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ABSTRACT 
 

Software development teams are faced with the lack of interoperability during the development of 

mobile applications for two or more target platforms. The development for second and every other 

platform means a new project with a need to repeat almost all the phases defined by the chosen 

methodology but with a narrow possibility of reuse of the already defined artifacts. The existing 

efforts of professional and scientific community to solve this problem have a similar approach (“code 

once, run everywhere”) with similar advantages and drawbacks. Thus, this dissertation aims to 

propose a different solution and is concerned with: (1) analyzing the methodologies suitable for 

mobile applications development, (2) observing the implementation of prototype application in 

order to define artifacts that are created during the development process for two target platforms, 

(3) semantic description of artifacts and their meaning, and (4) defining unique ontological definition 

as a base for methodological interoperability. 

The results of a systematic literature review performed on 6761 primary studies, show that current 

state-of-the-art literature brings only 22 development methodologies and 7 development 

approaches which can be identified as eligible for multi-platform mobile applications development. 

Among these, Mobile-D methodology accompanied with Test Driven Development was chosen and 

used in the observed development processes for Android and Windows Phone platforms. Total of 71 

artifacts were identified and the artifacts reusability level when developing for second target 

platform was 66.00%. In the last research phase, the artifacts for both platforms were semantically 

described into a single ontological description comprising 213 classes, 14 object properties and 2213 

axioms defined in ALCRIF DL expression sub-language. Having this ontology proved as correct and 

valid, flexible, reusable and extensible we created the basis for development of an information 

system to guide the development teams in a more efficient and interoperable process of multi-

platform mobile applications development. 

Keywords: Methodology, mobile, multi-platform, development, ontology. 

RESUMEN 
 

Los equipos de desarrollo de software se enfrentan al problema de la falta de interoperabilidad 

durante el desarrollo de aplicaciones para dos o más plataformas. El desarrollo para la segunda y 

subsiguientes plataformas significa un nuevo proyecto con la necesidad de repetir casi todas las fases 

definidas en la metodología elegida, pero con pocas posibilidades de reutilizar los artefactos 

definidos. Los esfuerzos realizados por la comunidad científica y profesional para solventar este 

problema tienen una aproximación similar (“code once, run everywhere”) también con similares 

ventajas e inconvenientes. Esta tesis pretende proponer una solución diferente: (1) analizando las 

metodologías adecuadas para el desarrollo de aplicaciones móviles, (2) observando la 

implementación de un prototipo de aplicación que sirva para definir los artefactos creados durante el 

proceso de desarrollo para dos plataformas, (3) estableciendo una descripción semántica de los 

artefactos y su significado, y (4) creando una única definición ontológica como base para la 

interoperabilidad metodológica. 



 

 

Los resultados de una revisión sistemática de la literatura, realizada sobre 6761 estudios primarios, 

mostraron que el estado del arte actual cuenta solo con 22 metodologías de desarrollo y 7 enfoques 

de desarrollo (development approaches) adecuados para el desarrollo de aplicaciones móviles multi-

plataforma. De entre ellas se seleccionó y empleó la metodología Mobile-D junto con un enfoque 

dirigido por las pruebas (test driven development) para estudiar el proceso de desarrollo en las 

plataformas Android y Windows Phone. Se identificaron un total de 71 artefactos y el nivel de 

reusabilidad de los artefactos durante el desarrollo para la segunda plataforma fue del 66.00%. En la 

última fase de la investigación se describieron semánticamente los artefactos para ambas 

plataformas en una única descripción ontológica definida en el sublenguaje de expresión ALCRIF DL 

que cuenta con 213 clases, 14 propiedades de objeto y 2213 axiomas. Habiendo comprobado la 

corrección, validez, flexibilidad, reusabilidad y extensibilidad de la ontología, hemos creado la base 

para el desarrollo de un sistema de información que guie a los equipos de desarrollo hacia un 

proceso de desarrollo más eficiente e interoperable para la construcción de aplicaciones móviles 

multi-plataforma. 

Palabras clave: Metodología, móvil, multi-plataforma, desarrollo, ontología 

SAŽETAK 
 

Razvojni timovi susredu se s problemom neinteroperabilnosti prilikom razvoja aplikacija za dvije ili 

više mobilnih platformi. Razvoj aplikacije za drugu i svaku sljededu platformu znači novi projekt u 

kojem je potrebno ponovno provesti vedinu faza definiranih odabranom metodikom razvoja, pri 

čemu se kreirani artefakti teško ili uopde ponovno ne koriste. Napori profesionalne i znanstvene 

zajednice za rješenjem ovog problema imaju sličan pristup („kodiraj jednom, koristi svugdje“), slične 

prednosti, ali i zajedničke nedostatke. Stoga ova disertacija navedenom problemu pristupa na nov 

način i bavi se: (1) analiziranjem metodika pogodnih za razvoj mobilnih aplikacija, (2) promatranjem 

razvoja prototipne aplikacije u svrhu definiranja artefakata koji nastaju pri razvoju mobilne aplikacije 

za dvije ciljane platforme, (3) semantičkim opisivanjem definiranih artefakata i njihovih značenja, te 

(4) definiranjem jedinstvene ontološke definicije kao osnove za metodološku interoperabilnost. 

Rezultati sustavnog pregleda literature provedenog nad 6761 radom pokazali su da se trenutno u 

literaturi spominju 22 metodike i 7 pristupa koji su pogodni za razvoj više-platformskih mobilnih 

aplikacija. Između identificiranih metodika odabrani su Mobile-D metodika i pristup razvoju vođen 

testiranjem, koji su korišteni pri implementaciji prototipnog rješenja za Android i Windows Phone 

platformu. Ukupno je identificiran 71 artefakt pri čemu je ponovna iskoristivost artefakata pri razvoju 

za drugu platformu bila 66.00%. U posljednjoj su fazi istraživanja artefakti semantički opisani u 

zajedničku ontološku definiciju koja u konačnici sadrži 213 klasa, 14 objektnih svojstava i 2213 

aksioma definiranih pomodu ALCRIF-DL jezika izraza. U radu je dokazano da je ontologija valjana, 

fleksibilna, ponovno iskoristiva i nadogradiva, čime je kreirana osnova za razvoj informacijskog 

sustava koji bi vodio razvojne timove u efikasnijem i bolje interoperabilnom procesu razvoja više-

platformskih mobilnih aplikacija. 

Ključne riječi: Metodika, razvoj više-platformskih mobilnih aplikacija, ontologija 
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1. INTRODUCTION 

1.1. Outlining the problem 

1.1.1. Development of mobile applications  

The development of mobile applications differs from the development of traditional desktop 

or web applications in several important aspects (Rahimian and Ramsin, 2008; Spataru, 

2010). According to Rahimian and Ramsin (2008), among other challenges, the designer of a 

software system for mobile environments has to cope with portability issues, various 

standards, protocols and network technologies, limited capabilities of devices and strict time-

to-market requirements. Additionally, development of mobile systems is a challenging task 

with a high level of uncertainty, and according to Hosbond (2005), it is a result of two main 

sets of challenges that should be addressed in the domain of mobile systems development,  

namely business related challenges (e.g. tough competition, conflicting customer interests, 

establishment of revenue-share models etc.) and development specific challenges (e.g. rapidly 

changing technology, lack of standardization, integration with existing systems etc.). 

When discussing the development of mobile applications, the first issue that should be 

addressed is the usage of methodology (Rahimian and Ramsin, 2008; Spataru, 2010; La and 

Kim, 2009). Classic or agile software development methodologies should be adapted for the 

development of mobile applications as the existing ones do not cover the specific mobile 

targeted requirements (La and Kim, 2009). There are several attempts from different authors 

to create new methodologies in order to cover the gaps in the domain of mobile applications. 

Some of them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM 

(Jeong et al., 2008), and Mobile-D (Abrahamsson et al., 2004).  

Another issue is the use of platform specific and dependent development environments which 

are not interoperable in a single way (Agarwal et al., 2009). Additionally, a number of 

different (specific) devices which are based on the same platform (Agarwal et al., 2009; 

Manjunatha et al., 2010; Ridene et al., 2010) is also an important issue. This includes various 

hardware implementations and operating systems capabilities with support on different API 

levels (Agarwal et al., 2009) and which are based on different programming languages 

(Manjunatha et al., 2010). The problem is also known as fragmentation problem (Agarwal et 
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al., 2009; Manjunatha et al., 2010; Ridene et al., 2010), which states that a fragmentation of 

APIs exists even within a single platform.  

Subsequently, testing becomes a great problem as simulated or emulated devices usually do 

not provide full functionality or are incapable of creating a real life test scenarios (Ridene et 

al., 2010). Testing on physical devices is usually too expensive if used to cover up all 

important devices and their capabilities. Several projects in this field, such as Device 

Anywhere (DeviceAnywhere, 2011) or DSML (Ridene et al., 2010) also do not provide full 

and needed functionality. Finally, the deployment and the maintenance phases should not be 

forgotten as well as both of them bring a fresh set of specific requirements that are mainly 

defined by mobile device producers and their stores.  

On the other hand, the development of mobile applications also differs from the development 

of web or desktop applications in the number of target platforms. According to Manjunatha et 

al. (2010) the fragmentation problem forces the developers of mobile applications to focus on 

only specific platforms and versions. As the development of mobile applications primarily 

aims the wide range of users, development for only specific platforms and versions is not an 

option and the development teams reach for different solutions to this problem. The ideal (i.e. 

still nonexistent) solution would be to code once and to deploy (run) the same code to all 

target platforms. The fragmentation problem is the result of mobile industry being 

continuously highly technology-driven, which means that the focus is on innovation instead of 

standardization. This problem was recognized several years ago by Hosbond (2005). 

Finally, it is important to notice that the development of mobile applications has some 

similarities with the traditional development. For example after performing an extensive 

literature review, Hosbond and Nielsen (2005) concluded that the scope of mobile systems 

development is an extension of the scope and the body of knowledge on traditional systems 

development. However, they also noticed that in the existing literature knowledge about 

traditional systems development is largely neglected. Generally, we can conclude that the 

reported challenges in the development of mobile applications have strong relation with the 

challenges that have accompanied the development in the past as some of the problems have 

followed the software development from the very beginning, and some have been gone and 

have now re-appeared again (e.g. limited capabilities of screens). 

In order to define the problem in the domain of this thesis, several important concepts should 

be taken into consideration. The overall picture of a development playground could be 

presented as in Figure 1 with the following main parts:  

 Teams 

 Development environments 

 Development methodologies 
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 Mediatory publishing services 

 Target devices 

The main characteristics of mobile applications development teams could be described in just 

a few words. Whether the teams are working on open source or in-house projects concerning 

mobile applications, they can be classified as small, flexible, and keen on learning a specific 

technology and/or platform. Although the classic interoperability among the team members 

and among different teams is not of a specific interest in this thesis, the methodological 

interoperability and the existing artifact reuse among team members or teams working on a 

same functionality but for a different target devices should be pointed out. 

 

Figure 1 - Problem - The Big Picture 

Let us imagine a real business scenario in which a development company wants to produce a 

classic business or non-business application that should be runnable on a several different 

mobile platforms and devices. The standard approach would be to create several different 

teams, each team targeting one specific platform, to adopt several development methodologies 

or at least different methods, each of them applicable for a specific platform and to produce 

characteristic outputs which will satisfy the requirements specified by the mediatory 

application stores or markets (see Figure 1). More experienced teams would probably try to 

perform as many as possible unique activities that should be similar or same across all 

platforms, or would even try to perform whole Model Driven Development approach through 

all phases except in creation of Platform Dependent Model and its implementation. 

But, the big question still remains. Is it possible to make this process easier in the sense of 

development, interoperability and reusability? Is it possible to code once and run on different 

target platforms?  

Unfortunately, it is not possible to code once and run on any mobile device. This slogan, 

according to Ridene et al. (2010), is not true even for Java, and moreover, the trends in the 



 

 

4 

 

mobile industry show us that this will not be possible in the short-term future, as mobile 

platforms are still closed, locked-in (Manjunatha et al., 2010), and devices are dependent on 

them. On the other hand, several different approaches aiming to propose some improvements 

in the multi-platform mobile applications development exist. These approaches are 

summarized into two main groups and shortly described in the following chapter.   

1.1.2. Existing solutions 

1.1.2.1. Mediatory transform engine 

In the past year or two, the problem of mobile applications development for multiple target 

platforms became important in the scientific as well as the professional community. The 

results are visible in the form of several existing systems and projects that fairly enough 

enable the development teams to use a mediatory language or just mediatory transform engine 

and to code for several target platforms. Some of the most influential projects are MobiCloud 

(Manjunatha et al., 2010; Services Research Lab and Metadata and Languages Lab, 2011) 

from Kno.e.sis Research Group (Kno.e.sis Research Group, 2011), Rhodes (Rhomobile, Inc., 

2011) and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). As Figure 

2 shows, reaching for this solution will bring some improvements to development teams. First 

of all, project team or project teams will be able to use a single proprietary or open-source 

programming language and could try to implement the desired functionality. The mediatory 

transform engine will then produce a platform specific code which can be tested and deployed 

through specific application store or market. 

  

 

Figure 2 - Architecture of some existing solutions 



 

 

5 

 

 
Code 1 - “Hello World” application written in proprietary DSL  

(source: MobiCloud platform) 

There are several examples of systems with described functionality. Some of them (e.g. 

MobiCloud) use their own domain specific language (DSL) to transform into platform 

specific source or, though rarely, even executable code. Other systems (Amanquah and 

Eporwei, 2009) transform code written in well-known languages to specific source (or 

executable) code. The code snippet (Code 1) shows an example written in proprietary DSL 

which is based on implementation of Model-View-Controller (MVC). The output could be 

simple “Hello World” application source code for four different platforms. 

This approach, however, also has several significant drawbacks (Manjunatha et al., 2010). 

The idea of having mediatory transform engine that transforms source code to specific 

platforms depends on the efforts invested in the transform engine. The engine depends on 

specific platforms and available APIs, and by definition, DSL caters only to a specific domain 

(Manjunatha et al., 2010). Even if there is a possibility to enrich the engine with 

transformation procedures to all existing APIs, there is an important problem of platform 

incompatibilities. For example, it is not possible to use multithreading in Windows Phone 7 

while, on the other hand, in other platforms it is not just possible but even desirable. Another 

example is Android which does not provide thread sync mechanisms as Symbian does. 

Some other drawbacks of this approach are the necessity to learn a specific DSL, the 

boundaries defined by the use of any specific languages, the lack of control of generated 

source code, the lack of control of user interface design (Manjunatha et al., 2010), the 

problems with testing and many others. 

1.1.2.2. The use of native application adapters 

Another possible solution to the given problem could be the introduction of adapter 

applications (adapters) as native applications for every target platform (Agarwal et al., 2009). 

According to Agarwal et al. this is one of the two main techniques for handling fragmentation. 

As standardization of APIs in mobile world is still not possible, the usage of programming 
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techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct modules which 

are then ported across the platforms, is left as the other solution. For example, the same 

authors are proposing MobiVine as a solution to handle fragmentation of platform interfaces. 

Specifically, the authors have identified that the fragmentation of mobile platform interfaces 

results in different syntax and semantics, results in usage of platform specific data structures 

and properties, results in throwing platform specific exceptions and is also characterized by 

inconsistencies in implementation by different vendors. This has bearing on the portability of 

mobile applications across multiple platforms. So, the proposed solution is composed on two 

main components: M-Proxies and M-Plugins. M-Proxies component helps abstract 

heterogeneities in interfaces across different platforms while binding to the underlying 

middleware stack and is used to realize platform specific blocks. The other component, called 

M-Plugins, helps integrate MobiVine with the existing tooling and deployment infrastructure 

and is used to override the gap between M-Proxy and platform specific APIs. 

 

Figure 3 - MobiVine overview 

(Agarwal et al., 2009) 

The authors of MobiVine evaluated the usage of MobiVine as middleware layer and they 

discussed the achieved improvements in terms of enhancing platform and language 

portability, reducing code complexity, making maintenance easier and performance by a 

negligible fraction slower. But, they also concluded that MobiVine framework should be 

extended to cover other platform interfaces (like working with contact list information), to 

include other platforms, and to make the concept of proxy model broader by studying its 

applicability to other forms of mobile fragmentation, e.g. screen size and resolution. 

Another well-known wrapper is PhoneGap (PhoneGap, 2011). The applications written in 

HTML, CSS and JavaScript are wrapped with PhoneGap and then deployed to multiple 

platforms. The developers could use free, open-source framework to access some of the native 

APIs.   



 

 

7 

 

After the Adobe Corporation acquired the original PhoneGap‟s creator Nitobi company, they 

also announced that they will offer developers the choice of using two powerful solutions for 

cross-platform development of native mobile apps, one using HTML5 and JavaScript with 

PhoneGap and the other using Adobe Flash® with Adobe AIR® (Adobe Corporation, 2011). 

On the other hand, the original PhoneGap approach has not been changed and as the 

application takes on extra complexity, more involved logic will require spending more time 

on application behavior with specific devices. Even when the same code base is used when 

developing for multiple platforms, the separate prepare & build and sometimes porting steps 

should be performed to produce the version targeting multiple platforms. According to 

(Lunny, 2011) more complicated applications are keen on “surprising” the developers during 

the porting process and in these cases, PhoneGap documentation should be consulted. In the 

end, there will not be a single code base Java Script file, but rather an application.iphone.js 

file containing iPhone implementation along with equivalent application.android.js and 

application.blackberry.js files (Lunny, 2011). Finally, there are many different guides and 

recommendations that should be followed while developing this way (Lunny, 2011), and we 

can generally conclude that taking all of them into consideration means learning a new 

programming and development style which is as difficult as learning a new programming 

language from scratch.  

 

Figure 4 - PhoneGap build process 

(PhoneGap, 2011) 

Additionally, there are other attempts and efforts that are undertaken to over-come mobile 

platform and interface diversity and fragmentation. These efforts, for example, include the 

creation of extensions to Java platform, through Java Specification Requests (JSRs) such as 

JSR 248: Mobile Service Architecture (Bektesevic and Rysa, 2008) or JSR 256: Mobile 

Sensor API (Niemela, 2009), or the development of Wholesale Applications Community 

(WAC) APIs and applications (Apps).  

JSRs are designed to provide the set of APIs for specifically targeted use (e.g. for mobile 

service architectures or mobile sensors). But, according to Agarwal et al. (2009), along with 
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standard Java Micro Edition (Java ME), mobile platform developers in practice choose to 

include different sets of JSRs which results in the diversity even among their own devices.  

On the other hand, WAC is an open, global alliance of leading companies in the mobile 

telecommunication industry with the goal of providing a different operator network APIs 

through single cross-operator API platform. Specifically, this platform is built on the work of 

the former Open Mobile Terminal Platform Ltd.'s BONDI project
1
, the Joint Innovation Lab 

(JIL) device APIs
2
 and the GSM Association's OneAPI program

3
, and currently WAC 

platform offers WAC Apps framework (WAC Application Services Ltd, 2012a) and WAC 

Payment API (WAC Application Services Ltd, 2012b). WAC Apps aims to help create the 

mobile apps quicker by using existing, familiar web technologies and tools through direct 

access to mobile device functionality. According to WAC Application Services Ltd (2012a), 

the types of applications that could be published currently are widgets written to the WAC 

specifications
4
, native Android applications and HTML5 applications. WAC Payment API 

aims to enable developers to be able to access the operator billing capabilities through single 

API by using a set of developed Software Development Kits (SDKs) for multiple platforms. 

Although this API is useful in some cases, currently it covers only payment options and can 

be used for Android, PhoneGap, PHP and JavaScript/HTML5 platforms (WAC Application 

Services Ltd, 2012c). WAC announced that they plan to launch additional network APIs over 

time to provide the developers with further opportunities to create richer applications (WAC 

Application Services Ltd, 2012b). 

So generally, the adapter-based approach requests that the adapters should be pre-developed 

and published in the specific application store, or as in the case of PhoneGap, deployed along 

with the application (PhoneGap, 2011). The general idea of creating adapter is to create a 

platform specific application that will bi-directionally convert the specific interfaces of the 

target platforms (left-side) into one unique interface that could be used to communicate with 

different applications (single, right-side). Every single adapter converts a different target 

interface to unique (same) interface, which means that one application really could be 

 

                                                 
1
 BONDI project (http://bondi.omtp.org/default.aspx) aimed to create a standardized approach for letting web 

applications access key local capabilities on the mobile device. [accessed: 18
th

 of May 2012] 
2
 Joint Innovation Lab was an initiative of several mobile carriers on developing device APIs and related services 

that build upon the W3C Widgets specification. Web page (http://www.jil.org/) is closed and redirected to 

WAC's page (http://www.wacapps.net/). [accessed: 18
th

 of May 2012] 
3
 “The GSMA OneAPI initiative defines a commonly supported set of lightweight and Web friendly APIs to 

allow mobile and other network operators to expose useful network information and capabilities to Web 

application developers. It aims to reduce the effort and time needed to create applications and content that is 

portable across mobile operators.” (http://oneapi.gsma.com/) [accessed: 18
th

 of May 2012] 
4
 WAC Device API specification could be found here: http://specs.wacapps.net/index.html. [accessed: 18

th
 of 

May 2012] 
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imported into one or more different adapters and run under one or more different platforms. 

The mentioned application could be stored on any web server or even on a cloud as is shown 

in Figure 5. 

 
Figure 5 - Architecture of some possible solutions 

There are two possible scenarios that could be implemented by adapter developers. (1) The 

adapters could be 100% aligned by means of common interface and this scenario would 

reduce the number of teams – presented in the Figure 5 – to one. This would be a great 

achievement, but on the other hand there is one big drawback too. The functionality of the 

future applications would be reduced to the common features that all target platforms support 

and to the common features that are implemented into the adapters for all target platforms. 

This brings us to the problems presented in the existing solutions and this also makes this 

scenario rather unlikely to be feasible. (2) The other scenario introduces some differences in 

the adapters by means of common (right-side) interface. If the mentioned interface is not the 

same for all platforms, the use of such adapters would provide a more specific functionality 

on mobile applications, a scenario more feasible, but also a one that would bring the need to 

develop more or less different applications for each target platform. 

Almost all of the drawbacks stated for existing solutions that introduce transform engine are 

also present in this possible solution. The mentioned PhoneGap (PhoneGap, 2011) platform 

allows the development of native applications with web technologies (HTML5, CSS 

&JavaScript) enriched with a given set of APIs. According to PhoneGap Documentation
5
 this 

 

                                                 
5
 PhoneGap API Reference Documentation [accessed: 15

th
 of October 2011]: http://docs.phonegap.com/en/1.1.0/ 

phonegap_events_events.md.html#backbutton 
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platform supports back button event only on the Android platform despite the fact that the 

event exists in several other platforms as well. Although there is some space for research in 

this area, especially in the field of interface transformation, the improvements that will bring 

the process of development of demanding applications for multiple target platforms through 

this approach are also hardly achievable and even feasible. 

1.1.3. The final remarks on platforms and tools 

As it can be seen, there are several rather different approaches that scientists and experts are 

taking to solve the problem of developing for multiple platforms. Each one of them has its 

own advantages and disadvantages. But still, one issue remains that is common to almost all 

of these approaches. It is impossible to create a transform engine, or adapter application that 

would keep all of the advantages of all target platforms and that would provide the range of 

possibilities as native development environments do. Also, if we want to preserve the 

capability of teams working on the open-source projects, it is necessary to give them the 

possibility to work in a native development environment and to develop by using a 

programming language they prefer most.  

In order to provide such possibilities, this thesis will focus on proposing the solution to 

enhance interoperability among teams working on the same application but on different (and 

native) development environments. The work on the native development environments will 

provide the teams with the full advantages of using the native APIs, the native test 

environments and the native generators of the executable code. 

1.2. Objectives and hypotheses 

This doctoral research focuses on the analysis of this problem and on the proposal of a 

solution in a domain of methodological interoperability. The idea is to allow developer teams 

to use native development environments (that is, all their advantages for platform specific 

mobile application development) by raising the re-usability and interoperability to a higher, 

methodological level. Therefore, this dissertation will attempt to answer the following 

questions: (1) what methodologies and development approaches can be used in multi-platform 

mobile applications development; (2) what artifacts (required inputs and outputs of 

methodologically and methodically defined development steps) emerge during mobile 

applications development, (3) whether and to what extent there are similarities between these 

artifacts, (4) whether it is possible to ontologically describe these artifacts, and create a basis 

for developing a system that would support the methodological interoperability. 
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1.2.1. The main goal 

The main goal is to ontologically describe artifacts that arise in the methodologically managed 

process of mobile application development targeting two or more mobile platforms, and to 

create the basis for more efficient and interoperable process of multi-platform mobile 

applications development. 

1.2.2. Hypotheses 

This doctoral thesis focuses on researching and proving the following hypothesis: 

H1: It is possible to create ontological description of elements of methodological 

interoperability containing structural and semantic aspects of sets of artifacts created in 

the development process of a mobile application for two or more target platforms. 

1.3. Research scope and methodology 

1.3.1. Scope definition 

The development for mobile applications is as complex as are other fields in the domain of 

software engineering. There are several different perspectives that could be taken to produce a 

single mobile application. We can identify at least three dimensions in the space of the 

possible approaches the development team can take. If we include other more or less 

important elements the space will rapidly become multi-dimensional, and by multi we mean 

more than three. So to keep the thesis focused, we will take into consideration the following 

dimensions of space S as: 

S = {M, A, P} (1.) 

M - Development methodology 

A - Development approach 

P - Target platform 

The three mentioned axes could have several different values:  

M = {m1, m2, ... mn} (2.) 

A = {a1, a2, ... am} (3.) 

P = {p1, p2, ... po} (4.) 

For example, these values could be: 

M = {Extreme programming (XP), SCRUM, Rational Unified process (RUP)} 

A = {Model driven development (MDD), Test driven development (TDD), Model 

View Controller (MVC) Implementation} 
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P = {Android, Windows Phone 7, Nokia Symbian} 

While defining the scope of proposed solution it is wise to bring some logic assumptions that 

are based on the real life scenario and the possible usage of results gained throughout this 

work. Whether one team will develops multiple applications or several teams develop 

different applications, we can assume that the team (teams) will use the same methodology as 

they work together and as they want to take advantage of semantic interoperability while 

developing same application for different target platforms. Similar, we can assume that the 

development approach will be the same for development of a single application for all target 

platforms. Of course, the teams will develop application for one or more target platforms, so 

the cardinality of sets M, A and P can be described as: 

| M | = 1 (5.) 

| A | = 1 (6.) 

| P | > 1 (7.) 

Subsequently, the cardinality of final space S that is focused in this research can be presented 

as in Figure 6 or in Figure 7, and can be defined as: 

| S | = {(1, 1, n) : n > 1} (8.) 

The development process DP presented in those two figures can be described as a set of sub 

processes SP i.e. ordered triples.  

DP =  {SP1, SP2, … SPn : SPi  S; SPi = (m, a, pi); 1 < n ≤ |P|;  

i = {1, 2, …, n}; m  M; a  A; p  P}. (9.) 

So for example, if we want to develop an application for Android, iPhone and Nokia, and we 

choose Extreme Programming supported by Model Driven Development, the development 

process would be described as DP = {(3, 1, 1), (3, 1, 2), (3, 1, 3)}. Similar, if we use SCRUM 

supported by Test Driven Development, the development process could be described as DP = 

{(2, 2, 1), (2, 2, 2), (2, 2, 3)}. 

 

Figure 6 - Possible scope (A) Figure 7 - Possible scope (B) 
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Taking into consideration all that was said, we can conclude that all ordered triples (sub 

processes) in one development process have the same first two elements, but different third 

elements. This different element makes the sub-processes (i.e. development processes for 

specific target platforms) rather different.  

Within the presented scope, the teams will have the opportunity to work in the preferred 

development environments, i.e. platforms (P), and have the chance to take the advantages of 

the native development environment and the use of the native code: However, they will also 

have to obey the rule of the use of only one methodology and one development approach for 

the development for all the target platforms. 

Note: If the teams develop an open source product, they might be interested in using specific, 

preferred methodology, but this scenario is not covered by this research. Additionally, the 

term target platform could be analyzed with greater granularity by defining manufacturer, 

platform, device and API but this is also out of the scope of this research. 

1.3.2. Research approach 

The overall goal of this research is to create the semantic definition of the elements of 

methodological interoperability containing structural and semantic aspects of the sets of 

artifacts created in the development process of mobile application for at least two specific 

target platforms. These semantic definitions can be used to create a general ontology that will 

be the base for interoperability and future work on the development of the framework and the 

supporting system. The research is divided into three main phases, each of them containing 

several stages. These stages, along with the used methodologies are enumerated as follows: 

First phase: Choosing development methodology 

 Analyze the state-of-the-art of methodologies for mobile development and choose 

methodology to use and describe 

M = {m} (10.) 

 Analyze the state-of-the-art of development approaches for mobile development and 

choose the development approach to use and describe  

A = {a} (11.) 

Second phase: Identifying artifacts sets 

 Choose two specific mobile platforms to develop for according to their artifacts and 

development process 

P = {p1, p2} (12.) 
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 Perform a development process DP by conducting m and a for p1 and p2 in order to 

create a prototype application 

DP = {SP1, SP2} => DP = {(m, a, p1), (m, a, p2)} (13.) 

 Analyze the development process and identify all obligatory and optional tasks along 

with the corresponding inputs and outputs: 

IOp1 = {Ip1, Op1} => IOp1 = {i1p1, i2p1, ... inp1, o1p1, o2p1, ... omp1,} : n, m  N (14.) 

IOp2 = {Ip2, Op2} => IOp2 = {i1p2, i2p2, ... inp2, o1p2, o2p2, ... omp2,} : n, m  N (15.) 

 Define set of artifacts R for each target platform 

R = {Rp1, Rp2} => R = {(r1p1, r2p1, ... rnp1), (r1p2, r2p2, ... rmp2)  

: rip1 ∈ IOp1; i ≤ n; rjp2 ∈ IOp2; j ≤ m} (16.) 

 If differences for p1 and p2 exist, find the differences in tasks, inputs or outputs on as 

much higher level of abstraction as possible and define a subset of artifacts that will be 

used for ontology definition. 

R
‟
 = {R

‟
p1, R

‟
p2 :  R

‟
p1⊂ Rp1; R

‟
p2⊂ Rp2} (17.) 

Third phase: Creating an ontology 

 Analyze the state-of-the-art for ontology development and construction and choose 

ontology development method and ontology development language to use. 

 Define all ontology elements for SP1 and SP2 with a special attention on the artifacts 

set defined in R
‟
. 

OE1 = f (SP1, R
’
) (18.) 

OE2 = f (SP2, R
’
) (19.) 

 Create specific ontologies for SP1 and SP2 and describe them with proper ontology 

definition language, with a special attention on the ontology elements defined for 

artifacts set defined in R
‟
. 

O1 = f (OE1, R
’
) (20.) 

O2 = f (OE2, R
’
) (21.) 

 Create a common ontology from specific ontologies by defining semantic equality and 

diversity; this common ontology will be the base for future interoperability on 

methodological level. 

O = f (O1, O2, R
’
) (22.) 

 Look forward into a future work, framework and system development. 
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1.4. Dissertation disposition 

After introducing the problem domain, giving an overview of existing solutions and stating 

the objectives, hypotheses and research scope in this chapter, the rest of this document is 

organized in additional six chapters as follows. 

The second chapter presents the results of the Systematic Literature Review performed in 

order to determine the existing body of knowledge of the methodologies for mobile 

applications development. As the use of scientific method of SLR in the field of Software 

Engineering is still emerging, with a relatively small number of performed reviews, we found 

the existing guidelines presented in (Kitchenham and Charters, 2007) could be improved with 

the recommendations and inputs from other influential authors in the field, and thus first we 

give (in Chapter 2.1) an overview of the method along with discussion and recommendations 

as mentioned. Following the enhanced guidelines, that give special focus to method execution 

by PhD students, we continued to perform the SLR (Chapters 2.2 and 2.3) which resulted in 

identification of 22 development methodologies and 6 development approaches (see Table 18 

and Table 19 in Chapter 2.3.5). Finally we discuss and choose Mobile-D methodology 

supported by Test Driven Development in Chapter 2.4 for the development of our prototype 

application and further analysis. 

The second research phase is covered by Chapter 3 and Chapter 4 of this document. The third 

chapter gives an overview of Mobile-D methodology (in Chapter 3.1), and then presents the 

results of the multi-platform development of prototype application by using the mentioned 

methodology (Chapters 3.2 to 3.8). The application is developed for Android and Windows 

Phone target platforms, and the focus in this chapter is put on executed phases, activities and 

tasks along with created and used artifacts. In the fourth chapter we systemize and analyze the 

obtained artifacts. Chapter 4.1 gives the discussion on analysis setting, while the identified 

Android artifacts are presented in Chapter 4.2, the identified Windows Phone artifacts are 

presented in Chapter 4.3, and the cross-platform analysis is performed and reported in Chapter 

4.4. A total of 71 artifacts are identified, out of which more than 70% are common to both 

development cases with high a reusability potential of 66% as presented in Table 43. 

Chapter 5 is considered to be the most important chapter of this thesis, as it presents the taken 

approach along with its results in the third and the final phase of our research process. The 

chapter gives an overview of concepts related to ontologies and ontology development 

(Chapter 5.1) and then presents the created ontologies. When reporting on the development of 

Android Case Artifacts Ontology (chapter 5.2) we put focus on the usage of Ontology 

Development 101 methodology and implementation of its seven steps. On the other hand, 

when reporting on the development of the second specific ontology, namely WindowsPhone 

Case Artifacts Ontology (Chapter 5.3), we put focus on the concepts of reusing and updating 
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the existing ontology. Finally, Chapter 5.4 presents the development of a common ontology 

for both cases, and here we put focus on the concepts of merging, extending, evaluating and 

testing the ontologies. The created ontology is verified and validated by several different 

mechanisms and the results proved its semantic correctness and completeness. 

The last two chapters of this document are used for extensive discussion on all research 

activities by reflecting on motivation, results contributions, rigor and evaluation (Chapter 6) 

and on summarization of contributions and conclusions which emphasize on achieved goals, 

open issues and possible further research directions that could be taken continuing from the 

results of this research (Chapter 7). 

The annexes of the document bring more details on results obtained during each research 

phase. Thus Appendix A brings the list of all the papers that are selected for the second phase 

of the SLR analysis and similarly Appendix B gives the papers selected for SLR quality 

assessment and further analysis, while Appendix C and Appendix D respectively bring the 

final study quality assessment table and data extracted form for each selected study. Finally, 

Appendix E brings the developed ontology presented in compact and human readable 

Manchester syntax. 
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2. MOBILE APPLICATIONS DEVELOPMENT 

METHODOLOGIES: A SYSTEMATIC REVIEW 

To goal of this chapter is to identify and choose a proper development methodology which is 

to be used in the rest of the research process. As, to our knowledge, there are no studies 

performed to identify all development methodologies suitable to mobile applications 

development, we performed an extensive systematic literature review of the methodologies 

and development approaches that are reported in the literature as being created or used 

specifically for mobile applications development. 

As the method of systematic literature review is rather new in the field of software 

engineering, first the best practice in performing such time consuming and comprehensive 

method will be analyzed. The guidelines given by Kitchenham and Charters (2007) are 

followed and discussed by adding the recommendations and findings from other influential 

authors in the field. Special focus is given to the problem of performing the method by PhD 

students. This part of the chapter results with structured and detail instructions that can help 

researchers and PhD students to decrease the risks and biases and to increase the review 

quality. 

Following the findings presented in the first part of the chapter we continue to plan and 

conduct a systematic literature review and answer two research questions: (1) what 

development methodologies and approaches are reported in literature as defined in theory or 

used in practice for mobile application development and (2) are the identified methodologies 

and approaches applicable in multi-platform mobile applications development? After 

analyzing more than 6700 initial sources we found 49 publications to be included in data 

extraction process which in the end resulted in identification of 22 methodologies that are 

used in development of mobile applications along with 7 development approaches. 

Finally, we were able to establish the criteria for choosing one methodology and approach that 

are to be used in the rest of the research process. The chosen methodology is Mobile-D 

(Abrahamsson et al., 2005a) supported by Test Driven Development as Mobile-D‟s suggested 

approach. 
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2.1. Research method 

In order to perform comprehensive and thorough analysis of existing methodologies for 

development of mobile applications, the systematic approach should be undertaken and 

existing methodologies should be reviewed in such a manner which will result in a solid basis 

for the rest of the research in the domain of this thesis. Such analysis could be undertaken by 

applying different methods and approaches, such as systematic literature review, systematic 

mapping studies, tertiary reviews discussed by (Kitchenham and Charters, 2007), or narrative 

review, conceptual review, rapid review and several other types presented by (Petticrew and 

Roberts, 2005). The systematic mapping study should be used when a topic is either very little 

or very broadly covered, and tertiary reviews are most suitable approach if several reviews in 

the target domain already exist and should be summarized. The narrative reviews usually do 

not set out the scientific methods that aim to limit systematic error. Additionally, the 

conceptual review should be used when aiming to provide an overview of literature in the 

given field and the rapid review is usually carried out within limited time or with restrictions 

in the scope of the research. Subsequently, taking into consideration the undertaken initial 

examination of the domain, we decided to use a systematic literature review (SLR) as this 

method has been used widely for different analysis in the field of software engineering (SE). 

“A systematic literature review is a means of evaluating and interpreting all available research 

relevant to a particular research question, topic area, or phenomenon of interest. Systematic 

reviews aim to present a fair evaluation of a research topic by using a trustworthy, rigorous, 

and auditable methodology.” (Kitchenham and Charters, 2007) The origins of systematic 

review can be traced back to the beginning of the 20
th

 century, but during the 1980‟s, 

systematic research synthesis and meta-analysis reach an especially distinctive 

methodological status in the domain of health sciences (Williams and Carver, 2010). During 

this period and as a result of performing similar methods in various other fields, different 

synonyms of this method have been used in the literature. Some of them are research review, 

research synthesis, research integration and systematic overview (Biolchini et al., 2005).  

In the field of software engineering during the last years several primary studies have been 

conducted and although these studies are accompanied by an increasing improvement in 

methodology, this field is still an area of investigation that remains to be explored and that 

could well bring many benefits in terms of mechanisms needed to assist practitioners to adopt 

appropriate technologies and methodologies (Biolchini et al., 2005). The guideline for 

systematic reviews that aimed to help software engineering researchers was proposed by 

(Kitchenham, 2004) and was created as adaptation of several existing guidelines from other 

disciplines, mainly medicine. Although the three proposed phases of systematic review, 

namely planning the review, conducting the review and reporting the review, in general were 
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not criticized, some authors like Biolchini et al. (2005), Mian et al. (2005) and Staples and 

Niazi, (2007) found that Kitchenham described them to a relatively high level which is 

partially inappropriate to conduct for researchers in the field of software engineering. In favor 

of this goes the fact that Kitchenham in 2007 published a new version of technology report 

(Kitchenham and Charters, 2007) with the aim to propose more comprehensive guidelines of 

performing a systematic literature review for researchers and PhD students in the field. The 

basis for this guideline remained the same: the existing guidelines used by medical 

researchers, but was reinforced by several books and discussions with researches from other 

fields. 

The next sections will cover in detail the systematic literature review methodology as it is 

proposed in (Kitchenham and Charters, 2007). The sections will present a methodology and 

give summary of all phases and activities that should be performed while conducting 

systematic review in the field of software engineering. 

2.1.1. Definition of systematic literature review (SLR) 

Systematic literature review (SLR) is defined by Kitchenham and Charters (2007) as “a form 

of secondary study that uses a well-defined methodology to identify, analyze and interpret all 

available evidence related to a specific question in a way that is unbiased and (to a degree) 

repeatable”. Dybå and Dingsøyr (2008a) define SLR as “a concise summary of the best 

available evidence that uses explicit and rigorous methods to identify, critically appraise, and 

synthesize relevant studies on a particular topic”. According to Dybå, these methods should 

be defined in advance and documented in a protocol so the others could critically appraise and 

replicate the review. 

There are different reasons for performing systematic literature review. In general, whenever 

a literature review is performed it could be done by applying systematic (following stated 

procedures and steps) or unsystematic (just reading and taking notes) approach. The usual 

reason to use SLR is to summarize the existing evidence concerning a treatment or a 

technology. This is to say that for example, as is the case in this thesis, systematic literature 

review can be used to summarize the methodologies that could be used for development of 

mobile applications. SLR could also be used to identify any gaps in current research in order 

to suggest areas for further investigation or to provide a framework/background in order to 

appropriately position new research activities. In addition, there are other general reasons to 

use a systematic rather than unsystematic approach, such as the purpose of the research, the 

scientific approach, the quality expectations or the existence of previous researches on the 

selected topic. 
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According to Dybå and Dingsøyr (2008a) the key feature that distinguishes SLR from 

traditional narrative reviews is in its explicit attempt to minimize the chances of making 

wrong conclusions which could be the results of biases either in primary studies or in the 

review process itself.  

2.1.2. Steps to be performed 

Although the methodology of SLR is considerably upgraded if compared to the first version 

from 2004, the main three phases remain the same. General steps to be performed are also 

similar and are defined as follows: 

Phase 1: Planning the review 

 Identification of the need for a review 

 Commissioning a review (optional) 

 Specifying the research question(s) 

 Developing a review protocol 

 Evaluating the review protocol (recommended) 

Phase 2: Conducting the review 

 Identification of research  

 Selection of primary studies  

 Study quality assessment  

 Data extraction and monitoring  

 Data synthesis 

Phase 3: Reporting the review 

 Specifying dissemination mechanisms  

 Formatting the main report  

 Evaluating the report (recommended) 

According to the author of the review process, Kitchenham, all mentioned activities (stages) 

are mandatory except commissioning a review as it depends on the planned commercialization 

of review results, as well as evaluating the review protocol and evaluating the report which 

are optional as they depend on the quality assurance procedures decided by the author(s) of 

the review. In any case, the mentioned activities are recommended.  

As one can conclude from the above list, the mentioned stages and phases are sequential. 

However, it is important to mention that some of the stages can be repeated more than once 

and may involve iteration or reimplementation. For example, the negative evaluation of 

review protocol or negative evaluation of the report might result in the need to repeat the part 

or the whole review process. Or, the inclusion and exclusion criteria of the relevant studies 
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could be refined after quality criteria are defined. It is important to notice that even 

experienced scientists often have to change or adapt the review protocol. To some authors this 

provides a reason for criticism of the methodology of the already existing reviews for not 

being completely objective or even conducting a fake rational design process. However, there 

are authors such as Staples and Niazi (2007) who discuss the need of the protocol even if it is 

a subject of constant changes through the whole systematic review process. All that has been 

said brings us to a strong general conclusion that the protocol is needed and that it increases 

the quality of the process. 

In the following sections, each stage of the SLR process will be discussed in detail. 

2.1.2.1. Planning the review 

The most important activities during the phase of review planning are definition of the review 

question(s) and creation of the review protocol. However, the rest of the activities should not 

be neglected and also deserve a serious approach. The results of this phase should be a clearly 

defined review protocol containing the purpose and the procedures of the review. 

The summary of each stage is presented below and is based on guidelines presented in 

(Kitchenham and Charters, 2007) and on additional discussions from other authors cited in the 

text. 

Identification of the need for a review is the first activity in the SLR process. It arises from 

the preliminary research in the topic area. When the author(s) has a firsthand knowledge in 

the area of interest, then it is possible to conclude whether more thorough and unbiased 

research is needed. It is especially important to identify and review the existing systematic 

reviews on the same topic. The review of existing SLRs is usually undertaken against 

appropriate and previously created evaluation criteria. The most common practice is to create 

a checklist or set of questions that should be examined for every existing SLR. There are 

several checklists proposed by different authors and organizations, and depending on the level 

of complexity, they usually operate with concepts of the quality of defined inclusion and 

exclusion criteria or the level of literature and relevant studies coverage along with the 

assessment of quality of included studies. For example Centre for Reviews and Dissemination 

(2009) in the book Systematic Reviews defines the following set of questions to use while 

critically appraising review articles: 

 Was the review question clearly defined in terms of population, interventions, 

comparators, outcomes and study designs (PICOS)? 

 Was the search strategy adequate and appropriate? Were there any restrictions on 

language, publication status or on publication date? 
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 Were preventative steps taken to minimize bias and errors in the study selection 

process? 

 Were appropriate criteria used to assess the quality of the primary studies, and were 

preventative steps taken to minimize bias and errors in the quality assessment process? 

 Were preventative steps taken to minimize bias and errors in the data extraction 

process? 

 Were adequate details presented for each of the primary studies? 

 Were appropriate methods used for data synthesis? Were differences between studies 

assessed? Were the studies pooled, and if so was it appropriate and meaningful to do 

so? 

 Do the authors‟ conclusions accurately reflect the evidence that was reviewed? 

Commissioning a review is an optional task whose inclusion in the process depends on the 

type and the stakeholders of the review process. If the review is commissioned by an 

organization that has no time or expertise to perform a review by itself, then the organization 

must provide a commissioning document that will contain all important information about the 

required work such as project name, review questions, timetable, budget or dissemination 

strategy. 

Scientists and PhD students will not create a commissioning document while performing a 

systematic literature review as a part of their own work. The only issue that should be 

addressed in this case is that a dissemination strategy should be incorporated in the review 

protocol. 

Specifying the research question or questions is probably the most important part of the 

systematic review process as it is the base for all other activities. The research question 

defines which primary studies to include or exclude from the review, and the data that should 

be extracted from the reviewed literature. The defined research question should be answered 

in the final systematic literature review report. 

As Kitchenham emphasizes, there are several types of research questions (adapted from 

guidelines in the domain of health care) that can be stated in the domain of software 

engineering. These questions may concern, for example, effect of SE technology, cost and 

risk factors, the impact of technology on different concepts et cetera. The type of a question 

can sometimes determine the guidelines and procedures to be used (as for example in domain 

of health care). My opinion is that it is not necessary to create a finite set of types of research 

questions, but rather to use a set of guidelines on how to create a research question that has 

the appropriate structure. According to Kitchenham, it is important to create a right question, 

i.e. a question that is meaningful and important to practitioners and researchers, that will 

lead either to changes in current SE practice or to increased confidence in the value of 



 

 

23 

 

current practice, or that will identify discrepancies between commonly held beliefs and 

reality. Finally, the right questions can be the questions that are primarily of interest to 

researchers in order to identify and scope the future research activities. For example, such 

question could be used in a systematic review performed by a PhD student in order to identify 

existing basis and to identify if and where the research fits into the current body of 

knowledge. 

Usually, authors define more than one research question or they define one high-level 

research question and then break it down to several more specific and concrete questions. For 

example, in order to characterize software architecture changes by means of a systematic 

review, Williams and Carver (2010) created the following high-level question: Can a broad 

set of characteristics that encompass changes to software architectures be identified using the 

current software engineering body of knowledge and be used to create a comprehensive 

change assessment framework? Additionally, the authors created five more specific questions 

along with accompanying motivation. The specific questions were: 

 What are the attributes of the existing software change classification taxonomies? 

 How are software architecture elements and relationships used when determining the 

effects of a software change? 

 How is the architecture affected by the functional and non-functional changes to the 

system requirements? 

 How is the impact of architecture changes qualitatively assessed? 

 What types of architecture changes can be made to common architectural views? 

Another approach is to create a single research question, and in order to clarify its boundaries, 

several complementary research questions can be created. For example, in order to review the 

reasons for undertaking CMM
6
-based SPI

7
 initiatives in organizations, Staples and Niazi 

(2008) defined the following research question: Why do organizations embark on CMM-based 

SPI initiatives? And, in order to clarify the question they stated several complementary 

questions that were not used during the investigation: 

 What motivates individuals to support the adoption of CMM-based SPI in an 

organization? 

 Why should organizations embark on CMM-based SPI initiatives? 

 

                                                 
6
 CMM is an acronym for Capability Maturity Model. The CMM was first introduced by Humphrey W. S., as a 

model and practical guidance for improving the software development and maintenance process (Humphrey, 

1989). CMM is applicable to other processes as well.  
7
 SPI is an acronym for Software Process Improvement and referes to an approaches that are intended to improve 

the practice of software engineering. One of these approaches is also an CMM-based approach (Staples and 

Niazi, 2008). 
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 What reasons for embarking on CMM-based SPI are the most important to 

organizations? 

 What benefits have organizations received from CMM-based SPI initiatives? 

 How do organizations decide to embark on CMM-based SPI initiatives? 

 What problems do organizations have at the time that they decide to adopt CMM-

based SPI? 

The research questions also depend on the type of review which, according to Noblit and Hare 

(1988), can be integrative or interpretative. According to Dybå and Dingsøyr (2008a) the 

difference between integrative and interpretative reviews is that integrative reviews are 

concerned with combining or summarizing data for the purpose of creating generalizations, 

and interpretative reviews achieve synthesis through combination of concepts identified in the 

primary studies into a higher-order theoretical structure. This division could be aligned with 

the principles of “right questions” mentioned earlier in this chapter.  

According to Petticrew and Roberts (2005) it is a good way to start the question writing 

process by breaking it down into sub-questions. If the review aims to answer a question about 

the effectiveness, the authors suggest using a model called PICOC, defining a population, 

intervention, comparison, outcomes and context. These criteria were accepted in 

Kitchenham‟s guidelines and discussed from the viewpoint of software engineering as 

follows: 

 Population in the terms of SE can assume wide range of roles or groups and even 

areas, from novice testers, experienced software architects to, for example, control 

systems. As the number of undertaken primary studies in the field of SE is relatively 

small (comparing to other fields), it is wise to avoid any restriction on the population. 

 Intervention should define a software methodology/tool/technology/procedure that the 

authors are interested in reviewing and that should address specific issue that is in the 

focus of the research. Basically, intervention is the concept that is going to be 

observed in the context of the planned systematic review. 

 Comparison is the software engineering methodology/tool/technology/procedure with 

which the intervention is being compared. If the comparison technology is the 

conventional or commonly-used technology, it is often referred to as the “control” 

treatment and the control situation must be adequately described. 

 Outcomes should relate to factors of importance to practitioners. All relevant outcomes 

should be specified, without using surrogate measures that may be misleading. 

 Context refers to the context in which the comparison takes place (e.g. academia or 

industry), participants taking part (e.g. practitioners, consultants, students) and the 

tasks being performed (e.g. small scale, large scale). There are many examples of 



 

 

25 

 

unrepresentative experiments, i.e. the experiments that are undertaken in academia 

using students and small scale tasks, and these should be excluded from serious 

systematic reviews. 

Developing a review protocol is considered as the most important activity of the whole 

planning phase as it determines the rest of the SLR process. The output of this activity should 

be a detailed review protocol that specifies the methods that will be used to perform a planned 

systematic review. Creating a protocol prior to systematic review is necessary to reduce the 

possibility of researcher bias. Staples and Niazi (2007) claim that review protocol, as a 

concrete and formal plan of the systematic review, usually insinuates and suggests the 

structure of the final report. 

Protocol should also describe the background context of the research, the specific research 

questions, the planned search strategy, criteria for publication selection, the treatment of 

publication quality assessment, the data extraction plan, the data synthesis plan and a project 

plan. Although usually it is impossible to predict all the elements and obstacles in the whole 

systematic review process, above mentioned parts define it in general. That is why some 

authors, for example Staples and Niazi (2007), argue that a protocol is a subject of constant 

changes through the whole systematic review process. In the guidelines, Kitchenham suggests 

that aspects of the protocol should be piloted during its development. In particular, the search 

terms, selection criteria, and data extraction procedures should be tried out before finalizing 

the protocol.  

Although some elements of the review protocol are already stated, the full list of elements of 

the protocol, defined by (Kitchenham and Charters, 2007), is presented here without any 

changes: 

 Background. The rationale for the survey.  

 The research questions that the review is intended to answer.  

 The search strategy that will be used to search for primary studies including search 

terms and resources to be searched. Resources include digital libraries, specific 

journals, and conference proceedings. An initial mapping study can help determine an 

appropriate strategy.  

 Study selection criteria. Study selection criteria are used to determine which studies 

are included in, or excluded from, a systematic review. It is usually helpful to pilot the 

selection criteria on a subset of primary studies.  

 Study selection procedures. The protocol should describe how the selection criteria 

will be applied e. g. how many assessors will evaluate each prospective primary study, 

and how disagreements among assessors will be resolved.  
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 Study quality assessment checklists and procedures. The researchers should develop 

quality checklists to assess the individual studies. The purpose of the quality 

assessment will guide the development of checklists.  

 Data extraction strategy. This defines how the information required from each 

primary study will be obtained. If the data require manipulation or assumptions and 

inferences to be made, the protocol should specify an appropriate validation process.  

 Synthesis of the extracted data. This defines the synthesis strategy. This should clarify 

whether or not a formal meta-analysis is intended and if so what techniques will be 

used.  

 Dissemination strategy (if not already included in a commissioning document).  

 Project timetable. This should define the review schedule. 

Taking into considerations the discussion from other authors, several stated elements are 

especially important. For example Dybå and Dingsøyr (2008a) argue that explicit inclusion 

and exclusion criteria (which should specify the types of study designs, interventions, 

populations and outcomes that will be included in the review) and a systematic search strategy 

(which should specify the keyword strings and bibliographic sources defined in a such way to 

ensure good topic coverage) are of the most importance. They also state that sometimes it is 

even necessary to perform a search of key journal and conference proceedings by hand to 

identify relevant studies that are not fully indexed. On the other hand, some authors put focus 

on quality assurance elements and on planning, considering them to be critical in order to 

mitigate risks of researcher bias (Kitchenham and Charters, 2007) or in order to support the 

practical conduct of systematic review (Staples and Niazi, 2007). 

In order to make the process of development of review protocol easier, Kitchenham gave an 

example of protocol for a tertiary study review. On the other hand, Biolchini et al. (2005) 

created a Systematic Review Protocol Template which, even based on the first version of the 

Kitchenham‟s guidelines, covers majority of concepts and could be used as a starting point in 

creating a review protocol. Except the mentioned guidelines, protocol was also based on the 

systematic review protocols developed in the medical area and on the example found in 

Protocol for Systematic Review by Mendes E. and Kitchenham B., 2004. (as cited by 

Biolchini). Every concept in Biolchini‟s template is described in detail and a pilot study was 

conducted in order to evaluate the developed protocol template. The results of the study 

showed that usage of template has significantly shortened the time spent on planning against 

the review execution time
8
. 

 

                                                 
8
 More details on mean time spent on systematic review tasks along with simple formula to predict the needed 

time are presented in (Petticrew and Roberts, 2005). 
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The Systematic Review Protocol Template created by (Biolchini et al., 2005) is composed of 

five main parts. The original template is given in Figure 8 without any changes. 

  

Figure 8 - Systematic Review Protocol Template 

(Biolchini et al., 2005) 

Evaluating the review protocol is not compulsory, but is a recommended step in the SLR 

process in order to improve its quality as the protocol is a critical element of any systematic 

review. The researchers must take into consideration several aspects in order to agree on a 

procedure for evaluating the protocol. Important aspects are purpose of the research, desired 

quality, time, financial construction etc. With regards to these, there are several methods of 

evaluating a review protocol which can be used: 

 author‟s review (not recommended) 

 peer review 

 review by supervisor (appropriate for PhD students) 

 review by external experts (the best option) 

 test of protocol execution 

Review by external experts is probably the best option, but it usually depends on the financial 

construction of the review project. In this case, the group of external experts should be asked 

to review the protocol, and the same group can be asked to review the final report. 

Test of protocol execution is a good and widely used alternative method. In this case, the 

review of protocol is executed by performing a full cycle of systematic review (following the 



 

 

28 

 

protocol) but on a reduced set of selected sources. If the gained results are not suitable, or if 

any phase of the review reveals unexpected problems, the new version of the protocol must be 

created. 

2.1.2.2. Conducting the review 

According to Kitchenham‟s guidelines, conducting the review phase consists of five 

obligatory stages. This phase takes most of the researcher‟s time, and although all five stages 

are important, identification of research and selection of primary studies will determine the 

rest of reviewing process. In this phase the predefined protocol should be followed and the 

phase should result in data extracted, summarized and ready for dissemination. 

The summary of each stage is presented below and is based on guidelines presented in 

(Kitchenham and Charters, 2007) and on additional discussions from other authors which are 

cited in the text. 

Identification of research, as a first step in conducting a review, it results in a list of entire 

population of publications relevant to the research questions and obtained by performing a 

search strategy. 

The search strategy should be the same as stated in the review protocol, and it should be 

stated in such a manner that it allows the study to be replicable and open to external review. If 

a researcher is not experienced in a creating a search strategy, then he or she should ask for 

help (for example from librarian). It is also good to break down the research question and to 

identify initial search strings according to population, intervention, comparison, outcomes, 

context and study design. On top of that, it is important to create a list of synonyms, 

abbreviations and alternative spellings. Apart from results gained from digital libraries, other 

sources such as reference lists from relevant primary studies, journals, grey literature (e.g. 

technical reports), research registers and the Internet should also be searched (sometimes 

manually). 

The process of definition of search strategy is usually iterative and should benefit from 

preliminary searches, trial searches and consultations with experts in the field. 

In order to address publication bias (the problem that positive results are more likely to be 

published than negative) and not to allow it to become a systematic bias, Kitchenham suggests 

that it is important to take appropriate steps. For example scanning grey literature, conference 

proceedings and contacting domain experts could result in addition of studies with “negative” 

results. 

As the number of identified primary studies may be extensive (some authors, for example 

Unterkalmsteiner et al. (2012) have identified more than 10.800 publications), the appropriate 
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reference manager software should be used to keep a record on all of them along with the 

links to the potentially useful full papers. 

Process of performing a SLR must be transparent and replicable. This means that the whole 

process should be properly documented: the review and search must be documented, and 

unfiltered search results should be saved and retained for possible reanalysis. Many of these 

documents will not be presented in the final report but can also be published and a reference 

to them can be given in the final report. Kitchenham proposed the procedures for 

documenting the search process according to data source as presented in Table 1. 

Table 1 - Procedures for documenting the search process 

Data source Documentation 

Digital Library Name of database 

Search strategy for the database 

Date of Search 

Years covered by search 

Journal hand Searches Name of journal 

Years searched 

Any issues not searched 

Conference proceedings Title of proceedings 

Name of conference (if different) 

Title translation (if necessary) 

Journal name (if published as part of a journal) 

Efforts to identify 

unpublished studies 

Research groups and researches contacted (names and contact details) 

Research web sites searched (date and URL) 

Other sources Date of search 

URL 

Any specific conditions pertaining to the search. 

Source: (Kitchenham and Charters, 2007) 

 

In an attempt to perform an exhaustive search Brereton et al. (2007) identified seven 

electronic sources as most relevant sources to Software Engineers, and they also discuss about 

considering the use of additional sources (*) from publishers or bibliographical databases: 

 IEEExplore 

 ACM Digital library 

 Google scholar 

 Citeseer library 

 INSPEC 

 ScienceDirect 

 EI Compendex 

 *SpringerLink 

 *Web of Science 

 *Scopus 

Unfortunately, the search of many relevant journals can only be performed manually, but is 

also an important part of the search process. The usual way to identify relevant journals is to 

read papers reference lists or by searching the Internet. Several authors also tried to identify a 

list of relevant journals and conferences in the field of software engineering. For example, 
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combining the recommendations from (Hannay et al., 2007; Kitchenham and Charters, 2007), 

the list of relevant journals and conferences (ordered alphabetically) could be: 

 ACM Transactions on Software Engineering Methodology (TOSEM) 

 ACM/IEEE International Symposium on Empirical Software Engineering and 

Measurement (ESEM) 
9
 

 Empirical Software Engineering (EMSE) 

 Evaluation and Assessment in Software Engineering (EASE) 

 IEEE Computer 

 IEEE Software 

 IEEE Transaction on Software Engineering (TSE) 

 Information and Software Technology (IST) 

 International Conference on Software Engineering (ICSE) 

 Journal of Software: Evolution and Process (JSEP) 
10

 

 Journal of Software: Practice and Experience (SP&E) 

 Journal of Systems and Software (JSS) 

Selection of primary studies is performed on all identified (potentially relevant) studies by 

applying an inclusion and exclusion criteria in order to assess their actual relevance. The 

selection criteria are also decided during the protocol definition but if necessary, they can be 

refined during this process. The identification of research will usually end up with a great 

number of articles that do not answer to the research question (because the keywords may 

have different meanings or may be used in the studies that are not in the focus of SLR 

research topic). The inclusion criteria will define which of these studies to include in the set 

of relevant ones, and the exclusion criteria can be applied on the already selected studies in 

order to identify those that do not meet additional conditions, or on the initial list of studies in 

order to remove irrelevant ones. Inclusion and exclusion criteria should be based on the 

research question, but could be defined based on study types. For example, only quantitative 

studies will be taken into consideration. 

Study selection is a multistage and iterative process. If the number of initially obtained studies 

is large, the authors usually start with simple criteria and, for example, in the first iteration 

include/exclude studies only by reading the title. In the second iteration the abstract is read 

 

                                                 
9
 ESEM symposium was first held in 2007 as a merge of IEEE International Symposium on Empirical Software 

Engineering (ISESE) and IEEE International Symposium on Software Metrics (METRICS), so if searching for 

papers prior to 2007 it is wise to check issues of ISESE and METRICS. 
10

 JSEP journal was born from two parent journals, Journal of Software Maintenance and Evolution: Research 

and Practice and Software Process: Improvement and Practice, and the second one should be searched 

separatelly as it was issued until 2009. Issues of the first journal are available on the current JSEP home page. 
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and finally, full papers are read. Two study selection processes are shown in Figure 9 

(Unterkalmsteiner et al., 2012) and Figure 10 (Dybå and Dingsøyr, 2008a). 

However, some authors advocate a more strict approach. For example, Brereton et al. (2007) 

advise the researchers to exclude studies by means of reading the title and the abstract only if 

there are no doubts that study can be excluded. Otherwise, they point out that they have learnt 

from their own experience that “the standard of IT and software engineering abstract is too 

poor to rely on when selecting primary studies”, and they advise reviewing the conclusions as 

well. Of course, final set of selected papers should be reviewed in detail. 

 

 

Figure 9 - Example of study selection process (a) 

 

Figure 10 - Example of study selection process (b) 

Kitchenham is familiar with general instructions on keeping the list of excluded papers, but 

she suggests that totally irrelevant papers should be excluded first (for example, papers that 

have nothing to do with Software Engineering) and then, while analyzing other papers, the list 

of exclusions should be kept updated along with the reasons of exclusion. 

In order to increase the reliability of inclusion decisions it is possible to perform the same 

process by two or more researches. The Cohen Kappa coefficient (Cohen, 1968) can be used 

to measure the level of agreement between the researches
11

. If there is a disagreement then it 

should be discussed and resolved, but the initial value of Kappa statistics should be preserved 

in the final report and used for discussion and conclusions. Alternatively, using test-retest 

approach latter researches can evaluate a random sample of the primary studies. 

 

                                                 
11

 The Cohen Kappa coefficient (Cohen, 1968) is statistical measure of agreement between two observers rating 

qualitative items. The simple Kappa coefficient (from 1960) is calculated for nominal scales and it treats all 

disagreements between raters equally. But, the Weightet kappa, κw, provides the means of taking into 

consideration the ratio-scaled degrees of disagreement between raters. Theoretical Kappa maximum of 1.0 

means perfect agreement between raters. 
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On the other hand, a PhD student can use one of the following methods to increase the 

reliability of inclusion decisions: 

 consultation with advisor 

 consultation with expert panel or other researcher 

 re-evaluation of a random sample of the primary studies by the test-retest approach 

 re-evaluation of a random sample by other researcher while publishing a paper on the 

subject 

Advisors usually help students to choose an appropriate method and if decided so, the advisor 

can review the inclusion decisions or help the student find external experts or perform other 

stated methods. 

Study quality assessment is the second most important stage in this phase. The idea of this 

process is to analyze and assess the quality of each primarily selected study to be finally 

included in data extraction and reporting process. In general, the aim of assessing the quality 

is to make sure that the study findings are relevant and unbiased. However, this is not a simple 

process as, according to Kitchenham, there is no agreed definition of study “quality”. Some 

authors, for example Centre for Reviews and Dissemination (2009), discuss that the study 

quality assessment procedures mainly depend on the type of the study. For example, in health 

sciences, the quality assessment of a study that was conducted by using a randomized 

controlled trials method cannot be the same as the assessment of quasi-experimental studies 

or observational studies. The mentioned guidelines also state that the following elements 

should be assessed regardless of the study type: 

 appropriateness of study design to the research objective 

 risk of bias 

 choice of outcome measure 

 statistical issues 

 quality of reporting and intervention  

 generalizability 

Mentioned elements do not have the same importance in every case, but the authors usually 

agree that the risk of bias (also known as internal validity) is pernicious as it can easily 

obscure intervention effects. Generalizability (also known as applicability or external validity) 

considers the extent to which a study is generalizable and how closely a study reflects a 

practice (Centre for Reviews and Dissemination, University of York, 2009). Additionally, 

Kitchenham states that quality assessment should be used to: 

 provide more detailed inclusion/exclusion criteria 

 provide explanation for differences in study results 

 weigh the importance of individual studies for overall synthesis 
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 guide the interpretation and further research 

In this process, Kitchenham also finds that three concepts are important and most closely 

related to the study quality. She defines them as follows: 

Table 2 - Quality concept definitions  

Term Synonyms Definition 

Bias Systematic error A tendency to produce results that depart systematically 

from the „true‟ results. Unbiased results are internally valid. 

Internal validity Validity The extent to which the design and conduct of the study are 

likely to prevent systematic error. Internal validity is a 

prerequisite for external validity. 

External validity Generalizability, 

Applicability 

The extent to which the effects observed in the study are 

applicable outside of the study. 

Source: (Kitchenham and Charters, 2007) 

 

The most common tool (quality instrument) used to assess the quality of studies is checklist. 

Usage of checklists ensures that all assessed studies are evaluated critically and in a 

standardized way. According to Centre for Reviews and Dissemination (2009) there are many 

different checklists and scales already available, and they can be used or adapted to meet the 

requirements of the review or to cover the bias and validity in the focus of specific research. 

In literature several types of biases are recognized that should be addressed in a checklist. 

Kitchenham adopted the division and adapted the definitions and protection mechanisms in 

order to address software engineering rather than medicine. The identified types of biases 

along with definition and protection mechanisms are as follows: 

Table 3 - Types of Bias 

Type Synonyms Definition Protection mechanism 

Selection bias Allocation 

bias 

Systematic differences between 

comparison groups with respect to 

treatment. 

Randomization of a large number 

of subjects with concealment of 

the allocation method (e.g. 

allocation by computer program 

not experimenter choice). 

Performance 

bias 

 Systematic difference is the 

conduct of comparison groups 

apart from the treatment being 

evaluated. 

Replication of the studies using 

different experimenters.  

Use of experimenters with no 

personal interest in either 

treatment. 

Measurement 

bias 

Detection 

bias 

Systematic difference between the 

groups in how outcomes are 

ascertained. 

Blinding outcome assessors to the 

treatments is sometimes possible. 

Attrition bias Exclusion 

bias 

Systematic differences between 

comparison groups in terms of 

withdrawals or exclusions of 

participants from the study sample. 

Reporting of the reasons for all 

withdrawals. Sensitivity analysis 

including all excluded 

participants. 

Source: (Kitchenham and Charters, 2007) 
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In addition to these, Higgins and Green (2011) emphasize reporting bias and also recognize 

other biases. By reporting bias they discuss systematic differences between reported and 

unreported findings, and by other biases they presume other sources of bias that are relevant 

in certain circumstances (for example language etc.). 

According to Kitchenham, checklist should also include consideration of biases and validity 

problems that can occur at the different stages of the study (design, conduct, analysis and 

conclusions). Reviewing available papers on the subject of checklists creation for quantitative 

studies, and noticing that authors focus on different set of questions, Kitchenham and Charters 

(2007) created an accumulated list of 59 questions and organized them with respect to study 

stage and study type. These questions cover four mentioned stages and can be used for 

quantitative empirical studies, correlation (observational) studies, surveys and experiments. 

