReport

 Annotations:

 rdfs:comment "Final document on testing. Contains information on performed

tests and issues detected."@en,

 rdfs:label "System Test Report"

 SubClassOf:

 not (acao:isUsedByTask some acao:Task),

 acao:isCreatedByTask some acao:SystemTestTask,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isCreatedByTask only acao:SystemTestTask,

 mcao:hasReusabilityLevel some mcao:None,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType some acao:Document,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Document

Class: acao:ClassModelWeb

 Annotations:

 rdfs:label "Class Model (Web)",

 rdfs:comment "UML class diagram describing the web application internal

structure and created classes. This model is used in SADD

document."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:hasArtifactType some acao:Model,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isPartOfArtifact some acao:SADDDocument,

301

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactType only acao:Model,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact some acao:ClassModelWeb,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 mcao:isSimilarToArtifact only acao:ClassModelWeb,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask)

Class: acao:ActivitiesByPhases

 SubClassOf:

 acao:Inferred

Class: acao:PairProgrammingPractice

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>,

 rdfs:comment "The purpose of Pair Programming is to improve communication,

enhance process fidelity and spread knowledge within the team, and

ensure quality of the code."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>,

 rdfs:label "Pair Programming Practice"

 SubClassOf:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn only

 (acao:WorkingDayActivity

 or acao:WorkingDayIn0IterationActivity),

 acao:isPerformedIn some acao:WorkingDayActivity

Class: acao:IterationsPlan

 Annotations:

302

 rdfs:comment "Contains the information about planned iterations along with

selected features for specific iteration. This document is part of

Product backlog document."@en,

 rdfs:label "Iterations Plan"

 SubClassOf:

 acao:isUsedByTask some acao:PostIterationWorkshopTask,

 acao:isUpdatedByTask some acao:WrapUpTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isCreatedByTask only acao:IterationPlanningTask,

 acao:isPartOfArtifact only acao:ProductBacklog,

 acao:isUsedByTask some acao:WrapUpTask,

 acao:isPartOfArtifact some acao:ProductBacklog,

 acao:isUsedByTask only

 (acao:DocumentationWrapUpTask

 or acao:PostIterationWorkshopTask

 or acao:WrapUpTask),

 mcao:isSimilarToArtifact some acao:IterationsPlan,

 mcao:isSimilarToArtifact only acao:IterationsPlan,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUpdatedByTask only acao:WrapUpTask,

 acao:isCreatedByTask some acao:IterationPlanningTask

Class: acao:TasksByActivities

 SubClassOf:

 acao:Inferred

Class: acao:BorrowedArtifacts

 EquivalentTo:

 acao:Artifact

 and (not (acao:isCreatedByTask some acao:Task))

 and (not (acao:isUpdatedByTask some acao:Task))

 and (acao:isUsedByTask some acao:Task)

 SubClassOf:

 mcao:ArtifactsUsage

Class: mcao:PartiallyReusableArtifacts

 EquivalentTo:

 acao:Artifact

 and (mcao:hasReusabilityLevel some mcao:Partially)

 SubClassOf:

 mcao:ArtifactsReusability

Class: acao:ProjectPlanChecklist

303

 Annotations:

 rdfs:comment "Mobile-D project plan checklist. This document is part of

project plan."@en,

 rdfs:label "Project Plan Checklist"

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 not (acao:isUsedByTask some acao:Task),

 acao:isUpdatedByTask only

 (acao:DocumentationWrapUpTask

 or acao:IterationPlanningTask

 or acao:PostIterationWorkshopTask

 or acao:WrapUpTask),

 acao:isCreatedByTask some acao:InitialProjectPlanningTask,

 mcao:isSimilarToArtifact some acao:ProjectPlanChecklist,

 acao:isPartOfArtifact only acao:ProjectPlan,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isPartOfArtifact some acao:ProjectPlan,

 acao:isUpdatedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 mcao:isSimilarToArtifact only acao:ProjectPlanChecklist,

 acao:isCreatedByTask only acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask some acao:IterationPlanningTask,

 acao:isUpdatedByTask some acao:PostIterationWorkshopTask

Class: acao:DataModelWeb

 Annotations:

 rdfs:comment "Entity-Relationship-Attribute model of the web application.

It is presented in SADD document."@en,

 rdfs:label "Data Model (Web)"

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:hasArtifactType some acao:Model,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:hasArtifactType only acao:Model,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:isSimilarToArtifact some acao:DataModelWeb,

 mcao:isSimilarToArtifact only acao:DataModelWeb,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

304

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask),

 acao:isUsedByTask some acao:ContinuousIntegrationPractice

Class: acao:ProjectPlanChecklistTemplate

 Annotations:

 rdfs:label "Project Plan Checklist Template",

 rdfs:comment "Mobile-D project plan checklist."@en

 SubClassOf:

 mcao:isSimilarToArtifact some acao:ProjectPlanChecklistTemplate,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask only acao:InitialProjectPlanningTask,

 acao:isUsedByTask some acao:InitialProjectPlanningTask,

 acao:hasArtifactType some acao:Template,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isPartOfArtifact some acao:ProjectPlanChecklist,

 acao:isPartOfArtifact only

 (acao:MobileDProcessLibrary

 or acao:ProjectPlanChecklist),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isPartOfArtifact some acao:MobileDProcessLibrary,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:hasArtifactType only acao:Template,

 mcao:isSimilarToArtifact only acao:ProjectPlanChecklistTemplate,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:AndroidArtifact

 Annotations:

 rdfs:label "Android Artifact",

 rdfs:comment "Defines class of artifacts that are created in relation to

Android development."@en

 SubClassOf:

 acao:ArtifactOrigin

Class: acao:IterationBacklog

 Annotations:

 rdfs:label "Iteration Backlog",

 rdfs:comment "Contains the information on specific iteration including

story and task cards. Each iteration document is created from scratch.

It is part of Product backlog document."@en

305

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isUsedByTask some acao:PostIterationWorkshopTask,

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 acao:isCreatedByTask only acao:IterationPlanningTask,

 acao:isPartOfArtifact only acao:ProductBacklog,

 acao:isUsedByTask some acao:WrapUpTask,

 acao:isPartOfArtifact some acao:ProductBacklog,

 mcao:isSimilarToArtifact only acao:IterationBacklog,

 acao:isUsedByTask only

 (acao:DocumentationWrapUpTask

 or acao:PostIterationWorkshopTask

 or acao:WrapUpTask),

 mcao:isSimilarToArtifact some acao:IterationBacklog,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RequirementsAnalysisTask

 or acao:WrapUpTask),

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isCreatedByTask some acao:IterationPlanningTask

Class: acao:ProjectSetUpActivity

 Annotations:

 rdfs:comment "The purpose of this stage is to 1) set-up the physical and

technical resources for the project as well as the environment for

project monitoring, 2) train the project team as necessary, and 3)

establish the project specific ways to communicate with the customer

group. All the tasks of Project Set-Up include the participation of

project team."@en,

 rdfs:label "Project SetUp",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize>

 SubClassOf:

 acao:consistsOf only

 (acao:CustomerCommunicationEstablishmentTask

 or acao:EnvironmentSetUpTask),

 acao:consistsOf some acao:CustomerCommunicationEstablishmentTask,

 acao:isPerformedIn some acao:Initialize,

 acao:Activity,

 acao:consistsOf some acao:EnvironmentSetUpTask,

 acao:isPerformedIn only acao:Initialize

Class: acao:IterationPlanningTask

 Annotations:

306

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>,

 rdfs:comment "The purpose of this task is to generate the schedule and

contents for the iteration to execute. The contents are defined in

terms of tasks which are work orders for the team."@en,

 rdfs:label "Iteration Planning Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn

0IterationActivity>

 SubClassOf:

 acao:isPerformedIn only

 (acao:PlanningDayActivity

 or acao:PlanningDayIn0IterationActivity),

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayActivity,

 acao:isPerformedIn some acao:PlanningDayIn0IterationActivity

Class: wpcao:PageXAMLElement

 Annotations:

 rdfs:label "Page (XAML) Element",

 rdfs:comment "Represents XAML code that is used to describe any user

interface element such as text box, list box, button etc."@en

 SubClassOf:

 mcao:ViewElement,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only wpcao:PageXAML,

 acao:isPartOfArtifact some wpcao:PageXAML

Class: wpcao:PrototypeFunctionality

 Annotations:

 rdfs:label "Prototype Functionality WP",

 rdfs:comment "Developed functionality during the trial day. It prototypes

some of the main application functionalities and is used to define the

basic approach for implementing the similar functionalities in other

iterations."@en

 SubClassOf:

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 mcao:AppPrototypeFunctionality

Class: mcao:IntegrationTest

 Annotations:

 rdfs:label "Integration Test",

 mcao:NOTICE "Closure axiom for some properties are created in leaf

elements."@en,

 rdfs:comment "Platform specific, robotized or manual integration test

document."@en

307

 SubClassOf:

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice

Class: mcao:ExampleCode

 Annotations:

 rdfs:comment "Example Code",

 rdfs:comment "Platform specific example code on different topics found on

the internet from various sources."@en

 SubClassOf:

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Example,

 acao:hasArtifactType some acao:Example,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 acao:isUsedByTask only acao:PairProgrammingPractice,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:None,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:ThrowAwayPrototype

 Annotations:

 rdfs:label "Throw Away Prototype Android",

 rdfs:comment "Project created to test development environment and connected

devices. This project is discarded."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 mcao:ThrowAwayPrototype

Class: acao:IntegrationTest

 Annotations:

 rdfs:label "Integration Test Android",

 rdfs:comment "Robotized test which tests application integrated

functionality."@en

 SubClassOf:

 not (acao:isPartOfArtifact some acao:Artifact),

308

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask only

 (acao:AcceptanceTestingTask

 or acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask),

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isUsedByTask some acao:AcceptanceTestingTask,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:hasArtifactType some acao:Code,

 mcao:IntegrationTest,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask some acao:RefactoringPractice

Class: wpcao:WindowsPhoneArtifacts

 EquivalentTo:

 acao:Artifact

 and (acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact)

 SubClassOf:

 mcao:ArtifactsOrigin

Class: acao:Initialize

 Annotations:

 rdfs:label "Initialize Phase",

 rdfs:comment "The Initialize phase should describe and prepare all

components of the application as well as to predict the possible

critical issues of the project. Initialize phase is usually called a

zero iteration (0-iteration) phase as it in addition to project set-up

includes the stages of planning day, working day and release day which

are also used in productionize phase. The idea of the 0-iteration

phase is to assure the functionality of the technical development

environment through the implementation of some representative

features. Additionally, in this phase some prototyping could be done

in order to decide which technological solution would be the most

appropriate for the rest of the development process."@en

 SubClassOf:

 acao:consistsOf some acao:WorkingDayIn0IterationActivity,

 acao:consistsOf some acao:ProjectSetUpActivity,

 acao:Phase,

 acao:consistsOf some acao:PlanningDayIn0IterationActivity,

 acao:consistsOf only

 (acao:PlanningDayIn0IterationActivity

309

 or acao:ProjectSetUpActivity

 or acao:WorkingDayIn0IterationActivity)

Class: acao:InformCustomerTask

 Annotations:

 rdfs:label "Inform Customer Task",

 rdfs:comment "The purpose of this task is to provide an honest view of the

progress to the customer, and to give the customer a possibility to

give feedback about the implemented features and to guide the

development."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>

 SubClassOf:

 acao:isPerformedIn only acao:WorkingDayActivity,

 acao:Task,

 acao:isPerformedIn some acao:WorkingDayActivity

Class: acao:Standard

 Annotations:

 rdfs:comment "Represents document containing formal and internationally

recognized description of some concept or element."@en

 SubClassOf:

 acao:ArtifactType

Class: mcao:Partially

 SubClassOf:

 mcao:ReuseLevel

Class: mcao:ReusableArtifacts

 EquivalentTo:

 acao:Artifact

 and (mcao:CompletlyResuableArtifacts

 or mcao:PartiallyReusableArtifacts)

 SubClassOf:

 mcao:ArtifactsReusability

 DisjointWith:

 mcao:NotreusableArtifacts

Class: acao:DefectList

 Annotations:

 rdfs:label "Defect List",

 rdfs:comment "Document created after testing is performed. It contains

found issues and planned activities. At the end this document becomes

part of System test report document."@en

310

 SubClassOf:

 not (acao:isUsedByTask some acao:Task),

 acao:isCreatedByTask only acao:AcceptanceTestingTask,

 acao:isCreatedByTask some acao:AcceptanceTestingTask,

 mcao:isSimilarToArtifact only acao:DefectList,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isUpdatedByTask some acao:SystemTestTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact some acao:DefectList,

 acao:Artifact,

 acao:isPartOfArtifact only acao:SystemTestReport,

 acao:isPartOfArtifact some acao:SystemTestReport,

 acao:isUpdatedByTask only

 (acao:PreReleaseTestingTask

 or acao:SystemTestTask),

 acao:isUpdatedByTask some acao:PreReleaseTestingTask

Class: acao:Example

 Annotations:

 rdfs:comment "Represents code artifacts created by third party and used as

examples of implemented functionality or to solve some programming

issue."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:LocalizationString

 Annotations:

 rdfs:label "Localization String Android",

 rdfs:comment "Represent XML code that is used to provide localized

translation of values according to value unique key."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:isSimilarToArtifact some wpcao:ResourceFile,

 acao:isPartOfArtifact some acao:XMLResources,

 mcao:AppResource,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 mcao:isSimilarToArtifact only wpcao:ResourceFile,

 acao:isPartOfArtifact only acao:XMLResources

Class: acao:ProductBacklog

 Annotations:

 rdfs:comment "Contains the information on features that are (to be)

implemented in the development process, through several iterations.

Users can contribute in defining the features/stories."@en,

 rdfs:label "Product Backlog"

311

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isUsedByTask some acao:PostIterationWorkshopTask,

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 acao:isUsedByTask only

 (acao:IterationPlanningTask

 or acao:PostIterationWorkshopTask),

 mcao:hasReusabilityLevel only mcao:Partially,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:hasArtifactType some acao:Document,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUpdatedByTask only

 (acao:RequirementsAnalysisTask

 or acao:WrapUpTask),

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact some acao:ProductBacklog,

 acao:Artifact,

 acao:hasArtifactType only acao:Document,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 mcao:isSimilarToArtifact only acao:ProductBacklog,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask

Class: wpcao:ApplicationDescription

 Annotations:

 rdfs:label "Application Description WP",

 rdfs:comment "Short but important description used for publishing process.

It includes the information on application, category, authors etc."@en

 SubClassOf:

 mcao:AppDescription,

 acao:isPartOfArtifact some wpcao:DeploymentPackage,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only

 (acao:SADDDocument

 or wpcao:DeploymentPackage)

Class: mcao:OnlyUsedDocuments

 EquivalentTo:

 acao:Artifact

 and acao:BorrowedArtifacts

 and (not (acao:isPartOfArtifact some acao:Artifact))

 and (acao:hasArtifactType some acao:Document)

 SubClassOf:

 mcao:ArtifactsUsage

Class: acao:AcceptanceTest

 Annotations:

 rdfs:label "Acceptance Test",

312

 rdfs:comment "Created during initial requirements analysis. Contains the

information on acceptance test of one product feature. Can include

different contexts, and test scenarios with sample data."@en

 SubClassOf:

 acao:isPartOfArtifact only acao:SystemTestPlan,

 mcao:hasReusabilityLevel some mcao:Completely,

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isPartOfArtifact some acao:SystemTestPlan,

 acao:isUsedByTask some acao:AcceptanceTestingTask,

 acao:isUpdatedByTask some acao:AcceptanceTestingTask,

 acao:isUpdatedByTask only

 (acao:AcceptanceTestGenerationTask

 or acao:AcceptanceTestReviewTask

 or acao:AcceptanceTestingTask

 or acao:DocumentationWrapUpTask

 or acao:RequirementsAnalysisTask),

 mcao:isSimilarToArtifact some acao:AcceptanceTest,

 acao:isUsedByTask some acao:SystemTestTask,

 mcao:isSimilarToArtifact only acao:AcceptanceTest,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:isUsedByTask only

 (acao:AcceptanceTestReviewTask

 or acao:AcceptanceTestingTask

 or acao:IterationPlanningTask

 or acao:PreReleaseTestingTask

 or acao:SystemTestTask),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:isUpdatedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUpdatedByTask some acao:AcceptanceTestReviewTask,

 acao:isUsedByTask some acao:AcceptanceTestReviewTask,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUpdatedByTask some acao:AcceptanceTestGenerationTask

Class: wpcao:PageXAML

 Annotations:

 rdfs:comment "Represents XAML code that is used to describe user interface

form or screen."@en,

 rdfs:label "Page (XAML)"

 SubClassOf:

 mcao:View,

 acao:isPartOfArtifact some wpcao:XAMLDescription,

 acao:isPartOfArtifact only wpcao:XAMLDescription,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:DevelopmentEnvironment

313

 Annotations:

 rdfs:comment "Set of applications used for Android development. We used

Eclipse base SDK."@en,

 rdfs:label "Development Environment Android"

 SubClassOf:

 mcao:DevelopmentEnvironment

Class: acao:SystemTestTask

 Annotations:

 rdfs:comment "The purpose of this task is to find defects in the produced

software after the implementation phase of the project. The System

Test procedure provides defect information for last fixing iteration

of the Mobile-D process."@en,

 rdfs:label "System Test Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAct

ivity>

 SubClassOf:

 acao:isPerformedIn only acao:SystemTestActivity,

 acao:Task,

 acao:isPerformedIn some acao:SystemTestActivity

Class: acao:PlanningDayTasks

 EquivalentTo:

 acao:isPerformedIn some acao:PlanningDayActivity

 SubClassOf:

 acao:TasksByActivities

Class: mcao:ArtifactsUsage

 SubClassOf:

 acao:Inferred

Class: mcao:ViewElement

 Annotations:

 rdfs:label "View Element",

 rdfs:comment "Represents, usually XML based, code that is used to describe

any user interface element such as text box, list box, button etc."@en

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

314

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:hasArtifactType some acao:Code,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 mcao:isSimilarToArtifact some mcao:ViewElement,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 mcao:isSimilarToArtifact only mcao:ViewElement,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask

Class: wpcao:CSCode

 Annotations:

 rdfs:label "CS Code",

 rdfs:comment "C# code developed during the implementation activities."@en

 SubClassOf:

 acao:isPartOfArtifact only wpcao:MobileApplication,

 acao:isPartOfArtifact some wpcao:MobileApplication,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 mcao:SourceCode

Class: acao:OtherArtifacts

 EquivalentTo:

 acao:Artifact

 and (acao:hasArtifactOrigin some acao:OtherArtifact)

 SubClassOf:

 mcao:ArtifactsOrigin

Class: acao:AcceptanceTestingTask

 Annotations:

 rdfs:comment "The purpose of this task is to verify that the requirements

the customer has set for the software are implemented correctly."@en,

 rdfs:label "Acceptance Testing Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity>

315

 SubClassOf:

 acao:isPerformedIn only acao:ReleaseDayActivity,

 acao:isPerformedIn some acao:ReleaseDayActivity,

 acao:Task

Class: acao:ReleaseDayTasks

 EquivalentTo:

 acao:isPerformedIn some acao:ReleaseDayActivity

 SubClassOf:

 acao:TasksByActivities

Class: acao:DataModelMobile

 Annotations:

 rdfs:comment "Entity-Relationship-Attribute model of the mobile database.

It is presented in SADD document."@en,

 rdfs:label "Data Model (Mobile)"

 SubClassOf:

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:hasArtifactType some acao:Model,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice),

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactType only acao:Model,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 mcao:isSimilarToArtifact only acao:DataModelMobile,

 mcao:isSimilarToArtifact some acao:DataModelMobile

Class: mcao:MobileApplication

 Annotations:

316

 rdfs:comment "The mobile application targeting one specific platform that

is created in the development process."@en,

 rdfs:label "Mobile Application"

 SubClassOf:

 not (acao:isPartOfArtifact some acao:Artifact),

 not (acao:isUsedByTask some acao:Task),

 acao:isUpdatedByTask only acao:PublishApplicationTask,

 acao:isUpdatedByTask some acao:PublishApplicationTask,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 mcao:hasReusabilityLevel some mcao:None,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:hasArtifactType some acao:Product,

 acao:hasArtifactType only acao:Product

Class: acao:ScopeDefinitionTasks

 EquivalentTo:

 acao:isPerformedIn some acao:ScopeDefinitionActivity

 SubClassOf:

 acao:TasksByActivities

Class: acao:ApplicationDescription

 Annotations:

 rdfs:comment "Short but important description used for publishing process.

It includes the information on application, category, authors

etc."@en,

 rdfs:label "Application Description Android"

 SubClassOf:

 mcao:AppDescription,

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:DeploymentPackage,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact only

 (acao:DeploymentPackage

 or acao:SADDDocument)

Class: acao:WorkingDayActivity

 Annotations:

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>,

 rdfs:label "Working Day",

317

 rdfs:comment "The purpose of this stage is to implement the system

functionality planned during the planning day. The development team

focuses on highest priority functionality as defined by the customer.

Working Days are used in Productionize, Stabilize and System Test &

Fix phases. One iteration may contain 1-n Working days. Working Days

form the actual development days of the iteration."@en

 SubClassOf:

 acao:consistsOf only

 (acao:ContinuousIntegrationPractice

 or acao:InformCustomerTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice

 or acao:WrapUpTask),

 acao:consistsOf some acao:RefactoringPractice,

 acao:isPerformedIn some acao:Productionize,

 acao:isPerformedIn some acao:SystemTestAndFix,

 acao:isPerformedIn some acao:Stabilize,

 acao:consistsOf some acao:WrapUpTask,

 acao:isPerformedIn only

 (acao:Productionize

 or acao:Stabilize

 or acao:SystemTestAndFix),

 acao:consistsOf some acao:ContinuousIntegrationPractice,

 acao:consistsOf some acao:PairProgrammingPractice,

 acao:consistsOf some acao:TestDrivenDevelopmentPractice,

 acao:consistsOf some acao:InformCustomerTask,

 acao:Activity

Class: acao:UsedAndProducedDocuments

 EquivalentTo:

 acao:Artifact

 and (not (acao:isPartOfArtifact some acao:Artifact))

 and (acao:hasArtifactType some acao:Document)

 SubClassOf:

 mcao:ArtifactsUsage

Class: acao:FinalProducts

 EquivalentTo:

 acao:Artifact

 and (not (acao:BorrowedArtifacts))

 and (not (acao:isPartOfArtifact some acao:Artifact))

 and (acao:hasArtifactType some acao:Product)

 SubClassOf:

 mcao:ArtifactsUsage

Class: acao:WorkingDayTasks

 EquivalentTo:

 acao:isPerformedIn some acao:WorkingDayActivity

318

 SubClassOf:

 acao:TasksByActivities

Class: acao:SystemTestAndFixActivities

 EquivalentTo:

 acao:isPerformedIn some acao:SystemTestAndFix

 SubClassOf:

 acao:ActivitiesByPhases

Class: mcao:NotreusableArtifacts

 EquivalentTo:

 acao:Artifact

 and (mcao:hasReusabilityLevel some mcao:None)

 SubClassOf:

 mcao:ArtifactsReusability

 DisjointWith:

 mcao:ReusableArtifacts

Class: acao:ReleaseDayActivity

 Annotations:

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>,

 rdfs:comment "The purpose in this stage is to make a fully working release

of the system under development."@en,

 rdfs:label "Release Day"

 SubClassOf:

 acao:isPerformedIn some acao:Productionize,

 acao:consistsOf some acao:AcceptanceTestingTask,

 acao:consistsOf some acao:ReleaseCeremoniesTask,

 acao:consistsOf some acao:SystemIntegrationTask,

 acao:isPerformedIn some acao:SystemTestAndFix,

 acao:isPerformedIn some acao:Stabilize,

 acao:isPerformedIn only

 (acao:Productionize

 or acao:Stabilize

 or acao:SystemTestAndFix),

 acao:Activity,

 acao:consistsOf only

 (acao:AcceptanceTestingTask

 or acao:PreReleaseTestingTask

 or acao:ReleaseCeremoniesTask

 or acao:SystemIntegrationTask),

 acao:consistsOf some acao:PreReleaseTestingTask

319

Class: wpcao:ThrowAwayPrototype

 Annotations:

 rdfs:label "Throw Away Prototype WP",

 rdfs:comment "Project created to test development environment and connected

devices. This project is discarded."@en

 SubClassOf:

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 mcao:ThrowAwayPrototype

Class: mcao:UMLClassSDK

 Annotations:

 rdfs:label "SDK UML Class ",

 rdfs:comment "UML model element used to describe an existing platform

specific class that is to be used."@en

 SubClassOf:

 acao:isUsedByTask some acao:RequirementsAnalysisTask,

 acao:isPartOfArtifact only acao:ClassModelMobile,

 acao:hasArtifactType only acao:ModelElement,

 mcao:isSimilarToArtifact some mcao:UMLClassSDK,

 acao:isPartOfArtifact some acao:ClassModelMobile,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:InitialRequirementsAnalysisTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask some acao:PairProgrammingPractice,

 mcao:isSimilarToArtifact only mcao:UMLClassSDK,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactType some acao:ModelElement,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:PreReleaseTestingTask

 Annotations:

 acao:inActivity "The purpose of this task is to make sure that the software

being produced is ready for the Acceptance Testing and release."@en,

 rdfs:label "Pre-release Testing Task",

320

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity>

 SubClassOf:

 acao:isPerformedIn only acao:ReleaseDayActivity,

 acao:isPerformedIn some acao:ReleaseDayActivity,

 acao:Task

Class: wpcao:ExampleCode

 Annotations:

 rdfs:comment "WP example code on different topics found on the internet

from various sources."@en,

 rdfs:label "Example Code WP"

 SubClassOf:

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 mcao:ExampleCode

Class: wpcao:XAMLDescription

 Annotations:

 rdfs:label "XAML Description WP",

 rdfs:comment "XML based XAML code describing application layout and layout

elements."@en

 SubClassOf:

 mcao:AppResource,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only acao:MobileApplication,

 acao:isPartOfArtifact some acao:MobileApplication,

 mcao:isSimilarToArtifact some acao:XMLResources,

 mcao:isSimilarToArtifact only acao:XMLResources

Class: acao:MobileApplication

 Annotations:

 rdfs:comment "The mobile application created in the development

process."@en,

 rdfs:label "Mobile Application Android"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:MobileApplication,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:ScopeDefinitionActivity

 Annotations:

 rdfs:label "Scope Definition",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>,

321

 rdfs:comment "The purpose of this stage is to define the goals for the

incipient project regarding both the contents as well as the timeline

of the project."@en

 SubClassOf:

 acao:consistsOf only

 (acao:InitialProjectPlanningTask

 or acao:InitialRequirementsCollectionTask),

 acao:isPerformedIn some acao:Explore,

 acao:consistsOf some acao:InitialRequirementsCollectionTask,

 acao:Activity,

 acao:consistsOf some acao:InitialProjectPlanningTask,

 acao:isPerformedIn only acao:Explore

Class: acao:Inferred

 Annotations:

 rdfs:comment "Inferred knowledge from the ontology description. "@en

Class: mcao:AppIcon

 Annotations:

 rdfs:label "App Icon",

 rdfs:comment "Application icon is designed as needed for publishing

process. It is platform specific artifact."@en

 SubClassOf:

 not (acao:isUsedByTask some acao:Task),

 acao:isCreatedByTask some acao:PublishApplicationTask,

 mcao:isSimilarToArtifact only mcao:AppIcon,

 acao:hasArtifactType only acao:Resource,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:isCreatedByTask only acao:PublishApplicationTask,

 acao:Artifact,

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType some acao:Resource,

 mcao:isSimilarToArtifact some mcao:AppIcon,

 mcao:hasReusabilityLevel only mcao:Partially

Class: acao:ProjectEstablishmentActivity

 Annotations:

 rdfs:label "Project Establishment",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>,

 rdfs:comment "The purpose of this stage is to define and allocate the

resources (both technical and human) needed for incipient software

development project. Also the establishment of the baseline process

for the project is an important task of this stage. The Project

Establishment phase is in order to make sure that the project team can

start the actual software development without delays caused by, for

example, missing tools and proper training. "@en

 SubClassOf:

 acao:isPerformedIn some acao:Explore,

 acao:consistsOf some acao:ProcessEstablishmentTask,

322

 acao:consistsOf only

 (acao:ArchitectureLineDefinitionTask

 or acao:ProcessEstablishmentTask),

 acao:Activity,

 acao:isPerformedIn only acao:Explore,

 acao:consistsOf some acao:ArchitectureLineDefinitionTask

Class: mcao:ArtifactsReusability

 SubClassOf:

 acao:Inferred

Class: acao:WebServiceSpecification

 Annotations:

 rdfs:label "Web Service Specification",

 rdfs:comment "Contains information on exposed web services along with

available methods, their parameters and other communication

elements."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 mcao:isSimilarToArtifact some acao:WebServiceSpecification,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask),

 mcao:isSimilarToArtifact only acao:WebServiceSpecification

Class: acao:ExploreActivities

 EquivalentTo:

323

 acao:isPerformedIn some acao:Explore

 SubClassOf:

 acao:ActivitiesByPhases

Class: acao:ApplicationScreenshot

 Annotations:

 rdfs:comment "Application screenshots are created as needed for publishing

process."@en,

 rdfs:label "Application Screenshot Android"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:AppScreenshot,

 acao:isPartOfArtifact some acao:DeploymentPackage,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact only

 (acao:DeploymentPackage

 or acao:SADDDocument)

Class: acao:StabilizeActivities

 EquivalentTo:

 acao:isPerformedIn some acao:Stabilize

 SubClassOf:

 acao:ActivitiesByPhases

Class: acao:ArtifactOrigin

 Annotations:

 rdfs:comment "Classification of artifacts in types according to their

origin."@en

 EquivalentTo:

 acao:AndroidArtifact

 or acao:MethodologicalArtifact

 or acao:OtherArtifact

 or acao:ServiceArtifact

 or wpcao:WindowsPhoneArtifact

Class: acao:AcceptanceTestReviewTask

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>,

 rdfs:comment "The purpose of this task is to make sure that the team

understands the requirements of the system correctly. This task also

allows the team members to comment on the Acceptance Tests to improve

their quality."@en,

 rdfs:label "Acceptance Test Review Task"

 SubClassOf:

324

 acao:isPerformedIn only acao:PlanningDayActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayActivity

Class: mcao:DevelopmentEnvironment

 Annotations:

 rdfs:label "Development Environment",

 rdfs:comment "Each platform requests specific andd native development

environment for best results."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 not (acao:isUsedByTask some acao:Task),

 not (acao:isUpdatedByTask some acao:Task),

 acao:isCreatedByTask some acao:EnvironmentSetUpTask,

 mcao:hasReusabilityLevel some mcao:None,

 acao:hasArtifactType only acao:Software,

 acao:hasArtifactType some acao:Software,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isCreatedByTask only acao:EnvironmentSetUpTask,

 acao:hasArtifactOrigin some acao:OtherArtifact

Class: acao:ServiceArtifact

 Annotations:

 rdfs:comment "Defines class of artifacts that are created in relation to

Web Service development."@en,

 rdfs:label "Service Artifact"

 SubClassOf:

 acao:ArtifactOrigin

Class: acao:SADDDocument

 Annotations:

 rdfs:comment "Contains the technical documentation on the developed

product."@en,

 rdfs:label "Software Architecture And Design Description Document"

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isUpdatedByTask only

 (acao:DocumentationWrapUpTask

 or acao:WrapUpTask),

 acao:isUsedByTask some acao:WrapUpTask,

 mcao:hasReusabilityLevel some mcao:None,

 acao:hasArtifactType some acao:Document,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUpdatedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel only mcao:None,

325

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Document,

 acao:isUsedByTask only

 (acao:DocumentationWrapUpTask

 or acao:WrapUpTask),

 acao:isCreatedByTask some acao:ArchitectureLinePlanningTask,

 acao:isCreatedByTask only acao:ArchitectureLinePlanningTask

Class: acao:MeasurementPlan

 Annotations:

 rdfs:label "Measurement Plan",

 rdfs:comment "Includes the metrics and plan for monitoring of the project.

In our case we recorded only the duration of activities and compared

them with plan. This document is part of project plan."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isUsedByTask some acao:PostIterationWorkshopTask,

 acao:isUsedByTask only

 (acao:IterationPlanningTask

 or acao:PostIterationWorkshopTask),

 acao:isPartOfArtifact only acao:ProjectPlan,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isPartOfArtifact some acao:ProjectPlan,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 mcao:isSimilarToArtifact only acao:MeasurementPlan,

 acao:isCreatedByTask some acao:ProcessEstablishmentTask,

 acao:isCreatedByTask only acao:ProcessEstablishmentTask,

 acao:isUpdatedByTask only acao:WrapUpTask,

 mcao:isSimilarToArtifact some acao:MeasurementPlan

Class: acao:InitializeActivities

 EquivalentTo:

 acao:isPerformedIn some acao:Initialize

 SubClassOf:

 acao:ActivitiesByPhases

Class: acao:AcceptanceTestTemplateSheet

 Annotations:

 rdfs:label "Acceptance Test Template Sheet",

 rdfs:comment "Mobile-D acceptance test template sheet "@en

 SubClassOf:

 acao:isPartOfArtifact some acao:AcceptanceTest,

326

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask some acao:InitialRequirementsAnalysisTask,

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType some acao:Template,

 acao:isUsedByTask some acao:AcceptanceTestGenerationTask,

 acao:isUsedByTask only

 (acao:AcceptanceTestGenerationTask

 or acao:InitialRequirementsAnalysisTask),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isPartOfArtifact some acao:MobileDProcessLibrary,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isPartOfArtifact only

 (acao:AcceptanceTest

 or acao:MobileDProcessLibrary),

 acao:hasArtifactType only acao:Template,

 mcao:isSimilarToArtifact some acao:AcceptanceTestTemplateSheet,

 mcao:isSimilarToArtifact only acao:AcceptanceTestTemplateSheet,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:WrapUpTask

 Annotations:

 rdfs:comment "The purpose of Wrap-up is to improve communication within the

team and to measure the progress of the iteration. Each working day

starts with a Wrap-up meeting, where the tasks to be implemented are

decided and discussed. Another Wrap-up meeting is held at the end of

day to reviewthe progress of teams and tasks."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>,

 rdfs:label "Wrap-up Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>

 SubClassOf:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn some acao:WorkingDayActivity,

 acao:isPerformedIn only

 (acao:WorkingDayActivity

 or acao:WorkingDayIn0IterationActivity)

Class: wpcao:MicrosoftPhoneControlsToolkit

 Annotations:

 rdfs:label "Microsoft Phone Controls Toolkit",

 rdfs:comment "Library containing the classes necessary for adding some

basic and advanced controls in Windows Phone application."@en

 SubClassOf:

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 mcao:AppReference,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

327

Class: wpcao:ApplicationIcon

 Annotations:

 rdfs:comment "Application icon is designed as needed for publishing

process."@en,

 rdfs:label "Application Icon WP"

 SubClassOf:

 mcao:AppIcon,

 acao:isPartOfArtifact some wpcao:DeploymentPackage,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only wpcao:DeploymentPackage

Class: mcao:UnitTest

 Annotations:

 rdfs:comment "Unit test tests a single unit of platform specific code. It

is created in separate project and references main project while

performing different assertions."@en,

 rdfs:label "Unit Test"

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:hasArtifactType some acao:Code,

 mcao:isSimilarToArtifact some mcao:UnitTest,

 acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isUsedByTask only

 (acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemTestTask),

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 mcao:isSimilarToArtifact only mcao:UnitTest,

 acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask only acao:PairProgrammingPractice

Class: acao:AndroidArtifacts

 EquivalentTo:

 acao:Artifact

 and (acao:hasArtifactOrigin some acao:AndroidArtifact)

 SubClassOf:

 mcao:ArtifactsOrigin

Class: mcao:ViewController

 Annotations:

328

 rdfs:label "View Controller",

 rdfs:comment "Represents platform specific class that controlls the

application view."@en

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:hasArtifactType some acao:Code,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 mcao:isSimilarToArtifact only mcao:ViewController,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 mcao:isSimilarToArtifact some mcao:ViewController,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask

Class: mcao:ReuseLevel

 EquivalentTo:

 mcao:Completely

 or mcao:None

 or mcao:Partially

Class: wpcao:SilverlightMapControl

 Annotations:

 rdfs:comment "Library containing the classes necessary if using Bing Maps

in WP application."@en,

 rdfs:label "Silverlight Map Control"

 SubClassOf:

 mcao:MapsSDK,

329

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:Layout

 Annotations:

 rdfs:comment "Represents XML code that is used to describe user interface

form or screen."@en,

 rdfs:label "Layout"

 SubClassOf:

 mcao:View,

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:XMLResources,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact only acao:XMLResources

Class: acao:DevelopmentUnrelatedSoftwareTool

 Annotations:

 rdfs:comment "These software tools support the main operations performed by

project team. For example these include office suit, pdf reader, image

editor etc."@en,

 rdfs:label "Development Unrelated Software Tool"

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 mcao:hasReusabilityLevel some mcao:Completely,

 not (acao:isUsedByTask some acao:Task),

 mcao:hasReusabilityLevel only mcao:Completely,

 mcao:isSimilarToArtifact only acao:DevelopmentUnrelatedSoftwareTool,

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType only acao:Software,

 mcao:isSimilarToArtifact some acao:DevelopmentUnrelatedSoftwareTool,

 acao:hasArtifactType some acao:Software,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:Artifact,

 acao:isCreatedByTask some acao:ProcessEstablishmentTask,

 acao:isCreatedByTask only acao:ProcessEstablishmentTask,

 acao:hasArtifactOrigin some acao:OtherArtifact

Class: wpcao:DevelopmentEnvironment

 Annotations:

 rdfs:comment "Set of applications used for Windows Phone development and

integrated in Visual Studio."@en,

 rdfs:label "Development Environment WP"

 SubClassOf:

 mcao:DevelopmentEnvironment

Class: acao:Activity

 Annotations:

330

 rdfs:comment "In Mobile-D, activities are sometimes called stages. The

activity represents set of tasks that should be done in order to

achieve the goals that are defined by that activity/stage."

Class: acao:StakeholderEstablishmentTasks

 EquivalentTo:

 acao:isPerformedIn some acao:StakeholderEstablishmentActivity

 SubClassOf:

 acao:TasksByActivities

Class: mcao:AppPrototypeFunctionality

 Annotations:

 rdfs:label "App Prototype Functionality",

 rdfs:comment "Developed platform specific functionality during the trial

day. It prototypes some of the main application functionalities and is

used to define the basic approach for implementing the similar

functionalities in other iterations."@en

 SubClassOf:

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:RefactoringPractice),

 acao:isUsedByTask some acao:PostIterationWorkshopTask,

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask some acao:RequirementsAnalysisTask,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:hasArtifactType some acao:Code,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isPartOfArtifact some acao:MobileApplication,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isPartOfArtifact only acao:MobileApplication,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PostIterationWorkshopTask

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask

 or acao:TestDrivenDevelopmentPractice)

Class: acao:SystemTestActivity

 Annotations:

 rdfs:comment "The purpose of System Test & Fix is to see if the produced

system implements the customer defined functionality correctly,

331

provide the project team feedback on the systems functionality and fix

the found defects."@en,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>,

 rdfs:label "System Test & Fix"

 SubClassOf:

 acao:consistsOf only acao:SystemTestTask,

 acao:isPerformedIn some acao:SystemTestAndFix,

 acao:consistsOf some acao:SystemTestTask,

 acao:Activity,

 acao:isPerformedIn only acao:SystemTestAndFix

Class: acao:ArchitectureLinePlanningTask

 Annotations:

 rdfs:label "Architecture Line Planning Task",

 rdfs:comment "The purpose of this task is to prepare all

criticalarchitectural issues so that so that they all are in full

readiness for a systematicarchitectural growth when implementing

requirements selected by the customerduring forthcoming project

phases."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn

0IterationActivity>

 SubClassOf:

 acao:isPerformedIn only acao:PlanningDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayIn0IterationActivity

Class: acao:GooglePlayServices

 Annotations:

 rdfs:comment "Google library containing the classes necessary if using

Google Maps."@en,

 rdfs:label "Google Play Services"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:MapsSDK,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:Driver

 Annotations:

 rdfs:label "Driver Android",

 rdfs:comment "Set of drivers used to install the device connectivity for

testing purposes."@en

 SubClassOf:

 mcao:TestDeviceDriver

Class: wpcao:BingMapsKey

332

 Annotations:

 rdfs:label "Bing Maps Key",

 rdfs:comment "Microsoft license identifying the developer as unique person.

This key is application specific and is used when using Silverlight

Map Control."@en

 SubClassOf:

 mcao:MapsKey,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:MethodologicalArtifact

 Annotations:

 rdfs:label "Methodological Artifact",

 rdfs:comment "Defines class of artifacts that are created in relation to

Mobile-D implementation."@en

 SubClassOf:

 acao:ArtifactOrigin

Class: acao:RequirementsAnalysisTask

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>,

 rdfs:label "Requirements Analysis Task",

 rdfs:comment "The purpose of this task is to carefully prioritize and

analyze the requirements selected for each iteration."@en

 SubClassOf:

 acao:isPerformedIn only acao:PlanningDayActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayActivity

Class: mcao:None

 SubClassOf:

 mcao:ReuseLevel

Class: acao:ProjectSetupTasks

 EquivalentTo:

 acao:isPerformedIn some acao:ProjectSetUpActivity

 SubClassOf:

 acao:TasksByActivities

Class: mcao:CompletlyResuableArtifacts

 EquivalentTo:

 acao:Artifact

333

 and (mcao:hasReusabilityLevel some mcao:Completely)

 SubClassOf:

 mcao:ArtifactsReusability

Class: acao:Stabilize

 Annotations:

 rdfs:label "Stabilize Phase",

 rdfs:comment "The Productionize and Stabilize phases are executed

iteratively in order to develop all other features of the mobile

product. The Stabilize phase has the goal to finalize the

implementation, including integrating subsystems if needed. As this

phase can contain additional programing and development, the

activities are very similar to activities in productionize phase. Only

additional activity concerns documentation wrap-up. Iterations should

result in working piece of functionality at the user level."@en

 SubClassOf:

 acao:consistsOf some acao:ReleaseDayActivity,

 acao:consistsOf only

 (acao:DocumentationWrapUpActivity

 or acao:PlanningDayActivity

 or acao:ReleaseDayActivity

 or acao:WorkingDayActivity),

 acao:consistsOf some acao:DocumentationWrapUpActivity,

 acao:consistsOf some acao:PlanningDayActivity,

 acao:Phase,

 acao:consistsOf some acao:WorkingDayActivity

Class: acao:ArchitectureLinePlan

 Annotations:

 rdfs:comment "Contains the information on planned system architecture.

Created after the prototyping is finished. This document is part of

SADD document."@en,

 rdfs:label "Architecture Line Plan"

 SubClassOf:

 not (acao:isUsedByTask some acao:Task),

 acao:isPartOfArtifact some acao:SADDDocument,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask,

 mcao:isSimilarToArtifact some acao:ArchitectureLinePlan,

 acao:isUpdatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact only acao:ArchitectureLinePlan,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isCreatedByTask some acao:ArchitectureLinePlanningTask,

 acao:isCreatedByTask only acao:ArchitectureLinePlanningTask

334

Class: acao:OtherArtifact

 Annotations:

 rdfs:comment "Defines class of artifacts that are not related to Android

development or Mobile-D implementation or Web Service

development."@en,

 rdfs:comment "Defines class of artifacts that are not related to Windows

Phone development or Mobile-D implementation or Web Service

development."@en,

 rdfs:label "Other Artifact"

 SubClassOf:

 acao:ArtifactOrigin

Class: acao:JavaCode

 Annotations:

 rdfs:label "Java Code",

 rdfs:comment "Java code developed during the implementation activities."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:SourceCode,

 acao:isPartOfArtifact only acao:MobileApplication,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:MobileApplication

Class: acao:Code

 Annotations:

 rdfs:comment "Represents any artifact created during the implementation and

is written in any programming or description language."@en

 SubClassOf:

 acao:ArtifactType

Class: wpcao:DeploymentPackage

 Annotations:

 rdfs:label "Deployment Package WP",

 rdfs:comment "XAP file created for publishing purposes."@en

 SubClassOf:

 mcao:DeploymentPackage,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:ExampleCode

 Annotations:

 rdfs:comment "Android example code on different topics found on the

internet from various sources."@en,

 rdfs:label "Example Code Android"

 SubClassOf:

335

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:ExampleCode,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: mcao:AppDescription

 Annotations:

 rdfs:label "App Description",

 rdfs:comment "Short but important description used for publishing process.

It includes the information on application, category, authors etc. Due

to different app store requirements, there might be some differences

among platforms."@en,

 mcao:NOTICE "Closure axiom for isPartOfArtifact is used in leaf

elements."@en

 SubClassOf:

 acao:isCreatedByTask only acao:DocumentationWrapUpTask,

 acao:isPartOfArtifact some acao:SADDDocument,

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType some acao:Resource,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isCreatedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactType only acao:Resource,

 mcao:isSimilarToArtifact only mcao:AppDescription,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask only acao:PublishApplicationTask,

 mcao:isSimilarToArtifact some mcao:AppDescription,

 acao:isUsedByTask some acao:PublishApplicationTask

Class: wpcao:UnitTest

 Annotations:

 rdfs:label "Unit Test WP",

 rdfs:comment "Unit test tests a single unit of code. It is created in

separate project and references main project while performing

different assertions."@en

 SubClassOf:

 mcao:UnitTest,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:GoogleAPIKey

 Annotations:

 rdfs:comment "Google license identifying the developer as unique person.

This key is application specific and is used when using Google Maps

API."@en,

 rdfs:label "Google API Key"

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:MapsKey,

 acao:hasArtifactOrigin some acao:AndroidArtifact

336

Class: mcao:AppReference

 Annotations:

 rdfs:comment "Referenced platform specific libraries providing additional

development functionality."@en,

 rdfs:label "App Reference"

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:hasArtifactType some acao:Code,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:EnvironmentSetUpTask

 or acao:PairProgrammingPractice

 or acao:PublishApplicationTask

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:RefactoringPractice,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isUsedByTask some acao:PublishApplicationTask,

 acao:isUsedByTask some acao:EnvironmentSetUpTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:ProjectPlanGanttChart

 Annotations:

 rdfs:label "Project Plan Gantt Chart",

 rdfs:comment "Model containing the graphical information on project plan

iterations, activities and their duration. It is used in Project plan

document."@en

 SubClassOf:

 mcao:isSimilarToArtifact some acao:ProjectPlanGanttChart,

 mcao:hasReusabilityLevel some mcao:Completely,

 acao:hasArtifactType some acao:Model,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUpdatedByTask only

 (acao:InitialRequirementsAnalysisTask

 or acao:PostIterationWorkshopTask

 or acao:ProcessEstablishmentTask),

 mcao:isSimilarToArtifact only acao:ProjectPlanGanttChart,

 acao:isUsedByTask some acao:ArchitectureLineDefinitionTask,

 acao:isCreatedByTask some acao:InitialProjectPlanningTask,

 acao:hasArtifactType only acao:Model,

 acao:isUpdatedByTask some acao:ProcessEstablishmentTask,

 acao:isPartOfArtifact only acao:ProjectPlan,

 acao:isUsedByTask some acao:ArchitectureLinePlanningTask,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask,

337

 acao:isPartOfArtifact some acao:ProjectPlan,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUsedByTask only

 (acao:ArchitectureLineDefinitionTask

 or acao:ArchitectureLinePlanningTask

 or acao:IterationPlanningTask

 or acao:ProcessEstablishmentTask),

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isUsedByTask some acao:ProcessEstablishmentTask,

 acao:isCreatedByTask only acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask some acao:PostIterationWorkshopTask

Class: wpcaoDriver

 Annotations:

 rdfs:label "Driver WP",

 rdfs:comment "Set of drivers used to install the device connectivity for

testing purposes."@en

 SubClassOf:

 mcao:TestDeviceDriver

Class: mcao:TestDeviceDriver

 Annotations:

 rdfs:label "Test Device Driver",

 rdfs:comment "Driver used to install the specific device connectivity for

testing purposes."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 not (acao:isUsedByTask some acao:Task),

 not (acao:isUpdatedByTask some acao:Task),

 mcao:hasReusabilityLevel some mcao:None,

 acao:isCreatedByTask some acao:EnvironmentSetUpTask,

 acao:hasArtifactType only acao:Software,

 acao:hasArtifactType some acao:Software,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isCreatedByTask only acao:EnvironmentSetUpTask,

 acao:hasArtifactOrigin some acao:OtherArtifact

Class: acao:ProjectPlan

 Annotations:

 rdfs:label "Project Plan",

 rdfs:comment "Contains all information on project including definition of

customer group, scope, planned activities and their duration, plans on

documentation etc. Aligned with agile practices, this document is also

updated during the iterations."@en

 SubClassOf:

 acao:isUsedByTask some acao:ArchitectureLineDefinitionTask,

338

 acao:isCreatedByTask some acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask some acao:ProcessEstablishmentTask,

 acao:isUpdatedByTask only

 (acao:CustomerEstablishmentTask

 or acao:InitialRequirementsAnalysisTask

 or acao:PostIterationWorkshopTask

 or acao:ProcessEstablishmentTask),

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:hasArtifactType some acao:Document,

 acao:isUsedByTask some acao:ArchitectureLinePlanningTask,

 acao:isUsedByTask some acao:IterationPlanningTask,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUsedByTask only

 (acao:ArchitectureLineDefinitionTask

 or acao:ArchitectureLinePlanningTask

 or acao:IterationPlanningTask

 or acao:ProcessEstablishmentTask),

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:hasArtifactType only acao:Document,

 mcao:isSimilarToArtifact only acao:ProjectPlan,

 mcao:isSimilarToArtifact some acao:ProjectPlan,

 acao:isUsedByTask some acao:ProcessEstablishmentTask,

 acao:isCreatedByTask only acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask some acao:CustomerEstablishmentTask,

 acao:isUpdatedByTask some acao:PostIterationWorkshopTask

Class: acao:UIIllustrations

 Annotations:

 rdfs:label "UI Ilustrations",

 rdfs:comment "Describes the illustrations of mobile application user

interface. It is part of SADD document."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 acao:isUsedByTask some acao:AcceptanceTestingTask,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask only acao:RequirementsAnalysisTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:isUsedByTask some acao:AcceptanceTestGenerationTask,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isPartOfArtifact only acao:SADDDocument,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isUsedByTask only

 (acao:AcceptanceTestGenerationTask

339

 or acao:AcceptanceTestingTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask

Class: wpcao:WindowsPhoneArtifact

 Annotations:

 rdfs:label "Windows Phone Artifact",

 rdfs:comment "Defines class of artifacts that are created in relation to

Windows Phone development."@en

 SubClassOf:

 acao:ArtifactOrigin

Class: acao:WebDevelopmentEnvironment

 Annotations:

 rdfs:comment "The web application development and hosting environment had

to be set up."@en,

 rdfs:label "Web Development Environment"

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 not (acao:isUsedByTask some acao:Task),

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isCreatedByTask some acao:EnvironmentSetUpTask,

 acao:hasArtifactType only acao:Software,

 mcao:isSimilarToArtifact only acao:WebDevelopmentEnvironment,

 acao:hasArtifactType some acao:Software,

 not (acao:isPartOfArtifact some acao:Artifact),

 mcao:isSimilarToArtifact some acao:WebDevelopmentEnvironment,

 acao:Artifact,

 acao:isCreatedByTask only acao:EnvironmentSetUpTask,

 acao:hasArtifactOrigin some acao:OtherArtifact

Class: acao:StoryCard

 Annotations:

 rdfs:label "Story Card",

 rdfs:comment "Basic documentation card containing information on one

feature that is implemented. It is defined during the planning day but

is refined during the implementation and wrap-up. It is part of the

Product backlog document."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isCreatedByTask only acao:IterationPlanningTask,

 mcao:isSimilarToArtifact only acao:StoryCard,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isPartOfArtifact only acao:ProductBacklog,

340

 acao:isPartOfArtifact some acao:ProductBacklog,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:WrapUpTask,

 acao:isUsedByTask some acao:AcceptanceTestGenerationTask,

 mcao:isSimilarToArtifact some acao:StoryCard,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask only

 (acao:AcceptanceTestGenerationTask

 or acao:PairProgrammingPractice

 or acao:TestDrivenDevelopmentPractice

 or acao:WrapUpTask),

 acao:isUpdatedByTask only acao:WrapUpTask,

 acao:isCreatedByTask some acao:IterationPlanningTask

Class: wpcao:MobileApplication

 Annotations:

 rdfs:comment "The mobile application created in the development

process."@en,

 rdfs:label "Mobile Application WP"

 SubClassOf:

 mcao:MobileApplication,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:InitialRequirementsDocument

 Annotations:

 rdfs:comment "Created according to product proposal, but later updated with

information on stakeholders and functional system requirements. It is

also updated during the planning phase in 0-iteration and subsequent

iterations."@en,

 rdfs:label "Initial Requirements Document"

 SubClassOf:

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask some acao:ArchitectureLineDefinitionTask,

 acao:isUsedByTask some acao:InitialRequirementsAnalysisTask,

 mcao:isSimilarToArtifact some acao:InitialRequirementsDocument,

 acao:isUsedByTask some acao:InitialProjectPlanningTask,

 acao:isUsedByTask some acao:AcceptanceTestGenerationTask,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:ArchitectureLinePlanningTask,

 acao:hasArtifactType some acao:Document,

 acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:Artifact,

 acao:hasArtifactType only acao:Document,

 acao:isCreatedByTask some acao:InitialRequirementsCollectionTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 acao:isUsedByTask some acao:RequirementsAnalysisTask,

341

 acao:isUpdatedByTask some acao:AcceptanceTestingTask,

 mcao:isSimilarToArtifact only acao:InitialRequirementsDocument,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUsedByTask only

 (acao:AcceptanceTestGenerationTask

 or acao:AcceptanceTestReviewTask

 or acao:ArchitectureLineDefinitionTask

 or acao:ArchitectureLinePlanningTask

 or acao:DocumentationWrapUpTasks

 or acao:InitialProjectPlanningTask

 or acao:InitialRequirementsAnalysisTask

 or acao:RequirementsAnalysisTask

 or acao:SystemTestTask),

 acao:isCreatedByTask only acao:InitialRequirementsCollectionTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUpdatedByTask only

 (acao:AcceptanceTestingTask

 or acao:InitialRequirementsAnalysisTask),

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTasks,

 acao:isUsedByTask some acao:AcceptanceTestReviewTask

Class: acao:AcceptanceTestGenerationTask

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>,

 rdfs:comment "The purpose of this task is to support the verification of

the requirements the customer has set for the software. This task also

acts as a communication tool between the customer and the development

team. "@en,

 rdfs:label "Acceptance Test Review Task"

 SubClassOf:

 acao:isPerformedIn only acao:PlanningDayActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayActivity

Class: acao:Template

 Annotations:

 rdfs:comment "Represents templates that are used to create some artifacts.

"@en

 SubClassOf:

 acao:ArtifactType

Class: wpcao:ResourceFile

 Annotations:

 rdfs:label "Resource File WP",

 rdfs:comment "Represent code that is used to provide application with

resources (strings, images, icons, audio, files and other). We used it

to provide the application with localized translation for two

languages."@en

342

 SubClassOf:

 mcao:isSimilarToArtifact some acao:LocalizationString,

 acao:isPartOfArtifact some wpcao:CSCode,

 acao:isPartOfArtifact only wpcao:CSCode,

 mcao:AppResource,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 mcao:isSimilarToArtifact only acao:LocalizationString

Class: mcao:APIDocumentation

 Annotations:

 rdfs:label "API Documentation",

 rdfs:comment "API Documentation is platform specific set of materials and

code examples that could be used by developers."@en

 SubClassOf:

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:RefactoringPractice,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Example,

 acao:hasArtifactType some acao:Example,

 mcao:hasReusabilityLevel only mcao:None,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:Artifact,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 not (acao:isCreatedByTask some acao:Task)

Class: mcao:DeploymentPackage

 Annotations:

 rdfs:comment "Packege containing all files (including the application

itself) necessary for publishing purposes. The artifact is platform

specific."@en,

 rdfs:label "Deployment Package"

 SubClassOf:

 acao:isCreatedByTask some acao:PublishApplicationTask,

 not (acao:isUsedByTask some acao:Task),

 acao:hasArtifactType only acao:Resource,

 acao:isCreatedByTask only acao:PublishApplicationTask,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType some acao:Resource,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isPartOfArtifact only acao:MobileApplication,

343

 acao:isPartOfArtifact some acao:MobileApplication

Class: acao:AndroidActivity

 Annotations:

 rdfs:label "Android Activity",

 rdfs:comment "Represents java class that inherits Android Activity class

with the purpose of controlling the application view."@en

 SubClassOf:

 mcao:ViewController,

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:JavaCode,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact only acao:JavaCode

Class: acao:ContinuousIntegrationPractice

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>,

 rdfs:comment "The purpose of Continuous integration is to continuously

integrate new code with the existing code in a code repository. By

integrating continuously massive integrations can be avoided that

would otherwise take a lot of time and effort. Continuous integration

is a practice which allows developers to achieve rapid feedback on

progress of the whole development project. It helps to control the

constant change of software."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>,

 rdfs:label "Continuous Integration Practice"

 SubClassOf:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn only

 (acao:WorkingDayActivity

 or acao:WorkingDayIn0IterationActivity),

 acao:isPerformedIn some acao:WorkingDayActivity

Class: acao:JSONStandard

 Annotations:

 rdfs:label "JSON Standard",

 rdfs:comment "IEEE Standard No. RFC4627 Standard defining the JSON

format."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 mcao:isSimilarToArtifact some acao:JSONStandard,

 mcao:isSimilarToArtifact only acao:JSONStandard,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

344

 acao:isUsedByTask some acao:PairProgrammingPractice,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask some acao:RefactoringPractice,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType only acao:Standard,

 acao:Artifact,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:hasArtifactType some acao:Standard,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 not (acao:isCreatedByTask some acao:Task),

 acao:hasArtifactOrigin some acao:OtherArtifact

Class: wpcao:WMAppManifest

 Annotations:

 rdfs:label "WMAppManifest",

 rdfs:comment "XML document containing the information on application. It

includes the information on some application resources. It is created

automatically."@en

 SubClassOf:

 acao:isPartOfArtifact some wpcao:MobileApplication,

 acao:isPartOfArtifact some wpcao:DeploymentPackage,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only

 (wpcao:DeploymentPackage

 or wpcao:MobileApplication),

 mcao:AppManifest

Class: acao:SystemTestAndFix

 Annotations:

 rdfs:label "System Test & Fix Phase",

 rdfs:comment "System Test and Fix phase aims to detect if the produced

system implements the customer defined functionality correctly, it

provides the project team feedback on the systems functionality and

provides the defect information for last fixing iteration of the

Mobile-D process. This last iteration is not obligatory, but when

fixing is needed it consists of same activities as other

implementation iterations already explained."@en

 SubClassOf:

 acao:consistsOf some acao:ReleaseDayActivity,

 acao:consistsOf some acao:SystemTestActivity,

 acao:consistsOf some acao:DocumentationWrapUpActivity,

 acao:consistsOf only

 (acao:DocumentationWrapUpActivity

 or acao:PlanningDayActivity

 or acao:ReleaseDayActivity

 or acao:SystemTestActivity

 or acao:WorkingDayActivity),

 acao:consistsOf some acao:PlanningDayActivity,

345

 acao:Phase,

 acao:consistsOf some acao:WorkingDayActivity

Class: acao:PlanningDayActivity

 Annotations:

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>,

 rdfs:label "Planning Day",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>,

 rdfs:comment "The purpose in planning day is to select and plan the work

contents for the iteration. By participating actively to planning

activities, customer ensures that the requirements providing most

business value is identified and those requirements are correctly

understood."@en

 SubClassOf:

 acao:consistsOf some acao:PostIterationWorkshopTask,

 acao:isPerformedIn some acao:Productionize,

 acao:consistsOf some acao:IterationPlanningTask,

 acao:isPerformedIn some acao:SystemTestAndFix,

 acao:consistsOf some acao:AcceptanceTestGenerationTask,

 acao:isPerformedIn only

 (acao:Productionize

 or acao:Stabilize

 or acao:SystemTestAndFix),

 acao:isPerformedIn some acao:Stabilize,

 acao:consistsOf some acao:AcceptanceTestReviewTask,

 acao:Activity,

 acao:consistsOf only

 (acao:AcceptanceTestGenerationTask

 or acao:AcceptanceTestReviewTask

 or acao:IterationPlanningTask

 or acao:PostIterationWorkshopTask

 or acao:RequirementsAnalysisTask),

 acao:consistsOf some acao:RequirementsAnalysisTask

Class: acao:Phase

 Annotations:

 rdfs:comment "Mobile-D methodology comprises development process of five

phases which are executed in combined sequential and incremental

manner."@en

Class: acao:InitialRequirementsCollectionTask

 Annotations:

 rdfs:label "Initial Requirements Collection Task",

 rdfs:comment "The purpose of this task is to produce aninitial overall

definition of the product’s scope, purpose and functionality. This is

needed to enable the further planning and establishment of the project

346

(size, technical issues, architecture, etc.). Also, the documented

requirements will be the starting point for the project team to build

an overall view on the product at hand. The customer and the steering

group should agree and document the central functionality of the

product as seen from the customer point of view. Additionally, also

other requirements, such as organization’s own business requirements,

and constraints to the product development should be identified,

agreed upon and documented."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ScopeDefiniti

onActivity>

 SubClassOf:

 acao:Task,

 acao:isPerformedIn some acao:ScopeDefinitionActivity,

 acao:isPerformedIn only acao:ScopeDefinitionActivity

Class: acao:PlanningDayIn0IterationActivity

 Annotations:

 rdfs:label "Initial Planning (Planning Day in 0 Itteration)",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize>,

 rdfs:comment "The purpose of the Initial Planning pattern is to gain a good

overall understanding of the product to be developed, to prepare and

refine plans for forthcoming project phases and to prepare plans for

verifying and solving all critical development issues by the end of

the current phase."