The same process was conducted in qualitative studies, and resulted in 18 questions that could 

be used. These example checklists, which we highly recommend, should not be used literally, 

but rather as a pool of questions. The appropriate questions could be taken from the pool for 

each specific study. 

The review protocol should define quality instruments as well as specify how the quality data 

are to be used. In general, there are two rather different but not mutually exclusive ways: (1) 

to assist primary study selection and (2) to assist data analysis and synthesis. 

There are several limitations the authors should be aware of when attempting to perform a 

quality analysis of different studies. First primary studies could be poorly reported, but the 

lack of report does not necessarily mean a leak in the procedure. According to Petticrew and 

Roberts (2005) the quality checklists should address methodological quality and not reporting 

quality. If reporting quality is poor, the researchers should attempt to obtain more information 

from the authors of the study. Additionally, Kitchenham argues that a limitation could be a 

limited evidence of the relationships between factors that are thought to affect validity and the 

actual study outcomes, and that sometimes it is not possible to correct the statistical analysis 

as there is usually no access to the original data. 

Finally, authors usually point out all undertaken quality assessment procedures and measures, 

but only to the level of detail that is suitable for the target publication. For further reading, we 

recommend some simple examples of quality assessment of SE studies presented in (Dybå 

and Dingsøyr, 2008a), (B Kitchenham et al., 2009), (Barbara Kitchenham et al., 2009) or 

(Kitchenham et al., 2010) and especially (Unterkalmsteiner et al., 2012). 

Data extraction and monitoring, as a next step in SLR process, aims to accurately and 

without bias record the appropriate information from selected papers. Researchers usually, 

during the protocol definition phase, define extraction forms which are used in this activity.  
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The design of data extraction forms is not a trivial task while forms should be designed to 

collect all information needed to address the review questions and the study quality criteria. 

As the quality criteria can be used to identify inclusion/exclusion criteria or/and as a part of 

the data analysis, in the first case, the data extraction forms should be separated, and in the 

second case, a single form can be used (Kitchenham and Charters, 2007). In any case, the 

same authors recommend that the forms should be piloted during the protocol definition 

phase, and all researchers who will use the forms should take part in the pilot study in order to 

assess completeness of the forms along with possible technical issues. 

Basically, as mentioned before, data extraction forms should contain questions needed to 

answer the review questions and quality evaluation criteria. There is no firm guidance on how 

to define these questions as they are different for every specific SLR process. On the other 

hand, there are several elements that are considered to be common to all forms in order to 

provide standard information. According to Kitchenham these elements are: 

 name of the reviewer 

 date of data extraction 

 title, authors, journal, publications details 

 space for additional notes 

Combining the examples presented in (Kitchenham and Charters, 2007) and (Jørgensen, 

2007) we can conclude that in general, data extraction form could include parts (sections) as 

presented in Table 4. 

Table 4 - Data collection form template 

Data item Value Additional notes 

Extraction information 

Data extractor   

Data checker   

Date of extraction   

   

General study information 

Study identifier   

Title   

Publication details  Including authors, journal etc. 

   

Questions to answer review questions 

Question 1  These questions could aim to obtain 

numerical or descriptive data. Each 

review question could be covered by 

more questions in data extraction form. 

Question 2   

Question n 
 

   

Questions to assess study quality 

Question 1  These questions should be related ONLY 

to data analysis. Questions related to 

inclusion/exclusion criteria should be 

Question 2   

Question m  
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stated on separate form. 

   

Data summary 

Question 1  These questions could aim to collect 

summary information from the observed 

study. 

Question 2   

Question p  

   

 

It is important to notice that the column Additional notes was used to present additional info 

on template elements, but it should also be used in extraction forms to present additional info 

on the extracted data. 

Similarly as in the process of applying inclusion and exclusion criteria, there are different 

methods that could be performed to extract the data and to fill the extraction forms. In 

guidelines Kitchenham recommends that data extraction should be performed by two or more 

researchers, but as stated in (B Kitchenham et al., 2009), in practice she finds that it is useful 

that one researcher extracts the data and the other one checks the extraction. If several 

researchers are performing a data extraction, the results should be compared, aligned and if 

necessary discussed. However, if researchers are performing extraction on different sets of 

primary studies, it is important to ensure that it is done in a consistent manner by employing 

some cross-checking activities. Additionally, Staples and Niazi (2007) recommend that the 

whole process should be done in an iterative manner. PhD students will usually need some 

help from advisor or other experts to randomly check their extracted data or they will perform 

a re-test of a part of the primary studies. 

Incidentally, it is important not to include multiple studies with the same data in a systematic 

review in order to avoid results with bias. This could be a serious threat if different sets of 

publications are analyzed by different researchers. Conversely, it is also important to contact 

the authors if it is identified that some data are missing or were poorly reported. 

Finally, the authors should consider using electronic forms as they proved themselves useful 

in subsequent data analysis, especially if the extracted data is a set of numerical values and if 

statistical or meta-analysis has been performed. 

An interesting example of data extraction process can be found in (Unterkalmsteiner et al., 

2012), an example of filled extraction forms can be found in (Jørgensen, 2007) and (Dybå and 

Dingsøyr, 2008b) and an example of data extraction forms with a short review on process can 

be found in almost all papers mentioned in this chapter. 

Data synthesis is the final step in the review conduction phase. During this activity extracted 

data are collected and summarized. In general, there are two types of data synthesis: 

descriptive (narrative) synthesis and quantitative synthesis (Centre for Reviews and 



 

 

37 

 

Dissemination, University of York, 2009). In order to draw reliable conclusions, synthesis 

should consider the strength of evidence, explore consistency and discuss inconsistencies. 

The synthesis approach should be defined by the protocol and is determined by the type of 

research questions, but also by the type of available studies and by the quality of data. For 

example, it is not wise to perform a statistical analysis on the numerical data if the 

publications used are not randomized or do not cover the whole population, or if there are 

studies with poor quality and with biased results. In addition, according to CRD‟s guidance 

(2009), narrative and quantitative approaches are not mutually exclusive, and according to 

(Brereton et al. (2007) “software engineering systematic reviews are likely to be qualitative in 

nature”. 

Regardless of the synthesis type, the synthesis should begin with a creation of a summary of 

included studies. The studies included in the review are usually presented in a table which 

covers all their important details (such as type, interventions, number and characteristics of 

participants, outcomes etc.). In the same (or in another) table, the elements of study quality 

and risk of bias could also be presented. Additionally, this descriptive process should be 

explicit, rigorous and should help to conclude if the studies are similar and reliable to 

synthesize (Centre for Reviews and Dissemination, University of York, 2009). Kitchenham 

and Charters (2007) also add that the extracted data should be tabulated in a manner that is 

consistent with the review questions and structured to highlight similarities and differences 

between study outcomes. 

Synthetizing results of qualitative studies means an integration of materials written in natural 

language, with significant possibility of having to understand different meanings of the same 

concepts as they were used by different researchers (Kitchenham and Charters, 2007). In 

(Noblit and Hare, 1988) the authors propose three approaches to synthesis of qualitative 

studies: 

 Reciprocal transaction – translation of cases of studies with similar objective into each 

of other cases in order to create an additive summary.  

 Refutational synthesis – translation of studies along with corresponding refutational 

studies in order to analyze the refutations in detail. 

 Line of argument synthesis – first, the individual studies which focus the part of some 

problem are analyzed and then the set is analyzed as a whole in order to get broader 

conclusion on the addressed problem. 

According to Petticrew and Roberts (2005) the narrative synthesis can be performed in  

several ways, but the most common one is to separate it into three distinct steps: (1) 

organizing the description into logical categories, (2) analyzing the findings within each of 

the categories and (3) synthesizing the findings across all included studies. The mentioned 
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authors argue that there is no firm guidance on how to organize the categories and that this 

could be done according to: intervention, population, design, outcomes etc. The second step 

involves a narrative description of the findings for each study. This description may vary in 

length and in the level of detail. Finally, the authors discuss the cross-study synthesis and state 

that it usually starts with a simple description of the uncovered information, then the summary 

information on the effect of mediating variables (if any) can be presented, and at the end the 

results of the individual studies are described. The main goal of cross-study synthesis is to 

produce an overall summary of study findings taking into considerations the quality and other 

variations. 

Additionally, same authors describe several other synthesis methods which could be used: 

 Best evidence synthesis – “combines the meta-analytic approach of extracting 

quantitative information in a common standard format from each study with a 

systematic approach to the assessment of study quality and study relevance”. 

 Vote counting – the easiest approach which simply compares the number of positive 

and negative results on specific issue. This approach is usually inappropriate to use as 

it has many disadvantages. 

 Cross-design synthesis – in theory combines the complementary strengths of 

experimental and non-experimental research – for example by adjusting the results of 

random controlled trials (RCTs) by standardizing RCT results to the distributions 

obtained from database analyses. 

An example of applying a narrative synthesis is presented in (Centre for Reviews and 

Dissemination, University of York, 2009) and can be seen in Figure 11. 

Quantitative data (as well as qualitative) should be presented in tabular form. The data must 

be presented in a comparable way, and according to Kitchenham, it should include: 

 sample size for each intervention, 

 estimated effect size for intervention with standard error for each effect, 

 difference between the mean values for each intervention and the confidence interval 

for the difference, 

 units used for measuring the effect. 

Different effect measures for different types of outcome are proposed in literature. 

Kitchenham refers to medical literature and she presents binary outcomes (which can be 

measured by effect measures like odds, risk, odds ratio (OR), relative risk (RR), absolute risk 

reduction (ARR)) and continuous data (which can be measured by mean difference, weighted 

mean difference (WMD) or standardized mean difference (SMD)). 
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Apart from narrative description of results, qualitative results are usually presented and 

summarized in a table. Even though “tabulating the data is a useful means of aggregation, it is 

necessary to explain how the aggregated data actually answers the research questions” 

(Brereton et al., 2007). On the other hand, quantitative results are usually presented by forest 

plot (which presents the means and variance of the difference for each study) (Kitchenham 

and Charters, 2007) and, of course, additionally narratively discussed and related to the 

research questions. 

 

 

Figure 11 - Example of applying narrative synthesis  

(Centre for Reviews and Dissemination, University of York, 2009) 

 

When systematic literature review includes quantitative and qualitative studies, Kitchenham 

suggests that researchers should “synthetize the quantitative and qualitative studies separately, 

and then attempt to integrate the results by investigating whether the qualitative results can 

help explain the quantitative results”. When there is a considerable difference in the quality of 

studies, Kitchenham suggests the sensitivity analysis to be performed in order to determine if 

the low quality publications have significant impact on synthesis results. Sensitivity analysis 

could also be performed on different subsets of primary studies to determine the robustness of 

the results.  

Examples of different methods and approaches of presentation of systematized data can be 

found in Chapter 1.3.5. of (Centre for Reviews and Dissemination, University of York, 2009). 
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2.1.2.3. Reporting the review 

The aim of the final phase of the systematic literature review process is to write the results of 

the review in a form suitable to dissemination channel and the target audience or parties. The 

results are usually written in a form of a systematic review report. The summary of possible 

activities is presented below and is based on the guidelines presented in (Kitchenham and 

Charters, 2007) and on additional discussions from other authors which are cited in the text. 

Specifying dissemination strategy and mechanisms is usually performed during the project 

commissioning activities, or if there is no commissioning phase, then dissemination strategy 

and mechanisms should be defined in the review protocol. Kitchenham argues that apart from 

disseminating the results in academic journals and conferences, scientists should consider 

performing other dissemination activities that might include direct communication with 

affected bodies, publishing the results on web pages, posters or practitioner-oriented 

magazines etc. 

If the results are to be published in a conference or journal, or any other publication with 

restricted number of pages, then the reference to a document (technical report, PhD thesis or 

similar) that contains all information should be provided. 

Formatting the main report is the most important activity of this phase. Kitchenham adopted 

the suggested structure of systematic review report given in CRD‟s guidelines from 2001. 

Although the original guidelines (from 2001) are updated in (Centre for Reviews and 

Dissemination, University of York, 2009), the version presented by Kitchenham is sufficient 

in the field of software engineering. She also distinguishes reports which are to be published 

in technical reports and journals from the reports which are to be published in a PhD 

dissertation. The report structure proposed by Kitchenham is presented in Table 5 and 

elements marked with the (*) are usually used only in publications and not in PhD 

dissertations. 

Table 5 - Structure and Contents of Reports of Systematic Reviews 

Section Subsection Scope Comments 

Title*   The title should be short but 

informative. It should be based on the 

question being asked. In journal papers, 

it should indicate that the study is a 

systematic review. 

Authorship*   When research is done collaboratively, 

criteria for determining both who 

should be credited as an author, and the 

order of author‟s names should be 

defined in advance. The contribution of 

workers not credited as authors should 

be noted in the Acknowledgements 

section. 

Executive Context The importance of the A structured summary or abstract 
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summary or 

Structured 

abstract* 

research questions addressed 

by the review. 

allows readers to assess quickly the 

relevance, quality and generality of a 

systematic review. Objectives The questions addressed by 

the systematic review. 

Methods Data Sources, Study selection, 

Quality Assessment and Data 

extraction. 

Results Main finding including any 

meta-analysis results and 

sensitivity analyses. 

Conclusions Implications for practice and 

future research. 

Background  Justification of the need for 

the review. 

Summary of previous reviews. 

Description of the software engineering 

technique being investigated and its 

potential importance. 

Review 

questions 

 Each review question should 

be specified. 

Identify primary and secondary review 

questions. Note this section may be 

included in the background section. 

Review 

methods 

Data sources 

and search  

strategy 

 This should be based on the research 

protocol. Any changes to the original 

protocol should be reported. 

Study selection  

Study quality 

assessment 

 

Data extraction  

Data synthesis  

Included and 

excluded 

studies 

 Inclusion and exclusion 

criteria.  

List of excluded studies with 

rationale for exclusion.   

Study inclusion and exclusion criteria 

can sometimes best be represented as a 

flow diagram because studies will be 

excluded at different stages in the 

review for different reasons. 

Results Findings Description of primary 

studies.  

Results of any quantitative 

summaries.  

Details of any meta-analysis. 

Non-quantitative summaries should be 

provided to summarize each of the 

studies and presented in tabular form. 

Quantitative summary results should be 

presented in tables and graphs. 

Sensitivity 

analysis 

 

Discussion Principal 

findings 

 These must correspond to the findings 

discussed in the results section. 

Strengths and 

Weaknesses  

Strengths and weaknesses of 

the evidence included in the 

review.  

Relation to other reviews, 

particularly considering any 

differences in quality and 

results. 

A discussion of the validity of the 

evidence considering bias in the 

systematic review allows a reader to 

assess the reliance that may be placed 

on the collected evidence. 

Meaning of 

findings 

Direction and magnitude of 

effect observed in summarized 

studies.  

Applicability 

(generalizability) of the 

findings. 

Make clear to what extent the results 

imply causality by discussing the level 

of evidence. 

Discuss all benefits, adverse effects 

and risks. 

Discuss variations in effects and their 

reasons (for example are the treatment 

effects larger on larger projects). 

Conclusions Recommend-

actions 

Practical implications for 

software development.  

What are the implications of the results 

for practitioners? 

Unanswered questions and 

implications for future 
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Evaluating the report is the final step in the systematic literature review process. This activity 

depends mainly on the type of the publication. Papers submitted to a scientific conference or 

scientific journal are reviewed by independent peer reviewers. Doctoral dissertations are 

reviewed by supervisors and by the committee during the examination process. Finally, if the 

publication is a technical review, it is also advisable to subject the materials to an independent 

evaluation. In this case, this final review could be done by the same expert panel that was 

created to review the research protocol. The results of the review, if negative, can require 

repetition of one or more phases in the systematic literature review process. 

2.1.3. Advantages and disadvantages of SLR 

As every other method and approach, SLR also has several advantages and disadvantages. 

Kitchenham identified three main groups of advantages of using systematic literature review. 

(1) The methodology is well-defined; (2) it enables researchers to provide the information 

available in the wide range of sources; (3) and in the case of quantitative data, it is possible to 

perform some meta-analysis and to extract information that single study cannot provide 

(Kitchenham and Charters, 2007). Additionally, if compared to unstructured methods, like 

simple literature review, the SLR has many advantages (described in the SLR process) that 

make the results of such analysis more reliable and more likely to be unbiased.  

On the other hand, a major disadvantage of this approach is that it requires much more effort 

and time in comparison to simple literature review and this is exacerbated by a large number 

of review points: search term pilot reviews, protocol reviews, initial selection reviews, final 

selection reviews, data extraction reviews, and data analysis reviews (Staples and Niazi, 

2007). Kitchenham also adds that the usage of meta-analysis could be a disadvantage as it can 

detect small and unimportant biases. Biolchini discusses that authors are supposed to perform 

complex activities and understand (sometimes unknown) specific concepts and terms. This is 

why he states that a conduction of SLR in SE is much harder than in other disciplines, for 

example medicine (Biolchini et al., 2005). Same authors point out that the overall process is 
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difficult to conduct (in order to help other researchers they prepared a systematic review 

conduction process and protocol template), especially the activities of protocol development, 

searching and evaluating studies. 

Additionally, execution of this method depends on solid literature coverage of the focused 

phenomenon, and subsequently it cannot be used to explore new, revolutionary, phenomena 

which are not well covered in literature. 

Finally, even experienced authors are likely to change the review protocol during the 

implementation phase, and that brings the problem of documenting the whole process. 

2.1.4. Light SLR 

The text in this chapter (Chapter 2.1) is based on the guidelines presented in (Kitchenham and 

Charters, 2007) and expanded with the reported feedback of the researchers, mainly from the 

field of software engineering. As the guidelines‟ authors themselves also point out, both, the 

guidelines and therefore this text too, are mainly created to cover the whole process of 

systematic literature review which is supposed to be undertaken by a large group of 

researchers. Although the notes for single researchers (like PhD students) throughout the text 

have been presented, it is important to point out that not all mentioned activities are 

compulsory. Kitchenham suggests that the most important steps (as light SLR) for PhD 

students to undertake are: 

 Developing a protocol 

 Defining the research question(s). 

 Specifying what will be done to address the problem of a single researcher applying 

inclusion/exclusion criteria and undertaking all the data extraction.  

 Defining the search strategy. 

 Defining the data to be extracted from each primary study including quality data. 

 Maintaining lists of included and excluded studies. 

 Using the data synthesis guidelines. 

 Using the reporting guidelines. 

Specific recommendations are given to PhD students throughout the whole chapter while 

discussing specific activities. The most important for PhD students is to understand that the 

process should be performed with the restrictions that are normal while performing a PhD 

research, but research validity and rigor should not be neglected and should be achieved by 

employing available methods and techniques in order to get unbiased results. These include 

the adjustment of dissemination strategy, proper review questions that are from interest to the 

student, employment of supervisor to review the protocol, consultations with supervisors or 

other researcher to increase the reliability of inclusion decisions, implementation of test-retest 
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approach or asking the advisor or other researcher to randomly check the extracted data and 

structure the report according remarks given in the guidelines. 

2.1.5. Conclusions on SLR 

The process of systematic literature review is not easy to perform, but the general opinion of 

the authors is that this method is useful and could be used to decrease the biases and to 

increase the review quality. Authors also note that the usage of this method has significant 

obstacles in the field of software engineering in comparison to other fields, for example, the 

field of health sciences. The main differences are the mainly qualitative studies to be reviewed 

in SE, the lack of centralized index of existing systematic reviews and the overall literature 

searching problem raised by many different sources, with different and questionable quality. 

In order to overcome the mentioned obstacles, the authors who performed SLR in the field of 

SE suggest that the scope of the review should be limited by choosing clear and narrow 

research questions and that the whole process should be in advance well defined by putting a 

considerable effort in creation of feasible review protocol. 

As SLR method still emerges in the field of software engineering, the SLR authors in the field 

of SE welcome the idea of publishing the replications of existing systematic reviews, along 

with the idea of creation of a centralized index of the existing literature reviews. 

2.2. Planning the review 

The previous chapter defining the research method (chapter 2.1) covers the whole SLR 

process as defined by Kitchenham and Charters (2007), including the phases of planning the 

review, conducting the review and reporting the review along with summarized and 

aggregated findings, observations and recommendations from other influential authors in the 

SE field. 

The following chapters will report the whole process of performing the Systematic Literature 

Review in the scope of this research. Firstly, following the mentioned guidelines, the phase of 

planning the review will be presented in this chapter (chapter 2.2), while the chapter 2.3 will 

give the information on the phase of performing the review and finding the suitable 

methodology and chapter 2.4 brings the conclusion of this process and justifies the decision 

on the methodology that was used in this research. 
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2.2.1. Defining the basic concepts 

Systems development methodologies (SDM) are of an academic interest since the early 1980s 

when the IFIP WG8.1
12

 organized three conferences named Comparative Review of 

Information Systems Design Methodologies (CRIS). The first conference (Olle et al., 1982) 

aimed to present and compare spectrum of methodologies. The second conference (Olle et al., 

1983) had a goal to analyze the features of the methodologies and the third conference (Olle 

et al., 1986) put the focus on the evaluation of the methodologies. These conferences also 

resulted in the definition and distinction of basic concepts and terms like methodology, 

method, tool, approach, and development cycle. However, the used concept of “methodology” 

was limited only to the design stage of the system development life-cycle (Gasson, 1995).  

Since these origins, different definitions for the term “software development methodology” 

which cover full development life-cycle are created. For example, software development 

methodologies could be defined as (a) “reference model for the development of software 

describing the various statuses of the corresponding software projects” (Dyck and 

Majchrzak, 2012), as (b) “framework for applying software engineering practices with the 

specific aim of providing the necessary means for timely and orderly execution of the various 

finer-grained techniques and methods for developing software-intensive systems” (Ramsin 

and Paige, 2008), as (c) “recommended collection of phases, procedures, rules, techniques, 

tools, documentation, management, and training used to develop a system” (Avison and 

Fitzgerald, 2003) or (d) “software development process by which user needs are translated 

into a software product by translating user needs into software requirements, transforming 

the software requirements into design, implementing the design in code, testing the code, and 

sometimes, installing and checking out the software for operational use” (IEEE Computer 

Society, 1991) or as (e) an organized and systematic approach to developing software for a 

target computer (SWEBOK V3 - Chapter 10, 2012). 

Consequently, SDM could be observed as a noun and as a verb. As a noun, “software 

development methodology is a framework that is used to structure, plan, and control the 

process of developing an information system” – this includes the pre-definition of specific 

deliverables and artifacts that are created and completed by a project team to develop or 

maintain an application (Centers for Medicare and Medicaid Services (CMS), Office of 

information Services, 2008). As a verb, the software development methodology could be 

considered as an approach used by organizations and project teams to apply the software 

 

                                                 
12

 IFIP WG8.1 – Working group of the International Federation for Information Processing on Design and 

Evaluation of Information Systems. The group is part of IFIP's Technical Committee on Information Systems 

(TC8). More information is available on the group‟s website: http://research.idi.ntnu.no/ifip-wg81/. 

http://research.idi.ntnu.no/ifip-wg81/
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development methodology framework. Every software development methodology approach 

acts as a basis for applying specific frameworks to develop and maintain software. The terms 

Systems Development Life Cycle (SDLC) and Software Development Process are used to 

represent the meaning of SDM as a verb. According to Elliott (2004) the SDLC can be 

considered to be the oldest formalized methodology framework
13

 for building information 

systems with the idea of “pursuing the development of information systems in a very 

deliberate, structured and methodical way, requiring each stage of the life cycle from 

inception of the idea to delivery of the final system, to be carried out rigidly and 

sequentially”. 

2.2.1.1. Development approaches 

Although SDLC is defined as framework, with time and to manage the complexity, a number 

of SDLC models or methodologies as approaches have been created. The CMS (2008) 

enumerates several software development approaches which have been used since the origin 

of information technology. Arguably, this division could be considered as division which 

takes into consideration the development cycle, the phases and their order and according to 

this viewpoint, all approaches could be stated in one of the three main groups:  

 Phase oriented approach – developed at the end of 1960s and the beginning of 1970s 

– states that each development phase is performed only once during the whole 

development project. In each phase, all required output results are finished and 

checked. The verification (in accordance with specification) and validation (by the 

user) on the results are performed.  

 Partially incremental approach - defines approach in which only several phases are 

repeated incrementally, but initial set of phases is performed only once. In this model, 

initial phases including requirements specification are usually not repeated, and the 

design and subsequent phases are repeated. Other variants of the model exist (e.g. 

Incremental implementation only etc.). 

 Incremental approach – states that the overall software functionality should be 

produced and delivered in small increments. Attention is focused only on essential 

features and additional functionality is added only if and when needed. The output 

models evolve and they are improved in every increment (iteration). 

In comparison, by taking into consideration the basic model to be used to define the product, 

the development approaches could be: 

 

                                                 
13

 Initially it was a framework, but during the time the term changed meaning to specify approach! 
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 Process oriented approach (functional approach) – defines that the specification of 

system/software functionality is most important. Using process modeling techniques, 

it is possible to formally define process hierarchy, process inner logic, inter processes 

relationships, occurring events, and relationships between the process and the 

surroundings. The basic concepts that are used in this approach are functional 

components (such as functions, processes, sub processes, activities, operations etc.), 

data flows and their content, data sources and destinations, data storages and events 

that initiate or terminate processes. 

 Data oriented approach – assumes that the basic model developed through the overall 

process of information / software system development is data model. The data model 

is considered to be more stable than process model and that it changes more rarely. In 

addition, it is considered that the data manipulation is the only important activity that 

is performed by some information systems processes. The basic concepts of this 

approach are: data structure definition concepts, data integrity preservation concepts, 

operators that can be used to change the state of the data. 

 Process and data oriented approach – defines that the data models are equally 

important as process models and that these two models cannot be separated. This 

approach, which appeared in the beginning of the 1980s, also defines that every data 

model belongs to a specific process model, and that these two should be developed in 

parallel. 

 Object oriented approach – defines the latest approach which semantically unites the 

data model and process model into new object models. These models represent 

objects, methods serving the objects and messages exchanged between the objects. 

They can be used to model the static and dynamic system / software properties. The 

basic concepts of these models are: object types, classification and built-in object 

structures, attributes with relationships and constraints, events and states, operations 

performed on objects (methods), inheritance, encapsulation, polymorphism, 

reusability, state pre-conditions and post-conditions, state transitions, messages… 

2.2.1.2. Development methodologies 

Emerging from 1960s, many different methodologies have been created and developed in 

theory and practice and they basically reflect the mentioned approaches. The number of these 

methodologies makes the categorization of SDMs not an easy task. Different authors use 

different viewpoints while defining categories of SDMs. Avison and Fitzgerald (2003) divide 

methodologies into seven broad groups: Structured, Data-oriented, Prototyping, Object-

oriented (OO), Participative, Strategic and Systems. These groups are not mutually excluded. 

On the other side, Ramsin and Paige (2008) while focusing only on object oriented 

methodologies divide them into three sub-groups: Seminal, Integrated and Agile. In their 
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opinion, seminal
14

 methodologies pioneered the unexplored field of OO analysis and design 

and set the basis for further evolution. Many of the concepts introduced by these 

methodologies are still widely used today. While the first and the second generation of OO 

methodologies is referred to as seminal, the third generation is referred to as integrated
15

. 

These methodologies are heavyweight and very complex, offering detailed process 

components, patterns, and management and measurement instructions. Furthermore, some of 

them propose ideas on seamless development, complexity management and modeling 

approaches. Finally, in contrast to heavyweight integrated methodologies, agile
16

 

methodologies are aiming to be lightweight, based on practices of program design, coding and 

testing in order to enhance software development flexibility and productivity.  

Similarly, software engineering body of knowledge (SWEBOK, 2004) defines three basic 

software engineering methods topic areas, while the new version of the Report, that is now 

being in process of review and is soon to be published (SWEBOK V3 - Chapter 10, 2012), 

defines four topic areas as follows: 

 Heuristic methods – those experience-based software engineering methods that have 

been and are fairly widely practiced in the software industry. This topic area contains 

three broad discussion categories: structured analysis and design methods, data 

modeling methods, and object-oriented analysis and design methods. 

 Formal methods – are software engineering methods used to specify, develop, and 

verify the software through application of a rigorous mathematically based notation 

and language. Through the use of the specification language, the software model can 

be checked for consistency (in other words, lack of ambiguity), completeness, and 

correctness in a systematic and automated or semi-automated fashion. 

 Prototyping methods – Software prototyping is an activity that generally creates 

incomplete or minimally functional versions of a software application, usually for 

trying out specific new features, soliciting feedback on requirements or user interfaces, 

further exploring requirements, design, or implementation options, and/or gaining 

some other useful insight into the software. The software engineer selects a 

prototyping method to understand the least understood aspects or components of the 

software first; this approach is in contrast with other development methods which 

usually begin development with the most understood portions first. Typically, the 

prototyped product does not become the final software product without extensive 

development rework or refactoring. 

 

                                                 
14

 i.e. influential, had a greate influence on other methodologies. 
15

 i.e. combined, unified. 
16

 i.e. nimble, responsive. 
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 Agile methods – Agile methods were born in the 1990s out of the need to reduce the 

apparent large overhead associated with heavyweight, plan-based development 

methods used in large-scale software-development projects. Agile methods are 

considered lightweight methods in that they are characterized by short, iterative 

development cycles, self-organizing teams, simpler designs, code refactoring, test-

driven development, frequent customer involvement, and an emphasis on creating a 

demonstrative working product with each development cycle. 

The criterion used to create this classification could be argued. Heuristic methods (a kind of 

approach to development based on modeling rather than on heuristics!) have models as 

primary artifacts, prototyping methods result in a throw-away prototype and formal methods 

result in a formal specification of the system (which should preferably be animated by using 

some engine). In this point of view, the main artifact of agile methods is not obvious. In 

eXtreme programming these are small releases that have passed unit, integration and 

acceptance tests while in Scrum these could be features described through product and sprint 

backlogs. Thus, we can conclude that common artifact denominator for agile methods could 

be functionality increment which is generated at the end of iteration.   

Furthermore, according to (SWEBOK, 2004) at least the first three topics (but we can add and 

the forth one, too) are not disjoint but rather they represent distinct concerns. For example, an 

OO method may incorporate formal techniques and rely on prototyping for verification and 

validation. As methodologies continuously evolve, the SWEBOK 2004 tried as hard as 

possible to avoid naming particular methodologies, but new version is likely to make an 

exception when it comes to the agile methods, as the new version shortly describes Pair 

programming, Rapid application development, eXtreme programming, Scrum and Feature-

driven development. Of course these are not the only agile methodologies, but according to 

(SWEBOK V3 - Chapter 10, 2012) they are the most popular ones. Finally, in the body of 

knowledge it is stated that the choice of the appropriate method could have a dramatic effect 

on the success of the software project. 

Every methodological framework is based on some approaches or paradigms (basic model, 

the development cycle, the relationship of existing and future systems…) and it describes or 

prescribes a pattern of the development cycle, development activities and artifacts. Thus, the 

line between methodologies and approaches is a thin one and is often crossed by many 

authors, teams and organizations. That is the reason why there is no clear division between 

methodologies and approaches. Even Olle et al. back in (1988) pointed out that the term 

„methodology‟ is not correctly used. Original meaning of „a study of method‟ was replaced in 

common practice with „method‟ and such practice remained till today and is followed in this 

dissertation as well. In general, adopting the definition from (Avison and Fitzgerald, 1988) in 
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this thesis, methodology will be considered as “a collection of procedures, techniques, tools 

and documentation aids which will help the systems developers in their efforts to implement a 

new information system.” Approach will simply be used to define the basic artifacts while 

conducting the chosen methodology.  

2.2.2. Overview of methodologies targeting development of mobile applications 

In accordance with the current state-of-the-art stream, the development of mobile applications 

and systems differs from traditional software development in many aspects, as it should 

satisfy special requirements and constraints (as elaborated in chapter 1.1.1). As already stated 

in previous chapters some of these requirements concern portability, standards, capabilities, 

privacy and time-to-market requirements and therefore, the design of mobile software systems 

is much more complicated and is forcing developers to reconsider the use of traditional 

software development methodologies. Despite the mentioned problems that could be 

interesting for the scientific community, a relatively few researches aimed to enhance the 

methodologies for mobile application development, and most of the work performed in this 

field has been focused on the implementation-oriented aspects of the mobile software 

development, while methodology-oriented issues still remain to be properly addressed 

(Rahimian and Ramsin, 2008). Additionally, development of mobile systems is a challenging 

task with a high level of uncertainty, and according to Hosbond (2005), some of the important 

problems are rapid technology development, lack of standardization and short time-to-market. 

Hosbond identified that there are two important sets of challenges that should be addressed in 

the domain of mobile systems development, and these are business related challenges (e.g. 

tough competition, conflicting customer interests, establishment of revenue-share models etc.) 

and development specific challenges (e.g. rapidly changing technology, lack of 

standardization, integration with existing systems etc.). 

Reviewing the existing solutions for mobile application development, we should mention the 

Abrahamsson et al. (2004) and their Mobile-D methodology as an agile approach to mobile 

application development which is based on combination of eXtreme programming in terms of 

practices, Crystal family of methodologies in terms of scalability and Rational Unified 

Process in terms of life-cycle coverage (Supan et al., 2013). Initially, as introduced in 

(Abrahamsson et al., 2004), the methodology is composed of five iterations i.e. phases: set-up, 

core, core2, stabilize and wrap-up. According to technical documents available on the 

authors‟ web site, for example (Salo and Koskela, 2004), the methodology included 34 

principal inputs and outputs (like action point list, architecture line plan, base process 

description, daily status report etc.) and 9 different roles (like customer group, exploration 

team, project team, steering group, etc.). 
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The method evolved and according to presently available documents such as web application 

presenting the methodology (VTT Technical Research Centre of Finland, 2006a) and set of 

documents and templates describing the methodology in detail (VTT Technical Research 

Centre of Finland, 2006b) the main phases, activities and tasks are presented in Table 6. 

Table 6 - Mobile-D phases, activities and tasks 

Mobile-D Phases Development days / Activities Tasks 
Explore Stakeholder establishment Customer establishment 

Stakeholder group establishment 

Scope definition Initial requirements collection 

Initial project planning 

Project establishment Environment selection 

Personnel allocation 

Architecture line definition 

Process establishment 

Initialize Project set-up Environment setup 

Training 

Customer communication establishment 

Planning day in 0 iteration Architecture line planning 

Initial requirements analysis 

Working day in 0 iteration  

Release day in 0 iteration  

Productionize Planning day 

 

Post-iteration workshop 

Requirements analysis 

Iteration planning 

Acceptance test generation 

Acceptance test review 

Working day Wrap-up 

Test-driven development 

Pair programming 

Continuous integration 

Refactoring 

Inform customer 

Release day System integration 

Pre-release testing 

Acceptance testing 

Release ceremonies 

Stabilize Planning day Post-iteration workshop 

Requirements analysis 

Iteration planning 

Acceptance test generation 

Acceptance test review 

Working day Wrap-up 

Test-driven development 

Pair programming 

Continuous integration 

Refactoring 

Inform Customer 

Documentation wrap-up  

Release day System integration 

Pre-release testing 

Acceptance testing 

Release ceremonies 

 



 

 

52 

 

System test & fix System test System test 

Planning day Post-iteration workshop 

Requirements analysis 

Iteration planning 

Acceptance test generation 

Acceptance test review 

Working day Wrap-up 

Test-driven development 

Pair programming 

Continuous integration 

Refactoring 

Inform customer 

Release day 

 

System integration 

Pre-release testing 

Acceptance testing 

Release ceremonies 

Source: (VTT Technical Research Centre of Finland, 2006a) 

 

The practices included in execution of tasks during different phases and activities comprise 

nine principal elements which are mainly well-known agile practices specialized for mobile 

software development (Abrahamsson et al., 2004; VTT Technical Research Centre of Finland, 

2004): 

 Phasing and pacing – The projects are performed in iterations of which each begins 

with a Planning Day 

 Architecture Line – Architecture line approach is utilized together with architectural 

patterns and Agile Modeling 

 Mobile Test Driven Development – Test-first approach is utilized together with 

automated test cases 

 Continuous Integration – Effective Software Change Management (SCM) practices 

are applied through multiple means 

 Pair Programming – Coding, testing and refactoring are carried out in pairs 

 Metrics – Few essential metrics are collected rigorously and utilized for feedback and 

process improvement purposes 

 Agile Software Process Improvement – Post-Iteration workshops are used to 

continuously improve the development process 

 Off-Site Customer – Customer participates in Planning and Release Days 

 User-Centered Focus – Emphasis is placed on identifying and fulfilling end-user 

needs 

Additionally, a Hybrid Method Engineering Approach was used by Rahimian and Ramsin 

(2008) to develop “the ideal software development methodology” named Agile Risk-based 

Methodology. The authors utilized general agile practices through New Product Development 

(NPD) approach and incorporated the ideas from Adaptive Software Development (ASD). 
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Although the part of methodology development process was based on artifact-oriented 

approach, this methodology is defined at the level of activity and additional research should 

be performed to specify the finer-grained tasks of the process (Supan et al., 2013).  

 

Figure 12 - Agile Risk-based Methodology 

(Rahimian and Ramsin, 2008) 

Another methodology developed for mobile software development is MASAM (Mobile 

Application Software Development Method). MASAM methodology is created by Jeong et al. 

(2008) and it represents the proprietary methodology that was built in on the top of Software 

and Systems Process Engineering Meta-model (SPEM) framework.  

Being based on SPEM, the MASAM is defined on three different kinds of process assets: 

roles, tasks and work products. A role defines a set of related skills, competencies or 

responsibilities (e.g. planner, manager, UI designer, developer etc.), a task is an assignable 

unit of work (e.g. initial planning, initial analysis, UI design etc.) and work product stands for 

task inputs and outputs (e.g. product summary, UI sample, task card etc.). 

This agile methodology is comprised of Development preparation phase, Embodiment phase, 

Product development phase and Commercialization phase. The methodology defines 

activities and tasks for each of the four mentioned phases, as shown in Table 7. 

 

Table 7 - MASAM methodology phases, activities and tasks 

MASAM Phase Activity Task 
Development preparation Grasping product Defining product summary 

Pre-planning 

Product concept sharing User definition 

Initial product analysis 

Project Set-up Development process coordination 

Project resource coordination 

Pre study 

Embodiment User needs understanding Story-card workshop 

UI design 

Architecting Non-functional requirements analysis 

Architecture definition 

Pattern management 

Product development Implementation preparation Environment setup 

Development planning 

Release Cycle Release planning 
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Iteration cycle 

 Iteration planning 

 Implementation cycle 

  Face-to-face meeting 

  Incremental design 

  Test Driven Development 

(TDD) 

  Refactoring 

  Pair programming 

  Continuous integration 

 Feedback 

Release 

 Acceptance test 

 Feedback 

Commercialization System Test Acceptance test 

User test 

Product Selling Launching test 

Product launching 

Source: (Jeong et al., 2008) 

 

To conclude, except (a) applying newly developed methods there are two other options. The 

company can (b) adopt and use an existing development methodology or (c) can adapt an 

existing development methodology to fit the specific organizational culture, company‟s goals 

and specific requirements of mobile application development. In any case, it is important to 

notice that implementation of the new methodological framework is a serious challenge from 

organizational, technical, educational and every other point of view. In fact, it is about the 

implementation of a new development system. Although the analysis that would cover all 

these concerns is out of scope of this work, the adoption or adaption of a methodology for the 

development of mobile applications should not be considered as an easy task and if 

performed, should be backed up with serious preliminary research and carefully made 

decisions. 

This short review does not cover all methodologies, but based on this preliminary review we 

can conclude that the authors do agree on several facts that are important for this dissertation. 

(1) The development for mobile devices differs from standard development, (2) the agile 

approach is widely used in methodologies for mobile devices and (3) neither one of the 

presented methodologies is applicable without additional efforts to make the process more 

fine-grained or more suitable to specific development environment and mobile application 

requirements. 

2.2.3. Identification of the need for a review 

Preliminary research on the software development methodologies, presented in the previous 

chapters can lead us to several important conclusions. Firstly, the field of software 

development, during its 50-year-old history, has been interwoven with many different 
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software development methodologies and approaches. This also resulted in the terminology 

confusion as many authors mix different concepts such as methodology, approach, framework 

and process. Secondly, there are some attempts to create specific software development 

methodology that would be suitable for development of mobile applications. Surprisingly, 

these attempts are relatively rare, they are not aligned with the current mobile development 

demands which have slightly but seriously changed, especially after the introduction of the 

mobile application stores back in 2009, and finally some of these methodologies are still not 

usable in practice as being defined at relatively high level of abstraction. Thirdly, many 

companies have chosen to use the existing and familiar development methodologies while 

developing mobile applications. The trends show that agile approach is most suitable and 

widely used when developing mobile applications (Abrahamsson et al., 2003; Holler, 2006), 

but still, some companies have considerable heritage in using non-agile approaches which 

they still find as the most suitable. 

The number and complexity of different possibilities indicate that a thorough and unbiased 

research method such is systematic literature review is needed in order to get the overall 

overview of possible methodologies that could be taken while developing applications for 

mobile devices.  

Additionally, the preliminary research is performed to identify the existing systematic 

literature reviews on software development methodologies for development of mobile 

applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar 

databases were searched by the following search query: (“literature review” OR 

SLR) AND (mobile development)
17

.  

Almost all obtained papers
18

 were excluded as not being literature reviews or not being 

literature reviews in mobile applications development. Only one paper (Hosbond and Nielsen, 

2005) passed the inclusion criteria, but the focus of the SLR performed in this paper was to 

review the literature in the domain of four mobile systems development perspectives 

(requirements, technology, application, business) but unfortunately did not include 

methodologies or approaches to be used when developing mobile applications. 

 

                                                 
17

 This query implicitly includes „systematic literature review“ phrase. Additionally, more rigorous search 

querries, like (“literature review” OR SLR) AND (mobile development methodologies) or similar have been 

discarded as returning only a few or no results. 
18

 The search returned following number of papers: IEEEExplore (61), ACM Digital library (624), INSPEC (62), 

CiteSeerX (22) and GoogleScholar (128). Additionally, the original query on GoogleScholar returned more than 

22.300 results, so there was used a narrower concept serching for „mobile development“ as a phrase instead of 

searching for both words independently as in other databases. 
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To conclude, according to information available in the mentioned databases, there are no 

existing systematic literature reviews covering the subject of software development 

methodologies for mobile applications development, which makes the need for such review 

even bigger. As an additional proof of this claim, the results of SLRs on Systematic Literature 

Reviews in Software Engineering presented in (B Kitchenham et al., 2009) and in 

(Kitchenham et al., 2010) show that no literature reviews were conducted in the domain of 

software development methodologies or software development methodologies for mobile 

devices. 

2.2.4. Specifying the research questions 

In the previous chapter we discussed the results of preliminary researches performed in order 

to identify possible mobile application development methodologies and on existing SLRs 

identified the need for the systematic literature review. In order to address the issues 

determined in this analysis, this systematic review is aligned to answer the following research 

questions: 

RQ1 – What development methodologies and approaches are reported in literature as 

defined in theory or used in practice for mobile application development? 

RQ2 – Are the identified methodologies and approaches applicable for multi-platform 

mobile applications development? 

Motivation for RQ1 is to identify all existing methodologies and approaches for development 

of mobile applications and motivation for RQ2 is to define a set of methodologies and 

approaches that could be used for multi-platform mobile applications development. 

With respect to RQ1, several important decisions were made. Firstly, as preliminary research 

showed, and thus assuming that there are not so many publications in this field, it is decided 

not to apply any time filters on the source publications. The fields of software development 

methodologies and especially methodologies for development of mobile applications are 

considered to be young disciplines and additional time constraints are not necessary. 

Secondly, it is important to clearly distinguish methodologies and approaches according to 

definitions presented in chapter 2.2.1. Finally, only methodologies and approaches reported to 

be used for development of mobile applications and mobile systems should be taken as 

relevant and potentially selected for review. 

With respect to RQ2, as methodologies or approaches by definition are not platform 

dependent, it is important to notice that simple decision parameters will be taken into 

consideration in order to determine if identified development methodologies and approaches 

are applicable for multi-platform mobile applications development. Actually, we assume that 

there might be some methodologies and approaches reported to be developed for specific 



 

 

57 

 

mobile target platform/s and only these methodologies or approaches (at least unchanged) will 

be considered as not applicable for multi-platform mobile applications development. 

Secondly, RQ2 is important for the other research activities in this thesis, as only the 

applicable methodologies could be used in the following research phases. 

Although there are multiple motivations for performing this literature review, both research 

questions are defined with the purpose of identifying the existing body-of-knowledge basis 

for choosing one mobile application development methodology and one development 

approach that will be used in the subsequent research phases performed in this dissertation 

project. In order to clarify these research questions the following complementary questions 

are defined: 

 Is the paper reporting on a software development methodology or a development 

approach? 

 Is the reported methodology/approach properly defined with clear phases, activities, 

tasks, roles, inputs and outputs? 

 Are there any specific instructions on how to apply the methodology/approach? 

 Are there any specific techniques reported to be used while applying the methodology 

or approach? 

 Are there any specific instructions on any organizational aspects of teams applying the 

methodology/approach? 

 Is the methodology/approach developed for any specific mobile target platform? 

Only the last complementary question targets RQ2, while all other stated complementary 

questions target RQ1. 

2.2.5. Developing a review protocol 

The review protocol defining this research is created according to instruction presented in the 

previous chapters. Additionally, the template used for protocol creation is proposed by 

(Biolchini et al., 2005) and further explained by (Mian et al., 2005).  

The protocol is firstly defined during the phase of review planning, but due to the 

characteristic of some protocol elements to present final or intermediate results, the 

information on these elements is inserted in subsequent phases of the systematic literature 

review. 

Additionally, it is important to mention, that some protocol elements like keywords and 

synonyms and search strings are piloted either by using English dictionary and reading the 

literature (in case of synonyms definition) or by performing a pilot database search (in case of 

search strings definition). Final version of the protocol is presented in Table 8. 
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Table 8 - The review protocol 

1. Question formularization 

1.1. Question focus To identify software development methodologies and approaches that could be 

used for multi-platform mobile applications development. 

1.2. Question 

quality and 

amplitude 

Problem: Development of mobile applications differs from development of 

traditional desktop or web applications. Not all software development 

methodologies are used for development of mobile applications. Special 

problem is fragmentation of mobile platforms and devices, and thus the 

development process should be performed more than once. None of the 

existing approaches to solve this problem is good enough. This research has 

the idea to approach the problem differently and to define methodological 

interoperability, i.e. interoperability on highest, methodology level. In order to 

do that, it is necessary to identify applicable software development 

methodologies and approaches that could be used in multi-platform mobile 

applications development. 

Research questions: RQ1: What development methodologies and approaches 

are reported in literature as defined in theory or used in practice for mobile 

application development? RQ2: Are the identified methodologies and 

approaches applicable for multi-platform mobile applications development? 

Keywords and synonyms: 

 mobile 

 software development: system development, application development, 

program development 

 methodology: method, approach, framework, process, procedure, 

model 

Intervention: Software development methodologies and approaches for 

mobile applications development. 

Effect: Identification of methodologies and approaches for multi-platform 

mobile applications development. 

Control: Methodologies defined in previous chapters.  

Outcome measure: Cardinality of identified set of methodologies. 

Population: Publications reporting on intervention and containing defined 

keywords. 

Application: Subsequent research in this thesis, mobile applications 

development companies, researchers. 

Experimental design: Statistical method will not be applied. 
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2. Sources selection 

2.1. Sources 

selection 

criteria 

definition 

Sources recommended by field experts (i.e. Brereton et al. (2007), Hannay et 

al. (2007), Kitchenham and Charters (2007)) and enumerated in previous 

chapters will be included in the search process. The criteria for sources 

selection used by field experts are based on source quality and overall 

recognition in the software engineering community. 

2.2. Studies 

languages 

English 

2.3. Sources 

identification 

Sources search methods: Research through web search engines and manual 

search. 

Search string: (mobile AND ("software development" OR "system 

development" OR "application development" OR "program development") 

AND (methodology OR method OR approach OR framework OR process OR 

procedure OR model)) 

 

Sources list: Relevant electronic sources in the field of Software Engineering 

identified by Brereton et al. (2007): 

1.  IEEExplore 5. INSPEC 

2. ACM Digital library 6. ScienceDirect 

3. Google Scholar 7. EI Compendex (not available) 

4. CiteSeerX library  

Special focus will be put on following combined list of relevant journals and 

proceedings in the field of software engineering which is based on lists given 

by Hannay et al. (2007) and by Kitchenham and Charters (2007). Hannay et. 

al. explicitly state that journals and conferences chosen by them were chosen 

because they were considered to be leaders in software engineering in general 

and empirical software engineering in particular: 

 ACM Transactions on Software Engineering Methodology (TOSEM) 

 ACM/IEEE International Symposium on Empirical Software 

Engineering and Measurement (ESEM) 

 Empirical Software Engineering (EMSE) in SpringerLink (manual 

search) 

 Evaluation and Assessment in Software Engineering (EASE) in 

ScienceDirect 

 IEEE Computer 

 IEEE Software 

 IEEE Transaction on Software Engineering (TSE) 
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 Information and Software Technology (IST) in ScienceDirect 

 International Conference on Software Engineering (ICSE) 

in ACM Digital Library and IEEExplore 

 Journal of Software: Evolution and Process (JSEP) in Wiley (manual 

search) 

 Journal of Software: Practice and Experience (SP&E) in Wiley 

(manual search) 

 Journal of Systems and Software (JSS) in ScienceDirect 

If some of the mentioned journals and conference proceedings are not included 

in the databases of the enumerated search engines, they will be searched 

manually.  

2.4. Sources 

selection after 

evaluation 

 All sources listed in 2.3 satisfied quality criteria. 

2.5. References 

checking 

Sources are defined on basis of recommendations of field experts. The final 

list of selected sources is also approved by two supervisors.  

3. Studies selection 

3.1. Studies 

definition 

Studies inclusion and exclusion criteria: The primary studies describing 

software development methodology or approach in theory or reporting their 

usage in practice will be included in review process. The studies that do not 

provide sufficient information on the phases, activities, tasks, roles, inputs and 

outputs (i.e. document templates, expected results, task prerequisites etc.) will 

be excluded from the review. 

Studies type definition: No filter on type of studies will be applied. All kinds 

of studies related to the research topic will be selected. 

Procedures for studies selection: After performing an automated search 

based on defined keywords and search string, initial set of potential studies for 

inclusion will be obtained. The studies will be firstly filtered by applying 

inclusion criteria on the study title. The studies that meet inclusion criteria 

along with those with unclear or indistinct title will be included in second 

phase. Second phase will apply inclusion criteria on the abstract. If abstract 

will be unclear or fuzzy, the introduction and conclusion will also be taken in 

consideration. Studies that will finally be included will be reviewed in detail 

by reading the full text. At last, if necessary, exclusion criteria will be applied 

based on information obtained from full text review. 

3.2. Selection 

execution 

Initial studies selection: The complete list of selected studies can be found in 

chapter 2.3.2 (Table 12 on page 66 of this document). 
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Studies quality evaluation: The list of studies that passed inclusion and 

exclusion criteria can be found in chapter 2.3.3 on page 68 of this document. 

Selection review: Study selection process was reviewed and approved by two 

supervisors and one of them is field expert. 

4. Information extraction 

4.1. Information 

inclusion and 

exclusion 

criteria 

definition 

The extracted information from studies must contain theoretical or practical 

description of phases that should be performed during the development process 

according to focused methodology. 

If studies are reporting new software development approach, then the main 

characteristics, values and rules which define focused approach should be 

contained in extracted information.  

4.2. Data extraction 

forms 

The template form for data extraction that is defined for this review can be 

found in chapter 2.3.4 on page 70, and complete list of filled data extraction 

forms on all selected primary studies can be found in Appendix D on page 

265. 

4.3. Extraction 

execution 

The results of objective (study identification, study methodology, study results 

and study problems) and subjective (information through the authors and 

general impressions and abstractions) data extraction are presented in chapter 

2.3.4 on page 70. 

4.4. Resolution of 

divergences 

among 

reviewers 

There were no divergences, as the extraction was performed only by one 

author, i.e. author of this thesis. 

5. Result summarization 

5.1. Results 

statistical 

calculus 

Statistical calculi were not used. 

5.2. Results 

presentation in 

tables 

The final results are presented in tables with the following information. 

 Studies reporting the creation of new methodology or approach 

 Studies reporting the methodology or approach usage 

 Methodologies/approaches not eligible for multiplatform development 

 Methodologies/approaches targeting specific mobile applications 

The stated tables with final reported results could be found in chapter 2.3.5 on 

page 71.  

5.3. Sensitivity There was no need for sensitivity analysis.  
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analysis 

5.4. Plotting There was no need for plotting. 

5.5. Final comments Number of studies obtained: 6761 

Number of relevant studies: 49 

Results application: Mobile-D methodology supported by Test Driven 

Development is selected for application in this research. 

Recommendations: Identified methodologies could be separately analyzed in 

order to determine their quality and applicability. This was not the focus of this 

study.  

 

2.2.6. Evaluating the review protocol 

The review protocol is evaluated by two supervisors of this thesis project. Also, it is important 

to mention that one of the supervisors (prof. Strahonja) is an expert with scientific and 

empirical background in the field of software development methodologies. Some minor 

requests stated by both supervisors, regarding sources identification and final reporting were 

taken in consideration and implemented in the final version of the review protocol. 

2.3. Conducting the review 

2.3.1. Identification of research  

The research is focused on the identification of software development methodologies and 

approaches that could be used for multi-platform mobile applications development. In order to 

identify primary studies relevant to the stated research questions, the following keywords with 

the list of relevant synonyms are used: 

Table 9 - Search keywords and synonyms 

Keyword Synonyms 
mobile - 

software development system development 

application development 

program development 

methodology method 

approach 

framework 

process 

procedure 

model 
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The stated list of synonyms is created according to the results of preliminary literature review 

and is based on the empirical knowledge of terms used in the software engineering literature.  

The target population consists of the publications reporting the software development 

methodologies and approaches for mobile applications development containing the defined 

keywords. In order to identify the initial list of publications, the search engines and manual 

search have been used. The following query is defined for automatic database search: 

(mobile AND ("software development" OR "system development" OR "application 

development" OR "program development") AND (methodology OR method OR approach OR 

framework OR process OR procedure OR model)) 

The presented query has been executed on the databases and the relevant journals and 

proceedings in the field of software engineering which are recommended by the filed experts 

Brereton et al. (2007), Hannay et al. (2007), Kitchenham and Charters (2007) and as 

elaborated in chapter 2.1.2.2. The final list of relevant sources is given in the Table 10. 

Table 10 - The list of relevant sources 

Relevant databases 
IEEExplore INSPEC 

ACM Digital Library ScienceDirect 

Google Scholar EI Compendex (excluded) 

CiteSeerX library  

  

Relevant journals and proceedings 
ACM Transactions on Software Engineering 

Methodology (TOSEM) 

ACM/IEEE International Symposium on Empirical 

Software Engineering and Measurement (ESEM) 

Empirical Software Engineering (EMSE) 

in SpringerLink 

Evaluation and Assessment in Software Engineering 

(EASE) in ScienceDirect 

IEEE Computer IEEE Software 

IEEE Transaction on Software Engineering (TSE) Information and Software Technology (IST) in 

ScienceDirect  

International Conference on Software Engineering 

(ICSE) in ACM Digital Library and IEEExplore 

Journal of Software: Evolution and Process (JSEP) in 

Wiley 

Journal of Software: Practice and Experience (SP&E) 

in Wiley 

Journal of Systems and Software (JSS) in 

ScienceDirect 

 

The preliminary research showed that majority of mentioned journals and proceedings is 

indexed in the stated electronic databases, and manual search has been performed only on the 

following databases: 

 Empirical Software Engineering (EMSE) in SpringerLink 

 Journal of Software: Evolution and Process (JSEP) in Wiley 

 Journal of Software: Practice and Experience (SP&E) in Wiley 

Additionally, despite the best efforts, the access to the electronic database EI Compendex is 

available neither at the University of Alcalá nor at the University of Zagreb, and thus, this 
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database had to be excluded from the list. So the final list of the excluded databases includes 

only: 

 EI Compendex 

As it can be seen from the final set of relevant sources, the focus of this research is only on 

the scientific research community. This is mainly due to the time and “personnel” constraints. 

The past showed that the industry, as a source of development methodologies should not be 

neglected and we strongly recommend that white papers, technical reports and other 

unpublished materials should also be included in the future similar literature reviews. 

2.3.2. Selection of primary studies  

The primary studies describing software development methodology or approach in theory or 

reporting their usage in practice have been included in the review process. The studies that do 

not provide sufficient information on the phases, activities, tasks, roles, inputs and outputs 

(i.e. document templates, expected results, task prerequisites etc.) have been excluded from 

the review. The type of studies has not been filtered and all kinds of studies related to the 

research topic that have been found by the search have been considered for possible inclusion. 

2.3.2.1. Applied procedures in selection process 

After the automated search based on defined keywords and search string is performed, the 

initial set of the potential studies for inclusion is obtained (see Table 11). The studies are 

firstly filtered by applying inclusion criteria on the study title. The studies that met the 

inclusion criteria along with those with unclear or indistinct title are included in the second 

phase where the inclusion criteria were applied on the abstract. Some of the abstracts were 

unclear and fuzzy, and in those cases the introduction and conclusion were also taken into 

consideration. The final phase conducted on the included studies was performed by a detailed 

analysis and full text reading. During this phase, the exclusion criteria were applied based on 

the information obtained from full text review. 

As it can be seen in Table 11, in total 6761 initial studies were obtained by automatically 

performed database searches. The search of Google Scholar database had to be performed 

with specific time constraints, as it was impossible to reach all results given by the original 

search query. This was not the only problem faced during the research process, but the faced 

problems will be discussed in later chapter. Apart from Google, some other database engines 

also had to be parameterized, and the used parameters, date ranges, filters and search 

execution date are all reported in Table 11. 
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Table 11 - Applied procedures in selection process 

Database Search query 
Date range / 

other filters 

Date of 

search 

No. of 

results 
IEEE Xplore ® 

("mobile application" OR 

"mobile development") 

AND ("software 

development" OR "system 

development" OR 

"application development" 

OR "program development") 

AND (methodology OR 

method OR approach OR 

framework OR process OR 

procedure OR model) 

- 05.06.2012. 68 

ACM Digital Library 

Searched journals, 

proceedings and 

transactions 

06.06.2012. 335 

CiteSeerX Citations included 07.06.2012. 55 

INSPEC - 07.06.2012. 85 

ScienceDirect 

Searched fields: 

Computer Science, 

Engineering, Social 

Sciences 

07.06.2012. 399 

Google Scholar 
Full text search 

19xx – 2004 
08.06.2012. 867 

Google Scholar 
Full text search; 

2005 – 2006 
08.06.2012. 661 

Google Scholar 
Full text search; 

2007 – 2008 
08.06.2012. 925 

Google Scholar 
Full text search; 

2009 
09.06.2012. 694 

Google Scholar 
Full text search; 

2010 
09.06.2012. 868 

Google Scholar 

Full text search; 

Filter: “+phone” 

2011 

11.06.2012. 923 

Google Scholar 

Full text search; 

Filter: “-phone” 

2011 

11.06.2012. 352 

Google Scholar 
Full text search; 

2012 
12.06.2012. 529 

Manual search of 

Journals 

Performed by reading 

paper titles and abstracts 
2007-2012 

13. - 

15.06.2012. 
0 

Total  6761 

 

The full list of all obtained papers is kept only in the reference management software, but the 

lists of the identified studies after applying inclusion criteria on the study title and after 

applying inclusion criteria on the abstract are documented in the annexes of this document 

(see Appendix A and Appendix B). The full text documents are obtained for almost all studies 

included in the second identification phase and are also stored in the reference management 

software.  Additionally, the reference management software contains the exclusion reasons for 

all studies excluded in the second and the third iteration. Finally, the list of all studies 

considered to be relevant and included in the literature review process results is given in Table 

12. 
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Table 12 - The list of relevant studies 

Study identifier Study 
(Abrahamsson et al., 

2005b) 

Abrahamsson, P., Hanhineva, A., Jäälinoja, J., 2005. Improving business agility through technical 

solutions: A case study on test-driven development in mobile software development, in: Business 

Agility and Information Technology Diffusion. Presented at the IFIP TC8 WG 8.6 International 

Working Conference. 

(Abrahamsson et al., 

2009) 

Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen, P., Salo, O., 2009. Mobile-D for Mobile 

Software: How to Use Agile Approaches for the Efficient Development of Mobile Applications. 

(Abrahamsson et al., 

2004) 

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Koskela, J., 

Kyllönen, P., Salo, O., 2004. Mobile-D: an agile approach for mobile application development, in: 

Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming 

Systems, Languages, and Applications, OOPSLA  ‟04. ACM, New York, NY, USA, pp. 174–175. 

(Alyani and Shirzad, 

2011) 

Alyani, N., Shirzad, S., 2011. Learning to innovate in distributed mobile application development: 

Learning episodes from Tehran and London, in: 2011 Federated Conference on Computer Science 

and Information Systems (FedCSIS). Presented at the 2011 Federated Conference on Computer 

Science and Information Systems (FedCSIS). IEEE., Piscataway, NJ, USA, pp. 497–504. 

(Barnawi et al., 2012) Barnawi, A., Qureshi, M., Khan, A.I., 2012. A Framework for Next Generation Mobile and 

Wireless Networks Application Development using Hybrid Component Based Development 

Model. Arxiv preprint arXiv:1202.2515. 

(Bergström and 

Engvall, 2011) 

Bergström, F., Engvall, G., 2011. Development of handheld mobile applications for the public 

sector in Android and iOS using agile Kanban process tool. 

(Binsaleh and Hassan, 

2011) 

Binsaleh, M., Hassan, S., 2011. Systems Development Methodology for Mobile Commerce 

Applications: Agile vs. Traditional. International Journal of Online Marketing (IJOM) 1, 33–47. 

(Biswas et al., 2006) Biswas, A., Donaldson, T., Singh, J., Diamond, S., Gauthier, D., Longford, M., 2006. Assessment 

of mobile experience engine, the development toolkit for context aware mobile applications, in: 

Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer 

Entertainment Technology, ACE  ‟06. ACM, New York, NY, USA. 

(Charaf, 2011) Charaf, H., 2011. Developing Mobile Applications for Multiple Platforms, in: Engineering of 

Computer Based Systems (ECBS-EERC), 2011 2nd Eastern European Regional Conference on 

The. p. 2. 

(Chen, 2004) Chen, M., 2004. A methodology for building mobile computing applications. International journal 

of electronic business 2, 229–243. 

(Cuccurullo et al., 

2011) 

Cuccurullo, S., Francese, R., Risi, M., Tortora, G., 2011. A Visual Approach supporting the 

Development of MicroApps on Mobile Phones, in: Proc. of 3rd International Symposium on End-

User Development. Presented at the 3rd International Symposium on End-User Development, 

Brindisi, Italy, pp. 289–294. 

(Ejlersen et al., 2008) Ejlersen, A., Knudsen, M.S., Løvgaard, J., Sørensen, M.B., 2008. Using Design Science to 

Develop a Mobile Application. 

(Forstner et al., 2005) Forstner, B., Lengyel, L., Kelenyi, I., Levendovszky, T., Charaf, H., 2005. Supporting Rapid 

Application Development on Symbian Platform, in: Computer as a Tool, 2005. EUROCON 

2005.The International Conference On. pp. 72 –75. 

(Forstner et al., 2006) Forstner, B., Lengyel, L., Levendovszky, T., Mezei, G., Kelenyi, I., Charaf, H., 2006. Model-

based system development for embedded mobile platforms, in: Model-Based Development of 

Computer-Based Systems and Model-Based Methodologies for Pervasive and Embedded 

Software, 2006. MBD/MOMPES 2006. Fourth and Third International Workshop On. p. 10–pp. 

(Gal and Topol, 2005) Gal, V., Topol, A., 2005. Experimentation of a Game Design Methodology for Mobile Phones 

Games. 

(Hedberg and Iisakka, 

2006) 

Hedberg, H., Iisakka, J., 2006. Technical Reviews in Agile Development: Case Mobile-D, in: 

Quality Software, 2006. QSIC 2006. Sixth International Conference On. pp. 347–353. 

(Ihme and 

Abrahamsson, 2005) 

Ihme, T., Abrahamsson, P., 2005. The Use of Architectural Patterns in the Agile Software 

Development of Mobile Applications. 

(Jeong et al., 2008) Jeong, Y.J., Lee, J.H., Shin, G.S., 2008. Development Process of Mobile Application SW Based 

on Agile Methodology, in: Advanced Communication Technology, 2008. ICACT 2008. 10th 

International Conference On. pp. 362–366. 

(Kaariainen et al., 

2004) 

Kaariainen, J., Koskela, J., Abrahamsson, P., Takalo, J., 2004. Improving requirements 

management in extreme programming with tool support - an improvement attempt that failed, in: 

Euromicro Conference, 2004. Proceedings. 30th. pp. 342 – 351. 

(Khambati et al., 2008) Khambati, A., Grundy, J., Warren, J., Hosking, J., 2008. Model-Driven Development of Mobile 

Personal Health Care Applications, in: Proceedings of the 2008 23rd IEEE/ACM International 

Conference on Automated Software Engineering, ASE  ‟08. IEEE Computer Society, Washington, 

DC, USA, pp. 467–470. 

(Kim, 2008) Kim, H.K., 2008. Frameworks of Process Improvement for Mobile Applications. Engineering 

Letters 16. 

(Kim et al., 2009) Kim, H., Choi, B., Yoon, S., 2009. Performance testing based on test-driven development for 

mobile applications, in: Proceedings of the 3rd International Conference on Ubiquitous 
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Information Management and Communication, ICUIMC  ‟09. ACM, New York, NY, USA, pp. 

612–617. 

(Korkala and 

Abrahamsson, 2004) 

Korkala, M., Abrahamsson, P., 2004. Extreme programming: Reassessing the requirements 

management process for an offsite customer. Software Process Improvement 12–22. 

(Maharmeh and 

Unhelkar, 2009) 

Maharmeh, M., Unhelkar, B., 2009. A Composite Software Framework Approach for Mobile 

Application Development. Handbook of research in mobile business: technical, methodological, 

and social perspectives 194. 

(Maia et al., 2010) Maia, M.E.F., Celes, C., Castro, R., Andrade, R.M.C., 2010. Considerations on developing mobile 

applications based on the Capuchin project, in: Proceedings of the 2010 ACM Symposium on 

Applied Computing, SAC  ‟10. ACM, New York, NY, USA, pp. 575–579. 

(Manjunatha et al., 

2010) 

Manjunatha, A., Ranabahu, A., Sheth, A., Thirunarayan, K., 2010. Power of clouds in your 

pocket: An efficient approach for cloud mobile hybrid application development, in: Cloud 

Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference 

On. pp. 496–503. 

(Marinho et al., 2012) Marinho, F.G., Andrade, R.M.C., Werner, C., Viana, W., Maia, M.E.F., Rocha, L.S., Teixeira, E., 

Filho, J.B.F., Dantas, V.L.L., Lima, F., Aguiar, S., 2012. MobiLine: A Nested Software Product 

Line for the domain of mobile and context-aware applications. Science of Computer Programming 

(Nyström, 2011) Nyström, A., 2011. Agile Solo - Defining and Evaluating an Agile Software Development Process 

for a Single Software Developer. 

(Ortiz and Prado, 2010) Ortiz, G., Prado, A.G.D., 2010. Improving device-aware Web services and their mobile clients 

through an aspect-oriented, model-driven approach. Information and Software Technology 52, 

1080 – 1093. 

(Pauca and Guy, 2012) Pauca, V.P., Guy, R.T., 2012. Mobile apps for the greater good: a socially relevant approach to 

software engineering, in: Proceedings of the 43rd ACM Technical Symposium on Computer 

Science Education, SIGCSE  ‟12. ACM, New York, NY, USA, pp. 535–540. 