 SubClassOf:

 acao:consistsOf some acao:IterationPlanningTask,

 acao:consistsOf some acao:ArchitectureLinePlanningTask,

 acao:consistsOf only

 (acao:ArchitectureLinePlanningTask

 or acao:InitialRequirementsAnalysisTask

 or acao:IterationPlanningTask),

 acao:isPerformedIn some acao:Initialize,

 acao:Activity,

 acao:consistsOf some acao:InitialRequirementsAnalysisTask,

 acao:isPerformedIn only acao:Initialize

Class: acao:StakeholderEstablishmentActivity

 Annotations:

 rdfs:comment "The purpose of this stage is to identify and establish the

stakeholder groups that are needed in various tasks of Explore phase

as well as in supporting activities during the software development –

excluding the software development team itself. Wide variety of

expertise and co-operation is neededto plan a controlled and effective

implementation of the software product. The goals of the Stakeholder

Establishment are to identify and establish different stakeholder

groups needed in different taskthroughout the project."@en,

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>,

 rdfs:label "Stakeholder Establishment"

 SubClassOf:

347

 acao:isPerformedIn some acao:Explore,

 acao:Activity,

 acao:consistsOf some acao:CustomerEstablishmentTask,

 acao:consistsOf only acao:CustomerEstablishmentTask,

 acao:isPerformedIn only acao:Explore

Class: acao:ArtifactType

 Annotations:

 rdfs:comment "Classification of artifacts in types according to their

purpose."@en

 EquivalentTo:

 acao:Code

 or acao:Document

 or acao:DocumentElement

 or acao:Example

 or acao:Licence

 or acao:Model

 or acao:ModelElement

 or acao:Product

 or acao:Resource

 or acao:Software

 or acao:Standard

 or acao:Template

Class: acao:AndroidClass

 Annotations:

 rdfs:label "Android Class",

 rdfs:comment "UML model element used to describe an existing Android class

that is to be used."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:UMLClassSDK,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:StoryCardTemplate

 Annotations:

 rdfs:comment "Mobile-D story card template."@en,

 rdfs:label "Story Card Template"

 SubClassOf:

 acao:isUsedByTask some acao:IterationPlanningTask,

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUsedByTask only acao:IterationPlanningTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact only acao:StoryCardTemplate,

 acao:isPartOfArtifact some acao:MobileDProcessLibrary,

 acao:isPartOfArtifact only

 (acao:MobileDProcessLibrary

 or acao:StoryCard),

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

348

 acao:Artifact,

 acao:hasArtifactType only acao:Template,

 mcao:isSimilarToArtifact some acao:StoryCardTemplate,

 acao:hasArtifactType some acao:Template,

 not (acao:isUpdatedByTask some acao:Task),

 not (acao:isCreatedByTask some acao:Task),

 acao:isPartOfArtifact some acao:StoryCard

Class: acao:ProjectManagementSoftwareTool

 Annotations:

 rdfs:comment "The tool used for project management."@en,

 rdfs:label "Project Management Software Tool"

 SubClassOf:

 acao:hasArtifactOrigin only acao:OtherArtifact,

 not (acao:isPartOfArtifact some acao:Artifact),

 not (acao:isUsedByTask some acao:Task),

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 mcao:isSimilarToArtifact only acao:ProjectManagementSoftwareTool,

 mcao:isSimilarToArtifact some acao:ProjectManagementSoftwareTool,

 acao:Artifact,

 not (acao:isUpdatedByTask some acao:Task),

 acao:isCreatedByTask some acao:ProcessEstablishmentTask,

 acao:hasArtifactType only acao:Software,

 acao:isCreatedByTask only acao:ProcessEstablishmentTask,

 acao:hasArtifactOrigin some acao:OtherArtifact,

 acao:hasArtifactType some acao:Software

Class: acao:FinalDocumentation

 EquivalentTo:

 acao:Artifact

 and (not (acao:BorrowedArtifacts))

 and (not (acao:isPartOfArtifact some acao:Artifact))

 and (acao:hasArtifactType some acao:Document)

 SubClassOf:

 mcao:ArtifactsUsage

Class: acao:ApplicationManifest

 Annotations:

 rdfs:label "Application Manifest",

 rdfs:comment "XML document containing the information on application. This

document is most important code artifact."@en

 SubClassOf:

 acao:isPartOfArtifact only

 (acao:DeploymentPackage

 or acao:MobileApplication),

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:DeploymentPackage,

 acao:hasArtifactOrigin some acao:AndroidArtifact,

 acao:isPartOfArtifact some acao:MobileApplication,

349

 mcao:AppManifest

Class: acao:Artifact

 Annotations:

 rdfs:comment "Artifact - Any piece of software developed and used during

software development and maintenance."@en

Class: acao:ProcessEstablishmentTask

 Annotations:

 rdfs:comment "The purpose of this task is to establish the baseline process

for the forthcoming software development project and to train the

project team on using it. The aim of the Process Establishment is to

make sure that the project team has all the needed competence

regarding both the process and the technical aspects of the project.

Thus, the need for training should be identified during this task.

Also, deciding upon how the project’s progress will be monitored and

product’s quality assured are important issues in every project, yet

they may differ largely depending on the organization and product at

hand. Thus, the monitoring, including the definition of metrics to be

collected, and quality assurance tasks are to be planned based on

these issues. For example, due to the high criticality of the end

product it may be important to increase review practices in the

process. Also, the life-cycle of the product effects on how quality

issues such as variability should be perceived in the process or what

is the criteria for product completion."@en,

 rdfs:label "Process Establishment Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectEstabl

ishmentActivity>

 SubClassOf:

 acao:isPerformedIn only acao:ProjectEstablishmentActivity,

 acao:Task,

 acao:isPerformedIn some acao:ProjectEstablishmentActivity

Class: acao:ArchitectureLineDefinitionTask

 Annotations:

 rdfs:comment "The purpose of this task is to get enough confidence in the

architectural issues that the project can be successfully carried

out."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectEstabl

ishmentActivity>,

 rdfs:label "Architecture Line Definition Task"

 SubClassOf:

 acao:isPerformedIn only acao:ProjectEstablishmentActivity,

 acao:Task,

 acao:isPerformedIn some acao:ProjectEstablishmentActivity

Class: acao:UMLClass

350

 Annotations:

 rdfs:label "Class",

 rdfs:comment "UML model element used to describe a new class that is to be

implemented."@en

 SubClassOf:

 acao:isUpdatedByTask some acao:RequirementsAnalysisTask,

 mcao:isSimilarToArtifact only acao:UMLClass,

 acao:hasArtifactType only acao:ModelElement,

 acao:isPartOfArtifact some acao:ClassModelMobile,

 acao:isPartOfArtifact only

 (acao:ClassModelMobile

 or acao:ClassModelWeb),

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isUpdatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isPartOfArtifact some acao:ClassModelWeb,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice),

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:hasArtifactType some acao:ModelElement,

 acao:isUpdatedByTask only

 (acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:RequirementsAnalysisTask),

 mcao:isSimilarToArtifact some acao:UMLClass

Class: acao:ModelElement

 Annotations:

 rdfs:comment "Represents the atomic level (i.e. integral) artifact that

could be observed as stand-alone and is used to create models."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:LayoutElement

 Annotations:

 rdfs:comment "Represents XML code that is used to describe any user

interface element such as text box, list box, button etc."@en,

 rdfs:label "Layout Element"

351

 SubClassOf:

 mcao:ViewElement,

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 acao:isPartOfArtifact only acao:Layout,

 acao:isPartOfArtifact some acao:Layout,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:MethodologicalArtifacts

 EquivalentTo:

 acao:Artifact

 and (acao:hasArtifactOrigin some acao:MethodologicalArtifact)

 SubClassOf:

 mcao:ArtifactsOrigin

Class: mcao:MapsKey

 Annotations:

 rdfs:label "Maps Key",

 rdfs:comment "Platform specific requirement needed for use of map

services."@en

 SubClassOf:

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:hasArtifactType some acao:Licence,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel only mcao:None,

 acao:hasArtifactType only acao:Licence,

 acao:Artifact,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask only acao:PublishApplicationTask,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:PublishApplicationTask

Class: mcao:AppManifest

 Annotations:

 rdfs:label "App Manifest",

 rdfs:comment "Platform specific document containing the formated

information on application. This document is most important code

artifact."@en

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 acao:hasArtifactType some acao:Code,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 not (acao:isUpdatedByTask some acao:Task),

 acao:isUsedByTask only acao:PublishApplicationTask,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

352

 acao:isUsedByTask some acao:PublishApplicationTask

Class: acao:WorkingDayIn0IterationActivity

 Annotations:

 rdfs:label "Trial Day (Working Day in 0 Iteration)",

 acao:inPhase

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize>,

 rdfs:comment "The purpose of this stage is to trial and further set-up the

technical development environment and to make sure that everything is

ready for implementing the software development product. Also, the

purpose is to implement some core functionality of the system (e.g.

client-server communication) or solve some critical development issue

without producing any working code. Also further technological

investigations are possible in this stage. If the development decides

to implement some functionality at this point, it need not to be the

highest priority functionality as defined by the customer but rather

have been selected based on their importance concerning, for example,

the architectural structure of the product. Trial Days form the pre-

phase for the actual development days."@en

 SubClassOf:

 acao:consistsOf some acao:RefactoringPractice,

 acao:consistsOf only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:RefactoringPractice

 or acao:TestDrivenDevelopmentPractice

 or acao:WrapUpTask),

 acao:consistsOf some acao:WrapUpTask,

 acao:consistsOf some acao:ContinuousIntegrationPractice,

 acao:consistsOf some acao:PairProgrammingPractice,

 acao:consistsOf some acao:TestDrivenDevelopmentPractice,

 acao:isPerformedIn some acao:Initialize,

 acao:Activity,

 acao:isPerformedIn only acao:Initialize

Class: wpcao:IntegrationTest

 Annotations:

 rdfs:comment "Represents the description and results of integration test

that is performed manually. This document is part of System Test Plan

document."@en,

 rdfs:label "Integration Test WP"

 SubClassOf:

 acao:isPartOfArtifact only acao:SystemTestPlan,

 acao:isPartOfArtifact some acao:SystemTestPlan,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:SystemIntegrationTask),

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:SystemIntegrationTask

353

 or acao:SystemTestTask),

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:IntegrationTest

Class: acao:EnvironmentSetUpTask

 Annotations:

 rdfs:label "Environment Set-up Task",

 rdfs:comment "The purpose of this task is to set-up development and other

environment needed for project team in development process."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectSetUpA

ctivity>

 SubClassOf:

 acao:Task,

 acao:isPerformedIn only acao:ProjectSetUpActivity,

 acao:isPerformedIn some acao:ProjectSetUpActivity

Class: acao:TaskCard

 Annotations:

 rdfs:comment "Basic documentation card containing the information on one

task that is to be performed during the iteration. it is defined

during the planning day and refined during implementation and wrap-up.

It is part of the Product backlog document."@en,

 rdfs:label "Task Card"

 SubClassOf:

 acao:isUpdatedByTask some acao:WrapUpTask,

 acao:isCreatedByTask only acao:IterationPlanningTask,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isPartOfArtifact only acao:ProductBacklog,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:WrapUpTask,

 acao:isPartOfArtifact some acao:ProductBacklog,

 acao:isUsedByTask some acao:AcceptanceTestGenerationTask,

 mcao:isSimilarToArtifact some acao:TaskCard,

 mcao:isSimilarToArtifact only acao:TaskCard,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isUsedByTask only

 (acao:AcceptanceTestGenerationTask

 or acao:PairProgrammingPractice

 or acao:TestDrivenDevelopmentPractice

 or acao:WrapUpTask),

 acao:isUpdatedByTask only acao:WrapUpTask,

 acao:isCreatedByTask some acao:IterationPlanningTask

354

Class: mcao:AppResource

 Annotations:

 rdfs:label "App Resource",

 rdfs:comment "Platform specific, usually XML based, code which describes

different application resorces, including values, controls etc."@en,

 mcao:NOTICE "Axioms for isSimilarToArtifact are used in leaf elements."@en

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:hasArtifactType some acao:Code,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:SystemTestTask,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice

Class: acao:CustomerEstablishmentTask

 Annotations:

 rdfs:label "Customer Establishment Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#StakeholderEs

tablishmentActivity>,

 rdfs:comment "The purpose of this task is to establish the customer

interest group that has the ultimate expertise, domain knowledge and

authority of the requirements for the software product."@en

 SubClassOf:

 acao:isPerformedIn only acao:StakeholderEstablishmentActivity,

 acao:Task,

 acao:isPerformedIn some acao:StakeholderEstablishmentActivity

355

Class: acao:WebService

 Annotations:

 rdfs:label "Web Service",

 rdfs:comment "The web part of the system created in the development

process."@en

 SubClassOf:

 not (acao:isUsedByTask some acao:Task),

 mcao:hasReusabilityLevel some mcao:Completely,

 acao:isUpdatedByTask only acao:SystemIntegrationTask,

 acao:hasArtifactOrigin only acao:ServiceArtifact,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 mcao:isSimilarToArtifact some acao:WebService,

 mcao:isSimilarToArtifact only acao:WebService,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 acao:Artifact,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:hasArtifactType some acao:Product,

 acao:hasArtifactType only acao:Product,

 acao:hasArtifactOrigin some acao:ServiceArtifact

Class: acao:TestResults

 Annotations:

 rdfs:comment "Results are obtained during the whole development process

testing tasks. At the end this document becomes part of System test

report."@en,

 rdfs:label "Test Results"

 SubClassOf:

 acao:isUpdatedByTask some acao:AcceptanceTestingTask,

 acao:isUpdatedByTask only

 (acao:AcceptanceTestingTask

 or acao:PreReleaseTestingTask

 or acao:SystemIntegrationTask

 or acao:SystemTestTask),

 acao:isUsedByTask only acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUpdatedByTask some acao:SystemTestTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isPartOfArtifact some acao:SystemTestReport,

 acao:isPartOfArtifact only acao:SystemTestReport,

 acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask

356

Class: wpcao:APIDocumentation

 Annotations:

 rdfs:comment "WP API documentation from http://msdn.microsoft.com"@en,

 rdfs:label "API Documentation WP"

 SubClassOf:

 mcao:APIDocumentation,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:RefactoringPractice

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>,

 rdfs:comment "The purpose of refactoring is to improve existing software’s

internal structure without modifying its external behavior. With small

improvements to code, refactoring ensures that software is more

modifiable, extendable, and readable. When refactoring is a regular

habit during development it reduces the need to design up front.

Instead the software is evolved by adapting to changes and improving

the design of existing software. "@en,

 rdfs:label "Refactoring Practice",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>

 SubClassOf:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn only

 (acao:WorkingDayActivity

 or acao:WorkingDayIn0IterationActivity),

 acao:isPerformedIn some acao:WorkingDayActivity

Class: acao:InitialProjectPlanningTask

 Annotations:

 rdfs:label "Initial Project Planning Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ScopeDefiniti

onActivity>,

 rdfs:comment "The purpose of this task is to establish the initial plan for

the forthcoming software development project regarding the timeline,

rhythm and investments of the project. This is done in order to enable

the further establishment of the project."@en

 SubClassOf:

 acao:Task,

 acao:isPerformedIn only acao:ScopeDefinitionActivity,

 acao:isPerformedIn some acao:ScopeDefinitionActivity

Class: acao:Model

357

 Annotations:

 rdfs:comment "Represents models that are created during the development

process. Models could be observed as stand-alone artifacts, but are

usually presented as a part of some document."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:TestDrivenDevelopmentPractice

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>,

 rdfs:comment "The purpose of TDD is to give the developers confidence that

code they produce works and guide the design of the code to clearer

more easily testable structure. TDD is also tightly coupled with

refactoring practice because the test set that is produced with TDD is

used while refactoring to ensurethat the change did not break the

existing functionality of the system. In TDD the unit tests are

written before the program code. The program code is then developed to

work with the already written tests."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>,

 rdfs:label "Test Driven Development Practice"

 SubClassOf:

 acao:isPerformedIn some acao:WorkingDayIn0IterationActivity,

 acao:Task,

 acao:isPerformedIn only

 (acao:WorkingDayActivity

 or acao:WorkingDayIn0IterationActivity),

 acao:isPerformedIn some acao:WorkingDayActivity

Class: acao:MobileDProcessLibrary

 Annotations:

 rdfs:label "Mobile-D Process Library",

 rdfs:comment "Process library describing the Mobile-D methodology in

detail. Used as methodology guidelines in every phase."@en

 SubClassOf:

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 not (acao:isUpdatedByTask some acao:Task),

 acao:hasArtifactType some acao:Document,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUsedByTask only acao:Task,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 mcao:isSimilarToArtifact only acao:MobileDProcessLibrary,

 mcao:isSimilarToArtifact some acao:MobileDProcessLibrary,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:isUsedByTask some acao:Task,

 acao:Artifact,

 acao:hasArtifactType only acao:Document,

 not (acao:isCreatedByTask some acao:Task)

358

Class: acao:DocumentationWrapUpTasks

 EquivalentTo:

 acao:isPerformedIn some acao:DocumentationWrapUpActivity

 SubClassOf:

 acao:TasksByActivities

Class: acao:SystemTestPlan

 Annotations:

 rdfs:label "System Test Plan",

 rdfs:comment "Contains the information on purpose, plan and definitions of

tests."@en

 SubClassOf:

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUsedByTask some acao:ArchitectureLineDefinitionTask,

 acao:isCreatedByTask some acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask only

 (acao:InitialRequirementsAnalysisTask

 or acao:PostIterationWorkshopTask

 or acao:ProcessEstablishmentTask

 or acao:SystemTestTask),

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUpdatedByTask some acao:ProcessEstablishmentTask,

 acao:isUsedByTask some acao:SystemTestTask,

 acao:isUpdatedByTask some acao:SystemTestTask,

 acao:isUsedByTask some acao:ArchitectureLinePlanningTask,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:hasArtifactType some acao:Document,

 not (acao:isPartOfArtifact some acao:Artifact),

 acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 mcao:hasReusabilityLevel only mcao:None,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:hasArtifactType only acao:Document,

 acao:isUsedByTask only

 (acao:ArchitectureLineDefinitionTask

 or acao:ArchitectureLinePlanningTask

 or acao:DocumentationWrapUpTask

 or acao:IterationPlanningTask

 or acao:ProcessEstablishmentTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:ProcessEstablishmentTask,

 acao:isCreatedByTask only acao:InitialProjectPlanningTask,

 acao:isUpdatedByTask some acao:PostIterationWorkshopTask

Class: acao:Product

 Annotations:

359

 rdfs:comment "Represents final product as most important project

deliverable. "@en

 SubClassOf:

 acao:ArtifactType

Class: acao:TaskCardTemplate

 Annotations:

 rdfs:label "Task Card Template",

 rdfs:comment "Mobile-D task card template."@en

 SubClassOf:

 mcao:hasReusabilityLevel some mcao:Completely,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:isPartOfArtifact some acao:TaskCard,

 acao:hasArtifactType some acao:Template,

 not (acao:isUpdatedByTask some acao:Task),

 mcao:isSimilarToArtifact some acao:TaskCardTemplate,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:isUsedByTask only acao:IterationPlanningTask,

 acao:isPartOfArtifact some acao:MobileDProcessLibrary,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

 acao:Artifact,

 acao:isPartOfArtifact only

 (acao:MobileDProcessLibrary

 or acao:TaskCard),

 acao:hasArtifactType only acao:Template,

 mcao:isSimilarToArtifact only acao:TaskCardTemplate,

 not (acao:isCreatedByTask some acao:Task)

Class: acao:PostIterationWorkshopTask

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>,

 rdfs:comment "The purpose of this task is to iteratively enhance the

software development process to better fit the needs of current

software project team. "@en,

 rdfs:label "Post-iteration Workshop Task"

 SubClassOf:

 acao:isPerformedIn only acao:PlanningDayActivity,

 acao:Task,

 acao:isPerformedIn some acao:PlanningDayActivity

Class: mcao:AppScreenshot

 Annotations:

 rdfs:comment "Application screenshots showcasing final or intermediate

application look. Screenshot is usually platform specific due to

different native look and feel of every platform. Some exceptions are

possible."@en,

360

 mcao:NOTICE "Closure axiom for isPartOfArtifact is used in leaf

elements."@en,

 rdfs:label "App Screenshot"

 SubClassOf:

 acao:isUpdatedByTask only

 (acao:DocumentationWrapUpTask

 or acao:SystemIntegrationTask),

 not (acao:isUsedByTask some acao:Task),

 acao:hasArtifactType only acao:Resource,

 acao:isCreatedByTask only acao:AcceptanceTestingTask,

 acao:isUpdatedByTask some acao:DocumentationWrapUpTask,

 acao:isCreatedByTask some acao:AcceptanceTestingTask,

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 not (mcao:isSimilarToArtifact some acao:Artifact),

 acao:isPartOfArtifact some acao:SADDDocument,

 acao:hasArtifactType some acao:Resource,

 mcao:hasReusabilityLevel some mcao:None

Class: wpcao:DotNetClass

 Annotations:

 rdfs:comment "UML model element used to describe an existing .Net class

that is to be used."@en,

 rdfs:label ".Net Class"

 SubClassOf:

 mcao:UMLClassSDK,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact

Class: acao:DeploymentPackage

 Annotations:

 rdfs:label "Deployment Package Android",

 rdfs:comment "APK file created for publishing purposes."@en

 SubClassOf:

 acao:hasArtifactOrigin only acao:AndroidArtifact,

 mcao:DeploymentPackage,

 acao:hasArtifactOrigin some acao:AndroidArtifact

Class: acao:Productionize

 Annotations:

 rdfs:comment "The Productionize and Stabilize phases are executed

iteratively in order to develop all other features of the mobile

product. Iterations start with planning day in Productionize phase.

The first activity is post-iteration workshop which aims to enhance

the development process to better fit the needs of the current

software development team. The requirements analysis, iteration

planning and acceptance test generation tasks follow and are executed

during the planning day. The working day is based on implementation

through test driven development, pair programming, continuous

361

integration and refactoring. This day ends with the task of informing

the customer on new functionality. Finally, the release day includes

the activities of integration and testing."@en,

 rdfs:label "Productionize Phase"

 SubClassOf:

 acao:consistsOf some acao:ReleaseDayActivity,

 acao:consistsOf some acao:PlanningDayActivity,

 acao:consistsOf only

 (acao:PlanningDayActivity

 or acao:ReleaseDayActivity

 or acao:WorkingDayActivity),

 acao:Phase,

 acao:consistsOf some acao:WorkingDayActivity

Class: acao:Task

 Annotations:

 rdfs:comment "Tasks are performed in order to achieve defined goals."@en

Class: acao:Explore

 Annotations:

 rdfs:comment "The aim of the first phase, called Explore, is to prepare the

foundation for future development."@en,

 rdfs:label "Explore Phase"

 SubClassOf:

 acao:consistsOf some acao:ProjectEstablishmentActivity,

 acao:consistsOf some acao:ScopeDefinitionActivity,

 acao:Phase,

 acao:consistsOf some acao:StakeholderEstablishmentActivity,

 acao:consistsOf only

 (acao:ProjectEstablishmentActivity

 or acao:ScopeDefinitionActivity

 or acao:StakeholderEstablishmentActivity)

Class: acao:PHPCode

 Annotations:

 rdfs:label "PHP Code",

 rdfs:comment "PHP code developed during the implementation activities."@en

 SubClassOf:

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:hasArtifactOrigin only acao:ServiceArtifact,

 mcao:hasReusabilityLevel only mcao:Completely,

 acao:hasArtifactType some acao:Code,

 mcao:isSimilarToArtifact some acao:PHPCode,

 acao:isUsedByTask some acao:SystemTestTask,

 mcao:isSimilarToArtifact only acao:PHPCode,

 acao:Artifact,

 acao:isUsedByTask some acao:DocumentationWrapUpTask,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

362

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 acao:isPartOfArtifact some acao:WebService,

 acao:hasArtifactOrigin some acao:ServiceArtifact,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:DocumentationWrapUpTask

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 mcao:hasReusabilityLevel some mcao:Completely,

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:RefactoringPractice,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 acao:isPartOfArtifact only acao:WebService,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask

Class: mcao:View

 Annotations:

 rdfs:comment "Represents platform specific, usually XML based, code that is

used to describe user interface form or screen."@en,

 rdfs:label "View"

 SubClassOf:

 acao:hasArtifactType only acao:Code,

 acao:isUsedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PairProgrammingPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask

 or acao:SystemTestTask

 or acao:TestDrivenDevelopmentPractice),

 acao:isUsedByTask some acao:TestDrivenDevelopmentPractice,

 acao:hasArtifactType some acao:Code,

 mcao:isSimilarToArtifact some mcao:View,

 acao:isUpdatedByTask only

 (acao:ContinuousIntegrationPractice

 or acao:PreReleaseTestingTask

 or acao:RefactoringPractice

 or acao:SystemIntegrationTask),

 acao:isUpdatedByTask some acao:SystemIntegrationTask,

 acao:isUsedByTask some acao:PairProgrammingPractice,

 acao:isUpdatedByTask some acao:ContinuousIntegrationPractice,

 acao:isUsedByTask some acao:SystemTestTask,

363

 acao:isUsedByTask some acao:RefactoringPractice,

 mcao:hasReusabilityLevel only mcao:Partially,

 acao:isCreatedByTask some acao:PairProgrammingPractice,

 mcao:hasReusabilityLevel some mcao:Partially,

 acao:Artifact,

 acao:isCreatedByTask only acao:PairProgrammingPractice,

 acao:isUsedByTask some acao:PreReleaseTestingTask,

 acao:isUpdatedByTask some acao:RefactoringPractice,

 acao:isUpdatedByTask some acao:PreReleaseTestingTask,

 acao:isUsedByTask some acao:ContinuousIntegrationPractice,

 mcao:isSimilarToArtifact only mcao:View

Class: acao:CustomerCommunicationEstablishmentTask

 Annotations:

 rdfs:comment "The purpose of this task is to agree on the customs of how

the project manager/team will communicate with the customer during the

software development. The aim is to ensure the appropriate,

informative and intensive communication between the team and the

customer to assure that all the stakeholders can access the

information they need as soon as possible. Thus, it enables the fluent

implementation of correct requirements. The effective communication

isneeded between the customer group as well as the software

developers, especially in the case of off-site customer."@en,

 rdfs:label "Customer Communication Establishment Task",

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectSetUpA

ctivity>

 SubClassOf:

 acao:isPerformedIn only acao:ProjectSetUpActivity,

 acao:Task,

 acao:isPerformedIn some acao:ProjectSetUpActivity

Class: acao:ArchitectureLineDescription

 Annotations:

 rdfs:label "Architecture Line Description",

 rdfs:comment "Created during the architecture line planning task and

updated in subsequent iterations. Contains the information on system

context, technological scope, architectural risks etc. This document

is part of project plan."@en

 SubClassOf:

 acao:isUsedByTask some acao:RequirementsAnalysisTask,

 acao:isUpdatedByTask some acao:ArchitectureLinePlanningTask,

 acao:isCreatedByTask only acao:ArchitectureLineDefinitionTask,

 acao:isPartOfArtifact only acao:ProjectPlan,

 mcao:hasReusabilityLevel some mcao:None,

 acao:isUsedByTask some acao:ArchitectureLinePlanningTask,

 acao:isUsedByTask some acao:IterationPlanningTask,

 acao:isCreatedByTask some acao:ArchitectureLineDefinitionTask,

 acao:isPartOfArtifact some acao:ProjectPlan,

 acao:hasArtifactOrigin only acao:MethodologicalArtifact,

 acao:hasArtifactType some acao:DocumentElement,

 acao:hasArtifactType only acao:DocumentElement,

 acao:hasArtifactOrigin some acao:MethodologicalArtifact,

364

 mcao:hasReusabilityLevel only mcao:None,

 acao:Artifact,

 acao:isUpdatedByTask only acao:ArchitectureLinePlanningTask,

 acao:isUsedByTask only

 (acao:ArchitectureLinePlanningTask

 or acao:IterationPlanningTask

 or acao:RequirementsAnalysisTask),

 not (mcao:isSimilarToArtifact some acao:Artifact)

Class: acao:Licence

 Annotations:

 rdfs:comment "Represents individual-specific unique key that is obtained or

used during the development process."@en

 SubClassOf:

 acao:ArtifactType

Class: acao:PublishApplicationTask

 Annotations:

 rdfs:comment "Although Mobile-D does not explicitly define Publish

Application Task (as methodology is defined prior to concept of mobile

stores is introduced) it can be done during the System Test and Fix

phase as a part of Working day. In that manner we add this task to the

ontology as it is crutial for some artifacts that are strictly

connected to application publishment."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAct

ivity>,

 rdfs:label "Publish Application Task",

 rdfs:label "Process Establishment Task"

 SubClassOf:

 acao:isPerformedIn only acao:SystemTestActivity,

 acao:Task,

 acao:isPerformedIn some acao:SystemTestActivity

Class: mcao:MapsSDK

 Annotations:

 rdfs:comment "Referenced platform specific libraries providing map

component and use of maps in mobile application.."@en,

 rdfs:label "Maps SDK"

 SubClassOf:

 mcao:AppReference

Class: acao:ProjectEstablishmentTasks

 EquivalentTo:

 acao:isPerformedIn some acao:ProjectEstablishmentActivity

 SubClassOf:

 acao:TasksByActivities

365

Class: wpcao:ApplicationScreenshot

 Annotations:

 rdfs:comment "Application screenshots are created as needed for publishing

process."@en,

 rdfs:label "Application Screenshot WP"

 SubClassOf:

 mcao:AppScreenshot,

 acao:isPartOfArtifact some wpcao:DeploymentPackage,

 acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact,

 acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact,

 acao:isPartOfArtifact only

 (acao:SADDDocument

 or wpcao:DeploymentPackage)

Class: acao:DocumentationWrapUpTask

 Annotations:

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Documentation

WrapUpActivity>,

 rdfs:label "Documentation Wrap-up Task",

 rdfs:comment "The purpose of this task is to produce documentation.