(Rahimian and Ramsin, 

2008) 

Rahimian, V., Ramsin, R., 2008. Designing an agile methodology for mobile software 

development: A hybrid method engineering approach, in: Research Challenges in Information 

Science, 2008. RCIS 2008. Second International Conference On. pp. 337–342. 

(Rosa and Lucena,Jr., 

2011) 

Rosa, R.E.V.S., Lucena,Jr., V.F., 2011. Smart composition of reusable software components in 

mobile application product lines, in: Proceedings of the 2nd International Workshop on Product 

Line Approaches in Software Engineering, PLEASE  ‟11. ACM, New York, NY, USA, pp. 45–49. 

(Rupnik, 2009) Rupnik, R., 2009. Mobile Applications Development Methodology, in: Unhelkar, B. (Ed.), 

Handbook of Research in Mobile Business: Technical, Methodological, and Social Perspectives. 

IGI Global Snippet. 

(Saifudin et al., 2011) Saifudin, A.W.S.N., Salam, B.S., Abdullah, C.M.H.L., 2011. MMCD Framework and 

Methodology for Developing m-Learning Applications. Presented at the International conference 

on Teaching & Learning in Higher Education (ICTLHE 2011). 

(Salo, 2004) Salo, O., 2004. Improving software process in agile software development projects: results from 

two XP case studies, in: Euromicro Conference, 2004. Proceedings. 30th. pp. 310–317. 

(Scharff, 2010) Scharff, C., 2010. The Software Engineering of Mobile Application Development. 

(Scharff, 2011) Scharff, C., 2011. Guiding global software development projects using Scrum and Agile with 

quality assurance, in: Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-

CS Conference On. pp. 274–283. 

(Scharff and Verma, 

2010) 

Scharff, C., Verma, R., 2010. Scrum to support mobile application development projects in a just-

in-time learning context, in: Proceedings of the 2010 ICSE Workshop on Cooperative and Human 

Aspects of Software Engineering, CHASE  ‟10. ACM, New York, NY, USA, pp. 25–31. 

(Schwieren and 

Vossen, 2009) 

Schwieren, J., Vossen, G., 2009. A design and development methodology for mobile RFID 

applications based on the ID-Services middleware architecture, in: Mobile Data Management: 

Systems, Services and Middleware, 2009. MDM‟09. Tenth International Conference On. pp. 260–

266. 

(Shiratuddin and Sarif, 

2008) 

Shiratuddin, N., Sarif, S.M., 2008. m d-Matrix: Mobile Application Development Tool. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 1. 

(Shiratuddin and Sarif, 

2009) 

Shiratuddin, N., Sarif, S.M., 2009. Construction of Matrix and eMatrix for Mobile Development 

Methodologies, in: Handbook of Research in Mobile Business: Technical, Methodological, and 

Social Perspectives. IGI Global, pp. 113–126. 

(Su and Scharff, 2010) Su, S.H., Scharff, C., 2010. Know Yourself and Beyond: A Global Software Development Project 

Experience with Agile Methodology, in: Proceedings of Student-Faculty Research Day, CSIS. 

Pace University. 

(Thompson et al., 2010) Thompson, C., White, J., Dougherty, B., Turner, H., Campbell, S., Zienkiewicz, K., Schmidt, 

D.C., 2010. Model-Driven Architectures for Optimizing Mobile Application Performance. 

(Um et al., 2005) Um, J., Hong, S., Kim, Y.T., Chung, E., Choi, K.M., Kong, J.T., Eo, S.K., 2005. ViP: A Practical 

Approach to Platform-based System Modeling Methodology. Journal of Semiconductor 

Technology and Science 5, 89. 

(Walkerdine et al., 

2009) 

Walkerdine, J., Phillips, P., Lock, S., 2009. A Tool Supported Methodology For Developing 

Secure Mobile P2P Systems, in: Mobile Peer-to-peer Computing for Next Generation Distributed 

Environments: Advancing Conceptual and Algorithmic Applications. pp. 283–301. 
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(Wolkerstorfer et al., 

2008) 

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M., Shahzad, 

S., 2008. Probing an agile usability process, in: CHI  ‟08 Extended Abstracts on Human Factors in 

Computing Systems, CHI EA  ‟08. ACM, New York, NY, USA, pp. 2151–2158. 

(Xiong and Wang, 

2010) 

Xiong, Y., Wang, A., 2010. A new combined method for UCD and software development and 

case study, in: Information Science and Engineering (ICISE), 2010 2nd International Conference 

On. pp. 1–4. 

(Zakal et al., 2011) Zakal, D., Lengyel, L., Charaf, H., 2011. Software Product Lines-based development, in: Applied 

Machine Intelligence and Informatics (SAMI), 2011 IEEE 9th International Symposium On. pp. 

79–81. 

(Zeidler et al., 2008) Zeidler, C., Kittl, C., Petrovic, O., 2008. An integrated product development process for mobile 

software. International Journal of Mobile Communications 6, 345–356. 

 

The propagation of relevant studies through the research process is described in Table 13.  

Table 13 - Propagation of relevant studies through phases 

Database 
Identified 

studies – P1 

Identified 

studies – P2 

Identified 

studies – P3 

Relevant studies 

(after QA) 
 n n n n %’’ % 

IEEE Xplore ® 68 25 3 3  4.41 6.12 

ACM Digital Library 335 79 13 9  2.69 18.37 

CiteSeerX 55 12 0 0  0.00 0.00 

INSPEC 85 39 3 1  1.18 2.04 

ScienceDirect 399 26 4 2  0.50 4.08 

Google Scholar 19xx - 2004 867 40 5 3  - - 

Google Scholar 2005 - 2006 661 37 8 6  - - 

Google Scholar 2006 - 2008 925 41 7 6  - - 

Google Scholar 2009 694 31 6 6  - - 

Google Scholar 2010 868 45 6 5  - - 

Google Scholar 2011a 923 29 5 4  - - 

Google Scholar 2011b 352 21 4 3  - - 

Google Scholar 2012 529 14 3 1  - - 

Google Scholar Subtotal 5819 258 44 34 0.58 69.39 

Subtotal 6761 439 - - 

Redundant studies NA 75* - - 

Total 6761 364 67 49 0.73 100 

* Google Scholar database returned some results that were previously identified in other databases. 

%‟‟  Percentage in respect to initial studies pool from the same database 

%    Percentage in respect to final pool of all relevant studies 

 

As it can be seen from the presented table, 49 studies are identified as relevant which makes it 

only a 0.73% of initial 6761 studies. Additionally, Science Direct and Google Scholar are the 

databases with the biggest waste factor as more than 99.4% of all initial studies were 

discarded as irrelevant. Nevertheless, Google Scholar proved to give 69.39% of all relevant 

studies. However, one could discuss the quality of Google Scholar studies in relation to the 

studies obtained from other databases, but such analysis is out of the focus of this work.  

2.3.3. Study quality assessment  

The activities of the study quality assessment were performed carefully through the whole 

process of the studies‟ identification. As it was impossible to apply the usage of checklists on 
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all initially identified studies, during the first phase, the focus was put on an unbiased study 

selection process, while the later phases additionally included the quality assessment of the 

identified studies.  

During the first identification phase, considerable efforts were made in order to clearly divide 

studies that do not have any connection with software engineering and software development 

from those that do. Additionally, in order to assess the quality of each primarily selected study 

and to make sure that the study findings are relevant and unbiased, firm criteria were 

established in the second and third phase. The complete overview of these criteria is given in 

the Table 14. 

Table 14 - The criteria for unbiased study identification 

Identification of studies - P1 

Inclusion Exclusion 

Software engineering Other studies undoubtedly not from research domain 

Software development  

Mobile development  

Other studies connected with the topic of interest  

 

Identification of studies – P2 

Inclusion Exclusion 

Reporting the methodology or approach used in 

development or mobile applications development 

Defining frameworks for specific purposes (i.e. 

security, engine development etc.) 

Defining framework or approach for development of 

mobile applications 

Defining building blocks with or without specific 

purpose (i.e. for user interface, tracking, reporting etc.) 

Defining framework or approach for specific 

development phases 

Defining testing frameworks, toolkits or middleware… 

Defining framework or approach for development of 

applications in specific application area 

Defining frameworks for development of part of 

application (e.g. adding context awareness, content 

awareness etc.) 

 Defining or reporting the usage of platforms for 

mobile apps development with no concerns on 

development process 

 Other papers not connected with inclusion criteria. 

  

Identification of studies – P3 

Inclusion Exclusion 

Checklist result positive Checklist result negative 

  

 

As the studies observed in this systematic review process are oriented on software 

development and development methodologies and approaches, they are usually not based on 

the usage of experimental design and statistical methods. This means that the specific quality 

assessment checklist applicable for studies in the domain of software engineering and 

particularly for this research had to be built. This checklist was created according to approach 

given by (Dybå and Dingsøyr, 2008b) who defined three main issues pertaining to quality that 

need to be considered when appraising the qualitative studies identified in the review: rigour, 

credibility and relevance. In addition to these, the advice to include the screening criteria is 
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accepted in order to assess study rationale, aims and context. The created checklist is 

presented in Table 15. 

Table 15 - Quality assessment checklist 

ID Quality assessment question Possible results 
Q1 Study reports existing methodology or approach used in mobile application 

development? 

Yes/No 

Q2 Study defines new methodology or approach for mobile applications development? Yes/No 

Q3 Research design is appropriate to address the study context? Yes/Partially/No 

Q4 Researches have experience in software development and mobile applications 

development? 

Yes/Partially/No 

Q5 The reported or created process is clearly defined to the applicable level? Yes/Partially/No 

Q6 The study provided value for research and practice? Yes/Partially/No 

 

The first two questions which define the screening criteria are used as the basis for including 

or excluding the studies. The studies that were answered with No on both questions were 

excluded, and of the 67 papers assessed for the quality, the number of included papers for the 

final data extraction and synthesis was 49 (73.13%). 

Subsequently, the questions labeled Q3 to Q6 aimed to assess the quality of the study and thus 

included the assessment of research design, the assessment of created or reported 

development process, the assessment of applicability of the results and finally assessment of 

researchers‟ experience. The possible answers for these questions included mark “Partially” 

which was given in cases when the assessed criterion was not focused in the study, but jet 

could not be discarded as negative. The exception is question Q4 as the experience of 

researchers was assessed out of the context as only few papers included written evidence on 

experience. 

Table 16 contains an excerpt of quality assessment form as the table containing all data on 

performed quality assessment is given in the Appendix C. 

Table 16 - Excerpt of filled quality assessment form 

Study / Question Q1 Q2 Q3 Q4 Q5 Q6 
QA 

score 
(Charaf, 2011) Yes No Yes Yes Partially Partially 3.0 

(Alyani and Shirzad, 2011) Yes Yes Partially Yes Partially Partially 2.5 

(Maharmeh and Unhelkar, 2009) No Yes Partially Yes Partially Yes 3.0 

(Schwieren and Vossen, 2009) No Yes No Partially No No 0.5 

(Ranabahu et al., 2011) No No      

(Barnawi et al., 2012) No Yes Yes Yes Yes Yes 4.0 

…        

2.3.4. Data extraction and monitoring  

The data extraction forms used in this research are created by combining the examples and 

following the instruction given by Kitchenham and Charters (2007) and Jørgensen (2007). As 
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discussed in chapter 2.1.2.2, the aim of data extraction process is to accurately and without 

bias record the appropriate information from the selected papers. Based on the data collection 

form template presented in Table 4, the final developed data collection form is adapted for 

this particular research. Full list of all filled data extraction forms can be found in Appendix D 

on page 265. The example of filled data collection form with extracted data from (Xiong and 

Wang, 2010) is presented in Table 17. 

Table 17 - Data collection form 

Data item Value Notes 
Study identifier (Xiong and Wang, 2010)  

Title 
A new combined method for UCD and software development and case 

study 
 

Publication details 

Y. Xiong and A. Wang, “A new combined method for UCD and 

software development and case study,” in Information Science and 

Engineering (ICISE), 2010 2nd International Conference on, 2010, pp. 

1–4. 

 

Study type New methodology  

Name of methodology / 

approach 
Inter-combined Model  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Inter-combined Model aims to shorten the knowledge transfer from 

designers to developers. The model has four parts: 

- Requirement analysis and user study 

- Model establishment and function map specification 

- Design and background engine implementation 

- System integration and coding 

 

Additional resources on 

methodology / 

approach description 

Each phase was described in additional details, but not to the level of 

activities, tasks, inputs and outputs. 
 

Report on methodology 

/ approach example 

implementation 

Mobile Karaoke project.  

Organizational aspects 

on implementation  

Researchers stated that Inter-combined Model has positive effect on 

human resource arrangement and cost reduction. 
 

Project management 

aspects on 

implementation  

Some implications on human resource arrangements.  

 

The presented data extraction form consists of three parts. The first part aims to extract 

general data on each study, the second part directly responds to research questions, and the 

third part gives more details on the study quality but only related to data analysis and not 

inclusion and exclusion criteria. 

2.3.5. Data synthesis 

As the research questions in this systematic literature review are straightforward and easy to 

answer from of extracted data, the activities of the data synthesis are performed according to 

instructions given by Petticrew and Roberts (2005). 
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The data are synthesized into the following groups 

 Studies reporting the creation of new methodology or approach 

 Studies reporting the methodology or approach usage 

 Methodologies/approaches not eligible for multiplatform development 

 Methodologies/approaches targeting specific mobile applications 

Lists of potential methodologies and approaches that could be used in the subsequent phases 

of this research process are given in Table 18 and Table 19. The total of 14 methodologies 

and 2 approaches are identified as new while 9 methodologies and 4 approaches are identified 

as being used in development of mobile applications. Methodologies are marked as type M 

and approaches as type A in the following tables. 

Table 18 - Developed methodologies and approaches 

Name Type Study 
QA 

score 
Agile Methodology for Mobile Software Development M (Rahimian and Ramsin, 2008) 3.0 

Agile Solo M (Nyström, 2011) 2.0 

Agile usability process M (Wolkerstorfer et al., 2008) 2.0 

DEAL M (Alyani and Shirzad, 2011) 2.5 

Integrated Product Development Process for Mobile Software M (Zeidler et al., 2008) 2.0 

Inter-combined Model M (Xiong and Wang, 2010) 3.0 

MASAM methodology M (Jeong et al., 2008) 2.5 

Methodology for Building Enterprise-Wide Mobile Applications M (Chen, 2004) 4.0 

MicroApp visual approach M (Cuccurullo et al., 2011) 2.5 

Mobile Application Development Methodology M (Rupnik, 2009) 1.5 

Mobile-D M 
(Abrahamsson et al., 2004)  2.5 

(Abrahamsson et al., 2009) 1.0 

New media application prototyping M (Biswas et al., 2006) 3.0 

Systems Development Methodology M (Binsaleh and Hassan, 2011) 4.0 

ViP (Virtual Platform) M (Um et al., 2005) 4.0 

Composite Application Software Development Process Framework A (Maharmeh and Unhelkar, 2009) 3.0 

MobiLine A (Marinho et al., 2012) 4.0 

Type: M - Methodology, A - Approach 

 

There are several facts that should be pointed out and are related to the identified new 

methodologies and approaches. First of all, only one methodology was covered by more than 

one study, while all other methodologies are presented in a single identified study. Secondly, 

as expected, the methodologies and approaches in the mobile development field are rather 

new. Only 4 studies are more than 5 years old, while all the other studies date in the last five 

years. The overall study quality assessment score (calculated as explained in chapter 2.3.3), 

has the mean value of 2.735 (68.38%) with the standard deviation of 0.903. This can be 

interpreted as relatively low study quality with high deviation in quality. But, as the quality 

assessment was performed on the studies and not on the reported methodologies, without 

additional research it is not possible to order the methodologies according to their quality.  
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On the other hand, as expected, more authors reported the usage of methodology or approach. 

Total of 9 methodologies and 4 approaches have been reported as used. The important fact is 

that only one methodology (Mobile-D) identified as new was reported to have been used. The 

usage of this methodology was reported in five different studies, while all other new 

methodologies and approaches were not reported to have been used.  

Table 19 - Used methodologies and approaches 

Name Type Study 
QA 

score 
Design Science M (Ejlersen et al., 2008) 3.0 

Dynamic Channel Model M 
(Shiratuddin and Sarif, 2008) 2.5 

(Shiratuddin and Sarif, 2009) 2.0 

Extreme Programming M 

(Korkala and Abrahamsson, 2004) 3.0 

(Kaariainen et al., 2004) 2.0 

(Salo, 2004) 3.0 

Kanban A (Bergström and Engvall, 2011) 1.5 

Mobile-D M 

(Shiratuddin and Sarif, 2008) 2.5 

(Shiratuddin and Sarif, 2009) 2.0 

(Korkala and Abrahamsson, 2004) 3.0 

(Hedberg and Iisakka, 2006) 4.0 

(Ihme and Abrahamsson, 2005) 3.5 

Mobile Engineering (MobE) M 
(Shiratuddin and Sarif, 2008) 2.5 

(Shiratuddin and Sarif, 2009) 2.0 

Mobile RAD M 
(Shiratuddin and Sarif, 2008) 2.5 

(Shiratuddin and Sarif, 2009) 2.0 

Rapid Application Development M (Forstner et al., 2005) 2.0 

Scrum M 

(Su and Scharff, 2010) 2.0 

(Pauca and Guy, 2012) 1.0 

(Scharff and Verma, 2010) 2.5 

(Scharff, 2010) 2.5 

(Alyani and Shirzad, 2011) 2.5 

(Scharff, 2011) 2.0 

Model Driven Development A 

(Charaf, 2011) 3.0 

(Kim, 2008) 2.5 

(Ortiz and Prado, 2010) 3.0 

(Forstner et al., 2006) 2.5 

(Thompson et al., 2010) 1.0 

(Khambati et al., 2008) 2.5 

Model Driven Product Lines A (Zakal et al., 2011) 2.0 

Software Product Lines A (Rosa and Lucena,Jr., 2011) 2.0 

Test Driven Development A 

(Nyström, 2011) 2.0 

(Abrahamsson et al., 2005b) 4.0 

(Kim et al., 2009) 1.5 

(Hedberg and Iisakka, 2006) 4.0 

Type: M - Methodology, A - Approach 

 

It was hard to predict the number of methodologies that would target specific mobile 

platforms, and it turned out that only one methodology (see Table 20) cannot be used in multi-

platform mobile application development as it targets only those platforms which support 

Flash technology. Actually, the paper presents a development process for interactive mobile 

applications based on Sony Ericssons‟s Capuchin project which aimed to bring together the 
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advantages of Java Micro Edition (JME) and Flash Lite. The methodology in particular deals 

with specific issues raised by this approach and this marks the stated methodology as not 

eligible to be used in this research process.  

Table 20 - Methodologies not eligible for multiplatform development 

Name Type Study 
QA 

score 
Development process of Caputchin applications 

Targeting platforms supporting Flash only 
M (Maia et al., 2010) 1.0 

Type: M - Methodology, A - Approach 

 

The stated groups are defined in accordance with the research process that has been 

performed in this thesis and that is the reason why some methodologies and approaches had to 

be separately reported as targeting only specific or specialized mobile applications (Table 21). 

These methodologies were also not applicable to be used in this research process, but are 

worth mentioning as being developed for mobile applications. 

Table 21 – Methodologies/approaches targeting specific mobile applications 

Name Type Study 
QA 

score 
Component Based Model for IP Multimedia Subsystem 

Targeting IP multimedia subsystems only 
M (Barnawi et al., 2012) 4.0 

Design and Development Methodology for mobile RFID applications 

Targeting only RFID applications 
M (Schwieren and Vossen, 2009) 0.5 

MMCD Methodology 

Targeting only m-Learning applications 
M (Saifudin et al., 2011) 1.5 

PEPERS Development Methodology (PDM) 

Targeting only P2P applications 
M (Walkerdine et al., 2009) 3.0 

2TUP - 2 Tracks Unified Process 

Targeting only mobile games development 
M (Gal and Topol, 2005) 3.0 

MobiCloud  

Targeting generation of a cloud mobile hybrid applications 
A (Manjunatha et al., 2010) 2.5 

Type: M - Methodology, A - Approach 

2.4. Choosing development methodology 

As stated before, the total of 22 development methodologies and 7 development approaches 

were identified as eligible to be used in the development process.  

As the starting-point assumption of this research is to provide the teams with a possibility of 

using native development environments and preferred development methodology, the 

research should not be dependent on any special characteristics that a chosen methodology 

consists of. In the other words, any identified methodology could be used. 

However, the established criterion used to choose development methodology was reported 

applicability. Cross-analysis of the results presented in Table 18 and Table 19 shows that 
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Mobile-D was the only methodology specifically created for mobile applications development 

that was reported to be used in practice. In addition, we performed a small research to identify 

other sources published by the methodology creators and found that this methodology is 

thoroughly and in detail defined. The documents that are officially available and that describe 

the Mobile-D development methodology are presented in the following table (Table 22). 

Table 22 - Documents describing Mobile-D methodology 

Year Document 

(2005a) P. Abrahamsson, A. Hanhineva, H. Hulkko, J. Jäälinoja, K. Komulainen, M. Korkala, J. 

Koskela, P. Kyllönen, and O. Salo, “Agile Development of Embedded Systems: Mobile-D,” 

ITEA, Agile Deliverable D.2.3, 2005. 

(2006) T. Kynkäänniemi and K. Komulainen, “Agile Documentation in Mobile-D Projects,” 2006. 

(2004) O. Salo and J. Koskela, “Mobile-D Glossary, VTT Technical Research Centre of Finland, 

Available at: http://agile.vtt.fi/mobile-d.zip.” VTT Technical Research Centre of Finland, 

2004. 

(2006a) VTT Technical Research Centre of Finland, “Mobile-D Online Presentation (Web 

Application),” AGILE Software Technologies Research Programme, 2008. [Online]. 

Available: http://agile.vtt.fi/mobiled.html. [Accessed: 16-May-2012]. 

(2004) P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. Korkala, J. Koskela, P. 

Kyllönen, and O. Salo, “Mobile-D: an agile approach for mobile application development,” in 

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming 

systems, languages, and applications, New York, NY, USA, 2004, pp. 174–175. 

 

The obtained papers and other documents that include detailed guidelines are sufficient to 

make this methodology fully applicable and usable throughout this research. Additionally, as 

the Mobile-D is leaning on, and is strongly connected with, Test Driven Development 

approach, this approach will be used in the following phases as well.  

To conclude, systematic literature review resulted in the lists of different methodologies 

reported to be used, or created specifically for mobile applications development. But, the 

analysis on reported applicability showed that Mobile-D with Test Driven Development is the 

only newly created methodology already used in practice and that is the reason for choosing 

this methodology and approach in the research phases that follow. 

2.5. Relevance of the chapter 

To recapitulate, first we explored the state of the art in performing a systematic literature 

review in the field of software engineering. The three-phase guidelines given by Kitchenham 

and Charters (2007) are followed and discussed by adding the recommendations and findings 

from other influential authors in the field. The results of the discussion are a contribution to 

the knowledge and could be used either by researchers or by PhD students in order to employ 

suitable methods and techniques and to lower the biases and increase the quality of review. 
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Following these recommendations, second part of the chapter presented the conduction of 

SLR which in the end brings the identification of 22 development methodologies and 7 

development approaches that could be used for multi-platform mobile applications 

development. Among identified methodologies, our analysis showed that Mobile-D is the 

most suitable methodology and it will be used along with Test Driven Development in the rest 

of this research process. 

Having the methodology and approach chosen, we have finished the first phase of our 

research process. Now we move to the second phase with the goal of identifying the artifacts 

arising in the methodologically driven development processes for two target platforms. 
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3. METHODOLOGY IMPLEMENTATION 

After performing systematic literature review, identifying and choosing the development 

methodology to be used in this research, in this chapter we will report in detail the 

development process and Mobile-D methodology implementation. As the report of such 

process is not a trivial task, first we will introduce the basics of Mobile-D methodology and 

accompanying approach called Test Driven Development in order to give an overview of the 

performed phases. Additionally, we will define the term „artifact‟ to clearly denote the point 

of view to be taken while reading this chapter.  

The mobile application that is developed is named KnowLedge. It is a simple social network 

application designed to share knowledge among participants grouped in groups of interest. 

The application is designed to cover the main functional development requirements and thus 

to represent the vast majority of mobile applications. Such requirements in general cover 

distinct development concerns, including UI features, local database, device API-s, 

connection to web services and 3
rd

 party features. 

The report of the development process presented in this chapter focuses on the created 

artifacts and their connection to each other along with their connections to the performed 

activities. In the Android case we bring a detailed description of the whole process along with 

the examples of the artifacts created. Even so, in the Windows Phone case, we decided not to 

report the whole process in detail again, but rather to discuss the possibility of reusing the 

existing artifacts. We found that many artifacts can be completely or partially reused. 

3.1. Mobile-D overview 

3.1.1. Introducing Mobile-D 

The methodology was first presented by Abrahamsson at al. (2004) and after that it slightly 

evolved to the final version which is in detail presented in technical specification which 

includes the complete glossary, the description of all phases, stages, tasks and practices along 

with templates (Abrahamsson et al., 2005a). Additionally, the VTT Technical Research 

Centre of Finland created and published a web application which can be used to easily 
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navigate through methodology phases and to obtain the relevant specification documents 

(VTT Technical Research Centre of Finland, 2006a).  

3.1.2. Mobile-D process 

The short overview of this methodology is already given in the chapter 2.2.2 while describing 

methodologies for development of mobile application. A more detailed overview of the 

process will be given here in order to create a basis for the implementation that follows. 

Mobile-D process (see Figure 13) includes five phases that are executed in partially 

incremental order. The aim of the first phase, called Explore, is to prepare the foundation for 

future development. The Initialize phase should describe and prepare all components of the 

application as well as to predict possible critical issues of the project. Initialize phase is 

usually called a zero iteration (0-iteration) phase as it in addition to project set-up includes the 

stages of planning day, working day and release day which are also used in Productionize 

phase. The idea of the 0-iteration phase is to assure the functionality of the technical 

development environment through the implementation of some representative features. 

Additionally, in this phase some prototyping can be done in order to decide which 

technological solution would be the most appropriate for the rest of the development process.  

 

Figure 13 - Mobile-D process 

The Productionize and Stabilize phases are executed iteratively in order to develop all other 

features of the mobile product. Iterations start with planning day in Productionize phase. The 

first activity is post-iteration workshop which aims to enhance the development process to 

better fit the needs of the current software development team. The requirements analysis, 

iteration planning and acceptance test generation tasks follow and are executed during the 

planning day. The working day is based on implementation through test driven development, 

pair programming, continuous integration and refactoring. This day ends with the task of 

informing the customer on new functionality. Finally, the release day includes the activities of 

integration and testing. The Stabilize phase has the goal to finalize the implementation, 

including integrating subsystems if needed. As this phase can contain additional programming 

and development, the activities are very similar to the activities in the Productionize phase. 

N iterations 

Explore Initialize Productionize Stabilize 
System Test 

and Fix 
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Only additional activity concerns documentation wrap-up. Iterations should result in a 

working piece of functionality at the user level.  

Finally, System Test and Fix phase aims to detect if the produced system correctly implements 

the customer defined functionality. It also provides the project team feedback on the systems 

functionality and the defect information for last fixing iteration of the Mobile-D process. This 

last iteration is not obligatory, but when fixing is needed it consists of the same activities as 

other implementation iterations already explained.  

While observing the whole Mobile-D process we can conclude that it is an agile approach to 

mobile application development which is based on combination of eXtreme programming in 

terms of practices, Crystal family of methodologies in terms of scalability and Rational 

Unified Process in the terms of life-cycle coverage. In paper (Supan et al., 2013) we have 

discussed the challenges and issues that accompany the use of this methodology that 

companies or small teams should be aware of before introducing it in everyday practice. 

3.1.3. Mobile-D artifacts 

An artifact may be defined as “an object that has been intentionally made or produced for a 

certain purpose” (Hilpinen, 2011) or it may refer to “one of many kinds of tangible byproduct 

produced during the development of software” (Parker, 2011). The artifacts that arise in the 

process of mobile application development are from special interest in this research and thus 

we have adopted the definition of an artifact as “any piece of software (i.e. 

models/descriptions) developed and used during software development and maintenance.” 

(Conradi, 2004) 

Conceptual model (Figure 14) comprises the Mobile-D process, its activities and tasks that are 

performed by utilizing some methods and practices and using some tools resulting in artifacts 

as final outputs. Thus, artifacts are results of performed activities, but they are also used as 

inputs to perform other activities and tasks. 

 

Figure 14 - Artifacts in Mobile-D 

To give an overall picture, Table 23 shows all inputs and outputs that are defined by the 

methodology and are connected with the five mentioned phases. 

Inputs 

Outputs 

Producing Using some 

Performed by 

utilizing 

Consists of Mobile-D 

Process 

Activities 

and Tasks 

Methods and 

Practices 
Tools Artifacts 
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Table 23 - Mobile-D inputs and outputs 

 
Source: (Supan et al., 2013) 
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The artifacts that we are interested in this research do not concern only the direct results of 

performing the activities, but also the specific outputs that are connected with the 

development for a specific target platform. 

3.1.4. Test driven development 

Mobile-D strongly suggests the usage of Test Driven Development which is connected to all 

Mobile-D phases. The basics and the state of the art on TDD can be found in (Hammond and 

Umphress, 2012). To make the understanding of the following chapters easier, we bring a 

quick overview of this development approach.  

The practice of test driven development requests the developer to write a failing automated 

test case and then to write the production code that will pass the test. In general TDD process 

can be summed up into five main steps (Beck, 2002):  

1. Write a new test case.  

2. Run all the test cases and see the new one fail.  

3. Write just enough code to make the test pass.  

4. Re-run the test cases and see them all pass.  

5. Refactor code to remove duplication. 

In Mobile-D, the purpose of TDD is to give the developers confidence that the code they 

produce works as well as to guide the design of the code to an easily testable structure. 

Additionally, the refactoring practice is also based on TDD to ensure that changes made to the 

code did not break any functionality (Abrahamsson et al., 2005a). Finally, being the main 

practice of any working day, test driven development is used in all phases except the first 

(Explore) phase. 

3.1.5. Mobile-D reference 

The most important source of information on how to perform Mobile-D methodology for this 

research is the already mentioned technical report presented in (Abrahamsson et al., 2005a). 

As the document contains detailed information on Mobile-D phases, stages, activities, tasks, 

practices, patterns and other relevant concepts, we recommend having a glance at it before 

reading the following sections and having it at disposal while reading. All other documents 

mentioned in Table 22 are also a relevant source of information and can be used to gain more 

comprehensive knowledge on Mobile-D.  

The following sections report on the conduction of Mobile-D methodology in creation of a 

prototype application for two target platforms. 



 

 

82 

 

3.2. Explore phase 

3.2.1. Targeted users and stakeholders 

The application KnowLedge does not have any specific target groups. It is aimed to be 

distributed freely through online stores to all interested parties. Additionally, as the nature of 

the application was to serve as an experiment in a research process, there are no classical 

stakeholders recognized. The only participating individuals in the process were two thesis 

supervisors included as process specialists, and the researcher himself who conducted all of 

the activities. 

3.2.2. Initial requirements 

The application is intended to enable users to learn and/or share knowledge in an interactive 

and social manner. The basic usage should include the following functional requirements: 

 Browsing through the categories to find existing knowledge on a topic 

 Placing the request for new explanation/instructions/tutorial 

 Creation of new knowledge (either answering unsolved requests or creating a new 

topic) 

 Sharing the knowledge in groups 

 Sharing location data among group members 

 Android and Windows Phone native look and feel 

 Different user privacy levels 

The presented list does not include nonfunctional requirements as nonfunctional requirements 

analysis was not performed for this prototype application. 

3.2.3. Architecture line description 

The goal for internal product quality: an evolutionary prototype. 

System context: the application is intended to be a standalone mobile application dependent 

on internet connection and on supporting web services. The optional dependency (not being a 

part of the core features) is fine or coarse GPS location. Only one interface to the external 

entities should be developed in order to join the mobile application with web services. There 

is no need for any other interfaces as the system does not include other enterprise, 

infrastructure or legacy subsystems. 

Technological domain includes the nonfunctional requirements of application being runnable 

on any Android 2.2 or newer device. According to currently available data (Android 
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Developers, 2013), more than 95% of all Android devices are covered by this inclusion 

criterion. 

Architectural risks: variety of android devices and supporting API-s. Different device 

capabilities and significant differences in device screen size could become problem in testing 

and implementation of user interface. 

Using a somewhat old version of API-a (version 8) could result in constraints in application of 

suitable user interface and other features. 

Architectural skills: sufficient, as the main researcher has been involved in mobile 

applications development for Android during the last several years. 

Architectural training needs: not necessary. 

Software architecture: multilayered software architecture with separated business logic, user 

interface and database connectivity layers. The idea was to capture the core architectural 

abstractions for the whole system as soon as possible, on the basis of the experience of the 

project team, and to do a constant architectural refactoring by using pattern-based core 

abstractions. 

Software architecture documentation: described software architecture documentation process 

supported by developer-level models, sketches and short documents used in the development 

process.  

Templates for SW architecture and Design Description document: Several specific templates 

aligned with UML modeling language were created. The architecture and design were 

described at least with UML Class diagrams and ERA models. As the chosen methodology 

specifies, some other typical agile tools were also used in order to describe the features and 

planned tasks. These tools include UI sketches, product backlog, story and task cards et 

cetera. Typical software architecture that was used is multi-layered software architecture. 

3.2.4. Project plan 

Due to the project‟s specific requirements and its background, it did not include any financial 

or resources constraints. The basic project plan was defined as a set of phases and stages and 

the overall project duration was set to 20 weeks. The team responsible for the conduction of 

the project was composed of a researcher and supervisors, although the supervisors‟ roles 

were very limited and included few activities during the project establishment, mainly quality 

checking and final validation. 

The initial project plan is given in the following picture including the identified iterations and 

graphical representation on Gantt chart. 
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Figure 15 - Basic project plan 

In this phase it was impossible to determine the iterations that will be necessary in the Fix 

phase as those are dependent on the overall quality of the development process, and on some 

unpredictable technological issues. 

3.2.5. Documentation 

The documentation includes two distinct sets of documents. First set considers the documents 

related to the project implementation and project management. Aligned with the agile 

practices, this set contains the documents that are considered to be the necessary minimum in 

every project development process. This group contains: 

 Initial requirements document 

 Project plan document 

 Software architecture and design description document 

 System test plan 

 Product backlog 

 System test report 

The second group of documents includes documents related to the research that is conducted. 

This set includes the following documents:  

 Identified artifacts and description 

 Historical data on every document 

 Notes on the development process 

The iterative updating approach of producing the documents with preservation of versions 

was used. This approach is aligned with the agile practices and is suitable for a project of this 

type. 
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3.2.6. Monitoring and measurement 

As our project did not deal with resource (human, time, money) management, the monitoring 

activities were not in our focus. Thus, the monitoring of the development process was 

conducted only by identifying the level of agreement between planed and conducted 

activities. Additionally, the duration of the activities was measured and noted for future 

comparison with subsequent development processes. The overall goal for this process was not 

to exceed the planned duration of the project, but this was not a crucial requirement and it did 

not affect the research goals. 

Additionally, the quality assurance was conducted by acceptance tests, validation, usage of 

coding standards, process validation by supervisors and finally product verification on the 

market. 

3.2.7. Project plan checklist 

Taken from the Mobile-D process library (VTT Technical Research Centre of Finland, 

2006b), the following table represents the project plan checklist for the Explore phase. 

Table 24 - Project plan checklist - Explore 

Project Plan Checklist 

Explore 

Initial requirements Yes No NA 

All the initial functional requirements have been included in the project plan x   

All the initial non-functional requirements have been included in the project plan x   

Schedule & Rhythm 

The overall schedule has been included in the project plan x   

The planned rhythm (phases and its iterations) have been defined in the project plan x   

Resources 

Project plan has been updated with the identified interest groups and their members   x 

Project plan has been updated of the information concerning the selected software 

development tools, terminals, etc. 
x   

Project plan has been updated with the identified project team members x   

Training 

Training needs of project team have been included in the project plan   x 

Schedule of training has been included in the project plan   x 

Documentation 

The documents to be produced in the project have been included in the project plan x   

The life span of each document has been included in the project plan x   

Quality Assurance 
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The quality assurance procedures have been defined in the project plan for each work 

product (documentation, code and product) including the actors and schedule 
x   

The checklists showed that during the Explore phase, three aspects of Mobile-D methodology 

were not applicable (NA) in the context of this mobile project (as explained in previous 

chapters). All other elements are marked positively which makes this phase successfully 

completed.  

3.3. Initialize phase 

3.3.1. Environment setup 

The software development environment was prepared for development of Android 

applications. Although the installation of base tools on the machine (including browser, PDF 

viewer, picture viewer etc.) and the installation of specific tools for project management 

(GantProject) and reporting tools (Microsoft Office) was performed during the project 

preparation and explore phase, the implementation tools (Case Studio, Sprintometer, Visual 

Paradigm for UML, SQLite Professional…) and development (Java Development Kit, Eclipse 

IDE, Android Development Tools, Android SDK…) had to be installed in this phase. 

Additionally, the drivers for testing devices were also downloaded and installed and the 

devices were connected to the development environments. The development environment was 

tested and simple Android application was produced and deployed on a mobile device. 

Finally, the subscription to servers for hosting database and services was obtained and tested. 

All mentioned tools were free or obtained through relevant institutional subscription of the 

University of Zagreb and/or the University of Alcala.  

There was no need for environment setup for the purpose of training or customer 

communication. 

3.3.2. Project plan and architecture plan 

The basics for overall project execution plan remained the same at the end of this phase, but 

taking into consideration a more detailed requirements analysis it was possible to define a 

more fine grained iterations including the planning, working and release days. The updated 

project plan can be seen in Figure 16. As there was no need for personal resources or financial 

planning, these tasks were skipped. Additionally, extensive risk planning which usually takes 

place in organizational environment was not necessary. 
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Figure 16 - Detailed project plan 

The planned system architecture is defined on two abstraction levels. First (upper) abstraction 

level, as shown in Figure 17, presents the overall system architecture which includes the main 

system participants and components. The identified components are mobile application, and 

web and database servers, while the infrastructure is based on connectivity (Internet) and GPS 

data. Although, the main system functionality is not visible from this diagram, the important 

requirement of enabling the users to form the groups is presented here.  

 

Figure 17 - Overall system architecture 

The second architectural diagram shows the mobile application detailed architecture as it is 

presented in Figure 18. The idea was that the mobile application should, accordingly, 

communicate with web service and lean on native (i.e. Android) and 3
rd

 party API-s in order 

to deliver the required functionality. It should be based on multi-layered architecture with 
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three distinct and connected layers. The internal cohesion (see (Miller, 2008)) of the presented 

modules should be high, and at the same time the external coupling should be kept low. 

 

Figure 18 - Mobile application architecture 

3.3.3. Initial requirements analysis 

The initial requirements analysis task was performed, and the results include product backlog, 

the user interface sketches and the generated acceptance tests for each requirement presented 

in next chapter.  

3.3.4. Product backlog 

Product backlog describes application features presented through user stories. Every feature 

has an assigned importance level. They are scaled from 1 being not important to 5 being very 

important. 

Table 25 - Product backlog 

Features / stories Importance 

F1.1 

When the application is started the news should be displayed. News should include any 

unread answers to the user‟s questions; news on activities in user‟s groups and other 

information important for current user. 

3 

F1.2 
The news presented on the first application screen should be “links” to corresponding 

application functionality. 
3 

F2.1 

Current user should be able to check all his questions, including those that have been 

answered already. Questions should be presented by title and short description. Other 

details about every question should be presented in new window after user clicks on it. 

5 

F2.2 

User should be capable to add a new question. New questions should be defined in 

separate windows which should include all important information about the question (title, 

text and images). The images should be taken by the phone camera.  

5 

F2.3 
User should be capable to delete his/her own question. The deletion should not be 

performed without user‟s explicit confirmation on deletion action. 
3 

Android APIs 

3rd party APIs 

Local Database 

Program Logic 

User Interface 

Web 

service 

interface 

Web 

service 

Mobile Application 
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F2.4 
User should be capable to change his/her own question. The process of question changing 

should be similar to process of question adding. 
1 

F2.5 User should be capable to add answers to his/her own and others‟ questions. 5 

F2.6 The owner of the question should be able to mark a question as answered. 5 

F2.7 
User should be able to apply the filter by root-searching the list of questions available to 

him. 
2 

F3.1 
User should be able to set/change own profile. The profile should include the basic 

information about the user (visible) to other group members.  
5 

F3.2 

User should be able to set/change application settings. The settings should include the 

possibility to deny further invitations to groups, to set privacy level (of showing or no 

emails to other users and of showing or no current location to other users). 

2 

F4.1 User should be able to see the list of all groups currently enrolled to. 5 

F4.2 
User should be able to apply the filter by root-searching the available groups according to 

their title and description. All groups should be observed by search. 
2 

F4.3 

User should be able to see the details on any group he is enrolled to, including the list of 

other members. User should NOT be able to see the list of other members (except their 

number) for the groups he is not enrolled to. 

4 

F4.4 User should be able to join any existing group by sending the application to group owner. 5 

F4.5 

User should be able to leave any group he is enrolled to. Other group members should 

only be notified on that. Owner cannot leave the group and the group should be deleted 

manually (see F5.4). 

1 

F5.1 User should be able to create a new group. 5 

F5.2 
User should be able to invite new members to his group by inviting them via in 

application email. 
2 

F5.3 User should be able to invite new members to his group by sending them email. 1 

F5.4 User should be able to delete any group he owns. 2 

F6.1 
User should be able to see all members of the groups he is enrolled to on the map. If group 

member has disabled this privacy setting, it will be excluded from the view.  
3 

F7.1 User should be able to read a general help about the application usage. 1 

 

3.3.5. Acceptance tests 

The template sheets for acceptance tests proposed by Mobile-D (Abrahamsson et al., 2005a) 

were used and the tests are defined for each application requirement defined in the product 

backlog. Each acceptance test was to be approved at the end of development process, and it 

includes the definition and remarks on the test of final functionality in different contexts. The 

following test descriptions are examples of acceptance tests created in this step. 

 

Acceptance test F1.1 

Displaying news for current user 

When the application is started the news should be displayed. News should include any 

unread answers to the user‟s questions; news on activities in user‟s groups and other 

information important for current user. 
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Context 1 

Application executed for the first time or user did not created his profile yet. 

Expected output 

Title Description 
Welcome Welcome to KnowLedge application. To begin click to set up your user profile. 

 

Context 2 

User is not member of any group and there are no activities to display. 

Expected output 

Title Description 
No news There are no news to display. Use application menu to join groups and become part 

of KnowLedge community.  

 

Context 3 

User actively uses the application and has news in several categories. 

Expected output 

Title Description 
New answer Your question %questionTitle has been answered by %firstName. 

%questionTitle %description. [up to 50 chars] 

New invitation You have invitation by %firstName to join the group %groupName. 

Application accepted Your application to join the group %groupName is accepted.  

New member %firstName joint the group %groupName. 

 

 

Acceptance test F1.2 

Linking news 

The news presented on the first application screen should be “links” to corresponding 

application functionality. 

Context 

News presented on the first screen. 

Expected output 

News Link 
Welcome Users profile page. 

No news -  

New answer Question %questionTitle page. 

%questionTitle Question %questionTitle page. 

New invitation Invitation dialog followed by group page. 

Application accepted Group %groupName page.  

New member New member profile page. 
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Acceptance test F2.1 

My questions 

Current user should be able to check all his questions, including those that have been 

answered already. Questions should be presented by title and short description. Other details 

about every question should be presented in new window after user clicks on it. 

Context 1 

User clicks on “My questions” option. 

Expected output 

Question title Question description [up to 50 chars] 
Title 1 Description 1. 

Title 2 This description cannot fit into 50 chars and wi… 

Example question What is the name of this bird? 

 

Context 2 

User clicks on any question presented in the list. 

Expected output 

Question 

title 

Question description [full] Asked by; Group Answers 

Title 1 Description contained from text and images. 

In single description, text and image could be 

presented multiple times. 

%firstName 

%lastName 

 % 

groupName 

List of 

answers. 

Title 2 This description cannot fit into 50 chars and 

will be shortened in list view but in question 

view should be written fully. 

%firstName 

%lastName 

 % 

groupName 

List of 

answers. 

Example 

question 

What is the name of this bird? 

 
I sow it yesterday in our park. It looks like 

some kind of a parrot. 

John 

Johnson 

Nature -  

 

Acceptance test F7.1 

Help 

User should be able to read a general help about the application usage. 

Context 

User clicks on “Help” option. 

 

Expected output: 

The new view with textual help appears. The help contains information on all application 

features. 
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3.3.6. User interface sketches 

In order to align the user requirements with the technological implementation and possibilities 

provided by a target platform, user interface sketches were created. These sketches also 

enabled the team to get a full picture of the desired functionality. After several iterations, the 

sketches were finished. Figure 19 shows an example of the created document. 

 
Figure 19 - User interface sketches 

3.3.7.  Trial Day 

The selected feature that was to be implemented in this trial day is F3.1. The idea of 

performing trial day was to create functionality that will cover (at least in basic aspects) most 

of the architectural design elements and also to create the base for other features. As the 

application is user oriented, having information on the current user was a prerequisite for 

almost all other features which made this feature a core functionality of the system. 

Table 26 - Selected feature for Trial Day 

Features / stories Importance 

F3.1 
User should be able to set/change own profile. The profile should include the basic 

information about the user (visible) to other group members.  
5 
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Finally, the goal of this day was also to assure the functionality of the technical development 

environment through the implementation of the feature. The following tables present defined 

story cards (SC) and task cards (TC). These documents were defined during the planning day, 

but were refined during the implementation and documentation wrap-up. 

3.3.7.1. Story and task cards 

Story card F3.1 

F3.1 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New H H 4 5 5  

Description 

User should be able to set/change own profile. The profile should include the basic information about the user 

(visible) to other group members.  

The basic information about the user should include first name, last name and mail address. The information 

should be stored in local database and synchronized with information on web service.  

Date Status Comment 

11.7.2012 Defined 

This story is taken to be implemented during the trial day. This will introduce the 

execution of tasks concerning preparation and validation activities and thus will 

be slightly different than in implementation of other stories. 

12.7.2012 Implementing 

The implementation is taking longer than expected. There are many decisions that 

are to be made but after some initial research is performed. This research include 

prototyping and writing the code that is to be discarded, searching and reading the 

available sources, looking through finished projects etc. 

16.7.2012 Done 

The basic architecture of this project is created. The database, business logic, user 

interface, web service and helping layers are established. The automatic tests 

including unit and integration testing are created. 

16.7.2012 Verified 
All test, including unit, integration and acceptance testing are performed and 

successful. 

   

* This story card, as all other SCs, was defined during the planning day but was refined during the 

implementation. 

 

Task card TC-0-1 - Create initial test cases 

TC-0-1 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 5 5 3  

Description 

Initial test cases for this functionality should be created.  

Date Status Comment 

11.7.2012 Defined  

12.7.2012 Implementing 

After choosing from several existing testing frameworks, the core functionality 

will be tested by native android.test framework, and the robotic testing of 

application usage will be performed by robotium free framework 

(code.google.com/p/robotium/). 

12.7.2012 Done 

Some core tests are created. Other tests and robotic integration testing will be 

defined at the end of the stage. The problems experienced include the lack of 

knowledge on the platform capabilities. 

16.7.2012 Verified All tests succeeded.  

   

* This task card, as all other TCs, was defined during the planning day but was refined during the 

implementation. 
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Task card TC-0-2 - Create database model 

TC-0-2 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 1 1 5  

Description 

The database model for mobile and web service part of the system should be created. The model should be easy as 

it is only a trial of whole database model that is to be implemented in later phases.  

Date Status Comment 

11.7.2012 Defined  

12.7.2012 Implementing 
The part of database model important for this story is created for mobile 

application and for web service. 

13.7.2012 Done 
The database containing defined entities is up and running on hosting provider. 

The model on mobile application will be deployed through database layer. 

16.7.2012 Verified All tests on mobile application succeeded. 

   

 

Task card TC-0-3 - Create database layer in mobile app 

TC-0-3 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 3 3 5  

Description 

The database layer is a set of classes that are responsible to create and maintain local SQLite database, as well as 

to provide the access to the data (i.e. create, read, update or delete) data. 

Date Status Comment 

11.7.2012 Defined  

12.7.2012 Implementing 

The database layer is relatively easy to create but hard to test as it should be 

tested in context of other application functionality. This will be done while 

implementing task of defining synchronization layer. 

13.7.2012 Done 
Currently layer contains base class for accessing database, plus entity class user 

for accessing the information on user in database. 

16.7.2012 Verified All test succeeded. 

   

 

Task card TC-0-4 - Create database layer in web app 

TC-0-4 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 5 5 3  

Description 

The database layer is a set of classes that are responsible to create and maintain local MySQL database, as well as 

to provide the access to the data (i.e. create, read, update or delete) data. The classes should be accessible through 

exposed web services with corresponding exposed methods. 

Date Status Comment 

11.7.2012 Defined  

12.7.2012 Implementing 
Using phpMyAdmin, the database is successfully created on MySQL server. 

Additionally, web service and supporting classes are being developed. 

13.7.2012 Done 

The exposed web service along with supporting classes are created and tested 

locally. The security mechanisms are not included as these are not required by 

user requirements. 

16.7.2012 Verified Integration and acceptance tests succeeded. 
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Task card TC-0-5 – Implement and connect user interface 

TC-0-5 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 2 2 5  

Description 

Corresponding user interface for entering the data in mobile application should be created. The elements of user 

interface, as well as other messages communicated to the user should be language independent, but implemented 

in English. The functionality of user interface should through corresponding activity classes be connected to 

database layer. 

 

Date Status Comment 

11.7.2012 Defined  

12.7.2012 Implementing 

As the user interface for profile is not the first screen in the application, auxiliary 

operations were implemented in order to be able to navigate to target page. 

activity_profile.xml is being created and should be connected to business logic 

layer class ProfileActivity.java.  

13.7.2012 Done 
The user interface is created and is language independent, screen size 

independent and orientation independent. 

16.7.2012 Verified All tests including acceptance test succeeded. 

   

 

Task card TC-0-6 – Add synchronization layer 

TC-0-6 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 3 5 4  

Description 

The data stored in local database should be automatically synchronized to web service. 

Date Status Comment 

11.7.2012 Defined  

13.7.2012 Implementing 

The classes and behavior necessary for data synchronization between application 

and web service are created. KnowledgeService.java and JsonAdapter.java are 

created and ProfileActivity.java is seriously improved.  

13.7.2012 Done 

The data cannot be stored in local database unless the user is created by web 

service which returns the user id.  

After the user is created, it can be only updated. 

16.7.2012 Verified All tests succeeded. 

   

 

Task card TC-0-7 – Finalize tests 

TC-0-7 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

Enhance 5 5 3  

Description 

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and 

saved. If necessary, code should be updated and fixed.  

Date Status Comment 

11.7.2012 Defined  

13.7.2012 Implementing 

Some tests concerning core functionality were defined in previous task. Now 

other tests dependent on technological specifications should be defined, and 

finally the test defining robotized integration testing of application is to be 

created. 

16.7.2012 Done 17 fully automatic tests are created. Code is refactored and fixed. More than 100 
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assertions in included in 16 unit (more than 85) and 1 integration (more than 15) 

tests.  

16.7.2012 Verified All tests succeeded. 

   

 

Task card TC-0-8 – Optimize and refactor 

TC-0-8 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

Enhance 1 1 5  

Description 

Created code should be optimized, commented and refactored. All tests should execute successfully at the end.  

Date Status Comment 

11.7.2012 Defined  

16.7.2012 Implementing 

Considerable efforts were made during the implementation, so there was no much 

work to do during the refactoring task. Instead, the classes and methods are fully 

commented.  

16.7.2012 Done  

16.7.2012 Verified All tests succeeded. 

   

 

3.3.7.2. Data model 

The requirements analysis showed that this trial day concerns only the functionality regarding 

one entity in data model. User entity was defined as follows.  

 

 

Figure 20 - Entity users (trial day) 

The same data model was deployed on mobile database and on web service database hosted 

online. 

 

3.3.7.3. Created web service 

Exposed web service covering the functionality of managing the system users is exposed and 

can be accessed by the URL: http://knowledge.uphero.com/users.php. The frontend part of the 

web application is accessible to the mobile application through several methods that are 

described in Table 27. Other functionality is defined in the backend and cannot be accessed 

http://knowledge.uphero.com/users.php
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directly, but still plays a crucial role in the functionality of the web service. The model of the 

whole web application (with web service) is presented in the next chapter. 

 

Table 27 - Web service (users.php) specification 

http://knowledge.uphero.com/users.php 

method json* response** description 

create firstName 

lastName 

email 

[description] 

responseId 

responseText 

[newUserId] 

Creates a new user in database. Compulsory data 

in post include method name and the data about 

new user packed into JSON format.  

Web service will return JSON formatted string. If 

everything was OK the string will contain 

additional data on newUserId. 

update id 

firstName 

lastName 

email 

[description] 

responseId 

responseText 

Updates an existing user in the database. 

Compulsory data in post include method name 

and the updated data about user packed into 

JSON format. 

Web service returns JSON formatted string 

containing the operation result id and text. 

delete id responseId 

responseText 

Deletes and existing user from the database. 

Compulsory data in post include method name 

and user id. 

Web service returns JSON formatted string 

containing the operation result id and text. 

* json – parameter name. Should contain all stated elements in JSON format. 

** response – String response from web service. Contains all stated attributes in JSON format. 

 

3.3.7.4. Created class models 

As the feature selected for the trial day spans vertically through the whole system architecture, 

the class model designed and created during this phase is not so simple. The model contains 

classes for database connectivity layer, business logic layer, user interface layer plus some 

helper classes to connect to web service. The model of the mobile application is presented in 

Figure 21. 

http://knowledge.uphero.com/users.php
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Figure 21 - Class diagram (mobile app - trial day) 

Class NewsActivity was used only to provide the functionality of opening the target 

ProfileActivity class and thus is not defined at this phase. Additionally, some classes extend 

native Android classes, but these are not presented unless it was necessary in order to 

understand the navigability through the model (e.g. AsyncTask provides method execute 

which was called by ProfileActivity, as the method in SaveUserAsyncTask are protected and 

thus inaccessible from mentioned ProfileActivity class). The private attributes are hidden in 

the diagram as they are irrelevant in this report. Finally, many classes use native Android 

classes which are not shown in this diagram in order to make it clean and simple and direct 

the focus only on the architectural design. 

On the other hand, as presented in Figure 22, web application comprises of one exposed web 

service (users.php) which is backed up by several classes providing the means of accessing 

and storing the data and loading the necessary configuration.   
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Figure 22 - Class diagram (web service - trial day) 

 

3.3.7.5. Implementation 

During the implementation tasks, the classes presented in the above figures were implemented 

in Java and PHP. According to the Mobile-D methodology, very strict coding standards were 

applied, and at the end of the implementation process, the code was commented. An example 

of a part of a commented class is shown in Code 2. As it can be seen, the comments include 

the description and the tags defining the author, date, connecting task and other elements 

usual for code comments (such as see also, code etc.). 

 
package foi.uah.knowledge.entities; 
import foi.uah.knowledge.database.UsersAdapter; 
 
 
/** 
 * Class represents an User entity. When ever in application the information about  
 * the user should be used it should be provided by this class. As the application  
 * can only have one user, the behavior of this class is some-what specific.  
 *  
 * @author  Zlatko 
 * @date 13.7.2012. 
 * @task TC-0-2 
 */ 
public class User { 
 private static User currentUser; 
 private int id; 
 private String firstName = ""; 
 private String lastName = ""; 
 private String email = ""; 
 private String description = "";  
  
 /** 
  * Constructor which creates new user according to given parameters. 
  *   
  * @param id  User id. The value should be obtained from web service. 
  * @param firstName First name. Compulsory. 
  * @param lastName Last name. Compulsory. 
  * @param email  Email address. Compulsory. 
  * @param description An optional description of user to be created. 
  *  
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  * @author  Zlatko 
  * @date 13.7.2012. 
  * @task TC-0-2 
  * @changes  
  */ 
 public User(int id, String firstName, String lastName, String email, String  

description) 
 { 
  setId(id); 
  setFirstName(firstName); 
  setLastName(lastName); 
  setEmail(email); 
  setDescription(description); 
 } 
  
 /** 
  * Static method returns object with information on current user written in  

 * database. If data in database is changed, the information on current user  
 * will not change automatically, and thus the 

  * refreshCurrentUser method should be used. 
  *  
  * @see #refreshCurrentUser() 
  * @return An object with information on current user, if such exist in  

 * database. 
  *  
  * @author Zlatko 
  * @date 13.7.2012. 
  * @task  TC-2-2 
  * @changes  
  */ 
 public static User getCurrentUser() 
 { 
  if (currentUser == null) 
  { 
   UsersAdapter ua = UsersAdapter.getInstance(); 
   currentUser = ua.getCurrentUser(); 
  } 
  return currentUser; 
 } 
  
 
 /** 
  * Static method which refreshes the current object with the latest data on  

 * user in database. This method should be called whenever the database  
 * information is changed.  

  *  
  * @author Zlatko 
  * @date 13.7.2012. 
  * @task TC-0-2 
  * @changes 
  */ 
 public static void refreshCurrentUser() 
 { 
  currentUser = null; 
  UsersAdapter ua = UsersAdapter.getInstance(); 
  currentUser = ua.getCurrentUser(); 
 } 
... 
... 
 
 
} 

Code 2 - Commented class 
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Additionally, the best practices of object oriented programming (abstraction, inheritance, 

encapsulation, polymorphism, error handling etc.) were used (Mitchell, 2003), which resulted 

in a high internal cohesion (Miller, 2008) and at the same time the external coupling was kept 

low. Although the trial day resulted in a relatively small number of classes, the same 

principles were applied during the whole development process. 

3.3.7.6. Testing 

As the Mobile-D methodology suggests (Abrahamsson et al., 2005a), the whole development 

process was based on Test Driven Development (TDD) (Hammond and Umphress, 2012). As 

it is visible from the defined tasks, the working day began with the activities of writing the 

unit tests for core functionality. As some of the technological aspects were not familiar to the 

implementer of this task (i.e. me, a PhD student), the task resulted with only a few basic unit 

tests regarding already familiar and known classes.  

Other unit tests were written during the development and the TC-0-7 (Finalize tests) task. The 

whole process resulted in 16 unit tests which completely automatically asserted more than 85 

different conditions. 

The integration testing was also automatized by defining the Robotium test (Reda, 2012) 

which robotically runs the application on mobile phone or on simulator and performs all 

possible actions including creation of the user, inaccurate attempts of updating the user, 

accurate updating tests and similar. The integration testing thus included the tests of some 

features that were impossible to test by unit testing (like asynchronous behavior of some 

classes). 

In the end, and after the refactoring, all 17 tests (16 unit tests + one integration test) were 

successfully run, and more than 100 assertions gave expected results as shown in Figure 23. 

As it can be seen from the test results, only two tests were time consuming. The web service 

test took more than 10 seconds as it called the web service more than 15 times. Additionally, 

the automated integration robotic test took more than 40 seconds, as it tested the application 

as a user would. These results were expected and also confirmed that there were no other 

time-heavy objects. 
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Figure 23 - Test results (trial day) 

Finally, all tests were designed by accepting the Mobile-D recommendations (Abrahamsson et 

al., 2005a) on performing the test driven development. Additionally the tests were designed in 

such a manner that the order of execution of tests was not important, the tests were not 

dependent on any existing system configuration and revert original data in local database and 

thus did not interfere with manual testing performed during the development. 

 

3.3.7.7. Application screenshots 

      

Figure 24 - Application screenshots (trial day) 
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Above figure shows several screenshots taken at the end of the trial day. These screenshots 

show only one use case which was implemented during this phase and do not cover the whole 

implemented functionality. The whole functionality was successfully tested during the 

execution of the corresponding acceptance test. 

 

3.3.7.8.  Project plan checklist 

At the end of this stage there was no need for performing the usual activities of the release 

day. All tests including the acceptance test were performed successfully and the 

documentation including the artifacts of everything that was done was wrapped up. Finally in 

order to check if everything was done correctly, the requirements defined by the Mobile-D 

and stated in the check list (see Table 28) were checked. 

Table 28 - Project plan checklist – 0 Iteration 

0 Iteration Yes No NA 

Requirements 

The project plan has been updated concerning the selected trial requirements for 0  

iteration 
X   

The project plan has been updated concerning the realization of the selected trial 

requirements for the 0 iteration 
X   

Architecture line definition has been included in the project plan X   

3.4. Productionize 

3.4.1.  First iteration 

The selected features to be implemented in this iteration are presented in Table 29 and mainly 

concern the manipulation of groups owned by user. The reason for having these features 

selected is that the functionality regarding group management set up the basis for other 

functionalities. As stated in the project backlog, the importance of F5.1 and F4.1 is very high, 

which also justifies the decision. Although the F5.3 is currently not important, the email 

invitations are easy to implement and tightly connected with F5.2 and thus this easy task is 

included in this iteration as well. As it can be seen in the following table, the order of the 

execution was slightly changed. 
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Table 29 - Selected features for first iteration 

Features / stories Importance 

F5.1 User should be able to create a new group. 5 

F4.1 User should be able to see the list of all groups currently enrolled to. 5 

F5.4 User should be able to delete any group he owns. 2 

F5.2 
User should be able to invite new members to his group by inviting them via in 

application email. 
2 

F5.3 User should be able to invite new members to his group by sending them email. 1 

 

3.4.1.1. Story cards and task cards 

Story card F5.1 

F5.1 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New L M 4 5 5  

Description 

User should be able to create a new group.  

The basic information about the group should include name, description and creator. The information should be 

stored in web database and downloaded locally when necessary through web service. 

Date Status Comment 

17.7.2012 Defined 

This functionality is prerequisite for most of other functionality of this iteration 

as well as of following iterations. It should be implemented by calling appropriate 

web service and displaying the results. 

19.7.2012 Implementing 

The approach established during the trial day is taken in implementation of this 

feature. The only difference is that groups should not be stored in local database 

after created and confirmed from the web service. 

23.7.2012 Done The functionality is created. 

26.7.2012 Enhanced 
The refactoring was made and the code is significantly improved and made 

simple but sill functional. 

27.7.2012 Verified All tests succeeded. 

   

Story card F4.1 

F4.1 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New L M 4 5 5 Partial implementation! 

Description 

User should be able to see the list of all groups currently enrolled to.  

The basic information about the group should include name, description and number of members. The information 

should be stored in web database and downloaded locally when necessary through web service. This functionality 

will be partially implemented in this phase as currently there is no possibility to see invitations and to accept them 

and thus user will not be enrolled in any group except own groups. 

Date Status Comment 

17.7.2012 Defined 

This functionality is prerequisite for most of other functionality of this iteration 

as well as of following iterations. It should be implemented by calling appropriate 

web service and displaying the results. 

19.7.2012 Implementing 
The implementation of web role is focused in this task as it performs the most 

important logic. The mobile application will receive and display the data.  

24.7.2012 Done 

It took us little bit longer than expected to finish this task. The web service role 

was hard to debug. This problem should not be neglected while preparing the 

implementation of other requirements. 

26.7.2012 Enhanced 
The refactoring was made and the code is significantly improved and made 

simple but sill functional. 
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27.7.2012 Verified All tests succeeded. 

   

 

Story card F5.4 

F5.4 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New L L 3 4 2  

Description 

User should be able to delete any group he owns. 

The group will not be deleted from the web service, but it will be rather marked as deleted and will stay in 

database for analytical purposes. 

Date Status Comment 

17.7.2012 Defined 
Appropriate web service should be called and the data in database should be 

marked as deleted but kept for analytical purposes. 

19.7.2012 Implementing 
The mobile side of the system should do the majority of work including the 

communication with the user and preparation of data to be sent to web service. 

25.7.2012 Done 
The user is asked to confirm the action and after the parameters are sent to web 

service which logically marks the group as deleted. 

26.7.2012 Enhanced 
The refactoring was made and the code is significantly improved and made 

simple but sill functional. 

27.7.2012 Verified All tests succeeded. 

   

 

Story card F5.2 

F5.2 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New L M 3 4 2  

Description 

User should be able to invite new members to his group by inviting them via in application email. 

In-application emails should be implemented through web database. This means that the email should be “sent” 

by marking the information in database, and “read” after the client application will ask for news feed. This news 

should include “emails”. 

Date Status Comment 

17.7.2012 Defined 
Appropriate web service should be called and the email should marked in 

appropriate database entity. 

19.7.2012 Implementing 
The mobile side of the system should do the majority of work including the 

communication with the user and preparation of data to be sent to web service.  

26.7.2012 Done The data collected from UI and local objects is sent to web service. 

26.7.2012 Enhanced 
The refactoring was made and the code is significantly improved and made 

simple but sill functional. 

27.7.2012 Verified All tests succeeded. 

   

 

Story card F5.3 

F5.3 
Type 

Difficulty Effort 
Priority Notes 

Before After Estim. Spent 

New L l 2 2 1  

Description 

User should be able to invite new members to his group by sending them email.  

The simple email should be sent from the web server and it should contain the information that there is new 

invitation to group. In the application, the user should see the invitation after contacting the web service for news 

again as described in F5.2. 
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Date Status Comment 

17.7.2012 Defined 
The email should be sent automatically after calling the web service in F5.2 if 

appropriate parameter is present. 

19.7.2012 Implementing 
The implementation of this requirement will be realized through the 

implementation of F5.2 requirement. 

26.7.2012 Done 

The necessary changes in existing functionality of mobile and web service are 

created. Web service is enhanced with the functionality of preparing and sending 

the e-mail messages. 

26.7.2012 Enhanced 
The refactoring was made and the code is significantly improved and made 

simple but sill functional. 

27.7.2012 Verified All tests succeeded. 

   

 

By analyzing the aforementioned user stories, we concluded that the best approach is to 

combine all five of them into a single sequence of tasks. This decision was made as the 

functionality described in these user stories is strongly interconnected and interdependent. 

The tasks identified are described by the following task cards. 

Task card TC-1-1 - Create initial test cases 

TC-1-1 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 5 5 3  

Description 

Initial test cases for these functionalities should be created.  

Date Status Comment 

17.7.2012 Defined The agreed and tried android.test and robotium framework should be used. 

19.7.2012 Implementing 

The analysis showed that there are not many new classes in mobile application 

suitable for unit testing, but on the other hand the test for web services should be 

prepared. 

19.7.2012 Done 
The unit tests concerning the functionality of mobile application classes and 

synchronous communication with web services are created. 

27.7.2012 Verified The tests are finalized and successful in run.  

   

 

Task card TC-1-2 – Update database model 

TC-1-2 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

Enhance 1 1 5  

Description 

Web application database model should be updated. It should be an easy task as there will probably be no changes 

on existing model. On the other hand, several more entities should be created in order to cover all functionality for 

this iteration. 

Date Status Comment 

17.7.2012 Defined  

19.7.2012 Implementing It is not necessary to alter existing model.  

20.7.2012 Done 

New model includes entities users, groups and enrolments and is capable of 

storing data on users and on active and inactive (canceled) groups and 

enrolments.  

27.7.2012 Verified All tests succeeded and the model is suitable for current requirements. 
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Task card TC-1-3 – Implement server side functionality 

TC-1-3 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 4 4 4  

Description 

Web service leaning on the upgraded data model should be written. It should include exposed methods as well as 

backend supporting functionality. The approach created during the trial day should be used. 

Date Status Comment 

17.7.2012 Defined  

20.7.2012 Implementing 
All features in this iteration are counting on web service support. Thus the 

planned services should be carefully implemented and error free.  

23.7.2012 Done 

This task took longer than expected to be finished. The majority of functionality 

is supported by web services and the development of those is time consuming and 

hard to debug. In any case the planned services are developed and ready for 

usage. 

27.7.2012 Verified All tests succeeded. 

   

 

Task card TC-1-4 – Implement mobile app functionality 

TC-1-4 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

New 4 5 4  

Description 

Using the basics of infrastructure created during the trial day, new classes should be developed and connected to 

display the data in appropriate user interface (see UI sketches). The information should be downloaded from the 

web services in real time. 

Date Status Comment 

17.7.2012 Defined  

23.7.2012 Implementing 

There are several new concepts which are not tried (prototyped) but are to be 

developed. These concepts include the usage of custom dialogs, the handling of 

user actions and hardware keys etc. 

26.7.2012 Done 

This task also took longer than expected. The main reason is the development of 

not trialed concepts and little bit complicated infrastructure that resulted in 

asynchronous communication. This source should be refactored. 

26.7.2012 Enhanced 

The source is heavily refactored. The service layer is made free of business logic 

and is now only used for communication with web services. This reduced the 

number of classes in service layer. 

27.7.2012 Verified All tests succeeded. 

   

 

Task card TC-1-5 – Finalize tests 

TC-1-5 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

Enhance 5 5 3  

Description 

All created functionality should be tested thoroughly; the test for core and robotized testing should be updated and 

saved. If necessary, code should be updated and fixed. 

Date Status Comment 

17.7.2012 Defined The agreed and tried android.test and robotium framework should be used. 

26.7.2012 Implementing 
This task should include the preparation of integration tests. During the test 

design is concluded that isolation of test cases could be the problem. 

26.7.2012 Done All integration tests are created in one sequence. Although this is not good 
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approach, the execution of isolated test cases proved to be very time consuming 

as every test case has to prepare the context from scratch. 

27.7.2012 Verified All tests succeeded. 

   

 

Task card TC-1-6 – Optimize and refactor 

TC-1-6 
Type 

Difficulty Confi- 

dence 
Notes 

Before After 

Enhance 1 2 5  

Description 

Created code should be optimized, commented and refactored. All tests should execute successfully at the end. 

Date Status Comment 

17.7.2012 Defined  

26.7.2012 Implementing 

The asynchronous nature of the communication with web service and wrong 

infrastructure design made the service layer very heavy. Current class-per-

service-call environment is dealing with preparation of data and business logic. 

This is not good. 

27.7.2012 Done 

The preparation of data and business logic was moved to the real business logic 

layer which made the service layer very simple. This resulted in several new 

classes which ensure proper communication between these two layers. 

27.7.2012 Verified All tests succeeded. 

   

 

3.4.1.2. Database model 

Updated database model was initially created during the planning day, and slightly updated 

during the working days. The final version satisfying all requirements of this phase can be 

seen in the following picture. Only the database model representing server side functionality 

was updated. 

 

Figure 25 - Data model (iteration 1) 

The important information was stored in groups and enrolments entities. These entities are 

designed to store information on currently active, but also on inactive groups and enrolments. 
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After the group is created, the owner is automatically enrolled into a group (enrolled = 1 and 

enrolmentStart = currentDate). After the owner invites another member, a new record is 

added to the enrolments table, but the information keeping attribute this time is invitationDate 

which is set to currentDate, and other attributes await for user to accept (or reject) the 

invitation. After the group is deleted, its deletionDate is set up and for all members of that 

group, enrollment is canceled by setting the enrolled to 0 and enrolmentFinish to currentDate. 

Thus, the database model ensures proper navigability and information preservation and can be 

considered as valid.  

3.4.1.3. Created web services 

The following tables describe created web services, their methods and corresponding 

parameters sent and received in JSON format. Some of the listed web services are still not 

used and thus not included in any test. 

Table 30 - Web service (groups.php) specification 

http://knowledge.uphero.com/groups.php  

method json response description 

create name 

description 

ownerId 

 

responseId 

responseText 

[newGroupId] 

Creates a new group in database. The owner of the 

group is automatically enrolled in the new group. 

If everything was OK the return string will contain 

additional data on newGroupId. 

update id 

name 

description 

 

responseId 

responseText 

Updates an existing group in the database. Only name 

and description are allowed to be changed. 

Web service returns usual response.  

delete id responseId 

responseText 

Logically deletes existing group from the database by 

setting the deletionDate value. All memberships are 

automatically canceled by setting the enrolled = 0 and 

enrolmentFinished valued.  

Web service returns usual response. 

my ownerId responseId 

responseText 

[groups] 

Returns JSON string containing an array of groups 

owned by given user. The information contains a 

number of members in every group. 

    

 

Table 31 - Web service (enrolments.php) specification 

http://knowledge.uphero.com/enrolments.php  

method json* response** description 

inviteUser groupId 

inviterId 

email 

[sendEmail] 

 

responseId 

responseText 

Adds new enrolment invitation in database. Optional 

data includes parameter sendEmail that defines if 

normal email invitation should be sent or not. Only 

invitationDate and optionally emailDate attributes are 

defined. 

Web service returns usual response. 

enroll groupId responseId Enrolls user in a group. In this iteration the method is 

http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php
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userId responseText not used, thus it is not jet tested by service or 

integration tests. 

Web service returns usual response. 

cancel groupId 

userId 

responseId 

responseText 

Cancels the user‟s enrolment by setting the enrolled to 

false and noting down the withdraw date. This service 

is not jet used and thus is not tested.  

Web service returns usual response. 

 

3.4.1.4. Created class models 

During the planning day, the technology independent class model was created, but during the 

working days it was slightly improved to fit the target platform. The second version of the 

class model included some technology dependent classes like AsyncTask which are specific 

for Android platform. In any case, the specific focus was given so the class model can be re-

used during the development of application for other target platforms.  

 

Figure 26 - Mobile app class model (iteration 1) 

 

Although a little complicated, the architecture of the mobile application was still flexible and 

modular. As it can be seen, activity classes are the most important part of the functionality. 

Those classes execute tasks by ServiceAsyncTask class which asynchronously communicates 

with web service, and sends the result through AsyncTaskCallback interface that is 

implemented by the caller.  
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The new entity added in this iteration was Group entity. This class is simple as it is just used 

to encapsulate the data download from the web service.  

JsonAdapter is a static class providing helpful functionality when working with JSON objects 

and strings, and finally, the only class that deals with local database is class User which 

provides information on the current user. 

 

Figure 27 - Web app class model (iteration 1) 

In the web application, the infrastructure was not changed. The web services were backed up 

with adapters which communicate with the web database.  

3.4.1.5. Implementation 

The most important infrastructural functionality developed in this phase concerns the 

communication with the web services. The implementation protocols and practices 

established and described during the trial day phase were closely followed in this phase as 

well. The model developed during the trial day was insufficiently flexible and had to be 

improved as there were many calls to the web services. The following example shows the new 

approach in solving this problem. 
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/** 
 * The method coordinates the web service call/response. The data is obtained,  
 * prepared and sent to service proxy. The results will be asynchronously received  
 * by AsyncCallbackTask pointed when calling the proxy. 
 *  
 * @author  Zlatko 
 * @date 13.7.2012. 
 * @task TC-0-6 
 * @changes 26.7.2012 
 */ 
private void saveUserData() 
{ 
 try{ 
  //getting the data 
  strFirstName = txtFirstName.getText().toString(); 
  strLastName = txtLastName.getText().toString(); 
  strEmail = txtEmail.getText().toString(); 
  strDescription = txtDescription.getText().toString(); 
   
  String method = ""; 
  String responseAttribute = ""; 
   
  //preparing json object 
  JSONObject jsonObject = new JSONObject(); 
  jsonObject.put("firstName", strFirstName); 
  jsonObject.put("lastName", strLastName); 
  jsonObject.put("email", strEmail); 
  jsonObject.put("description", strDescription); 
   
  if (User.getCurrentUser() == null) { 
   method = "create"; 
   responseAttribute = "newUserId"; 
  } 
  else { 
   method = "update"; 
   jsonObject.put("id", User.getCurrentUser().getId()); 
  } 
  String jsonString = JsonAdapter.getJsonArrayString(jsonObject); 
   
  //calling the service and showing progress dialog 
  ServiceAsyncTask asyncTask = new ServiceAsyncTask(); 
  ProgressDialog dialog = ProgressDialog.show(this, "",  
                   getResources().getString(R.string.dialogSaving), true, true); 
  Object params[] = new Object[]{this, jsonString, "users", method,  
                   responseAttribute, dialog, saveUserDataNotification}; 
  asyncTask.execute(params); 
 } 
 catch (JSONException e) { } 
} 
  
/** 
 * This callback task is called after web service returns the results. According  
 * to the results, it is necessary to perform synchronization with local databas 
 * and to inform the user on actions performed. The data will be stored in  
 * local database only if web service request responds with message 100 (OK). The  
 * method inserts data in local database  
 * only first time and after that it only updates the data. 
 *  
 * @author  Zlatko 
 * @date 26.7.2012. 
 * @task TC-1-6 
 * @changes  
 */ 
AsyncTaskCallback saveUserDataNotification = new AsyncTaskCallback() { 
  
 @Override 
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 public void acceptNotification(String result, boolean ok) { 
  if (ok) { 
   if (User.getCurrentUser() == null){ 
    //create new user in local database 
    int id = Integer.parseInt(result); 
    User user = new User(id, strFirstName, strLastName,  
                                strEmail, strDescription); 
    UsersAdapter.getInstance().insertUser(user); 
    Toast.makeText(context, getResources().getString (R. 
                                string.msgUserCreated), Toast.LENGTH_LONG).show(); 
   } 
   else{ 
    //update data in local database 
    int id = User.getCurrentUser().getId(); 
    User user = new User(id, strFirstName, strLastName,  
                                strEmail, strDescription); 
    UsersAdapter.getInstance().updateUser(user); 
    Toast.makeText(context, getResources().getString(R. 
                                string.msgUserUpdated), Toast.LENGTH_LONG).show(); 
   } 
   setEditable(false); 
  }else{ 
   Toast.makeText(context, result, Toast.LENGTH_LONG).show(); 
   } 
  } 

 }; 

Code 3 - Handling web service call and response 

The code example shows the basic approach taken in handling web service call and response. 

Before calling the asyncTask, the data is obtained and prepared into JSON object. 

Additionally, other parameters are also prepared, along with JSON data packed into a single 

object with a predefined structure, and sent to the proxy to communicate with web service. 

After gaining the async callback, the results are analyzed and the data is synchronized with 

the local database. This approach allows similar communication with web service from any 

object in mobile application.  

3.4.1.6. Testing 

During the implementation of the respective tasks concerning testing, we faced several 

important challenges. The implementation resulted in few classes suitable for unit testing. 

Despite that, the unit tests were created in advance for all classes which were used in the 

application except the classes which deal with asynchronous communication with web 

services. Additionally, the complete suite of unit tests was created to test the web services 

directly. 

On the other hand, asynchronous behavior was also tested, but through the sequential fully 

automatized integration test which additionally tests the behavior of activities. At the end of 

the iteration, a total of 26 tests with approximately 200 assertions were run and were 

completely successful.  
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Figure 28 - Test results (iteration 1) 
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3.4.1.7. Application screenshots 

       

       

Figure 29 - Application screenshots (iteration 1) 

Above figure shows several screenshots taken at the end of the first iteration. 

3.4.1.8. Project plan checklist 

At the end of this stage there was no need for performing the usual activities of the release 

day. All tests including the acceptance tests are performed successfully, the documentation 

including artifacts of everything that is done is wrapped up, and finally in order to check if 

everything is done correctly, the requirements defined by the Mobile-D and stated in the 

check list (see Table 32) are checked. 
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Table 32 - Project plan checklist – 0 Iteration 

Productionize Iteration(s) 

Requirements 

The project plan has been updated concerning the selected requirements for the current 

iteration 
X   

The project plan has been updated concerning the realization of the selected requirements 

for the current iteration 
X   

The project plan has been updated concerning any changes in, e.g., the schedule, rhythm, 

requirements, and resources 
X   

The project plan has been updated concerning the realization of quality assurance activities 

in current iteration 
X   

3.4.2. Other iterations 

As had been planned, all other iterations were performed in a similar manner. As the objective 

was to identify the artifacts, there is no need to report all the iterations in detail here. Rather, 

this chapter will present the summary information on the performed tasks and outputs, as well 

as give the final versions of some important documents.  

3.4.2.1. Iterations overview 

According to iterations plan which was a part of the overall project plan, the four remaining 

iterations included the implementation of user stories (features) as presented in Table 33.  

Table 33 - Iterations plan with features selection 

Features / stories Importance 

I2 - Second iteration - Enrollment 

F4.2 
User should be able to apply the filter by root-searching the available groups according to 

their title and description. All groups should be observed by search. 
2 

F4.3 

User should be able to see the details on any group he is enrolled to, including the list of 

other members. User should NOT be able to see the list of other members (except their 

number) for the groups he is not enrolled to. 

4 

F4.4 User should be able to join any existing group by sending the application to group owner. 5 

F4.5 

User should be able to leave any group he is enrolled to. Other group members should 

only be notified on that. Owner cannot leave the group and the group should be deleted 

manually (see F5.4). 

1 

F6.1 
User should be able to see all members of the groups he is enrolled to on the map. If group 

member has disabled this privacy setting, it will be excluded from the view.  
3 

I3 - Third iteration – Questions management 

F2.2 

User should be capable to add new question. New questions should be defined in separate 

windows which should include all important information about the question (title, text and 

images). The images should be taken by the phone camera.  

5 

F2.1 Current user should be able to check all his questions, including those that have been 

answered already. Questions should be presented by title and short description. Other 
5 
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details about every question should be presented in new window after user clicks on it. 

F2.7 
User should be able to apply the filter by root-searching the list of questions available to 

him. 
2 

F2.3 
User should be capable to delete own question. The deletion should not be performed 

without user‟s explicit confirmation on deletion action. 
3 

F2.4 
User should be capable to change own question. The process of changing question should 

be similar to process of adding new question. 
1 

F2.5 User should be capable to add answers to own and others‟ questions. 5 

F2.6 The owner of the question should be able to mark a question as answered. 5 

I4 - Fourth iteration – News feed 

F1.1 

When the application is started the news should be displayed. News should include any 

unread answers to the user‟s questions; news on activities in user‟s groups and other 

information important for current user. 

3 

F1.2 
The news presented on the first application screen should be “links” to corresponding 

application functionality. 
3 

I5 - Fifth iteration – Settings and help 

F3.2 

User should be able to set/change application settings. The settings should include the 

possibility to deny further invitations to groups, to set privacy level (of showing or no 

emails to other users and of showing or no current location to other users). 

2 

F7.1 User should be able to read a general help about the application usage. 1 

All iterations included planning, working and release days. Thus, the working days were 

navigated through the series of predefined tasks, which described along with other documents 

can be found in the documents library. The summary of the performed tasks during the 

implementation is presented in the following table. 

Table 34 - Performed tasks 

Id Task card Type 
Difficulty Confi-

dence 

Date 

finished Before After 

I2 - Second iteration - Enrollment 

TC-2-1 Create initial test cases New 5 5 3 1.8.2012 

TC-2-2 Implement supporting web services Enhance 4 3 5 2.8.2012 

TC-2-3 Implement group searching and viewing New 5 5 4 3.8.2012 

TC-2-4 Implement group enrolment and leaving Enhance 3 3 4 6.8.2012 

TC-2-5 Implement map view New 3 4 4 7.8.2012 

TC-2-6 Finalize tests Enhance 5 5 3 8.8.2012 

TC-2-7 Optimize and refactor Enhance 2 2 5 8.8.2012 

I3 - Third iteration – Questions management 

TC-3-1 Create initial test cases New 5 5 4 17.8.2012 

TC-3-2 Update database model Enhance 1 1 5 20.8.2012 

TC-3-3 Implement supporting web services New 3 3 5 22.8.2012 

TC-3-4 Develop questions management New 5 5 5 27.8.2012 

TC-3-5 Develop answers management New 4 5 5 29.8.2012 

TC-3-6 Finalize tests Enhance 5 5 3 31.8.2012 

TC-3-7 Optimize and refactor Enhance 2 2 5 3.9.2012 

I4 - Fourth iteration – News feed 

TC-4-1 Create initial test cases New 5 5 4 11.9.2012 
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TC-4-2 Update database model Enhance 1 1 5 11.9.2012 

TC-4-3 Implement supporting web services New 3 3 5 13.9.2012 

TC-4-4 Implement mobile app functionality New 5 5 5 17.9.2012 

TC-4-5 Finalize tests Enhance 5 5 3 19.9.2012 

TC-4-6 Optimize and refactor Enhance 2 2 5 20.9.2012 

I5 - Fifth iteration – Settings and help 

TC-5-1 Create initial test cases  New 5 5 4 28.9.2012 

TC-5-2 Update database model Enhance 1 2 5 1.10.2012 

TC-5-3 Update web services Enhance 3 4 5 3.10.2012 

TC-5-4 Implement settings management New 3 3 5 5.10.2012 

TC-5-5 Update groups management Enhance 2 3 5 9.10.2012 

TC-5-6 Update profile management Enhance 2 3 5 11.10.2012 

TC-5-7 Define help content New 1 2 5 12.10.2012 

TC-5-8 Develop help functionality New 3 3 5 15.10.2012 

TC-5-9 Finalize tests Enhance 5 5 3 17.10.2012 

TC-5-10 Optimize and refactor Enhance 2 2 5 18.10.2012 

 

3.4.2.2. Final database model 

The final version of the database model, which has gone through tree additional iterations, is 

presented in the Figure 30. The presented model completely satisfies user requirements for the 

whole system, it is “open” and not tied to any technology, and is flexible to be updated or 

changed if necessary during the project lifecycle.  

 

Figure 30 - Final database model 
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The model is created in the well-known Crow’s foot notation (also known as James Martin‟s 

notation (Martin, 1986)). As it can be seen, three entities are considered to be weak entity 

types: enrolments, readNews and answers. These entity types are dependent on other strong 

entity types. Additionally, some relationships were made non-identifying by purpose of easier 

navigability and indexing, but also because of the idea of putting the read news into a specific 

entity in order to be excluded from the news feeds. Finally, special focus was put to 

relationships, role naming and cardinality in order to define those according to the best 

practices in data modeling. 

3.4.2.3. Created web services 

The final list of web services developed during the whole development process is shown in 

Table 35. The services developed in early development cycles were already described in 

detail. All other mentioned web services use the same Representational State Transfer (REST) 

communication protocol (Fielding, 2000), accept JSON formatted data and respond with 

JSON formatted response (Crockford, 2006). This approach was initially chosen as platform 

independent and is most likely to prove useful for other platforms as well. 

Table 35 - Web services specification 

Method JSON formatted request JSON formatted response 

USERS (http://knowledge.uphero.com/users.php) 

create firstName, lastName, email, [description] responseId, responseText, [newUserId] 

update id, firstName, lastName, email, [description] responseId, responseText 

delete id responseId, responseText 

position id, longitude, latitude responseId, responseText 

settings id, inviteMe, showEmail, showLocation responseId, responseText 

   

GROUPS (http://knowledge.uphero.com/groups.php) 

create name, description, ownerId responseId, responseText, [newGroupId] 

update id, name, description responseId, responseText 

delete id responseId, responseText 

my ownerId responseId, responseText, [groups] 

search keyword responseId, responseText, [groups] 

   

ENROLMENTS (http://knowledge.uphero.com/enrolments.php) 

inviteUser groupId, inviterId, email, [sendEmail] responseId, responseText 

enroll groupId, userId, [action] responseId, responseText 

cancel groupId, userId, [action] responseId, responseText 

members groupId, userId responseId, responseText, [users] 

apply groupId, userId responseId, responseText 

userLocations userId responseId, responseText, [users] 

   

QUESTIONS (http://knowledge.uphero.com/questions.php) 

create name, question, userId, groupId responseId, responseText, [newQuestionId] 

update id, name, question, groupId responseId, responseText 

delete id responseId, responseText 

searchByUser userId responseId, responseText, [questions] 

http://knowledge.uphero.com/users.php
http://knowledge.uphero.com/groups.php
http://knowledge.uphero.com/enrolments.php
http://knowledge.uphero.com/questions.php
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searchByGroup groupId responseId, responseText, [questions] 

searchByString userId, keyword responseId, responseText, [questions]  

searchById id responseId, responseText, [questions (full)] 

   

ANSWERS (http://knowledge.uphero.com/answers.php) 

create answer, userId, questionId responseId, responseText, [newAnswerId] 

update id, answer responseId, responseText 

searchByQuestion questionId responseId, responseText, [answers] 

markAnswer id responseId, responseText 

   

NEWS (http://knowledge.uphero.com/news.php) 

markRead userId, typeId, value, [value2] responseId, responseText 

getByUser userId responseId, responseText, [news] 

   

The usage of Service Oriented Architecture (SOA) in mobile application development got the 

acceleration during the last several years. This is a result of a wider Internet availability on 

mobile devices and of improved capabilities of mobile devices in terms of hardware. There 

are many projects that propose different SOA frameworks that could be used in development 

of mobile applications (Papageorgiou et al., 2009; Yee et al., 2009).  Although our prototype 

application has Service Oriented Architecture, it is important to notice that the whole web part 

of this prototyping system is developed only for supporting purposes, and many concepts that 

should be implemented in commercial projects were not implemented here. Thus, the stated 

web services are stripped off of any session keeping, security checking, logging etc. 

3.4.2.4. Class models 

The alignment between planned and implemented system architecture can be observed 

through the final version of the class diagram. As it can be seen in Figure 31, it contains more 

than 25 classes, and it is unreasonable to present it in detail thus it is presented on the level of 

class names and relationships. The important conclusions that arise in this point are that 

during the development, the business logic layer which contains the activity and service 

classes become heavy but easy to maintain. The previously explained infrastructure was 

followed through all five iterations, and it is easy to notice that asynchronous calls to web 

services made the almost all activity classes to lean on ServiceAsyncTask and to receive the 

results through AsyncTaskCallback interface. The obtained results were later transformed into 

readable entity object through JsonAdapter object. 

 

http://knowledge.uphero.com/answers.php
http://knowledge.uphero.com/news.php
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Figure 31 - Final class model (mobile application) 
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3.4.2.5. Application screenshots 

The glimpse view of several use cases of final application functionality can be seen in the 

following figure containing the application screenshots. The presented functionality is fully 

tested, and all unit test as well as acceptance tests resulted in success. 

      

       

Figure 32 - Application screenshots 
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3.5. Stabilize 

By definition, the purpose of this phase is to integrate smaller subsystems developed by 

different teams into a single product. Activities that were performed during this phase are 

exactly the same to the activities performed during the working days and thus artifacts the 

teams usually create are semantically same as artifacts we created in the earlier phases. As our 

mobile application was not divided into subsystems, there was no need to perform integration 

activities.  

The additional task that characterizes this phase of mobile application development is called 

“Documentation wrap-up” task. Although the documentation was created during the whole 

development process, especially during the planning days of each phase and iteration, this 

task is specific as it produces the documentation for the project stakeholders and not for the 

agile team. Thus, the outputs of this task are finalized architectural, design and UI documents.  

Following the rules given in (Abrahamsson et al., 2005a) we produced the mentioned 

documents that are salient, short and useful.  

3.6. System test & fix 

The important phase in the development of our project was System Test and Fix phase. As it 

can be seen in figure (Figure 33) taken from VTT‟s web application (2006a), the most 

important task is System Test task which comprises the activities of updating the test plan, 

executing the tests, logging the results and reporting the defects. 

 

Figure 33 - System Test and Fix phase 
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As defined in Mobile-D methodology, this activity is performed only once (i.e. after the 

implementation phase of the project). The activities largely depend on the test results and 

sometimes no fixes are necessary. Some artifacts used in this phase were only updated as they 

had been already presented (UI tests, Acceptance tests, Integration Test, Unit tests) while 

others were newly created (final release, documentation of found defects). 

As identified during the testing, and described in the minutes of the post iterations workshops, 

the following elements (see Table 36) of the mobile system functionality could be improved. 

Table 36 - Recognized system limitations 

Identified limitation of KnowLedge system 

1 The system does not treat email as unique. This might reflect on problems with sending the email 

invitation. 

2 User cannot be invited or apply to join to a group repeatedly. 

3 It is not possible to send email invitations to the users which are not already registered in KnowLedge 

system. This might slowdown the progression in getting new users. 

4 Not all news should be canceled manually, as there are some news that should be automatically canceled 

(like notification of user leaving a group or similar). 

5 Some data storage and data transfer optimization should be made. The existing content should not be 

downloaded repeatedly. 

6 In some cases, the possibility of changing an existing answer could be useful. This should be carefully 

designed and planed with implementation of proper control. 

 

The removal of these limitations would not have any influence on the identified set of artifacts 

but would significantly extend the development process. As these functionalities were not 

included in the user requirements, it was decided to leave them for some future versions of 

this system. Thus, the activities of fixing the application were not necessary. 

Finally, we moved forward to publish the final version of the application on Google Play 

store. The process of publishing is straightforward and easy if all development activities are 

performed carefully and application manifest entries are correct. Google does not perform any 

manual application testing, and the only criteria that are to be satisfied concern the automated 

testing of application package. Having this in mind, we had to create an application icon in 

several formats, sign and publish the application by a wizard, and prepare the application 

screenshots and description. After uploading these documents to Google Play, our 

development process was officially finished. The application is available for download at 

http://barok.foi.hr/~zstapic/knowledge/android. 

http://barok.foi.hr/~zstapic/knowledge/android
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3.7. Development of Windows Phone application 

The development of KnowLedge application for Windows Phone (WP) target platform was 

conducted after the development targeting Android platform. We used same Mobile-D 

methodology and same Test Driven Development approach.  

Expectedly, from the methodological perspective, the development process was much easier 

as many artifacts developed earlier were completely or partially reused in this process. This 

possibility of reusing the artifacts was of our specific interest, as the overall goal of this 

research was to discover the similarities and to semantically describe them. While some 

artifacts remained the same, the other could be reused only as templates and the last group 

was formed from the artifacts that had to be built from scratch.  

On the other hand, the development process was unexpectedly time-consuming. Although we 

were completely familiar with the desired application functionality, and although we reused 

some code templates, still the development for a new platform was a very challenging task 

which brought many obstacles. WP technology is very different from Android technology, 

and as can be seen from the description that follows, some aspects of the implementation 

approach (for example, in user interface, in communication with web service, in internal 

application structure) had to be reconsidered from scratch.  

Additionally, although some artifacts were built from scratch their structure is very similar to 

the structure of the artifacts we have already presented. Thus we find no reason to report the 

whole process in detail again. Having this in mind, the following chapters discuss the 

performed development phases, but from the point of view focusing on the similarities and 

differences. Only completely new artifacts will be presented here.  

3.7.1. Explore phase 

The activities of stakeholder establishment, the scope definition and project establishment 

were almost completely omitted in the development process for the second target platform. In 

this phase, we didn‟t have to redefine the target users, stakeholders or initial requirements and 

architecture line description as these remained the same as for the Android target platform. 

The only activities that we had to perform included the definition of technological domain, 

redefinition of technology related risks and needed skills.  

Regarding the technology, we decided to define a requirement of the application being 

runnable on any device running Windows Phone 7.5 (API level 7.1) or newer. The reasons for 

choosing this API level are guided by the principle of targeting as many devices as possible. 

As we do not need any capabilities of newer APIs, targeting 7.1 was a reasonable choice. 
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In a similar manner, the software architecture, project plan, documentation, and monitoring 

measures remained the same as for Android. The planned duration was not changed by 

purpose of making comparisons at the end of both development processes.  

3.7.2. Initialize phase 

The initialize phase took the same activities that we performed in the first development 

process. The existing virtual machine along with the set of tools not related to the 

development was reused, but the development environment for WP had to be established from 

scratch. We installed Microsoft Visual Studio, WP7.1 SDK, WP Toolkit, Microsoft Zune and 

connectivity software for our test devices. Finally, the testing of the development environment 

was performed by creating test project and deploying it to the testing device. 

On the other hand, the activities that were supposed to produce updated project plan, 

architecture line plan and product backlog were unnecessary. All these artifacts including the 

system architectural diagrams, definition of features and the first version of acceptance tests 

remained the same and were reused. Thus again, we ended up with a product backlog 

containing the description of 22 features to be implemented in this development process.  

The only document that we had to build again was the document containing the user interface 

sketches. The comparison of UI elements that are used in Android with those that could be 

used in WP showed that the relationships are not always direct. The in-detail analysis of the 

problem of automatic UI transformation was not in the focus of this research, but we found 

this software engineering challenge very interesting and thus tried to identify the elements that 

should be used in WP in order to give the user WP native look and feel along with the same 

functionality. In Figure 34 we can see that, for example, list (in the background of the 

Android sketch) can be translated to the same concept of list in the WP. But, the custom 

dialog does not have a WP implementation and we can either use another screen, or make 

changes in design of the existing form in a way that filter option will be a part of the main 

screen.  



 

 

127 

 

.  

Figure 34 - Translating user interface from Android to WP  

 

In the same sense we had to find different solutions to translate some other concepts like 

Android‟s toast message and progress dialogs. 

The purpose of a trial day in this 0-iteration remained the same. The plans of features that 

ought to be implemented in order to trial and establish the internal application infrastructure 

remained the same. We also reused the data model completely and the story card and task 

cards as partially reused artifacts. Even without the need to design and develop the supporting 

backend system, the implementation of WP functionality took more time than planned and 

much more time than for Android. There are many reasons for this, mostly concerning 

platform restrictions and a narrowed set of usable features when compared to Android. 

Additionally, the recommended practice in development of WP applications is to use 

MVVM
19

 pattern which requests a significant increase in development efforts. The use of this 

pattern helps in making a strong distinguishing line between the application layers in a multi-

layered architecture.  

Finally, another problem in WP development is the application of TDD approach. Although 

there are several 3
rd

 party unit testing frameworks available for use, we found them to be out 

of date or without any maintenance and support – abandoned. The official Microsoft testing 

framework for Windows Phone was released very recently (as a part of Visual Studio 2012 

Update 2) and targets the testing of Windows Phone 8 mobile applications. Thus, we had to 

use a limited functionality of Microsoft test framework that targets testing of .Net 

 

                                                 
19

 MVVM stands for Model View ViewModel architectural pattern from Microsoft. This pattern is largely based 

on MVC pattern, but with the focus on event-driven programming of UI development platforms.  
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applications. This limited the testing functionality only on Core classes and not on the user 

interface classes. 

 

Figure 35 - Automated WP unit testing 

 

The automated integration testing of WP was and still is impossible. There is no framework 

that might provide the features of automatic or robotized testing of Windows Phone 

applications, especially not for testing on devices. The only possible solution was to use a 

software that is capable of recording mouse and keyboard events. As this solution did not 

provide any possibility of making assertions we had to reject it and perform manual 

integration testing at the end of iteration. 

3.7.3. Productionize 

The approach and issues that we faced during the four Productionize iterations were very 

similar to the approach and issues we faced during the 0-iteration. We reused many artifacts 

which were related to project plan, iteration plans, product backlog, acceptance tests and other 

documentation. We also partially reused artifacts which were connected to activities of noting 

the current tasks such as story and task cards.  

There was not need to make any changes to existing web service and remote database, which 

can bring us to conclude that the development process of these parts of the systems was 

thorough and with good quality.  
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While developing the WP application, we found the Android classes that were used to define 

entities very useful and we simply converted them to model classes in the new architecture. 

Additionally, some classes that were classified as libraries and were used to manipulate with 

JSON strings or to do housekeeping were also reused and easily translated to .Net. The 

process of localizing the mobile application reused all keys and values, but the original XML 

document had to be manually translated into a .Net resource file. We kept almost all the keys, 

and used exactly the same translations in both applications. Finally, the logic used to prepare 

the web service requests and to analyze the results was also reused and simply translated to 

the new programming language. 

On the other hand, the existing code related to user interface manipulation, as well as the code 

related to web service asynchronous call and response had to be completely rejected. The .Net 

architecture made it easier to implement this functionality by using the events and delegates. 

3.7.4. Stabilize 

As the exhausting testing was performed during the development which initially included the 

integration with existing web services, at the end of the iterations the stabilize activities turned 

out to relate only to finishing of the documentation by performing wrap-ups. The final (but 

manual) integration testing was performed in this phase and as the results were positive we 

were capable of finishing the architectural, design and UI documents and move forward in the 

next iteration.  

3.7.5. System test & fix 

After having all iterations performed, the system test & fix activities were on schedule. 

Similar to the Android case, unit, integration and acceptance tests were positive. As the initial 

requirements were the same, the list of functionality that could be improved was also the 

same. As the removal of these limitations would not have any influence on the identified set 

of artifacts, we again decided to leave it for some future version of this system.  

The process of publishing the finalized application on the Windows Market resulted in some 

new artifacts. We were obliged to use Marketplace Test Kit tool, to package application into a 

.XAP document and to provide the Market with icons and screenshots in different format than 

those for Android. After the testing process, the application will be available for download at 

http://barok.foi.hr/~zstapic/knowledge/wp. 

http://barok.foi.hr/~zstapic/knowledge/wp
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3.8. Conclusions on implementation 

By observing the whole development process again we can conclude that the implemented 

activities are well aligned with the planned activities. The following table (Table 37) displays 

the planned and realized activities and only differences from the Android case are in the 

duration of some activities while the overall project duration was shortened for 14 working 

days, but all activities had to be performed. 

Table 37 - Duration of planned and real activities 

Stage/Phase/Activity 
Duration in days 

Planned Android WP 
KnowLedge 101 87 71 

Explore 5 4 1 

 Stake holder establishment 2 1 0 

 Scope definition 2 2 0,5 

 Project establishment 1 1 0,5 

Initialize 9 7 5 

 Project set-up 3 2 1 

 Planning day 0 3 2 0 

 Working day 0 3 3 4 

Productionize 73 69 62 

 Iteration 1 – Group management 8 9 9 

  Planning day 2 2 1 

  Working day 5 6 7 

  Release day 1 1 1 

 Iteration 2 – Enrolment 8 9 10 

  Planning day 2 2 1 

  Working day 5 6 8 

  Release day 1 1 1 

 Iteration 3 – Question management 22 19 22 

  Planning day 5 4 2 

  Working day 15 13 17 

  Release day 2 2 3 

 Iteration 4 – News feed 22 12 11 

  Planning day 5 3 2 

  Working day 15 8 8 

  Release day 2 1 1 

 Iteration 5 – Settings and help 13 20 10 

  Planning day 2 3 1 

  Working day 10 16 8 

  Release day 1 1 1 

Stabilize 12 4 2 

 Planning day 1 0 0 

 Working day 5 0 0 

 Documentation wrap-up 5 4 2 

 Release day 1 0 0 

System Test & Fix 2+ 1 1 

 System test 2 1 1 

 

The duration of the development process in WP case is shorter for 30 working days if 

compared to the planned duration and is shorter for 16 working days (18.4%) if compared to 
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the Android development case. Such improvements in performance could be the result of the 

fact that we had already been familiar with the system requirements, that the backend system 

had already been developed and that different artifacts were partially or fully reused. On the 

other hand, we stated that the development time was not significantly reduced as we 

experienced many development issues and that the improvements could be result of our 

approach. As this is not important for the rest of the research we did not performed detailed 

analysis. 

As serious testing had been done through all the iterations, the final tests were successfully 

executed in both development cases and there was no need for any changes in the system 

during the System Test and Fix phase. In any case, the overall development process was 

conducted in such manner that all activities and artifacts defined by Mobile-D methodology 

were performed and created. 

Mobile application KnowLedge was designed to, by its purpose, cover the main and most 

common functional development requirements, and as such, it is a representative of the vast 

majority of mobile applications. Such requirements in general cover distinct development 

concerns, including UI features, local database, device API-s, connection to web services and 

3
rd

 party features. 

As Mobile-D methodology is well defined, it was not hard to follow the development process 

through all Mobile-D phases. Still, as the developed project was rather small and developed 

solely by the researcher with some minor help from his supervisors, small and acceptable 

divergence and misalignment with the Mobile-D was necessary. Still, we think that the 

performed process faithfully demonstrates the development process that would be performed 

by any small company developing a mobile application.  

While developing Windows Phone application, the whole process was performed again. As 

the structure of the created artifacts along with the development process was the same as the 

one presented for the Android case, we found no reasons to report it again in detail. Thus, we 

reported the development process from the point of view in which we discussed the 

possibilities of reusing the existing artifacts. We found that many artifacts concerning the 

planning activities were reusable. Some of them concerning the product backlog, source code, 

resources and inner application logic were partially reusable, and of course, some had to be 

created from scratch. We also found that the backend part of our system requested no changes 

and although this lowered the overall workload the total development time was not shortened 

as we experienced some WP platform specific issues and some testing issues. 

All empirical evidence created during the implementation was used in the next phases of this 

research process in order to identify their semantics, relationships and similarity between the 

two target platforms. 
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3.9. Relevance of the chapter  

This section reported the development of mobile application KnowLedge by implementing 

Mobile-D methodology and Test Driven Development. First we gave a short overview of the 

methodology and approach and we defined the point of view in which the created artifacts 

took the most important role. Then, in the Android case, the performed phases were reported 

in detail along with the created outputs and their connections. The Mobile-D process with its 

clear technical specification was well documented and easy to follow and the overall 

development process took less time than initially planned. 

In the case of Windows Phone application development, the whole process was performed 

again, but as the structure of the created artifacts was the same as the one presented in the 

Android case, we found no reason to report it again in detail. Thus, we reported the 

development process from the point of view in which we discussed the possibilities of reusing 

the existing artifacts. We found that many of the artifacts were completely or partially 

reusable. 

We think that the performed process faithfully demonstrates the development process that 

would be performed by any small company developing mobile applications. The empirical 

evidence collected during this development was used in the subsequent research process of 

identifying the methodological interoperability and semantically similar artifacts. 
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4. IDENTIFICATION OF THE ARTIFACTS 

In this chapter we will look back on the implementation results but from the artifact 

identification point of view. All artifacts that arose in the development sub-processes are 

enumerated and systematized in order to prepare the inputs for the next phase of the semantic 

description.  

In order to perform a straightforward and unbiased analysis, first we defined the setting which 

includes the definition of artifacts, the relations with other methodological concepts that will 

be observed and the template that is to be used for the artifact description. As the artifacts 

were observed as “any piece of software developed and used during software development 

and maintenance” we found the list of Mobile-D artifacts related to the process tasks not 

sufficient and thus we performed our own analysis. 

Thus, we observed the development process for each target platform separately and identified 

more than 70 artifacts that we initially grouped in 12 categories. After performing the cross-

platform analysis we found that more than 70% of all identified artifacts were in common to 

both platforms and 66% percent of them are partially or completely reusable. 

4.1. Analysis setting 

In Chapter 3.1.3 we defined the conceptual model and gave a definition of artifacts that arise 

in the development process which utilizes some development methodology. In our case, 

Mobile-D methodology was chosen. For this research we adopted the Conradi‟s (2004) 

definition of the artifacts as “any piece of software (i.e. models/descriptions) developed and 

used during software development and maintenance. Examples are requirements 

specifications, architecture and design models, source and executable code (programs), 

configuration directives, test data, test scripts, process models, project plans, documentation 

etc.” 

The conceptual model given in the mentioned chapter introduces the position of the artifacts 

in the overall development process. As the goal of this research was to analyze only the 

structural and semantic aspects of these sets of artifacts, we performed an analysis only from 

the semantic concept view, while other possible views, such as procedural concept view or 
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pragmatic concept view are not covered by it. Thus, we only observed the artifacts and their 

connection to the activities and tasks. The semantic of this connection was reduced to the 

concept of affiliation (e.g. which artifact is produced and used in which activity or task).  

 

 

Figure 36 - Focusing semantic of artifacts and their origin 

In this setting, the semantic concept view which describes the facts and the knowledge about 

the observed world was used. Additionally, by applying a procedural concept view, the 

analysis could be enhanced with procedural knowledge such as states, intentions, plans and 

rules and by applying a pragmatic concept view it could be additionally described by 

intentions, obligations or pragmatics of action. As we aimed to describe the concepts on 

artifacts in order to enhance the reusability while developing for second and other target 

platforms, the last two concept views are out of the scope of this research. 

Mobile-D methodology, as described in chapter 3.1, comprises development process of five 

phases which are executed in combined sequential and incremental manner. Table 23 given in 

Chapter 3.1.3 presents inputs and outputs that were used in these phases. The list was created 

according to the Mobile-D process library and it includes documents and other deliverables, 

but also presents them at a very high level of abstraction and as completely platform-

independent. After summarizing the information given in the Mobile-D process library 

(Abrahamsson et al., 2005a) and after correcting logical errors found in the existing overview, 

the mentioned artifacts were read (R), updated (U) or created (C) in tasks as presented in 

Table 38. 

On the other hand, our analysis included only those documents that were used in the 

development of our prototype projects and introduced specific platform dependent 

deliverables. In this sense, our analysis, for example, provides a more specific description 

than the output “implemented functionality” states or specifies exact standards that were used 

rather than just specifying “relevant standards” as artifacts. 

Producing Using some 

Performed by 

utilizing 

Consists of Mobile-D 

Process 

Methods and 

Practices 
Tools 

Inputs 

Outputs Activities 

and Tasks 

Artifacts 
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Table 38 - Mobile-D artifacts by tasks 

 
 

PHASE:                                                                              

I - Explore                                                                                

II - Initialize                                                                          

III - Productionize                                                                                                   

IV - Stabilize                                                                                                

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C

Task input R Read C Create

Task output U Update
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(Table 38 continued) 

 

 
Source: Based on information from (Abrahamsson et al., 2005a) 

 

PHASE:                                                                              

I - Explore                                                                                

II - Initialize                                                                          

III - Productionize                                                                                                   

IV - Stabilize                                                                                                

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C

Task input R Read C Create
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PHASE:                                                                              

I - Explore                                                                                

II - Initialize                                                                          

III - Productionize                                                                                                   

IV - Stabilize                                                                                                

V - System test & Fix

Product proposal R R R R

Organizational process library R

Contract R R R

Initial requirements document C R R R R U

Project plan U C R R U R R

Standards R

Base process description C R

Training plan C

Measurement plan C

Architecture line description C R

Architecture line plan U U

Software architecture and design C

Product backlog C R U

Developer notes C C

UI-illustrations/description C C R

Acceptance tests/documentation C R U C R U R R R

Implemented functionality R C R C C R R C R C R C

Metrics data R R

Experience R C

Story and task cards R C R R R R

Action point list C

Development artifacts C R R

Knowledge U

Data R

Manuals, API specs and other R

Unit tests R C

Daily status report C

Defect list U U C

Release audit check list C

The finalized documentation C

System test report C

Test log C
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Additionally, this agile methodology uses main concepts of planning, working and release day 

through several phases. The activities and tasks, and thus the artifacts as well, are very similar 

regardless of the phase they are created or used in. This means that the approach of 

identifying and grouping the artifacts only according to the phases of the origin would not be 

a good way. Thus, while identifying the artifacts, we initially collected the data that included 

name, type/category, description and usage of the artifacts as presented in the following 

template (Table 39). 

Table 39 - Template for describing the identified artifacts 

Artifact name Type Description I II III IV V 
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tp
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O
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O
u
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u
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O
u
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u

t 

 

4.2. Artifacts targeting Android platform 

After establishing the point of view we had decided to take in this research phase, we will 

move forward to identify and summarize the artifacts that emerged in the Android 

development process of our prototype mobile application. Although this has already been 

stated, it should be highlighted again that the development process itself was pretty much 

straightforward in following the Mobile-D methodology (see chapter 3.8) with only a slight 

misalignment in the organizational point of view – the project was not developed in an 

organization but by the researcher himself. Although this might have some negative and 

arguable influences, we assumed that the possibility of taking notes and observing the 

development process from the “inside” offers more advantages. We strived to follow all 

practices as they have been defined by the professional community and/or Mobile-D 

methodology, and we also developed a final and publishable product – the same as a company 

would do. 

Thus, from the conceptual point of view, we created a solid basis for identifying not only the 

documents that had been created, but also other artifacts that might be hard to identify if the 

project was performed outside the laboratory. 

The table presented below shows the list of identified artifacts, along with their initial 

classification, description and connection with the Mobile-D phases. We used standard CRU 

notation for denoting the artifacts that were created (C), used/read (R) and updated (U).   
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Table 40 - Identified artifacts in development process for Android 

Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 

In
p

u
t 

O
u

tp
u

t 

In
p

u
t 

O
u

tp
u

t 

In
p

u
t 

O
u

tp
u

t 

In
p

u
t 

O
u

tp
u

t 

In
p

u
t 

O
u

tp
u

t 

Mobile-D process 

library 
Document 

Process library describing the Mobile-D 

methodology in detail. Used as 

methodology guidelines in every phase. 

(Abrahamsson et al., 2005a) 

R  R  R  R  R  

Product proposal Document 

Generated before the development process. 

Describes the initial and general idea on 

the product. 

R          

Initial requirements 

document 
Document 

Created according to product proposal, but 

later updated with information on 

stakeholders and functional system 

requirements. It is also updated during the 

planning phase in 0-iteration and 

subsequent iterations. 

 C R U R U R  R  

Project plan Document 

Contains all information on project 

including definition of customer group, 

scope, planned activities and their duration, 

plans on documentation etc. Aligned with 

agile practices, this document is also 

updated during the iterations. 

 C R U R U     

Project plan 

checklist 

Document 

artifact 

Mobile-D project plan checklist. This 

document is part of project plan. 
 C  U  U  U  U 

Project plan 

checklist template 
Template 

Mobile-D project plan checklist 

(Abrahamsson et al., 2005a) 
R          

Project plan Gantt 

chart 
Model 

Model containing the graphical 

information on project plan iterations, 

activities and their duration. It is used in 

Project plan document. 

 C  U  U     

Measurement plan 
Document 

artifact 

Includes the metrics and plan for 

monitoring of the project. In our case we 

recorded only the duration of activities and 

compared them with plan. This document 

is part of project plan. 

 C R U R U R U R U 

Architecture line 

description 

Document 

artifact 

Created during the architecture line 

definition task and updated in architecture 

line planning activity. Contains the 

information on system context, 

technological scope, architectural risks etc. 

This document is part of project plan. 

 C R U R      

Software 

architecture and 

design description 

document (SADD) 

Document 
Contains the technical documentation on 

the developed product. 
   C R U R U   

Architecture line 

plan 

Document 

artifact 

Contains the information on planned 

system architecture. Created after the 

prototyping is finished. This document is 

part of SADD document. 

   C       

UI-illustrations 
Document 

artifact 

Describes the illustrations of mobile 

application user interface. It is part of 

SADD document. 

   C R U R  R  
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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p
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O
u
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u
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O
u

tp
u

t 
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p
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O
u
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u
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u
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O
u

tp
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t 

In
p

u
t 

O
u

tp
u

t 

Data model (mobile) Model 

Entity-Relationship-Attribute model of the 

mobile database. It is presented in SADD 

document. 

   C   R    

Data model (web) Model 

Entity-Relationship-Attribute model of the 

web application. It is presented in SADD 

document. 

   C R U R    

Web service 

specification 

Document 

artifact 

Contains information on exposed web 

services along with available methods, 

their parameters and other communication 

elements. Part of SADD document. 

   C R U R    

Class model 

(mobile) 
Model 

UML class diagram describing the mobile 

application internal structure and created 

classes. This model is used in SADD 

document. 

   C R U R    

Class model (web) Model 

UML class diagram describing the web 

application internal structure and created 

classes. This model is used in SADD 

document. 

   C R U R    

Class 
Model 

element 

UML model element used to describe a 

new class that is to be implemented. 
   C R U R    

Android class 
Model 

element 

UML model element used to describe an 

existing Android class that is to be used. 
  R  R  R    

System Test plan Document 
Contains the information on purpose, plan 

and definitions of system test. 
 C R U R U R  R  

Acceptance test 
Document 

artifact 

Created during initial requirements 

analysis. Contains the information on 

acceptance test of one product feature. Can 

include different contexts, and test 

scenarios with sample data. The document 

is part of System Test Plan document. 

   C R U R  R U 

Acceptance test 

template sheet 
Template 

Mobile-D acceptance test template sheet 

(Abrahamsson et al., 2005a) 
  R        

Prototype 

functionality 
Code 

Developed functionality during the trial 

day. It prototypes some of the main 

application functionalities and is used to 

define the basic approach for implementing 

the similar functionalities in other 

iterations. 

   C R      

Product backlog Document  

Contains the information on features that 

are (to be) implemented in the 

development process, through several 

iterations. Users can contribute in defining 

the features/stories. 

   C R U R U   

Story card 
Document 

artifact 

Basic documentation card containing 

information on one feature that is 

implemented. It is defined during the 

planning day but is refined during the 

implementation and wrap-up. It is part of 

the Product backlog document.  

   C R U R U   

Story card template Template 
Mobile-D story card template 

(Abrahamsson et al., 2005a) 
  R        
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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O
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Task card 
Document 

artifact 

Basic documentation card containing the 

information on one task that is to be 

performed during the iteration. it is defined 

during the planning day and refined during 

implementation and wrap-up. It is part of 

the Product backlog document. 

   C R U R U   

Task card template Template 
Mobile-D task card template 

(Abrahamsson et al., 2005a) 
  R        

Iterations plan 
Document 

artifact 

Contains the information about planned 

iterations along with selected features for 

specific iteration. This document is part of 

Product backlog document. 

    R C R    

Iteration backlog 
Document 

artifact 

Contains the information on specific 

iteration including story and task cards. 

Each iteration document is created from 

scratch. It is part of Product backlog 

document.  

  C   C  U   

System test report Document 

Final document on testing. Contains 

information on performed tests and issues 

detected. 

         C 

Test results 
Document 

artifact 

Results are obtained during the whole 

development process testing tasks. At the 

end this document becomes part of System 

test report.  

   C R U R U R U 

Defect list 
Document 

artifact 

Document created after testing is 

performed. It contains found issues and 

planned activities. At the end this 

document becomes part of System test 

report document. 

     C R U R U 

Unit test Code 

Unit test tests a single unit of code. It is 

created in separate project and references 

main project while performing different 

assertions. 

   C R U R  R  

Integration test Code 
Robotized test which tests application 

integrated functionality. 
   C R U R  R  

API documentation Example 
Android API documentation from 

developers.android.com 
  R  R  R    

Example code Example 
Android example code on different topics 

found on the internet from various sources. 
  R  R  R    

Development 

unrelated software 

tools 

Software 

These software tools support the main 

operations performed by project team. For 

example these include office suit, PDF 

reader, image editor etc. 

 C         

Project management 

software tool 
Software The tool used for project management.  C         

Drivers Software 
Set of drivers used to install the device 

connectivity for testing purposes. 
   C       

Development 

environment 
Software 

Set of applications used for Android 

development. We used Eclipse base SDK. 
   C       

Throw-away 

prototype 
Code 

Project created to test development 

environment and connected devices. This 

project is discarded. 

   C       
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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Web application 

development 

environment 

Software 
The web application development and 

hosting environment had to be set up.  
   C       

Mobile application Product 
The mobile application created in the 

development process. 
   C  U    U 

Web service Product 
The web part of the system created in the 

development process. 
   C  U     

Java code Code 
Java code developed during the 

implementation activities.  
   C R U R  R  

PHP code Code 
PHP code developed during the 

implementation activities. 
   C R U     

XML resource Code 
XML code describing application layout, 

menus, localized strings etc. 
   C R U     

Application 

manifest 
Code 

XML document containing the information 

on application. This document is most 

important code artifact. 

   C  U   R  

Google Play 

Services 
Code 

Google library containing the classes 

necessary if using Google Maps.  
    R      

Activity Code 

Represents java class that inherits Android 

Activity class with the purpose of 

controlling the application view. 

   C R U R    

Layout Code 
Represents XML code that is used to 

describe user interface form or screen. 
   C R U     

Layout element Code 

Represents XML code that is used to 

describe any user interface element such as 

text box, list box, button etc. 

   C R U     

Localization strings Code 

Represent XML code that is used to 

provide localized translation of values 

according to value unique key. 

   C R U   R  

Google API Key License 

Google license identifying the developer as 

unique person. This key is application 

specific and is used when using Google 

Maps API. 

    R C     

IEEE Standard No. 

RFC4627 (JSON) 
Standard 

Standard defining the JSON format. 

(Crockford, 2006) 
  R  R      

Application 

screenshot 
Resource 

Application screenshots are created as 

needed for publishing process. 
   C  U    U 

Application icon Resource 
Application icon is designed as needed for 

publishing process. 
         C 

Application 

description 
Resource 

Short but important description used for 

publishing process. It includes the 

information on application, category, 

authors etc. 

         C 

Deployment 

package 
Resource APK file created for publishing purposes.          C 

C – Created, R – Read/used, U - Updated 
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The identification process resulted in total of 60 different artifacts that are grouped in 12 

groups according to their type. From our point of view, which is based on conceptual analysis 

of semantic interoperability among different target platforms, we identified the following 

types related to Android development: 

Table 41 - Types of artifacts related to Android development 

Artifact type Description 

Document 
Represents used documents or created artifacts that are published as documents during 

or at the end of development process. 

Document artifact 
Represents document that could be observed as stand-alone artifact, but is usually 

included in some other document. 

Template Represents templates that are used to create some artifacts.  

Model 
Represents models that are created during the development process. Models could be 

observed as stand-alone artifacts, but are usually presented as a part of some document. 

Model element 
Represents the atomic level (i.e. integral) artifact that could be observed as stand-alone 

and is used to create models. 

Code 
Represents any artifact created during the implementation and is written in any 

programming or description language. 

Example 
Represents code artifacts created by third party and used as examples of implemented 

functionality or to solve some programming issue.  

Software Represents software tools used during the entire project. 

License 
Represents individual-specific unique key that is obtained or used during the 

development process. 

Standard 
Represents document containing formal and internationally recognized description of 

some concept or element. 

Publishing resource 
Represents resources that are created during the development process and are used in 

publishing purposes. 

Product Represents final product as most important project deliverable.  

  

Although some semantic links between the identified artifact types are obvious, the detailed 

semantic analysis, the definition of the relationships and the hierarchy among the artifacts and 

the identified types was performed in the next research phase and hence they were not focused 

on in this phase. In order to facilitate understanding, at this point it should be pointed out that 

some documents contain parts (document artifact) that should be observed separately which is 

why we identified them as a specific (new) type. Similarly, the model element could be 

observed as a stand-alone artifact used to build more complex models. 

4.3. Artifacts targeting Windows Phone platform 

As has been reported in Chapter 3.7, the development of mobile application targeting 

Windows Phone (WP) platform aimed to analyze if the existing artifacts from the Android 

case can be reused. This resulted in the fact that several activities in the Explore phase were 

completely omitted and some other activities were simplified due to the artifacts partial reuse. 

But, although all used artifacts were not created in the windows phone development process, 
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we nevertheless consider them as artifacts that belong to this process and subsequently they 

were included in the following table. 

The cross-platform comparison and analysis of the artifacts similarity was performed later and 

is not in focus of this chapter. We bring here the list of the identified artifacts that were used 

in the Windows Phone development case. Again, we used the standard CRU notation for 

denoting the artifacts that were created (C), used/read (R) and updated (U). 

Table 42 - Identified artifacts in Windows Phone case 

Artifact name Type Description 

Phases inputs and outputs 
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O
u
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Mobile-D process 

library 
Document 

Process library describing the Mobile-D 

methodology in detail. Used as 

methodology guidelines in every phase. 

(Abrahamsson et al., 2005a) 

R  R  R  R  R  

Product proposal Document 

Generated before the development process. 

Describes the initial and general idea on 

the product. 

R          

Initial requirements 

document 
Document 

Created according to product proposal, but 

later updated with information on 

stakeholders and functional system 

requirements. It is also updated during the 

planning phase in 0-iteration and 

subsequent iterations. 

 C R U R U R  R  

Project plan Document 

Contains all information on project 

including definition of customer group, 

scope, planned activities and their duration, 

plans on documentation etc. Aligned with 

agile practices, this document is also 

updated during the iterations. 

 C R U R U     

Project plan 

checklist 

Document 

artifact 

Mobile-D project plan checklist. This 

document is part of project plan. 
 C  U  U  U  U 

Project plan 

checklist template 
Template 

Mobile-D project plan checklist 

(Abrahamsson et al., 2005a) 
R          

Project plan Gantt 

chart 
Model 

Model containing the graphical 

information on project plan iterations, 

activities and their duration. It is used in 

Project plan document. 

 C  U  U     

Measurement plan 
Document 

artifact 

Includes the metrics and plan for 

monitoring of the project. In our case we 

recorded only the duration of activities and 

compared them with plan. This document 

is part of project plan. 

 C R U R U R U R U 

Architecture line 

description 

Document 

artifact 

Created during the architecture line 

definition task and updated in architecture 

line planning activity. Contains the 

information on system context, 

technological scope, architectural risks etc. 

This document is part of project plan. 

 C R U R      
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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Software 

architecture and 

design description 

document (SADD) 

Document 
Contains the technical documentation on 

the developed product. 
   C R U R U   

Architecture line 

plan 

Document 

artifact 

Contains the information on planned 

system architecture. Created after the 

prototyping is finished. This document is 

part of SADD document. 

   C       

UI-illustrations 
Document 

artifact 

Describes the illustrations of mobile 

application user interface. It is part of 

SADD document. 

   C R U R  R  

Data model (mobile) Model 

Entity-Relationship-Attribute model of the 

mobile database. It is presented in SADD 

document. 

   C   R    

Data model (web) Model 

Entity-Relationship-Attribute model of the 

web application. It is presented in SADD 

document. 

   C R U R    

Web service 

specification 

Document 

artifact 

Contains information on exposed web 

services along with available methods, 

their parameters and other communication 

elements. Part of SADD document. 

   C R U R    

Class model 

(mobile) 
Model 

UML class diagram describing the mobile 

application internal structure and created 

classes. This model is used in SADD 

document. 

   C R U R    

Class model (web) Model 

UML class diagram describing the web 

application internal structure and created 

classes. This model is used in SADD 

document. 

   C R U R    

Class 
Model 

element 

UML model element used to describe a 

new class that is to be implemented. 
   C R U R    

.Net class 
Model 

element 

UML model element used to describe an 

existing .Net class that is to be used. 
  R  R  R    

System test plan Document 
Contains the information on purpose, plan 

and definitions of tests. 
 C R U R U R  R  

Acceptance test 
Document 

artifact 

Created during initial requirements 

analysis. Contains the information on 

acceptance test of one product feature. Can 

include different contexts, and test 

scenarios with sample data. The document 

is part of System Test Plan document. 

   C R U R  R U 

Acceptance test 

template sheet 
Template 

Mobile-D acceptance test template sheet 

(Abrahamsson et al., 2005a) 
  R        

Prototype 

functionality 
Code 

Developed functionality during the trial 

day. It prototypes some of the main 

application functionalities and is used to 

define the basic approach for implementing 

the similar functionalities in other 

iterations. 

   C R      
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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Product backlog Document  

Contains the information on features that 

are (to be) implemented in the 

development process, through several 

iterations. Users can contribute in defining 

the features/stories. 

   C R U R U   

Story card 
Document 

artifact 

Basic documentation card containing 

information on one feature that is 

implemented. It is defined during the 

planning day but is refined during the 

implementation and wrap-up. It is part of 

the Product backlog document.  

   C R U R U   

Story card template Template 
Mobile-D story card template 

(Abrahamsson et al., 2005a) 
  R        

Task card 
Document 

artifact 

Basic documentation card containing the 

information on one task that is to be 

performed during the iteration. it is defined 

during the planning day and refined during 

implementation and wrap-up. It is part of 

the Product backlog document. 

   C R U R U   

Task card template Template 
Mobile-D task card template 

(Abrahamsson et al., 2005a) 
  R        

Iterations plan 
Document 

artifact 

Contains the information about planned 

iterations along with selected features for 

specific iteration. This document is part of 

Product backlog document. 

    R C R    

Iteration backlog 
Document 

artifact 

Contains the information on specific 

iteration including story and task cards. 

Each iteration document is created from 

scratch. It is part of Product backlog 

document.  

  C   C  U   

System test report Document 

Final document on testing. Contains 

information on performed tests and issues 

detected. 

         C 

Test results 
Document 

artifact 

Results are obtained during the whole 

development process testing tasks. At the 

end this document becomes part of System 

test report.  

   C R U R U R U 

Defect list 
Document 

artifact 

Document created after testing is 

performed. It contains found issues and 

planned activities. At the end this 

document becomes part of System test 

report document. 

     C R U R U 

Unit test Code 

Unit test tests a single unit of code. It is 

created in separate project and references 

main project while performing different 

assertions. 

   C R U R  R  

Integration test 
Document 

artifact 

Represents the description and results of 

integration test that is performed manually. 

This document is part of System Test Plan 

document. 

   C R U R  R  

API documentation Example 
WP API documentation from 

http://msdn.microsoft.com 
  R  R  R    
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Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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Example code Example 
WP example code on different topics 

found on the internet from various sources. 
  R  R  R    

Development 

unrelated software 

tools 

Software 

These software tools support the main 

operations performed by project team. For 

example these include office suit, PDF 

reader, image editor etc. 

 C         

Project management 

software tool 
Software The tool used for project management.  C         

Drivers Software 
Set of drivers used to install the device 

connectivity for testing purposes. 
   C       

Development 

environment 
Software 

Set of applications used for Windows 

Phone development and integrated in 

Visual Studio. 

   C       

Throw-away 

prototype 
Code 

Project created to test development 

environment and connected devices. This 

project is discarded. 

   C       

Web application 

development 

environment 

Software 
The web application development and 

hosting environment had to be set up.  
   C       

Mobile application Product 
The mobile application created in the 

development process. 
   C  U    U 

Web service Product 
The web part of the system created in the 

development process. 
   C  U     

C# code Code 
C# code developed during the 

implementation activities.  
   C R U R  R  

PHP code Code 
PHP code developed during the 

implementation activities. 
   C R U     

XAML description Code 
XML based XAML code describing 

application layout and layout elements. 
   C R U     

WMAppManifest Code 

XML document containing the information 

on application. It includes the information 

on some application resources. It is created 

automatically. 

   C     R  

Microsoft Phone 

Controls Toolkit 
Code 

Library containing the classes necessary 

for adding some basic and advanced 

controls.  

  R  R      

Silverlight Map 

Control 
Code 

Library containing the classes necessary 

for using Bing maps in WP application. 
    R      

Page (C#) Code 
Represents C# class that has the purpose of 

controlling the application view. 
   C R U R    

Page (XAML) Code 
Represents XAML code that is used to 

describe user interface form or screen. 
   C R U     

Page element Code 

Represents XAML code that is used to 

describe any user interface element such as 

text box, list box, button etc. 

   C R U     

Resource file Code 

Represents code that is used to provide the 

application with resources (strings, images, 

icons, audio, files and other). We used it to 

provide the application with localized 

translation for two languages. 

   C R U   R  
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Artifact name Type Description 

Phases inputs and outputs 
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Bing maps key License 

Microsoft license identifying the developer 

as unique person. This key is application 

specific and is used when using Silverlight 

Map Control. 

    R C     

IEEE Standard No. 

RFC4627 (JSON) 
Standard 

Standard defining the JSON format. 

(Crockford, 2006) 
  R  R      

Application 

screenshot 
Resource 

Application screenshots are created as 

needed for publishing process. 
   C  U    U 

Application icons Resource 
Application icons are designed as needed 

for publishing process. 
         C 

Application 

description 
Resource 

Short but important description used for 

publishing process. It includes the 

information on application, category, 

authors etc. 

         C 

Deployment 

package 
Resource XAP file created for publishing purposes.          C 

C – Created, R – Read/used, U - Updated 

 

The total of 61 artifacts were identified and described. All artifacts are classified according to 

the same classification of 12 different artifact types recognized in the first development case. 

In the following chapter, a cross-platform analysis will be performed in order to identify 

common, specific, and partially reusable artifacts in both development processes. 

4.4. Cross-platform artifacts comparison 

The undertaken activities of identifying and describing the artifacts that were used in the two 

development cases resulted in a list of 60 artifacts in the Android case and 61 artifacts in the 

Windows Phone case. The initial classification of these artifacts resulted in 12 different types. 

The purpose of this chapter is not to perform a detailed semantic analysis of the artifacts 

relations, but rather to do a cross-platform comparison in order to separate those that are 

common to both platforms from those that are specific to one or the other and those that are 

partially reusable.  

We strongly believe that the order of execution of the development cases did not have any 

influence on the identified set of artifacts. We also believe that the artifacts that were reusable 

in our presented scenario would also be reusable if we developed for Windows Phone first. 

However, having only this development case, we cannot make strong conclusions, but the 

evidence collected in this scenario indicates on this characteristic. This could be another 

positive aspect of the approach taken in this dissertation. 
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4.4.1. Common artifacts 

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are 

common to both development cases. Thus, we named them common artifacts. These artifacts 

are enumerated in Table 43. 

Table 43 - Common artifacts in Android in WP case 

Artifact name Identical 
Partially 

reused 
Different 

Mobile-D process library X   

Product proposal X   

Initial requirements document X   

Project plan  X  

Project plan checklist  X  

Project plan checklist template X   

Project plan Gantt chart X   

Measurement plan  X  

Architecture line description   X 

Software architecture and design description document   X 

Architecture line plan  X  

UI illustrations   X 

Data model (mobile) X   

Data model (web) X   

Web service specification X   

Class model (mobile)   X 

Class model (web) X   

Class  X  

System test plan   X 

Acceptance tests X   

Acceptance test template sheet X   

Prototype functionality   X 

Product backlog  X  

Story card  X  

Story card template X   

Task card  X  

Task card template X   

Iterations plan X   

Iterations backlog  X  

System test report   X 

Test results   X 

Defect list  X  

Unit test  X  

Integration test   X 

API documentation   X 

Example code   X 

Development unrelated software tools X   

Project management software tool X   

Drivers   X 

Development environment   X 

Throw-away prototype   X 

Web application development environment X   

Mobile application   X 

Web service X   

PHP code X   

IEEE standard No.RFC4627 (JSON) X   

Application screenshot   X 
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Application icon  X  

Application description  X  

Deployment package   X 

TOTAL (50) 20 13 17 

 

Additionally, many of these common artifacts are platform independent as being products of 

methodological approach. In total, 20 out of 50 identified artifacts (40.00%) have been 

created or obtained only once, as these were identical in both development processes. In this 

group, it is important to distinguish between those artifacts that were only used as inputs 

while performing the methodology (like Mobile-D process library, various templates, 

standards, tools) and those that had to be created by a development team, but only once (like 

artifacts concerning some aspects of project planning activities, testing or backend system 

development activities). A proper reuse of these artifacts will give the development team the 

first fruits of taking the approach we are proposing in this dissertation. 

On the other hand, there are 13 artifacts (26.00%) that could be partially reused while 

performing the development process for the second or any other target platform. There are 

various reuse levels that we recognized in this group (from reusing artifact creation approach, 

reusing content inner logic, to reusing some parts of content itself). We believe that a different 

additional analysis should be performed in this direction and that the results could give a more 

specific knowledge on reusable artifact elements, which, in the end, could result in more 

specific and easier to follow instructions and thus better results for development teams.  

Finally, we recognized 17 artifacts (34.00% of all common artifacts) with a very low level of 

possible reuse. They were classified as ones that should be developed from scratch for every 

target platform.  

The results presented in this chapter are very encouraging and we can conclude that they 

create a strong basis and motivation for additional research and analyses. In this dissertation, 

we have covered only one possible approach, but as has been stated before, other approaches 

are also welcome. 

4.4.2. Platform dependent artifacts 

The artifacts that are characteristic for one target platform and are significantly different from 

artifacts of other target platform are classified as platform dependent artifacts. As presented in 

Table 44 there are 10 Android specific artifacts and 11 Windows phone specific artifacts that 

were created in this particular development case.  
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Table 44 - Android and WP specific artifacts 

Android specific artifacts 

Android class 

Java code 

XML resource 

Application manifest 

Google Play Services 

Activity 

Layout 

Layout element 

Localization strings 

Google API Key 

TOTAL (10) 

Windows Phone specific artifacts 

.Net class 

C# code 

XAML description 

WMAppManifest 

Microsoft Pone Controls Toolkit 

Silverlight Map Control 

Page (C#) 

Page (XAML) 

Page element 

Resource file 

Bing maps key 

TOTAL (11) 

 

If we carefully observe and compare these platform specific artifacts, we can conclude that 

even in this case there are some semantic similarities. For example, Java code and C# code 

are separate artifacts but they might have reusable parts like sequencing, iterations, algorithms 

etc. Thus we did not reject them as irrelevant for the rest of the research, and have used them 

as well in the next phase of the semantic analysis. 