Software without documentation is a disaster. Source code is not the

ideal medium for communicating the rationale, structure and interfaces

of a system. Documentation will be produced for project stakeholders

and not for the agile team."@en

 SubClassOf:

 acao:isPerformedIn only acao:DocumentationWrapUpActivity,

 acao:Task,

 acao:isPerformedIn some acao:DocumentationWrapUpActivity

Class: acao:SystemIntegrationTask

 Annotations:

 rdfs:label "System Integration Task",

 rdfs:comment "Complex products may require that the systemis divided into

smaller subsystems. In the case of multi-team project, the purpose

ofthis task is to integrate subsystems, which are generated inseparate

teams, into a single product."@en,

 acao:inActivity

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity>

 SubClassOf:

 acao:isPerformedIn only acao:ReleaseDayActivity,

 acao:isPerformedIn some acao:ReleaseDayActivity,

 acao:Task

Class: acao:ServiceArtifacts

 EquivalentTo:

366

 acao:Artifact

 and (acao:hasArtifactOrigin some acao:ServiceArtifact)

 SubClassOf:

 mcao:ArtifactsOrigin

DisjointClasses:

acao:DocumentationWrapUpActivity,acao:PlanningDayActivity,acao:PlanningDayIn0Iterat

ionActivity,acao:ProjectEstablishmentActivity,acao:ProjectSetUpActivity,acao:Releas

eDayActivity,acao:ScopeDefinitionActivity,acao:StakeholderEstablishmentActivity,aca

o:SystemTestActivity,acao:WorkingDayActivity,acao:WorkingDayIn0IterationActivity

DisjointClasses:

acao:Code,acao:Document,acao:DocumentElement,acao:Example,acao:Licence,acao:Model,a

cao:ModelElement,acao:Product,acao:Resource,acao:Software,acao:Standard,acao:Templa

te

DisjointClasses:

acao:Explore,acao:Initialize,acao:Productionize,acao:Stabilize,acao:SystemTestAndFi

x

DisjointClasses:

mcao:CompletlyResuableArtifacts,mcao:NotreusableArtifacts,mcao:PartiallyReusableArt

ifacts

DisjointClasses:

acao:AcceptanceTest,acao:AcceptanceTestTemplateSheet,acao:ArchitectureLineDescripti

on,acao:ArchitectureLinePlan,acao:ClassModelMobile,acao:ClassModelWeb,acao:DataMode

lMobile,acao:DataModelWeb,acao:DefectList,acao:DevelopmentUnrelatedSoftwareTool,aca

o:InitialRequirementsDocument,acao:IterationBacklog,acao:IterationsPlan,acao:JSONSt

andard,acao:MeasurementPlan,acao:MobileDProcessLibrary,acao:PHPCode,acao:ProductBac

klog,acao:ProductProposal,acao:ProjectManagementSoftwareTool,acao:ProjectPlan,acao:

ProjectPlanChecklist,acao:ProjectPlanChecklistTemplate,acao:ProjectPlanGanttChart,a

cao:SADDDocument,acao:StoryCard,acao:StoryCardTemplate,acao:SystemTestPlan,acao:Sys

temTestReport,acao:TaskCard,acao:TaskCardTemplate,acao:TestResults,acao:UIIllustrat

ions,acao:UMLClass,acao:WebDevelopmentEnvironment,acao:WebService,acao:WebServiceSp

ecification,mcao:APIDocumentation,mcao:AppDescription,mcao:AppIcon,mcao:AppManifest

,mcao:AppPrototypeFunctionality,mcao:AppReference,mcao:AppResource,mcao:AppScreensh

ot,mcao:DeploymentPackage,mcao:DevelopmentEnvironment,mcao:ExampleCode,mcao:Integra

tionTest,mcao:MapsKey,mcao:MobileApplication,mcao:SourceCode,mcao:TestDeviceDriver,

mcao:ThrowAwayPrototype,mcao:UMLClassSDK,mcao:UnitTest,mcao:View,mcao:ViewControlle

r,mcao:ViewElement

DisjointClasses:

acao:Activity,acao:Artifact,acao:ArtifactOrigin,acao:ArtifactType,acao:Phase,acao:T

ask

DisjointClasses:

acao:AcceptanceTestGenerationTask,acao:AcceptanceTestReviewTask,acao:AcceptanceTest

ingTask,acao:ArchitectureLineDefinitionTask,acao:ArchitectureLinePlanningTask,acao:

ContinuousIntegrationPractice,acao:CustomerCommunicationEstablishmentTask,acao:Cust

367

omerEstablishmentTask,acao:DocumentationWrapUpTask,acao:EnvironmentSetUpTask,acao:I

nformCustomerTask,acao:InitialProjectPlanningTask,acao:InitialRequirementsAnalysisT

ask,acao:InitialRequirementsCollectionTask,acao:IterationPlanningTask,acao:PairProg

rammingPractice,acao:PostIterationWorkshopTask,acao:PreReleaseTestingTask,acao:Proc

essEstablishmentTask,acao:PublishApplicationTask,acao:RefactoringPractice,acao:Rele

aseCeremoniesTask,acao:RequirementsAnalysisTask,acao:SystemIntegrationTask,acao:Sys

temTestTask,acao:TestDrivenDevelopmentPractice,acao:WrapUpTask

DisjointClasses:

acao:AndroidArtifact,acao:MethodologicalArtifact,acao:OtherArtifact,acao:ServiceArt

ifact,wpcao:WindowsPhoneArtifact

DisjointClasses:

acao:AndroidArtifacts,acao:MethodologicalArtifacts,acao:OtherArtifacts,acao:Service

Artifacts,wpcao:WindowsPhoneArtifacts

369

EXTENDED ABSTRACT

1. Introduction

Development of mobile systems is a challenging task which differs from traditional

development in several important aspects. According to Hosbond (2005), the two main sets of

challenges should be addressed in the domain of mobile systems development, namely

business related challenges and development specific challenges. In this research we will

focus on development specific challenges and will give special attention to the usage of

methodologies which according to some authors, like Rahimian and Ramsin (2008), Spataru

(2010) or La and Kim (2009), should be firstly addressed.

Classic or agile software development methodologies should be adapted for the development

of mobile applications as the existing ones do not cover the specific mobile targeted

requirements (La and Kim, 2009). There are several attempts from different authors to create

new methodologies in order to cover the gaps in the domain of mobile applications. Some of

them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM (Jeong et al.,

2008), and Mobile-D (Abrahamsson et al., 2004). But still, there is no comprehensive research

that answers the question like which existing or new methodologies are suitable for

development of mobile applications.

On top of the list of methodology problems, the fragmentation problem forces the developers

of mobile applications to focus on only specific platforms and versions (Manjunatha et al.,

2010), but as the development of mobile applications primarily aims a wide range of users,

such approach is not the preferable option and the development teams reach for different

solutions of the problem proposed by professional and scientific community. First, we would

like to mention the approach that enables the development teams to use a mediatory language

or just mediatory transform engine to code for several target platforms. Some of the most

influential projects are MobiCloud (Manjunatha et al., 2010), Rhodes (Rhomobile, Inc., 2011)

and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). These attempts

have several advantages but also have significant drawbacks, like their dependability on the

efforts invested in the transform engine, specific APIs and specific domain, the lack of control

over generated source code and similar. Another possible solution to the problem could be the

introduction of adapter applications (adapters) as native applications for every target platform.

According to Agarwal et al. (2009) this is one of the two main techniques for handling

fragmentation. As standardization of APIs in mobile world is still not possible, the usage of

programming techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct

370

modules which are then ported across the platforms, is left as the other solution. The

representatives of this approach are MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap,

2011) or Adobe AIR® (Adobe Corporation, 2011). Almost all of the drawbacks stated for

existing solutions that introduce a transform engine are also present in this solution. Finally,

the third approach is to use web technologies and to develop cross-platform web applications,

but this approach is out of our scope as it differs in many aspects (which also have their own

drawbacks) from the basic assumptions taken in this research.

Therefore, in this research we focused on proposing a solution that would enhance

methodological interoperability among teams working on the same application but in different

(and native) development environments. The research answers the following questions: (1)

what methodologies and development approaches can be used in multi-platform mobile

applications development; (2) what artifacts (required inputs and outputs of methodologically

and methodically defined development steps) emerge during mobile applications

development, (3) whether and to what extent there are similarities between these artifacts, and

(4) whether it is possible to ontologically describe these artifacts, and create a basis for

development of a system that would support the methodological interoperability. Thus, the

main goal is to ontologically describe artifacts that arise in the methodologically managed

process of mobile application development targeting two or more mobile platforms, and to

create the basis for more efficient and interoperable process of multi-platform mobile

applications development.

In that sense the research aims to prove the following hypothesis: H1 - It is possible to create

an ontological description of elements of methodological interoperability containing

structural and semantic aspects of sets of artifacts created in the development process of a

mobile application for two or more target platforms.

The chapters of this summary are organized in accordance with the stated research questions.

The second chapter brings a systematic review of mobile applications development

methodologies; the results of the methodology implementation for two platforms are

presented in the third chapter and in the fourth chapter we identify and cross-compare the

artifacts that emerged in the process; in the fifth chapter the ontological definition of artifacts

is given. In the last chapter we discuss the results and draw conclusions.

2. Mobile applications development methodologies: a systematic review

 “A systematic literature review (SLR) is a means of evaluating and interpreting all available

research relevant to a particular research question, topic area, or phenomenon of interest.

Systematic reviews aim to present a fair evaluation of a research topic by using a trustworthy,

371

rigorous, and auditable methodology” (Kitchenham and Charters, 2007). As the method of

SLR is rather new in the field of software engineering (SE), first we analyzed the best

practices in performing such time consuming and comprehensive method. The guidelines

given by Kitchenham and Charters (2007) are followed and discussed by adding the

recommendations and findings from other influential authors in the field. Special focus is

given to the problem of performing the method by PhD students. The findings of this research

phase are followed during the execution of SLR which is reported in the next sections.

2.1. Performing the SLR

After performing a short and preliminary review of the existing methodologies we concluded

that the development for mobile devices differs from the standard development, the agile

approach is widely used in methodologies for mobile development and none of the observed

methodologies is applicable without additional efforts to make the process more fine-grained

or more suitable to specific development environment and mobile application requirements.

This indicates that a thorough and unbiased research is needed in order to get an overall

overview of possible methodologies that could be followed while developing applications for

mobile devices.

Additionally, another preliminary research is performed to identify the existing systematic

literature reviews on software development methodologies for development of mobile

applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar

databases were searched by the following search query: (“literature review” OR SLR) AND

(mobile development). According to information available in the mentioned databases, there

are no existing systematic literature reviews covering the subject of software development

methodologies for mobile applications development, which makes the need for such review

even bigger.

In order to address the issues determined in this analysis, this systematic review is aligned to

answer the following research questions:

RQ1 – What development methodologies and approaches are reported in literature as

defined in theory or used in practice for mobile application development?

RQ2 – Are the identified methodologies and approaches applicable for multi-platform

mobile applications development?

The review protocol was defined according to the instructions given in (Kitchenham and

Charters, 2007) and the template used for the protocol is proposed by (Biolchini et al., 2005)

and further explained by (Mian et al., 2005). Search string defined for the main research was

(mobile AND ("software development" OR "system development" OR "application

development" OR "program development") AND (methodology OR method OR approach OR

framework OR process OR procedure OR model)) and it was executed on available relevant

372

electronic sources (journals and proceedings) in the field of SE as identified by the field

experts Brereton et al. (2007), Hannay et al. (2007) and by Kitchenham and Charters (2007).

The literature review was performed through several phases including the identification,

inclusion and exclusion criteria application and quality assessment. Finally, 49 studies out of

6761 were identified as relevant for data extraction and synthesis.

As presented in Table 1 and Table 2 the total of 22 development methodologies and 7

development approaches were identified as newly developed or used and eligible for multi-

platform mobile applications development.

Table 1 - Developed methodologies and approaches

Name Type
Agile Methodology for Mobile Software Development M

Agile Solo M

Agile usability process M

DEAL M

Integrated Product Development Process for Mobile Software M

Inter-combined Model M

MASAM methodology M

Methodology for Building Enterprise-Wide Mobile Applications M

MicroApp visual approach M

Mobile Application Development Methodology M

Mobile-D M

New media application prototyping M

Systems Development Methodology M

ViP (Virtual Platform) M

Composite Application Software Development Process Framework A

MobiLine A

 Type: M - Methodology, A - Approach

Table 2 - Used methodologies and approaches

Name Type
Design Science M

Dynamic Channel Model M

Extreme Programming M

Kanban A

Mobile-D M

Mobile Engineering (MobE) M

Mobile RAD M

Rapid Application Development M

Scrum M

Model Driven Development A

Model Driven Product Lines A

Software Product Lines A

Test Driven Development A

 Type: M - Methodology, A - Approach

Only one methodology is covered by more than one study, while all other methodologies are

presented in a single identified study. Additionally, as expected, the methodologies and

approaches in the mobile development field are rather new. Only 4 studies are more than 5

years old, while all the other studies date in the last five years. The overall study quality

373

assessment score has the mean value of 2.735 out of 5 (68.38%) with the standard deviation

of 0.903. This can be interpreted as relatively low study quality with high deviation in quality.

On the other hand, more authors reported the usage of methodology or approach than the

creation of new methodology. Total of 9 methodologies and 4 approaches have been reported

as used. The important fact is that only one methodology (Mobile-D) identified as newly

created was reported to have been used. The usage of this methodology was reported in five

different studies, while all other new methodologies and approaches were not reported as ever

being used.

2.2. Choosing development methodology

As the basic assumption of the research is that methodological interoperability is platform and

methodology independent (i.e. it can be performed on any methodology ontologically

described), we can choose any of the 22 identified methodologies. To avoid random selection,

the criterion used to choose development methodology was reported applicability of newly

developed methodologies. Cross-analysis of the SLR results shows that Mobile-D is the only

methodology specifically created for mobile applications development that was reported to be

used in practice. In addition, we performed a research to identify other gray-literature sources

published by the methodology creators and found that this methodology is thoroughly and in

detail defined in several publications and the most important one is (Abrahamsson et al.,

2005a).

3. Methodology implementation

Mobile-D process (see Figure 1) includes five phases that are executed in partially

incremental order. The aim of the first phase, called Explore, is to prepare the foundation for

future development. The Initialize phase should describe and prepare all components of the

application as well as to predict possible critical issues of the project. This phase is usually

called zero iteration (0-iteration) phase as it, in addition to project set-up, includes the stages

of planning day, working day and release day which are also used in Productionize phase.

The idea of the 0-iteration phase is to assure the functionality of the technical development

environment through the implementation of some representative features or through

prototyping. The Productionize and Stabilize phases are executed iteratively in order to

develop all other features of the mobile product. Iterations start with planning day in

Productionize phase. The first activity is post-iteration workshop which aims to enhance the

development process to better fit the needs of the current software development team.

Requirements analysis, iteration planning and acceptance test generation tasks follow and are

executed during the planning day. Working day is based on implementation through test

374

driven development, pair programming, continuous integration and refactoring. This day

ends with the task of informing the customer on new functionality. Finally, the release day

includes the activities of integration and testing. The Stabilize phase has the goal to finalize

the implementation along with integrating subsystems if necessary. As this phase can contain

additional programming and development, the activities are very similar to the activities in the

Productionize phase. The only additional activity concerns documentation wrap-up. Iterations

should result in a working piece of functionality at user level.

Figure 1 - Mobile-D process

Finally, System Test and Fix phase aims to detect if the produced system correctly implements

the customer defined functionality. It also provides the project team feedback on the systems

functionality and the defect information for the last fixing iteration of the Mobile-D process.

This last iteration is not obligatory, but when fixing is needed it consists of the same activities

as other implementation iterations already explained.

Mobile-D strongly suggests the usage of Test Driven Development (TDD) which is connected

to all Mobile-D phases. The basics and the state of the art in TDD can be found in (Hammond

and Umphress, 2012). The purpose of TDD is to give the developers confidence that the code

they produce works, as well as to guide the design of the code towards an easily testable

structure. Additionally, the refactoring practice is also based on TDD to ensure that changes

made to the code do not break any functionality (Abrahamsson et al., 2005a).

In order to systematically observe the development process and to identify the artifacts

created during it, we developed a prototype application, namely KnowLedge, for Android and

Windows Phone target platform. The application intends to enable users learn and/or share

knowledge in an interactive and social manner. Among others, the basic usage included

functional requirements like browsing through categories to find existing knowledge on a

topic or placing a request for a new explanation/instructions/tutorial, sharing knowledge in

groups etc.

The overall system architecture comprises service oriented architecture, mobile application,

remote database and usage of the global positioning system. In addition, as it can be seen in

Figure 2, the mobile application architecture is also intended to be multi-layered with three

N iterations

Explore Initialize Productionize Stabilize
System Test

and Fix

375

distinct but connected layers. The internal cohesion (see (Miller, 2008)) of the presented

modules should be high, and at the same time the external coupling should be kept low.

Figure 2 - Mobile application architecture

The Mobile-D process with its clear technical specification was well documented and easy to

follow and the overall development process took less time than initially planned. A few

screenshots of the created application are visible in Figure 3.

Figure 3 - Application screenshots

In the case of Windows Phone application development, the whole process was performed

again, but as the structure of the created artifacts was the same as in the Android case, the

focus in this development process was put on identifying the means and possibilities of

reusing the existing artifacts. Although we expected some similarities among the artifacts, the

results were surprising: we found that many of the artifacts were completely or partially

reusable. Even though we experienced some WP platform specific issues and some testing

APIs

3rd party APIs

Local Database

Program Logic

User Interface

Web

service

interface

Web

service

Mobile Application

376

issues, the duration of the development process in WP case was 30 working days shorter

when compared to the planned duration and 16 working days (18.4%) shorter if compared to

the Android development case.

4. Identification of artifacts

As there are many definitions of artifact (e.g. from Hilpinen (2011) or from Parker (2011)),

we have adopted the definition from Conradi (2004) who says that artifact is “any piece of

software (i.e. models/descriptions/code) developed and used during software development

and maintenance”. As the goal of this research was to analyze only the structural and

semantic aspects of the sets of artifacts, we performed an analysis only from the semantic

concept view, while other possible views, such as procedural concept view or pragmatic

concept view are not covered by it. Thus, we only observed the artifacts and their connection

to the activities and tasks as it can be seen in Figure 4.

Figure 4 - Focusing semantic of artifacts and their origin

We performed the artifacts analysis in two steps. Firstly, we analyzed the Mobile-D process

library (Abrahamsson et al., 2005a) and identified the documents and other platform-

independent deliverables at a high level of abstraction. Secondly, as the approach of

identifying and grouping the artifacts only according to the phases of the origin would not be

a good way, and as during the implementation phase we collected the additional data on the

artifacts, we systematized and described all identified artifacts for both target platforms using

the template presented in Table 3.

Table 3 - Template for describing the identified artifacts

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Producing Using some

Performed by

utilizing

Consists of Mobile-D

Process

Methods and

Practices
Tools

Inputs

Outputs Activities

and Tasks

Artifacts

377

Thus, from the conceptual point of view, we created a solid basis for identifying not only the

documents that had been created, but also other artifacts that might be hard to identify if the

project was performed outside the laboratory.

Table 4 shows a part of the list of the identified artifacts, along with their initial classification,

description and connection with the Mobile-D phases. We used standard CRU notation for

denoting the artifacts that were created (C), used/read (R) and updated (U).

Table 4 – Part of list of identified artifacts in development process for Android

Artifact name Type Description

Phases inputs and outputs

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Mobile-D process

library
Document

Process library describing the Mobile-D

methodology in detail. Used as

methodology guidelines in every phase.

(Abrahamsson et al., 2005a)

R R R R R

Product proposal Document

Generated before the development process.

Describes the initial and general idea on

the product.

R

Project plan Document

Contains all information on project

including definition of customer group,

scope, planned activities and their duration,

plans on documentation etc. Aligned with

agile practices, this document is also

updated during the iterations.

 C R U R U

… … …

The identification process resulted in total of 60 different artifacts for Android development

process and 61 artifacts for Windows Phone development process. The union of these two

sets resulted in total of 71 identified artifacts that we grouped in 12 groups according to their

type.

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are

common to both development cases. Additionally, many of these common artifacts are

platform independent as being products of methodological approach. In total, 20 out of 50

identified common artifacts (40.00%) had been created or obtained only once, as these were

identical in both development processes. On the other hand, there are 13 artifacts (26.00%)

that could be partially reused while performing the development process for the second or any

other target platform. Finally, we recognized 17 artifacts (34.00% of all common artifacts)

with a very low level of possible reuse. They were classified as ones that should be developed

from scratch for every target platform. A preview of results of the cross-platform analysis can

be seen in Table 5. All other artifacts were classified as platform dependent artifacts, which

also have some reusable semantic or syntactic parts like sequencing, iterations, algorithms etc.

378

Table 5 – A part of list of common artifacts in Android in WP case

Artifact name Identical
Partially

reused
Different

Mobile-D process library X

Product proposal X

Initial requirements document X

Project plan X

Project plan checklist X

Project plan checklist template X

Project plan Gantt chart X

Measurement plan X

Architecture line description X

…

In total, 33 artifacts (66.00% of the common artifacts) are completely or partially reusable

which encouraged us and provided a solid basis and motivation for semantic analysis that

followed.

5. The ontology for methodological interoperability

The term “ontology” was taken from philosophy, but its use and meaning in computer science

got a new and adapted perspective. As there is no consensus on the definition of ontology, in

the context of this research we consider ontology as an explicit formal conceptualization of a

shared understanding of the domain of interest which includes vocabulary of terms for

describing the domain elements, semantics in order to define the relationships of the domain

elements and pragmatics in order to define possible usages of these elements.

5.1. Positioning the ontology development approach

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use

of ontologies. The authors recognized the usage of ontologies to: share common

understanding of the structure of information among people or software agents, enable reuse

of domain knowledge, make domain assumptions explicit, separate domain knowledge from

the operational knowledge, and analyze domain knowledge. Additionally, the ontologies are

used as intermediary mechanisms in intermediary-based approach to achieve semantic

interoperability (Park and Ram, 2004) which is of special interest in this research. Such

interoperability, according to Paulheim and Probst (2010), can be performed on different

levels, and subsequently they define integration on the data source level, integration on the

business logic level and integration on the user interface level, but surprisingly,

interoperability on the methodological level is rarely mentioned in literature.

Although there are different ontology types (see Lovrenčić (2007)), the ontology that is a

subject of this research is classified as domain ontology. Domain ontology can be defined as a

379

network of domain model concepts (topics, knowledge elements) that defines the elements

and the semantic relationships between them (Brusilovsky et al., 2005). The usage of domain

ontologies is suitable to describe all content regarding chosen development methodology and

approach. Similarly, there are several papers that give an extensive overview of ontology

design methodologies, such as (Dahlem, 2011), (Lovrenčić, 2007) and (Kabilan, 2007).

However, due to its characteristics of simplicity, focus on results and iterative approach, we

can call the methodology proposed by Noy and McGuinness (2001), namely Ontology

Development 101, as an agile ontology development methodology. Hence we found it as the

most suitable for our research process and we used it in defining our ontology. Finally, there

are various possibilities of using different ontology development tools and ontology

development languages. The research performed by Khondoker and Mueller (2010) showed

that by far the most widely used tool is Protégé. As Protégé is aligned with the OD101

methodology, and widely used from scientists and practitioners in (among others) fields of

Information Systems Development and Knowledge Management, we decided to use it in our

research as well. Subsequently, as Protégé works with two ontology representation languages,

Frames and OWL, we discussed both and selected OWL2 DL as the most appropriate

language in our case.

5.2. Developing the ontologies

The ontology development process was performed in three steps. First we developed the

Android case ontology and then the Windows Phone case ontology. Finally, we merged these

two into a single ontology definition.

The list of terms specific to our domain of interest was incrementally created during the

whole ontology development process. The final list includes terms that are the base of our

ontology: phase, activity, task, artifact, task input, task output, artifact type, artifact origin,

artifact usage, artifacts hierarchy, reusability, artifact similarity. In the process of class and

hierarchy definition, we followed the advice from Uschold and Gruninger (1996) and used the

middle-out approach by first defining more salient concepts and then making generalizations

and specializations as needed. The approach resulted in total definition of 152 classes

organized in 7 top level classes for Android, 153 classes similarly organized for Windows

Phone and 213 classes in the final merged ontology. The top level classes of the merged

ontology are presented in Figure 5.

In order to define knowledge on structure, semantics and usage of the ontology elements we

defined 12 object properties for the two specific ontologies and 14 object properties for the

final merged ontology. These properties are: consistsOf, createsArtifact, hasArtifactOrigin,

hasArtifactType, includesArtifact, hasReusabilityLevel, isCreatedByTask, isPartOfArtifact,

380

isPerformedIn, isSimilarToArtifact, isUpdatedByTask, isUsedByTask, updatesArtifact,

usesArtifact.

Figure 5 - Top level classes in final ontology

The figure describing a part of the final ontology shows that Artifact is finally connected with

Task, ArtifactOrigin, ArtifactType and ReuseLevel. Among these relationships, the

relationship with Task is the strongest as it is defined by three properties (each of them having

their inversed property). Although existing, the relationships among other top level classes are

not presented in this figure in order to maintain the focus on Artifact class only.

Connecting the instances of classes with the defined properties we had to follow OWL 2 DL

restrictions, rules and syntax. Additionally, OWL DL is based on Open World Assumption

(OWA) logic paradigm, and the OWA paradigm assumes that we cannot conclude that

something does not exist until it is explicitly stated that it does not exist. For example, in

order to completely define the methodological artifacts we had to use closure axioms and to

explicitly state that methodological artifacts were not created and not modified in our

development process but just used. The example of such description is given in Code 1.

381

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only Document

hasArtifactType some Document

isUsedByTask only Task

isUsedByTask some Task

not (isCreatedByTask some Task)

not (isUpdatedByTask some Task)

Code 1 - Sufficient class description in OWA paradigm

During the development of the Android case ontology we put the focus on the ontology

development process guided by selected development methodology and we developed the

ontology from scratch. In the second iteration we put the focus on reuse of the existing

ontology which proved its validity and flexibility and thus it validated the conceptual model

that is the base for our ontologies targeting single platforms.

In the development of unique ontological description, the focus was put on the ontology

merging, updating and evaluation. Most of the merging process was done automatically (see

Figure 6). After merging the two ontologies, we had no redundancy to deal with, and had no

problems in updating the ontology with a new conceptualization. This proves that the

ontology is both reusable and extendable.

Figure 6 - Example of automatically merged ontology

The basic terms defined for the Android Case ontology were reused in Windows Phone Case

ontology and thus are included in the final ontology as well. As we aimed to enhance the

acao:

ProductBacklog

acao:

UnitTest

acao:

ProductBacklog

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

 – reused construct

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont.

382

ontology with the conceptualization on artifact reusability, we had to introduce a couple of

new important terms (reusability and artifact similarity).

The created ontology comprises 213 classes, 14 object properties and 2213 axioms defined in

ALCRIF DL expression sub-language. The ontology in native OWL/XML format can be

downloaded from http://barok.foi.hr/~zstapic/ont/mcao.owl, while full OWLDoc ontology

documentation can be accessed and analyzed at http://barok.foi.hr/~zstapic/ont/mcao/doc/.

5.3. Evaluating the final ontology

In order to verify and validate our ontology, throughout the whole development process

lifecycle, we have performed the following seven verification and validation mechanisms:

1. Methodologically driven ontology development process

2. Followed recommendation and advices from other authors

3. Using reasoning tools to verify the ontology in each iteration

4. Using W3C OWL validating tool

5. Using the Ontology evaluation plug-in

6. Using DL queries to obtain information via inference on ontology knowledge

7. Checking the results by domain experts

The first five evaluating mechanisms are connected with ontology verification and are used to

lower the risks of making any syntactical and basic semantic errors throughout the whole

ontology development process.

The last two mechanisms are connected with ontology validation. These two mechanisms

have been used at the end of the development process to check if the created ontology

represents the domain knowledge in semantically correct way. Queries were created and

executed upon the final ontology in order to answer all competency questions related to

application development targeting any single platform and reusability semantics defined at the

beginning of the ontology creation process. For example, in order to obtain all reusable

artifacts that were used, created or updated during the Iteration Planning task we can use a

query like this:

Artifact

 and ((isUsedByTask some IterationPlanningTask)

 or (isCreatedByTask some IterationPlanningTask)

 or (isUpdatedByTask some IterationPlanningTask))

 and (ReusableArtifacts)

Code 2 - Reusable artifacts by task

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

383

The query result:

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan,

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart,

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate

The following query enumerates artifacts with specific type of Document that are completely

or partially reusable.

Artifact

 and (hasArtifactType some Document)

 and ((hasReusabilityLevel some Completely)

 or (hasReusabilityLevel some Partially))

Code 3 - Reusable artifacts by their type

The query result:

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog,

ProductProposal, ProjectPlan

All other queries were stated in a similar manner and results were analyzed by a domain

expert. The use of evaluation mechanisms throughout the development process and positive

validation are the proof of the quality and completeness of the ontology. This brings us to the

final conclusion that the developed Multi-platform Case Artifacts Ontology represents a

knowledge base that can be used in the development of information system aiming to guide

development teams in achieving methodological interoperability by reusing artifacts created

in the process of multi-platform mobile applications development.

6. Discussion and conclusion

Throughout the research we aimed to clearly point out at least five important aspects which

should make the research process transparent and repeatable. We put special focus on the

research motivation, results, contributions, rigor and evaluation. By research motivation we

wanted to emphasize the reasons for performing the research activities. By results and

contribution we aimed to systematize the obtained results and the contribution to knowledge.

Discussing the research rigor we wanted to point out our approach and its main

characteristics, and discussing the evaluation we wanted to underline the evaluation

mechanisms that are used in order to verify and validate the used approach and the obtained

results.

In this research several limitations can be identified. For example, the biggest challenges that

we faced in the first research phase were: the execution of a complicated and time-consuming

scientific method of Systematic Literature Review by a single researcher; the institutional

384

subscriptions to the available scientific sources are very poor in Croatia but somewhat better

in Spain; the lack of information about the performed projects on development of mobile

applications in development companies targeting two or more target platforms made us

develop a prototype application in laboratory; the proposed ontology presents only the

development of one application for two target platforms; and we covered only one

development methodology supported by one development approach. All mentioned issues can

be recognized as the limitations of this research, but we have to keep in mind that this

research process had the main goal of proposing a new framework or approach that can be

used in solving the mobile platform fragmentation problem.

Following the research goals defined at the beginning of the research process we identified

methodologies that could be used for development of mobile applications; we implemented

the chosen methodology and approach and created a mobile application targeting two target

platforms; we identified and analyzed the artifacts that were created in this development

process, and we created an ontological definition that describes the artifacts in accordance

with Mobile-D methodology and from the reusability point of view.

According to the results obtained during the ontology evaluation and testing, we can conclude

that such ontological description represents a solid basis that can be used in development of

an information system aiming to guide development teams in achieving methodological

interoperability by reusing artifacts created in the process of multi-platform mobile

application development. Additionally, we proved that our ontological description is highly

flexible and extensible. This allows us to update it with information on new platform specific

or platform independent artifacts without the need of changing the underling infrastructure

which is defined by the main class hierarchy elements, value partitions and properties.

Finally, the model allows the creation of Description Logic queries which can be used to

acquire direct or indirect information encoded in the ontology knowledge. We showed

examples of such queries which, among others, aimed to reach the information regarding the

competency questions stated at the beginning of the ontology development.

Therefore, we can conclude that it is possible to create an ontological description of the

elements of methodological interoperability containing structural and semantic aspects

of sets of artifacts created in the development process of a mobile application for two or

more target platforms, which makes our H1 hypothesis confirmed.

This research presents a comprehensive set of activities which resulted in a final product that

is usable in its current state. However, by extending the contexts of using such ontology we

can identify other possible research activities or even research directions that could be taken.

In general, we recognize two main fields where this research sets the basis for future scientific

and professional activities. Those fields are Software Engineering with particular focus on

385

mobile engineering and, secondly, Knowledge Engineering with particular focus on ontology

development. The created ontology defines the basic infrastructure and elements in the

proposed framework of methodological interoperability, which is stable for adding other

platforms, but should be reanalyzed and redefined when it comes to using it for completely

different methodologies. On the other hand, when talking about research activities in the field

of software engineering, we have already mentioned the necessity of moving this research

towards a new phase where a proper information system for guiding the artifacts reuse would

be developed. The development of such a novel system is not a trivial task and it gives many

research possibilities in domains of its design, functionality, relationships with the ontological

knowledge base et cetera.

Although there are ontologies defined to provide interoperability at different levels of an

application development process, this novel approach aims to define interoperability at, until

now unexplored, methodological level. Semantic descriptions created and evaluated in this

research proved that the proposed approach and the supporting framework represent a solid

basis for performing additional research in this field. However, developing this ontology is

only the first step in the chain of activities to be implemented in order to develop a

semantically supported system for methodological interoperability.

References

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J.,

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application

development, in: Companion to the 19th Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ‟04.

ACM, New York, NY, USA, pp. 174–175.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Jäälinoja, J., Komulainen, K., Korkala, M.,

Koskela, J., Kyllönen, P., Eporwei, O.T., 2005a. Agile Development of Embedded

Systems: Mobile-D (Agile Deliverable No. D.2.3). ITEA.

Adobe Corporation, 2011. Adobe Announces Agreement to Acquire Nitobi, Creator of

PhoneGap [WWW Document]. Adobecom - Press Releases. URL

http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresN

itobi.html (accessed 18-May-12).

Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., 2009. MobiVine: a middleware layer to

handle fragmentation of platform interfaces for mobile applications, in: Proceedings of

the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

‟09. Springer-Verlag New York, Inc., New York, NY, USA, pp. 24:1–24:10.

Amanquah, N., Eporwei, O.T., 2009. Rapid application development for mobile terminals, in:

2nd International Conference on Adaptive Science & Technology (ICAST). Presented

at the Technology (ICAST), Accra, Ghana, pp. 410–417.

386

Biolchini, J., Gomes Mian, P., Candida Cruz Natali, A., Horta Travassos, G., 2005.

Systematic Review in Software Engineering (Technical report No. RT - ES 679 / 05).

PESC, Rio de Janeiro.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from

applying the systematic literature review process within the software engineering

domain. J. Syst. Softw. 80, 571–583.

Brusilovsky, P., Sosnovsky, S., Yudelson, M., 2005. Ontology-based Framework for User

Model Interoperability in Distributed Learning Environments, in: World Conference

on ELearning, E-Learn 2005. AACE, pp. 2851–2855.

Conradi, R., 2004. Software engineering mini glossary [WWW Document]. URL

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (accessed 5-May-12).

Dahlem, N., 2011. OntoClippy: A User-Friendly Ontology Design and Creation

Methodology. Int. J. Intell. Inf. Technol. 7, 15–32.

Hammond, S., Umphress, D., 2012. Test driven development. ACM Press, p. 158.

Hannay, J., Sjoberg, D., Dyba, T., 2007. A Systematic Review of Theory Use in Software

Engineering Experiments. IEEE Trans. Softw. Eng. 33, 87–107.

Hilpinen, R., 2011. Artifact [WWW Document]. Stanf. Encycl. Philos. URL

http://plato.stanford.edu/entries/artifact/ (accessed 5-May-12).

Hosbond, J.H., 2005. Mobile Systems Development: Challenges, Implications and Issues, in:

Krogstie, J., Kautz, K., Allen, D. (Eds.), Mobile Information Systems II, IFIP

International Federation for Information Processing. Springer Boston, pp. 279–286.

Jeong, Y.-J., Lee, J.-H., Shin, G.-S., 2008. Development Process of Mobile Application SW

Based on Agile Methodology, in: Proceedings of 10th International Conference on

Advanced Communication Technology, (ICACT 2008). IEEE, Gangwon-Do, pp.

362–366.

Kabilan, V., 2007. Ontology for information systems (04IS) design methodology:

conceptualizing, designing and representing domain ontologies. Data- och

systemvetenskap, Kungliga Tekniska högskolan, Kista.

Khondoker, R.M., Mueller, P., 2010. Comparing Ontology Development Tools Based on an

Online Survey, in: Proceedings of the World Congress on Engineering. Presented at

the WCE 2010, London.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews

in Software Engineering Version 2.3 (Technical report No. EBSE-2007-01). Keele

University and University of Durham.

La, H.J., Kim, S.D., 2009. A service-based approach to developing Android Mobile Internet

Device (MID) applications. 2009 IEEE Int. Conf. Serv.-Oriented Comput. Appl.

SOCA 00, 1–7.

Lovrenčić, S., 2007. Formalna ontologija sveučilišnih studija (Doctoral dissertation).

University of Zagreb, Varazdin, Croatia.

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of Clouds in Your

Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,

in: 2010 IEEE Second International Conference on Cloud Computing Technology and

Science. pp. 496–503.

387

Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G., 2005. A Systematic Review

Process for Software Engineering, in: ESELAW ‟05: 2nd Experimental Software

Engineering Latin American Workshop.

Miller, J., 2008. Cohesion And Coupling. MSDN Mag. - Microsoft J. Dev. 23.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: AGuide to Creating Your

First Ontology (Technical report No. KSL-01-05; SMI-2001-0880), Stanford

Knowledge Systems Laboratory and Stanfrod Medical Informatics Technical Report.

Stanford University, Stanfrod.

Park, J., Ram, S., 2004. Information systems interoperability: What lies beneath? ACM Trans.

Inf. Syst. 22, 595–632.

Parker, P.M., 2011. Definition of artifact [WWW Document]. Websters Online Dict. URL

http://www.websters-online-dictionary.org/definitions/artifact (accessed 5-Jul-11).

Paulheim, H., Probst, F., 2010. Application integration on the user interface level: An

ontology-based approach. DATA Knowl. Eng. 69, 1103–1116.

PhoneGap, 2011. Take the pain out of compiling mobile apps for multiple platforms [WWW

Document]. PhoneGap Build. URL https://build.phonegap.com (accessed 27-Aug-11).

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software

development: A hybrid method engineering approach, in: Proceedings of Second

International Conference on Research Challenges in Information Science, RCIS

(2008). IEEE, Marrakech, pp. 337–342.

Rhomobile, Inc., 2011. Smartphone Enterprise Application Integration, White paper [WWW

Document]. URL http://tiny.cc/rhomobile (accessed 20-Aug-11).

Spataru, A.C., 2010. Agile Development Methods for Mobile Applications (PhD Thesis,

University of Edinburgh). The University of Edinburgh, Edinburgh.

Uschold, M., Gruninger, M., 1996. Ontologies: Principles, methods and applications. Knowl.

Eng. Rev. 11, 93–136.

389

RESUMEN EXTENDIDO

1. Introducción

El desarrollo de sistemas móviles es una tarea exigente que se diferencia del desarrollo

tradicional en diversos aspectos importantes. Según Hosbond (2005), los dos principales

desafíos a superar en el dominio del desarrollo de sistemas móviles son los desafíos

relacionados con el negocio y los desafíos específicos del desarrollo. En esta investigación

nos centraremos en los desafíos específicos del desarrollo, con especial atención al uso de

metodologías del software, ya que, según autores como Rahimian and Ramsin (2008), Spataru

(2010) or La and Kim (2009), se trata de uno de los primeros aspectos a abordar.

Las metodologías clásicas y ágiles para el desarrollo de software deben ser adaptadas al

desarrollo de aplicaciones móviles ya que las actuales no cubren las necesidades específicas

de este tipo de proyectos (La and Kim, 2009). Ha habido varios intentos de diferentes autores

por crear nuevas metodologías con el objetivo de cubrir las lagunas existentes en el dominio

de las aplicaciones móviles. Algunas de ellas son Agile Risk-based Methodology (Rahimian

and Ramsin, 2008), MASAM (Jeong et al., 2008), y Mobile-D (Abrahamsson et al., 2004). En

todo caso aun no existe ninguna investigación exhaustiva que responda a preguntas como

cuales de las metodologías nuevas o existentes son apropiadas para el desarrollo de

aplicaciones móviles.

Uno de los problemas más graves que debe afrontar la mencionada metodología es el de la

fragmentación, que obliga a los desarrolladores de aplicaciones móviles a enfocarse

únicamente en plataformas y versiones específicas (Manjunatha et al., 2010), cuando en

realidad su principal interés es abarcar el mayor abanico posible de usuarios. Esta

aproximación al desarrollo es poco deseable, lo que provoca que los equipos de desarrollo

busquen diferentes soluciones de manos de la comunidad de profesionales y de la comunidad

científica. Un primer tipo de solución es la que permite a los equipos de desarrollo utilizar un

lenguaje intermedio o un motor de transformación intermedio para programar para distintas

plataformas al mismo tiempo. Algunos de los proyectos más influyentes de este tipo son

MobiCloud (Manjunatha et al., 2010), Rhodes (Rhomobile, Inc., 2011) y el generador de

código de Amanquah & Eporwei (Amanquah and Eporwei, 2009). Estas propuestas tienen

varias ventajas, pero también importantes inconvenientes como serían la dependencia en el

esfuerzo invertido en el motor de transformación, en APIs específicas y en el dominio

específico; la falta de control sobre el código fuente generado; así como otros problemas

similares. El segundo tipo de solución sería la introducción de aplicaciones “adaptador”

390

nativas en todas las plataformas. Según Agarwal et al. (2009) esta es una de las técnicas

disponibles para manejar la fragmentación. Como la estandarización de APIs en el mundo de

los móviles resulta aun imposible, la única vía disponible para aplicarla es el uso de técnicas

de programación en las que se hacen llamadas a las interfaces abstractas de módulos que han

sido portados a todas las plataformas. Los casos más representativos de esta aproximación son

MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap, 2011) ó Adobe AIR® (Adobe

Corporation, 2011). Prácticamente todas los inconvenientes que se mencionaron en el caso de

los lenguajes o motores de transformación siguen estando presentes en este segundo tipo de

solución. Finalmente, una tercera solución sería el uso de tecnologías web para desarrollar

aplicaciones web multi-plataforma, pero esta aproximación está fuera del alcance de esta

investigación ya que difiere en muchos aspectos de las otras dos soluciones propuestas (e

igualmente tiene sus propias desventajas).

Por tanto, se centrá en la propuesta de soluciones para mejorar la interoperabilidad

metodológica entre equipos que trabajan en la misma aplicación pero en diferentes entornos

de desarrollo nativos. La investigación responderá a las siguientes preguntas: (1) qué

metodologías y aproximaciones
46

 al desarrollo pueden utilizarse en el desarrollo de

aplicaciones móviles multi-plataforma; (2) qué artefactos (entradas y salidas de las distintas

fases del desarrollo que se han definido metodológica y metódicamente) surgen durante el

desarrollo de aplicaciones móviles, (3) hasta qué punto existen similitudes entre estos

artefactos y (4) si es posible describir estos artefactos ontológicamente y crear una base para

el desarrollo de un sistema que soporte la interoperabilidad metodológica. En consecuencia, el

objetivo principal es la descripción ontológica de los artefactos que surgen en el proceso de

desarrollo de aplicaciones móviles para dos o más plataformas gestionado

metodológicamente, y la creación de una base para un proceso más eficiente e interoperable

de desarrollo multi-plataforma para móviles.

En ese sentido, la investigación pretende probar la siguiente hipótesis: H1 – Es posible crear

una descripción ontológica de los elementos de interoperabilidad metodológica que contenga

aspectos estructurales y semánticos de los conjuntos de artefactos creados en el proceso de

desarrollo de una aplicación móvil para dos o más plataformas.

Los capítulos de este resumen están organizados de acuerdo con las preguntas de

investigación planteadas. En el segundo capítulo se aborda la revisión sistemática de las

metodologías de desarrollo de aplicaciones para móviles; el tercer capítulo muestra los

resultados de la implementación de una metodología en dos plataformas distintas y en el

46

 Nota del traductor: De las dos posibles traducciones al castellano del término „development approach‟, que son

„aproximación al/del desarrollo‟ y „enfoque de desarrollo‟, en este texto se ha optado por la primera.

391

cuarto capítulo identificamos y comparamos los artefactos que surgieron en dicho proceso; en

el quinto capítulo se crea la definición ontológica de los artefactos y en el último capítulo se

discuten los resultados y se alcanzan las conclusiones.

2. Metodologías de desarrollo para aplicaciones móviles: Una revisión

sistemática

“La revisión sistemática de literatura es una forma de evaluar e interpretar todas las

investigaciones relevantes sobre una pregunta de investigación, un tema o un fenómeno de

interés. La revisión sistemática busca una evaluación justa de un tema de investigación

mediante el uso de una metodología rigurosa, auditable y de confianza” (Kitchenham and

Charters, 2007). Como el método de SLR (systematic literature review) es novedoso en el

campo de la ingeniería del software, en primer lugar hemos analizado las mejores prácticas a

la hora de aplicar un método tan exigente en horas de dedicación, y tan exhaustivo. Las guias

proporcionadas por Kitchenham and Charters (2007) serán seguidas y discutidas a la vez que

se incluyen las recomendaciones y hallazgos de otros autores influyentes en este ámbito.

Hemos puesto especial interés en el problema de la aplicación de este método por estudiantes

de doctorado. Los resultados de esta fase de investigación se muestran a continuación de la

ejecución del método SLR en las siguientes secciones.

2.1. Realización del SLR

Tras realizar una breve revisión preliminar de las metodologías existentes hemos concluido

que el desarrollo para móviles difiere del desarrollo estandar, que la aproximación ágil es

ampliamente utilizada en metodologías para desarrollo móvil, y que ninguna de las

metodologías observadas es aplicable sin esfuerzos extra para hacer el proceso más detallado

y adecuado a los entornos de desarrollo y los requisitos específicos de las aplicaciones para

móvil. Esto indica que es necesario realizar una investigación meticulosa e imparcial con el

objetivo de conseguir una visión general de las posibles metodlogías que podrían utilizarse a

la hora de desarrollar aplicaciones para dispositivos móviles.

Además, se ha realizado una investigación preliminar adicional para identificar las revisiones

sistematicas de literatura ya existentes en el ámbito de las metodologías de desarrollo de

aplicaciones para móvil. Se han realizado busquedas en las bases de datos IEEExplore, ACM

Digital library, INSPEC, CiteSeerX y GoogleScholar con la siguiente consulta: (“literature

review” OR SLR) AND (mobile development). Según la información disponible en las citadas

bases de datos, no existen revisiones sistemáticas de literatura que cubran el tema de las

metodologías de desarrollo de aplicaciones móviles, lo cual hace que dicha revisión sea aun

más necesaria.

392

En un intento de resolver los problemas descubiertos en este análisis, la revisión sistemática

intentará contestar a las siguientes preguntas de investigación:

RQ1 – ¿Qué metodologías de desarrollo y aproximaciones aparecen en la literatura, que

hayan sido definidas teóricamente o aplicadas en la práctica para el desarrollo de

aplicaciones para móvil?

RQ2 – ¿Son las metodologías y aproximaciones aplicables en el desarrollo multi-

plataforma de aplicaciones móviles?

El protocolo de revisión se definió de acuerdo a las instrucciones dadas en (Kitchenham and

Charters, 2007) y usando la plantilla para el protocolo propuesta en (Biolchini et al., 2005) y

explicada en más detalle por (Mian et al., 2005). La principal cadena de búsqueda usada en

esta investigación fue (mobile AND ("software development" OR "system development" OR

"application development" OR "program development") AND (methodology OR method OR

approach OR framework OR process OR procedure OR model)), la cual se ejecutó sobre las

fuentes de datos (revistas y actas de congresos) relevantes y disponibles en el ámbito de la

ingeniería del software identificadas por los expertos de este campo Brereton et al. (2007),

Hannay et al. (2007) and by Kitchenham and Charters (2007).

La revisión de la literatura se llevó a cabo en diferentes fases incluyendo la identificación, la

aplicación de criterios de inclusión y exclusión, y la evaluación de la calidad. Finalmente 49

estudios de 6761 se identificaron como relevantes de cara a la extracción y síntesis de datos.

Tal y como se presenta en las tablas 1 y 2, se identificaron un total de 22 metodologías de

desarrollo y 7 aproximaciones al desarrollo, tanto de nueva creación como empleadas, y por

lo tanto aplicables en el desarrollo de aplicaciones móviles multi-plataforma.

Tabla 1 – Metodologías y aproximaciones desarrolladas

Nombre Tipo
Agile Methodology for Mobile Software Development M

Agile Solo M

Agile usability process M

DEAL M

Integrated Product Development Process for Mobile Software M

Inter-combined Model M

MASAM methodology M

Methodology for Building Enterprise-Wide Mobile Applications M

MicroApp visual approach M

Mobile Application Development Methodology M

Mobile-D M

New media application prototyping M

Systems Development Methodology M

ViP (Virtual Platform) M

Composite Application Software Development Process Framework A

MobiLine A

 Tipo: M - Metodología, A - Aproximación

393

Tabla 2 - Metodologías y aproximaciones empleadas

Nombre Tipo
Design Science M

Dynamic Channel Model M

Extreme Programming M

Kanban A

Mobile-D M

Mobile Engineering (MobE) M

Mobile RAD M

Rapid Application Development M

Scrum M

Model Driven Development A

Model Driven Product Lines A

Software Product Lines A

Test Driven Development A

 Tipo: M - Metodología, A - Aproximación

Una única metodología se trata en más de un estudio, mientras que el resto de metodologías

se presenten en un único estudio de los identificados. Adicionalmente, y tal y como se

esperaba, las metodologías y aproximaciones son bastante nuevas. Solo 4 estudios tienen más

de 5 años de antigüedad, mientras que el resto de estudios datan de los últimos 5 años. La

puntuación global de evaluación de la calidad obtenida en el estudio es de 2,735 sobre 5

(68,38%) con una desviación estándar de 0,903. Esto indica que se trata de un estudio con una

calidad relativamente baja y una alta desviación en calidad.

Por otro lado, más autores informan sobre la utilización de una metodología y/o

aproximación. Un total de 9 metodologías y 4 aproximaciones se presentaron como

empleadas en los distintos estudios. El hecho más relevante es que solo una metodología

(Mobile-D) de nueva creación de las identificadas ha sido utilizada. Esta metodología ha sido

empleada en cinco estudios diferentes, mientras que no se ha halló evidencia en los estudios

sobre uso del resto de nuevas metodologías y nuevas aproximaciones.

2.2. Elección de la metodología de desarrollo

Como la asunción básica de esta investigación es que la interoperabilidad metodológica es

independiente de la plataforma y de la metodología (i.e. que puede conseguirse con cualquier

metodología ontológicamente definida), podría elegirse cualquiera de las 22 metodologías

identificadas. Para evitar una decisión aleatoria, el criterio empleado para elegir la

metodología de desarrollo fue la novedad y aplicabilidad de la metodología de desarrollo

según la literatura. El análisis cruzado de los resultados del SLR muestra que Mobile-D es la

única metodología creada específicamente para el desarrollo de aplicaciones móviles que se

utiliza en la práctica. Además, se realizó una búsqueda para identificar otras fuentes de

literatura gris publicadas por los creadores de la metodología, y se encontró que esta

metodología está documentada a fondo y en detalle contando con diferentes publicaciones de

la cuáles al más relevante es (Abrahamsson et al., 2005a)

394

3. Implementación de la metodología

El proceso Mobile-D (Figura 1) incluye cinco fases que se ejecutan en orden parcialmente

incremental. El objetivo de la primera fase, llamada Explore, es preparar las bases para el

futuro desarrollo. La fase Initialize debe describir y preparar todos los componentes de la

aplicación a la vez que se predicen posibles problemas críticos en el proyecto. La fase

Initialize a veces se denomina también fase de iteración cero (0-iteration) ya que además de la

puesta en marcha del proyecto (project set-up), se incluyen fases adicionales como el

planning day, working day y release day, que también se utilizan en la fase Productionize. La

idea clave de la iteración 0 es asegurar la funcionalidad del entorno de desarrollo a través de

la implementación de algunas de las características más representativas o a través de la

creación de un prototipo. Las fases Productionize y Stabilize se ejecutan iterativamente y en

orden para desarrollar el resto de características del producto. Cada iteración comienza con el

planning day en la fase Productionize. La primera actividad es el taller post-iteración en

donde se busca mejorar el proceso de desarrollo para que se ajuste mejor a las necesidades del

equipo de desarrollo actual. Las siguientes fases que se ejecutan durante el planning day son

el análisis de requisitos, la planificación de la iteración y la generación de pruebas de

aceptación. En el working day se trabaja en la implementación mediante desarrollo guiado por

pruebas, programación por pares, integración continua y refactorización. Este día finaliza con

una tarea en la que se informa al cliente de la nueva funcionalidad desarrollada. Finalmente el

release day incluye las actividades de integración y pruebas. La fase Stabilize tiene como

meta finalizar la implementación, incluyendo la integración de subsistemas si fuese necesario.

Como esta fase puede contener programación y desarrollo adicional, sus actividades son muy

similares a las de la fase Productionize. La única actividad adicional es la relacionada con el

empaquetado de la documentación. Cada iteración completa debería resultar en una pieza de

software funcional a nivel de usuario.

Figura 1 – Proceso Mobile-D

Finalmente, la fase de System Test and Fix tiene la función de detectar si el producto

implementa correctamente su funcionalidad tal y como la ha definido el cliente. También

proporciona feedback al equipo de desarrollo sobre la funcionalidad del sistema e información

sobre errores que resultará necesaria para la última iteración de reparaciones en el proceso

N iterations

Explore Initialize Productionize Stabilize
System Test

and Fix

395

Mobile-D. Esta última iteración no es obligatoria salvo que el sistema necesite alguna

reparación, en cuyo caso se realizarán las mismas actividades que en otras iteraciones de

implementación que ya se han explicado.

El proceso Mobile-D recomienda encarecidamente la aplicación del desarrollo guiado por

pruebas ó TDD (del inglés, Test Driven Development), ya que está conectado con todas las

fases Mobile-D. Las bases y el estado del arte del TDD pueden encontrarse en (Hammond and

Umphress, 2012). El propósito del TDD es dar a los desarrolladores confianza en que el

código que producen funcionará correctamente, así como guiar el diseño de la estructura del

código para que resulte sencillo de probar. Además la práctica de la refactorización también

se basa en el TDD, para asegurar que los cambios realizados sobre el código no producen

errores en la funcionalidad ya programada (Abrahamsson et al., 2005a).

Para poder observar sistemáticamente el proceso de desarrollo y para identificar los artefactos

que se crean en él, hemos desarrollado una aplicación prototipo llamada KnowLedge, para las

plataformas Android y Windows Phone. La aplicación pretende dar la posibilidad a sus

usuarios de aprender y compartir conocimiento de una forma interactiva y social. Entre otros,

el uso básico de la aplicación incluye requisitos funcionales como explorar categorías para

encontrar una fuente de conocimiento sobre un tema particular; enviar peticiones para obtener

nuevas explicaciones, instrucciones o tutoriales; compartir el conocimiento dentro de un

grupo de usuarios; etc.

La arquitectura general del sistema incluye una parte basada en servicios, la aplicación móvil,

la base de datos remota y el uso de un sistema de posicionamiento global. Además, como

puede observarse en la Figura 2, la arquitectura de la aplicación móvil también pretende ser

multicapa con tres capas distintas interconectadas. La cohesión interna (ver (Miller, 2008)) de

los módulos debe ser alta, mientras que el acoplamiento externo debe mantenerse bajo.

Figure 2 - Arquitectura de la aplicación móvil

APIs

3rd party APIs

Local Database

Program Logic

User Interface

Web

service

interface

Web

service

Mobile Application

396

El proceso Mobile-D resultó sencillo de seguir gracias a su clara especificación técnica y a su

buena documentación, y el proceso de desarrollo completo fue más rápido de lo inicialmente

planeado. En la Figura 3 se muestran algunas capturas de pantalla de la aplicación.

Figura 3 – Capturas de pantalla de la aplicación KnowLedge

En el caso del desarrollo de la aplicación de Windows Phone el proceso se aplicó de nuevo

por completo, pero como la estructura de los artefactos generados era la misma que en el caso

de Android, en este caso nos centramos en la identificación del significado (semántica) de los

distintos artefactos y en sus posibilidades de reutilización. Aunque esperábamos algunas

similitudes entre los artefactos, los resultados fueron sorprendentes: gran parte de los

artefactos resultaron completamente o parcialmente reutilizables. A pesar de que se

experimentaron algunos problemas específicos para la plataforma Windows Phone y algunos

problemas durante las pruebas, la duración del proceso de desarrollo en esta plataforma se

acortó en 30 días de trabajo comparándolo con la duración planificada, y en 16 días de trabajo

(18.4%) comparándolo con el caso de Android.

4. Identificación de artefactos

Al haber numerosas definiciones de artefacto (p. ej. de Hilpinen (2011) ó de Parker (2011)),

hemos adoptado la definición de Conradi (2004) que dice que un artefacto es “cualquier pieza

de software (i.e. modelos/descripciones) desarrollada y utilizada durante el desarrollo y el

mantenimiento de software”. Dado que la meta de esta investigación es analizar únicamente

los aspectos estructurales y semánticos del conjunto de artefactos, hemos realizado un análisis

desde el punto de vista del concepto semántico, mientras que otros posibles puntos de vista

como el del concepto procedural o el del concepto pragmático no se han cubierto. Por tanto,

397

únicamente hemos observado los artefactos y sus conexiones con las actividades y tareas, tal

y como se muestra en la Figura 4.