4.5. Relevance of the chapter 

To summarize, in this chapter we have identified all artifacts that arose in our development 

process for two target platforms: Android and Windows Phone. The artifacts are observed as 

“any piece of software developed and used during software development and maintenance” 

(Conradi, 2004), and thus we first created a list of artifacts that were specific for Mobile-D 

methodology and then enhanced it with the artifacts identified in our development cases. The 

total of 71 artifacts were recognized and initially classified in 12 different categories. 

Our cross-platform analysis showed that 50 artifacts (70.42%) are common to both 

development cases. We found that 20 artifacts are exactly the same in both cases and another 

13 artifacts are partially reusable. Thus, in total the 33 artifacts (66.00% of the common 
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artifacts) are completely or partially reusable. This brought us to the conclusion that these 

results provide a solid basis and motivation for the semantic analysis that follows. 

With the identification and cross-platform analysis of the artifacts we have concluded the 

second phase of our research process. We now move to the third phase where we will 

semantically and ontologically describe these artifacts. 
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5. THE ONTOLOGY FOR METHODOLOGICAL 

INTEROPERABILITY 

The main goal of this research is to ontologically describe artifacts that arise in the 

methodologically managed process of mobile application development targeting two or more 

mobile platforms, and to create the basis for more efficient and interoperable process of multi-

platform mobile applications development. 

In the previous chapters we analyzed the state of the art in the usage of methodologies for 

mobile applications development, and also performed a development process for two different 

target platforms by utilizing Mobile-D methodology, and based on the gathered empirical 

evidence we identified more than 70 different artifacts that arose in these two development 

cases. 

In this chapter we will move on to our last research phase in order to semantically describe 

the identified artifacts, their meaning and relations and finally to create a formal ontology 

containing the knowledge on possibilities of artifacts reuse in multi-platform mobile 

application development.  

The chapter is organized in four parts. First, we will introduce and define the concept of 

ontology, discuss possible usages, types, development methodologies and tools, in order to 

determine the type of our ontology along with the environment that will be used to develop 

and describe the ontology. Secondly, we will develop an ontology describing the development 

for Android platform and in this part we will focus on ontology development by utilizing an 

ontology development methodology. In the third part we will define the second ontology 

describing the development for Windows Phone target platform and in this part we will put 

focus on the concepts of ontology reuse and update.  

Finally, in the fourth part we will present the development of the common ontological 

description for both platforms, and in this chapter we will focus on the concepts of ontology 

merging, extension, evaluation and testing. 
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5.1. Ontology 

5.1.1. Definitions 

The term ontology is a philosophical term that has its roots in Greek words “on” (genitive 

“ontos”) - “being”, and “logia” - “writing about, study of”. It is often stated that Greek 

philosophers Parmenides, who argued about nothingness, and Aristotle, who argued about 

theory of being in his work Metaphysics, begot the concept of ontology in the 4
th

 century BC. 

Since then, many other philosophers have used the concept and the term. In philosophy 

ontology is defined as “a branch of metaphysics concerned with identifying, in the most 

general terms, the kinds of things that actually exist. Thus, the ontological commitments of a 

philosophical position include both its explicit assertions and its implicit presuppositions 

about the existence of entities, substances or beings of particular kinds” (Kabilan, 2007). In 

other words, ontology is the theory of existence. 

From our perspective, we are more interested in the concept of ontology that is currently used 

in some other disciplines including Artificial Intelligence, Knowledge Management, 

Information Systems and Software Engineering. Gruber (1993a) defined ontology as “an 

explicit specification of conceptualization”. To put it another way and according to Gruber, 

ontology is a specification of a representational vocabulary for a shared domain of discourse 

and it includes definitions of classes, relations, functions and other objects. According to 

Gong et al. (2006), ontology is a general conceptualization of a specific domain in a format 

readable to humans and to machines. Same authors define Process Description Ontology as a 

formal semantics to traditional process modeling elements, such as entities, objects and 

activities, their relationships et cetera. 

Following Gruber‟s definition, Studer et al. (1998) defined ontology as “a formal, explicit 

specification of a shared conceptualization.” This definition includes: the term 

conceptualization as an abstract modeling of some phenomenon and identification of its 

relevant concepts; the term shared representing that the knowledge included in the ontology 

should be consensual and shared; the term formal to exclude the use of natural languages and 

to make the ontology machine readable: and the term explicit denoting that the concepts and 

the constraints on their use should be explicitly defined.  

On the other hand, based on their experience Noy and McGuinness (2001) took the pragmatic 

approach and defined the ontology as “a formal explicit description of concepts in a domain 

of discourse (classes (sometimes called concepts)), properties of each concept describing 

various features and attributes of the concept (slots (sometimes called roles or properties)), 

and restrictions on slots (facets (sometimes called role restrictions))”. 
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According to Hilera et al. (2010) ontology is a knowledge representation tool, and the 

knowledge representation tools can be classified at four different levels. Dictionaries, 

taxonomies, thesauri and ontologies are respective representatives of these levels. The last 

one, the ontology level, includes definitions of concepts (dictionaries), implicit or explicit 

vocabulary, as well as descriptions of specialized relationships between concepts 

(taxonomies), lexical and equivalence relationships (thesaurus), and combination of 

relationships with other more complex relationships between concepts to completely represent 

a certain knowledge domain. 

As we can see, the term “ontology” was taken from philosophy, but its use and meaning in 

Computer Science got a new and adapted perspective. As there is no consensus on the 

definition of ontology, in the context of this research we consider ontology as an explicit 

formal conceptualization of a shared understanding of the domain of interest which includes 

vocabulary of terms for describing the domain elements, semantics in order to define the 

relationships of the domain elements and pragmatics in order to define possible usages of 

these elements. 

5.1.2. Uses of ontologies 

The use of ontologies in the domain of Computer Science grew rapidly in the last two 

decades. Firstly, ontologies were used mainly as tools in the area of Artificial Intelligence, but 

now, their usage become popular in many other fields as they provided the domain experts the 

possibility of categorizing the domain knowledge. 

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use 

of ontologies. They found following reasons which are here shortly explained and 

demonstrated on our example: 

 To share common understanding of the structure of information among people or 

software agents. In our case, after having the ontology of artifacts that arose in the 

development process defined, we created a basis for development of an automated 

system or software agent that could provide teams with information on requested 

queries or event in order to guide them in the development process. 

 To enable reuse of domain knowledge. This is one of the strongest reasons for 

ontology usage. For example, if we need a detailed description of the Android 

operating system in our ontology, we can simply reuse the existing ontology if one 

exists. Additionally, we might consider using an existing general ontology and 

extending it to the knowledge describing our domain. 

 To make domain assumptions explicit. Explicit assumptions bring several advantages 

in terms of understanding, improving or correcting knowledge. Thus, the assumptions 
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created in our ontology of artifacts can be changed without the need to change the 

system that uses them, and will still be readable to people without any knowledge 

about the design of the system that is based on the ontology. 

 To separate domain knowledge from the operational knowledge. This is another 

common use of ontologies. In our example, we could describe the artifacts and their 

relationships separately from describing the operational knowledge on using those 

artifacts. Thus, the system built on this operational knowledge could be easily fed with 

some other ontology of artifacts without the need to be changed. 

 To analyze domain knowledge. The process of creating ontologies is possible only 

when the domain terms are declaratively specified. The ontological description thus 

enhances declarative description and makes the knowledge formal and reusable. 

In the end, it is important to notice that ontology should not have a purpose in itself. The 

ontologies should be built with an existing idea of their application. The desired application 

always has an influence on the ontology structure and its final form. Thus, the ontological 

description of artifacts that arise in the methodologically driven development process would 

not be the same if we build it with the idea of using the application in teaching on 

methodological process and if we build it with the idea of using the application to advise and 

help on artifact reuse when developing for different platforms. 

5.1.3. Ontologies and semantic interoperability 

Interoperability is in nature multilateral and can be best understood as a shared value of the 

community. According to European Interoperability Framework for European Public Services 

(EIF) (European Commission, 2010) the interoperability within the context of European 

Public Services delivery can be defined as “ability of disparate and diverse organizations to 

interact towards mutually beneficial and agreed common goals, involving the sharing of 

information and knowledge between the organizations, through the business processes they 

support, by means of the exchange of data between their respective ICT systems.” Also, the 

EIF defines Interoperability framework as “an agreed approach to interoperability for 

organizations that wish to work together towards the joint delivery of public services. Within 

its scope of applicability, it specifies a set of common elements such as vocabulary, concepts, 

principles, policies, guidelines, recommendations, standards, specifications and practices.” 

In the context of this research, the IEEE definition of interoperability will be adopted and 

extended. The original definition (IEEE Computer Society., 1990) says that interoperability is 

“the ability of two or more systems or components to use the information that has been 

exchanged”. The definition of interoperability will be extended with the methodological and 

social component to “the ability of two or more systems, components, teams or team members 
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to use and exchange the information and methodological artifacts that have been created 

during the mobile application development process”. 

Observing from different points of view, we can talk about several types of interoperability. 

The most suitable division for this research is the one that defines two types of 

interoperability. Several authors are talking about semantic and syntactic interoperability 

(Park and Ram, 2004). So, according to Park and Ram semantic interoperability is the 

knowledge-level interoperability which provides the interoperable systems with a possibility 

to bridge the semantic conflicts, and syntactic interoperability is the application-level 

interoperability that allows interoperable systems to cooperate regardless of their 

implementation techniques (Park and Ram, 2004). This thesis will deal only with semantic 

interoperability. 

Additionally, Park and Ram define three different areas of semantic interoperability. 

Mapping-based approach creates mappings between semantically related information 

sources, intermediary-based approach depends on the use of intermediary mechanisms to 

achieve interoperability, and query-oriented approach is based on interoperable languages 

(Park and Ram, 2004) (Gong et al., 2006). The mapping-based approach is not designed to be 

independent of particular schemas and applications; the query-oriented approach requires the 

users to understand all underlying local databases; so the most promising approach is the 

intermediary-based approach as it uses intermediary mechanisms such as mediators or 

ontologies, which may have domain-specific knowledge, mapping knowledge, or rules 

specifically developed for coordinating various and autonomous information sources (Park 

and Ram, 2004).  

According to Paulheim and Probst (2010), interoperability can be performed on different 

levels, and subsequently they define integration on data source level, integration on the 

business logic level and integration on the user interface level.  

Surprisingly, interoperability on the methodological level is rarely mentioned in literature. 

Thus, the goal of this research is to create an ontological definition that can be used as a 

knowledge source for information system guiding the development teams to increase the 

methodological interoperability by reusing the artifacts that are created in the development 

process of mobile application for the second and every other target platform. 

5.1.4. Ontology types 

There is no single point of view which could be taken when defining ontology types. 

According to Lovrenčić (2007) ontologies can be grouped in accordance with their forms, the 

volume and the type of conceptualization structure, the conceptualization subject and the 

richness of described content. The same author emphasizes that the most common 
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classification is according to the conceptualization subject. Upon adapting the classification 

from (Gómez-Pérez, 2004) she describes the following eight categories of ontology types 

(Lovrenčić, 2007): 

 Knowledge representation ontologies aim to represent the domain knowledge by 

utilizing a knowledge representation paradigm. These ontologies are built from 

common modeling artifacts – classes, relationships and attributes. The most commonly 

used knowledge representation paradigms are Frame Ontology, Resource Description 

Framework (RDF), RDF Schema (RDFS), Ontology Interface Layer (OIL), DARPA 

Agent Markup Language + OIL (DAML+OIL) and Web Ontology Language (OWL). 

 General/Common Ontologies describe the common knowledge that can be used in 

different domains. These ontologies define different general concepts like time, space, 

events and similar. 

 Top-level Ontologies describe abstract concepts which are related to the specific 

concepts used in ontologies at lower abstraction level. These ontologies should be 

universal and expressive. Some of well-known upper-level ontologies are Cyc (aims to 

describe the whole human consensual knowledge) and SUMO (Suggested Upper 

Merged Ontology supported by IEEE). 

 Domain Ontologies describe concepts belonging to one specific domain. The domain 

should be described at the highest possible abstraction level so the ontology could be 

reused while developing other ontologies in the same domain. Some of the domains 

could be Education, Law, Knowledge Management, Medicine, Engineering et cetera. 

As the number of domains grew, the need for structured ontology libraries resulted in 

several well-known libraries like Protégé Ontology Library, DAML Ontology Library 

and others.  

 Task Ontologies describe the concepts that are related to a specific task or activity and 

needed to solve the problems related to that task. 

 Domain Task Ontologies are similar to Task Ontologies, but are reusable in the same 

domain. We consider these ontologies as more general. 

 Method Ontologies give the description of the concepts that are used in the 

specification of the process of decision making in order to solve a task. 

 Application Ontologies define the concepts related to the knowledge in a specific 

application. These ontologies are dependent on their appliance and usually extend 

other domain and task ontologies related to the observed application. 

As it can be seen from the listed ontology types, the main difference between the ontologies is 

in the level of abstraction of the described concepts. They form a continuum that covers 

concepts ranging from being very specific to being very general and abstract. The level of 

abstraction is directly connected to the possibility of ontology reusability as general 
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ontologies are highly reusable and those describing specific concepts are not (Lovrenčić, 

2007). 

Similar ontology classification created upon ontology generality was created by Guarino 

(1998). He defined four types of ontologies we already mentioned: Top-level Ontology, 

Domain Ontology, Task and Problem Solving Ontology and Application Ontology. These 

types are, according to Guarino, hierarchically ordered as it is shown in Figure 37.  

 

Figure 37 - Guarino's types of ontologies according to generality level 

As domain ontology can be defined as a network of domain model concepts (topics, 

knowledge elements) that defines the elements and the semantic relationships between them 

(Brusilovsky et al., 2005), the use of domain ontologies is suitable to describe all content 

regarding development methodology and approach, and thus, the ontology that is a subject of 

this research is classified as domain ontology as well. In this way, the adaptive Web-based 

system, which we plan to develop on the base of the results of this research, will be able to 

select and recommend the most relevant reusable content during the development of multi-

platform mobile application. 

5.1.5. Ontology development methodologies 

Gruber (1993b) defined five principles that became de facto standard in the ontology design 

not only in the Artificial Intelligence field but also in other fields where ontologies are used. 

These five principles include clarity, coherence, extendibility, minimal encoding bias and 

minimal ontological commitment. We will give a glance overview of these principles as they 

are the goals that should be achieved in every ontology development activity. According to 

(Gruber, 1993b) the principles can be described as: 

Application 

Ontology 

Domain Ontology 
Task and Problem 

Solving Ontology 

Top-level 
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 Clarity: Ontology should be able to transmit the encapsulated knowledge and the 

meaning to its users through objective and complete definitions. Documentation of 

definitions should be written in a natural language. 

 Coherence: Ontology should be logically coherent at the level of axioms as well as 

informally coherent in concepts that are described for instance in a natural language or 

in examples. Subsequently, the inferred knowledge should be coherent to that 

described in the documentation. 

 Extendibility: Ontology should be designed to anticipate the usage of a shared 

vocabulary in such a way that it should be possible to extend the ontology with new 

terms that are based on the existing vocabulary without the need of changing the 

existing definitions.  

 Minimal encoding bias: The conceptualization should be specified at the knowledge 

level without depending upon any symbol or language encoding. This will enable the 

automatic transformation of ontology among different encoding styles and will enable 

the usage of ontology in knowledge-sharing agents implemented in different 

representation systems. 

 Minimal ontological commitment: Ontology should make as few claims as possible 

about the world being modeled. This is done by defining only essential terms needed 

for communication of the knowledge. Subsequently, this will enable further 

specialization and instantiation of the ontology as needed.  

Gruber concluded his criteria definition with discussion about the necessity of having some 

trade-offs among the stated criteria. Although the criteria are not diagonally opposite, some 

trade-offs are necessary. But, as we can see, Gruber did not give any guidelines on how to 

achieve these criteria in a methodological manner. He did not provide a cookbook that we can 

use while designing the ontology. Additionally, these criteria define only the requirements 

regarding the creation of ontology artifacts, but do not reflect upon the intended purpose of 

the ontology. 

In addition to the stated, Kabilan (2007) defined specific design choices that are to be made 

while designing domain ontologies. She defined the following questions: 

 Which concepts are relevant and necessary to be included in the proposed ontology? 

 What is the optimum design architecture for the proposed ontology? 

 What kind of design strategy is best suited for the given domain and given purposes? 

 How to be consistent in the conceptualization of similar categories of concepts? 

 How to match the functional requirements of the targeted application with the goals of 

ontology design? How do these functional requirements influence the ontology design 

choices? 
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 What is the minimum required level of knowledge formalization? 

 Which knowledge representation formalism/language to choose? 

 Once the above design decisions are taken, how should a designer actually proceed in 

capturing, analyzing and representing the implicit and explicit domain knowledge? 

 What tools, methods, other knowledge sources, models may be chosen to help in the 

knowledge modeling process? 

Providing answers to all of these questions is not a trivial task. It is obvious that a structured 

and guided approach is necessary. Thus, during these 20 years since the earlier mentioned 

design principles have been stated, a number of ontology development methodologies have 

been proposed.  

There are several papers that give an extensive overview of ontology design methodologies, 

such as (Dahlem, 2011), (Lovrenčić, 2007) and (Kabilan, 2007). Dahlem compared sixteen 

ontology design methodologies and he concluded that three of them have their roots in the 

creation of Knowledge Based Systems (CommonKADS, Cyc and KBSI IDEF5), five of them 

aim at the construction of ontologies from scratch (Grűninger and Fox, Uschold and King, 

METHONTOLOGY, Ontology Development 101 and UPON), two of them emphasize the 

collaborative evolution of ontologies (DILIGENT and HCOME), three of them are focusing 

on reuse of existing knowledge (SENSUS, KACTUS and ONIONS) and the remaining three 

are inspired with database engineering (DOGMA), wiki-based systems (mOnt) and 

Knowledge Management (On-To-Knowledge). Although the list of compared methodologies 

is not an exhausting one and there are many other methodologies described in literature, in the 

case of our research, methodologies that aim at construction of ontologies from scratch (as it 

is later elaborated in Chapter 5.2.2) are from our specific interest, and they will be shortly 

described in the following paragraphs. 

5.1.5.1. METHONTOLOGY 

After identifying the lack of standardized procedures in the ontology development process, 

Fernandez-Lopez et al. (1997) defined an ontology development methodology – namely 

METHONTOLOGY – as the methodology that is based on software development process. 

Their method is based on the execution of the following phases which provide the activities 

for building an ontology from scratch: 

1. Specification – The idea of this phase is to produce informal, semi-formal, or formal 

specification document written in natural language including information on the 

purpose of the ontology, users, scenarios of use, the level of formality of future 

ontology and the scope which includes a set of terms to be represented, its 

characteristics and granularity. 
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2. Knowledge acquisition – The activities of knowledge acquisition are independent 

activities in the ontology development process, but are performed simultaneously with 

specification and other phases. 

3. Conceptualization – This phase should result in conceptually structured domain 

knowledge in terms of the domain vocabulary identified in the ontology specification 

phase. Glossary of Terms should be created in this phase and it should include 

concepts, instances, verbs and properties. The following activities include: grouping 

activity where concepts and terms are grouped according to their inner cohesion; the 

activities of concepts description, verbs description and tables of formulas and rules 

creation. 

4. Integration – As a result of this activity, METHONTOLOGY proposes the 

development of an integration document, summarizing the meta-ontology that will be 

used along with detailed links between terms that are to be used and the terms defined 

in conceptual model. 

5. Implementation – This phase should result in the ontology codified in a formal 

language. The activities of this phase should be supported by ontology development 

environment which should at least provide: a lexical and syntactic analyzer, 

translators, an editor, a browser, a searcher, evaluators and so on. 

6. Evaluation – In the METHONTOLOGY, evaluation assumes the terms of verification 

which refer to technical process that guarantee the correctness of the ontology and 

validation which checks if the ontology corresponds to the system that they supposed 

to represent. 

7. Documentation – This support activity should be done through the whole ontology 

development process. After mentioned phases, the documentation activities include 

the creation of a requirements specification document, a knowledge acquisition 

document, a conceptual model document, a formalization document, an integration 

document, an implementation document and an evaluation document.  

The mentioned activities can be divided into two main groups: the technical activities and the 

support activities. Technical activities include specification, conceptualization and 

implementation, while the remaining are support activities. 

Although the presented methodology slightly evolved during the time, its basic approach 

remained the same.  

5.1.5.2. Ontology Development 101 

Another well-known and often used methodology for ontology development is Ontology 

Development 101 (Noy and McGuinness, 2001). This methodology describes iterative 

approach in ontology development, and is created as one possible approach that can be used. 
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The approach gained popularity mainly because of its simplicity, clarity and focus on the 

results.  

Basic assumptions built into the Ontology Development 101 (OD101) methodology are: there 

is no single correct way to model a domain and the best solution always depends on the 

application and the expected extensions of the ontology; ontology development is necessarily 

an iterative process; the concepts in the ontology should be close to objects (nouns) and 

relationships (verbs) in the domain of interest (in the sentences that describe the domain). The 

whole methodology is comprised in execution of 7 steps as described in (Noy and 

McGuinness, 2001): 

 Step 1. Determine the domain and the scope of the ontology. In order to define a 

domain and the scope of the ontology, OD101 proposes the list of basic questions that 

should be answered. The list includes questions like: What is the domain that the 

ontology will cover? For what are we going to use the ontology? Who will use and 

maintain the ontology? The answers to these questions aim at limiting the scope of the 

model. Additionally, the OD101 authors suggest the creation of a list of competency 

questions that a knowledge base, based on the ontology, should be able to answer. In 

our case, the competency questions list could contain questions like: What artifacts do 

I need in this development step? What are the outputs of this step? Is the class 

diagram presented in the test plan document or software design and description 

document? What artifacts can I reuse in this phase?  

 Step 2. Consider reusing existing ontologies. There are different libraries containing 

already developed ontologies that can be reusable in our particular case. Additionally, 

if our system needs to interact with other applications that have already committed to 

particular ontologies or vocabularies, it is necessary to reuse and build upon these 

ontologies and vocabularies.  

 Step 3. Enumerate important terms in the ontology. The list of terms that arise in our 

domain of interest should be created. This list will be updated in all iterations and 

while building it we can think of: what terms we would like to talk about, what 

properties do those terms have and what would we like to say about those terms? For 

example, some terms that could be interesting to our ontology are: artifact, phase, 

activity, task, input, output et cetera. 

 Step 4. Define the classes and the class hierarchy. This step and step 5 are closely 

connected and are always performed in parallel by defining a few definitions of the 

concepts in the hierarchy and then continue by describing properties on those 

concepts. These two steps are also two most important steps in the ontology design 

process. 

There are three basic approaches that can be taken while developing a class hierarchy:  
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 A top-down development process starts with the definition of the most general 

concepts in the observed domain and continues with subsequent specialization of the 

concepts.  

 A bottom-up development process starts with the definition of the most specific 

classes and then groups them into more general concepts.  

 A combination development process combines a top-down and bottom-up approach. 

The idea of this approach is to define more salient concepts first and then to make 

generalization or specialization as needed. The Uschold and Gruninger (1996) (who 

define this approach as “middle-out approach”) argue that top-down and bottom-up 

approaches have a number of negative effects (like over-detailed ontologies, high 

efforts needed, less stability) and they find a middle-out approach as a balanced 

approach that they used successfully in practice.  

In any case, the terms are in this step converted into classes which are then organized 

into a hierarchy. A class should become a subclass if all instances of that class are also 

instances of its super class. 

 Step 5. Define the properties of classes – slots. In this step the internal structure of the 

concepts is created. As the classes from the list of terms created in Step 2 are already 

selected, most of the remaining terms are properties of these classes. In general, there 

are several types of properties that could be created: intrinsic properties, extrinsic 

properties, structure properties, and relationships. The mentioned properties should 

be attached to the most general class that can have that property. 

 Step 6. Define the facets of the properties. Each defined property should be described 

in detail by defining some additional restrictions like the type of its value, cardinality, 

domain (classes that property describes) and range (allowed classes of instances),  

 Step 7. Create instances. This is the last step in an ontology creation process. It results 

in a list of individual instances of classes in the hierarchy.  

By the characteristics of the presented methodology (simplicity, focus on results and iterative 

approach) we can call this methodology an agile ontology development methodology, and that 

is why we find this methodology as the most suitable for our research process and we will use 

it in defining our ontology.  

5.1.5.3. UPON 

Unified Process for ONtology building (UPON) is an ontology building methodology based 

on the Unified Process (UP). The methodology is proposed by De Nicola et al. (2005) who 

tried to show that the basic phases in developing a software system could be the same when 

building an ontology. They also propose the reuse of UML modeling language to model some 

aspects of ontologies as they find them use-case driven, iterative and incremental.  
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Similar to UP, UPON also defines cycles, phases, iterations and workflows. Each cycle 

consists of inception, elaboration, construction and transition and results in the release of a 

new version of the ontology. Each phase is further subdivided into iterations where five 

workflows take place: requirements, analysis, design, implementation and test (see Figure 

38). 

 

Figure 38 - De Nicola’s UPON framework 

(De Nicola et al., 2005) 

5.1.5.4. Uschold and King 

Back in 1995, Uschold and King defined a skeleton for a methodology for building 

ontologies. The skeleton consisted of four main phases which are defined as follows (Uschold 

and King, 1995): 

 Identify Purpose 

 Building the Ontology 

 Ontology capture 

 Ontology coding 

 Integrating Existing Ontologies 

 Evaluation 

 Documentation 

If compared to other methodologies created later, we can conclude that this simple 

methodology created the basis for its successors. By describing other mentioned 

methodologies we already described all concepts that were focused by Uschold and King as 

well.  
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5.1.5.5. Grűninger and Fox 

The ontology development methodology presented by Grűninger and Fox (1995) is based on 

the activities that transform Informal Competency Questions through specification of 

Terminology in First-Order Logic, to Formal Competency Questions and finally to 

specification of Axioms in First-Order Logic. The procedure is finished after the 

Completeness of Theorems is checked. This methodology defines formal approach in 

ontologies development and provides a framework for evaluating the adequacy of created 

ontologies by proving the completeness of theorems for the ontologies with respect to the 

formal competency questions.  

Similarly to Uschold and King‟s methodology that highly influenced the methodologies for 

development of semi-formal
20

 ontologies, this methodology highly influenced the 

development of other methodologies for development of formal (also known as rigidly 

formal) ontologies. 

5.1.6. Ontology development tools and languages 

Prior to moving forward in our research process we have to state what ontology representation 

language and what ontology development tool we will use. The ontology representation 

language and tools are usually related to ontology design methodology. Starting from 

Ontolingua which is proposed by Gruber (1993a), there are many such languages like LOOM, 

OCML or OWL. These languages vary in the degrees of formality and expressive power 

(Corcho et al., 2003). OWL – Web Ontology Language
21

 created by W3C Web Ontology 

Working Group, became the most widely used language and is supported by most generic 

tools, such as editors or reasoning systems (Lumsden et al., 2011). Current version of OWL is 

OWL2
22

. 

In the same manner, many ontology development tools exist. Among many analyses and 

comparisons of these tools we point out the analysis performed by Youn and McLeod (2006) 

who compared fourteen ontology development tools by seven criteria. Although many of 

these tools evolved a lot during the last years, it might be important to notice the authors‟ 

conclusion that all of them have their advantages and disadvantages. The authors did not 

propose any tool as the best solution.  

 

                                                 
20

 Uschold and Gruninger (1996) classified ontologies upon their formality and complexity and they defined four 

major categories as follows: highly informal are ontologies expressed in natural language; semi-informal are 

ontologies expressed in structured form of natural language; semi-formal are expressed in artificially formally 

defined language; and rigidly formal are those ontologies that have terms defined with semantics, theorems and 

proofs.  
21

 http://www.w3.org/2004/OWL/ 
22

 http://www.w3.org/TR/owl2-overview/ 
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On the other hand, Khondoker and Mueller (2010) analyzed the usage of ontology editors and 

found that SWOOP, TopBraid Composer, OntoTrack, Internet Business Logic, Protégé and 

IHMC Cmap Ontology Editor are the only tools used by participants they questioned. Their 

results show that 75% of all participants used Protégé and 41.95% of participants created the 

ontologies in the domain of Information System Design. This gives us a solid basis to accept 

the Protégé
23

 as the most commonly used tool and the one to use in our ontology 

development. 

As Protégé natively works with Frames and OWL (and from version 4 it also supports 

OWL2), we had to decide whether to use Frames or OWL as our ontology representation 

language. According to Wang et al. (2006) the main difference between them is that Frames is 

used when close-world assumptions (CWA) are suitable and OWL otherwise. The concept of 

CWA represents the semantics with the presumptions that what is not currently known to be 

true is false. On the other hand, capabilities and expressiveness of OWL are needed to deliver 

the functional requirements, when we need Description Logic (DL) reasoning to ensure 

logical consistency of ontologies, when we aim to create robust terminologies or when 

classification is a paradigm for reasoning in applications. Although it is possible to use both 

languages in our case, we find the use of OWL representation language more appropriate. 

OWL is a language for defining and instantiating ontologies by defining descriptions of 

classes, properties and their instances. It provides three increasingly expressive sublanguages 

(W3C Web Ontology Working Group, 2004). OWL Lite supports classification hierarchy and 

simple constrains features, OWL DL supports maximum expressiveness without losing 

computational completeness and decidability of reasoning system, while OWL Full is meant 

for users who want maximum expressiveness and freedom but with no computational 

guarantee and with no full reasoning support. Although OWL DL has to include constructs 

with some restrictions, in our ontology we need full reasoning support, and thus we will use 

OWL DL representation language. 

Besides defining the abstract structure of the ontology, OWL provides the ways in defining 

their meaning in terms of formal semantic description which specifies how to derive the 

logical consequences out of the ontology, i.e. facts not literally presented in the ontology but 

entailed by the semantics. In OWL2 we can use two alternative ways of assigning meaning to 

the ontologies: Direct Semantics
24

 and RDF-Based Semantics
25

. According to (W3C OWL 

Working Group, 2012), “OWL2 DL is used informally to refer to ontologies interpreted using 

 

                                                 
23

 Protégé is a free, open-source, plugin-based platform that provides suite of tools to construct domain models 

and knowledge-based applications with ontologies. It can be obtained for free from http://protege.stanford.edu/  
24

 http://www.w3.org/TR/owl2-direct-semantics/ 
25

 http://www.w3.org/TR/owl2-rdf-based-semantics/ 

http://protege.stanford.edu/
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the Direct Semantics and OWL2 Full is used informally to refer to RDF graphs considered as 

ontologies and interpreted using the RDF-Based Semantics“. This means that we are more 

interested in capabilities of Direct Semantics reasoning which assigns meaning directly to 

ontology structures, resulting in semantics compatible with the model theoretic semantics of 

the SROIQ
26

 description logic. This also brings the necessity of placing some restrictions
27

 on 

ontology structures in order to ensure that they can be translated into SROIQ knowledge base.  

Finally, concrete syntax is needed in order to store OWL2 ontologies and to exchange them 

among tools and applications. The primary exchange syntax for OWL2 is RDF/XML
28

 but 

other concrete syntaxes may also be used. These include alternative RDF serializations, such 

as Turtle
29

; an XML serialization
30

; and a more readable syntax, called the Manchester 

Syntax
31

. As Protégé supports all mentioned syntaxes along with automatic translation among 

them, we can later decide which of these alternatives to use while exporting our ontology into 

a human readable format. 

5.1.7. Final remarks on ontologies 

Ontologies gained a huge popularity during the last two decades and are currently used in 

different scientific fields. As they provide means of explicit and formal specification of 

knowledge and conceptualization, which is readable to humans and to machines, we also 

found it appropriate to use the ontologies as a tool in defining our framework for 

methodological interoperability in multi-platform mobile applications development.  

In previous chapters, we tried to give a short overview of a several concepts that are related to 

ontologies and ontology development. First, for the purpose of this research we defined 

ontology as an explicit formal conceptualization of a shared understanding of the domain of 

interest which includes the vocabulary of terms in order to describe the domain elements, 

semantics in order to define the relationships of the domain elements and pragmatics in order 

to define possible usages of these elements. 

 

                                                 
26

 SROIQ represents fragment of first order logic with useful computational properties. An overview of DL 

languages can be seen in (Belcar and Lovrenčić, 2012). Belcar and Lovrenčić defined SROIQ languages as 

follows: S – AL and C with transitive properties; AL – base attributive language that allows atomic negation, 

concept intersection, universal restriction and limited existential quantification; C – complex concept negation; R 

– limited complex role inclusion axioms, reflexivity and irreflexivity, role disjointness; O – nominals 

(enumerated classes or object value restrictions); I – inverse properties; Q – qualified cardinality (number) 

restrictions.  
27

 The details on restrictions are given in Section 3 of OWL 2 Structural Specification document which can be 

obtained at http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Ontologies 
28

 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/ 
29

 http://www.w3.org/TR/turtle/ 
30

 http://www.w3.org/TR/2012/REC-owl2-xml-serialization-20121211/ 
31

 http://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/ 
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We also presented the most common reasons for the use of an ontology and we argued about 

their classification in accordance with different points of view. In this context we concluded 

that in this research we will create domain ontology in order to semantically describe concepts 

belonging to one specific domain – development of mobile applications for specific 

platforms. The goal of such ontology is to create a knowledge basis for information system 

that could guide the development teams in increasing the methodological interoperability by 

reusing the created artifacts.  

In order to choose an ontology development methodology, we gave a short overview of 

several influencing ontology development methodologies which are either commonly used 

today or made a great influence on the development of other methodologies. In this context, 

we decided to use Noy and McGuiness‟ methodology, namely Ontology Development 101, 

which by its characteristics can be described as agile ontology development methodology. 

This methodology consists of seven steps which are designed as guidelines in iterative 

ontology development from scratch to final ontology. 

Finally, we argued about the possibilities of using different ontology development tools and 

ontology development languages. The research performed by Khondoker and Mueller (2010) 

showed that by far the most widely used tool is Protégé tool developed at Stanford University. 

As Protégé is aligned with the OD101 methodology, and being widely used from scientists 

and practitioners in, among others, fields of Information Systems Development and 

Knowledge Management, we decided to use it in our research as well. Subsequently, as 

Protégé works with two ontology representation languages, Frames and OWL, we discussed 

both and selected OWL2 DL as the most appropriate language in our case.  

Having selected the ontology development methodology, development tool and representation 

language we can advance to the next step in our research process – to define the ontology for 

Android and Windows phone artifacts created in Mobile-D managed development process.  

5.2. Android artifacts ontology 

This chapter presents the development process and the final ontology describing the artifacts 

that arose in the development of our prototype application for Android target platform by 

using Mobile-D methodology. As described in previous chapters, we decided to use Noy‟s 

and McGuinness‟s Ontology Development 101 (OD101) methodology as the guidelines for 

development process. We also decided to use Protégé tool and to develop OWL2 DL 

ontology.  
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The mentioned OD101 methodology is in detail described in (Noy and McGuinness, 2001) as 

an iterative approach in ontology development that gained popularity mainly because of its 

simplicity, clarity and focus on the results. Basic assumptions incorporated into the OD101 

methodology include that there is no single correct way to model a domain; the best solution 

always depends on the application and the expected extensions of the ontology; that ontology 

development is necessarily an iterative process; and that concepts in the ontology should be 

close to objects (nouns) and relationships (verbs) in the domain of interest (in the sentences 

that describe the domain).  

As we described in chapter 5.1.5.2, the whole methodology consists of execution of seven 

steps. The following sections describe the final results obtained at the end of iterative 

ontology development process. 

5.2.1. The domain and the scope of the ontology 

The domain and the scope of our ontology are clearly defined from the beginning of this 

research process and there was no need for us to define it from scratch. As stated in our 

research goals, the ontological description should describe the elements of methodological 

interoperability containing structural and semantic aspects of sets of artifacts created in the 

development process of (in this case) Android mobile application. Such ontology will be 

reused in subsequent research steps to develop a common ontology for two target platforms 

that aim to help in achieving higher methodological interoperability. 

In order to precisely direct the ontology development process, we also defined a set of 

competency questions that a knowledge base, based on this ontology, should be able to 

answer: 

 What are development phases, activities and tasks in Mobile-D methodology? 

 As Mobile-D is an iterative process, what are the exact tasks performed in every 

activity? 

 What artifacts arise in the development process of Android mobile application? 

 What artifacts originate from the used development methodology and what from 

Android target platform? 

 What are the categories that these artifacts can be categorized into? 

 What artifacts are classified in any specific category? 

 In what tasks are the specific artifacts created, updated or used? 

 How are the artifacts mutually connected?  

 What is the hierarchy among the identified artifacts? 

 What are the final products in the development process? 

 What artifacts are only used and not created in the process? 
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As it can be seen from the list of defined questions, the ontology should be capable of 

answering the questions regarding the structural aspects of methodological phases, activities 

and tasks, structural aspects of the identified artifacts and the semantic aspects regarding the 

origin, type and use of artifacts.  

5.2.2. Reuse of existing ontologies 

We performed research and went through several ontology libraries (including Protégé 

Ontology Library
32

, DAML Ontology Library
33

 and ONKI Ontology Library Service
34

) but 

were not able to find any existing ontology that deals with mobile applications development, 

android development, software development artifacts or software development methodologies 

that were suitable for reuse in our case. We have been able to reuse some vocabulary from top 

level (upper) ontologies, but as our vocabulary was simple and in this case we do not put 

specific focus to the vocabulary, we decided to build an ontology from scratch. 

5.2.3. Identified terms 

The list of terms that arise in our domain of interest was incrementally created during the 

whole ontology development process. The final list of terms that are the base for our ontology 

includes: phase, activity, task, artifact, task input, task output, artifact type, artifact origin, 

artifact usage, artifacts hierarchy. Mentioned terms are described in Table 45. 

Table 45 - Basic terms in Android Case Ontology 

Term Context 
Phase Mobile-D phases. 

Activity Mobile-D activities structured according to phases. 

Task Mobile-D tasks structured according to activities. 

Task input Artifacts that are used as input while performing specific tasks. 

Task output Artifacts that are produced or updated while performing specific tasks. 

Artifact Any piece of software developed and used during software development and 

maintenance. It includes models, tools, templates, documents et cetera. 

Artifact type Characteristic types of artifacts that could be recognized in order to classify all identified 

artifacts. 

Artifact origin In terms of reusability, artifacts origin becomes important. It defines the origin of 

artifacts such as identifying those artifacts that are defined (or requested) by used 

methodology or those that are products specific for target platform. 

Artifact usage The most important term. It includes knowledge on creation, usage and update of the 

artifacts in concrete tasks. 

Artifact hierarchy Defines hierarchy among artifacts if it exists. 

 

                                                 
32

 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library 
33

 http://www.daml.org/ontologies/ 
34

 http://onki.fi/en/browser/ 
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5.2.4. Classes and class hierarchy 

In the process of class and hierarchy definition, we followed the advice from Uschold and 

Gruninger (1996) and used middle-out approach by first defining more salient concepts and 

then making generalizations and specializations as needed. The approach resulted in total 

definition of 152 classes that are organized in 7 top level classes (see Figure 39). 

 

Figure 39 - Android Case ontology top level artifacts 

The above figure focuses class Artifact which is top level class (hasParent Thing) but also has 

connections with defined classes Task, ArtifactType, ArtifactOrigin and itself. Although 

existing, the relationships among other top level classes are not presented in this figure.  

We believe that at this point, two additional explanations are needed regarding the presented 

classes. First, class Inferred represents all classes defined only by using Description Logic 

(DL). These classes are populated by respective equivalent classes by the reasoning tool. This 

is one possible approach in extracting knowledge from ontology definition. Figure 40 shows 

asserted sub-model of Inferred class.  



 

 

173 

 

 

Figure 40 - Android Case ontology asserted subclasses of Inferred class 

Secondly, classes ArtifactOrigin and ArtifactType presented in Figure 39 are created by using 

the so-called Value Partition pattern. This pattern uses a covering axiom in order to define a 

class with finite number of subclasses. In our case, classes have finite number of types and 

origins. 

All other classes created and defined in the ontology, along with the class hierarchy are 

presented in Table 46. 
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Table 46 – Android Case ontology classes and class hierarchy 

Thing Phase Activity Task Artifact 
Artifact 

Type 

Artifact 

Origin 
Inferred 

Phase Explore 
Documentation 

Wrap-up 

Acceptance Test 

Generation 
Acceptance Test 

Acceptance Test 

Template Sheet 
Code Android Artifact 

Activities by 

Phases (5) 

Activity Initialize Planning Day Acceptance Testing Android Activity Android Class Document 
Methodological 

Artifact 

Android 

Artifacts 

Task Productionize 
Planning Day In 

0 Iteration 

Acceptance Test 

Review 
API Documentation 

Application 

Description 

Document 

Element 
Other Artifact 

Borrowed 

Artifacts 

Artifact Stabilize 
Project 

Establishment 

Architecture Line 

Definition 
Application Icon Application Manifest Example Service Artifact 

Final 

Documentation 

Artifact 

Type 

System Text 

And Fix 
Project Set-up 

Architecture Line 

Planning 

Application 

Screenshot 

Architecture Line 

Description 
License  Final Products 

Artifact 

Origin 
 Release Day 

Continuous 

Integration 

Architecture Line 

Plan 
Class Model Mobile Model  

Methodological 

Artifacts 

Inferred  Scope Definition 

Customer 

Communication 

Establishment 

Class Model Web Data Model Mobile 
Model 

Element 
 Other Artifacts 

  
Stake Holder 

Establishment 

Customer 

Establishment 
Data Model Web Defect List Product  

Service 

Artifacts 

 

 
 System Test 

Documentation 

Wrap-up 
Deployment Package 

Development 

Environment 
Resource  

Tasks by 

Activities (11) 

 

 
 Working Day Environment Set-up 

Development 

Unrelated Software 

Tool 

Driver Software  

Used and 

Produced 

Documents 

  
Working Day In 

0 Iteration 
Inform Customer Example Code Google API Key Standard   

 

 
  

Initial Project 

Planning 
Google Play Services 

Initial Requirements 

Document 
Template   

   

Initial 

Requirements 

Analysis 

Integration Test Iteration Backlog    

   

Initial 

Requirements 

Collection 

Iteration Plan Java Code    

 

 
  Iteration Planning JSON Standard Layout    
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Pair Programming 

Practice 
Layout Element Localization String    

 

 
  

Post Iteration 

Workshop 
Measurement Plan Mobile Application    

 

 
  Pre Release Testing 

Mobile-D Process 

Library 
PHP Code    

 

 
  

Process 

Establishment 
Product Backlog Product Proposal    

 

 
  Publish Application 

Project Management 

Software Tool 
Project Plan    

 

 
  

Refactoring 

Practice 

Project Plan 

Checklist 

Project Plan 

Checklist Template 
   

 

 
  

Release 

Ceremonies 

Project Plan Gantt 

Chart 

Prototype 

Functionality 
   

 

 
  

Requirements 

Analysis 
SADD Document Story Card    

 

 
  System Integration Story Card Template System Test Plan    

 

 
  System Test System Test Report Task Card    

   

Test Driven 

Development 

Practice 

Task Card Template Test Results    

 

 
  Wrap-up 

Throwaway 

Prototype 
UI Illustrations    

 

 
   UML Class Unit Test    

 

 
   

Web Development 

Environment 
Web Service    

 

 
   

Web Service 

Specification 
XML Resources    
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All classes are presented in alphabetical order. Class names are made easier to read by 

removing suffixes and presenting the names in multiple-word format rather than in a single-

word format (so-called CamelCase) that is used in the ontology. Additionally, in the ontology, 

the classes are described by several annotations including labeling and commenting. Where 

applicable, description of Mobile-D elements is taken from (Abrahamsson et al., 2005a), 

while other classes (especially artifacts) are described as presented in chapter 4.2. Additional 

details on defined classes and the ontology in general including description logic can be found 

in OWLDoc documentation available at http://barok.foi.hr/~zstapic/ont/acao/doc/. 

5.2.5. Properties of classes 

Defined properties are closely connected with classes. We define a concept of property as a 

binary relation between two things. In ontology definition, properties should be observed as 

relations between individuals that are described through relation between two classes of 

individuals. Our resulting ontology contains only object properties and annotation properties, 

as we had no need to use datatype properties. 

As annotation properties are used to provide ways of describing other ontology elements (for 

human reading), in this chapter we will put focus on created object properties. In order to 

define knowledge on structure, semantics and usage of ontology elements we defined 12 

object properties. Table 47 shows properties and their detailed description. 

Table 47 - Android case ontology object properties description 

Property Facets Description 
consistsOf Domain:  

Activity or Phase 

Range:  

Task or Activity 

Property connecting individual Activities that are performed 

in specific Phases and individual Tasks that are performed 

during specific Activities. Logically, this property is inverse 

property of isPerformedIn, but we explicitly defined it in 

order to have the information available even in the original 

model. 

createsArtifact Inverse Of: 

isCreatedByTask 

Domain: Task 

Range: Artifact 

Inversed property of isCreatedByTask. It connects Task 

individuals and created specific Artifact individuals. 

hasArtifactOrigin Characteristics: 

Functional 

Domain: Artifact 

Range: ArtifactOrigin 

Property connecting individual Artifact and individual in 

definite class ArtifactOrigin which defines several possible 

types of Artifact origin. This property is used to classify 

artifacts by types but from different point of view than 

property hasArtifactType. 

hasArtifactType Characteristics: 

Functional 

Domain: Artifact 

Range: ArtifactType 

Property connecting specific Artifact individuals with 

ArtifactType individuals. It defines type of the specific 

Artifact according to defined classification according to 

artifact usage. 

includesArtifact Characteristics: 

Asymmetric 

Inverse Of: 

isPartOfArtifact 

Domain and Range: 

Inverse property of isPartOfArtifact. It defines individual 

Artifacts that are included in observed Artifact. 

http://barok.foi.hr/~zstapic/ont/acao/doc/
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Artifact 

isCreatedByTask Inverse Of: 

createsArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that create specific 

Artifact individuals. Creating the artifact logically means it 

usage even if it is not explicitly stated. 

isPartOfArtifact Characteristics: 

Asymmetric 

Inverse Of: 

includesArtifact 

Domain: Artifact 

Range: Artifact 

Property connecting individual Artifacts into hierarchy. This 

property is Asymmetric as two individuals cannot be both part 

of each other. 

isPerformedIn Domain: 

Activity or Task 

Range: 

Phase or Activity 

Property defines relationship between specific Task 

individuals and owning Activity. Logically, this property is 

inverse of consistsOf property, but we defined both separate 

to have the information available even in the original model. 

isUpdatedByTask Inverse Of: 

updatesArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that update specific 

Artifact individuals. 

isUsedByTask Inverse Of: 

usesArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that read specific 

Artifact individuals. 

updatesArtifact Inverse Of: 

isUpdatedByTask 

Domain: Task  

Range: Artifact 

Inversed property of isUpdatedByTask. It connects Task 

individuals and updated specific Artifact individuals. 

usesArtifact Inverse Of: 

isUsedByTask  

Domain: Task  

Range: Artifact 

Inversed property of isUsedByTask. It connects Task 

individuals and used specific Artifact individuals. 

 

The restrictions defined by Description Logic (DL) used in OWL 2 DL had some influence on 

defined object properties. For instance, transitive properties cannot be defined as asymmetric 

or irreflexive, functional properties cannot be transitive etc. But, all concepts that are 

restricted by direct definition can be modeled alternatively and thus we had no problems that 

would threaten our logical model. 

5.2.6. Knowledge definition and inference 

Connecting the instances of classes with defined properties we had to follow OWL 2 DL 

restrictions, rules and syntax. Additionally, OWL DL is based on Open World Assumption 

(OWA) logic paradigm, and as we have already stated, the OWA paradigm assumes that we 

cannot conclude that something does not exist until it is explicitly stated that it does not exist. 

In other words, we cannot assume that something is false just because it is not stated to be 

true. Thus, for example, logical definition of artifact MobileDProcessLibrary would be 

insufficient as presented in Code 4 example. 
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SubClass Of: 

Artifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType some Document 

isUsedByTask some Task 

Code 4 - Insufficient class description in OWA paradigm 

As stated in Code 4 we defined MobileDProcessLibrary artifact to be the subclass of a named 

class Artifact, but also to be a subclass of unnamed classes of things that have origin as 

MethodologicalArtifact, or that are of type Document or used by any Task. The good side of 

OWA is that in this case we cannot conclude that our artifact is equivalent to other artifacts 

that for instance have origin as MethodologicalArtifact. Such conclusion, even if possible, 

would be wrong. But, on the other hand, although we only stated that our artifact is used by a 

Task we cannot conclude that it was not created and was not used by some (the same or 

another) Task
35

. Thus, query searching for all artifacts that are only used in our process, as 

presented in Code 5, would not obtain the correct answer. 

Artifact 

 and (not (isCreatedByTask some Task)) 

 and (not (isUpdatedByTask some Task)) 

 and (isUsedByTask some Task) 

Code 5 - Query searching for used but not created Artifacts 

In order to completely define the mentioned artifacts we have to use closure axioms and to 

explicitly state that such artifacts were not created and not modified in our development 

process. Thus, the complete description looks like the one presented in Code 6. Of course, 

there are additional possibilities of “closing” open world logic in OWL but we will not 

elaborate on them here. 

SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only Document 

hasArtifactType some Document 

isUsedByTask only Task 

isUsedByTask some Task 

not (isCreatedByTask some Task) 

not (isUpdatedByTask some Task) 

Code 6 - Sufficient class description in OWA paradigm 

Using the same approach, we described every class defined in our ontology. Other examples 

are more complicated only if many properties are applied. For example (see Code 7), 

 

                                                 
35

 For instance, this would be possible in CWA paradigm. 
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SystemTestPlan artifact is defined by six different properties and some of them describe 

“more than one” cardinality relationship.  

SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only Document 

hasArtifactType some Document 

isCreatedByTask only InitialProjectPlanningTask 

isCreatedByTask some InitialProjectPlanningTask 

isUpdatedByTask only  

    (InitialRequirementsAnalysisTask 

     or PostIterationWorkshopTask 

     or ProcessEstablishmentTask 

     or SystemTestTask) 

isUpdatedByTask some InitialRequirementsAnalysisTask 

isUpdatedByTask some PostIterationWorkshopTask 

isUpdatedByTask some ProcessEstablishmentTask 

isUpdatedByTask some SystemTestTask 

isUsedByTask only  

    (ArchitectureLineDefinitionTask 

     or ArchitectureLinePlanningTask 

     or DocumentationWrapUpTask 

     or IterationPlanningTask 

     or ProcessEstablishmentTask 

     or SystemTestTask 

     or TestDrivenDevelopmentPractice) 

isUsedByTask some ArchitectureLineDefinitionTask 

isUsedByTask some ArchitectureLinePlanningTask 

isUsedByTask some DocumentationWrapUpTask 

isUsedByTask some IterationPlanningTask 

isUsedByTask some ProcessEstablishmentTask 

isUsedByTask some SystemTestTask 

isUsedByTask some TestDrivenDevelopmentPractice 

not (isPartOfArtifact some Artifact) 

Code 7 - Example class description in OWL2 DL 

 

Similarly, DL queries are used to define the already mentioned inferred classes of objects that 

are from our specific interest in this ontology. We defined 24 DL queries that answer the 

competency questions stated earlier in this chapter. The examples of created description logic 

queries are presented in Table 48.  
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Table 48 - DL Queries for inferred classes 

Inferred class DL Query 

Activities by Phases (5) isPerformedIn some Explore 

Android Artifacts hasArtifactOrigin some AndroidArtifact 

Borrowed Artifacts 

Artifact 

 and (not (isCreatedByTask some Task)) 

 and (not (isUpdatedByTask some Task)) 

 and (isUsedByTask some Task) 

Final Documentation 

Artifact 

 and (not (BorrowedArtifacts)) 

 and (not (isPartOfArtifact some Artifact)) 

 and (hasArtifactType some Document) 

Final Products 

Artifact 

 and (not (BorrowedArtifacts)) 

 and (not (isPartOfArtifact some Artifact)) 

 and (hasArtifactType some Product) 

Methodological Artifacts hasArtifactOrigin some MethodologicalArtifact 

Other Artifacts 

Artifact 

 and (not (AndroidArtifacts 

 or MethodologicalArtifacts 

 or ServiceArtifacts)) 

Service Artifacts hasArtifactOrigin some ServiceArtifact 

Tasks by Activities (11) isPerformedIn some PlanningDayActivity 

Used and Produced 

Documents 

Artifact 

 and (not (isPartOfArtifact some Artifact)) 

 and (hasArtifactType some Document) 

 

A part of inferred model for class Artifact is presented in Figure 41
36

. As we can see, the 

reasoning system rearranged the artifacts and grouped them according to the defined classes 

for inference.  

Full OWL Documentation for Android Case Ontology which contains DL description of all 

classes and queries is available as OWLDoc on http://barok.foi.hr/~zstapic/ont/acao/doc/.  

 

                                                 
36

 Full inferred model is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png  

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao/inferred/inferred.png
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Full picture is available at http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png  

 

Figure 41 - Part of inferred model for class Artifact 

http://barok.foi.hr/~zstapic/ont/acao/inferred/artifact.png
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5.2.7. Final remarks on Android Case Ontology 

By following Ontology Development Methodology 101 (Noy and McGuinness, 2001) we 

have created an ontology which describes the development process of our prototype android 

mobile application by utilizing Mobile-D methodology. The point of view taken in this 

ontology development process, as argued in chapter 4.1, puts the artifacts created and used in 

this process in a special focus. 

The resulting ontology comprises of 152 classes, 12 object properties and 1692 axioms 

defined by ALCRIF description logic expressivity sub-language
37

. The ALCRIF DL 

expressivity states that the ontology uses constructs of (AL) Attributive language atomic 

negation, concept intersection, universal restriction, limited existential qualification, (C) 

complex concept negation, (R) limited complex role inclusion axioms, reflexivity and 

irreflexivity, role disjointness, (I) Inverse properties and (F) functional properties.  

Due to their size and complexity, we decided not to put Android and Windows Phone 

ontologies as appendixes to this thesis
38

, but to make the ontologies and their full OWLDoc 

documentation available online. Android Case Artifacts Ontology OWLDoc documentation is 

available at http://barok.foi.hr/~zstapic/ont/acao/doc/ and ontology in OWL/XML format is 

available at http://barok.foi.hr/~zstapic/ont/acao.owl. 

The ontology syntax and logical correctness was tested by several reasoners, including 

FaCT++, HermiT 1.3.8, Pellet and RacerPro. Additionally, the inferred knowledge was 

carefully observed and corrected by the author and the supervisors until we have got errorless 

results. 

This ontology will, along with Windows Phone Case Artifacts Ontology, be used in the last 

step of our research process the goal of which is to define a common ontological description 

of multi-platform mobile application development with special focus on artifact reusability.  

5.3. Windows Phone artifacts ontology 

This chapter presents the development process and the final ontology describing the artifacts 

that arose in the development of our prototype application for Windows Phone target platform 

by using Mobile-D methodology. The development of this, second, ontology was a straight-

forward task that was performed with a great level of reusability of the existing ontological 

description created in the Android case. Although we followed again the same ontology 

 

                                                 
37

 Results are taken from Ontology metrics Protégé plugin.  
38

 Final, upperlevel ontology which aims for methodological interoperability is presented in Appendix E. 

http://barok.foi.hr/~zstapic/ont/acao/doc/
http://barok.foi.hr/~zstapic/ont/acao.owl
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development methodology (OD101), the first two steps were skipped as the domain and the 

scope of this ontology are basically the same as described in the first case. In the same 

manner, competency questions regarding the development methodology, development 

process, artifacts, their classification and categorization, hierarchy, use etc., also remained 

unchanged. Finally, the goal of this ontology is also to reason about the mentioned questions, 

and to use it in the next research step while defining a common ontological description. 

5.3.1. Existing ontology reuse 

In contrast to the development of the first ontology from scratch, in the second case we were 

able to reuse our existing ontology. Due to the characteristics and the need of a later ontology 

merging, the unique ontology element identifiers called Internationalized Resource Identifiers 

(IRI) should not be changed unless a described concept is logically different from the existing 

concept. 

Thus, we imported an existing ontology, and maximally tried to reuse it while developing the 

second ontology. Our approach was to change the existing Android elements into applicable 

Windows Phone elements rather than deleting the Android and creating a new Windows 

Phone element. The changed concepts got new IRIs, while physically unchanged concepts 

preserved IRIs created in the Android Case ontology development. 

By using Protégé‟s tool for ontology comparisons and by comparing the first and the second 

ontology, we can see that 10 ontological elements were renamed, 1 element was added, 16 

additional were updated and their IRIs were changed which resulted in small changes in 39 

additional elements but their IRIs were not changed. These elements are mainly artifacts and 

concepts very strictly connected to artifacts. 

Having these numbers in mind, we can conclude that 66 concepts out of 165 were changed, 

and that the rest were reused. Additionally, the comparison was not performed at the level of 

axioms, but a rough analysis shows that about less than 10% of all axioms (1708) were 

changed and that the rest were reused. 

5.3.2. Classes, properties and hierarchy 

The overall asserted class hierarchy defined in the first ontology was not changed in our 

second case. Only two sets of classes were updated: ArtifactOrigin and Artifact. As it can be 

seen in Figure 42, the context of Artifact did not change (we changed its subclass structure not 

visible in this image), while the subclass structure of ArtifactOrigin now includes 

WindowsPhoneArtifact class of instances. 
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Figure 42 - ArtifactOrigin and Artifact in WP ontology 

The most important changes and updates were created in the class of Artifacts, where all 

Android specific classes have been replaced with Windows Phone specific classes. An 

interesting point here is that direct mapping between similar concepts in these two platforms 

was done in 10 out of 11 cases. Only one completely new artifact was identified in Windows 

Phone environment. Table 49 brings an enumeration of all 61 artifacts that were recognized in 

WP development case and described in the ontology.  

Table 49 - WP case artifacts defined in ontology 

Artifact 

Acceptance Test 
Acceptance Test 

Template Sheet 
API Documentation Application Description 

Application Icon Application Screenshot 
Architecture Line 

Description 
Architecture Line Plan 

Bing Maps Key Class Model Mobile Class Model Web CS Code 

Data Model Mobile Data Model Web Defect List Deployment Package 

Development 

Environment 

Development Unrelated 

Software Tool 
DotNet Class Driver 
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Example Code 
Initial Requirements 

Document 
Integration Test Iteration Backlog 

Iteration Plan JSON Standard Measurement Plan 
Microsoft Phone Controls 

Toolkit 

Mobile Application 
Mobile-D Process 

Library 
Page CS Page XAML 

Page XAML Element PHP Code Product Backlog Product Proposal 

Project Management 

Software Tool 
Project Plan Project Plan Checklist 

Project Plan Checklist 

Template 

Project Plan Gantt Chart Prototype Functionality Resource File Silverlight Map Control 

SADD Document Story Card Story Card Template System Test Plan 

System Test Report Task Card Task Card Template Test Results 

Throwaway Prototype UI Illustrations UML Class Unit Test 

Web Development 

Environment 
Web Service 

Web Service 

Specification 
WMAppManifest 

XAML Description    

 

 Mapping between Android and WP concepts possible  New concept in WP 

 

On the other hand, we reused all property definitions and there was no need to change or 

update any property (see Table 47 for details on all 12 properties) at this point. This brings us 

to the conclusion that basic ontological model describing development process for single 

platform is well defined. This also suggests that the model could be easily reused in definition 

of development process for other platforms without the need for changing any infrastructural 

semantic constructs.  

The OWLDoc document containing details on defined classes and on the Windows Phone 

Case Artifacts Ontology in general is available at http://barok.foi.hr/~zstapic/ont/wpcao/doc/. 

Additionally, figure representing asserted class model along with named DL queries is 

available at http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png.  

5.3.3. Updates in knowledge definition 

Except the artifacts marked as completely updated or new there are several other artifacts that 

have undergone some semantic changes in this ontology. It is important to have these changes 

in mind for the preparation of the ontologies merge and the creation of a common ontology 

for multi-platform development, as these could be the most hidden sources of future errors 

and misleading logic. 

For example, as shown in Code 8, Integration Test artifact (which was classified as Code 

artifact in Android case) is now defined as Document Artifact due to the fact that there are no 

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao/asserted/full.png
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available automatic or robotized integration testing tools. Although the artifact name 

remained the same, the new definition included changes in other relations as well, including 

the Tasks creating, using and updating this artifact and its hierarchy in the artifacts graph.  

SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only DocumentElement 

hasArtifactType some DocumentElement 

isCreatedByTask only TestDrivenDevelopmentPractice 

isCreatedByTask some TestDrivenDevelopmentPractice 

isPartOfArtifact only SystemTestPlan 

isPartOfArtifact some SystemTestPlan 

isUpdatedByTask only  

    (ContinuousIntegrationPractice 

     or PreReleaseTestingTask 

     or SystemIntegrationTask) 

isUpdatedByTask some ContinuousIntegrationPractice 

isUpdatedByTask some PreReleaseTestingTask 

isUpdatedByTask some SystemIntegrationTask 

isUsedByTask only  

    (ContinuousIntegrationPractice 

     or PreReleaseTestingTask 

     or SystemIntegrationTask 

     or SystemTestTask) 

isUsedByTask some ContinuousIntegrationPractice 

isUsedByTask some PreReleaseTestingTask 

isUsedByTask some SystemIntegrationTask 

isUsedByTask some SystemTestTask 

 Code 8 - Updated Integration Test artifact 

Other similar changes include different position in hierarchy of Resource File artifact if 

compared to Android artifact with similar purpose (Localization string) and changes in 

description of many artifacts. All these changes will have to be properly addressed in 

common multi-platform ontology.  

All other semantic constructs querying knowledge from the described ontology (as presented 

in Table 48) remained the same and the mentioned changes in artifacts definition did not 

influence on them.  

For example, the DL query on Used and Produced Documents is given in Table 48 and 

graphical representation of asserted class description is presented in Figure 43. These 

assertions are created to be populated by a reasoner using the ontologically defined 

knowledge.  
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Figure 43 - Used and Produced Documents asserted class model 

Thus the inferred model (obtained after performing reasoning on the ontology definition and 

queries) presented in Figure 44 shows that query named Used And Produced Documents is 

classified as Artifact and that it consists of two asserted classes defining documents that are 

used as inputs in whole Mobile-D process (Mobile-D Process Library and Product Proposal), 

and another query named Final Documentation that is populated by classes defining Mobile-

D produced documents. Asserted classes are light-yellow in presented figures and named DL 

queries which aim to extract knowledge from the ontology are colored light-brown.  

 

Figure 44 - Used and Produced Documents asserted class model 

As the inference in this case, and in all other DL queries, resulted in semantically correct 

information, we can conclude that this ontology, although upgraded and updated is still 

logically consistent and valid. This proves extensible and updatable design of our ontology. 

5.3.4. Final remarks on Windows Phone Case Ontology 

In this chapter we presented the specifics of the created Windows Phone Case Artifacts 

Ontology. Although we followed OD101 methodology, several steps in ontology definition 

process were skipped and the results were reused from similar process performed for the 

Android Case. The most important factor in ontology development process was the possibility 

of partial reuse of an existing ontology. The basic ontology structure, the properties definition 

and knowledge extraction DL queries were completely reused, while some classes were 

reused and other were updated or created from scratch.  

The resulting ontology comprises 153 classes, 12 object properties and 1708 axioms defined 

in the ALCRIF DL expressivity sub-language. Similar to the Android case ontology, due to its 

size and complexity, we decided not to put the ontology definition as appendix to this thesis, 

but to make the ontology and its full OWLDoc documentation available online. Windows 
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Phone Case Artifacts Ontology OWLDoc documentation is available at 

http://barok.foi.hr/~zstapic/ont/wpcao/doc/ and ontology in OWL/XML format is available at 

http://barok.foi.hr/~zstapic/ont/wpcao.owl web location. 

Another important aspect of this ontology development process is that it proved the validity 

and flexibility of the existing Android ontology and thus it validated the conceptual model 

that is the base for our ontologies targeting single platforms. As we argued in the previous 

chapters, during the update of the existing imported ontology into a new ontology targeting 

different mobile platforms, there was no need for us to change or update any properties, basic 

ontology structure, defined classes or DL queries. We just had to redefine several primitive 

classes and to align the ontology with the artifact use, types and origin. The tests and the 

reasoning performed by several reasoners showed that the model is still valid and that the 

outputs and the results are as expected. This proves the extensibility and updatability of the 

designed ontology. 

This ontology will, along with Android Case Artifacts Ontology, be used in the last step of 

our research process where we will define a common ontological description of multi-

platform mobile application development with a special focus on artifact reusability.  

5.4. Common ontology for methodological interoperability 

Having the two ontologies describing the development of the same mobile application for two 

target platforms, we can now move forward and define a new upper-level ontology. This 

ontology will combine the already described existing knowledge with the new axioms on 

reusability and thus result in an ontological specification capable of providing the information 

on methodological interoperability achieved through the artifact reuse. 

In this sense, this chapter presents the development process and the final ontology describing 

the artifacts that arose in the development of our prototype application for two target 

platforms by using Mobile-D methodology. The chapter presents two distinct sets of activities 

that were performed during this development. First we merged the two existing ontologies 

and then created an additional conceptualization related to artifact reusability. In this sense, 

we had to enhance the methodology that was used in the development of specific ontologies – 

Ontology Development 101 (Noy and McGuiness, 2001)  – as it does not include any tasks 

related to ontology merging. 

In the end of the ontology development process, the ontology was evaluated by seven 

different mechanisms, including the execution of the sequence of knowledge acquisition 

queries which gave semantically correct results validated by domain experts.  

http://barok.foi.hr/~zstapic/ont/wpcao/doc/
http://barok.foi.hr/~zstapic/ont/wpcao.owl
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5.4.1. The domain and the scope of the ontology 

The domain and the scope of the ontology were defined at the beginning of our research 

process. We aimed to ontologically describe the elements of methodological interoperability 

containing structural and semantic aspects of sets of artifacts created in the development 

process of multi-platform mobile application.  

By structural aspects we presume the modeling and knowledge of connections and hierarchy 

that occur among artifacts (inter-artifact), along with those that occur in relationships of 

artifact-task, task-activity and activity-phase in the selected development methodology. By 

semantic aspects we imply the conceptualization of knowledge that includes artifact‟s 

meaning, its content, classification and possibility of reuse. The combined structural and 

semantic knowledge should provide solid basis capable of answering competency questions. 

We already defined competency questions related to application development targeting any 

single platform. Those questions should be answerable with this ontology as well, and they 

include: 

 What are development phases, activities and tasks in Mobile-D methodology? 

 As Mobile-D is iterative process, what are the exact tasks performed in every activity? 

 What artifacts arise in the development process of Android mobile application? 

 What artifacts originate from used development methodology and what from Android 

target platform? 

 What are the categories that these artifacts can be categorized into? 

 What artifacts are classified in any specific category? 

 In what tasks are the specific artifacts created, updated or used? 

 How are the artifacts mutually connected?  

 What is the hierarchy among the identified artifacts? 

 What are the final products in development process? 

 What artifacts are only used and not created in the process? 

We updated this list with an additional set of questions regarding the artifact reusability 

semantics. These new questions that guided us when enhancing the existing merged 

ontologies are stated as follows: 

 What platform specific artifacts are classified as reusable? 

 What artifacts can be reused in any given development phase? 

 What artifacts can be reused in any given development activity or task?  

 What artifacts are reusable in accordance with their type or origin? 