Figura 4 - Semántica de los artefactos y en su origen

El análisis de artefactos se realizó en dos pasos. En primer lugar analizamos la librería del

proceso Mobile-D (Abrahamsson et al., 2005a) e identificamos a alto nivel los documentos y

el resto de entregables independientes de la plataforma. En segundo lugar, como la

aproximación de identificar y agrupar los artefactos en función de las fases de origen no sería

adecuada, y como durante la fase de implementación se recolectaron datos adicionales de los

artefactos, decidimos sistematizar y describir todos los artefactos identificados para ambas

plataformas usando la plantilla presentada en la Tabla 3.

Tabla 3 – Plantilla para describer los artefactos identificados

Nombre del

artefacto
Tipo Descripción

Input y output de cada fase

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Por tanto, desde un punto de vista conceptual, hemos creado una base solida para identificar

no solo los documentos que han sido creados, si no también otros artefactos que podrían ser

difíciles de identificar si el proyecto fuese desarrollado fuera del laboratorio.

La Tabla 4 muestra parte de la lista de artefactos identificados, junto con su clasificación

inicial, descripción y conexión con las fases del proceso Mobile-D. Hemos usado la notación

estándar CRU para denotar los artefactos creados (C), usados/leídos (R) y actualizados (U).

Producing Using some

Performed by

utilizing

Consists of Mobile-D

Process

Methods and

Practices
Tools

Inputs

Outputs Activities

and Tasks

Artifacts

398

Tabla 4 – Lista parcial de artefactos identificados en el proceso de desarrollo para Android

Nombre del

artefacto
Tipo Descripción

Input y output de cada fase

I II III IV V

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

In
p

u
t

O
u

tp
u

t

Mobile-D process

library
Documento

La Mobile-D process library describe la

metodología Mobile-D en detalle. Se

utiliza como guía de la metodología en

todas sus fases. (Abrahamsson et al.,

2005a)

R R R R R

Product proposal Documento

Se genera antes de comenzar el proceso de

desarrollo. Describe la idea general inicial

del producto.

R

Project plan Documento

Contiene toda la información sobre el

proyecto incluyendo la definición del

cliente, alcance, actividades planificadas y

su duración, planes de documentación, etc.

Si se utiliza junto con prácticas ágiles, este

documento también se actualiza durante las

iteraciones.

 C R U R U

… … …

El proceso de identificación resultó en un total de 60 artefactos diferentes para el proceso de

desarrollo en Android y 61 artefactos para el de Windows Phone. La unión de estos dos

conjuntos resulto en un total de 71 artefactos identificados que se pueden agrupar en 12

grupos según su tipo.

En el análisis multi-plataforma encontramos que 50 artefactos (70,42% de todos los

identificados) son comunes a ambos desarrollos. Además muchos de los artefactos comunes

son independientes de la plataforma ya que se trata de productos propios de la aproximación

metodológica. En total, 20 de los 50 artefactos comunes identificados (40,00%) han sido

creados y obtenidos una única vez, ya que eran idénticos en ambos procesos de desarrollo.

Por otra parte, hay 13 artefactos (26,00%) que solo pueden ser reutilizados parcialmente

mientras se realiza el desarrollo en la segunda o posteriores plataformas. Finalmente,

reconocimos 17 artefactos (34,00% de todos los artefactos comunes) con un nivel muy bajo

de posible reutilización. Estos han sido identificados como los artefactos que deben ser

desarrollados desde el principio para cada plataforma de destino. La pre-visualización de

resultados del análisis multi-plataforma puede encontrarse en la Tabla 5. El resto de artefactos

han sido clasificados como artefactos dependientes de la plataforma, los cuales tienen algunas

partes semánticas o sintácticas reutilizables como las secuencias de instrucciones, iteraciones,

algoritmos, etc.

399

Tabla 5 – Lista parcial de artefactos comunes en Android y Windows Phone

Nombre del artefacto Idéntico
Parcialmente

Reutilizable
Diferente

Mobile-D process library X

Product proposal X

Initial requirements document X

Project plan X

Project plan checklist X

Project plan checklist template X

Project plan Gantt chart X

Measurement plan X

Architecture line description X

…

En total 33 artefactos (66.00% de los artefactos comunes) son completamente o parcialmente

reutilizables. Esto nos lleva a concluir que los resultados obtenidos motivan y proporcionan

una sólida base para el análisis semántico que se muestra a continuación.

5. La ontología para la interoperabilidad metodológica

El término “ontología” ha sido tomado del ámbito de la filosofía, pero su uso y significado en

informática toma una perspectiva nueva y adaptada. Como no existe consenso sobre la

definición de ontología, en el contexto de esta investigación consideramos que una ontología

es una conceptualización explícita y formal de un conocimiento común compartido en un

dominio de interés que incluye un vocabulario de términos para describir los elementos del

dominio, la semántica para definir las relaciones de los elementos del dominio, y la

pragmática para definir los posibles usos de estos elementos.

5.1. Enfoque para el desarrollo de la ontología

Noy and McGuinness (2001) ofrecen un revisión exhaustiva de las posibles razones para usar

ontologías. Estos autores reconocen el uso de ontologías para: compartir conocimiento común

sobre la estructura de cierta información entre personas o agentes software, permitir la

reutilización de conocimiento del dominio, hacer explícitas las suposiciones de un dominio,

separar el conocimiento de un dominio del conocimiento operacional, y analizar el

conocimiento de un dominio. Adicionalmente, las ontologías se emplean como mecanismos

intermediadores en el enfoque centrado en la intermediación (intermediary-based approach)

para conseguir interoperabilidad semántica (Park and Ram, 2004) que es de especial interés

en esta investigación. Tal interoperabilidad, de acuerdo a Paulheim and Probst (2010), puede

realizarse a diferentes niveles que después definen la integración en el nivel de datos, la

integración en el nivel de lógica de negocio y la integración en el nivel de interfaz de usuario,

pero sorprendentemente, la interoperabilidad a nivel metodológico rara vez se menciona en la

literatura.

400

Aunque existen diferentes tipos de ontologías (veáse Lovrenčić (2007)), la ontología objeto

de esta investigación se clasifica como una ontología del dominio. Una ontología del dominio

puede definirse como una red de conceptos del modelo del dominio (temas, elementos del

conocimiento) que definen los elementos y las relaciones semánticas entre ellos (Brusilovsky

et al., 2005). El uso de ontologías del dominio es adecuado para describir todo tipo de

contenido relacionado con la metodología de desarrollo y la aproximación al desarrollo.

Igualmente, existen diversos estudios que proporcionan una visión general sobre

metodologías para el diseño de ontologías, como son (Dahlem, 2011), (Lovrenčić, 2007) y

(Kabilan, 2007). Sin embargo, por sus características en lo relativo a simplicidad, enfoque en

los resultados y aproximación iterativa, podemos citar la metodología propuesta por Noy and

McGuinness (2001), es decir Ontology Development 101 (OD101), como una metodología

ágil de desarrollo de ontologías. Esta es la razón por la que la consideramos como la más

conveniente para nuestro proceso de desarrollo y por la que la emplearemos para definir

nuestra ontología. Finalmente, existen distintas posibilidades en cuanto a las herramientas de

desarrollo de ontologías y los lenguajes de desarrollo de ontologías. La investigación

realizada por Khondoker y Mueller (2010) mostró que con diferencia Protégé es la

herramienta más empleada. Como Protégé está alineada con la metodología OD101 y es

ampliamente utilizada por científicos y profesionales en campos como el Desarrollo de

Sistemas de Información y la Gestión del Conocimiento entre otros, decidimos usarla en

nuestra investigación también. Con posterioridad y dado que Protégé trabaja con dos

lenguajes de representación, Frames y OWL, comparamos ambos y seleccionamos OWL2 DL

como el más apropiado en nuestro caso.

5.2. Desarrollo de las ontologías

El proceso de desarrollo de la ontología se llevó a cabo en tres pasos. Primero se desarrolló

una ontología para el caso de Android, después se desarrolló una metodología para el caso de

Windows Phone y finalmente se fusionaron ambas ontologías en una única.

La lista de términos que aparecen en el dominio de interés se creó incrementalmente durante

todo el proceso de desarrollo. La lista final de términos que son la base de la ontología

incluye: phase, activity, task, artifact, task input, task output, artifact type, artifact origin,

artifact usage, artifacts hierarchy, reusability, artifact similarity. Para el proceso de

definición de clases y su jerarquía, seguimos las directrices de Uschold y Gruninger (1996) y

usamos una aproximación del centro hacía afuera (middle-out) definiendo en primer lugar los

conceptos más destacados para luego realizar las generalizaciones y especializaciones

necesarias. Esta aproximación produjo un total de 152 clases de definición organizadas en 7

clases de alto nivel para Android; 153 clases igualmente organizadas para Windows Phone y

401

213 clases en la ontología fusionada final. Los artefactos de alto nivel de la ontología final se

presentan en la figura 5.

Para definir el conocimiento de la estructura, semántica y uso de los elementos de la ontología

se definieron 12 propiedades de objeto para las dos ontologías específicas y 14 propiedades de

objeto para la ontología fusionada final. Estas propiedades son: consistsOf, createsArtifact,

hasArtifactOrigin, hasArtifactType, includesArtifact, hasReusabilityLevel, isCreatedByTask,

isPartOfArtifact, isPerformedIn, isSimilarToArtifact, isUpdatedByTask, isUsedByTask,

updatesArtifact, usesArtifact.

Figura 5 – Artefactos de alto nivel de la ontología

La figura que describe parte de la ontología final muestra que Artifact está finalmente

conectado con Task, ArtifactOrigin, ArtifactType y ReuseLevel. De entre estas relaciones, la

relación con Task es la más fuerte dado que está definida con tres propiedades (cada una de

las cuales tiene la propiedad invertida). Aunque existen, las relaciones entre el resto de clases

de alto nivel no se presentan en la figura con el fin de que esta se centre en los artefactos

únicamente.

Para conectar las instancias de las clases con las propiedades definidas se siguieron las

restricciones, reglas y sintaxis de OWL 2 DL. Adicionalmente, OWL DL se basa en

paradigma lógico Open World Assumption (OWA). Este paradigma asume que no se puede

402

concluir que algo no existe hasta que se afirma explícitamente que no existe. Por ejemplo,

para definir completamente los artefactos metodológicos tuvimos que usar axiomas de

clausura y declarar explícitamente que tales artefactos no se crean ni se modifican durante el

proceso de desarrollo. Simplemente se utilizan. Un ejemplo de dicha descripción se muestra

en el fragmento de código 1.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only Document

hasArtifactType some Document

isUsedByTask only Task

isUsedByTask some Task

not (isCreatedByTask some Task)

not (isUpdatedByTask some Task)

Código 1 - Descripción de clase suficiente en el paradigma OWA

Durante el desarrollo de la ontología para el caso de Android nos centramos en el proceso de

desarrollo guiado por la metodología de desarrollo seleccionada desarrollando la ontología

desde cero. En la segunda interacción nos centramos en reutilizar la ontología existente

probando su validez y flexibilidad. Esto validó por lo tanto el modelo conceptual que es la

base de las ontologías dirigidas hacía una única plataforma.

Durante el desarrollo de la descripción ontológica unificada nos centramos en la fusión,

actualización y evaluación. La mayoría del proceso de fusión se realizó automáticamente

(veáse Figura 6). Tras la fusión de las dos ontologías, no hubo redundancia de la que ocuparse

al igual que tampoco problemas al actualizar la ontología con nuevos conceptos. Esto prueba

que la metodología es la vez reusable y extensible.

Los términos básicos definidos para la ontología del caso de Android se reutilizaron en la

ontología para el caso de Windows Phone y por lo tanto se incluyen también en la ontología

final. Como pretendíamos mejorar nuestra metodología con la conceptualización referente a la

reutilización de artefactos, tuvimos que introducir un par de términos nuevos importantes

(reusability y artifact similarity).

La ontología creada consta de 213 clases, 14 propiedades de objeto y 2213 axiomas definidos

en el sub-lenguaje de expresión ALCRIF DL. La ontología en el formato nativo OWL/XML

puede descargarse de http://barok.foi.hr/~zstapic/ont/mcao.owl, mientras que la

documentación completa OWLDoc de la ontología puede encontrase en

http://barok.foi.hr/~zstapic/ont/mcao/doc/.

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

403

Figura 6 – Ejemplo de fusión automatica de ontologías

5.3. Evaluación de la ontología final

Para verificar y validar la ontología, durante el ciclo de vida del proceso de desarrollo, se han

llevado a cabo los siete mecanismos siguientes de verificación y validación:

1. Proceso de desarrollo de la ontología dirigido metodológicamente

2. Seguir las recomendaciones y consejos de otros autores

3. Uso de herramientas de razonamiento para verificar la ontología en cada iteración

4. Uso de la herramienta de validación para W3C OWL

5. Uso del plug-in de evaluación de ontologías

6. Uso de consultas DL para obtener información vía inferencia sobre el

conocimiento de la ontología

7. Comprobación de los resultados por expertos en el dominio

Los primeros cinco mecanismos de evaluación están relacionados con la verificación de la

ontología y se emplearon para reducir el riesgo de cometer errores sintácticos y semánticos

durante todo el proceso de desarrollo de la ontología.

Los últimos dos mecanismos están relacionados con la validación de la ontología. Estos dos

mecanismos se emplearon al final del proceso de desarrollo para comprobar si la ontología

representa el domino de conocimiento de una forma semánticamente correcta. Las consultas

se crearon y ejecutaron sobre la ontología para responder las cuestiones relativas al desarrollo

para una única plataforma y a la reusabilidad semántica definidas al principio del proceso de

creación de la ontología. Por ejemplo, para obtener todos los artefactos reutilizables que se

usaron, crearon o actualizaron durante la tarea Iteration Planning, se puede usar una consulta

como la siguiente:

acao:

ProductBacklog

acao:

UnitTest

acao:

ProductBacklog

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

 – reused construct

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont.

404

Artifact

 and ((isUsedByTask some IterationPlanningTask)

 or (isCreatedByTask some IterationPlanningTask)

 or (isUpdatedByTask some IterationPlanningTask))

 and (ReusableArtifacts)

Código 2 – Artefactos reutilizables por tarea

El resultado de la consulta:

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan,

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart,

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate

La siguiente consulta enumera los artefactos del tipo específico Document que son completa o

parcialmente reutilizables.

Artifact

 and (hasArtifactType some Document)

 and ((hasReusabilityLevel some Completely)

 or (hasReusabilityLevel some Partially))

Código 3 – Artefactos reutilizables por tipo

El resultado de la consulta es el siguiente:

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog,

ProductProposal, ProjectPlan

El resto de consultas se declararon de forma similar y los resultados fueron analizados por un

experto en el dominio. El uso de mecanismos de evaluación a lo largo del proceso de

desarrollo junto con la validación positiva son prueba de la calidad y completitud de la

ontología. Esto nos lleva a la conclusión final que es que la ontología de artefactos del caso

multi-plataforma representa una base de conocimiento que puede ser empleada en el

desarrollo de un sistema de información con el objetivo de guiar a los equipos de desarrollo

para conseguir interoperabilidad metodológica mediante la reutilización de los artefactos que

se creen en el proceso de desarrollo de aplicaciones móviles multi-plataforma.

6. Discusión y conclusiones

A lo largo de esta investigación hemos señalado al menos cinco aspectos importantes que

deben hacer que el proceso de investigación sea transparente y repetible. Hemos puesto

especial énfasis en la motivación, resultados, contribuciones, rigor y evaluación de la

investigación. En cuanto a la motivación hemos querido destacar las razones para realizar la

investigación. En lo relativo a resultados y contribución hemos tenido como objetivo

sistematizar los resultados obtenidos y la contribución al conocimiento. En la discusión sobre

el rigor de la investigación hemos querido señalar nuestro enfoque y sus principales

405

características, y en la discusión sobre la evaluación queríamos hacer especial hincapié en los

mecanismos de evaluación empleados para verificar y validar el método empleado y los

resultados obtenidos.

En esta investigación se pueden identificar varias limitaciones. Entre ellas se mencionan las

siguientes: (1) El mayor reto al que se hizo frente en la primera fase de la investigación fue

que la realización de la revisión sistemática de la literatura fue llevada a cabo por un único

investigador resultando complicada y consumiendo mucho tiempo. (2) Las suscripciones

institucionales a las fuentes de datos científicas disponibles son muy pobres en Croacia y algo

mejores en España. (3) La falta de información sobre proyectos desarrollados para el

desarrollo de aplicaciones móviles en compañías de desarrollo para dos o más plataformas

nos obligó a desarrollar una aplicación prototipo de laboratorio. (4) La ontología presenta solo

el desarrollo para dos plataformas objetivo. Y (5), solo se ha cubierto una metodología de

desarrollo y una aproximación al desarrollo. Todos los problemas mencionados pueden

reconocerse como limitaciones de esta investigación, pero debemos tener en cuenta que el

objetivo principal de la investigación es proponer un nuevo marco o aproximación que pueda

emplearse para afrontar el problema de la fragmentación en plataformas móviles.

Siguiendo los objetivos de investigación definidos al principio del proceso, hemos

identificado las metodologías que se podrían emplear para el desarrollo de aplicaciones

móviles; hemos implementado la metodología y la aproximación seleccionadas y hemos

creado una aplicación móvil para dos plataformas; hemos identificado y analizado los

artefactos creados durante el proceso, y hemos creado una definición ontológica que describe

los artefactos conforme a la metodología Mobile-D desde el punto de vista de la reutilización.

De acuerdo a los resultados obtenidos durante la evaluación y prueba de la ontología,

podemos concluir que la representación ontológica representa una base sólida que puede ser

empleada en el desarrollo de un sistema de información que tenga el objetivo de guiar a los

equipos de desarrollo a que consigan interoperabilidad metodológica reutilizando los

artefactos creados en el proceso de desarrollo de aplicaciones móviles multi-plataforma.

Además,

Además, hemos probado que la descripción ontológica es altamente flexible y extensible, lo

que permite actualizarla con información sobre nuevos artefactos, dependientes o

independientes de la plataforma, sin necesidad de cambiar la infraestructura subyacente dada

por la jerarquía principal de clases y las particiones de valor o propiedades definidas.

Finalmente, el modelo permite la creación de consultas en Lógica Descriptiva (Description

Logic) que pueden emplearse para obtener información codificada en el conocimiento de la

ontología directa o indirectamente. Hemos mostrado ejemplos de tales consultas destinadas,

406

entre otras cosas, a obtener información sobre las cuestiones de competencia declaradas al

principio del desarrollo de la ontología.

Por lo tanto, podemos concluir que es posible crear una descripción ontológica de los

elementos de interoperabilidad metodológica que contenga aspectos estructurales y

semánticos de los conjuntos de artefactos creados en el proceso de desarrollo de una

aplicación móvil para dos o más plataformas, lo que confirma nuestra hipótesis H1.

Esta investigación presenta un amplio conjunto de actividades que han dado lugar a un

producto final que se puede utilizar en su estado actual. Sin embargo, mediante la ampliación

de los contextos de uso de dicha ontología podemos identificar otras actividades de

investigación posibles o incluso líneas de investigación que podrían adoptarse. En general,

reconocemos dos campos principales en los que esta investigación sienta las bases para

futuras actividades científicas y profesionales. Esos campos son la Ingeniería de Software con

especial énfasis en la Ingeniería Móvil y, en segundo lugar, la Ingeniería del Conocimiento,

con especial énfasis en el desarrollo de ontologías. La ontología creada define la

infraestructura básica y los elementos del framework propuesto para la interoperabilidad

metodológica, que es estable para añadir nuevas plataformas, pero que debe reanalizarse y

redefinirse cuando se trate de utilizarlo para metodologías completamente distintas. Por otro

lado, cuando se habla de las actividades de investigación en el campo de la ingeniería de

software, ya hemos mencionado la necesidad de trasladar la investigación a una nueva fase en

la que se desarrollará un sistema de información adecuado para guiar en la reutilización de

artefactos. El desarrollo de un sistema tan novedoso no es una tarea trivial y da muchas

posibilidades de investigación en el ámbito de su diseño, su funcionalidad, y su relación con

la base de conocimiento ontológico entre otras cosas.

Aunque existen ontologías definidas para proporcionar interoperabilidad a diferentes niveles

del proceso de desarrollo de aplicaciones, este nuevo enfoque tiene por objetivo definir la

interoperabilidad al, hasta ahora inexplorado, nivel metodológico. Las descripciones

semánticas creadas y evaluadas en esta investigación prueban que el enfoque y el framework

que los sustenta representan una base sólida para llevar a cabo más investigación en este

ámbito. Sin embargo, el desarrollo de esta ontología es sólo el primer paso en la cadena de

actividades que se deberían implementar a fin de desarrollar un sistema de apoyo semántico

para la interoperabilidad metodológica.

Referencias

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J.,

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application

development, in: Companion to the 19th Annual ACM SIGPLAN Conference on

407

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ‟04.

ACM, New York, NY, USA, pp. 174–175.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Jäälinoja, J., Komulainen, K., Korkala, M.,

Koskela, J., Kyllönen, P., Eporwei, O.T., 2005a. Agile Development of Embedded

Systems: Mobile-D (Agile Deliverable No. D.2.3). ITEA.

Adobe Corporation, 2011. Adobe Announces Agreement to Acquire Nitobi, Creator of

PhoneGap [WWW Document]. Adobecom - Press Releases. URL

http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresN

itobi.html (accessed 18-May-12).

Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., 2009. MobiVine: a middleware layer to

handle fragmentation of platform interfaces for mobile applications, in: Proceedings of

the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

‟09. Springer-Verlag New York, Inc., New York, NY, USA, pp. 24:1–24:10.

Amanquah, N., Eporwei, O.T., 2009. Rapid application development for mobile terminals, in:

2nd International Conference on Adaptive Science & Technology (ICAST). Presented

at the Technology (ICAST), Accra, Ghana, pp. 410–417.

Biolchini, J., Gomes Mian, P., Candida Cruz Natali, A., Horta Travassos, G., 2005.

Systematic Review in Software Engineering (Technical report No. RT - ES 679 / 05).

PESC, Rio de Janeiro.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from

applying the systematic literature review process within the software engineering

domain. J. Syst. Softw. 80, 571–583.

Brusilovsky, P., Sosnovsky, S., Yudelson, M., 2005. Ontology-based Framework for User

Model Interoperability in Distributed Learning Environments, in: World Conference

on ELearning, E-Learn 2005. AACE, pp. 2851–2855.

Conradi, R., 2004. Software engineering mini glossary [WWW Document]. URL

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (accessed 5-May-12).

Dahlem, N., 2011. OntoClippy: A User-Friendly Ontology Design and Creation

Methodology. Int. J. Intell. Inf. Technol. 7, 15–32.

Hammond, S., Umphress, D., 2012. Test driven development. ACM Press, p. 158.

Hannay, J., Sjoberg, D., Dyba, T., 2007. A Systematic Review of Theory Use in Software

Engineering Experiments. IEEE Trans. Softw. Eng. 33, 87–107.

Hilpinen, R., 2011. Artifact [WWW Document]. Stanf. Encycl. Philos. URL

http://plato.stanford.edu/entries/artifact/ (accessed 5-May-12).

Hosbond, J.H., 2005. Mobile Systems Development: Challenges, Implications and Issues, in:

Krogstie, J., Kautz, K., Allen, D. (Eds.), Mobile Information Systems II, IFIP

International Federation for Information Processing. Springer Boston, pp. 279–286.

Jeong, Y.-J., Lee, J.-H., Shin, G.-S., 2008. Development Process of Mobile Application SW

Based on Agile Methodology. Proceedings of 10th International Conference on

Advanced Communication Technology. IEEE, Gangwon-Do, pp. 362–366.

Kabilan, V., 2007. Ontology for information systems (04IS) design methodology:

conceptualizing, designing and representing domain ontologies. Data- och

systemvetenskap, Kungliga Tekniska högskolan, Kista.

408

Khondoker, R.M., Mueller, P., 2010. Comparing Ontology Development Tools Based on an

Online Survey, in: Proceedings of the World Congress on Engineering. Presented at

the WCE 2010, London.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews

in Software Engineering Version 2.3 (Technical report No. EBSE-2007-01). Keele

University and University of Durham.

La, H.J., Kim, S.D., 2009. A service-based approach to developing Android Mobile Internet

Device (MID) applications. 2009 IEEE Int. Conf. Serv.-Oriented Comput. Appl.

SOCA 00, 1–7.

Lovrenčić, S., 2007. Formalna ontologija sveučilišnih studija (Doctoral dissertation).

University of Zagreb, Varazdin, Croatia.

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of Clouds in Your

Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,

in: 2010 IEEE Second International Conference on Cloud Computing Technology and

Science. pp. 496–503.

Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G., 2005. A Systematic Review

Process for Software Engineering, in: ESELAW ‟05: 2nd Experimental Software

Engineering Latin American Workshop.

Miller, J., 2008. Cohesion And Coupling. MSDN Mag. - Microsoft J. Dev. 23.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: AGuide to Creating Your

First Ontology (Technical report No. KSL-01-05; SMI-2001-0880), Stanford

Knowledge Systems Laboratory and Stanfrod Medical Informatics Technical Report.

Stanford University, Stanfrod.

Park, J., Ram, S., 2004. Information systems interoperability: What lies beneath? ACM Trans.

Inf. Syst. 22, 595–632.

Parker, P.M., 2011. Definition of artifact [WWW Document]. Websters Online Dict. URL

http://www.websters-online-dictionary.org/definitions/artifact (accessed 5-Jul-11).

Paulheim, H., Probst, F., 2010. Application integration on the user interface level: An

ontology-based approach. DATA Knowl. Eng. 69, 1103–1116.

PhoneGap, 2011. Take the pain out of compiling mobile apps for multiple platforms [WWW

Document]. PhoneGap Build. URL https://build.phonegap.com (accessed 27-Aug-11).

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software

development: A hybrid method engineering approach, in: Proceedings of Second

International Conference on Research Challenges in Information Science, RCIS

(2008). IEEE, Marrakech, pp. 337–342.

Rhomobile, Inc., 2011. Smartphone Enterprise Application Integration, White paper [WWW

Document]. URL http://tiny.cc/rhomobile (accessed 20-Aug-11).

Spataru, A.C., 2010. Agile Development Methods for Mobile Applications (PhD Thesis,

University of Edinburgh). The University of Edinburgh, Edinburgh.

Uschold, M., Gruninger, M., 1996. Ontologies: Principles, methods and applications. Knowl.

Eng. Rev. 11, 93–136.

409

PROŠIRENI SAŽETAK

1. Uvod

Razvoj mobilnih aplikacija je izazovan zadatak koji se razlikuje od tradicionalnog razvoja u

nekoliko važnih aspekata. Prema Hosbondu (2005), dva glavna skupa izazova trebala bi se

rješavati u domeni razvoja mobilnih sustava. To su izazovi povezani s poslovanjem i izazovi

specifični za razvoj. U ovom istraživanju usredotočit ćemo se na izazove specifične za razvoj,

te ćemo posebnu pozornost obratiti na korištenje metodike razvoja. Neki autori, kao što su

Rahimian i Ramsin (2008), Spataru (2010) ili La i Kim (2009), upravo korištenje metodike

razvoja smatraju prioritetom pri razvoju mobilnih programskih proizvoda.

Postojeće klasične i agilne metodike razvoja softvera ne pokrivaju posebne zahtjeve razvoja

mobilnih aplikacija te bi u tu svrhu trebale biti prilagođene (La i Kim, 2009). Postoji nekoliko

pokušaja različitih autora koji su kreirali nove metodike kako bi uklonili nedostatke u domeni

razvoja mobilnih aplikacija, a neke od njih su Agilna metodika bazirana na uklanjanju riziku

(Rahimian i Ramsin, 2008), MASAM (Jeong et al., 2008) i Mobile-D (Abrahamsson et al.,

2004). Ipak, nismo pronašli sveobuhvatno istraživanje koje odgovara na bitna pitanja kao na

primjer koje postojeće ili nove metodike su pogodne za razvoj mobilnih aplikacija.

Povrh problema sa primjenom metodike, problem fragmentacije prisiljava programere

mobilnih aplikacija da se u razvoju usredotoče samo na određene platforme i verzije

(Manjunatha et al., 2010). Budući da su mobilne aplikacije prvenstveno usmjerene na širok

spektar korisnika, takav pristup nije poželjan i razvojni timovi posežu za različitim rješenjima

i pristupima koji su predloženi od strane stručne i znanstvene zajednice. Prvo, želimo

spomenuti pristup koji omogućuje razvojnim timovima koristiti posrednički jezik ili pak

posrednički sustav za transformaciju kôda kako bi pisali jedan kôd za nekoliko ciljanih

platformi. Neki od najutjecajnijih projekata su MobiCloud (Manjunatha et al., 2010), Rhodes

(Rhomobile, Inc., 2011) i Amanquah & Eporwei generator koda (Amanquah i Eporwei,

2009). Ovi pokušaji imaju nekoliko prednosti, ali također imaju i značajne nedostatke, kao što

su ovisnost o naporima uloženim u sustav za transformaciju, korištenje specifičnih API-ja i

primjena u samo specifičnim domenama, nedostatak kontrole nad generiranim izvornim

kodom i slično. Drugo moguće rješenje problema fragmentacije moglo bi biti uvođenje

adapter aplikacija (prilagodnika) kao izvornih aplikacija za svaku ciljanu platformu. Prema

Agarwal et al. (2009) ovo je jedan od dva glavna pristupa rješavanju problema fragmentacije.

Budući da standardizacija API-ja u mobilnom svijetu još uvijek nije moguća, korištenje

tehnika programiranja u kojima su pozivi prema sučeljima omotani, to jest apstrahirani, u

410

odvojene module koji su potom prilagođeni različitim platformama ostaje kao jedino rješenje.

Predstavnici ovakvog pristupa su MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap,

2011) i Adobe AIR® (Adobe Corporation, 2011). Gotovo svi nedostaci navedeni za rješenja

koja su temeljena na transformaciji koda također postoje i u ovom pristupu. Na posljetku,

treći pristup je korištenje web tehnologija i razvoj više-platformskih web aplikacija, ali kako

se u mnogim aspektima razlikuje od pretpostavki ovog istraživanja, ovaj pristup (koji također

ima svoje nedostatke) nije u domeni ovog istraživanja.

Stoga, ovo istraživanje fokusira se na prijedlog rješenja koje bi omogućilo veću metodološku

interoperabilnost između timova koji razvijaju istu aplikaciju ali na različitim (urođenim)

razvojnim okruženjima. Istraživanje odgovara na sljedeća pitanja: (1) koje metodike i razvojni

pristupi mogu biti korišteni pri razvoju mobilnih aplikacija: (2) koji artefakti (zahtijevani ulazi

i rezultati provedbe aktivnosti) nastaju pri razvoju mobilnih aplikacija, (3) postoje li i kako su

velike sličnosti između artefakata i (4) je li moguće ontološki opisati ove artefakte i kreirati

osnovu za razvoj sustava koji bi omogućio metodološku interoperabilnost. Stoga, osnovni cilj

istraživanja je ontološki opisati artefakte koji nastaju u metodički upravljanom procesu

razvoja mobilne aplikacije za dvije ili više platformi te time kreirati osnovu za efikasniji i

interoperabilniji proces razvoja više-platformskih mobilnih aplikacija.

S tim u vezi, definirana je i hipoteza istraživanja koja glasi: H1 - Moguće je definirati

ontološki opis elemenata metodološke interoperabilnosti takav da sadrži strukturne i

semantičke aspekte u skupovima artefakata koji nastaju u procesima razvoja mobilne

aplikacije za dvije ili više mobilnih platformi.

Poglavlja ovog sažetka su organizirana sukladno postavljenim istraživačkim pitanjima. Drugo

poglavlje prikazuje sustavni pregled literature o metodikama razvoja mobilnih aplikacija;

treće poglavlje prikazuje rezultate implementacije metodike pri razvoju za dvije platforme; u

četvrtom poglavlju prikazana je ontološka definicija artefakata, a u posljednjem poglavlju

prikazani su diskusija rezultata i zaključak.

2. Metodike razvoja mobilnih aplikacija: sustavni pregled literature

 “Sustavni pregled literature (SLR) predstavlja način vrednovanja i interpretiranja svih

dostupnih rezultata istraživanja relevantnih za definirano istraživačko pitanje, područje ili

fenomen od interesa. Sustavni pregled ima za cilj prikazati objektivno vrednovanja

istraživačke teme korištenjem vjerodostojne, stroge i provjerljive metodike” (Kitchenham i

Charters, 2007). Budući da je SLR metoda nova u području softverskog inženjerstva (SE),

prvo smo analizirali najbolju praksu u provođenju ove složene i vremenski zahtjevne metode.

Pri tome smo slijedili opis provedbe metode dan u (Kitchenham i Charters, 2007), koji smo

411

upotpunili preporukama i rezultatima drugih utjecajnih autora u području SE. Posebna

pozornost je usmjerena na provođenje metode od strane doktorskih studenata. Rezultati ovog

istraživanja su korišteni pri provedbi SLR-a, kako je prikazano u sljedećem poglavlju.

2.1. Provedba SLR-a

Rezultati preliminarnog istraživanja o postojećim metodikama razvoja pokazali su da se

razvoj za mobilne uređaje razlikuje od razvoja ostalih aplikacija, da je agilni pristup najčešće

korišten u metodikama razvoja mobilnih aplikacija te da niti jedna od promatranih metodika

nije primjenjiva bez dodatnih napora kako bi se proces detaljnije opisao ili prilagodio

specifičnim razvojnim okruženjima ili zahtjevima mobilnih aplikacija. Ovo ukazuje na

potrebu sveobuhvatnog i objektivnog istraživanja kako bi se dobio uvid u metodike koje se

mogu koristiti za razvoj aplikacija za mobilne uređaje.

Također, provedeno je i drugo preliminarno istraživanje kako bi se identificirali postojeći

sustavni pregledi literature o metodikama razvoja mobilnih aplikacija. Pretražene su

IEEExplore, ACM digitalna biblioteka, INSPEC, CiteSeerX i GoogleScholar baze podataka

korištenjem sljedećeg upita: (“literature review” OR SLR) AND (mobile development).

Informacije dostupne u spomenutim bazama podataka pokazuju da ne postoji sustavni pregled

literature koji pokriva područje metodika razvoja mobilnih aplikacija. To potvrđuje potrebu za

ovakvim istraživanjem.

Kako bi istraživanjem obuhvatili navedene ciljeve, definirana su sljedeća istraživačka pitanja:

RQ1 – Koje metodike i pristupi razvoja su prikazani u literature kao definirani u teoriji ili

korišteni u praksi razvoja mobilnih aplikacija?

RQ2 – Jesu li identificirane metodike i pristupi primjenjivi za razvoj više-platformskih

mobilnih aplikacija?

Protokol sustavnog pregleda je definiran sukladno naputcima danim u (Kitchenham i

Charters, 2007) dok je predložak korišten za izradu protokola definiran u (Biolchini et al.,

2005) i dodatno pojašnjen u (Mian et al., 2005). Upit korišten u glavnom istraživanju je bio

(mobile AND ("software development" OR "system development" OR "application

development" OR "program development") AND (methodology OR method OR approach OR

framework OR process OR procedure OR model)) i izvršen je na dostupnim relevantnim

elektronskim izvorima (časopisi i zbornici) u polju softverskog inženjerstva kako su predložili

Brereton et al. (2007), Hannay et al. (2007) te Kitchenham i Charters (2007).

Pregled literature proveden je kroz nekoliko faza uključujući identifikaciju primarnih izvora

literature, primjenu kriterija uključivanja i isključivanja te procjenu kvalitete. To je na kraju iz

početnih 6761 izvor rezultiralo odabirom 49 relevantnih naslova na kojima je provedena faza

dohvata podataka i sinteze rezultata.

412

Kako je prikazano u tabelama 1 i 2, ukupno su identificirane 22 metodike i 7 pristupa razvoju.

Ove metodike i pristupi su novo-kreirani (tabela 1) ili postojeći (tabela 2), a pogodni su za

razvoj više-platformskih mobilnih aplikacija.

Tabela 1 – Novo-kreirane metodike i pristupi razvoju

Naziv Tip
Agile Methodology for Mobile Software Development M

Agile Solo M

Agile usability process M

DEAL M

Integrated Product Development Process for Mobile Software M

Inter-combined Model M

MASAM methodology M

Methodology for Building Enterprise-Wide Mobile Applications M

MicroApp visual approach M

Mobile Application Development Methodology M

Mobile-D M

New media application prototyping M

Systems Development Methodology M

ViP (Virtual Platform) M

Composite Application Software Development Process Framework P

MobiLine P

 Tip: M - Metodika, P - Pristup

Tabela 2 – Korištene metodike i pristupi

Naziv Tip
Design Science M

Dynamic Channel Model M

Extreme Programming M

Kanban P

Mobile-D M

Mobile Engineering (MobE) M

Mobile RAD M

Rapid Application Development M

Scrum M

Model Driven Development P

Model Driven Product Lines P

Software Product Lines P

Test Driven Development P

 Tip: M - Metodika, P - Pristup

Samo je jedna metodika spomenuta u nekoliko izvora literature, dok su sve druge metodike

prisutne isključivo u jednom izvoru. Također, kao što se i očekivalo, metodike i pristupi u

području razvoja mobilnih aplikacija su novi. Samo 4 izvora literature su stariji od 5 godina,

dok su svi drugi izvori mlađi. Provedena procjena kvalitete literature rezultirala je prosječnom

ocjenom 2,735 od 5 (68,38%) uz standardnu devijaciju od 0,903 iz čega se može zaključiti da

je kvaliteta literature relativno niska s velikim razlikama od izvora do izvora.

S druge strane, više autora je prikazivalo korištenje postojećih metodika ili pristupa. Ukupno

9 metodika i 4 pristupa su korišteni. Važno je spomenuti da je samo jedna metodika

identificirana kao novo-kreirana i ujedno korištena u nekom drugom primjeru. Korištenje ove

metodike je prikazano u pet različitih izvora, dok ostale novo-kreirane metodike i pristupi

nisu prikazani kao korišteni osim u originalnim studijama.

413

2.2. Odabir razvojne metodike

Jedna od osnovnih pretpostavki ovog istraživanja povećanja metodološke interoperabilnosti je

neovisnost o platformi i primijenjenoj metodici (to jest, može se primijeniti na bilo koju

metodiku ontološki opisanu). Stoga, za nastavak istraživanja možemo odabrati bilo koju od

ukupno 22 identificirane metodike. Kako bi izbjegli nasumični odabir, definiran je kriterij za

odabir koji je temeljen na učestalosti korištenja novo-kreirane metodike u nekom drugom

primjeru osim u originalnim studijama. Analiza SLR rezultata je pokazala da je samo Mobile-

D metodika specifično kreirana za razvoj mobilnih aplikacija i ujedno u drugim izvorima

prikazana kao korištena u praksi. Također, provedeno je dodatno istraživanje takozvane sive

literature kako bi se pronašli dodatni materijali o odabranoj metodici. Rezultati su pokazali da

je metodika detaljno opisana od strane njenih autora u nekoliko studija od kojih se važnošću

ističe (Abrahamsson et al., 2005).

3. Implementacija metodike

Mobile-D proces (pogledaj sliku 1) uključuje pet faza koje se izvode u djelomično

inkrementalnom pristupu. Cilj prve faze, pod nazivom Istraži, je pripremiti osnove za budući

razvoj. Faza Inicijaliziraj bi trebala opisati i pripremiti sve komponente aplikacije, te

prepoznati kritične točke projekta. Faza inicijalizacije se obično naziva i nulta iteracija (0-

iteracija) budući da osim postavljanja projekta uključuje i planiranje, izradu i isporuku koji

se inače koriste u fazi produkcije. Ideja 0-iteracije je osigurati funkcionalnost razvojnog

okruženja na način da se implementiraju određeni reprezentativni dijelovi funkcionalnosti

tehnikom prototipiranja. Faze Produkcije i Stabiliziranja se izvode iterativno sve dok se ne

razviju sve funkcionalnosti mobilnog proizvoda. Iteracija počinje planiranjem u fazi

produkcije, a prva aktivnost je poslije-iteracijska radionica koja ima za cilj poboljšati

razvojni proces kako bi bolje odgovarao novonastaloj situaciji i potrebama tima. Nakon toga

slijede zadaci analize zahtjeva, planiranja iteracije i kreiranja testova prihvatljivosti i

izvršavaju se tijekom dana planiranja (eng. Planning day). Radni dan (eng. Working day) se

temelji na implementaciji temeljenoj na paradigmama razvoja vođenog testiranjem,

programiranja u paru, neprestane integracije i optimizacije programskog kôda. Ovaj dan

završava zadatkom obavještavanja naručitelja o novim funkcionalnostima. Konačno, dan

isporuke (eng. Release day) uključuje aktivnosti integriranja i testiranja rješenja. Faza

Stabiliziranja ima za cilj dovršiti implementaciju te ukoliko je potrebno integrirati

podsustave. Kako ova faza može također uključivati razvoj i programiranje, aktivnosti su

slične aktivnostima faze produkcije. Jedina dodatna aktivnost se odnosi na pripremu

dokumentacije. Svaka iteracija bi trebala završiti novom funkcionalnošću koja je spremna za

isporuku korisniku.

414

Slika 1 - Mobile-D proces

Posljednja, faza Sistemskog testiranja i ispravke pogrešaka služi za provjeru funkcionalnosti

kreiranog sustava u usporedbi s korisničkim zahtjevima. Također projektnom timu daje

povratnu informaciju o funkcionalnosti sustava i uočenim pogreškama kako bi se provelo

ispravljanje pogrešaka kao posljednja iteracija Mobile-D procesa. Ova posljednja iteracija nije

obvezna, ali kad se provodi onda sadrži sve aktivnosti kao i ostale već pojašnjene faze koje

sadrže implementaciju.

Mobile-D sugerira korištenje razvoja upogonjenog testiranjem (eng. Test Driven

Development – TDD) koji je sastavni dio svih Mobile-D faza. Osnovne i napredne koncepte

TDD-a može se pronaći u (Hammond i Umphress, 2012). Svrha TDD-a je dati programerima

sigurnost da je kôd koji kreiraju ispravan te voditi dizajn programskog kôda u strukturu koja

je lako provjerljiva testovima. Također, optimizacija i restrukturiranje kôda (eng. refactoring)

se temelje na TDD-u kako bi se osiguralo da promjene nastale na postojećem kôdu nisu

pokvarile postojeće funkcionalnosti (Abrahamsson et al., 2005).

Kako bi semantički promotrili proces razvoja te identificirali artefakte koji se u njemu koriste

i nastaju, razvili smo prototipnu aplikaciju, nazvanu KnowLedge, za Android i Windows

Phone platforme. Aplikacija ima za cilj omogućiti korisnicima učenje i/ili dijeljenje znanja na

interaktivan način u obliku društvene mreže. Između ostalih, osnovne funkcionalnosti

aplikacije uključuju pregledavanje postojećih kategorija i pronalazak postojećeg znanja o

određenoj temi, slanje zahtjeva za novim pojašnjenjem/instrukcijama/uputama, dijeljenje

znanja u grupama i slično.

Sustav je temeljen na servisno orijentiranoj arhitekturi, mobilnoj aplikaciji, udaljenoj bazi, te

korištenju globalnog sustava za pozicioniranje (GPS). Također, kako se može vidjeti na slici

2, arhitektura mobilne aplikacije je također višeslojna s tri odvojena ali povezana sloja.

Unutarnja kohezija (pogledaj (Miller, 2008)) prikazanih modula je visoka nasuprot vanjskoj

(međusobnoj) povezanosti koja je niska.

N iteracija

Istraži Inicijaliziraj Produciraj Stabiliziraj
Testiraj sustav i

popravi

415

Slika 2 – Arhitektura mobilne aplikacije

Metodika Mobile-D ima jasnu tehničku dokumentaciju i jako je dobro dokumentirana te ju je

bilo jednostavno slijediti pri razvoju koji je u konačnici trajao kraće nego je bilo inicijalno

planirano. Nekoliko slika ekrana kreirane aplikacije su vidljive na slici 3.

Slika 3 – Slike ekrana aplikacije

U slučaju razvoja za Windows Phone, cijeli proces je ponovljen, ali budući je struktura

kreiranih artefakata ostala ista kao u Android scenariju, tijekom ovog procesa razvoja

pokušalo se fokusirati na načine i mogućnosti ponovnog iskorištavanja postojećih artefakata.

Iako smo očekivali određene sličnosti između artefakata, rezultati su bili iznenađujući.

Zaključili smo da su mnogi artefakti u potpunosti ili djelomično iskoristivi. Stoga, iako smo

tijekom razvoja Windows Phone aplikacije imali određenih problema specifičnih za WP

platformu te određenih problema s testiranjem, trajanje procesa razvoja je u WP slučaju

API-ji

API-ji treće

strane

Lokalna baza podataka

Programska logika

Korisničko sučelje

Sučelje

prema web

servisu
Web servis

Mobilna aplikacija

416

skraćeno za 30 radnih dana u usporedbi s planom, te za 16 radnih dana (18,4%) u usporedbi s

procesom razvoja za Android.

4. Identifikacija artefakata

Budući da postoji više definicija artefakta (npr. od Hilpinena (2011) ili od Parkera (2011)), za

potrebe ovog istraživanja najprikladnija je definicija od Conradija (2004) koji kaže da je

artefakt „bilo koji dio softvera (to jest model/opis/kôd) kreiran i korišten tijekom razvoja i

održavanja računalnog programa“. Kako je cilj ovog istraživanja bio analizirati strukturalne i

semantičke aspekte niza artefakata, proveli smo analizu samo promatrajući semantičke

koncepte, dok drugi pristupi, kao promatranje proceduralnih koncepata ili pragmatičnih

koncepata nisu uključeni. Stoga, samo smo promatrali artefakte i njihove veze prema

aktivnostima i zadacima, kako je prikazano na slici 4.

Slika 4 – Fokusiranje na semantiku i izvor artefakata

Analiza artefakata je provedena u dva koraka. Prvo, analizirali smo Mobile-D procesnu

biblioteku (Abrahamsson et al., 2005) i identificirali dokumente i druge isporuke koje su

neovisne o platformi, a definirani su na visokoj razini apstrakcije. Zatim drugo, budući da

pristup u identificiranju i grupiranju artefakata isključivo temeljem faze izvornog nastanka

nije dobar, te budući da smo tijekom implementacije prikupili dodatne informacije o

artefaktima, sistematizirali smo i opisali sve identificirane artefakte za obje platforme

koristeći predložak kao u tabeli 3.

Tabela 3 – Predložak opisa artefakata

Naziv artefakta Tip Opis

Ulazi i izlazi po fazama

I II III IV V

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

Producira Koristi

Provedeni

korištenjem

Sastoji se Mobile-D

Proces

Metoda i

praksi
Alate

Ulazi

Izlazi Aktivnosti i

zadaci

Artefakti

417

Stoga, konceptualno, kreirali smo temelje identificiranja ne samo kreiranih dokumenata već i

onih artefakata koje bi bilo teško identificirati da je projekt realiziran izvan laboratorija.

Tablica 4 prikazuje dio liste identificiranih artefakata, uključujući i inicijalnu klasifikaciju,

opis i vezu prema fazama Mobile-D procesa. Koristili smo klasičnu CRU notaciju kako bi

smo označili artefakte koji su bili kreirani (C), korišteni/čitani (R) i ažurirani (U).

Tabela 4 – Dio liste identificiranih artefakata u procesu razvoja za Android

Naziv artefakta Tip Opis

Ulazi i izlazi po fazama

I II III IV V

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

U
la

z

Iz
la

z

Mobile-D procesna

biblioteka
Dokument

Procesna biblioteka koja detaljno opisuje

Mobile-D metodiku. Korištena je kao

vodić za implementaciju svake faze.

(Abrahamsson et al., 2005)

R R R R R

Prijedlog projekta Dokument

Kreiran prije procesa razvoja. Opisuje

inicijalnu ideju i osnovne funkcionalnosti

proizvoda.

R

Projektni plan Dokument

Sadrži sve informacije o projektu

uključujući podatke o korisnicima, domenu

projekta, planirane aktivnosti i njihovo

trajanje, planove dokumentacije i slično. U

skladu je s agilnom praksom, te je ažuriran

tijekom iteracija.

 C R U R U

… … …

Proces identificiranja rezultirao je s ukupno 60 različitih artefakata za Android slučaj te s 61

artefakt za Windows Phone slučaj. Spoj ova dva niza artefakata rezultirao je s ukupno 71

identificirani artefakt grupiran u 12 grupa sukladno tipu.

U analizi artefakata obiju platformi zaključili smo da 50 artefakata (70,42% svih

identificiranih artefakata) su zajednički za oba razvojna procesa. Također, mnogi od ovih

zajedničkih artefakata su neovisni o platformi jer su rezultat metodičkog pristupa. Ukupno, 20

od 50 identificiranih zajedničkih artefakata (40,00%) su kreirani ili korišteni samo jedanput

jer su bili identični u oba razvojna procesa. Također, 13 artefakata (26,00%) se moglo

djelomično ponovno iskoristiti pri procesu razvoja za drugu (i svaku sljedeću) platformu.

Konačno, prepoznali smo 17 artefakata (34,00% svih zajedničkih artefakata) s veoma malom

razinom moguće ponovne iskoristivosti. Ti artefakti su klasificirani kao oni koje je potrebno

ponovno razviti za svaku novu platformu. Dio rezultata unakrsne analize može se vidjeti u

tablici 5. Svi ostali artefakti su klasificirani kao ovisni o platformi, te također imaju određene

ponovno iskoristive semantičke ili sintaktičke elemente kao što su slijed, iteracije, algoritmi i

slično.

418

Tabela 5 – Dio zajedničkih artefakata za Android i WP proces razvoja

Naziv artefakta Isti
Djelomično ponovno

korišten
Različit

Mobile-D procesna biblioteka X

Prijedlog projekta X

Dokument inicijalnih zahtjeva X

Projektni plan X

Lista provjere projektnog plana X

Predložak liste provjere projektnog plana X

Gantogram X

Plan mjerenja X

Opis arhitekture sustava X

…

Ukupno, 33 artefakta (66,00% zajedničkih artefakata) su potpuno ili djelomično ponovno

iskoristiva. Stoga, možemo zaključiti da su ovi rezultati ohrabrujući te predstavljaju čvrste

temelje i motivaciju semantičkoj analizi koja slijedi.

5. Ontologija za metodološku interoperabilnost

Izraz "ontologija" preuzet je iz filozofije, ali su njegova uporaba i značenje u računalnoj

znanosti dobili novu i prilagođenu dimenziju. S obzirom da ne postoji konsenzus o definiciji

ontologije, u kontekstu ovog istraživanja, pojam ontologija promatramo kao eksplicitnu

formalnu konceptualizaciju dogovorenog razumijevanja promatrane domene koja uključuje

rječnik pojmova koji opisuju elemente domene, značenje kako bi se definirale veze elemenata

domene i pragmatiku u cilju definiranja moguće uporabe tih elemenata.

5.1. Definiranje pristupa razvoju ontologije

Noy i McGuinness (2001) su dali sveobuhvatan pregled mogućih razloga za korištenje

ontologija. Autori su prepoznali mogućnost korištenja ontologija za: dijeljenje uobičajenog

razumijevanja strukture informacija među ljudima ili softverskim agentima, omogućavanje

ponovnog korištenja znanja određene domene, eksplicitno navođenje pretpostavki domene,

odvajanje znanja o domeni od operativnog znanja, analiziranje znanja o određenoj domeni.

Osim toga, ontologije se koriste kao posredni mehanizam u specifičnom pristupu za

postizanje semantičke interoperabilnost koji je temeljen na posrednicima (eng. intermediary-

based approach) (Park i Ram, 2004) što je od posebnog značenja u ovom istraživanju. Takva

interoperabilnost prema Paulheimu i Probstu (2010), može se definirati na različitim

razinama: semantička interoperabilnost na razini izvora podataka, na razini poslovne logike i

na razini korisničkog sučelja, ali začudo, interoperabilnost na metodičkoj razini se rijetko

spominje u literaturi.

419

Iako postoje različite vrste ontologija (vidi Lovrenčić (2007)), ontologija koja je predmet

ovog istraživanja je klasificirana kao ontologija domene. Ontologija domene može se

definirati kao mreža pojmova modela domene (teme, elementi znanja) koji definiraju

elemente i značenjske odnose među njima (Brusilovsky et al., 2005). Korištenje ontologije

domene pogodno je za opisivanje cjelokupnog sadržaja vezanog za metodiku i pristup razvoja

aplikacija. Isto tako, postoji nekoliko radova koji daju opsežan pregled metodika razvoja

ontologije, kao što su (Dahlem, 2011), (Lovrenčić, 2007) i (Kabilan, 2007). Međutim, zbog

svojih karakteristika kao što su jednostavnost, fokusiranje na rezultate i iterativni pristup,

možemo Noy i McGuinnessovu (2001) metodiku Ontology development 101 nazvati agilnom

metodikom razvoja ontologije, a to je razlog zašto ju smatramo kao najpogodniju za korištenje

tijekom ovog istraživanja. Konačno, tu su i mogućnosti korištenja različitih alata i jezika za

razvoj ontologije. Istraživanje provedeno od strane Khondokera i Muellera (2010) pokazuje

da se za razvoj ontologija daleko najviše koristi alat pod nazivom Protégé. Budući da je

Protégé usklađen s metodikom OD101 te se naširoko koristi od strane znanstvenika i

stručnjaka u područjima razvoja informacijskih sustava i upravljanja znanjem, odlučili smo ga

koristiti i u našem istraživanju. Napokon, s obzirom da Protégé radi s dva jezika prikaza

ontologije, okviri i OWL, oba smo razmotrili i odabrali OWL2 DL kao primjereniji jezik u

našem slučaju.

5.2. Razvoj ontologija

Proces razvoja ontologije je izveden u tri koraka. Prvo smo razvili ontologiju za Android

platformu, a zatim i ontologiju za Windows Phone platformu. Na kraju smo spojili kreirane

ontologije u konačnu, zajedničku, ontološku definiciju.

Popis pojmova koji se pojavljuju u našoj domeni interesa postupno je nastajao tijekom cijelog

procesa razvoja ontologije. Konačan popis koji su temelj za našu ontologiju uključuje sljedeće

pojmove: faza, aktivnost, zadatak, artefakt, ulazi u zadatak, rezultati zadatka, tip artefakta,

podrijetlo artefakta, korištenje artefakta, hijerarhija artefakata, ponovna iskoristivost,

sličnost artefakata. U procesu definiranja klasa i hijerarhije, slijedili smo savjet od Uscholda i

Gruningera (1996) i koristili pristup od sredine prema vani (eng. middle-out approach) tako

što smo prvo definirali važnije koncepte a zatim po potrebi stvorili generalizacije i

specijalizacije. Pristup je rezultirao s ukupno definirane 152 klase koje su organizirane u 7

vršnih klasa za Android platformu, 153 klase slično organizirane za Windows Phone

platformu i 213 klasa u završnoj spojenoj ontologiji. Vršne klase iz konačne ontologije su

prikazane na slici 5.

U cilju definiranja znanja o strukturi, semantici i uporabi elemenata ontologije definirali smo

12 svojstava objekata za dvije specifične ontologije i 14 svojstava objekata za konačnu

spojenu ontologiju.

420

Ta svojstva su: sastojiSeOd, stvaraArtefakt, imaPodrijetloIzArtefakta, imaTipArtefakta,

uključujeArtefakt, imaRazinuPonovneIskoristivosti, stvorenJeUZadatku, dioJeArtefakta,

izvodiSeU, sličanJeArtefaktu, ažuriranJeUZadatku, korištenJeUZadatku, ažuriraArtefakt,

koristiArtefakt (eng.: consistsOf, createsArtifact, hasArtifactOrigin, hasArtifactType,

includesArtifact, hasReusabilityLevel, isCreatedByTask, isPartOfArtifact, isPerformedIn,

isSimilarToArtifact, isUpdatedByTask, isUsedByTask, updatesArtifact, usesArtifact).

Slika 5 – Vršne klase u konačnoj ontologiji

Slika koja opisuje dio završne ontologije pokazuje da je artefakt u konačnici povezan sa

Zadatkom (eng. Task), PodrijetlomArtefakta (eng. ArtifactOrigin), TipomArtefakta (eng.

ArtifactType) i RazinomPonovneIskoristivosti (eng. ReuseLevel). Među tim odnosima, veza sa

Zadatkom (Task) je najjače jer je definirana s tri svojstva pri čemu svako svojstvo ima

odgovarajuće povratno svojstvo. Iako postoje, odnosi među ostalim vršnim klasama oni nisu

prikazani na ovoj slici kako bi se fokusirali samo na Artefakt.

Za spajanje instanci klasa s utvrđenim svojstvima morali smo slijediti OWL 2 DL sintaksu,

ograničenja i pravila. Osim toga, OWL DL temelji se na paradigmi logike otvorenog svijeta

(eng. Open world assumtion), a OWA paradigma polazi od toga da ne možemo zaključiti da

nešto ne postoji dok nije eksplicitno navedeno da to ne postoji. Na primjer, kako bi se u

potpunosti definirali metodički artefakti moramo koristiti završne aksiome i izrijekom navesti

421

da takvi artefakti nisu stvoreni niti modificirani u našem razvojnom procesu. Oni su samo

korišteni. Primjer takvog opisa je dat u kôdu 1.

SubClass Of:

Artifact

hasArtifactOrigin only MethodologicalArtifact

hasArtifactOrigin some MethodologicalArtifact

hasArtifactType only Document

hasArtifactType some Document

isUsedByTask only Task

isUsedByTask some Task

not (isCreatedByTask some Task)

not (isUpdatedByTask some Task)

Kôd 1 – Dovoljan opis klase u OWA paradigmi

Tijekom razvoja ontologije za Android platformu stavili smo naglasak na proces razvoja

ontologije vođen odabranom metodikom razvoja. U ovom slučaju proces razvoja je proveden

iz početka. U drugoj iteraciji smo stavili naglasak na ponovnu iskoristivost postojeće

ontologije što je dokazalo njenu valjanost i fleksibilnost. Time je potvrđen i konceptualni

model koji je osnova naših ontologija koje opisuju razvoj za jednu platformu.

U razvoju jedinstvenog ontološkog opisa, naglasak je stavljen na spajanje, ažuriranje i

evaluaciju ontologije. Veći dio procesa spajanja je učinjen automatski (vidi sliku 6). Nakon

spajanja dvaju ontologija, nije bilo redundancije kojom bi se morali baviti, te nismo imali

problema u nadogradnji ontologije s novim znanjem. To dokazuje da je ontologija ponovno

iskoristiva i da se može proširiti.

Slika 6 – Primjer automatski spojene ontologije

acao:

ProductBacklog

acao:

UnitTest

acao:

ProductBacklog

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao:

ProductBacklog

acao:

UnitTest

wpcao:

UnitTest

acao:

JavaCode

wpcao:

CSCode

acao – IRI prefiks od http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#

wpcao – IRI prefiks od http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology#

 – ponovno korišteni konstrukt

Ontologija u Android razvoju Automatski spojena ontologija Ont. u Windows Phone razvoju

422

Osnovni pojmovi definirani u ontologiji razvoja za Android su korišteni u izradi ontologije

razvoja za Windows Phone i na taj način su također uključeni i u konačnu ontologiju. Kako

smo se usmjerili na nadogradnju ontologije sa znanjem o ponovnoj iskoristivosti artefakta,

morali smo uvesti dva nova važna pojma (ponovna iskoristivost i sličnost artefakata).

Kreirana ontologija sastoji se od 213 klasa, 14 objektnih svojstava i 2213 aksioma definiranih

pomoću ALCRIF-DL jezika izraza. Ontologija u izvornom OWL/XML formatu može se

pronaći na http://barok.foi.hr/~zstapic/ont/mcao.owl, dok punoj OWLDoc dokumentaciji

ontologije može se pristupiti i analizirati ju na http://barok.foi.hr/~zstapic/ont/mcao/doc/.