The list of defined questions can be extended if necessary, but for the purpose of this research 

and in accordance with our research goals we found it sufficient to include the knowledge 



 

 

190 

 

regarding the structural aspects of methodological phases, activities and tasks, structural 

aspects of the identified artifacts, semantic aspects regarding the origin, type, use and reuse of 

artifacts. Although it is not in the scope of this research, we sincerely encourage the analysis 

of another semantic aspect – intra-artifact aspect – which should answer questions like 

“Which part of any partially reusable artifact can be reused and which does not?” or “How 

specific artifact is reusable: by its structure, content, inner logic or their combination?” 

5.4.2. Merging the existing ontologies 

The development process of the upper-level ontology (namely Multiplatform Case Artifacts 

Ontology) was significantly determined by the fact that we had already developed two 

platform specific ontologies which should be reused and thus the ontology development 

process included two rather distinct tasks: reusing the existing ontologies and semantically 

enhancing the new one. 

Although the Ontology Development 101 (Noy and McGuiness, 2001) advises the reuse of 

existing ontologies, it does not provide any instructions on how to implement existing 

ontologies into a new one. The decision is left to the developer, and in general there are two 

main approaches that can be taken: existing ontology/ontologies import or existing ontologies 

merge. The import is usually a better option if the existing ontologies are distinct (e.g. disjoint 

by their constructs) and if there is no need for changing them. In our case, the existing 

ontologies overlapped significantly semantically and even physically and additionally, it was 

necessary for us to add new knowledge regarding reusability in existing constructs. On top of 

that, while developing the Windows Phone Case Artifacts Ontology we put a significant effort 

in properly reusing the Android Case Artifacts Ontology in order to make the merging process 

easier.  

The two mentioned ontologies were merged by Protégé‟s Ontology merging tool. This tool, as 

well as other ontology merging tools, does not provide many merging options. No effort was 

done to automatically resolve any conflicts, and no effort was done either to provide the user 

with report on these conflicts as well. The tool simply merges concepts with exactly the same 

IRI into one concept, and all other concepts are left intact. 

However, this lack in ontology merging tools had no significant influence on our merging 

process, as all platform independent artifacts had the same (reused) IRI, while other, platform 

dependent artifacts had platform specific IRIs, which ensured that all platform specific 

artifacts were preserved in the new ontology. An example of automatically merged ontology 

is given in Figure 45. 
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Figure 45 - Example of automatically merged ontology 

As it can be seen from the above Figure, when it comes to merging of the artifacts, we had 

three specific cases. First, the most common case represents the merge of the two already 

reused constructs, which resulted in a single new construct. This case covers all classes 

regarding phases, activities, tasks, inferred knowledge and platform independent artifacts. In 

the second and the third case, we had different (but semantically similar) constructs, and in 

both cases, all artifacts were preserved, only this time the artifacts were reused representations 

of the existing artifacts. We use the word representation to denote that these are new artifacts 

in any case.  

However, a semantically similar construct was still not connected by any means of class or 

property connection. Thus, our first step was to resolve the lack of connection between the 

logical pairs of artifacts and to properly describe them. Out of many possible approaches, we 

decided to create a super class for every pair of artifacts and to connect them by making them 

members of the same class. The resulting ontology, at this point, looked as it is shown in 

example Figure 46. Finally, we extracted the existing but common ontological description of 

the elements of each pair and we assigned this description to the newly defined super classes. 

In total 22 new classes have been created. 

acao: 

ProductBacklog 

acao: 

UnitTest 

acao: 

ProductBacklog 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#  

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology# 

            – reused construct  

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont. 
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Figure 46 - Example of merged ontology 

This completed our activities of merging the existing ontologies into a single upper-level 

ontology. As the single ontology inherited (and will enhance) all conceptualization from the 

previously created Android Case and WP Case ontologies, we can say that our ontologies 

describing specific cases are now deprecated and should not be used. In favor of this goes the 

fact that it is generally much easier to update upper-level ontology with the knowledge on an 

additional target platform than to create a new ontology from scratch.  

5.4.3. Updating the basic terms 

While proceeding to enhance the merged ontology with the semantic information on 

reusability, we continued to follow the Ontology Development 101 methodology. This 

process (which consists of 7 steps) was described in detail in the previous chapters (see 

chapters 5.1.5.2 and 5.2 on pages 162 and 169) and thus we will not discuss it here. Rather, 

we will present its results and point out all important aspects of the process itself and of the 

created ontology.  

The basic terms defined for the Android Case ontology were reused in Windows Phone Case 

ontology and thus are included in this ontology as well. As we aim to enhance the ontology 

with the conceptualization on artifact reusability, we had to introduce a couple of new 

important terms. The final list, containing both, previously stated and the new set of terms is 

presented in Table 50. 

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#  

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology# 

mcao – IRI prefix of http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts# 

– reused construct  

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

Automatically merged ontology 

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

mcao: 

UnitTest 

mcao: 

SourceCode 

Multi-platform Case Artifact Ontology 
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Table 50 - Final list of terms used in Multiplatform ontology 

Term Context 
Phase Mobile-D phases. 

Activity Mobile-D activities structured according to phases. 

Task Mobile-D tasks structured according to activities. 

Task input Artifacts that are used as input while performing specific tasks. 

Task output Artifacts that are produced or updated while performing specific tasks. 

Artifact Any piece of software developed and used during software development and 

maintenance. It includes models, tools, templates, documents et cetera. 

Artifact type Characteristic types of artifacts that could be recognized in order to classify all 

identified artifacts. 

Artifact origin In terms of reusability, artifacts origin becomes important. It defines the origin of 

artifacts such as identifying those artifacts that are defined (or requested) by used 

methodology or those that are products specific for target platform. 

Artifact usage Term includes knowledge on creation, usage and update of the artifacts in concrete 

tasks. 

Artifact hierarchy Defines hierarchy among artifacts if it exists. 

Reusability Identified artifact reusability levels which denote if artifacts are completely, partially 

or not reusable.  

Artifact similarity Defines mutual reusability among artifacts. 

 

As we can see, the reusability and artifact similarity are two newly added terms. The first 

term relates to the concepts of levels of reusability and as defined in chapter 4.4, we classified 

all the artifacts into three reusability levels: partially reusable, completely reusable and not 

reusable artifacts. The other concept relates to inter-artifact similarity defining pairs of 

similar artifacts. 

5.4.4. Final class and properties hierarchy 

The new model of top-level classes with the focus on the Artifact class is given in Figure 47. 

If compared to Figure 39 there are not many changes at the top level classes of the ontology. 

The set of top level concepts remained the same, while the only difference is addition of a 

new value partition class ReuseLevel. The figure describing the new ontology shows that 

Artifact is finally connected with Task, ArtifactOrigin, ArtifactType and ReuseLevel. Among 

these relationships, the relationship with Task is the strongest as it is defined with three 

properties (each of them having inversed property). Although existing, the relationships 

among other top level classes are not presented in this figure in order to make it focus on 

artifacts only.   
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Figure 47 - Top level artifacts 

The completed ontology consists of 213 classes, 14 properties and 2213 axioms. Important 

classes to mention here are the classes organized under Inferred class. As we have already 

discussed in the chapter on the Android Case ontology development, these classes are defined 

only by using Description Logic (DL). These classes are populated by their respective 

equivalent classes by reasoning tool, and this is one possible approach in extracting 

knowledge from the ontology definition. The final version of asserted sub-model of Inferred 

class is presented in Figure 48. 

Secondly, classes ArtifactOrigin and ArtifactType and ReuseLevel presented in Figure 47 are 

created by using the so-called Value Partition pattern. This pattern uses a covering axiom in 

order to define a class with a finite number of subclasses. In our case, classes have finite 

number of types, origins and levels. 

All other classes created and defined in the final ontology, along with class hierarchy are 

presented in Table 51. Due to space constraints and table size, we decided not to present the 

leafage of the platform specific artifacts and inferred classes as these have already been 

presented in the thesis. Instead, we present here in light gray color those artifacts that have 

specific subclasses for each platform. The number of subclasses is presented in braces.  
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Figure 48 - Asserted subclasses of Inferred class 
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Table 51 - Classes and class hierarchy 

Thing Phase Activity Task Artifact Artifact Type Artifact Origin Reuse Level Inferred 

Phase Explore 
Documentation 

Wrap-up 

Acceptance Test 

Generation 
Acceptance Test 

Acceptance Test 

Template Sheet 
Code 

Android 

Artifact 
Completely 

Activities by 

Phases (5) 

Activity Initialize Planning Day 
Acceptance 

Testing 

API 

Documentation 

(2) 

APP Description 

(2) 
Document 

Methodological 

Artifact 
None 

Artifacts Origin 

(5) 

Task Productionize 
Planning Day In 0 

Iteration 

Acceptance Test 

Review 
App Icon (2) App Manifest (2) 

Document 

Element 
Other Artifact Partially 

Artifact 

Reusability (4) 

Artifact Stabilize 
Project 

Establishment 

Architecture Line 

Definition 

App Prototype 

Functionality (2) 
App Reference (4) Example Service Artifact  

Artifacts Usage 

(6) 

Artifact 

Type 

System Text 

And Fix 
Project Set-up 

Architecture Line 

Planning 
App Resource (4) 

App Screenshot 

(2) 
License   

Task by 

Activities (11) 

Artifact 

Origin 
 Release Day 

Continuous 

Integration 

Architecture Line 

Description 

Architecture Line 

Plan 
Model    

Reuse 

Level 
 Scope Definition 

Customer 

Communication 

Establishment 

Class Model 

Mobile 
Class Model Web Model Element    

Inferred  
Stake Holder 

Establishment 

Customer 

Establishment 

Data Model 

Mobile 
Data Model Web Product    

 

 
 System Test 

Documentation 

Wrap-up 
Defect List 

Deployment 

Package (2) 
Resource    

 

 
 Working Day 

Environment Set-

up 

Development 

Environment (2) 

Development 

Unrelated 

Software Tool 

Software    

  
Working Day In 0 

Iteration 
Inform Customer Example Code (2) 

Initial 

Requirements 

Document 

Standard    

 

 
  

Initial Project 

Planning 

Integration Test 

(2) 
Iteration Backlog Template    

   

Initial 

Requirements 

Analysis 

Iteration Plan JSON Standard     

   

Initial 

Requirements 

Collection 

Maps Key (2) 
Measurement 

Plan 
    

 

 
  Iteration Planning 

Mobile 

Application (2) 

Mobile-D Process 

Library 
    

   
Pair Programming 

Practice 
PHP Code Product Backlog     
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Post Iteration 

Workshop 
Product Proposal 

Project 

Management 

Software Tool 

    

 

 
  

Pre Release 

Testing 
Project Plan 

Project Plan 

Checklist 
    

 

 
  

Process 

Establishment 

Project Plan 

Checklist 

Template 

Project Plan Gantt 

Chart 
    

 

 
  

Publish 

Application 
SADD Document Source Code (2)     

 

 
  

Refactoring 

Practice 
Story Card 

Story Card 

Template 
    

 

 
  

Release 

Ceremonies 
System Test Plan 

System Test 

Report 
    

 

 
  

Requirements 

Analysis 
Task Card 

Task Card 

Template 
    

 

 
  

System 

Integration 

Test Device 

Driver (2) 
Test Results     

 

 
  System Test 

Throwaway 

Prototype (2) 
UI Illustrations     

   

Test Driven 

Development 

Practice 

UML Class 
UML Class SDK 

(2) 
    

 

 
  Wrap-up Unit Test (2) View (2)     

 

 
   

View Controller 

(2) 
View Element (2)     

 

 
   

Web 

Development 

Environment 

Web Service     

 

 
   

Web Service 

Specification 
     

 

 Classes having additional sub-classes not presented in this table.  

Number of subclasses is denoted in braces. 
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The approach in class naming and description defined in development of platform specific 

ontologies was also reused in the merged ontology. Thus, the classes are named in CamelCase 

style and described with several annotation properties including labeling, commenting and 

notes making. Where applicable, description of Mobile-D elements is taken from 

(Abrahamsson et al., 2005a), while other classes (especially artifacts) are described as 

presented in Chapter 4.  

In addition to the 213 classes, the conceptualization is created with 14 object properties. We 

already discussed the types of properties and concluded that our ontology does not need 

datatype properties, but only object properties which are defined as relationship between two 

classes of individuals. The properties defined for platform specific ontologies are reused and 

updated with isSimilarToArtifact and hasReusabilityLevel properties. The mentioned two 

properties are used to describe the knowledge on artifacts reusability and similarity with other 

artifacts. The final list of all the properties created and used in our ontology is presented in 

Table 52. 

Table 52 - Object properties description 

Property Facets Description 
consistsOf Domain:  

Activity or Phase 

Range:  

Task or Activity 

Property connecting individual Activities that are performed 

in specific Phases and individual Tasks that are performed 

during specific Activities. Logically, this property is inverse 

property of isPerformedIn, but we explicitly defined it in 

order to have the information available even in the original 

model. 

createsArtifact Inverse Of: 

isCreatedByTask 

Domain: Task 

Range: Artifact 

Inversed property of isCreatedByTask. It connects Task 

individuals and created specific Artifact individuals. 

hasArtifactOrigin Characteristics: 

Functional 

Domain: Artifact 

Range: ArtifactOrigin 

Property connecting individual Artifact and individual in 

definite class ArtifactOrigin which defines several possible 

types of Artifact origin. This property is used to classify 

artifacts by types but from different point of view than 

property hasArtifactType. 

hasArtifactType Characteristics: 

Functional 

Domain: Artifact 

Range: ArtifactType 

Property connecting specific Artifact individuals with 

ArtifactType individuals. It defines type of the specific 

Artifact according to defined classification according to 

artifact usage. 

includesArtifact Characteristics: 

Asymmetric 

Inverse Of: 

isPartOfArtifact 

Domain and Range: 

Artifact 

Inverse property of isPartOfArtifact. It defines individual 

Artifacts that are included in observed Artifact. 

hasReusabilityLevel Characteristics: 

Functional 

Domain: Artifact 

Range: ReuseLevel 

Property connecting specific Artifact individuals with one of 

predefined reusability levels. This property classifies artifacts 

into completely, partially or unreusable classes. 

isCreatedByTask Inverse Of: 

createsArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that create specific 

Artifact individuals. Creating the artifact logically means it 

usage even if it is not explicitly stated. 
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isPartOfArtifact Characteristics: 

Asymmetric 

Inverse Of: 

includesArtifact 

Domain: Artifact 

Range: Artifact 

Property connecting individual Artifacts into hierarchy. This 

property is Asymmetric as two individuals cannot be both part 

of each other. 

isPerformedIn Domain: 

Activity or Task 

Range: 

Phase or Activity 

Property defines relationship between specific Task 

individuals and owning Activity. Logically, this property is 

inverse property of consistsOf property, but we defined both 

separate to have the information available even in the original 

model. 

isSimilarToArtifact Characteristics: 

Symmetric 

Inverse Of: 

isSimilarToArtifact 

Domain and Range: 

Artifact 

Property connecting the individuals of class Artifact with 

other similar individuals of the same class. Usually, all 

artifacts in the same class, if class is reusable, are reusable, 

but this is not a rule. Sometimes, pairs of artifacts in the same 

class can be mutually reusable, but not reusable with other 

artifacts of pairs. 

isUpdatedByTask Inverse Of: 

updatesArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that update specific 

Artifact individuals. 

isUsedByTask Inverse Of: 

usesArtifact 

Domain: Artifact 

Range: Task 

Property connecting the Task individuals that read specific 

Artifact individuals. 

updatesArtifact Inverse Of: 

isUpdatedByTask 

Domain: Task  

Range: Artifact 

Inversed property of isUpdatedByTask. It connects Task 

individuals and updated specific Artifact individuals. 

usesArtifact Inverse Of: 

isUsedByTask  

Domain: Task  

Range: Artifact 

Inversed property of isUsedByTask. It connects Task 

individuals and used specific Artifact individuals. 

 

As we have argued in the chapter on Android Case ontology, there are some restrictions on 

property definitions defined by OWL 2 DL. Each time we broke a restriction on properties, 

the reasoners started to behave unexpectedly, sometimes reporting the use of unsupported 

logic and sometimes just crashing without any explanation. For instance, querying the 

knowledge out of the ontology would be much easier if there was a possibility of defining the 

same property to be symmetric and transitive or defining functional property to be transitive 

et cetera. However, when needed, we used other approaches and assured that our logical 

model is safe and that the ontological description is correct. 

The complete ontological definition presented in Manchester OWL Syntax format
39

 and 

containing the details on classes, properties, class and property description and semantics can 

 

                                                 
39

 The Manchester syntax is a user-friendly compact syntax for OWL 2 ontologies (Horridge and Patel-

Schneider, 2009). Although it is frame-based, as opposed to the axiom-based other syntaxes for OWL 2, we find 

it to be the most compact and human readable syntax that can be easily and automatically converted in other 

OWL 2 syntaxes. 
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be found in Appendix E of this document. We also generated a full OWLDoc documentation 

on the created ontology and made it available for access and analysis at http://barok.foi.hr/ 

~zstapic/ont/mcao/doc/. 

5.4.5. Evaluating and testing the ontology 

5.4.5.1. Ontology evaluation 

Ontology evaluation means to judge the ontologies against a reference framework during each 

phase and between phases of its life cycle (Gómez-Pérez, 2001). Examples of reference 

frameworks (according to the same author) can be real world, a set of requirements and a set 

of competency questions. However, Gómez-Pérez argues, that there are few ontology 

development methodologies that have evaluation included throughout the entire lifetime of 

the ontology development process. In the terms of classifying the ontologies according to 

their formalization level (Uschold and Gruninger, 1996), integrated formal evaluation is 

possible only in development process of rigidly formal ontologies, while in all other 

ontologies, we need different and other approaches.  

According to Brank et al. (2005), most evaluation approaches fall into one of the following 

categories:  

 evaluation based on comparing the ontology to a “golden standard” which may itself 

be an ontology, syntax specification or any other representation that is considered to 

be a good representation of the concepts of the problem domain under consideration, 

 evaluation based on using the ontology in an application and evaluating the results, 

 evaluation involving comparison with a source of data (e.g. a collection of documents 

about the domain to be covered by the ontology, 

 or evaluation done by humans who try to assess how well the ontology meets a set of 

predefined criteria, standards, requirements et cetera. 

Performing a review of existing ontology evaluating techniques Brank et al. (2005) concluded 

that ontology evaluation is an important open problem with no single best or preferred 

approach to ontology evaluation. Additionally, Brank thinks that the choice of a suitable 

approach must depend on the purpose of evaluation, the application in which the ontology is 

to be used, and on what aspect of the ontology we are trying to evaluate. Finally, Brank stated 

that automated ontology evaluation should be the focus of future researches.  

This research took place in 2005, but since then not many researches were performed. There 

were some tools and techniques developed, but those were developed for specific ontology 

development environment or representation languages. In our opinion, Protégé Frames had 

http://barok.foi.hr/~zstapic/ont/mcao/doc/
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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good support for ontology evaluation in several tools, including those created in CO-Ode 

project and OntoClean methodology
40

. On the other hand, current support in automatic 

evaluation tools for Protégé OWL is insufficient. CO-Ode project developed OWL Lint
41

 

framework for defining and running tests against a set of OWL ontologies for quality control, 

debugging, best practices, and other purposes. Unfortunately, the project is closed and the 

resources on this tool are unavailable and not aligned with the current version of Protégé. 

Similarly, OntoCheck
42

, a simple plugin for verifying the ontology naming conventions and 

metadata completeness developed at University of Freiburg, is also not aligned with the 

current version of Protégé. 

However, there are some tools that allow basic syntax checking of the ontology, ontology 

alignment with the OWL standard and consistency of the ontology through check of 

syntactical ontology elements. In our case, we used two of them: OWL Validator
43

 developed 

at the University of Manchester which is used as official W3C OWL validating tool and 

Ontology Evaluation
44

, an open source plug-in developed at Aristotle University of 

Thessaloniki which is currently the only evaluation plugin supported by Protégé OWL version 

4.3. We will come back to these tools later in this chapter. 

Ontology Development 101 methodology (Noy and McGuinness, 2001), that we used in our 

development process, also lacks formal ontology evaluation activities and mechanisms. 

Instead of formal evaluation tasks, the description of the methodological steps is intertwined 

with recommendations and advices on performing the tasks and evaluating their results. 

Additionally, the competency questions are used as a background for development process 

and for the final evaluation of the results through the ontology application. As the focus 

through the whole methodology is placed on (1) utilization of good practices in ontology 

development, (2) on human checking of intermittent and final results and (3) on the 

assessment of the quality of the final ontology by using it in applications for which it was 

designed, it is hard to choose in which of the four categories defined by Brank et al. (2005) 

this methodology falls into. 

Observing the definition of ontology evaluation again, we can conclude that complete and 

automatic evaluation throughout all phases is still not possible. Rather, it is a human-centric 

process which is done in every ontology development task with some minor help from the 

reasoners and syntax checking tools. 

 

                                                 
40

 http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html  
41

 http://protegewiki.stanford.edu/wiki/OWL_Lint  
42

 http://protegewiki.stanford.edu/wiki/OntoCheck  
43

 http://www.w3.org/2001/sw/wiki/OWL_Validator and http://owl.cs.manchester.ac.uk/validator/  
44

 http://protegewiki.stanford.edu/wiki/Ontology_Evaluation  

http://protege.stanford.edu/ontologies/ontoClean/ontoCleanOntology.html
http://protegewiki.stanford.edu/wiki/OWL_Lint
http://protegewiki.stanford.edu/wiki/OntoCheck
http://www.w3.org/2001/sw/wiki/OWL_Validator
http://owl.cs.manchester.ac.uk/validator/
http://protegewiki.stanford.edu/wiki/Ontology_Evaluation


 

 

202 

 

However, we should not forget that evaluation actually subsumes the execution of two steps: 

verification and validation (Gómez-Pérez, 2004). Ontology verification deals with building 

the ontology correctly, that is ensuring that its definitions implement correctly the 

requirements, and ontology validation refers to whether the meaning of the definitions really 

models the real world for which the ontology was created (Vrandečić, 2009). To make the 

definitions simpler we will also refer to Vrandečić who says that ontology verification 

answers if the ontology was built in the right way, whereas ontology validation answers if the 

right ontology was built. 

Finally, in this short introduction to the concepts related to ontology evaluation, we have to 

point out the role of domain experts. As ontology validation is usually the only way to assure 

the correctness of ontologically described knowledge, which usually cannot be performed 

automatically, it is an important part of assessing the quality of an ontology to have the 

domain experts validating the ontology. 

5.4.5.2. Used evaluation mechanisms 

In order to verify and validate our ontology, throughout the whole development process 

lifecycle, we have performed the following seven verification and validation mechanisms: 

1. Methodologically driven ontology development process 

2. Followed recommendation and advices from other authors 

3. Using reasoning tools to verify the ontology in each iteration 

4. Using W3C OWL validating tool 

5. Using the Ontology evaluation plug-in 

6. Using DL queries to obtain information via inference on ontology knowledge 

7. Checking the results by domain experts 

The first five evaluating mechanisms are connected with ontology verification and are used to 

lower the risks of making any syntactical and basic semantic errors throughout the whole 

ontology development process.  

The last two mechanisms are connected with ontology validation. These two mechanisms 

have been used in the end of development process to check if the created ontology represents 

the domain knowledge in semantically correct way. 

By performing the methodologically driven ontology development process and utilizing the 

Ontology Development 101, we ensured that our approach was systematic and guided by the 

experience of researchers who already used it. As we have described and discussed in Chapter 

5.2, the whole development process had seven steps which were implemented iteratively 

through several iterations. We followed the recommendation from Uschold and Gruninger 

(1996) and used middle-out approach in class and class-hierarchy definition. This enabled us 
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to focus on more salient classes first and then to classify them in super or subclasses as 

needed. This approach, however, increases the risk of omitting some classes, but we dealt 

with it through other verification mechanisms.  

Noy and McGuinness (2001) put special focus in tasks related to classes and properties 

definition and they gave a set of recommendations and advices that we tried to follow in our 

development process. For instance, they gave us advice on measures that should been taken to 

ensure that the class hierarchy is correct, on analyzing siblings in a class hierarchy, on taking 

care of multiple inheritances, when to introduce a new class or property or instance of a class, 

on limiting the scope of the ontology and dealing with disjoint classes. They also gave advice 

on properties creation and their relationships through facets and on some general issues 

regarding the ontology creation like the choice of naming convention, of using singular or 

plural, of using prefixes and suffixes and on use of reserved names and abbreviations. We 

also consulted the recommendations presented in (Horridge, 2011) who took practical point of 

view and discussed the advantages and disadvantages of different approaches in solving the 

most common issues in ontology development.  

Throughout the whole incremental development process we used reasoning tool to verify the 

newly added concepts and their influence on the already defined concepts. In general, 

Description Logic reasoners check the consistency of ontology and automatically compute the 

ontology class hierarchy. In this document we referred to computed class hierarchy as to 

inferred class hierarchy. Additionally, a reasoner can check whether or not all of the 

statements and definitions in the ontology are mutually consistent (Horridge, 2011). If we add 

the reasoners‟ possibility to detect and report any syntax errors, then we can conclude that a 

consistent use of reasoners in development process represents a solid ontology verification 

mechanism. 

We used FaCT++, HermiT 1.3.8 and Pallet reasoners which are available through Protégé 

installation or through standard plug-in installation procedure. All used reasoners classified 

our ontology in the same way and returned the same inference results. For the examples 

presented in this chapter, we used FaCT++ as native Protégé reasoner.  

Figure 49 presents comparison of a part of asserted and a part of inferred class hierarchy. As 

we can see on the left hand side of the figure, asserted hierarchy does not group artifacts into 

specific super classes regarding their type or usage. However, we used Description Logic to 

define a set of Inferred classes (marked with  icon) to access knowledge that is encoded in 

the ontology. During the ontology definition, some of these classes were automatically 

classified as sub-classes of class Artifact, but as we can see, they are without any child 

elements. Same classes, along with the rest of ontological description, were used by the 
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reasoner in order to create a new class hierarchy, as presented on the right hand side of the 

mentioned Figure 49.  

      
Figure 49 - Comparing asserted and by reasoner inferred class hierarchy  
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Additionally, as it can be seen on the right hand side, all DL defined classes are now 

populated with inferred subclasses. In the above example, expanded class 

MethodologicalArtifacts is populated with those artifacts that originate in Mobile-D 

methodology. Similarly, all other named queries and defined classes are populated with 

appropriate sub-classes. The asserted and inferred models were in the end assessed by the 

thesis supervisors who agreed on their consistency and semantic correctness. 

In order to evaluate the ontology syntax, we also used two different tools that evaluate the 

ontology automatically. OWL Validator is developed at the University of Manchester, and it 

is currently an official W3C OWL validating tool (Horridge, 2009). Figure 50 shows the 

evaluation results stating that the ontology and all of its imports are in the OWL 2 DL profile. 

 

 

Figure 50 - OWL 2 Validation report results 

The other used tool is Ontology Evaluation
45

 (Tantsis, 2013), a plug-in developed as a Master 

Thesis project at Aristotle University of Thessaloniki. Although without technical or any 

other formal documentation and support, except information written in the thesis itself, the 

plugin is currently, as far as our knowledge reaches, the only evaluation plugin supported by 

Protégé OWL version 4.3. Thus, even if the quality of the evaluation engine may be 

questionable, it can help in the evaluation of the ontology according to several parameters 

including naming conventions, class hierarchy, property hierarchy, property restrictions, 

similar concepts, documentation and visualization, domain and range of properties and 

restrictions on disjointness. An example of performed tests on class hierarchy and 

documentation (see Figure 51) showed that there are no problems with class hierarchy, but 

 

                                                 
45

 http://protegewiki.stanford.edu/wiki/Ontology_Evaluation  

http://protegewiki.stanford.edu/wiki/Ontology_Evaluation
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some concepts needed improvements in documentation. After additional analysis, it turned 

out that some mid-level classes were not documented. 

 

Figure 51 - Ontology Evaluation plug-in 

The mentioned evaluation tool, along with the evaluation results creates a set of 

recommendations that could be used to improve the ontology quality. These recommendations 

are based on simple evaluation result parameters without any contextual input, and thus 

should be taken with significant precaution and placed in the context of every particular 

ontology. For example, the tool advised us to create “some datatype properties” just because 

we did not have any. In our case, as we argued in Chapter 5.2.5, these properties are not 

necessary and by missing them the ontology does not lose any quality. On the other hand, the 

advice on possible duplication of concepts was very welcomed. 

Finally, in order to validate the ontology against its usage in the future application, we created 

a series of DL queries which aimed to extract direct and indirect knowledge out of the 

ontology, by using a reasoning engine. The results obtained by these queries have been 

validated by the supervisors of this thesis, and one of them (prof. Vjeran Strahonja) is a 

domain expert in the field of software engineering methodologies.  

The following sections present several queries executed upon our ontology with their 

Description Logic representation and the finally obtained results. 
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 What platform specific artifacts are classified as reusable? 

In order to get the artifacts that are platform specific we can create several different queries 

that would be based on different concepts already built into the ontology. Thus, we can use 

only basic classes like Artifact and their properties, or we might use already defined named 

queries which would, in our case, be logically connected sub queries.  

 

Figure 52 - Example of defined and executed DL query with reasoning results 

DL query obtaining only Android reusable artifacts could look like this: 

Artifact  

 and (hasArtifactOrigin some AndroidArtifact)  

 and ((hasReusabilityLevel some Completely)  

   or (hasReusabilityLevel some Partially)) 

Code 9 - Android reusable artifacts 

If using already defined concepts which classify all Android and reusable artifacts, we can use 

this query: 

Artifact and (AndroidArtifacts) and (ReusableArtifacts) 

Code 10 - Android reusable artifacts with already defined named queries 

In both cases, the result is the same and it contains the following enumerated artifacts (see 

Figure 52). 

AndroidActivity, AndroidClass, ApplicationDescription, ApplicationIcon,  

JavaCode, Layout, LayoutElement, LocalizationString, UnitTest, XMLResources 

In similar manner, we could ask for Windows Phone artifacts only or for reusable artifacts that 

originate from Mobile-D methodology et cetera.  
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 What artifacts can be reused in any given development activity or task?  

For example, in order to obtain all reusable artifacts that were used, created or updated during 

the Iteration Planning task we can use a query like this: 

Artifact 

 and ((isUsedByTask some IterationPlanningTask)  

   or (isCreatedByTask some IterationPlanningTask)  

   or (isUpdatedByTask some IterationPlanningTask)) 

 and (ReusableArtifacts) 

Code 11 - Reusable artifacts by task 

The query result: 

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan, 

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart, 

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate 

 

On the other hand, if we want to enumerate all artifacts that are an output of any task 

performed during the Working Day activity we can use a query like this:  

Artifact 

 and ((isUpdatedByTask some WorkingDayTasks)  

   or (isCreatedByTask some WorkingDayTasks)) 

 and (ReusableArtifacts) 

Code 12 - Reusable artifacts by activity 

The query result: 

AppResource, ClassModelWeb, DataModelMobile, DataModelWeb, IterationBacklog, 

IterationsPlan, MeasurementPlan, PHPCode, ProductBacklog, 

ProjectPlanChecklist, SourceCode, StoryCard, TaskCard, UMLClass, UnitTest, 

View, ViewController, ViewElement, WebService, WebServiceSpecification 

 

 What artifacts can be reused in any given development phase? 

The following query results in a set of artifacts that are reusable and created, updated or used 

in Explore phase. The artifacts were additionally filtered with their origin in order to exclude 

Other Artifacts that are not connected to development methodology or target platform. 

Artifact 

 and((isCreatedByTask some (isPerformedIn some (isPerformedIn some Explore))) 

  or (isUpdatedByTask some (isPerformedIn some (isPerformedIn some Explore))) 

  or (isUsedByTask some (isPerformedIn some (isPerformedIn some Explore)))) 

and (ReusableArtifacts) 

and (not (OtherArtifacts)) 

Code 13 - Reusable artifacts by phase and origin filter 
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The query result: 

InitialRequirementsDocument, MeasurementPlan, ProductProposal, ProjectPlan, 

ProjectPlanChecklist, ProjectPlanChecklistTemplate, ProjectPlanGanttChart 

In the above example we used nested queries to reach all artifact that are created by some 

Task that was performed in some Activity performed in some Phase. Another approach in 

ontological modeling of such problems can be the usage of transitive properties. 

 

 What artifacts are reusable in accordance with their type or origin? 

The following query enumerates artifacts with specific type of Document that are completely 

or partially reusable. 

Artifact  

 and (hasArtifactType some Document) 

 and ((hasReusabilityLevel some Completely) 

  or (hasReusabilityLevel some Partially)) 

Code 14 - Reusable artifacts by their type 

The query result: 

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog, 

ProductProposal, ProjectPlan 

 

The artifacts that are completely or partially reusable are recognized as sub class of Reusable 

Artifacts, which we used in other examples presented previously.  

 

Except the queries that answer our competency questions stated at the beginning of the 

ontology development process, by using the built vocabulary of classes, properties, value 

partitions and named queries, we can build any other query in order to obtain other specific 

knowledge encoded in the ontology. These queries can be specific focusing on any particular 

artifact, or general and focus on groups of artifacts.  

For example, the following query asks for any reusable artifact that is used in creation of 

Software Architecture and Design Description Document.  

Artifact  

 and (isPartOfArtifact some SADDDocument) 

 and (ReusableArtifacts) 

Code 15 - Reusable artifacts used in specific document 

The query result: 

AppDescription, ArchitectureLinePlan, ClassModelWeb, DataModelMobile, 

DataModelWeb, WebServiceSpecification 
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By answering all competency questions defined at the beginning of our ontology development 

process, we proved the completeness of the created ontology. As presented in previous 

examples, DL queries are flexible and the ontology is capable of answering a wide range of 

questions regarding any concept that is used in its creation. Additionally, queries and results 

were observed by domain experts who finally validated the ontology and agreed on its 

completeness.  

Such an ontology represents a solid basis for creation of information system that can guide the 

development team or development teams in achieving methodological interoperability by 

reusing artifacts created in multi-platform mobile application development process. 

5.4.6. Final remarks on proposed ontology for methodological interoperability 

The development process of development of an ontology for methodological interoperability, 

namely Multi-platform Case Artifacts Ontology, was performed in two phases. First, we 

created two specific ontologies targeting Android and Windows Phone application 

development and secondly, we merged these two ontologies into a new ontology which we 

enhanced with multi-platform and reusability conceptualization.  

The created ontology comprises 213 classes, 14 object properties and 2213 axioms defined in 

ALCRIF DL expression sub-language. Generated in Manchester OWL Syntax format it can be 

found in Appendix E of this document. Also, the ontology in native OWL/XML format can 

be downloaded from http://barok.foi.hr/~zstapic/ont/mcao.owl, while full OWLDoc ontology 

documentation can be accessed and analyzed at http://barok.foi.hr/~zstapic/ont/mcao/doc/. 

The whole development process was guided by Ontology Development 101 methodology and 

recommendations in ontology development given by Noy and McGuinness (2001) and 

Horridge (2011). We also put special focus in reusing the existing knowledge while building 

the second and the third (i.e. the final) ontology, and the proof of the ontology‟s quality was 

the possibility of reusing the Android ontology without the need to change any infrastructural 

elements while building a Windows Phone ontology. Additionally, after merging the two 

ontologies, we had no redundancy to deal with, and had no problems in updating the ontology 

with a new conceptualization. This proves that the ontology is both reusable and extendable. 

A special focus was put on the ontology evaluation through its development and final testing. 

We used seven evaluation mechanisms, and as the most important one, we tested the ontology 

with series of Description Logic queries which asked different questions including all 

competency questions stated at the beginning of the ontology development. The results were 

then analyzed by the two thesis supervisors, and one of them is a domain expert. The use of 

evaluation mechanisms throughout the development process and positive validation are the 

proof of ontology‟s quality and completeness. 

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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This brings us to the final conclusion that developed Multi-platform Case Artifacts Ontology 

represents a knowledge base that can be used in development of information system aiming to 

guide development teams in achieving methodological interoperability by reusing artifacts 

created in the process of multi-platform mobile application development. 

5.5. Relevance of the chapter 

This chapter presented the results and the approach taken in our last research phase – 

Ontology Development Phase.  

As development of ontologies is not a trivial task, first we introduced the concepts of the 

ontologies by looking into the origins of the term in Philosophy, and then by defining it in 

Computer Science. Finally we agreed to use the definition of ontology saying that ontology is 

an explicit formal conceptualization of a shared understanding of the domain of interest 

which includes the vocabulary of terms in order to describe the domain elements, semantics 

in order to define the relationships of the domain elements and pragmatics in order to define 

possible usages of these elements. 

After discussing different types of ontologies, their possible usages and presenting in detail 

several the most commonly used and the most important ontology development 

methodologies, tools and languages, we decided to create a domain ontology in order to 

semantically describe concepts belonging to the domain of development of mobile application 

for specific target platforms. Additionally, we argued the reasons for using the Noy and 

McGuiness‟ Ontology Development 101 methodology, as the best option suitable in our case, 

and finally, we decided to use Protégé ontology development tool and OWL2 DL as the most 

appropriate ontology language in our case. 

The chapter also presents in detail the usage of Ontology Development 101 methodology 

while developing Android Case Artifacts Ontology. We have put focus on reusability when 

developing WindowsPhone Case Artifacts Ontology, and finally, on ontology merging, 

updating and evaluation when developing Multi-platform Case Artifacts Ontology.  

The results showed that our ontologies are reusable, extensible and updatable as we 

performed all these tasks without the need of changing any existing infrastructural elements. 

The final ontology is additionally verified and validated with several automatic and manual 

evaluation mechanisms including the validation by domain experts who analyzed the results 

of the executed DL queries. The validation results showed that ontology is valid and complete 

and thus can be used in future development of an information system that would help 
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development teams to achieve methodological interoperability by reusing the artifacts created 

in the process of multi-platform mobile application development. 

This concludes our three phase research process which resulted in (1) Systematic Literature 

Review performed in order to identify and choose a mobile development methodology 

applicable in multi-platform development, (2) the implementation of a prototype application 

by utilizing the selected methodology performed in order to identify all artifacts that arose in 

the development process, and (3) ontology development in order to ontologically describe the 

empirical and theoretical knowledge and thus make it usable for future development of 

information systems targeting the increase of methodological interoperability in the 

development of mobile application for multiple platforms. 
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6. DISCUSSION OF RESULTS 

This multidisciplinary research composed of systematic literature review, analysis of artifacts 

created in methodologically driven mobile application development, and development of an 

ontological description of artifacts reusability is presented in the previous chapters. Through 

every research phase we gave an overview and analysis of the existing body of knowledge, 

performed a research and reported on the results that were obtained in it.  

In this chapter we would like to review, assess and recapitulate the results that were produced 

during the presented research process. This discussion includes review of the results on 

performing Systematic Literature Review in the field of software engineering with special 

focus on the aspects regarding the execution of this method by doctoral students. 

Additionally, we discuss the identified development methodologies and approaches with 

special focus on multi-platform development. The artifacts that arise in the development 

process targeting multiple-platforms are identified during the second phase of the research as 

a result of performed two development cases. These artifacts are analyzed and finally 

ontologically described in the last research phase.  

All these results are argued and assessed in this chapter where we put special focus on the 

research motivation, results, contributions, rigor and evaluation. By research motivation we 

would like to emphasize the reasons for performing the research activities. By results and 

contribution we aim to systematize the obtained results and the contribution to knowledge. 

Discussing the research rigor we would like to point out our approach and its main 

characteristics, and discussing the evaluation we would like to underline the evaluation 

mechanisms that are used in order to verify and validate the used approach and the obtained 

results.  

Finally, we encompass the discussion with evidence on testing the stated research hypothesis. 

6.1. Methodologies for development of mobile applications 

In Chapter 2.1 of this thesis we gave a detailed analysis of Systematic Literature Review 

(SLR) methodology as it is proposed by Kitchenham and Charters (2007). We presented the 

methodology and gave summary of all phases and activities that should be performed while 
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conducting the SLR in the field of software engineering. Later, in Chapters 2.2 and 2.3  we 

reported our literature review on methodologies for development of mobile applications.  

In this chapter we would like to emphasize several characteristics of this research phase, with 

the focus on mentioned views: motivation, results, contributions, rigor and evaluation.  

6.1.1. Performing systematic literature review in SE 

Motivation: The method of SLR is a well-known method of assessing and summarizing the 

existing body of knowledge on a particular research question or questions. Although the 

origins of SLR can be traced back to the beginning of the 20
th

 century, it emerged in the field 

of software engineering (SE) during last several years. As there are important differences in 

performing the SLR in SE and performing it in other fields, the authors who performed the 

method generally agree that this field is still an area of investigation that remains to be 

explored and that could well bring many benefits (Biolchini et al., 2005). The guidelines 

presented by Kitchenham and Charters (2007) are created by adaptation of several existing 

guidelines from other disciplines, mainly medicine, and thus are partially inappropriate for the 

field of SE. Several authors, including Biolchini et al. (2005), Mian et al. (2005) and Staples 

and Niazi, (2007) criticized the mentioned guidelines as explained above. As the methodology 

of SLR as described in the guidelines is comprehensive, but time consuming, risky and 

inappropriate for conduction by a single researcher, we decided to perform the analysis of the 

reports and recommendations given by other authors and to enhance the guidelines in this 

manner. Specifically, we focused on possible approaches that could be taken by PhD students 

in order to overcome the most important obstacles they usually run on during the execution of 

this method.   

Results: As presented in Chapter 2.1, three phases of SLR are discussed in detail and 

recommendations from other authors are given. In the review planning phase, the most 

important tasks are concerned with specification of research questions and development of 

review protocol. PhD students will usually define such research questions that aim to identify 

the scope of future research activities. Additionally, PhD students will usually break-down the 

research question into sub-questions by utilizing the PICOC model, i.e. defining the 

population, intervention, comparison, outcomes and context. On the other hand, the 

development of review protocol is not a trivial task, which according to some authors (e.g. 

Staples and Niazi (2007)) is a subject of constant changes throughout the whole SLR process. 

In this context, we found the template proposed by Biolchini et al. (2005) as an important 

artifact which defines structure of the protocol along with the explanation of its elements. 

Some protocol elements should be defined upon execution of pilot studies, and thus this task 

can be time consuming. Subsequently, evaluation of review protocol is a key activity that 
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should be done by field experts or in the case of doctoral students, at least by thesis 

supervisors. Other often used evaluation method is test of protocol execution. 

In the conducting the review phase predefined protocol should be followed. This is the most 

time-consuming phase which ends up with data extracted, summarized and ready for 

dissemination. PhD students should use appropriate tools like appropriate reference manager 

software in order to keep record on all of the identified studies through all review phases. One 

of the key quality criteria is the transparency and the replicability of the review. In order to 

identify relevant studies, doctoral students should strictly use predefined inclusion and 

exclusion criteria, and lists of relevant sources for the field of software engineering can be 

adopted from other authors, like for example from (Hannay et al., 2007) or (Kitchenham and 

Charters, 2007). Depending on the number of initially obtained studies, different approaches 

can be taken in their filtering. Less strict approach would be to, in the first step, exclude some 

studies only by reading their title. This is sometimes the only approach as the number of 

initial studies could be more than 10.000. On the other hand, Brereton et al. (2007) advocate a 

more strict approach where exclusion by title should be avoided and used only if exclusion is 

obvious. Reliability of inclusion and exclusion decisions is important, and doctoral students 

can use several methods to increase it. Consultations with the advisor, the expert panel or 

other researchers, re-evaluation of a random sample of the primary studies by test-retest 

approach or re-evaluation by other researcher are some of the methods recommended for PhD 

students. The study quality assessment procedures mainly depend on the type of the study, but 

one method is particularly often used in SE – the use of checklists with defined quality 

criteria. Finally, data extraction and synthesis are the last activities of this phase. The most 

usual approach in data extraction is the usage of extraction forms. Examples of extraction 

form can be found in (Kitchenham and Charters, 2007) and (Jørgensen, 2007), or in Table 4 

of this document.  

The mentioned data synthesis can be qualitative and quantitative, but in both cases, results 

presented in an appropriate (e.g. table, graph or figure) manner should be narratively 

explained. Doctoral students will probably report their findings in their dissertation, but prior 

to that, proper evaluation of the results should be carried out. In this evaluation, help from a 

supervisor, prior to submitting the dissertation to be evaluated by committee is welcomed. On 

the other hand, the evaluation of scientific papers is done by scientific peer review. 

Contributions: The body of knowledge on performing the systematic literature review in the 

field of software engineering as proposed by Kitchenham and Charters (2007) is presented 

and enhanced with a discussion, observation and recommendations synthetized from other 

influential authors in the field. The three-phase-process along with stages and tasks is 

analyzed in detail, and special focus is put on making the execution of this comprehensive 
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method easier for single researchers, like PhD students. Enhanced guidelines that can be used 

while performing the systematic literature review are the main result of this research activity.  

Rigor: A comprehensive analysis of available papers on how to perform SLR in the field of 

SE was performed. The results showed that one document, the guidelines from Kitchenham 

from (2004) which were updated by Kitchenham and Charters in (2007) is used as the 

knowledge base on how to perform the method in all other reported reviews. However, we 

carefully analyzed and compared the mentioned document with the reports and 

recommendations from other influencing authors in the field. Each recommendation given in 

our report has theoretical or practical proof that is found in the cited literature.    

Evaluation: A short paper on the results presented in this chapter is already published at the 

Central European Conference on Information and Intelligent Systems (Stapić et al., 2012), 

while the full paper is currently under the review. Additionally, the presented enhanced 

guidelines were evaluated by the thesis supervisors and were used in the SLR process 

performed in this research.  

6.1.2. Mobile development methodologies and approaches: SLR 

Motivation: In Chapter 2.2, we defined the basic concepts that are connected with the 

software development methodologies, and also we gave an overview of methodologies 

targeting the development of mobile applications and concluded that it differs from the 

standard development, that the agile approach is widely used in methodologies for mobile 

devices and that all presented methodologies should be more fine grained and suitable for 

specific development environment. Thus, even there are some attempts to create a specific 

software development methodology that would be suitable for development of mobile 

applications, these attempts are relatively rare and they are not aligned with the current mobile 

development demands. So, many companies choose to use the existing and familiar 

development methodologies in while developing mobile applications. These methodologies 

are often adapted and changed, and a proper analysis of all of these possibilities was needed. 

We also performed a research in order to identify the existing SLR from the domain of 

interest and found that there are no existing SLRs targeting mobile application development 

methodologies, which makes the need for such a review even bigger.   

Results: In our systematic literature review, we aimed to answer two research questions. First, 

we wanted to know what development methodologies and approaches are reported in 

literature as defined in theory or used in practice for mobile application development, and 

second, we aimed to analyze if these methodologies and approaches are applicable for multi-

platform mobile applications development. After having the review protocol developed and 

validated by the thesis supervisors, we performed automatic and manual search on the 
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selected sources and obtained 6761 initial studies which were then analyzed through several 

phases by applying strictly defined exclusion and inclusion criteria (see Table 14). The review 

resulted in 49 relevant studies that were analyzed and data extraction was performed on them. 

We finally identified 22 development methodologies and 7 development approaches that can 

be used in the development of mobile applications (see Table 17 and Table 18). On the other 

hand, only one methodology was not eligible according to the second research question, as it 

targeted specific platform capabilities. After analyzing the obtained results and comparing the 

reported use and available documentation on identified methodologies, Mobile-D 

methodology along with Test Driven Development emerged as the most suitable (although 

still not fully applicable without changes) methodology-approach pair to be used in the 

following research phases.  

Contributions: During the time of writing this thesis and to our knowledge, there are no 

Systematic Literature Reviews performed in the field of Software Engineering that assess the 

software development methodologies in general or specifically for mobile applications 

development. Thus, in our research we performed SLR in order to identify development 

methodologies and approaches that are reported to be used in mobile applications 

development. Specific focus is placed on the assessment of included studies quality. Although 

the average study quality is not very good, the results showed that 22 methodologies and 7 

approaches are reported to be used in development of mobile applications.  

Rigor: The method of Systematic Literature Review is performed by consistently following 

the guidelines which are usually used in the process of SLR implementation in the field of 

Software engineering. The mentioned guidelines are additionally enforced with the 

recommendations from influential authors in the field. Every step is taken upon strictly 

defined and evaluated procedure and with explicitly defined criteria. Where applicable, 

references to the theoretical or practical background of all used artifacts are provided. All 

included studies have undergone quality assessment, which resulted in elimination of 18 (out 

of 67) studies. The remaining 49 studies were analyzed and data was extracted in accordance 

with template specifically developed to provide sufficient information regarding the research 

questions. All performed activities along with the results are reported as requested by SLR 

methodology. 

Evaluation: The SLR process is by its nature sequential. But, having the evaluation 

procedures at every milestone, it can be considered as iterative process as well. By following 

the methodology requirements and systematized recommendations from other authors, strict 

evaluation mechanisms were applied at this research phase. Thus, the review questions, 

created protocol, created search string, selected sources and other elements were evaluated 

during or at the end of the planning phase. During the execution phase, the inclusion and 
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exclusion criteria were applied by the main researcher and then evaluated either by test-retest 

method or by evaluation of the results by the research supervisors. Finally, the report results 

were again evaluated in accordance with dissemination mechanisms and media. 

6.2. Mobile-D implementation 

The first part of the second research phase is presented in Chapter 3. First we gave an 

overview of the chosen development methodology and then we utilized the methodology in 

two development cases. The results contain documented development process for two target 

platforms with the focus on the used and created artifacts. These results were used in 

subsequent research phases. 

Motivation: The identification of artifacts that arise in the development process for two or 

more target platforms could be done either by analyzing some existing data on development 

processes performed in practice (e.g. in company, or by individual developers), or by 

performing a development in a laboratory environment. Although both approaches have their 

advantages and disadvantages, we had to choose the second option, as it proves to be more 

flexible and fully controlled by the researcher himself. The development of fully functional 

application for two target platforms is a time consuming work, but it brings the benefits of 

executing the process with careful analysis of all performed phases, activities and tasks along 

with all artifacts that were created in the process.  

Results: After almost 160 working days, two versions of the same application were created. 

During the development process we put special focus on the artifacts that were created in the 

process and on their reusability. Specifically, while developing the mobile application for the 

first target platform, the artifacts were observed from methodological point of view. The 

methodological approach along with the connected artifacts was reported in detail. On the 

other hand, while developing for the second target platform, artifacts were observed from the 

reusability point of view. Although we had some implementation problems which made some 

phases in the second development case unexpectedly long, the reusability at methodological 

level resulted in a development process shortened for 18.4% (see Table 37). If we remove the 

technology related issues, the time saved with this approach would be even bigger. 

Contributions: The performed process faithfully demonstrates the development process that 

would be performed by any small company. The finished product with all planned 

functionality implemented and tested is a proof of completeness of our approach. The 

empirical evidence collected during such development represents valuable scientific 

knowledge base which we used in the rest of this research and which can be used for different 

additional analyzes in the future.  
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Rigor: The Mobile-D methodology as described in (Abrahamsson et al., 2005a) was strictly 

followed in both development cases. All activities were carefully noted and the development 

process is made transparent and reported in this document. 

Evaluation: Test Driven Development represents continuous evaluation of created project 

throughout the whole development process. This product evaluation includes execution of 

unit tests on units of code, integration tests on integrated components of the system, system 

test on final product and acceptance test on required functionality. On the other hand, the 

alignment of development process with Mobile-D methodology is evaluated according to 

methodology implementation instructions given in (Abrahamsson et al., 2005a). The final 

evaluation was performed by the thesis supervisors who are experts in the field of software 

engineering and development.   

6.3. Identification of artifacts 

Chapter 4 represents the second part of second research phase where we analyze and compare 

the artifacts that arose in methodologically driven process mobile application development for 

two target platforms. This chapter uses the empirical evidence and created artifacts collected 

during the implementation phase and identifies Android development case artifacts and 

Windows Phone development case artifacts, and the analysis shows a great level of 

reusability. 

Motivation: We consider Mobile-D as being a well-documented methodology for 

development of mobile applications. We used several documents describing the methodology, 

but the most important one is definitely a guide presented in (Abrahamsson et al., 2005a) 

which in detail describes the whole development process, and it also enumerates all artifacts 

that arise in such methodologically driven process. However, the overall picture on the use of 

these artifacts by phases and tasks is hard to read from the mentioned document. Additionally, 

these are not the only artifacts that we are interested in. From the point of view taken in this 

research, platform specific artifacts and development unrelated artifacts could also be reusable 

in different ways and on different reusability levels. Thus, comprehensive analysis of all 

artifacts that arise in such development process is needed. Additionally, once identified, such 

artifacts should be analyzed, compared, cross-platform compared and connected to the 

development phases, activities and tasks.  

Results: In order to perform straight format and unbiased analysis, first we defined the 

analysis setting (see Chapter 4.1) which includes the definition of artifacts, the relations with 

other methodological concepts that will be observed and the template that is to be used for 

artifact description. As the artifacts are observed as “any piece of software developed and 
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used during software development and maintenance” we found the list of Mobile-D artifacts 

(see Table 38) related to process tasks not sufficient and thus we performed our own analysis. 

During the analysis, we observed the development process for each target platform separately 

and we identified 71 different artifacts that we initially grouped in 12 categories (see chapters 

4.2 and 4.3). After performing a cross-platform analysis we found that more than 70% of all 

identified artifacts are common to both platforms and 66% of them are partially or completely 

reusable (see chapter 4.4). 

Contributions: Our analysis included artifacts that originate from the selected methodology, 

from the specific target platform or are necessary as supportive in performing other 

development unrelated tasks like communicating, reporting or project management. Another 

important contribution of this research phase are the results of cross-platform analysis 

showing high level of reusability among artifacts created during the development for two 

target platforms. These results are very encouraging and we can conclude that they create a 

strong basis and motivation for additional research and analyses.  

Rigor: This research phase is performed by a careful analysis of empirical evidence collected 

during the research process and by systematic analysis of the Mobile-D documentation. In 

cross-platform analysis, three levels of reusability were created and all artifacts were 

evaluated according to the same criteria in order to be placed in „completely‟, „partially‟ or 

„none‟ level. 

Evaluation: Three different evaluation mechanisms were used in this phase. First, we 

compared our matrixes showing the Android and Windows Phone artifacts (Table 40 and 

Table 42) with the Mobile-D artifacts matrix (Table 38). Although not all artifacts are present 

in both matrixes, we could evaluate our results at least for methodological artifacts. Secondly, 

the cross-platform analysis results were compared against the development notes that had 

been created during the implementation process. In the end, as usual, the results were 

additionally evaluated by the two thesis supervisors.  

6.4. Ontology for methodological interoperability 

The last research phase is presented in Chapter 5. This chapter presents a background for 

ontology development (see chapter 5.1) by defining: the ontology, its types and usages, 

connections with our proposed methodological interoperability, ontology development 

methodologies, tools and languages. Having the background established first we developed 

Android Case Artifacts Ontology (see 5.2), then we reused it in the development of 

WindowsPhone Case Artifacts Ontology (see 5.3), and finally we merged these two ontologies 
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and enhanced the resulting ontology into Multiplatform Case Artifacts Ontology which 

focuses on artifacts reusability (see 5.4). 

Motivation: The main goal of this research was to ontologically describe artifacts that arise in 

a methodologically managed process of mobile application development targeting two or 

more mobile platforms, and to create the basis for more efficient and interoperable process of 

multi-platform mobile applications development. As we argued in the Chapter 1.1 of this 

thesis, the development for mobile devices brings different new challenges, and although 

there are several rather different approaches that scientists and experts are taking to solve 

these problems, their common characteristic is also their main disadvantage: all of them are 

based on paradigm “code once – run anywhere” which is unachievable and which takes away 

a native development environment possibilities. This motivated us to propose a novel 

approach by enhancing the interoperability among teams working on the same application 

targeting different platforms by moving the focus to the methodological interoperability that 

would be achieved through the reuse of artifacts created in such process. Having this in mind, 

and as described in Chapter 5.1.3, ontologies are a natural solution and tool in achieving 

semantic interoperability.  

Results: First, we tried to give a short overview of several concepts that are related to 

ontologies and ontology development (see Chapter 5.1). For the purpose of this research we 

defined ontology as an explicit formal conceptualization of a shared understanding of the 

domain of interest which includes the vocabulary of terms in order to describe the domain 

elements, semantics in order to define the relationships of the domain elements and 

pragmatics in order to define possible usages of these elements. We also presented the most 

common reasons for ontology usages and we argued about their classification in accordance 

with different points of view. As important result of this research, we created a connection 

between ontologies and methodological interoperability that is proposed by this thesis. 

Additionally, we gave a short overview of several influencing ontology development 

methodologies which are either commonly used today or had a great influence on the 

development of other methodologies. Finally, we argued about the possibilities of using 

different ontology development tools and ontology development languages. 

By implementation of Ontology Development 101 methodology (Noy and McGuinness, 

2001) we created two platform specific ontologies and one upper level common ontology for 

multi-platform development. The development of the first ontology was performed from 

scratch and the focus in the report presented in Chapter 5.2 was put on the ontology 

development process. During the development of the second platform specific ontology (see 

Chapter 5.3), we focused on the reusability and ontology update. The results showed that no 

infrastructural changes on the existing ontology were necessary while converting it into an 
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ontology targeting a different platform. On the other hand, the development of the final 

ontology targeting multi-platform development and reusability focused on the ontology 

merging, enhancing, evaluating and testing concepts. Two existing ontologies were merged 

and again there was no need for any infrastructural changes or conflict resolutions (see 

Chapter 5.4.2). The merged ontology was finally enhanced with a conceptualization regarding 

the artifacts reusability. 

The final ontological description encodes the information on 213 classes (see Table 51), 14 

properties (see Table 52) and 2213 axioms. A full ontological description is available in 

Appendix E of this document, in OWL/XML format at http://barok.foi.hr/~zstapic/ont/ 

mcao.owl and as OWLDoc documentation at http://barok.foi.hr/~zstapic/ont/mcao/doc/. 

Special focus in this chapter is placed on ontology testing and evaluation. The ontology is 

tested with series of Description Logic queries which aimed to answer all competency 

questions stated at the beginning of development process. More on testing and evaluation is 

given in subsequent evaluation paragraph. 

Contributions: This chapter contributes to knowledge in several aspects. First we presented 

the most important concepts in ontology development. Although these are not new concepts, 

the use of ontologies in achieving a methodological interoperability is a novel approach 

in solving the mobile platform and device fragmentation problem. Additionally, we 

argued about the use of specific methodologies, tools, languages and approaches in ontology 

development. Such discussion along with the in detail presented ontology development 

process that was taken in this research, could be useful in future ontology development 

projects. The Multi-platform Case Artifacts Ontology represents a unique ontological 

description which is created to be a knowledge base for any information system that 

aims to help development teams in increasing interoperability at methodological level by 

reusing the artifacts that arise in multi-platform development process.   

Rigor: In the development of all three ontologies we followed the OD101 methodology (Noy 

and McGuinness, 2001), the recommendations given in (Horridge, 2011) and middle-out 

approach in class development as proposed by Uschold and Gruninger (1996). Additionally, 

during the whole development we kept the ontology in consistent logical, syntactic and 

semantic state by performing the continuous evaluation by several mechanisms presented in 

the following paragraph. As it can be seen from the obtained results, the created ontologies 

are flexible, reusable and updatable.  

Evaluation: As created ontology is one of the main contributions of this thesis, the special 

focus was put in its verification and validation throughout the whole development process 

(see Chapter 5.4.5). We used seven different automatic and manual evaluation mechanisms 

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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that aimed to verify that the ontology was built correctly and to validate its content quality 

and completeness.  

First, the ontologies were built by following methodological development process which 

ensured that our approach was systematic. We also followed the recommendations given in 

(Noy and McGuinness, 2001) and in (Horridge, 2011) in order to avoid mistakes that are often 

made and to solve the most common issues in ontology development. Third, throughout the 

whole incremental development process we used reasoning tools to verify the newly added 

concepts and their influence on the already defined concepts. Reasoners detect any syntax 

errors, check the consistency of the ontology and automatically compute the inferred class 

hierarchy model and as such are strong evaluation tool.  

Additionally, we used two different tools that automatically evaluate the created ontologies: 

OWL Validator (Horridge, 2009) which formally validated the ontology syntax and Ontology 

evaluation plugin (Tantsis, 2013) which automatically evaluated the ontology according to 

eight properties and gave us some insights and recommendations in possible inconsistencies 

in the created ontology. 

As the sixth and probably the most important evaluation mechanism, in order to validate the 

ontology against its usage in future application, we created a series of Description Logic 

queries which aimed to extract direct and indirect knowledge out of the ontology, by using a 

reasoning engine. We created queries to test the ontology against all competency questions 

that were created at the beginning of ontology development process and that were used as a 

ontology guiding thread. The results obtained by these queries have been validated by thesis 

supervisors - prof. Strahonja who is a domain expert in the field of Software Engineering 

Methodologies, and dr. de-Marcos as an expert in Artificial Intelligence. 

The created ontology is successfully verified and positively validated, and as such it 

represents a solid basis for creation of an appropriate information system.  

6.5. Summary of the results 

Taking into consideration all what was said in the previous chapters we can conclude that the 

research process was performed in the planned scope and within the planned research 

framework defined at the beginning of the research process (see Chapter 1.3).  

Following this framework we identified the methodologies that could be used for 

development of mobile applications; we implemented the chosen methodology and approach 

and created a mobile application targeting two target platforms; we identified and analyzed 

the artifacts that were created in this development process, and we created the ontological 
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definition that describes the artifacts in accordance with Mobile-D methodology and from the 

reusability point of view. 

According to the results that were obtained during the ontology evaluation and testing, we can 

conclude that such ontological description, that encodes the knowledge with OWL 2 and 

Description Logic defined axioms and queries, represents a solid basis that can be used in 

development of information system aiming to guide the development teams in achieving the 

methodological interoperability by reusing artifacts created in the process of multi-platform 

mobile application development. Additionally, we proved that our ontological description is 

highly flexible and extensible, which allows us to update it with information on new platform 

specific or platform independent artifacts without the need of changing the underling 

infrastructure defined by the main class hierarchy elements, defined value partitions or 

properties. Finally, the model allows the creation of Description Logic queries which can be 

used to acquire direct or indirect information encoded in ontology knowledge. We showed the 

examples of such queries which among other aimed to reach the information regarding the 

competency questions stated at the beginning of the ontology development. 

Therefore, we can conclude that it is possible to create ontological description of elements 

of methodological interoperability containing structural and semantic aspects of sets of 

artifacts created in the development process of a mobile application for two or more 

target platforms, which makes our H1 hypothesis confirmed. 

This opens different possibilities for further research in this field – starting from building 

additional ontological descriptions, building the different information systems that would 

utilize such knowledge, designing and creating the integrated systems that would not only 

guide the developers, but also provide them with interoperable artifacts management 

environment. 
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7. CONCLUSION 

7.1. Research objectives revisited 

As we described in the introductory chapters of this thesis, this research focuses on the 

analysis of the problem of multi-platform mobile applications development, and on the 

proposal of a novel solution in the domain of ontology-based methodological interoperability.  

Thus the stated goals included the acquisition of answers to the following questions: (1) what 

methodologies and development approaches can be used in multi-platform mobile 

applications development; (2) what artifacts (required inputs and outputs of methodologically 

and methodically defined development steps) emerge during mobile applications 

development, (3) whether and to what extent there are similarities between these artifacts, (4) 

whether it is possible to ontologically describe these artifacts, and create a basis for 

developing a system that would support the methodological interoperability.  

Thus, the main goal of the research is connected to the last stated question, and it was to 

ontologically describe artifacts that arise in the methodologically managed process of mobile 

application development targeting two or more mobile platforms, and to create the basis for a 

more efficient and interoperable process of multi-platform mobile applications development. 

In this chapter we would like to have a glance look back on the performed research and to 

emphasize its results by answering the stated questions and by aligning the results with the 

main goal of this research. 

 

 What methodologies and development approaches can be used in multi-platform 

mobile applications development? 

After creating a comprehensive analysis of how to perform a Systematic Literature Review in 

the field of Software Engineering (Chapter 2.1) we performed an SLR with the goal to answer 

the stated research question (Chapters 2.2 and 2.3). Reviewing more than 6700 initially 

obtained studies through a set of predefined phases, we identified a total of 49 studies that are 

found to be relevant to our question. Finally, we identified 22 development methodologies 

and 7 development approaches that can be used in multi-platform mobile applications 

development (see Table 17 and Table 18). 
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 What artifacts (required inputs and outputs of methodologically and methodically 

defined development steps) emerge during mobile applications development? 

Out of 22 identified methodologies, we argued and choose Mobile-D methodology to be the 

most suitable for development of our mobile application for two target platforms (see Chapter 

2.4). In the next research phase, we performed the development in order to identify the 

artifacts that arise in such development process (see Chapters 3 and 4). After analyzing the 

empirical and theoretical evidence we identified a total of 71 artifacts (60 in Android case and 

61 in WP case) that were used or created in the mentioned development process. The artifacts 

are enumerated and described in Table 40 and Table 42.  

 

 Whether and to what extent are there similarities between these artifacts? 

The cross-platform analysis of the identified artifacts showed significant similarities between 

the artifacts used in the two development cases (see Chapter 4.4). After performing a cross-

platform analysis we found that more than 70% of all identified artifacts are common to both 

development cases, that 66% of these common artifacts are completely or partially reusable, 

and that the remaining platform specific artifacts also have some similarities.  

 

 Whether it is possible to ontologically describe these artifacts, and create a basis for 

developing a system that would support the methodological interoperability 

Having the artifacts identified, we moved to the process of their ontological description. First 

we created an ontological description of artifacts targeting Android development (see Chapter 

5.2), then we created an ontological description targeting Windows Phone development (see 

Chapter 5.3), and finally we merged these two in a common ontological description that is 

additionally enhanced with the conceptualization of artifacts reusability (see Chapter 5.4). The 

whole process of creation was methodologically driven and evaluated with several evaluation 

mechanisms (see Chapter 5.4.5) which proved its correctness, validity and completeness. 

With all this, we can conclude that we ontologically described the artifacts that arise in a 

methodologically managed process of mobile application development targeting two or 

more mobile platforms. Having this ontology proved to be correct and valid, flexible, 

reusable and extensible we created the basis for development of an information system 

to guide the development teams in a more efficient and interoperable process of multi-

platform mobile applications development, and thus the main research goal is 

accomplished. 
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7.2. Limitations of the research 

In this research several limitations can be identified. For example, the biggest challenge that 

we faced in the first research phase was the execution of a complicated and time-consuming 

scientific method of Systematic Literature Review by a single researcher. The SLR is 

originally created and defined to be performed by a team of researchers, and the execution by 

a single researcher (a doctoral student) makes the process of eliminating the research bias 

more complicated and, of course, very time-consuming. In order to deal with this limitation 

we defined very narrow research questions strictly focusing on the necessities of this thesis, 

and we tried to strictly follow the recommendations on performing the Light SLR that are 

given by the methodology creators and other influential authors. Finally, the role of the thesis 

supervisors in elimination of research bias was the most important as they evaluated the 

research results at every reached milestone. 

The institutional subscriptions to the available scientific sources are very poor in Croatia and 

somewhat better in Spain. However, the restrictions on accessing several databases (including 

the newest volumes from Springer, some volumes from Wiley and the whole EI Compendex 

database) are also identified as limitations in this research. In the end, we believe that the lack 

of several sources did not significantly influence the overall literature review results as in 

some cases we contacted the authors of the studies who gladly sent us their findings. I would 

like to take this opportunity to thank all of them for this. 

In the second research phase, the most important limitation was the lack of information on 

performed projects of development of mobile application in development companies that are 

targeting two or more target platforms. Our attempts to get such information for scientific 

purposes were politely refused and we had to turn to laboratory development environment in 

order to acquire empirical evidence that would be used in the later research phases. Although 

we performed a rigorous development process that was evaluated by several different 

mechanisms we find such approach as a possible limitation of this research. The main 

difference from the development process in a company is lack of organization hierarchy and 

roles, along with the lack of standard organizational processes that are intertwined with 

development processes. However, we had this in mind while defining the requirements of the 

mobile application and we tried to require the development of an application that would 

represent a vast majority of today‟s mobile applications developed by software companies. In 

this manner, we could talk about other differences that could be found when comparing a 

development performed by a single developer and development performed by a company that 

has a history, with its legacy systems, specific organization culture et cetera. Although, the 

development of a mobile application with or without a legacy system only influences the 
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development process and not the methodological aspects, we believe that other mentioned 

differences could be taken as additional limitation of this research. 

Regarding the third research phase we are aware that the proposed ontology presents only the 

development of one application for two target platforms, and that the identified set of artifacts 

in general could include many other platform specific artifacts and even some methodology 

specific artifacts. Additionally, as stated in our scope definition (Chapter 1.3.1) we covered 

only one development methodology supported by one development approach and targeting for 

two mobile platforms. All mentioned issues can be recognized as the limitations of this 

research, but we have to keep in mind that this research process had the main goal of 

proposing a new framework or approach that can be used in solving the mobile platform 

fragmentation problem. As argued in the previous chapter, this goal is fully achieved.  

In the next chapter we will elaborate on the possible future research directions that could be 

taken in order to overcome some of the above mentioned limitations or/and to enhance the 

framework and make it usable in a concrete information system. 

7.3. Possible future research 

This research presents a comprehensive set of activities which resulted in a final product that 

is usable in its current state. However, by extending the contexts of using such ontology we 

can identify other possible research activities or even research directions that could be taken.  

Even though throughout the whole research, including the section on research limitations, we 

have pointed out the possible additional approaches that could be taken in order to enhance 

the results, or to take a different point of view in analyzing  some concept of interest, in this 

chapter we would like to emphasize some of these possibilities. 

In general, we recognize two main fields where this research sets the basis for future scientific 

and professional activities. Those fields are Software Engineering with particular focus on 

mobile engineering and, secondly, Knowledge Engineering with particular focus on ontology 

development.  

Let us start with the second one. The created ontology defines the basic infrastructure and 

elements in the proposed framework of methodological interoperability, but currently it 

covers only one development methodology and one development approach and it targets two 

mobile platforms. As we have already discussed, the ontology is reusable and updatable but 

with limits on adding new artifacts targeting different mobile platforms. If we want to move 

to a completely new methodology, few of the existing classes would be reusable. Thus we 

think that some improvements in this sense could be achieved with different ontology 
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structure. Perhaps, building parts for the ontology should not be specific ontologies targeting 

specific platform, but rather distinct ontologies describing the methodology on one side and 

the target platform on the other side. This would raise the level of reusability and it definitely 

needs more scientific attention.  

In addition to knowledge regarding the structural aspects of methodological phases, activities 

and tasks, structural aspects of the identified artifacts, semantic aspects regarding the origin, 

type, use and reuse of artifacts, only the inter-artifact relationships were described in the 

approach taken in this research. To get more fine grained results would include also an intra-

artifact description describing its content in detail. Such analysis should answer questions like 

“Which part of any partially reusable artifact could be reused and which does not?” or “How 

specific artifact is reusable: by its structure, content, inner logic or their combination?” 

Having this information on artifact inner content, the proposed framework would have 

additional useful functionalities which would enable development teams to even better reuse 

existing outputs and to additionally reduce development time. 

An interesting research activity could be to compare the existing methodologies for the 

development of mobile applications and to ontologically describe such acquired knowledge. 

Such ontological description could be used in creation of ontologies in our framework, but 

would also provide many different possibilities that are connected with mobile application 

development, like how to choose proper methodology in a specific context, or how to 

implement a new methodology that is unfamiliar to the team members.  

On the other side, when talking about research activities in the field of software engineering, 

we have already mentioned the necessity of moving this research to a new phase where a 

proper information system for guiding the artifacts reuse would be developed. The 

development of such a novel system is not a trivial task and it gives many research 

possibilities in the domain of its design, functionality, relationship with the ontological 

knowledge base et cetera. We also mentioned other systems that could be developed and that 

are connected with artifacts management or even automatic transformation. Both these topics 

open a set of new research fields and possibilities. 

Finally, there are different research activities that could be connected to the performed 

systematic literature review. As our research questions were rather narrow, similar review 

could be performed in order to identify the methodologies and compare their main activities, 

phases and tasks. Also, the data extraction forms, used in our research, contain some 

information that we currently did not need, but we extracted it as we presumed it would be 

useful for additional analysis. Such information, for example, relates to details on identified 

methodology, its organizational or project management aspects et cetera. The analysis of this 

information, along with the analysis of assessed studies quality could give new and interesting 
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results in this domain. As the SLR still emerges in the field of software engineering, an 

analysis of the performed researches along with recommendations and conclusions is also 

very welcomed. 

In this short look into possible research directions in the future we presented only the most 

important research activities that could be performed, but as we have already said, many 

different and small enhancements of our research are possible and they are discussed 

throughout the dissertation text. 

7.4. Conclusion 

This doctoral research tried to propose a different approach in solving the mobile platform 

fragmentation problem with particular focus on multi-platform mobile application 

development. It is a multidisciplinary research positioned inside the intersection of Software 

and Knowledge Engineering fields. By utilizing ontologies, we proved that such formal 

specification of conceptualization represents a solid basis for the development of an 

information system that could guide development teams in a more efficient and 

methodologically interoperable process of multi-platform mobile application development by 

reusing the already created artifacts. 

Three research phases were performed in order to identify the methodologies that are used for 

multi-platform mobile application development, to identify the artifacts that arise in such 

development process and to semantically describe those artifacts into a correct and valid 

ontological description. Thus, the overall scientific contributions of this research can be 

described as: 

 Systematization of recommendations in performing the Systematic Literature Review 

process in the field of Software Engineering with special focus given to the execution 

of SLR by a single researcher (like doctoral students). 

 Identification of available development methodologies and development approaches 

that are reported in literature as created or used for mobile applications development. 

The identification is performed by means of Systematic Literature Review. 

 Systematization of knowledge and concepts in the field of application development for 

mobile devices, identifying artifacts created and used while developing for mobile 

devices with the consistent implementation of the selected development methodology. 

 Classification of identified artifacts according to their reusability level, type and 

origin. This classification implies semantic description of the artifacts, description of 



 

 

231 

 

the connection between the artifact and development tasks, activities and phases along 

with description of inter-artifact relationships.  

 A new ontological description of the artifacts that can be used as a knowledge basis 

for developing a system that would support methodological interoperability and 

therefore make development of applications for multiple mobile platforms more 

efficient. 

 Guidelines and recommendations for improving the development of multi-platform 

applications for mobile devices through the utilization of an ontology-based 

framework proposed by this research. 

Although there are ontologies defined to provide interoperability at different levels of an 

application development process, this novel approach aims to define interoperability at, until 

now unexplored, methodological level. Semantic descriptions created and evaluated in this 

thesis proved that the proposed approach and the supporting framework represent a solid basis 

for performing additional research in this field. However, developing this ontology is only the 

first step in the chain of activities to be implemented in order to develop a semantically 

supported system for methodological interoperability. 
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Appendix C – Study quality assessment table 
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Q6 The study provided value for research and practice? Yes/Partially/No 
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(Um et al., 2005) No Yes Yes Yes Yes Yes 4.0 

 

The study quality score is calculated by summarizing the columns Q3 to Q6 by valuing each 

positive answer (Yes) with score of 1 and each answer Partially with the score of 0.5. 
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Appendix D – Filled data forms for the SLR 
 

Data item Value Notes 
Study identifier (Charaf, 2011)  

Title Developing Mobile Applications Using SAP NetWever Mobile  

Publication details 
T. Pohl, R. Kothandaraman, and V. S. Seshasai. Developing Mobile 

Applications Using SAP NetWever Mobile. SAP Press, 2007. 
 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

This paper introduces the problem of the software development for 

incompatible mobile platforms. Moreover, it provides a Model-Driven 

Architecture (MDA) and Domain Specific Modeling Language 

(DSML)-based solution. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Usage of: Visual Modeling and  

Transformation System (VMTS) 
 

Organizational aspects 

on implementation  
None  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Alyani and Shirzad, 2011)  

Title 
Learning to innovate in distributed mobile application development: 

Learning episodes from Tehran and London 
 

Publication details 

N. Alyani and S. Shirzad, “- Learning to innovate in distributed mobile 

application development: Learning episodes from Tehran and 

London,” in 2011 Federated Conference on Computer Science and 

Information Systems (FedCSIS)., Piscataway, NJ, USA, 2011, pp. 

497–504. 

 

Study type Methodology usage / New Methodology  

Name of methodology / 

approach 
Scrum / DEAL  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

At the heart of the activities however, we noted a range of processes 

which we labeled as  DEAL, as an acronym that stands for the cycle of 

Design, Execute, Adjust and Learn. Within the DEAL model, various 

activities were enhanced via formal and informal knowledge brokering 

and knowledge sourcing. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Usage: Real life projects in several years long period. 

Proposal: No 
 

Organizational aspects 

on implementation  
Small and medium sized companies are reffered  

Project management None  
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aspects on 

implementation  

 

Data item Value Notes 
Study identifier (Maharmeh and Unhelkar, 2009)  

Title 
A Composite Software Framework Approach for Mobile Application 

Development 
 

Publication details 

M. Maharmeh and B. Unhelkar, “A Composite Software Framework 

Approach for Mobile Application Development,” Handbook of 

research in mobile business: technical, methodological, and social 

perspectives, p. 194, 2009. 

 

Study type New approach  

Name of methodology / 

approach 

Composite Application Software Development Process Framework 

(CASDPF) 
 

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

This framework for software development, as its name suggests, is 

made up of the waterfall, iterative, and agile approaches to software 

development. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  

The composite process framework combines the business rules and 

processes that are involved in mobile application development. 
 

Project management 

aspects on 

implementation  

A composite software development process framework retains the 

flexible aspects of the agile development approach and, at the same 

time, facilitates exchange of information between project stakeholders 

(such as business users, developers and testers) during the project life-

cycle. Therefore, the CASDPF increases the chance of project success. 

 

 

Data item Value Notes 
Study identifier (Schwieren and Vossen, 2009)  

Title 
A design and development methodology for mobile RFID applications 

based on the ID-Services middleware architecture 
 

Publication details 

J. Schwieren and G. Vossen. “A design and development methodology 

for mobile RFID applications based on the ID-Services middleware 

architecture,” in Mobile Data Management: Systems, Services and 

Middleware, 2009. MDM‟09. Tenth International Conference on, 

2009, pp. 260–266. 

 

Study type New methodology  

Name of methodology / 

approach 
Design and Development Methodology for mobile RFID applications  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Basic process model of the proposed design and development 

methodology consists of three phases: Analysis, Design and 

Implementation. The authors propose basic activities at very high 

abstraction level. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

SPCS - Sentry Patrol Control System  
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Organizational aspects 

on implementation  
None  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Barnawi et al., 2012)  

Title 

A Framework for Next Generation Mobile and Wireless Networks 

Application Development using Hybrid Component Based 

Development Model 

 

Publication details 

A. Barnawi, M. Qureshi, and A. I. Khan. “A Framework for Next 

Generation Mobile and Wireless Networks Application Development 

using Hybrid Component Based Development Model,” Arxiv preprint 

arXiv:1202.2515, 2012. 

 

Study type New methodology  

Name of methodology / 

approach 
Component Based Model for IP Multimedia Subsystem  

CBD Model 

for the IMS 

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

A  new  component-based  development  (CBD)  model  has  

been  proposed  for  an  IMS-based  mass  mobile  examination system 

as a solution for the research problem. A CBD model is  a  process  

model  that  provides  a  framework  to  develop software  from  

previously  developed  components.  The  main phases  of  the  

improved  CBD  are  „Project  Planning‟, „Analysis‟,  „Adaptation,  

Engineering  &  Integration‟  and „Testing‟. 

 

Additional resources on 

methodology / 

approach description 

The phases are described in detail. The document used in the process 

are also presented and described. 
 

Report on methodology 

/ approach example 

implementation 

MObile Mass EXamination (MOMEX)  

Organizational aspects 

on implementation  
None  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Chen, 2004)  

Title A methodology for building mobile computing applications  

Publication details 

M. Chen, “A methodology for building mobile computing 

applications,” International journal of electronic business, vol. 2, no. 3, 

pp. 229–243, 2004. 

 

Study type New methodology  

Name of methodology / 

approach 
A Methodology for Building Enterprise-Wide Mobile Applications  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

The five major phases for building mobile computing applications are 

described as follows:     

1. Develop enterprise-wide mobile strategies 

2. Analyze the mobility of business processes 

3. Develop an enterprise-wide mobile technical architecture 

4. Build mobile applications 

 



 

 

268 

 

5. Deploy mobile applications 

Additional resources on 

methodology / 

approach description 

Each of stated phases is described in more details.  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  

The proposed methodology in this paper is an attempt to identify some 

guidelines and formulate a life-cycle approach to assisting enterprises 

in planning and developing enterprise-wide mobile strategies and 

applications. 

 

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Xiong and Wang, 2010)  

Title 
A new combined method for UCD and software development and case 

study 
 

Publication details 

Y. Xiong and A. Wang, “A new combined method for UCD and 

software development and case study,” in Information Science and 

Engineering (ICISE), 2010 2nd International Conference on, 2010, pp. 

1–4. 

 

Study type New methodology  

Name of methodology / 

approach 
Inter-combined Model  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Inter-combined Model aims to shorten the knowledge transfer from 

designers to developers. The model has four parts: 

- Requirement analysis and user study 

- Model establishment and function map specification 

- Design and background engine implementation 

- System integration and coding 

 

Additional resources on 

methodology / 

approach description 

Each phase was described in additional details, but not to the level of 

activities, tasks, inputs and outputs. 
 

Report on methodology 

/ approach example 

implementation 

Mobile Karaoke project.  

Organizational aspects 

on implementation  

Researchers stated that Inter-combined Model has positive effect on 

human resource arrangement and cost reduction. 
 

Project management 

aspects on 

implementation  

Some implications on human resource arrangements.  

 

Data item Value Notes 
Study identifier (Walkerdine et al., 2009)  

Title 
A Tool Supported Methodology For Developing Secure Mobile P2P 

Systems 
 

Publication details 

J. Walkerdine, P. Phillips, and S. Lock. “A Tool Supported 

Methodology For Developing Secure Mobile P2P Systems,” in Mobile 

peer-to-peer computing for next generation distributed environments: 

advancing conceptual and algorithmic applications, 2009, pp. 283–301. 

 

Study type New methodology  

Name of methodology / 

approach 
PEPERS Development Methodology (PDM)  
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Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

PEPERS Development Methodology (PDM), is a tool-supported 

methodology that aims to assist designers in developing secure mobile 

P2P systems, and encourages them to consider specific mobile P2P 

design issues from an early stage. The PDM is based on a 5-stage spiral 

model. 

•  Requirements Elicitation 

•  Propose P2P system architecture 

•  Propose sub-system design 

•  System Implementation 

•  Verification and Validation 

 

Additional resources on 

methodology / 

approach description 

BANKSEC project 

P2P ARCHITECT project 

PEPERS project 

 

Report on methodology 

/ approach example 

implementation 

Case study - The Security firm pilot  

Organizational aspects 

on implementation  

Workshops were held with local mobile phone software companies to 

obtain additional third-party feedback. These companies were typically 

small in size, and so provided a different perspective to the software 

development process. Overall the developers found the PDM and 

supporting tool to offer significant help in guiding the development of 

their secure mobile P2P applications. The smaller industrial companies 

were less sure about its use to them, mainly because they do not have 

the resources to follow a traditional development process and time to 

market is critical to them. 

 

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Cuccurullo et al., 2011)  

Title 
A Visual Approach supporting the Development of MicroApps on 

Mobile Phones 
 

Publication details 

S. Cuccurullo, R. Francese, M. Risi, and G. Tortora, “A Visual 

Approach supporting the Development of MicroApps on Mobile 

Phones,” in Proc. of 3rd International Symposium on End-User 

Development, Brindisi, Italy, 2011, pp. 289–294. 

 

Study type New methodology  

Name of methodology / 

approach 
MicroApp visual approach  

Application in multi-

platform development Yes 

Current 

implement. 

in Android 

Details on defined / 

reported methodology / 

approach 

In this paper, we present a visual approach to enable End-Users to 

compose visually their own applications directly on their mobile 

phone. It is composed of: 

- MicroApp Definition 

- MicroApp Modeling 

- MicroApp Deployment 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects None User centric 
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on implementation  method. 

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Nyström, 2011)  

Title 
Agile Solo - Defining and Evaluating an Agile Software Development 

Process for a Single Software Developer 
 

Publication details 
A. Nyström. “Agile Solo - Defining and Evaluating an Agile Software 

Development Process for a Single Software Developer,” 2011. 

Master 

thesis 

   

Study type New methodology / Approach usage  

Name of methodology / 

approach 
Agile Solo / Test Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The development process was intended to be helpful for any single 

programmer in any project. The defined practices are: 

- Weekly Presentations and Updated Priorities, Monthly Deliveries 

and Customer Test, Planning an iteration, Test Driven 

Development, The Pomodoro Technique, Peer Code Review, 

Auto Code Review, Visual Control, Modeling, Compensating for 

pair programming, Iteration Task Management 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study   

Organizational aspects 

on implementation  
No 

Single 

developer 

Project management 

aspects on 

implementation  

Yes. Agile project management.  

 

Data item Value Notes 
Study identifier (Zeidler et al., 2008)  

Title An integrated product development process for mobile software  

Publication details 

C. Zeidler, C. Kittl, and O. Petrovic, “An integrated product 

development process for mobile software,” International Journal of 

Mobile Communications, vol. 6, no. 3, pp. 345–356, 2008. 

 

Study type New methodology  

Name of methodology / 

approach 
An Integrated Product Development Process for Mobile Software  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Based on the extensive research coverage on the new product 

development process, we have adapted a holistic product development 

approach for mobile services and applications. The resulting process  

considers a more dynamic competitive environment and the use of 

common tools for strategic analysis and product development. Consists 

of five pages: 

- Idea generation 

- Business model development 

- Legal aspects 

- Market research and user experience design 
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- Implementation 

Additional resources on 

methodology / 

approach description 

Phases are described at relatively the high level of abstraction. 

Although, the activities are enumerated. 
 

Report on methodology 

/ approach example 

implementation 

Case study: HEROLD mobile  

Organizational aspects 

on implementation  
The process included the organizational aspects.  

Project management 

aspects on 

implementation  

The process includes the project management aspects.  

 

Data item Value Notes 
Study identifier (Biswas et al., 2006)  

Title 
Assessment of mobile experience engine, the development toolkit for 

context aware mobile applications 
 

Publication details 

A. Biswas, T. Donaldson, J. Singh, S. Diamond, D. Gauthier, and M. 

Longford, “Assessment of mobile experience engine, the development 

toolkit for context aware mobile applications,” in Proceedings of the 

2006 ACM SIGCHI international conference on Advances in computer 

entertainment technology, New York, NY, USA, 2006. 

 

Study type Methodology usage  

Name of methodology / 

approach 
New media application prototyping  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Prototyping with multiple iterations is an expensive solution to break 

this deadlock. The key bottlenecks in such prototyping are: 

contextual/user behavior research; design idea generation; design 

transfer from designer/artist to the technologists; system design, 

development and testing; and situated validation 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Trickster game application 

Deer & Bear game application 

Situated editor mobile application 

 

Organizational aspects 

on implementation  
None  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Maia et al., 2010)  

Title 
Considerations on developing mobile applications based on the 

Capuchin project 
 

Publication details 

M. E. F. Maia, C. Celes, R. Castro, and R. M. C. Andrade. 

“Considerations on developing mobile applications based on the 

Capuchin project,” in Proceedings of the 2010 ACM Symposium on 

Applied Computing, New York, NY, USA, 2010, pp. 575–579. 

 

Study type New methodology  

Name of methodology / 

approach 
Development process of Caputchin applications 

Name is not 

formally 

defined 

Application in multi- No Platforms 
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platform development supporting 

Flash only 

Details on defined / 

reported methodology / 

approach 

Paper shows an initial development process for mobile applications 

based on the Capuchin project. The defined phases are: 

- Application requirements elicitation and user interface draft 

- Implement and test the View component based on Flash UI 

- Flash/JME division and data transfer format specification 

- Implement the controller and model components 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study: Weather application  

Organizational aspects 

on implementation  
Some organizational aspects are discussed  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Shiratuddin and Sarif, 2009)  

Title 
Construction of Matrix and eMatrix for Mobile Development 

Methodologies 
 

Publication details 

N. Shiratuddin and S. M. Sarif, “Construction of Matrix and eMatrix 

for Mobile Development Methodologies,” in Handbook of research in 

mobile business: technical, methodological, and social perspectives, 

2nd ed., IGI Global, 2009, pp. 113–126. 

 

Study type Methodology usage  

Name of methodology / 

approach 

Mobile-D 

Mobile RAD 

Dynamic Channel Model 

Mobile Engineering (MobE) 

 

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The study compares the mentioned methodologies in systematic 

manner. 
 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Yes. The methodologies are compared based on example projects.  

Organizational aspects 

on implementation  
Partially included in comparison.  

Project management 

aspects on 

implementation  

Partially included in comparison.  

 

Data item Value Notes 
Study identifier (Rahimian and Ramsin, 2008)  

Title 
Designing an agile methodology for mobile software development: A 

hybrid method engineering approach 
 

Publication details 

V. Rahimian and R. Ramsin, “Designing an agile methodology for 

mobile software development: A hybrid method engineering 

approach,” in Research Challenges in Information Science, 2008. RCIS 
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2008. Second International Conference on, 2008, pp. 337–342. 

Study type New methodology  

Name of methodology / 

approach 
Agile Methodology for Mobile Software Development 

Formally 

not defined 

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Paper identifies the main requirements of a mobile software 

development methodology, based on which a highlevel methodology 

framework was built using the Hybrid Methodology Design approach. 

Proposed methodology is an agile risk-based methodology, highly 

influenced by the Adaptive Software Development method and New 

Product Development approaches. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
Included in methodology.  

Project management 

aspects on 

implementation  

Agile project management should be used.  

 

Data item Value Notes 
Study identifier (Bergström and Engvall, 2011)  

Title 
Development of handheld mobile applications for the public sector in 

Android and iOS using agile Kanban process tool 
 

Publication details 

F. Bergström and G. Engvall, “Development of handheld mobile 

applications for the public sector in Android and iOS using agile 

Kanban process tool,” 2011. 

 

Study type Approach usage  

Name of methodology / 

approach 
Kanban  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Kanban a lean approach to agile software development and a part of 

the lean thinking. The approach is invented by Toyota which used this 

process for the visual and physical signaling system that ties together 

the whole Lean Production System. However, Kanban in software 

development can be divided into three main parts. 

- Visualize the workflow 

- Limit work in process 

- Measure the lead time 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Prototype application  

Organizational aspects 

on implementation  
Not well defined.  

Project management 

aspects on 

implementation  

Not well defined.  
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Data item Value Notes 
Study identifier (Jeong et al., 2008)  

Title 
Development Process of Mobile Application SW Based on Agile 

Methodology 
 

Publication details 

Y. J. Jeong, J. H. Lee, and G. S. Shin, “Development Process of 

Mobile Application SW Based on Agile Methodology,” in Advanced 

Communication Technology, 2008. ICACT 2008. 10th International 

Conference on, 2008, vol. 1, pp. 362–366. 

 

Study type New Methodology  

Name of methodology / 

approach 
MASAM methodology  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The objective of this proprietary methodology is to provide the process 

for developing the application SW operated on mobile platform. 

Standard process of THE MASAM is comprised of 4 phases: 

- Development Preparation Phase,  

- Embodiment Phase,  

- Product developing Phase, and  

- Commercialization Phase. 

Paper 

written in 

poor 

English. 

Additional resources on 

methodology / 

approach description 

The phases are briefly described.  

Report on methodology 

/ approach example 

implementation 

No.  

Organizational aspects 

on implementation  
Partially covered.  

Project management 

aspects on 

implementation  

Agile approach should be used.  

 

Data item Value Notes 
Study identifier (Korkala and Abrahamsson, 2004)  

Title 
Extreme programming: Reassessing the requirements management 

process for an offsite customer 
 

Publication details 

M. Korkala and P. Abrahamsson, “Extreme programming: Reassessing 

the requirements management process for an offsite customer,” 

Software Process Improvement, pp. 12–22, 2004. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Extreme Programming, Mobile-D  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Brief description is provided on executed process: 

- Identify essential requirements 

- Evaluation and implementation of enhanced User Storries 

- Implement, Report and Feedback 

- Iteration Acceptance 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

zOmbie project  

Organizational aspects 

on implementation  
No  

Project management Agile approach used.  
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aspects on 

implementation  

 

Data item Value Notes 
Study identifier (Gal and Topol, 2005)  

Title 
Experimentation of a Game Design Methodology for Mobile Phones 

Games 
 

Publication details 
V. Gal and A. Topol, “Experimentation of a Game Design 

Methodology for Mobile Phones Games,” 2005. 
 

Study type New methodology  

Name of methodology / 

approach 
2TUP - 2 Tracks Unified Process  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Paper presents the 2TUP method, “2 Tracks Unified Process”. It is 

based upon a SPEM modeling architecture in order to conceive elegant 

and adapted solutions but also to take advantage of the new techniques 

and technologies. 2TUP is a unified process (i.e. a software 

development process) built on the UML modeling language. According 

to 2TUP the process is modeled by two branches (tracks): 

- A functional track (capitalization of knowledge trade)  

- A technical track (re-use of a technical knowhow). 

 

Additional resources on 

methodology / 

approach description 

The fair description is given on implementation on own project.  

Report on methodology 

/ approach example 

implementation 

Case study.  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Kim, 2008)  

Title Frameworks of Process Improvement for Mobile Applications  

Publication details 
H. K. Kim, “Frameworks of Process Improvement for Mobile 

Applications,” Engineering Letters, vol. 16, 2008. 
 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Paper goes through  mobile  development  process  and architectural  

structures  and  analysis  of  these  with  empirical mobile application 

development. 

Poor paper 

structure. 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study.  

Organizational aspects 

on implementation  
No  

Project management No  
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aspects on 

implementation  

 

Data item Value Notes 
Study identifier (Scharff, 2011)  

Title 
Guiding global software development projects using Scrum and Agile 

with quality assurance 
 

Publication details 

C. Scharff, “Guiding global software development projects using 

Scrum and Agile with quality assurance,” in Software Engineering 

Education and Training (CSEE&T), 2011 24th IEEE-CS Conference 

on, 2011, pp. 274–283. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Scrum  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The paper describes the usage of Scrum in distributed development 

teams as well as for development for different target platforms. The 

developers are students. 

 

Additional resources on 

methodology / 

approach description 

Brief description of methodology.  

Report on methodology 

/ approach example 

implementation 

Android application 

Blackberry application 

Java ME Team 

 

Organizational aspects 

on implementation  
Partially covered.  

Project management 

aspects on 

implementation  

Partially covered.  

 

Data item Value Notes 
Study identifier (Abrahamsson et al., 2005b)  

Title 
Improving business agility through technical solutions: A case study on 

test-driven development in mobile software development 
 

Publication details 

[1]P. Abrahamsson, A. Hanhineva, and J. Jäälinoja, “Improving 

business agility through technical solutions: A case study on test-

driven development in mobile software development,” in Business 

Agility and Information Technology Diffusion, 2005. 

 

Study type Approach usage  

Name of methodology / 

approach 
Test Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Thorough research was performed on empirical evidence of using the 

Test Driven Development in mobile application development process. 
 

Additional resources on 

methodology / 

approach description 

Test Driven Development described. 

The references on other researches are given. 
 

Report on methodology 

/ approach example 

implementation 

Case study.  

Organizational aspects 

on implementation  
Included.  

Project management Included.  
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aspects on 

implementation  

 

Data item Value Notes 
Study identifier (Ortiz and Prado, 2010)  

Title 
Improving device-aware Web services and their mobile clients through 

an aspect-oriented, model-driven approach 
 

Publication details 

G. Ortiz and A. G. D. Prado, “Improving device-aware Web services 

and their mobile clients through an aspect-oriented, model-driven 

approach,” Information and Software Technology, vol. 52, no. 10, pp. 

1080 – 1093, 2010. 

 

Study type Approach usage.  

Name of methodology / 

approach 
Model Driven Development  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Aspect-Oriented Programming and model-driven development have 

been used to reduce both the impact of service and client code 

adaptation for multiple devices as well as to facilitate the developer‟s 

task. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Kaariainen et al., 2004)  

Title 
Improving requirements management in extreme programming with 

tool support - an improvement attempt that failed 
 

Publication details 

J. Kaariainen, J. Koskela, P. Abrahamsson, and J. Takalo, “Improving 

requirements management in extreme programming with tool support - 

an improvement attempt that failed,” in Euromicro Conference, 2004. 

Proceedings. 30th, 2004, pp. 342 – 351. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Extreme Programming  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

The paper mainly focusses on other aspects than on methodology itself.  

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

zOmbie project  

Organizational aspects 

on implementation  
No  
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Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Salo, 2004)  

Title 
Improving software process in agile software development projects: 

results from two XP case studies 
 

Publication details 

O. Salo, “Improving software process in agile software development 

projects: results from two XP case studies,” in Euromicro Conference, 

2004. Proceedings. 30th, 2004, pp. 310–317. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Extreme Programming  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

The paper mainly focusses on other aspects than on methodology itself.  

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

eXpert project 

zOmbie project 
 

Organizational aspects 

on implementation  
Included in the analysis.  

Project management 

aspects on 

implementation  

Included in the analysis.  

 

Data item Value Notes 
Study identifier (Su and Scharff, 2010)  

Title 
Know Yourself and Beyond: A Global Software Development Project 

Experience with Agile Methodology 
 

Publication details 

S. H. Su and C. Scharff, “Know Yourself and Beyond: A Global 

Software Development Project Experience with Agile Methodology,” 

in Proceedings of Student-Faculty Research Day, CSIS, 2010. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Scrum  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

The paper describes the usage of Scrum process in a case study 

development performed by students. 
 

Additional resources on 

methodology / 

approach description 

Scrum was partially described.  

Report on methodology 

/ approach example 

implementation 

Case study: TargetFirstGrade project  

Organizational aspects 

on implementation  
Partially included  

Project management 

aspects on 
Included  
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implementation  

 

Data item Value Notes 
Study identifier (Shiratuddin and Sarif, 2008)  

Title m
d
-Matrix: Mobile Application Development Tool  

Publication details 

N. Shiratuddin and S. M. Sarif, “m d-Matrix: Mobile Application 

Development Tool,” Proceedings of the International MultiConference 

of Engineers and Computer Scientists, vol. 1, 2008. 

 

Study type Methodology usage  

Name of methodology / 

approach 

Mobile-D 

Mobile RAD 

Dynamic Channel Model 

Mobile Engineering (MobE) 

 

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Paper describes the tool that helps novices to choose development 

methodology. In that manner, the four mentioned methodologies are 

compared. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Yes. The methodologies are compared based on example projects.  

Organizational aspects 

on implementation  
Included in analysis.  

Project management 

aspects on 

implementation  

Included in analysis.  

 

Data item Value Notes 
Study identifier (Saifudin et al., 2011)  

Title 
MMCD Framework and Methodology for Developing m-Learning 

Applications 
 

Publication details 

A. W. S. N. Saifudin, B. S. Salam, and C. M. H. L. Abdullah, “MMCD 

Framework and Methodology for Developing m-Learning 

Applications,” presented at the International conference on Teaching & 

Learning in Higher Education (ICTLHE 2011), 2011. 

 

Study type New methodology  

Name of methodology / 

approach 
MMCD Methodology  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The proposed MMCD Methodology focuses only m-Learning 

applications. It comprises of five main components: 

 - application idea creation stage, 

 - structure analysis stage, 

 - process design stage, 

 - main function development stages, and 

 - testing stage 

 

Additional resources on 

methodology / 

approach description 

Stages are described on abstract level  

Report on methodology 

/ approach example 

implementation 

M-Nations m-learning application  

Organizational aspects No  
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on implementation  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Rupnik, 2009)  

Title Mobile Applications Development Methodology  

Publication details 

R. Rupnik, “Mobile Applications Development Methodology,” in 

Handbook of research in mobile business: technical, methodological, 

and social perspectives, Second Edition., B. Unhelkar, Ed. IGI Global 

Snippet, 2009. 

 

Study type New methodology  

Name of methodology / 

approach 
Mobile Application Development Methodology  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The book chapter defines new methodology and roughly defines the 

main phases, but it lacks the precise and detailed description on 

methodology itself. The defined phases are: 

- strategy,   

- analysis,  

- design  

- implementation 

 

Additional resources on 

methodology / 

approach description 

Some elements of the stated phases are described.  

Report on methodology 

/ approach example 

implementation 

Two projects.  

Organizational aspects 

on implementation  
No.  

Project management 

aspects on 

implementation  

No.  

 

Data item Value Notes 
Study identifier (Pauca and Guy, 2012)  

Title 
Mobile apps for the greater good: a socially relevant approach to 

software engineering 
 

Publication details 

V. P. Pauca and R. T. Guy, “Mobile apps for the greater good: a 

socially relevant approach to software engineering,” in Proceedings of 

the 43rd ACM technical symposium on Computer Science Education, 

New York, NY, USA, 2012, pp. 535–540. 

 

Study type Methodology usage  

Name of methodology / 

approach 
Scrum  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Paper only mentions the usage of Scrum and nothing else.  

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 
Case study.  
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implementation 

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Abrahamsson et al., 2009)  

Title 
Mobile-D for Mobile Software: How to Use Agile Approaches for the 

Efficient Development of Mobile Applications 
 

Publication details 

P. Abrahamsson, T. Ihme, K. Kolehmainen, P. Kyllönen, and O. Salo, 

“Mobile-D for Mobile Software: How to Use Agile Approaches for the 

Efficient Development of Mobile Applications.” 2009. 

Tutorial. 

Study type New methodology  

Name of methodology / 

approach 
Mobile-D  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

This tutorial seeks to provide an overview on the special characteristics 

of mobile software development and introduce a development 

approach called Mobile D, which  combines  several  agile  approaches  

to  meet  the  needs  of  volatile  mobile application development. 

Tutorial 

materials 

unavailable 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Abrahamsson et al., 2004)  

Title Mobile-D: an agile approach for mobile application development  

Publication details 

P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. 

Korkala, J. Koskela, P. Kyllönen, and O. Salo, “Mobile-D: an agile 

approach for mobile application development,” in Companion to the 

19th annual ACM SIGPLAN conference on Object-oriented 

programming systems, languages, and applications, New York, NY, 

USA, 2004, pp. 174–175. 

First 

publication 

presenting 

Mobile-D 

Study type New methodology  

Name of methodology / 

approach 
Mobile-D  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Mobile-D approach is based on Extreme Programming (development 

practices), Crystal methodologies (method scalability), and Rational 

Unified Process (life-cycle coverage). A development project, 

following the Mobile-D approach, is divided into five iterations. These 

phases are: set-up, core, core2, stabilize, and wrap-up. 

The phases 

are later 

renamed. 

Additional resources on 

methodology / 

approach description 

In this paper the methodology was not well defined.   
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Report on methodology 

/ approach example 

implementation 

The Mobile-D approach has been empirically tested and further 

developed in four case studies within the ENERGI laboratory at VTT, 

The Technical Research Centre of Finland. These cases  

were concerned with new mobile phone extensions of database 

systems. 

 

Organizational aspects 

on implementation  

The Mobile-D approach is optimized for a team of less than ten  

developers working in a co-located office space aiming at delivering a 

fully functional mobile application in a short time frame. Mobile-D has 

been developed in co-operation with three companies developing 

mobile software products and services. 

 

Project management 

aspects on 

implementation  

Not included.  

 

Data item Value Notes 
Study identifier (Marinho et al., 2012)  

Title 
MobiLine: A Nested Software Product Line for the domain of mobile 

and context-aware applications 
 

Publication details 

[1]F. G. Marinho, R. M. C. Andrade, C. Werner, W. Viana, M. E. F. 

Maia, L. S. Rocha, E. Teixeira, J. B. F. Filho, V. L. L. Dantas, F. Lima, 

and S. Aguiar, “MobiLine: A Nested Software Product Line for the 

domain of mobile and context-aware applications,” Science of 

Computer Programming, p. -, 2012. 

 

Study type New approach  

Name of methodology / 

approach 
MobiLine  

Application in multi-

platform development 
Yes 

Platform 

independant 

Details on defined / 

reported methodology / 

approach 

This paper discusses an approach for the development of mobile and 

context-aware software using the Software Product Line (SPL) 

paradigm. MobiLine - A Nested Software Product Line for the domain 

of mobile and context-aware applications. 

 

Additional resources on 

methodology / 

approach description 

MobiLine development approach is well defined.  

Report on methodology 

/ approach example 

implementation 

Case studies  

Organizational aspects 

on implementation  
Partially covered.  

Project management 

aspects on 

implementation  

Partially covered.  

 

Data item Value Notes 
Study identifier (Forstner et al., 2006)  

Title Model-based system development for embedded mobile platforms  

Publication details 

B. Forstner, L. Lengyel, T. Levendovszky, G. Mezei, I. Kelenyi, and 

H. Charaf, “Model-based system development for embedded mobile 

platforms,” in Model-Based Development of Computer-Based Systems 

and Model-Based Methodologies for Pervasive and Embedded 

Software, 2006. MBD/MOMPES 2006. Fourth and Third International 

Workshop on, 2006, p. 10–pp. 

 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Development  

Application in multi- Yes  
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platform development 

Details on defined / 

reported methodology / 

approach 

Paper discuss the relevance of the model-based approach that facilitates  

a more efficient software development. Additionally, paper describes 

several tools that support model driven development. 

. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
None  

Project management 

aspects on 

implementation  

None  

 

Data item Value Notes 
Study identifier (Thompson et al., 2010)  

Title 
Model-Driven Architectures for Optimizing Mobile Application 

Performance 
 

Publication details 

C. Thompson, J. White, B. Dougherty, H. Turner, S. Campbell, K. 

Zienkiewicz, and D. C. Schmidt, “Model-Driven Architectures for 

Optimizing Mobile Application Performance.” 2010. 

Introduction 

to the book 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Scarce  

Additional resources on 

methodology / 

approach description 

Pointing to the Book that was unavailable.  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Khambati et al., 2008)  

Title 
Model-Driven Development of Mobile Personal Health Care 

Applications 
 

Publication details 

A. Khambati, J. Grundy, J. Warren, and J. Hosking, “Model-Driven 

Development of Mobile Personal Health Care Applications,” in 

Proceedings of the 2008 23rd IEEE/ACM International Conference on 

Automated Software Engineering, Washington, DC, USA, 2008, pp. 

467–470. 

 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Development  
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Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The focus of the paper was not on MDD but rather on tool that was 

used to perform MDD. 
 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Kim et al., 2009)  

Title 
Performance testing based on test-driven development for mobile 

applications 
 

Publication details 

H. Kim, B. Choi, and S. Yoon, “Performance testing based on test-

driven development for mobile applications,” in Proceedings of the 3rd 

International Conference on Ubiquitous Information Management and 

Communication, New York, NY, USA, 2009, pp. 612–617. 

 

Study type Approach usage  

Name of methodology / 

approach 
Test Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The goal of this study is to develop a mobile performance unit 

testing tool that not only supports the functional testing in the 

development process of unit testing environment but also supports 

performance unit testing generation and performance automation 

in order to improve the quality and reliability of mobile applications. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

MOPAD project  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Manjunatha et al., 2010)  

Title 
Power of clouds in your pocket: An efficient approach for cloud 

mobile hybrid application development 
 

Publication details 

A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan, “Power 

of clouds in your pocket: An efficient approach for cloud mobile 

hybrid application development,” in Cloud Computing Technology and 

Science (CloudCom), 2010 IEEE Second International Conference on, 

2010, pp. 496–503. 

 

Study type New Approach  
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Name of methodology / 

approach 
MobiCloud (A cloud mobile hybrid application generation)  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The objective of this research, therefore, is to provide a disciplined 

approach to mobile applications development centered around a DSL 

based platform agnostic application development paradigm for CMH 

applications. 

 

Additional resources on 

methodology / 

approach description 

Approach is well defined.  

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Wolkerstorfer et al., 2008)  

Title Probing an agile usability process  

Publication details 

P. Wolkerstorfer, M. Tscheligi, R. Sefelin, H. Milchrahm, Z. Hussain, 

M. Lechner, and S. Shahzad, “Probing an agile usability process,” in 

CHI  ‟08 extended abstracts on Human factors in computing systems, 

New York, NY, USA, 2008, pp. 2151–2158. 

 

Study type New methodology  

Name of methodology / 

approach 
Agile usability process  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Paper describes adaptations to the classical Extreme Programming 

(XP) process. The approach described integrates HCI (human computer 

interaction) instruments. The implemented HCI instruments are: user 

studies, extreme personas (a variation of the personas approach), 

usability expert evaluations, usability tests, and automated usability 

evaluations. By combining XP and UCD (user centered development) 

processes it takes advantages of both approaches. 

 

Additional resources on 

methodology / 

approach description 

Short description of the process.  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
Some aspects included.  

Project management 

aspects on 

implementation  

Some aspects included.  

 

Data item Value Notes 
Study identifier (Scharff and Verma, 2010)  

Title 
Scrum to support mobile application development projects in a just-in-

time learning context 
 

Publication details 
C. Scharff and R. Verma, “Scrum to support mobile application 

development projects in a just-in-time learning context,” in 
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Proceedings of the 2010 ICSE Workshop on Cooperative and Human 

Aspects of Software Engineering, New York, NY, USA, 2010, pp. 25–

31. 

Study type Methodology usage  

Name of methodology / 

approach 
Scrum  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

During this project, we attempted to provide students with a real 

experience with Scrum on mobile application development projects. 

We defined a model of working to be used in a classroom setting that 

involved Scrum teams, a certified Scrum Master, a Product Owner and 

a Client. 

 

Additional resources on 

methodology / 

approach description 

Scrum process described.  

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
Some elements included.  

Project management 

aspects on 

implementation  

Some elements included.  

 

Data item Value Notes 
Study identifier (Rosa and Lucena,Jr., 2011)  

Title 
Smart composition of reusable software components in mobile 

application product lines 
 

Publication details 

R. E. V. S. Rosa and V. F. Lucena,Jr., “Smart composition of reusable 

software components in mobile application product lines,” in 

Proceedings of the 2nd International Workshop on Product Line 

Approaches in Software Engineering, New York, NY, USA, 2011, pp. 

45–49. 

 

Study type Approach usage  

Name of methodology / 

approach 
Software Product Lines  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The Software Product Lines (SPL) approach seems to be an useful 

technique to support mobile application development. A way to make 

SPL more effective is automating the software components 

composition for building mobile applications. 

 

Additional resources on 

methodology / 

approach description 

Scarce  

Report on methodology 

/ approach example 

implementation 

AppSpotter project  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Zakal et al., 2011)  
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Title Software Product Lines-based development  

Publication details 

D. Zakal, L. Lengyel, and H. Charaf, “Software Product Lines-based 

development,” in Applied Machine Intelligence and Informatics 

(SAMI), 2011 IEEE 9th International Symposium on, 2011, pp. 79–81. 

 

Study type Approach usage  

Name of methodology / 

approach 
Model Driven Product Lines (Software Product Lines)  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Current paper has presented a model-driven approach of Software 

Product Lines, suggesting the use of feature models as integral parts of 

product family specifications. 

 

Additional resources on 

methodology / 

approach description 

Model Driven Product Lines  

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Forstner et al., 2005)  

Title Supporting Rapid Application Development on Symbian Platform  

Publication details 

B. Forstner, L. Lengyel, I. Kelenyi, T. Levendovszky, and H. 

Charaf, “Supporting Rapid Application Development on 

Symbian Platform,” in Computer as a Tool, 2005. EUROCON 

2005.The International Conference on, 2005, vol. 1, pp. 72 –75. 
 

 

Study type Methodology usage  

Name of methodology / 

approach 
Rapid Application Development  

Application in multi-

platform development 
Yes 

Symbian 

reported 

Details on defined / 

reported methodology / 

approach 

The paper introduces rapid application development tool set for 

Symbian OS. The focus of the paper is not on RAD methodology, but 

rather on presented tool set. 

 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Binsaleh and Hassan, 2011)  

Title 
Systems Development Methodology for Mobile Commerce 

Applications: Agile vs. Traditional 
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Publication details 

M. Binsaleh and S. Hassan, “Systems Development Methodology for 

Mobile Commerce Applications: Agile vs. Traditional,” International 

Journal of Online Marketing (IJOM), vol. 1, no. 4, pp. 33–47, 2011. 

The full 

paper not 

completely 

available to 

the 

researcher 

Study type New methodology / Methodology usage  

Name of methodology / 

approach 
Systems Development Methodology / N/A  

Application in multi-

platform development 
Yes 

Platform 

independent 

Details on defined / 

reported methodology / 

approach 

Only portion of the paper is available to the researcher due to the lack 

of subscription to Igi-global publishing. The acquired materials state 

that comprehensive research was performed in order to determine the 

customs of mobile application developers and that the methodology 

was proposed based on these results. 

 

Additional resources on 

methodology / 

approach description 

N/A  

Report on methodology 

/ approach example 

implementation 

N/A  

Organizational aspects 

on implementation  
N/A  

Project management 

aspects on 

implementation  

N/A  

 

Data item Value Notes 
Study identifier (Hedberg and Iisakka, 2006)  

Title Technical Reviews in Agile Development: Case Mobile-D  

Publication details 

H. Hedberg and J. Iisakka, “Technical Reviews in Agile Development: 

Case Mobile-D,” in Quality Software, 2006. QSIC 2006. Sixth 

International Conference on, 2006, pp. 347–353. 

 

Study type Methodology usage / Approach usage  

Name of methodology / 

approach 
Mobile-D / Test Driven Development  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The short description on Mobile-D is available. Although the paper 

focuses on another topic it gives lots of references on Mobile-D 

process. 

 

Additional resources on 

methodology / 

approach description 

ENERGY laboratory 

VTT Research center  
 

Report on methodology 

/ approach example 

implementation 

No  

Organizational aspects 

on implementation  
Partially included.  

Project management 

aspects on 

implementation  

Partially included.  

 

Data item Value Notes 
Study identifier (Scharff, 2010)  

Title The Software Engineering of Mobile Application Development  
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Publication details 
C. Scharff, “The Software Engineering of Mobile Application 

Development,” Pace University, NY, USA, 2010. 
Presentation 

Study type Methodology usage  

Name of methodology / 

approach 
Scrum  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Presentation covers several topics and one of them is Scrum. The 

process is described and the examples are given. 
 

Additional resources on 

methodology / 

approach description 

Scrum described in detail.  

Report on methodology 

/ approach example 

implementation 

Several projects: RestoMobile, TargetFirstGrade, No Ink…  

Organizational aspects 

on implementation  
Partially included.  

Project management 

aspects on 

implementation  

Partially included.  

 

Data item Value Notes 
Study identifier (Ejlersen et al., 2008)  

Title Using Design Science to Develop a Mobile Application  

Publication details 
A. Ejlersen, M. S. Knudsen, J. Løvgaard, and M. B. Sørensen, “Using 

Design Science to Develop a Mobile Application,” 2008. 
 

Study type Methodology usage  

Name of methodology / 

approach 
Design Science  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

The special framework is developed to help the usage of Design 

Science components in mobile application development.  
 

Additional resources on 

methodology / 

approach description 

Design Science partially described.  

Report on methodology 

/ approach example 

implementation 

Friend Finder mobile application  

Organizational aspects 

on implementation  
Partially included  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Ihme and Abrahamsson, 2005)  

Title 
The Use of Architectural Patterns in the Agile Software Development 

of Mobile Applications 
 

Publication details 
T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the 

Agile Software Development of Mobile Applications,” 2005. 
 

Study type Methodology usage  

Name of methodology / 

approach 
Mobile-D  
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Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Paper reports the usage of Mobile-D methodology, but only in 

accordance with design phase in development process. 
 

Additional resources on 

methodology / 

approach description 

No  

Report on methodology 

/ approach example 

implementation 

Case studies and projects.  

Organizational aspects 

on implementation  
No  

Project management 

aspects on 

implementation  

No  

 

Data item Value Notes 
Study identifier (Um et al., 2005)  

Title 
ViP: A Practical Approach to Platform-based System Modeling 

Methodology 
 

Publication details 

J. Um, S. Hong, Y. T. Kim, E. Chung, K. M. Choi, J. T. Kong, 

and S. K. Eo, “ViP: A Practical Approach to Platform-based 

System Modeling Methodology,” Journal of Semiconductor 

Technology and Science, vol. 5, no. 2, p. 89, 2005. 

 

Study type New methodology  

Name of methodology / 

approach 
ViP (Virtual Platform)  

Application in multi-

platform development 
Yes  

Details on defined / 

reported methodology / 

approach 

Paper proposes a new transaction-level system modeling methodology, 

called ViP (Virtual Platform). ViP has a two-step approach: 

- create a ViP for early stage software development 

- refine the ViP to increase the cycle accuracy for system 

performance analysis and software optimization 

The following phases are executed 

- IP Modeling 

- IP Model verification 

- Bus Subsystem Modeling 

- Integration 

 

Additional resources on 

methodology / 

approach description 

The special case study for implementation for mobile devices is 

created. 
 

Report on methodology 

/ approach example 

implementation 

Case study  

Organizational aspects 

on implementation  
Partially included in report  

Project management 

aspects on 

implementation  

Partially included in report  
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Appendix E – Multi-platform Case Artifacts Ontology 

 

The appendix shows Multi-platform Case Artifacts Ontology presented in Manchester OWL 

Syntax format. The Manchester syntax is a user-friendly compact syntax for OWL 2 

ontologies (Horridge and Patel-Schneider, 2009). Although it is frame-based, as opposed to 

the axiom-based other syntaxes for OWL 2, we find it to be the most compact and human 

readable syntax. The document presented in this appendix is available at 

http://barok.foi.hr/~zstapic/ont/mcao_m.owl, and the same ontology in OWL/XML syntax is 

available at http://barok.foi.hr/~zstapic/ont/mcao.owl. 

 

Prefix: : <http://www.w3.org/2002/07/owl#> 

Prefix: owl: <http://www.w3.org/2002/07/owl#> 

Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

Prefix: xml: <http://www.w3.org/XML/1998/namespace> 

Prefix: xsd: <http://www.w3.org/2001/XMLSchema#> 

Prefix: acao: <http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#> 

Prefix: mcao: <http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts#> 

Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

Prefix: wpcao: <http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifacts#> 

 

Ontology: <http://www.foi.unizg.hr/ontologies/MultiplatformCaseArtifacts> 

 

Annotations:  

    rdfs:comment "The ontology describing the artifacts that arise in the 

development of multi-platform prototype mobile application by using 

Mobile-D methodology."@en, 

    rdfs:isDefinedBy "Zlatko Stapić" 

 

AnnotationProperty: rdfs:isDefinedBy 

AnnotationProperty: rdfs:label 

AnnotationProperty: mcao:NOTICE 

AnnotationProperty: rdfs:comment 

AnnotationProperty: acao:inActivity 

AnnotationProperty: acao:inPhase 

 

Datatype: rdf:PlainLiteral 

 

ObjectProperty: acao:createsArtifact 

   Annotations:  

        rdfs:comment "Inversed property of isCreatedByTask. It connects Task 

individuals and created specific Artifact individuals."@en 

    Domain: acao:Task 

    Range: acao:Artifact 

    InverseOf: acao:isCreatedByTask 

 

ObjectProperty: acao:isCreatedByTask 

    Annotations:  

        rdfs:comment "Property connecting the Task individuals that create specific 

Artifact individuals. Creating the artifact logically means it usage 

even if it is not explicitly stated."@en 

    Domain: acao:Artifact 

    Range: acao:Task 

http://barok.foi.hr/~zstapic/ont/mcao_m.owl
http://barok.foi.hr/~zstapic/ont/mcao.owl
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    InverseOf: acao:createsArtifact 

     

ObjectProperty: acao:isPartOfArtifact 

    Annotations:  

        rdfs:comment "Property connecting individual artifacts into hierarchy. This 

property is Asymmetric as two individuals cannot be both part of each 

other. "@en 

    Characteristics: Asymmetric 

    Domain: acao:Artifact 

    Range: acao:Artifact 

    InverseOf: acao:includesArtifact 

     

ObjectProperty: mcao:isSimilarToArtifact 

    Annotations:  

        rdfs:comment "Property connecting the individuals of class Artifact with 

other similar individuals of the same class. Usually, all artifacts in 

the same class, if class is reusable, are reusable, but this is not a 

rule. Sometimes, pairs of artifacts in the same class can be mutually 

reusable, but not reusable with other artifacts of pairs."@en 

    Characteristics: Symmetric 

    Domain: acao:Artifact 

    Range: acao:Artifact 

     

ObjectProperty: acao:isPerformedIn 

    Annotations:  

        rdfs:comment "Property defines relationship between specific Task 

individuals and owning Activity. Logically, this property is inverse 

of consistsOf property, but we defined both separate to have the 

information available even in the original model."@en 

    Domain: acao:Activity or acao:Task 

    Range: acao:Activity or acao:Phase 

     

ObjectProperty: acao:isUpdatedByTask 

    Annotations:  

        rdfs:comment "Property connecting the Task individuals that update specific 

Artifact individuals."@en 

    Domain: acao:Artifact 

    Range: acao:Task 

    InverseOf: acao:updatesArtifact 

     

ObjectProperty: acao:isUsedByTask 

    Annotations:  

        rdfs:comment "Property connecting the Task individuals that read specific 

Artifact individuals."@en 

    Domain: acao:Artifact 

    Range: acao:Task 

    InverseOf: acao:usesArtifact 

     

ObjectProperty: acao:usesArtifact 

    Annotations:  

        rdfs:comment "Inversed property of isUsedByTask. It connects Task 

individuals and used specific Artifact individuals."@en 

    Domain: acao:Task 

    Range: acao:Artifact 

    InverseOf: acao:isUsedByTask 

     

ObjectProperty: mcao:hasReusabilityLevel 

    Annotations:  



 

 

293 

 

        rdfs:comment "Property connecting specific Artifact individuals with one of 

predefined reusability levels. This property classifies artifacts into 

completely, partially or unreusable classes."@en 

    Characteristics: Functional 

    Domain: acao:Artifact 

    Range: mcao:ReuseLevel 

     

ObjectProperty: acao:updatesArtifact 

    Annotations:  

        rdfs:comment "Inversed property of isUpdatedByTask. It connects Task 

individuals and updated specific Artifact individuals."@en 

    Domain:  

        acao:Task 

    Range:  

        acao:Artifact 

    InverseOf:  

        acao:isUpdatedByTask 

     

ObjectProperty: acao:hasArtifactType 

 

    Annotations:  

        rdfs:comment "Property connecting specific Artifact individuals with 

ArtifactType individuals. It defines type of the specific Artifact 

according to defined classification according to artifact usage."@en 

    Characteristics: Functional 

    Domain: acao:Artifact 

    Range: acao:ArtifactType 

     

ObjectProperty: acao:includesArtifact 

    Annotations:  

        rdfs:comment "Inverse property of isPartOfArtifact. It defines individual 

Artifacts that are included in observed Artifact."@en 

    Characteristics: Asymmetric 

    Domain: acao:Artifact 

    Range: acao:Artifact 

    InverseOf: acao:isPartOfArtifact 

     

ObjectProperty: acao:consistsOf 

    Annotations:  

        rdfs:comment "Property connecting individual Activities that are performed 

in specific Phases and individual Tasks that are performed during 

specific Activities. Logically, this property is inverse property of 

isPerformedIn, but we explicitly defined it in order to have the 

information available even in the original model."@en 

    Domain: acao:Activity or acao:Phase 

    Range: acao:Activity or acao:Task 

     

ObjectProperty: acao:hasArtifactOrigin 

    Annotations:  

        rdfs:comment "Property connecting individual Artifact and individual in 

definite class ArtifactOrigin which defines several possible types of 

Artifact origin. This property is used to classify artifacts by types 

but from different point of view than property hasArtifactType."@en 

    Characteristics: Functional 

    Domain: acao:Artifact 

    Range: acao:ArtifactOrigin 

     

Class: acao:ReleaseCeremoniesTask 

    Annotations:  
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        rdfs:comment "The purpose of this task is to confirm that everything has 

been done right in the current iteration and the basis for further 

development is ensured. Release ceremonies are the final steps before 

making a release of the software. In practice, release ceremonies 

consist of two essential activities; release audit and baseline 

creation."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayActivity>, 

        rdfs:label "Release Ceremonies Task" 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ReleaseDayActivity, 

        acao:isPerformedIn some acao:ReleaseDayActivity, 

        acao:Task 

     

     

Class: acao:ClassModelMobile 

 

    Annotations:  

        rdfs:comment "UML class diagram describing the mobile application internal 

structure and created classes. This model is used in SADD 

document."@en, 

        rdfs:label "Class Model (Mobile)" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        acao:hasArtifactType some acao:Model, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactType only acao:Model, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask), 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask 

     

     

Class: acao:ApplicationIcon 
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    Annotations:  

        rdfs:comment "Application icon is designed as needed for publishing 

process."@en, 

        rdfs:label "Application Icon Android" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:DeploymentPackage, 

        mcao:AppIcon, 

        acao:isPartOfArtifact only acao:DeploymentPackage, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:ProductionizeActivities 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:Productionize 

     

    SubClassOf:  

        acao:ActivitiesByPhases 

     

     

Class: acao:Software 

 

    Annotations:  

        rdfs:comment "Represents software tools used during the entire project."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: mcao:ThrowAwayPrototype 

 

    Annotations:  

        rdfs:comment "Platform specific project created to test development 

environment and connected devices. This project is discarded."@en, 

        rdfs:label "Throw-away Prototype" 

     

    SubClassOf:  

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Code, 

        not (acao:isUsedByTask some acao:Task), 

        acao:hasArtifactType some acao:Code, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isCreatedByTask some acao:EnvironmentSetUpTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isCreatedByTask only acao:EnvironmentSetUpTask 

     

     

Class: acao:InitialRequirementsAnalysisTask 

 

    Annotations:  

        rdfs:label "Initial Requirements Analysis Task", 

        rdfs:comment "The purpose of this task is to carefully prioritize and 

analyze the requirements for finding a set of requirements that force 

tocreate the most important components and interfaces of the system. A 
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working architectural skeleton should be found not later than by the 

end of the first iteration. "@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn0IterationAct

ivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:PlanningDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayIn0IterationActivity 

     

     

Class: acao:PlanningDayIn0IterationTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:PlanningDayIn0IterationActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: acao:ProductProposal 

 

    Annotations:  

        rdfs:label "Product Proposal", 

        rdfs:comment "Generated before the development process. Describes the 

initial and general idea on the product."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:InitialRequirementsCollectionTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask some acao:ArchitectureLineDefinitionTask, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask only  

            (acao:ArchitectureLineDefinitionTask 

             or acao:CustomerEstablishmentTask 

             or acao:InitialRequirementsCollectionTask 

             or acao:ProcessEstablishmentTask), 

        acao:isUsedByTask some acao:CustomerEstablishmentTask, 

        acao:hasArtifactType some acao:Document, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact some acao:ProductProposal, 

        mcao:isSimilarToArtifact only acao:ProductProposal, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Document, 

        acao:isUsedByTask some acao:ProcessEstablishmentTask, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:UnitTest 

 

    Annotations:  

        rdfs:label "Unit Test Android", 

        rdfs:comment "Unit test tests a single unit of code. It is created in 

separate project and references main project while performing 

different assertions."@en 
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    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:UnitTest, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: mcao:ArtifactsOrigin 

 

    SubClassOf:  

        acao:Inferred 

     

     

Class: acao:WorkingDayIn0IterationTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: wpcao:PageCS 

 

    Annotations:  

        rdfs:label "Page (C#)", 

        rdfs:comment "Represents C# class that has the purpose of controlling the 

application view."@en 

     

    SubClassOf:  

        mcao:ViewController, 

        acao:isPartOfArtifact some wpcao:CSCode, 

        acao:isPartOfArtifact only wpcao:CSCode, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: mcao:SourceCode 

 

    Annotations:  

        rdfs:label "Source Code", 

        rdfs:comment "Platform specific source code developed during the 

implementation activities."@en 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:PublishApplicationTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:hasArtifactType some acao:Code, 
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        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        mcao:isSimilarToArtifact some mcao:SourceCode, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:PublishApplicationTask, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        mcao:isSimilarToArtifact only mcao:SourceCode 

     

     

Class: acao:XMLResources 

 

    Annotations:  

        rdfs:comment "XML code describing application layout, menus, localized 

strings etc."@en, 

        rdfs:label "XML Resources Android" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:isSimilarToArtifact only wpcao:XAMLDescription, 

        mcao:AppResource, 

        mcao:isSimilarToArtifact some wpcao:XAMLDescription, 

        acao:isPartOfArtifact only acao:MobileApplication, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:MobileApplication 

     

     

Class: acao:Resource 

 

    Annotations:  

        rdfs:comment "Represents resources that are created during the development 

process and are used in publishing purposes."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:Document 

 

    Annotations:  

        rdfs:comment "Represents used documents or created artifacts that are 

published as documents during or at the end of development 

process."@en 
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    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:SystemTestTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:SystemTestActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: mcao:Completely 

 

    SubClassOf:  

        mcao:ReuseLevel 

     

     

Class: acao:DocumentElement 

 

    Annotations:  

        rdfs:comment "Represents document that could be observed as stand-alone 

artifact, but is usually included in some other document."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:APIDocumentation 

 

    Annotations:  

        rdfs:comment "Android API documentation from 

http://developers.android.com"@en, 

        rdfs:label "API Documentation Android" 

     

    SubClassOf:  

        mcao:APIDocumentation, 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:PrototypeFunctionality 

 

    Annotations:  

        rdfs:label "Prototype Functionality Android", 

        rdfs:comment "Developed functionality during the trial day. It prototypes 

some of the main application functionalities and is used to define the 

basic approach for implementing the similar functionalities in other 

iterations."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        mcao:AppPrototypeFunctionality 

     

     

Class: acao:DocumentationWrapUpActivity 
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    Annotations:  

        rdfs:label "Stabilize", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>, 

        rdfs:comment "The purpose of the Stabilize phase pattern is to ensure the 

quality of the implementation of the project."@en 

     

    SubClassOf:  

        acao:isPerformedIn only  

            (acao:Stabilize 

             or acao:SystemTestAndFix), 

        acao:isPerformedIn some acao:SystemTestAndFix, 

        acao:isPerformedIn some acao:Stabilize, 

        acao:consistsOf only acao:DocumentationWrapUpTask, 

        acao:Activity, 

        acao:consistsOf some acao:DocumentationWrapUpTask 

     

     

Class: acao:SystemTestReport 

 

    Annotations:  

        rdfs:comment "Final document on testing. Contains information on performed 

tests and issues detected."@en, 

        rdfs:label "System Test Report" 

     

    SubClassOf:  

        not (acao:isUsedByTask some acao:Task), 

        acao:isCreatedByTask some acao:SystemTestTask, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isCreatedByTask only acao:SystemTestTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType some acao:Document, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Document 

     

     

Class: acao:ClassModelWeb 

 

    Annotations:  

        rdfs:label "Class Model (Web)", 

        rdfs:comment "UML class diagram describing the web application internal 

structure and created classes. This model is used in SADD 

document."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:hasArtifactType some acao:Model, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isPartOfArtifact some acao:SADDDocument, 
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        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactType only acao:Model, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact some acao:ClassModelWeb, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        mcao:isSimilarToArtifact only acao:ClassModelWeb, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask) 

     

     

Class: acao:ActivitiesByPhases 

 

    SubClassOf:  

        acao:Inferred 

     

     

Class: acao:PairProgrammingPractice 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>, 

        rdfs:comment "The purpose of Pair Programming is to improve communication, 

enhance process fidelity and spread knowledge within the team, and 

ensure quality of the code."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>, 

        rdfs:label "Pair Programming Practice" 

     

    SubClassOf:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn only  

            (acao:WorkingDayActivity 

             or acao:WorkingDayIn0IterationActivity), 

        acao:isPerformedIn some acao:WorkingDayActivity 

     

     

Class: acao:IterationsPlan 

 

    Annotations:  
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        rdfs:comment "Contains the information about planned iterations along with 

selected features for specific iteration. This document is part of 

Product backlog document."@en, 

        rdfs:label "Iterations Plan" 

     

    SubClassOf:  

        acao:isUsedByTask some acao:PostIterationWorkshopTask, 

        acao:isUpdatedByTask some acao:WrapUpTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isCreatedByTask only acao:IterationPlanningTask, 

        acao:isPartOfArtifact only acao:ProductBacklog, 

        acao:isUsedByTask some acao:WrapUpTask, 

        acao:isPartOfArtifact some acao:ProductBacklog, 

        acao:isUsedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:PostIterationWorkshopTask 

             or acao:WrapUpTask), 

        mcao:isSimilarToArtifact some acao:IterationsPlan, 

        mcao:isSimilarToArtifact only acao:IterationsPlan, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUpdatedByTask only acao:WrapUpTask, 

        acao:isCreatedByTask some acao:IterationPlanningTask 

     

     

Class: acao:TasksByActivities 

 

    SubClassOf:  

        acao:Inferred 

     

     

Class: acao:BorrowedArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (not (acao:isCreatedByTask some acao:Task)) 

         and (not (acao:isUpdatedByTask some acao:Task)) 

         and (acao:isUsedByTask some acao:Task) 

     

    SubClassOf:  

        mcao:ArtifactsUsage 

     

     

Class: mcao:PartiallyReusableArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (mcao:hasReusabilityLevel some mcao:Partially) 

     

    SubClassOf:  

        mcao:ArtifactsReusability 

     

     

Class: acao:ProjectPlanChecklist 
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    Annotations:  

        rdfs:comment "Mobile-D project plan checklist. This document is part of 

project plan."@en, 

        rdfs:label "Project Plan Checklist" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        not (acao:isUsedByTask some acao:Task), 

        acao:isUpdatedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:IterationPlanningTask 

             or acao:PostIterationWorkshopTask 

             or acao:WrapUpTask), 

        acao:isCreatedByTask some acao:InitialProjectPlanningTask, 

        mcao:isSimilarToArtifact some acao:ProjectPlanChecklist, 

        acao:isPartOfArtifact only acao:ProjectPlan, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isPartOfArtifact some acao:ProjectPlan, 

        acao:isUpdatedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        mcao:isSimilarToArtifact only acao:ProjectPlanChecklist, 

        acao:isCreatedByTask only acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask some acao:IterationPlanningTask, 

        acao:isUpdatedByTask some acao:PostIterationWorkshopTask 

     

     

Class: acao:DataModelWeb 

 

    Annotations:  

        rdfs:comment "Entity-Relationship-Attribute model of the web application. 

It is presented in SADD document."@en, 

        rdfs:label "Data Model (Web)" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:hasArtifactType some acao:Model, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:hasArtifactType only acao:Model, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:isSimilarToArtifact some acao:DataModelWeb, 

        mcao:isSimilarToArtifact only acao:DataModelWeb, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 
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             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask), 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice 

     

     

Class: acao:ProjectPlanChecklistTemplate 

 

    Annotations:  

        rdfs:label "Project Plan Checklist Template", 

        rdfs:comment "Mobile-D project plan checklist."@en 

     

    SubClassOf:  

        mcao:isSimilarToArtifact some acao:ProjectPlanChecklistTemplate, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask only acao:InitialProjectPlanningTask, 

        acao:isUsedByTask some acao:InitialProjectPlanningTask, 

        acao:hasArtifactType some acao:Template, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isPartOfArtifact some acao:ProjectPlanChecklist, 

        acao:isPartOfArtifact only  

            (acao:MobileDProcessLibrary 

             or acao:ProjectPlanChecklist), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isPartOfArtifact some acao:MobileDProcessLibrary, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Template, 

        mcao:isSimilarToArtifact only acao:ProjectPlanChecklistTemplate, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:AndroidArtifact 

 

    Annotations:  

        rdfs:label "Android Artifact", 

        rdfs:comment "Defines class of artifacts that are created in relation to 

Android development."@en 

     

    SubClassOf:  

        acao:ArtifactOrigin 

     

     

Class: acao:IterationBacklog 

 

    Annotations:  

        rdfs:label "Iteration Backlog", 

        rdfs:comment "Contains the information on specific iteration including 

story and task cards. Each iteration document is created from scratch. 

It is part of Product backlog document."@en 
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    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isUsedByTask some acao:PostIterationWorkshopTask, 

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        acao:isCreatedByTask only acao:IterationPlanningTask, 

        acao:isPartOfArtifact only acao:ProductBacklog, 

        acao:isUsedByTask some acao:WrapUpTask, 

        acao:isPartOfArtifact some acao:ProductBacklog, 

        mcao:isSimilarToArtifact only acao:IterationBacklog, 

        acao:isUsedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:PostIterationWorkshopTask 

             or acao:WrapUpTask), 

        mcao:isSimilarToArtifact some acao:IterationBacklog, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RequirementsAnalysisTask 

             or acao:WrapUpTask), 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isCreatedByTask some acao:IterationPlanningTask 

     

     

Class: acao:ProjectSetUpActivity 

 

    Annotations:  

        rdfs:comment "The purpose of this stage is to 1) set-up the physical and 

technical resources for the project as well as the environment for 

project monitoring, 2) train the project team as necessary, and 3) 

establish the project specific ways to communicate with the customer 

group. All the tasks of Project Set-Up include the participation of 

project team."@en, 

        rdfs:label "Project SetUp", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize> 

     

    SubClassOf:  

        acao:consistsOf only  

            (acao:CustomerCommunicationEstablishmentTask 

             or acao:EnvironmentSetUpTask), 

        acao:consistsOf some acao:CustomerCommunicationEstablishmentTask, 

        acao:isPerformedIn some acao:Initialize, 

        acao:Activity, 

        acao:consistsOf some acao:EnvironmentSetUpTask, 

        acao:isPerformedIn only acao:Initialize 

     

     

Class: acao:IterationPlanningTask 

 

    Annotations:  
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        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>, 

        rdfs:comment "The purpose of this task is to generate the schedule and 

contents for the iteration to execute. The contents are defined in 

terms of tasks which are work orders for the team."@en, 

        rdfs:label "Iteration Planning Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn

0IterationActivity> 

     

    SubClassOf:  

        acao:isPerformedIn only  

            (acao:PlanningDayActivity 

             or acao:PlanningDayIn0IterationActivity), 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayActivity, 

        acao:isPerformedIn some acao:PlanningDayIn0IterationActivity 

     

     

Class: wpcao:PageXAMLElement 

 

    Annotations:  

        rdfs:label "Page (XAML) Element", 

        rdfs:comment "Represents XAML code that is used to describe any user 

interface element such as text box, list box, button etc."@en 

     

    SubClassOf:  

        mcao:ViewElement, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only wpcao:PageXAML, 

        acao:isPartOfArtifact some wpcao:PageXAML 

     

     

Class: wpcao:PrototypeFunctionality 

 

    Annotations:  

        rdfs:label "Prototype Functionality WP", 

        rdfs:comment "Developed functionality during the trial day. It prototypes 

some of the main application functionalities and is used to define the 

basic approach for implementing the similar functionalities in other 

iterations."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        mcao:AppPrototypeFunctionality 

     

     

Class: mcao:IntegrationTest 

 

    Annotations:  

        rdfs:label "Integration Test", 

        mcao:NOTICE "Closure axiom for some properties are created in leaf 

elements."@en, 

        rdfs:comment "Platform specific, robotized or manual integration test 

document."@en 
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    SubClassOf:  

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice 

     

     

Class: mcao:ExampleCode 

 

    Annotations:  

        rdfs:comment "Example Code", 

        rdfs:comment "Platform specific example code on different topics found on 

the internet from various sources."@en 

     

    SubClassOf:  

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Example, 

        acao:hasArtifactType some acao:Example, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        acao:isUsedByTask only acao:PairProgrammingPractice, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:ThrowAwayPrototype 

 

    Annotations:  

        rdfs:label "Throw Away Prototype Android", 

        rdfs:comment "Project created to test development environment and connected 

devices. This project is discarded."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        mcao:ThrowAwayPrototype 

     

     

Class: acao:IntegrationTest 

 

    Annotations:  

        rdfs:label "Integration Test Android", 

        rdfs:comment "Robotized test which tests application integrated 

functionality."@en 

     

    SubClassOf:  

        not (acao:isPartOfArtifact some acao:Artifact), 
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        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask only  

            (acao:AcceptanceTestingTask 

             or acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask), 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isUsedByTask some acao:AcceptanceTestingTask, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:hasArtifactType some acao:Code, 

        mcao:IntegrationTest, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask some acao:RefactoringPractice 

     

     

Class: wpcao:WindowsPhoneArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact) 

     

    SubClassOf:  

        mcao:ArtifactsOrigin 

     

     

Class: acao:Initialize 

 

    Annotations:  

        rdfs:label "Initialize Phase", 

        rdfs:comment "The Initialize phase should describe and prepare all 

components of the application as well as to predict the possible 

critical issues of the project. Initialize phase is usually called a 

zero iteration (0-iteration) phase as it in addition to project set-up 

includes the stages of planning day, working day and release day which 

are also used in productionize phase. The idea of the 0-iteration 

phase is to assure the functionality of the technical development 

environment through the implementation of some representative 

features. Additionally, in this phase some prototyping could be done 

in order to decide which technological solution would be the most 

appropriate for the rest of the development process."@en 

     

    SubClassOf:  

        acao:consistsOf some acao:WorkingDayIn0IterationActivity, 

        acao:consistsOf some acao:ProjectSetUpActivity, 

        acao:Phase, 

        acao:consistsOf some acao:PlanningDayIn0IterationActivity, 

        acao:consistsOf only  

            (acao:PlanningDayIn0IterationActivity 



 

 

309 

 

             or acao:ProjectSetUpActivity 

             or acao:WorkingDayIn0IterationActivity) 

     

     

Class: acao:InformCustomerTask 

 

    Annotations:  

        rdfs:label "Inform Customer Task", 

        rdfs:comment "The purpose of this task is to provide an honest view of the 

progress to the customer, and to give the customer a possibility to 

give feedback about the implemented features and to guide the 

development."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:WorkingDayActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:WorkingDayActivity 

     

     

Class: acao:Standard 

 

    Annotations:  

        rdfs:comment "Represents document containing formal and internationally 

recognized description of some concept or element."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: mcao:Partially 

 

    SubClassOf:  

        mcao:ReuseLevel 

     

     

Class: mcao:ReusableArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (mcao:CompletlyResuableArtifacts 

         or mcao:PartiallyReusableArtifacts) 

     

    SubClassOf:  

        mcao:ArtifactsReusability 

     

    DisjointWith:  

        mcao:NotreusableArtifacts 

     

     

Class: acao:DefectList 

 

    Annotations:  

        rdfs:label "Defect List", 

        rdfs:comment "Document created after testing is performed. It contains 

found issues and planned activities. At the end this document becomes 

part of System test report document."@en 
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    SubClassOf:  

        not (acao:isUsedByTask some acao:Task), 

        acao:isCreatedByTask only acao:AcceptanceTestingTask, 

        acao:isCreatedByTask some acao:AcceptanceTestingTask, 

        mcao:isSimilarToArtifact only acao:DefectList, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isUpdatedByTask some acao:SystemTestTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact some acao:DefectList, 

        acao:Artifact, 

        acao:isPartOfArtifact only acao:SystemTestReport, 

        acao:isPartOfArtifact some acao:SystemTestReport, 

        acao:isUpdatedByTask only  

            (acao:PreReleaseTestingTask 

             or acao:SystemTestTask), 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask 

     

     

Class: acao:Example 

 

    Annotations:  

        rdfs:comment "Represents code artifacts created by third party and used as 

examples of implemented functionality or to solve some programming 

issue."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:LocalizationString 

 

    Annotations:  

        rdfs:label "Localization String Android", 

        rdfs:comment "Represent XML code that is used to provide localized 

translation of values according to value unique key."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:isSimilarToArtifact some wpcao:ResourceFile, 

        acao:isPartOfArtifact some acao:XMLResources, 

        mcao:AppResource, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        mcao:isSimilarToArtifact only wpcao:ResourceFile, 

        acao:isPartOfArtifact only acao:XMLResources 

     

     

Class: acao:ProductBacklog 

 

    Annotations:  

        rdfs:comment "Contains the information on features that are (to be) 

implemented in the development process, through several iterations. 

Users can contribute in defining the features/stories."@en, 

        rdfs:label "Product Backlog" 
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    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isUsedByTask some acao:PostIterationWorkshopTask, 

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        acao:isUsedByTask only  

            (acao:IterationPlanningTask 

             or acao:PostIterationWorkshopTask), 

        mcao:hasReusabilityLevel only mcao:Partially, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:hasArtifactType some acao:Document, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUpdatedByTask only  

            (acao:RequirementsAnalysisTask 

             or acao:WrapUpTask), 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact some acao:ProductBacklog, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Document, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        mcao:isSimilarToArtifact only acao:ProductBacklog, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask 

     

     

Class: wpcao:ApplicationDescription 

 

    Annotations:  

        rdfs:label "Application Description WP", 

        rdfs:comment "Short but important description used for publishing process. 

It includes the information on application, category, authors etc."@en 

     

    SubClassOf:  

        mcao:AppDescription, 

        acao:isPartOfArtifact some wpcao:DeploymentPackage, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only  

            (acao:SADDDocument 

             or wpcao:DeploymentPackage) 

     

     

Class: mcao:OnlyUsedDocuments 

 

    EquivalentTo:  

        acao:Artifact 

         and acao:BorrowedArtifacts 

         and (not (acao:isPartOfArtifact some acao:Artifact)) 

         and (acao:hasArtifactType some acao:Document) 

     

    SubClassOf:  

        mcao:ArtifactsUsage 

     

     

Class: acao:AcceptanceTest 

 

    Annotations:  

        rdfs:label "Acceptance Test", 
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        rdfs:comment "Created during initial requirements analysis. Contains the 

information on acceptance test of one product feature. Can include 

different contexts, and test scenarios with sample data."@en 

     

    SubClassOf:  

        acao:isPartOfArtifact only acao:SystemTestPlan, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isPartOfArtifact some acao:SystemTestPlan, 

        acao:isUsedByTask some acao:AcceptanceTestingTask, 

        acao:isUpdatedByTask some acao:AcceptanceTestingTask, 

        acao:isUpdatedByTask only  

            (acao:AcceptanceTestGenerationTask 

             or acao:AcceptanceTestReviewTask 

             or acao:AcceptanceTestingTask 

             or acao:DocumentationWrapUpTask 

             or acao:RequirementsAnalysisTask), 

        mcao:isSimilarToArtifact some acao:AcceptanceTest, 

        acao:isUsedByTask some acao:SystemTestTask, 

        mcao:isSimilarToArtifact only acao:AcceptanceTest, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:isUsedByTask only  

            (acao:AcceptanceTestReviewTask 

             or acao:AcceptanceTestingTask 

             or acao:IterationPlanningTask 

             or acao:PreReleaseTestingTask 

             or acao:SystemTestTask), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:isUpdatedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUpdatedByTask some acao:AcceptanceTestReviewTask, 

        acao:isUsedByTask some acao:AcceptanceTestReviewTask, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUpdatedByTask some acao:AcceptanceTestGenerationTask 

     

     

Class: wpcao:PageXAML 

 

    Annotations:  

        rdfs:comment "Represents XAML code that is used to describe user interface 

form or screen."@en, 

        rdfs:label "Page (XAML)" 

     

    SubClassOf:  

        mcao:View, 

        acao:isPartOfArtifact some wpcao:XAMLDescription, 

        acao:isPartOfArtifact only wpcao:XAMLDescription, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:DevelopmentEnvironment 
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    Annotations:  

        rdfs:comment "Set of applications used for Android development. We used 

Eclipse base SDK."@en, 

        rdfs:label "Development Environment Android" 

     

    SubClassOf:  

        mcao:DevelopmentEnvironment 

     

     

Class: acao:SystemTestTask 

 

    Annotations:  

        rdfs:comment "The purpose of this task is to find defects in the produced 

software after the implementation phase of the project. The System 

Test procedure provides defect information for last fixing iteration 

of the Mobile-D process."@en, 

        rdfs:label "System Test Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAct

ivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:SystemTestActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:SystemTestActivity 

     

     

Class: acao:PlanningDayTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:PlanningDayActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: mcao:ArtifactsUsage 

 

    SubClassOf:  

        acao:Inferred 

     

     

Class: mcao:ViewElement 

 

    Annotations:  

        rdfs:label "View Element", 

        rdfs:comment "Represents, usually XML based, code that is used to describe 

any user interface element such as text box, list box, button etc."@en 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 
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        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:hasArtifactType some acao:Code, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        mcao:isSimilarToArtifact some mcao:ViewElement, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        mcao:isSimilarToArtifact only mcao:ViewElement, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask 

     

     

Class: wpcao:CSCode 

 

    Annotations:  

        rdfs:label "CS Code", 

        rdfs:comment "C# code developed during the implementation activities."@en 

     

    SubClassOf:  

        acao:isPartOfArtifact only wpcao:MobileApplication, 

        acao:isPartOfArtifact some wpcao:MobileApplication, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        mcao:SourceCode 

     

     

Class: acao:OtherArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (acao:hasArtifactOrigin some acao:OtherArtifact) 

     

    SubClassOf:  

        mcao:ArtifactsOrigin 

     

     

Class: acao:AcceptanceTestingTask 

 

    Annotations:  

        rdfs:comment "The purpose of this task is to verify that the requirements 

the customer has set for the software are implemented correctly."@en, 

        rdfs:label "Acceptance Testing Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity> 
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    SubClassOf:  

        acao:isPerformedIn only acao:ReleaseDayActivity, 

        acao:isPerformedIn some acao:ReleaseDayActivity, 

        acao:Task 

     

     

Class: acao:ReleaseDayTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:ReleaseDayActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: acao:DataModelMobile 

 

    Annotations:  

        rdfs:comment "Entity-Relationship-Attribute model of the mobile database. 

It is presented in SADD document."@en, 

        rdfs:label "Data Model (Mobile)" 

     

    SubClassOf:  

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:hasArtifactType some acao:Model, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice), 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactType only acao:Model, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        mcao:isSimilarToArtifact only acao:DataModelMobile, 

        mcao:isSimilarToArtifact some acao:DataModelMobile 

     

     

Class: mcao:MobileApplication 

 

    Annotations:  
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        rdfs:comment "The mobile application targeting one specific platform that 

is created in the development process."@en, 

        rdfs:label "Mobile Application" 

     

    SubClassOf:  

        not (acao:isPartOfArtifact some acao:Artifact), 

        not (acao:isUsedByTask some acao:Task), 

        acao:isUpdatedByTask only acao:PublishApplicationTask, 

        acao:isUpdatedByTask some acao:PublishApplicationTask, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:hasArtifactType some acao:Product, 

        acao:hasArtifactType only acao:Product 

     

     

Class: acao:ScopeDefinitionTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:ScopeDefinitionActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: acao:ApplicationDescription 

 

    Annotations:  

        rdfs:comment "Short but important description used for publishing process. 

It includes the information on application, category, authors 

etc."@en, 

        rdfs:label "Application Description Android" 

     

    SubClassOf:  

        mcao:AppDescription, 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:DeploymentPackage, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact only  

            (acao:DeploymentPackage 

             or acao:SADDDocument) 

     

     

Class: acao:WorkingDayActivity 

 

    Annotations:  

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>, 

        rdfs:label "Working Day", 
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        rdfs:comment "The purpose of this stage is to implement the system 

functionality planned during the planning day. The development team 

focuses on highest priority functionality as defined by the customer. 

Working Days are used in Productionize, Stabilize and System Test & 

Fix phases. One iteration may contain 1-n Working days. Working Days 

form the actual development days of the iteration."@en 

     

    SubClassOf:  

        acao:consistsOf only  

            (acao:ContinuousIntegrationPractice 

             or acao:InformCustomerTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice 

             or acao:WrapUpTask), 

        acao:consistsOf some acao:RefactoringPractice, 

        acao:isPerformedIn some acao:Productionize, 

        acao:isPerformedIn some acao:SystemTestAndFix, 

        acao:isPerformedIn some acao:Stabilize, 

        acao:consistsOf some acao:WrapUpTask, 

        acao:isPerformedIn only  

            (acao:Productionize 

             or acao:Stabilize 

             or acao:SystemTestAndFix), 

        acao:consistsOf some acao:ContinuousIntegrationPractice, 

        acao:consistsOf some acao:PairProgrammingPractice, 

        acao:consistsOf some acao:TestDrivenDevelopmentPractice, 

        acao:consistsOf some acao:InformCustomerTask, 

        acao:Activity 

     

     

Class: acao:UsedAndProducedDocuments 

 

    EquivalentTo:  

        acao:Artifact 

         and (not (acao:isPartOfArtifact some acao:Artifact)) 

         and (acao:hasArtifactType some acao:Document) 

     

    SubClassOf:  

        mcao:ArtifactsUsage 

     

     

Class: acao:FinalProducts 

 

    EquivalentTo:  

        acao:Artifact 

         and (not (acao:BorrowedArtifacts)) 

         and (not (acao:isPartOfArtifact some acao:Artifact)) 

         and (acao:hasArtifactType some acao:Product) 

     

    SubClassOf:  

        mcao:ArtifactsUsage 

     

     

Class: acao:WorkingDayTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:WorkingDayActivity 
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    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: acao:SystemTestAndFixActivities 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:SystemTestAndFix 

     

    SubClassOf:  

        acao:ActivitiesByPhases 

     

     

Class: mcao:NotreusableArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (mcao:hasReusabilityLevel some mcao:None) 

     

    SubClassOf:  

        mcao:ArtifactsReusability 

     

    DisjointWith:  

        mcao:ReusableArtifacts 

     

     

Class: acao:ReleaseDayActivity 

 

    Annotations:  

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>, 

        rdfs:comment "The purpose in this stage is to make a fully working release 

of the system under development."@en, 

        rdfs:label "Release Day" 

     

    SubClassOf:  

        acao:isPerformedIn some acao:Productionize, 

        acao:consistsOf some acao:AcceptanceTestingTask, 

        acao:consistsOf some acao:ReleaseCeremoniesTask, 

        acao:consistsOf some acao:SystemIntegrationTask, 

        acao:isPerformedIn some acao:SystemTestAndFix, 

        acao:isPerformedIn some acao:Stabilize, 

        acao:isPerformedIn only  

            (acao:Productionize 

             or acao:Stabilize 

             or acao:SystemTestAndFix), 

        acao:Activity, 

        acao:consistsOf only  

            (acao:AcceptanceTestingTask 

             or acao:PreReleaseTestingTask 

             or acao:ReleaseCeremoniesTask 

             or acao:SystemIntegrationTask), 

        acao:consistsOf some acao:PreReleaseTestingTask 
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Class: wpcao:ThrowAwayPrototype 

 

    Annotations:  

        rdfs:label "Throw Away Prototype WP", 

        rdfs:comment "Project created to test development environment and connected 

devices. This project is discarded."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        mcao:ThrowAwayPrototype 

     

     

Class: mcao:UMLClassSDK 

 

    Annotations:  

        rdfs:label "SDK UML Class ", 

        rdfs:comment "UML model element used to describe an existing platform 

specific class that is to be used."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:RequirementsAnalysisTask, 

        acao:isPartOfArtifact only acao:ClassModelMobile, 

        acao:hasArtifactType only acao:ModelElement, 

        mcao:isSimilarToArtifact some mcao:UMLClassSDK, 

        acao:isPartOfArtifact some acao:ClassModelMobile, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:InitialRequirementsAnalysisTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        mcao:isSimilarToArtifact only mcao:UMLClassSDK, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactType some acao:ModelElement, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:PreReleaseTestingTask 

 

    Annotations:  

        acao:inActivity "The purpose of this task is to make sure that the software 

being produced is ready for the Acceptance Testing and release."@en, 

        rdfs:label "Pre-release Testing Task", 
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        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ReleaseDayActivity, 

        acao:isPerformedIn some acao:ReleaseDayActivity, 

        acao:Task 

     

     

Class: wpcao:ExampleCode 

 

    Annotations:  

        rdfs:comment "WP example code on different topics found on the internet 

from various sources."@en, 

        rdfs:label "Example Code WP" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        mcao:ExampleCode 

     

     

Class: wpcao:XAMLDescription 

 

    Annotations:  

        rdfs:label "XAML Description WP", 

        rdfs:comment "XML based XAML code describing application layout and layout 

elements."@en 

     

    SubClassOf:  

        mcao:AppResource, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only acao:MobileApplication, 

        acao:isPartOfArtifact some acao:MobileApplication, 

        mcao:isSimilarToArtifact some acao:XMLResources, 

        mcao:isSimilarToArtifact only acao:XMLResources 

     

     

Class: acao:MobileApplication 

 

    Annotations:  

        rdfs:comment "The mobile application created in the development 

process."@en, 

        rdfs:label "Mobile Application Android" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:MobileApplication, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:ScopeDefinitionActivity 

 

    Annotations:  

        rdfs:label "Scope Definition", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>, 
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        rdfs:comment "The purpose of this stage is to define the goals for the 

incipient project regarding both the contents as well as the timeline 

of the project."@en 

     

    SubClassOf:  

        acao:consistsOf only  

            (acao:InitialProjectPlanningTask 

             or acao:InitialRequirementsCollectionTask), 

        acao:isPerformedIn some acao:Explore, 

        acao:consistsOf some acao:InitialRequirementsCollectionTask, 

        acao:Activity, 

        acao:consistsOf some acao:InitialProjectPlanningTask, 

        acao:isPerformedIn only acao:Explore 

     

     

Class: acao:Inferred 

 

    Annotations:  

        rdfs:comment "Inferred knowledge from the ontology description. "@en 

     

     

Class: mcao:AppIcon 

 

    Annotations:  

        rdfs:label "App Icon", 

        rdfs:comment "Application icon is designed as needed for publishing 

process. It is platform specific artifact."@en 

     

    SubClassOf:  

        not (acao:isUsedByTask some acao:Task), 

        acao:isCreatedByTask some acao:PublishApplicationTask, 

        mcao:isSimilarToArtifact only mcao:AppIcon, 

        acao:hasArtifactType only acao:Resource, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:isCreatedByTask only acao:PublishApplicationTask, 

        acao:Artifact, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType some acao:Resource, 

        mcao:isSimilarToArtifact some mcao:AppIcon, 

        mcao:hasReusabilityLevel only mcao:Partially 

     

     

Class: acao:ProjectEstablishmentActivity 

 

    Annotations:  

        rdfs:label "Project Establishment", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>, 

        rdfs:comment "The purpose of this stage is to define and allocate the 

resources (both technical and human) needed for incipient software 

development project. Also the establishment of the baseline process 

for the project is an important task of this stage. The Project 

Establishment phase is in order to make sure that the project team can 

start the actual software development without delays caused by, for 

example, missing tools and proper training. "@en 

     

    SubClassOf:  

        acao:isPerformedIn some acao:Explore, 

        acao:consistsOf some acao:ProcessEstablishmentTask, 
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        acao:consistsOf only  

            (acao:ArchitectureLineDefinitionTask 

             or acao:ProcessEstablishmentTask), 

        acao:Activity, 

        acao:isPerformedIn only acao:Explore, 

        acao:consistsOf some acao:ArchitectureLineDefinitionTask 

     

     

Class: mcao:ArtifactsReusability 

 

    SubClassOf:  

        acao:Inferred 

     

     

Class: acao:WebServiceSpecification 

 

    Annotations:  

        rdfs:label "Web Service Specification", 

        rdfs:comment "Contains information on exposed web services along with 

available methods, their parameters and other communication 

elements."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        mcao:isSimilarToArtifact some acao:WebServiceSpecification, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask), 

        mcao:isSimilarToArtifact only acao:WebServiceSpecification 

     

     

Class: acao:ExploreActivities 

 

    EquivalentTo:  
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        acao:isPerformedIn some acao:Explore 

     

    SubClassOf:  

        acao:ActivitiesByPhases 

     

     

Class: acao:ApplicationScreenshot 

 

    Annotations:  

        rdfs:comment "Application screenshots are created as needed for publishing 

process."@en, 

        rdfs:label "Application Screenshot Android" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:AppScreenshot, 

        acao:isPartOfArtifact some acao:DeploymentPackage, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact only  

            (acao:DeploymentPackage 

             or acao:SADDDocument) 

     

     

Class: acao:StabilizeActivities 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:Stabilize 

     

    SubClassOf:  

        acao:ActivitiesByPhases 

     

     

Class: acao:ArtifactOrigin 

 

    Annotations:  

        rdfs:comment "Classification of artifacts in types according to their 

origin."@en 

     

    EquivalentTo:  

        acao:AndroidArtifact 

         or acao:MethodologicalArtifact 

         or acao:OtherArtifact 

         or acao:ServiceArtifact 

         or wpcao:WindowsPhoneArtifact 

     

     

Class: acao:AcceptanceTestReviewTask 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>, 

        rdfs:comment "The purpose of this task is to make sure that the team 

understands the requirements of the system correctly. This task also 

allows the team members to comment on the Acceptance Tests to improve 

their quality."@en, 

        rdfs:label "Acceptance Test Review Task" 

     

    SubClassOf:  
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        acao:isPerformedIn only acao:PlanningDayActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayActivity 

     

     

Class: mcao:DevelopmentEnvironment 

 

    Annotations:  

        rdfs:label "Development Environment", 

        rdfs:comment "Each platform requests specific andd native development 

environment for best results."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        not (acao:isUsedByTask some acao:Task), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isCreatedByTask some acao:EnvironmentSetUpTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:hasArtifactType only acao:Software, 

        acao:hasArtifactType some acao:Software, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isCreatedByTask only acao:EnvironmentSetUpTask, 

        acao:hasArtifactOrigin some acao:OtherArtifact 

     

     

Class: acao:ServiceArtifact 

 

    Annotations:  

        rdfs:comment "Defines class of artifacts that are created in relation to 

Web Service development."@en, 

        rdfs:label "Service Artifact" 

     

    SubClassOf:  

        acao:ArtifactOrigin 

     

     

Class: acao:SADDDocument 

 

    Annotations:  

        rdfs:comment "Contains the technical documentation on the developed 

product."@en, 

        rdfs:label "Software Architecture And Design Description Document" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isUpdatedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:WrapUpTask), 

        acao:isUsedByTask some acao:WrapUpTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:hasArtifactType some acao:Document, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUpdatedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel only mcao:None, 



 

 

325 

 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Document, 

        acao:isUsedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:WrapUpTask), 

        acao:isCreatedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isCreatedByTask only acao:ArchitectureLinePlanningTask 

     

     

Class: acao:MeasurementPlan 

 

    Annotations:  

        rdfs:label "Measurement Plan", 

        rdfs:comment "Includes the metrics and plan for monitoring of the project. 

In our case we recorded only the duration of activities and compared 

them with plan. This document is part of project plan."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isUsedByTask some acao:PostIterationWorkshopTask, 

        acao:isUsedByTask only  

            (acao:IterationPlanningTask 

             or acao:PostIterationWorkshopTask), 

        acao:isPartOfArtifact only acao:ProjectPlan, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isPartOfArtifact some acao:ProjectPlan, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        mcao:isSimilarToArtifact only acao:MeasurementPlan, 

        acao:isCreatedByTask some acao:ProcessEstablishmentTask, 

        acao:isCreatedByTask only acao:ProcessEstablishmentTask, 

        acao:isUpdatedByTask only acao:WrapUpTask, 

        mcao:isSimilarToArtifact some acao:MeasurementPlan 

     

     

Class: acao:InitializeActivities 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:Initialize 

     

    SubClassOf:  

        acao:ActivitiesByPhases 

     

     

Class: acao:AcceptanceTestTemplateSheet 

 

    Annotations:  

        rdfs:label "Acceptance Test Template Sheet", 

        rdfs:comment "Mobile-D acceptance test template sheet "@en 

     

    SubClassOf:  

        acao:isPartOfArtifact some acao:AcceptanceTest, 
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        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask some acao:InitialRequirementsAnalysisTask, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType some acao:Template, 

        acao:isUsedByTask some acao:AcceptanceTestGenerationTask, 

        acao:isUsedByTask only  

            (acao:AcceptanceTestGenerationTask 

             or acao:InitialRequirementsAnalysisTask), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isPartOfArtifact some acao:MobileDProcessLibrary, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isPartOfArtifact only  

            (acao:AcceptanceTest 

             or acao:MobileDProcessLibrary), 

        acao:hasArtifactType only acao:Template, 

        mcao:isSimilarToArtifact some acao:AcceptanceTestTemplateSheet, 

        mcao:isSimilarToArtifact only acao:AcceptanceTestTemplateSheet, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:WrapUpTask 

 

    Annotations:  

        rdfs:comment "The purpose of Wrap-up is to improve communication within the 

team and to measure the progress of the iteration. Each working day 

starts with a Wrap-up meeting, where the tasks to be implemented are 

decided and discussed. Another Wrap-up meeting is held at the end of 

day to reviewthe progress of teams and tasks."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>, 

        rdfs:label "Wrap-up Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity> 

     

    SubClassOf:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:WorkingDayActivity, 

        acao:isPerformedIn only  

            (acao:WorkingDayActivity 

             or acao:WorkingDayIn0IterationActivity) 

     

     

Class: wpcao:MicrosoftPhoneControlsToolkit 

 

    Annotations:  

        rdfs:label "Microsoft Phone Controls Toolkit", 

        rdfs:comment "Library containing the classes necessary for adding some 

basic and advanced controls in Windows Phone application."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        mcao:AppReference, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 
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Class: wpcao:ApplicationIcon 

 

    Annotations:  

        rdfs:comment "Application icon is designed as needed for publishing 

process."@en, 

        rdfs:label "Application Icon WP" 

     

    SubClassOf:  

        mcao:AppIcon, 

        acao:isPartOfArtifact some wpcao:DeploymentPackage, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only wpcao:DeploymentPackage 

     

     

Class: mcao:UnitTest 

 

    Annotations:  

        rdfs:comment "Unit test tests a single unit of platform specific code. It 

is created in separate project and references main project while 

performing different assertions."@en, 

        rdfs:label "Unit Test" 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:hasArtifactType some acao:Code, 

        mcao:isSimilarToArtifact some mcao:UnitTest, 

        acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isUsedByTask only  

            (acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemTestTask), 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        mcao:isSimilarToArtifact only mcao:UnitTest, 

        acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask only acao:PairProgrammingPractice 

     

     

Class: acao:AndroidArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (acao:hasArtifactOrigin some acao:AndroidArtifact) 

     

    SubClassOf:  

        mcao:ArtifactsOrigin 

     

     

Class: mcao:ViewController 

 

    Annotations:  
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        rdfs:label "View Controller", 

        rdfs:comment "Represents platform specific class that controlls the 

application view."@en 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:hasArtifactType some acao:Code, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        mcao:isSimilarToArtifact only mcao:ViewController, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        mcao:isSimilarToArtifact some mcao:ViewController, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask 

     

     

Class: mcao:ReuseLevel 

 

    EquivalentTo:  

        mcao:Completely 

         or mcao:None 

         or mcao:Partially 

     

     

Class: wpcao:SilverlightMapControl 

 

    Annotations:  

        rdfs:comment "Library containing the classes necessary if using Bing Maps 

in WP application."@en, 

        rdfs:label "Silverlight Map Control" 

     

    SubClassOf:  

        mcao:MapsSDK, 
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        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:Layout 

 

    Annotations:  

        rdfs:comment "Represents XML code that is used to describe user interface 

form or screen."@en, 

        rdfs:label "Layout" 

     

    SubClassOf:  

        mcao:View, 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:XMLResources, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact only acao:XMLResources 

     

     

Class: acao:DevelopmentUnrelatedSoftwareTool 

 

    Annotations:  

        rdfs:comment "These software tools support the main operations performed by 

project team. For example these include office suit, pdf reader, image 

editor etc."@en, 

        rdfs:label "Development Unrelated Software Tool" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        not (acao:isUsedByTask some acao:Task), 

        mcao:hasReusabilityLevel only mcao:Completely, 

        mcao:isSimilarToArtifact only acao:DevelopmentUnrelatedSoftwareTool, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType only acao:Software, 

        mcao:isSimilarToArtifact some acao:DevelopmentUnrelatedSoftwareTool, 

        acao:hasArtifactType some acao:Software, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:Artifact, 

        acao:isCreatedByTask some acao:ProcessEstablishmentTask, 

        acao:isCreatedByTask only acao:ProcessEstablishmentTask, 

        acao:hasArtifactOrigin some acao:OtherArtifact 

     

     

Class: wpcao:DevelopmentEnvironment 

 

    Annotations:  

        rdfs:comment "Set of applications used for Windows Phone development and 

integrated in Visual Studio."@en, 

        rdfs:label "Development Environment WP" 

     

    SubClassOf:  

        mcao:DevelopmentEnvironment 

     

     

Class: acao:Activity 

 

    Annotations:  
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        rdfs:comment "In Mobile-D, activities are sometimes called stages. The 

activity represents set of tasks that should be done in order to 

achieve the goals that are defined by that activity/stage." 

     

     

Class: acao:StakeholderEstablishmentTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:StakeholderEstablishmentActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: mcao:AppPrototypeFunctionality 

 

    Annotations:  

        rdfs:label "App Prototype Functionality", 

        rdfs:comment "Developed platform specific functionality during the trial 

day. It prototypes some of the main application functionalities and is 

used to define the basic approach for implementing the similar 

functionalities in other iterations."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:RefactoringPractice), 

        acao:isUsedByTask some acao:PostIterationWorkshopTask, 

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask some acao:RequirementsAnalysisTask, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:hasArtifactType some acao:Code, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isPartOfArtifact some acao:MobileApplication, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isPartOfArtifact only acao:MobileApplication, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PostIterationWorkshopTask 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask 

             or acao:TestDrivenDevelopmentPractice) 

     

     

Class: acao:SystemTestActivity 

 

    Annotations:  

        rdfs:comment "The purpose of System Test & Fix is to see if the produced 

system implements the customer defined functionality correctly, 
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provide the project team feedback on the systems functionality and fix 

the found defects."@en, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>, 

        rdfs:label "System Test & Fix" 

     

    SubClassOf:  

        acao:consistsOf only acao:SystemTestTask, 

        acao:isPerformedIn some acao:SystemTestAndFix, 

        acao:consistsOf some acao:SystemTestTask, 

        acao:Activity, 

        acao:isPerformedIn only acao:SystemTestAndFix 

     

     

Class: acao:ArchitectureLinePlanningTask 

 

    Annotations:  

        rdfs:label "Architecture Line Planning Task", 

        rdfs:comment "The purpose of this task is to prepare all 

criticalarchitectural issues so that so that they all are in full 

readiness for a systematicarchitectural growth when implementing 

requirements selected by the customerduring forthcoming project 

phases."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayIn

0IterationActivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:PlanningDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayIn0IterationActivity 

     

     

Class: acao:GooglePlayServices 

 

    Annotations:  

        rdfs:comment "Google library containing the classes necessary if using 

Google Maps."@en, 

        rdfs:label "Google Play Services" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:MapsSDK, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:Driver 

 

    Annotations:  

        rdfs:label "Driver Android", 

        rdfs:comment "Set of drivers used to install the device connectivity for 

testing purposes."@en 

     

    SubClassOf:  

        mcao:TestDeviceDriver 

     

     

Class: wpcao:BingMapsKey 
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    Annotations:  

        rdfs:label "Bing Maps Key", 

        rdfs:comment "Microsoft license identifying the developer as unique person. 

This key is application specific and is used when using Silverlight 

Map Control."@en 

     

    SubClassOf:  

        mcao:MapsKey, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:MethodologicalArtifact 

 

    Annotations:  

        rdfs:label "Methodological Artifact", 

        rdfs:comment "Defines class of artifacts that are created in relation to 

Mobile-D implementation."@en 

     

    SubClassOf:  

        acao:ArtifactOrigin 

     

     

Class: acao:RequirementsAnalysisTask 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>, 

        rdfs:label "Requirements Analysis Task", 

        rdfs:comment "The purpose of this task is to carefully prioritize and 

analyze the requirements selected for each iteration."@en 

     

    SubClassOf:  

        acao:isPerformedIn only acao:PlanningDayActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayActivity 

     

     

Class: mcao:None 

 

    SubClassOf:  

        mcao:ReuseLevel 

     

     

Class: acao:ProjectSetupTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:ProjectSetUpActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: mcao:CompletlyResuableArtifacts 

 

    EquivalentTo:  

        acao:Artifact 
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         and (mcao:hasReusabilityLevel some mcao:Completely) 

     

    SubClassOf:  

        mcao:ArtifactsReusability 

     

     

Class: acao:Stabilize 

 

    Annotations:  

        rdfs:label "Stabilize Phase", 

        rdfs:comment "The Productionize and Stabilize phases are executed 

iteratively in order to develop all other features of the mobile 

product. The Stabilize phase has the goal to finalize the 

implementation, including integrating subsystems if needed. As this 

phase can contain additional programing and development, the 

activities are very similar to activities in productionize phase. Only 

additional activity concerns documentation wrap-up. Iterations should 

result in working piece of functionality at the user level."@en 

     

    SubClassOf:  

        acao:consistsOf some acao:ReleaseDayActivity, 

        acao:consistsOf only  

            (acao:DocumentationWrapUpActivity 

             or acao:PlanningDayActivity 

             or acao:ReleaseDayActivity 

             or acao:WorkingDayActivity), 

        acao:consistsOf some acao:DocumentationWrapUpActivity, 

        acao:consistsOf some acao:PlanningDayActivity, 

        acao:Phase, 

        acao:consistsOf some acao:WorkingDayActivity 

     

     

Class: acao:ArchitectureLinePlan 

 

    Annotations:  

        rdfs:comment "Contains the information on planned system architecture. 

Created after the prototyping is finished. This document is part of 

SADD document."@en, 

        rdfs:label "Architecture Line Plan" 

     

    SubClassOf:  

        not (acao:isUsedByTask some acao:Task), 

        acao:isPartOfArtifact some acao:SADDDocument, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask, 

        mcao:isSimilarToArtifact some acao:ArchitectureLinePlan, 

        acao:isUpdatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact only acao:ArchitectureLinePlan, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isCreatedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isCreatedByTask only acao:ArchitectureLinePlanningTask 
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Class: acao:OtherArtifact 

 

    Annotations:  

        rdfs:comment "Defines class of artifacts that are not related to Android 

development or Mobile-D implementation or Web Service 

development."@en, 

        rdfs:comment "Defines class of artifacts that are not related to Windows 

Phone development or Mobile-D implementation or Web Service 

development."@en, 

        rdfs:label "Other Artifact" 

     

    SubClassOf:  

        acao:ArtifactOrigin 

     

     

Class: acao:JavaCode 

 

    Annotations:  

        rdfs:label "Java Code", 

        rdfs:comment "Java code developed during the implementation activities."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:SourceCode, 

        acao:isPartOfArtifact only acao:MobileApplication, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:MobileApplication 

     

     

Class: acao:Code 

 

    Annotations:  

        rdfs:comment "Represents any artifact created during the implementation and 

is written in any programming or description language."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: wpcao:DeploymentPackage 

 

    Annotations:  

        rdfs:label "Deployment Package WP", 

        rdfs:comment "XAP file created for publishing purposes."@en 

     

    SubClassOf:  

        mcao:DeploymentPackage, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:ExampleCode 

 

    Annotations:  

        rdfs:comment "Android example code on different topics found on the 

internet from various sources."@en, 

        rdfs:label "Example Code Android" 

     

    SubClassOf:  
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        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:ExampleCode, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: mcao:AppDescription 

 

    Annotations:  

        rdfs:label "App Description", 

        rdfs:comment "Short but important description used for publishing process. 

It includes the information on application, category, authors etc. Due 

to different app store requirements, there might be some differences 

among platforms."@en, 

        mcao:NOTICE "Closure axiom for isPartOfArtifact is used in leaf 

elements."@en 

     

    SubClassOf:  

        acao:isCreatedByTask only acao:DocumentationWrapUpTask, 

        acao:isPartOfArtifact some acao:SADDDocument, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType some acao:Resource, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isCreatedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactType only acao:Resource, 

        mcao:isSimilarToArtifact only mcao:AppDescription, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask only acao:PublishApplicationTask, 

        mcao:isSimilarToArtifact some mcao:AppDescription, 

        acao:isUsedByTask some acao:PublishApplicationTask 

     

     

Class: wpcao:UnitTest 

 

    Annotations:  

        rdfs:label "Unit Test WP", 

        rdfs:comment "Unit test tests a single unit of code. It is created in 

separate project and references main project while performing 

different assertions."@en 

     

    SubClassOf:  

        mcao:UnitTest, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:GoogleAPIKey 

 

    Annotations:  

        rdfs:comment "Google license identifying the developer as unique person. 

This key is application specific and is used when using Google Maps 

API."@en, 

        rdfs:label "Google API Key" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:MapsKey, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 
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Class: mcao:AppReference 

 

    Annotations:  

        rdfs:comment "Referenced platform specific libraries providing additional 

development functionality."@en, 

        rdfs:label "App Reference" 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:hasArtifactType some acao:Code, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:EnvironmentSetUpTask 

             or acao:PairProgrammingPractice 

             or acao:PublishApplicationTask 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isUsedByTask some acao:PublishApplicationTask, 

        acao:isUsedByTask some acao:EnvironmentSetUpTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:ProjectPlanGanttChart 

 

    Annotations:  

        rdfs:label "Project Plan Gantt Chart", 

        rdfs:comment "Model containing the graphical information on project plan 

iterations, activities and their duration. It is used in Project plan 

document."@en 

     

    SubClassOf:  

        mcao:isSimilarToArtifact some acao:ProjectPlanGanttChart, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        acao:hasArtifactType some acao:Model, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUpdatedByTask only  

            (acao:InitialRequirementsAnalysisTask 

             or acao:PostIterationWorkshopTask 

             or acao:ProcessEstablishmentTask), 

        mcao:isSimilarToArtifact only acao:ProjectPlanGanttChart, 

        acao:isUsedByTask some acao:ArchitectureLineDefinitionTask, 

        acao:isCreatedByTask some acao:InitialProjectPlanningTask, 

        acao:hasArtifactType only acao:Model, 

        acao:isUpdatedByTask some acao:ProcessEstablishmentTask, 

        acao:isPartOfArtifact only acao:ProjectPlan, 

        acao:isUsedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask, 
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        acao:isPartOfArtifact some acao:ProjectPlan, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUsedByTask only  

            (acao:ArchitectureLineDefinitionTask 

             or acao:ArchitectureLinePlanningTask 

             or acao:IterationPlanningTask 

             or acao:ProcessEstablishmentTask), 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isUsedByTask some acao:ProcessEstablishmentTask, 

        acao:isCreatedByTask only acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask some acao:PostIterationWorkshopTask 

     

     

Class: wpcaoDriver 

 

    Annotations:  

        rdfs:label "Driver WP", 

        rdfs:comment "Set of drivers used to install the device connectivity for 

testing purposes."@en 

     

    SubClassOf:  

        mcao:TestDeviceDriver 

     

     

Class: mcao:TestDeviceDriver 

 

    Annotations:  

        rdfs:label "Test Device Driver", 

        rdfs:comment "Driver used to install the specific device connectivity for 

testing purposes."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        not (acao:isUsedByTask some acao:Task), 

        not (acao:isUpdatedByTask some acao:Task), 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isCreatedByTask some acao:EnvironmentSetUpTask, 

        acao:hasArtifactType only acao:Software, 

        acao:hasArtifactType some acao:Software, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isCreatedByTask only acao:EnvironmentSetUpTask, 

        acao:hasArtifactOrigin some acao:OtherArtifact 

     

     

Class: acao:ProjectPlan 

 

    Annotations:  

        rdfs:label "Project Plan", 

        rdfs:comment "Contains all information on project including definition of 

customer group, scope, planned activities and their duration, plans on 

documentation etc. Aligned with agile practices, this document is also 

updated during the iterations."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:ArchitectureLineDefinitionTask, 
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        acao:isCreatedByTask some acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask some acao:ProcessEstablishmentTask, 

        acao:isUpdatedByTask only  

            (acao:CustomerEstablishmentTask 

             or acao:InitialRequirementsAnalysisTask 

             or acao:PostIterationWorkshopTask 

             or acao:ProcessEstablishmentTask), 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:hasArtifactType some acao:Document, 

        acao:isUsedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUsedByTask only  

            (acao:ArchitectureLineDefinitionTask 

             or acao:ArchitectureLinePlanningTask 

             or acao:IterationPlanningTask 

             or acao:ProcessEstablishmentTask), 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Document, 

        mcao:isSimilarToArtifact only acao:ProjectPlan, 

        mcao:isSimilarToArtifact some acao:ProjectPlan, 

        acao:isUsedByTask some acao:ProcessEstablishmentTask, 

        acao:isCreatedByTask only acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask some acao:CustomerEstablishmentTask, 

        acao:isUpdatedByTask some acao:PostIterationWorkshopTask 

     

     

Class: acao:UIIllustrations 

 

    Annotations:  

        rdfs:label "UI Ilustrations", 

        rdfs:comment "Describes the illustrations of mobile application user 

interface. It is part of SADD document."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        acao:isUsedByTask some acao:AcceptanceTestingTask, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask only acao:RequirementsAnalysisTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:isUsedByTask some acao:AcceptanceTestGenerationTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isPartOfArtifact only acao:SADDDocument, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isUsedByTask only  

            (acao:AcceptanceTestGenerationTask 
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             or acao:AcceptanceTestingTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask 

     

     

Class: wpcao:WindowsPhoneArtifact 

 

    Annotations:  

        rdfs:label "Windows Phone Artifact", 

        rdfs:comment "Defines class of artifacts that are created in relation to 

Windows Phone development."@en 

     

    SubClassOf:  

        acao:ArtifactOrigin 

     

     

Class: acao:WebDevelopmentEnvironment 

 

    Annotations:  

        rdfs:comment "The web application development and hosting environment had 

to be set up."@en, 

        rdfs:label "Web Development Environment" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        not (acao:isUsedByTask some acao:Task), 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isCreatedByTask some acao:EnvironmentSetUpTask, 

        acao:hasArtifactType only acao:Software, 

        mcao:isSimilarToArtifact only acao:WebDevelopmentEnvironment, 

        acao:hasArtifactType some acao:Software, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        mcao:isSimilarToArtifact some acao:WebDevelopmentEnvironment, 

        acao:Artifact, 

        acao:isCreatedByTask only acao:EnvironmentSetUpTask, 

        acao:hasArtifactOrigin some acao:OtherArtifact 

     

     

Class: acao:StoryCard 

 

    Annotations:  

        rdfs:label "Story Card", 

        rdfs:comment "Basic documentation card containing information on one 

feature that is implemented. It is defined during the planning day but 

is refined during the implementation and wrap-up. It is part of the 

Product backlog document."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isCreatedByTask only acao:IterationPlanningTask, 

        mcao:isSimilarToArtifact only acao:StoryCard, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isPartOfArtifact only acao:ProductBacklog, 
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        acao:isPartOfArtifact some acao:ProductBacklog, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:WrapUpTask, 

        acao:isUsedByTask some acao:AcceptanceTestGenerationTask, 

        mcao:isSimilarToArtifact some acao:StoryCard, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask only  

            (acao:AcceptanceTestGenerationTask 

             or acao:PairProgrammingPractice 

             or acao:TestDrivenDevelopmentPractice 

             or acao:WrapUpTask), 

        acao:isUpdatedByTask only acao:WrapUpTask, 

        acao:isCreatedByTask some acao:IterationPlanningTask 

     

     

Class: wpcao:MobileApplication 

 

    Annotations:  

        rdfs:comment "The mobile application created in the development 

process."@en, 

        rdfs:label "Mobile Application WP" 

     

    SubClassOf:  

        mcao:MobileApplication, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:InitialRequirementsDocument 

 

    Annotations:  

        rdfs:comment "Created according to product proposal, but later updated with 

information on stakeholders and functional system requirements. It is 

also updated during the planning phase in 0-iteration and subsequent 

iterations."@en, 

        rdfs:label "Initial Requirements Document" 

     

    SubClassOf:  

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask some acao:ArchitectureLineDefinitionTask, 

        acao:isUsedByTask some acao:InitialRequirementsAnalysisTask, 

        mcao:isSimilarToArtifact some acao:InitialRequirementsDocument, 

        acao:isUsedByTask some acao:InitialProjectPlanningTask, 

        acao:isUsedByTask some acao:AcceptanceTestGenerationTask, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:ArchitectureLinePlanningTask, 

        acao:hasArtifactType some acao:Document, 

        acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Document, 

        acao:isCreatedByTask some acao:InitialRequirementsCollectionTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        acao:isUsedByTask some acao:RequirementsAnalysisTask, 
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        acao:isUpdatedByTask some acao:AcceptanceTestingTask, 

        mcao:isSimilarToArtifact only acao:InitialRequirementsDocument, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUsedByTask only  

            (acao:AcceptanceTestGenerationTask 

             or acao:AcceptanceTestReviewTask 

             or acao:ArchitectureLineDefinitionTask 

             or acao:ArchitectureLinePlanningTask 

             or acao:DocumentationWrapUpTasks 

             or acao:InitialProjectPlanningTask 

             or acao:InitialRequirementsAnalysisTask 

             or acao:RequirementsAnalysisTask 

             or acao:SystemTestTask), 

        acao:isCreatedByTask only acao:InitialRequirementsCollectionTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUpdatedByTask only  

            (acao:AcceptanceTestingTask 

             or acao:InitialRequirementsAnalysisTask), 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTasks, 

        acao:isUsedByTask some acao:AcceptanceTestReviewTask 

     

     

Class: acao:AcceptanceTestGenerationTask 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>, 

        rdfs:comment "The purpose of this task is to support the verification of 

the requirements the customer has set for the software. This task also 

acts as a communication tool between the customer and the development 

team. "@en, 

        rdfs:label "Acceptance Test Review Task" 

     

    SubClassOf:  

        acao:isPerformedIn only acao:PlanningDayActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayActivity 

     

     

Class: acao:Template 

 

    Annotations:  

        rdfs:comment "Represents templates that are used to create some artifacts. 

"@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: wpcao:ResourceFile 

 

    Annotations:  

        rdfs:label "Resource File WP", 

        rdfs:comment "Represent code that is used to provide application with 

resources (strings, images, icons, audio, files and other). We used it 

to provide the application with localized translation for two 

languages."@en 
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    SubClassOf:  

        mcao:isSimilarToArtifact some acao:LocalizationString, 

        acao:isPartOfArtifact some wpcao:CSCode, 

        acao:isPartOfArtifact only wpcao:CSCode, 

        mcao:AppResource, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        mcao:isSimilarToArtifact only acao:LocalizationString 

     

     

Class: mcao:APIDocumentation 

 

    Annotations:  

        rdfs:label "API Documentation", 

        rdfs:comment "API Documentation is platform specific set of materials and 

code examples that could be used by developers."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Example, 

        acao:hasArtifactType some acao:Example, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:Artifact, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: mcao:DeploymentPackage 

 

    Annotations:  

        rdfs:comment "Packege containing all files (including the application 

itself) necessary for publishing purposes. The artifact is platform 

specific."@en, 

        rdfs:label "Deployment Package" 

     

    SubClassOf:  

        acao:isCreatedByTask some acao:PublishApplicationTask, 

        not (acao:isUsedByTask some acao:Task), 

        acao:hasArtifactType only acao:Resource, 

        acao:isCreatedByTask only acao:PublishApplicationTask, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType some acao:Resource, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isPartOfArtifact only acao:MobileApplication, 
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        acao:isPartOfArtifact some acao:MobileApplication 

     

     

Class: acao:AndroidActivity 

 

    Annotations:  

        rdfs:label "Android Activity", 

        rdfs:comment "Represents java class that inherits Android Activity class 

with the purpose of controlling the application view."@en 

     

    SubClassOf:  

        mcao:ViewController, 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:JavaCode, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact only acao:JavaCode 

     

     

Class: acao:ContinuousIntegrationPractice 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>, 

        rdfs:comment "The purpose of Continuous integration is to continuously 

integrate new code with the existing code in a code repository. By 

integrating continuously massive integrations can be avoided that 

would otherwise take a lot of time and effort. Continuous integration 

is a practice which allows developers to achieve rapid feedback on 

progress of the whole development project. It helps to control the 

constant change of software."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>, 

        rdfs:label "Continuous Integration Practice" 

     

    SubClassOf:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn only  

            (acao:WorkingDayActivity 

             or acao:WorkingDayIn0IterationActivity), 

        acao:isPerformedIn some acao:WorkingDayActivity 

     

     

Class: acao:JSONStandard 

 

    Annotations:  

        rdfs:label "JSON Standard", 

        rdfs:comment "IEEE Standard No. RFC4627 Standard defining the JSON 

format."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        mcao:isSimilarToArtifact some acao:JSONStandard, 

        mcao:isSimilarToArtifact only acao:JSONStandard, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 
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        acao:isUsedByTask some acao:PairProgrammingPractice, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask some acao:RefactoringPractice, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType only acao:Standard, 

        acao:Artifact, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:hasArtifactType some acao:Standard, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        not (acao:isCreatedByTask some acao:Task), 

        acao:hasArtifactOrigin some acao:OtherArtifact 

     

     

Class: wpcao:WMAppManifest 

 

    Annotations:  

        rdfs:label "WMAppManifest", 

        rdfs:comment "XML document containing the information on application. It 

includes the information on some application resources. It is created 

automatically."@en 

     

    SubClassOf:  

        acao:isPartOfArtifact some wpcao:MobileApplication, 

        acao:isPartOfArtifact some wpcao:DeploymentPackage, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only  

            (wpcao:DeploymentPackage 

             or wpcao:MobileApplication), 

        mcao:AppManifest 

     

     

Class: acao:SystemTestAndFix 

 

    Annotations:  

        rdfs:label "System Test & Fix Phase", 

        rdfs:comment "System Test and Fix phase aims to detect if the produced 

system implements the customer defined functionality correctly, it 

provides the project team feedback on the systems functionality and 

provides the defect information for last fixing iteration of the 

Mobile-D process. This last iteration is not obligatory, but when 

fixing is needed it consists of same activities as other 

implementation iterations already explained."@en 

     

    SubClassOf:  

        acao:consistsOf some acao:ReleaseDayActivity, 

        acao:consistsOf some acao:SystemTestActivity, 

        acao:consistsOf some acao:DocumentationWrapUpActivity, 

        acao:consistsOf only  

            (acao:DocumentationWrapUpActivity 

             or acao:PlanningDayActivity 

             or acao:ReleaseDayActivity 

             or acao:SystemTestActivity 

             or acao:WorkingDayActivity), 

        acao:consistsOf some acao:PlanningDayActivity, 



 

 

345 

 

        acao:Phase, 

        acao:consistsOf some acao:WorkingDayActivity 

     

     

Class: acao:PlanningDayActivity 

 

    Annotations:  

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Productionize

>, 

        rdfs:label "Planning Day", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAnd

Fix>, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Stabilize>, 

        rdfs:comment "The purpose in planning day is to select and plan the work 

contents for the iteration. By participating actively to planning 

activities, customer ensures that the requirements providing most 

business value is identified and those requirements are correctly 

understood."@en 

     

    SubClassOf:  

        acao:consistsOf some acao:PostIterationWorkshopTask, 

        acao:isPerformedIn some acao:Productionize, 

        acao:consistsOf some acao:IterationPlanningTask, 

        acao:isPerformedIn some acao:SystemTestAndFix, 

        acao:consistsOf some acao:AcceptanceTestGenerationTask, 

        acao:isPerformedIn only  

            (acao:Productionize 

             or acao:Stabilize 

             or acao:SystemTestAndFix), 

        acao:isPerformedIn some acao:Stabilize, 

        acao:consistsOf some acao:AcceptanceTestReviewTask, 

        acao:Activity, 

        acao:consistsOf only  

            (acao:AcceptanceTestGenerationTask 

             or acao:AcceptanceTestReviewTask 

             or acao:IterationPlanningTask 

             or acao:PostIterationWorkshopTask 

             or acao:RequirementsAnalysisTask), 

        acao:consistsOf some acao:RequirementsAnalysisTask 

     

     

Class: acao:Phase 

 

    Annotations:  

        rdfs:comment "Mobile-D methodology comprises development process of five 

phases which are executed in combined sequential and incremental 

manner."@en 

     

     

Class: acao:InitialRequirementsCollectionTask 

 

    Annotations:  

        rdfs:label "Initial Requirements Collection Task", 

        rdfs:comment "The purpose of this task is to produce aninitial overall 

definition of the product’s scope, purpose and functionality. This is 

needed to enable the further planning and establishment of the project 



 

 

346 

 

(size, technical issues, architecture, etc.). Also, the documented 

requirements will be the starting point for the project team to build 

an overall view on the product at hand. The customer and the steering 

group should agree and document the central functionality of the 

product as seen from the customer point of view. Additionally, also 

other requirements, such as organization’s own business requirements, 

and constraints to the product development should be identified, 

agreed upon and documented."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ScopeDefiniti

onActivity> 

     

    SubClassOf:  

        acao:Task, 

        acao:isPerformedIn some acao:ScopeDefinitionActivity, 

        acao:isPerformedIn only acao:ScopeDefinitionActivity 

     

     

Class: acao:PlanningDayIn0IterationActivity 

 

    Annotations:  

        rdfs:label "Initial Planning (Planning Day in 0 Itteration)", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize>, 

        rdfs:comment "The purpose of the Initial Planning pattern is to gain a good 

overall understanding of the product to be developed, to prepare and 

refine plans for forthcoming project phases and to prepare plans for 

verifying and solving all critical development issues by the end of 

the current phase." 

     

    SubClassOf:  

        acao:consistsOf some acao:IterationPlanningTask, 

        acao:consistsOf some acao:ArchitectureLinePlanningTask, 

        acao:consistsOf only  

            (acao:ArchitectureLinePlanningTask 

             or acao:InitialRequirementsAnalysisTask 

             or acao:IterationPlanningTask), 

        acao:isPerformedIn some acao:Initialize, 

        acao:Activity, 

        acao:consistsOf some acao:InitialRequirementsAnalysisTask, 

        acao:isPerformedIn only acao:Initialize 

     

     

Class: acao:StakeholderEstablishmentActivity 

 

    Annotations:  

        rdfs:comment "The purpose of this stage is to identify and establish the 

stakeholder groups that are needed in various tasks of Explore phase 

as well as in supporting activities during the software development – 

excluding the software development team itself. Wide variety of 

expertise and co-operation is neededto plan a controlled and effective 

implementation of the software product. The goals of the Stakeholder 

Establishment are to identify and establish different stakeholder 

groups needed in different taskthroughout the project."@en, 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Explore>, 

        rdfs:label "Stakeholder Establishment" 

     

    SubClassOf:  
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        acao:isPerformedIn some acao:Explore, 

        acao:Activity, 

        acao:consistsOf some acao:CustomerEstablishmentTask, 

        acao:consistsOf only acao:CustomerEstablishmentTask, 

        acao:isPerformedIn only acao:Explore 

     

     

Class: acao:ArtifactType 

 

    Annotations:  

        rdfs:comment "Classification of artifacts in types according to their 

purpose."@en 

     

    EquivalentTo:  

        acao:Code 

         or acao:Document 

         or acao:DocumentElement 

         or acao:Example 

         or acao:Licence 

         or acao:Model 

         or acao:ModelElement 

         or acao:Product 

         or acao:Resource 

         or acao:Software 

         or acao:Standard 

         or acao:Template 

     

     

Class: acao:AndroidClass 

 

    Annotations:  

        rdfs:label "Android Class", 

        rdfs:comment "UML model element used to describe an existing Android class 

that is to be used."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:UMLClassSDK, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:StoryCardTemplate 

 

    Annotations:  

        rdfs:comment "Mobile-D story card template."@en, 

        rdfs:label "Story Card Template" 

     

    SubClassOf:  

        acao:isUsedByTask some acao:IterationPlanningTask, 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUsedByTask only acao:IterationPlanningTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact only acao:StoryCardTemplate, 

        acao:isPartOfArtifact some acao:MobileDProcessLibrary, 

        acao:isPartOfArtifact only  

            (acao:MobileDProcessLibrary 

             or acao:StoryCard), 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 
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        acao:Artifact, 

        acao:hasArtifactType only acao:Template, 

        mcao:isSimilarToArtifact some acao:StoryCardTemplate, 

        acao:hasArtifactType some acao:Template, 

        not (acao:isUpdatedByTask some acao:Task), 

        not (acao:isCreatedByTask some acao:Task), 

        acao:isPartOfArtifact some acao:StoryCard 

     

     

Class: acao:ProjectManagementSoftwareTool 

 

    Annotations:  

        rdfs:comment "The tool used for project management."@en, 

        rdfs:label "Project Management Software Tool" 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:OtherArtifact, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        not (acao:isUsedByTask some acao:Task), 

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        mcao:isSimilarToArtifact only acao:ProjectManagementSoftwareTool, 

        mcao:isSimilarToArtifact some acao:ProjectManagementSoftwareTool, 

        acao:Artifact, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isCreatedByTask some acao:ProcessEstablishmentTask, 

        acao:hasArtifactType only acao:Software, 

        acao:isCreatedByTask only acao:ProcessEstablishmentTask, 

        acao:hasArtifactOrigin some acao:OtherArtifact, 

        acao:hasArtifactType some acao:Software 

     

     

Class: acao:FinalDocumentation 

 

    EquivalentTo:  

        acao:Artifact 

         and (not (acao:BorrowedArtifacts)) 

         and (not (acao:isPartOfArtifact some acao:Artifact)) 

         and (acao:hasArtifactType some acao:Document) 

     

    SubClassOf:  

        mcao:ArtifactsUsage 

     

     

Class: acao:ApplicationManifest 

 

    Annotations:  

        rdfs:label "Application Manifest", 

        rdfs:comment "XML document containing the information on application. This 

document is most important code artifact."@en 

     

    SubClassOf:  

        acao:isPartOfArtifact only  

            (acao:DeploymentPackage 

             or acao:MobileApplication), 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:DeploymentPackage, 

        acao:hasArtifactOrigin some acao:AndroidArtifact, 

        acao:isPartOfArtifact some acao:MobileApplication, 
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        mcao:AppManifest 

     

     

Class: acao:Artifact 

 

    Annotations:  

        rdfs:comment "Artifact - Any piece of software developed and used during 

software development and maintenance."@en 

     

     

Class: acao:ProcessEstablishmentTask 

 

    Annotations:  

        rdfs:comment "The purpose of this task is to establish the baseline process 

for the forthcoming software development project and to train the 

project team on using it. The aim of the Process Establishment is to 

make sure that the project team has all the needed competence 

regarding both the process and the technical aspects of the project. 

Thus, the need for training should be identified during this task. 

Also, deciding upon how the project’s progress will be monitored and 

product’s quality assured are important issues in every project, yet 

they may differ largely depending on the organization and product at 

hand. Thus, the monitoring, including the definition of metrics to be 

collected, and quality assurance tasks are to be planned based on 

these issues. For example, due to the high criticality of the end 

product it may be important to increase review practices in the 

process. Also, the life-cycle of the product effects on how quality 

issues such as variability should be perceived in the process or what 

is the criteria for product completion."@en, 

        rdfs:label "Process Establishment Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectEstabl

ishmentActivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ProjectEstablishmentActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:ProjectEstablishmentActivity 

     

     

Class: acao:ArchitectureLineDefinitionTask 

 

    Annotations:  

        rdfs:comment "The purpose of this task is to get enough confidence in the 

architectural issues that the project can be successfully carried 

out."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectEstabl

ishmentActivity>, 

        rdfs:label "Architecture Line Definition Task" 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ProjectEstablishmentActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:ProjectEstablishmentActivity 

     

     

Class: acao:UMLClass 
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    Annotations:  

        rdfs:label "Class", 

        rdfs:comment "UML model element used to describe a new class that is to be 

implemented."@en 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:RequirementsAnalysisTask, 

        mcao:isSimilarToArtifact only acao:UMLClass, 

        acao:hasArtifactType only acao:ModelElement, 

        acao:isPartOfArtifact some acao:ClassModelMobile, 

        acao:isPartOfArtifact only  

            (acao:ClassModelMobile 

             or acao:ClassModelWeb), 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isUpdatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isPartOfArtifact some acao:ClassModelWeb, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isCreatedByTask only acao:InitialRequirementsAnalysisTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isCreatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:hasArtifactType some acao:ModelElement, 

        acao:isUpdatedByTask only  

            (acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:RequirementsAnalysisTask), 

        mcao:isSimilarToArtifact some acao:UMLClass 

     

     

Class: acao:ModelElement 

 

    Annotations:  

        rdfs:comment "Represents the atomic level (i.e. integral) artifact that 

could be observed as stand-alone and is used to create models."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:LayoutElement 

 

    Annotations:  

        rdfs:comment "Represents XML code that is used to describe any user 

interface element such as text box, list box, button etc."@en, 

        rdfs:label "Layout Element" 
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    SubClassOf:  

        mcao:ViewElement, 

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        acao:isPartOfArtifact only acao:Layout, 

        acao:isPartOfArtifact some acao:Layout, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:MethodologicalArtifacts 

 

    EquivalentTo:  

        acao:Artifact 

         and (acao:hasArtifactOrigin some acao:MethodologicalArtifact) 

     

    SubClassOf:  

        mcao:ArtifactsOrigin 

     

     

Class: mcao:MapsKey 

 

    Annotations:  

        rdfs:label "Maps Key", 

        rdfs:comment "Platform specific requirement needed for use of map 

services."@en 

     

    SubClassOf:  

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:hasArtifactType some acao:Licence, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:hasArtifactType only acao:Licence, 

        acao:Artifact, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask only acao:PublishApplicationTask, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:PublishApplicationTask 

     

     

Class: mcao:AppManifest 

 

    Annotations:  

        rdfs:label "App Manifest", 

        rdfs:comment "Platform specific document containing the formated 

information on application. This document is most important code 

artifact."@en 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        acao:hasArtifactType some acao:Code, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:isUsedByTask only acao:PublishApplicationTask, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 
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        acao:isUsedByTask some acao:PublishApplicationTask 

     

     

Class: acao:WorkingDayIn0IterationActivity 

 

    Annotations:  

        rdfs:label "Trial Day (Working Day in 0 Iteration)", 

        acao:inPhase 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Initialize>, 

        rdfs:comment "The purpose of this stage is to trial and further set-up the 

technical development environment and to make sure that everything is 

ready for implementing the software development product. Also, the 

purpose is to implement some core functionality of the system (e.g. 

client-server communication) or solve some critical development issue 

without producing any working code. Also further technological 

investigations are possible in this stage. If the development decides 

to implement some functionality at this point, it need not to be the 

highest  priority functionality as defined by the customer but rather 

have been selected based on their importance concerning, for example, 

the architectural structure of the product. Trial Days form the pre-

phase for the actual development days."@en 

     

    SubClassOf:  

        acao:consistsOf some acao:RefactoringPractice, 

        acao:consistsOf only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:RefactoringPractice 

             or acao:TestDrivenDevelopmentPractice 

             or acao:WrapUpTask), 

        acao:consistsOf some acao:WrapUpTask, 

        acao:consistsOf some acao:ContinuousIntegrationPractice, 

        acao:consistsOf some acao:PairProgrammingPractice, 

        acao:consistsOf some acao:TestDrivenDevelopmentPractice, 

        acao:isPerformedIn some acao:Initialize, 

        acao:Activity, 

        acao:isPerformedIn only acao:Initialize 

     

     

Class: wpcao:IntegrationTest 

 

    Annotations:  

        rdfs:comment "Represents the description and results of integration test 

that is performed manually. This document is part of System Test Plan 

document."@en, 

        rdfs:label "