5.3. Vrednovanje završne ontologije

Kako bismo provjerili ispravnost i valjanost naše ontologije, tijekom trajanja cijelog procesa

razvoja, koristili smo sljedećih sedam mehanizama provjere ispravnosti i valjanosti:

1. Metodički vođen proces razvoja ontologije

2. Implementacija preporuka i savjeta drugih autora

3. Korištenje alata za zaključivanje kako bismo provjerili ontologiju u svakoj iteraciji

4. Korištenje W3C OWL alata za provjeru

5. Korištenje Protégé dodatka za vrednovanje ontologije

6. Korištenje DL upita za dohvat informacije zaključivanjem nad opisanim znanjem

7. Provjera rezultata od strane stručnjaka

Prvih pet mehanizama za vrednovanje su povezani s verifikacijom ontologije i koriste se kako

bi se smanjio rizik kreiranja sintaktičkih ili osnovnih semantičkih pogrešaka tijekom cijelog

procesa razvoja ontologije.

Posljednja dva mehanizma su povezana s validacijom ontologije. Ova dva mehanizma koriste

se na kraju razvojnog procesa kako bi provjerili predstavlja li kreirana ontologija domenu

znanja na semantički ispravan način. Upiti su kreirani i izvršeni na konačnoj ontologiji kako

bi se odgovorilo na sva unaprijed definirana pitanja povezana s razvojem aplikacija za

odredišnu platformu i pitanja vezana uz ponovnu iskoristivost artefakata kako je definirano na

početku procesa izrade ontologije. Na primjer, kako bi dobili sve ponovno iskoristive

artefakte koji su korišteni, stvoreni ili ažurirani tijekom zadatka planiranja iteracije možemo

koristiti ovakav upit:

Artifact

 and ((isUsedByTask some IterationPlanningTask)

 or (isCreatedByTask some IterationPlanningTask)

 or (isUpdatedByTask some IterationPlanningTask))

 and (ReusableArtifacts)

Kôd 2 – Artefakti koji se mogu ponovo koristiti u nekom zadatku

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/

423

Rezultat upita:

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan,

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart,

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate

Sljedeći upit nabraja artefakte određene vrste dokumenta koji se potpuno ili djelomično mogu

ponovo koristiti.

Artifact

 and (hasArtifactType some Document)

 and ((hasReusabilityLevel some Completely)

 or (hasReusabilityLevel some Partially))

Kôd 3 – Ponovno iskoristivi artefakti određenog tipa

Rezultat upita:

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog,

ProductProposal, ProjectPlan

Svi drugi upiti su kreirani na sličan način, a rezultate su analizirali stručnjaci iz domene

razvoja softvera. Korištenje mehanizama provjere ontologije tijekom cjelokupnog razvojnog

procesa, te pozitivni rezultati vrjednovanja su dokaz kvalitete i dovršenosti ontologije. To nas

dovodi do konačnog zaključka da kreirana Ontologija razvoja za više-platformi predstavlja

bazu znanja koja se može koristiti pri razvoju informacijskog sustava koji bi imao za cilj

voditi razvojne timove kako bi povećali metodološku interoperabilnost ponovnim korištenjem

artefakata kreiranih u procesu razvoja više-platformskih mobilnih aplikacija.

6. Rasprava i zaključak

Tijekom istraživanja željeli smo jasno istaknuti pet važnih aspekata kako bi proces

istraživanja učiniti transparentnim i ponovljivim. Pri provedbi svake aktivnosti poseban

naglasak smo stavili na motivaciju, rezultate, doprinos, strogost i evaluaciju istraživanja. Pod

aspektom motivacije željeli smo u svakoj fazi naglasiti razloge za obavljanje istraživačkih

aktivnosti. Rezultatima i doprinosom željeli smo po fazama sistematizirati dobivene rezultate i

doprinos znanju. Raspravljajući o istraživačkoj strogosti htjeli smo ukazati na naš pristup i

njegove glavne karakteristike te raspravljajući o evaluaciji htjeli smo naglasiti mehanizme

koji su korišteni kako bi provjerili i potvrdili korišteni znanstveni pristup i dobivene rezultate.

U ovom istraživanju može se identificirati nekoliko ograničenja. Na primjer, najveći izazovi s

kojima smo se suočili u prvoj fazi istraživanja bili su izvršenje komplicirane i dugotrajne

znanstvene metode sustavnog pregleda literature od strane jednog istraživača, nepostojanje

institucionalnih pretplata na dostupne znanstvene izvore u Hrvatskoj te nešto malo bolje

424

stanje u Španjolskoj, nedostatak informacija o završenim projektima o razvoju mobilnih

aplikacija u razvojnim tvrtkama koje su orijentirane na dvije ili više ciljanih platformi što nas

je natjeralo da razvijemo prototipnu aplikaciju u laboratoriju, predložena ontologija

predstavlja razvoj samo jedne aplikacije za dvije platforme te pokriva samo jednu razvojnu

metodiku podržanu jednim razvojnim pristupom. Svi navedeni problemi mogu biti prepoznati

kao ograničenja ovog istraživanja, ali moramo imati na umu da je ovaj istraživački proces

imao za glavni cilj predložiti novi pristup (okvir) koji se može koristiti u rješavanju problema

fragmentacije mobilnih platformi.

Slijedeći istraživačke ciljeve definirane na početku istraživačkog procesa identificirali smo

metodike koje se mogu koristiti za razvoj mobilnih aplikacija; implementirali smo izabranu

metodiku i pristup i stvorili mobilnu aplikaciju za dvije mobilne platforme; identificirali smo i

analizirali artefakte koji su nastali u ovom razvojnom procesu te stvorili ontološku definiciju

koja opisuje mogućnost ponovne iskoristivosti artefakata u skladu s Mobile-D metodikom.

Prema rezultatima koji su dobiveni tijekom provjere i testiranja ontologije možemo zaključiti

da ovakav ontološki opis predstavlja čvrstu osnovu za razvoj informacijskog sustava koji bi

vodio razvojne timove prema postizanju metodološke interoperabilnosti uz ponovno

korištenje artefakata stvorenih u procesu razvoja više-platformskih mobilnih aplikacija. Osim

toga, dokazali smo da je naš ontološki opis fleksibilan i proširiv što nam omogućuje njegovo

ažuriranje informacijama o novim artefaktima bez potrebe za promjenom infrastrukture

definirane elementima hijerarhije klasa, pobrojanim vrijednostima (eng. value partitions) i

objektnim svojstvima. Konačno, model omogućuje kreiranje DL upita koji se mogu koristiti

za stjecanje izravne ili neizravne informacije ugrađene u znanje opisano ontologijom. U

prethodnom poglavlju pokazali smo primjere takvih upita kojima smo između ostalog

odgovorili na pitanja postavljena na samom početku razvoja ontologije.

Dakle, možemo zaključiti da je moguće definirati ontološki opis elemenata metodološke

interoperabilnosti takav da sadrži strukturne i semantičke aspekte u skupovima

artefakata nastalih u procesu razvoja mobilnih aplikacija za dvije ili više mobilnih

platformi, čime je H1 hipoteza potvrđena.

Ovo istraživanje predstavlja sveobuhvatan skup aktivnosti koje su rezultirale konačnim i

uporabivim proizvodom. Međutim, proširujući kontekste korištenja takve ontologiju, možemo

prepoznati druge moguće istraživačke aktivnosti pa čak i istraživačke smjerove koji se mogu

poduzeti. U principu, prepoznajemo dva glavna područja gdje ovo istraživanje postavlja

temelj za buduće znanstvene i stručne aktivnosti. Ta područja su programsko inženjerstvo s

posebnim naglaskom na mobilno inženjerstvo i inženjerstvo znanja s posebnim naglaskom na

razvoj ontologije. Stvorena ontologija definira osnovnu infrastrukturu i elemente u

predloženom okviru metodološke interoperabilnosti koji je stabilan za dodavanje znanja o

425

drugim platformama ali bi ga trebalo ponovno analizirati i redefinirati kada je u pitanju

korištenje za opis novih i potpuno različitih metodika. S druge strane, kada se govori o

istraživačkim aktivnostima u području programskog inženjerstva, već smo spomenuli potrebu

prelaska na sljedeću fazu istraživanja tijekom koje bi bio razvijen odgovarajući informacijski

sustav za podršku metodološkoj interoperabilnosti i ponovnom korištenju artefakata. Razvoj

takvog novog sustava nije trivijalan zadatak i daje mnoge mogućnosti istraživanja u području

dizajna, funkcionalnosti, povezanosti s ontološkom definicijom znanja i tako dalje.

Iako postoje ontologije definirane da osiguraju interoperabilnost na različitim razinama u

procesu razvoja aplikacija, ovaj novi pristup ima za cilj definirati interoperabilnost na, do

sada ne istraženoj, metodičkoj razini. Semantički opisi kreirani i provjereni ovim

istraživanjem dokazali su da predloženi pristup i infrastrukturalni okvir predstavljaju solidnu

osnovu za nastavak istraživanja u ovom području. Stoga, razvoj ove ontologije je samo prvi

korak u nizu aktivnosti koje treba provesti kako bi se razvio cjeloviti semantički podržan

informacijski sustav za metodološku interoperabilnost.

Reference

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J.,

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application

development, in: Companion to the 19th Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications, OOPSLA ‟04.

ACM, New York, NY, USA, pp. 174–175.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Jäälinoja, J., Komulainen, K., Korkala, M.,

Koskela, J., Kyllönen, P., Eporwei, O.T., 2005a. Agile Development of Embedded

Systems: Mobile-D (Agile Deliverable No. D.2.3). ITEA.

Adobe Corporation, 2011. Adobe Announces Agreement to Acquire Nitobi, Creator of

PhoneGap [Internet izvor]. Adobecom - Press Releases. URL

http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresN

itobi.html (pristupano 18.05.12).

Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., 2009. MobiVine: a middleware layer to

handle fragmentation of platform interfaces for mobile applications, in: Proceedings of

the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware

‟09. Springer-Verlag New York, Inc., New York, NY, USA, pp. 24:1–24:10.

Amanquah, N., Eporwei, O.T., 2009. Rapid application development for mobile terminals, in:

2nd International Conference on Adaptive Science & Technology (ICAST). Presented

at the Technology (ICAST), Accra, Ghana, pp. 410–417.

Biolchini, J., Gomes Mian, P., Candida Cruz Natali, A., Horta Travassos, G., 2005.

Systematic Review in Software Engineering (Technical report No. RT - ES 679 / 05).

PESC, Rio de Janeiro.

426

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons from

applying the systematic literature review process within the software engineering

domain. J. Syst. Softw. 80, 571–583.

Brusilovsky, P., Sosnovsky, S., Yudelson, M., 2005. Ontology-based Framework for User

Model Interoperability in Distributed Learning Environments, in: World Conference

on ELearning, E-Learn 2005. AACE, pp. 2851–2855.

Conradi, R., 2004. Software engineering mini glossary [Internet izvor]. URL

http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html (pristupano 5.5.12).

Dahlem, N., 2011. OntoClippy: A User-Friendly Ontology Design and Creation

Methodology. Int. J. Intell. Inf. Technol. 7, 15–32.

Hammond, S., Umphress, D., 2012. Test driven development. ACM Press, p. 158.

Hannay, J., Sjoberg, D., Dyba, T., 2007. A Systematic Review of Theory Use in Software

Engineering Experiments. IEEE Trans. Softw. Eng. 33, 87–107.

Hilpinen, R., 2011. Artifact [Internet izvor]. Stanf. Encycl. Philos. URL

http://plato.stanford.edu/entries/artifact/ (pristupano 5.5.12).

Hosbond, J.H., 2005. Mobile Systems Development: Challenges, Implications and Issues, in:

Krogstie, J., Kautz, K., Allen, D. (Eds.), Mobile Information Systems II, IFIP

International Federation for Information Processing. Springer Boston, pp. 279–286.

Jeong, Y.-J., Lee, J.-H., Shin, G.-S., 2008. Development Process of Mobile Application SW

Based on Agile Methodology, in: Proceedings of 10th International Conference on

Advanced Communication Technology, (ICACT 2008). IEEE, Gangwon-Do, pp.

362–366.

Kabilan, V., 2007. Ontology for information systems (04IS) design methodology:

conceptualizing, designing and representing domain ontologies. Data- och

systemvetenskap, Kungliga Tekniska högskolan, Kista.

Khondoker, R.M., Mueller, P., 2010. Comparing Ontology Development Tools Based on an

Online Survey, in: Proceedings of the World Congress on Engineering. Presented at

the WCE 2010, London.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Systematic Literature reviews

in Software Engineering Version 2.3 (Technical report No. EBSE-2007-01). Keele

University and University of Durham.

La, H.J., Kim, S.D., 2009. A service-based approach to developing Android Mobile Internet

Device (MID) applications. 2009 IEEE Int. Conf. Serv.-Oriented Comput. Appl.

SOCA 00, 1–7.

Lovrenčić, S., 2007. Formalna ontologija sveučilišnih studija [Doktorska disertacija].

Sveučilište u Zagrebu, Varaždin, Hrvatska.

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of Clouds in Your

Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development,

in: 2010 IEEE Second International Conference on Cloud Computing Technology and

Science. pp. 496–503.

Mian, P., Conte, T., Natali, A., Biolchini, J., Travassos, G., 2005. A Systematic Review

Process for Software Engineering, in: ESELAW ‟05: 2nd Experimental Software

Engineering Latin American Workshop.

427

Miller, J., 2008. Cohesion And Coupling. MSDN Mag. - Microsoft J. Dev. 23.

Noy, N.F., McGuinness, D.L., 2001. Ontology Development 101: AGuide to Creating Your

First Ontology (Technical report No. KSL-01-05; SMI-2001-0880), Stanford

Knowledge Systems Laboratory and Stanfrod Medical Informatics Technical Report.

Stanford University, Stanfrod.

Park, J., Ram, S., 2004. Information systems interoperability: What lies beneath? ACM Trans.

Inf. Syst. 22, 595–632.

Parker, P.M., 2011. Definition of artifact [Internet izvor]. Websters Online Dict. URL

http://www.websters-online-dictionary.org/definitions/artifact (pristupano 7.5.11).

Paulheim, H., Probst, F., 2010. Application integration on the user interface level: An

ontology-based approach. DATA Knowl. Eng. 69, 1103–1116.

PhoneGap, 2011. Take the pain out of compiling mobile apps for multiple platforms [Internet

izvor]. PhoneGap Build. URL https://build.phonegap.com/ (pristupano 27.8.11).

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software

development: A hybrid method engineering approach, in: Proceedings of Second

International Conference on Research Challenges in Information Science, RCIS

(2008). IEEE, Marrakech, pp. 337–342.

Rhomobile, Inc., 2011. Smartphone Enterprise Application Integration, White paper [Internet

izvor]. URL http://tiny.cc/rhomobile (pristupano 20.08.11).

Spataru, A.C., 2010. Agile Development Methods for Mobile Applications [Doktorska

disertacija]. Sveučilište u Edinburghu, Edinburgh.

Uschold, M., Gruninger, M., 1996. Ontologies: Principles, methods and applications. Knowl.

Eng. Rev. 11, 93–136.

429

CURRICULUM VITAE

Zlatko Stapić was born on October 17th 1983 in Zenica (Bosnia and Herzegovina), where he

received high school diploma from Gimnazija KSC Sv. Pavao. In 2006 he finished his

undergraduate and graduate studies at Faculty of Organization and Informatics and obtained a

Master of Informatics degree from University of Zagreb. Since 2006 he works at the same

institution as Teaching Assistant at Information Systems Development Department where he

currently teaches courses on Software Engineering and Software Analysis and Development.

Zlatko‟s research interests include methodologies for software development and development

of mobile applications. During the last nine years, Zlatko participated in or managed 15

scientific and professional projects, published 30 scientific and professional papers and he is a

member of IEEE society and reviewer for several scientific journals and conferences. His

special interest in work with students resulted in collaboration with more than 50 students in

different scientific and professional projects.

In 2011 he enrolled into a dual degree doctoral program on Information Sciences at University

of Zagreb (Croatia) and Information and Knowledge Engineering at University of Alcalá

(Spain). This resulted in cotuelle on this thesis and in various collaboration activities

including research stays in 2012 and 2013 at Department of Computer Science at University

of Alcalá.

During the studying and working experience Zlatko received more than 10 different awards,

including the 3
rd

 award for organizing the best online course at University of Zagreb from

2010, the special recognition for work with students from 2009, the silver medal from 2007

and golden medal from 2006 for innovations in SmartEcg project, Rectors award in 2006 et

cetera.

Since 2002 Zlatko Stapić lives and works in Varaždin (Croatia). He is married and has two

children.

Published scientific papers

Stapić Z.. Dealing with mobile platforms fragmentation problem: ontology oriented approach

// IDS 2013. Proceedings of the 8th International Doctoral Seminar. Dubrovnik. 2013.

pp. 326-331.

Stapić Z., de Marcos Ortega L., Gutiérrez Martínez J. M. Approaches in Development of

Multi-platform Mobile Applications: State of the Art // Proceedings of IV

International Conference on Application of Advanced Information and

Communication Technologies. Loja (Ecuador). 2012. pp. 429-436

430

Stapić Z., García López E., García Cabot A., de Marcos Ortega L., Strahonja V. Performing

Systematic Literature Review in Software Engineering // Proceedings of 23rd Central

European Conference on Information and Intelligent Systems. Varaždin. 2012. pp.

441-447.

Radošević D., Orehovački T., Stapić Z. Automatic On-line Generation of Student's Exercises

in Teaching Programming // Proceedings of the 21st Central European Conference on

Information and Intelligent Systems. Varaždin. 2010. pp. 87-93.

Orehovački T., Stapić Z., Bubaš G. Mobile location based service for positioning and

presentation of cultural heritage objects and Web 2.0 technologies. // Informatologia.

42 (2009) , 2, pp. 110-117 (Scopus).

Stapić Z., Orehovački T., Lovrenčić A. In Search of an Improved BoM and MRP Algorithm //

Proceedings of the 31st International Conference on Information Technology

Interfaces. Zagreb. 2009. pp. 665-670 (ISI Conference Proceedings Citation Index –

Science, Scopus, Inspec).

Đanić M., Orehovački T., Stapić Z. Introducing CaCM: toward new students collaboration

model // Proceedings of the 19th Central European Conference on Information and

Intelligent Systems. Varaždin. 2008. pp. 267-273 (Inspec, CSA)

Stapić Z., Orehovački T., Đanić M.. Determination of optimal security settings for LMS

Moodle // Proceedings of the 31st MIPRO International Convention on Information

Systems Security. Rijeka. 2008. pp. 84-89.

Stapić Z., Orehovački T., Vrček N. Modular Approach in Integration of ICT Technologies

into Mobile Heart-Work Monitoring System // Proceedings of the 27th International

Conference on Organizational Science Development. Kranj. 2008. pp. 2793-2799.

Stapić Z., Vrček N., Hajdin G.. Evaluation of Security and Privacy Issues in Integrated

Mobile Telemedical System // Proceedings of the 30th International Conference on

Information Technology Interfaces (ITI 2008). Dubrovnik 2008. pp. 295-300 (Scopus,

Inspec).

Stapić Z., Vrček N., Hajdin G. Legislative Framework for Telemedicine // Proceedings of the

19th Central European Conference on Information and Intelligent Systems. Varaždin,

2008. pp. 605-611 (Inspec).

Konecki M., Orehovački T., Stapić Z. IT users' awareness about the need of strong passwords

creation // DAAAM International Scientific Book 2008. Vienna. 2008. pp. 387-394.

Velić M., Novak M., Orešković M., Padavić I., Pedljo H., Stapić Z., Car S. Smart ECG,

solution for mobile heart work analysis and medical intervention in case of heart work

problems // Abstracts of The 56th Annual Scientific Session of the American College

of Cardiology : Special Topics in: Journal of the American College of Cardiology 50

(2007) S8. Elsevier, 2007. pp. 280A-281A (abstract in CC)

Vrček N., Velić M., Stapić Z. Integrated mobile electrocardiography // Proceedings of the

30th MIPRO International Convention on Computers in Technical Systems. Opatija.

2007. pp. 44-47.

Radošević D., Dobša J., Mladenić D., Stapić Z., Novak M. Genre Document Classification

Using Flexible Length Phrares // Proceedings of 17th International Conference on

Information and Intelligent Systems. Varaždin. 2006. pp. 23-28.

431

Dobša J., Radošević D., Stapić Z., Zubac M.. Automatic Categorisation of Croatian Web Sites

// Proceedings of 25th International Convention MIPRO 2005. Rijeka. 2005. pp. 144-

149.

Published professional papers

Stapić Z., Mijač M., Tomaš B. Monetizing mobile applications // Razvoj poslovnih i

informacijskih sustava CASE 25. Rijeka, 2013.

Stapić Z., Patekar Bahun D., Maslić D. Comparing native Android and jQuery Mobile

capabilities // Razvoj poslovnih i informacijskih sustava CASE 25. Rijeka. 2013.

Obuljen L., Filipaj D., Nađ N., Stapić Z. Challenges in development of RPG mobile

application // Razvoj poslovnih i informacijskih sustava CASE 25. Rijeka. 2013.

Supan D., Teković K., Škalec J., Stapić Z. Using Mobile-D methodology in development of

mobile applications: challenges and issues // Razvoj poslovnih i informacijskih

sustava CASE 25. Rijeka. 2013.

Rendulić B., Mirković I., Laktašić A., Stojanović D., Stapić Z. Using 3D Augmented Reality

in Windows Phone 7 Mobile Applications // Razvoj poslovnih i informacijskih sustava

CASE 24. Rijeka. 2012.

Stapić Z., Ribičić O. Unutar-aplikacijska kupovina uz primjer implementacije na Android

platformi // Razvoj poslovnih i informacijskih sustava CASE 24. Rijeka. 2012.

Šaško Z., Mijač M., Stapić Z., Domínguez Díaz A., Saenz de Navarrete Royo J. Windows

Phone 7 Applications development using Windows Azure Cloud // Razvoj poslovnih i

informacijskih sustava CASE 24. Rijeka. 2012.

Švogor I., Tušek T., Stapić Z. Component development approach for Android // Razvoj

poslovnih i informacijskih sustava CASE 24. Rijeka. 2012. 169-181.

Ribičić O., Tomaš B., Stapić Z. Razvoj aplikacija za Android platformu // Razvoj poslovnih i

informatičkih sustava CASE23. Zagreb. 2011. 107-116.

Stapić Z., Besednik M., Curić I., Kralj K., Samošćanec K. Integracija Windows Phone7

aplikacija s Azure oblakom putem CSLA.Net poslovne logike // Razvoj poslovnih i

informatičkih sustava CASE23. Zagreb. 2011. 171-177.

Stapić Z., Vincek J., Šaško Z., Zver M. Usporedba razvoja mobilne aplikacije na Nokia Qt i

Microsoft WP7 platformama // Razvoj poslovnih i informatičkih sustava CASE23.

Zagreb. 2011. 93-100.

Stapić Z., Vrček N. Izazov sinkronizacije podataka između mobilnih i standardnih baza

podataka // CASE 22 - Metode i alati za razvoj poslovnih i informatičkih sustava.

Rijeka. 2010. 107-112.

Konecki M., Stapić Z., Orehovački T. Razvoj aplikacija korištenjem uzoraka dizajna // CASE

20 - metode i alati za razvoj poslovnih i informatičkih sustava. Rijeka. 2008. 203-209.

Orehovački T., Konecki M., Stapić Z. Primjena Web 2.0 tehnologija u poslovanju // CASE 20

- metode i alati za razvoj poslovnih i informatičkih sustava. Rijeka. 2008. 197-202.

Stapić Z., Orehovački T., Konecki M. OCL kao preduvjet automatiziranom generiranju

programskog koda // CASE 20 - metode i alati za razvoj poslovnih i informatičkih

sustava. Rijeka. 2008. 87-94

	1. Introduction
	1.1. Outlining the problem
	1.1.1. Development of mobile applications
	1.1.2. Existing solutions
	1.1.2.1. Mediatory transform engine
	1.1.2.2. The use of native application adapters

	1.1.3. The final remarks on platforms and tools

	1.2. Objectives and hypotheses
	1.2.1. The main goal
	1.2.2. Hypotheses

	1.3. Research scope and methodology
	1.3.1. Scope definition
	1.3.2. Research approach

	1.4. Dissertation disposition

	2. Mobile applications development methodologies: a systematic review
	2.1. Research method
	2.1.1. Definition of systematic literature review (SLR)
	2.1.2. Steps to be performed
	2.1.2.1. Planning the review
	2.1.2.2. Conducting the review
	2.1.2.3. Reporting the review

	2.1.3. Advantages and disadvantages of SLR
	2.1.4. Light SLR
	2.1.5. Conclusions on SLR

	2.2. Planning the review
	2.2.1. Defining the basic concepts
	2.2.1.1. Development approaches
	2.2.1.2. Development methodologies

	2.2.2. Overview of methodologies targeting development of mobile applications
	2.2.3. Identification of the need for a review
	2.2.4. Specifying the research questions
	2.2.5. Developing a review protocol
	2.2.6. Evaluating the review protocol

	2.3. Conducting the review
	2.3.1. Identification of research
	2.3.2. Selection of primary studies
	2.3.2.1. Applied procedures in selection process

	2.3.3. Study quality assessment
	2.3.4. Data extraction and monitoring
	2.3.5. Data synthesis

	2.4. Choosing development methodology
	2.5. Relevance of the chapter

	3. Methodology implementation
	3.1. Mobile-D overview
	3.1.1. Introducing Mobile-D
	3.1.2. Mobile-D process
	3.1.3. Mobile-D artifacts
	3.1.4. Test driven development
	3.1.5. Mobile-D reference

	3.2. Explore phase
	3.2.1. Targeted users and stakeholders
	3.2.2. Initial requirements
	3.2.3. Architecture line description
	3.2.4. Project plan
	3.2.5. Documentation
	3.2.6. Monitoring and measurement
	3.2.7. Project plan checklist

	3.3. Initialize phase
	3.3.1. Environment setup
	3.3.2. Project plan and architecture plan
	3.3.3. Initial requirements analysis
	3.3.4. Product backlog
	3.3.5. Acceptance tests
	3.3.6. User interface sketches
	3.3.7. Trial Day
	3.3.7.1. Story and task cards
	3.3.7.2. Data model
	3.3.7.3. Created web service
	3.3.7.4. Created class models
	3.3.7.5. Implementation
	3.3.7.6. Testing
	3.3.7.7. Application screenshots
	3.3.7.8. Project plan checklist

	3.4. Productionize
	3.4.1. First iteration
	3.4.1.1. Story cards and task cards
	3.4.1.2. Database model
	3.4.1.3. Created web services
	3.4.1.4. Created class models
	3.4.1.5. Implementation
	3.4.1.6. Testing
	3.4.1.7. Application screenshots
	3.4.1.8. Project plan checklist

	3.4.2. Other iterations
	3.4.2.1. Iterations overview
	3.4.2.2. Final database model
	3.4.2.3. Created web services
	3.4.2.4. Class models
	3.4.2.5. Application screenshots

	3.5. Stabilize
	3.6. System test & fix
	3.7. Development of Windows Phone application
	3.7.1. Explore phase
	3.7.2. Initialize phase
	3.7.3. Productionize
	3.7.4. Stabilize
	3.7.5. System test & fix

	3.8. Conclusions on implementation
	3.9. Relevance of the chapter

	4. Identification of the artifacts
	4.1. Analysis setting
	4.2. Artifacts targeting Android platform
	4.3. Artifacts targeting Windows Phone platform
	4.4. Cross-platform artifacts comparison
	4.4.1. Common artifacts
	4.4.2. Platform dependent artifacts

	4.5. Relevance of the chapter

	5. The ontology for methodological interoperability
	5.1. Ontology
	5.1.1. Definitions
	5.1.2. Uses of ontologies
	5.1.3. Ontologies and semantic interoperability
	5.1.4. Ontology types
	5.1.5. Ontology development methodologies
	5.1.5.1. METHONTOLOGY
	5.1.5.2. Ontology Development 101
	5.1.5.3. UPON
	5.1.5.4. Uschold and King
	5.1.5.5. Grűninger and Fox

	5.1.6. Ontology development tools and languages
	5.1.7. Final remarks on ontologies

	5.2. Android artifacts ontology
	5.2.1. The domain and the scope of the ontology
	5.2.2. Reuse of existing ontologies
	5.2.3. Identified terms
	5.2.4. Classes and class hierarchy
	5.2.5. Properties of classes
	5.2.6. Knowledge definition and inference
	5.2.7. Final remarks on Android Case Ontology

	5.3. Windows Phone artifacts ontology
	5.3.1. Existing ontology reuse
	5.3.2. Classes, properties and hierarchy
	5.3.3. Updates in knowledge definition
	5.3.4. Final remarks on Windows Phone Case Ontology

	5.4. Common ontology for methodological interoperability
	5.4.1. The domain and the scope of the ontology
	5.4.2. Merging the existing ontologies
	5.4.3. Updating the basic terms
	5.4.4. Final class and properties hierarchy
	5.4.5. Evaluating and testing the ontology
	5.4.5.1. Ontology evaluation
	5.4.5.2. Used evaluation mechanisms

	5.4.6. Final remarks on proposed ontology for methodological interoperability

	5.5. Relevance of the chapter

	6. Discussion of results
	6.1. Methodologies for development of mobile applications
	6.1.1. Performing systematic literature review in SE
	6.1.2. Mobile development methodologies and approaches: SLR

	6.2. Mobile-D implementation
	6.3. Identification of artifacts
	6.4. Ontology for methodological interoperability
	6.5. Summary of the results

	7. Conclusion
	7.1. Research objectives revisited
	7.2. Limitations of the research
	7.3. Possible future research
	7.4. Conclusion

	Appendix A – Papers selected for the SLR Phase 2 analysis
	Appendix B – Papers selected for the SLR Phase 3 analysis
	Appendix C – Study quality assessment table
	Appendix D – Filled data forms for the SLR
	Appendix E – Multi-platform Case Artifacts Ontology

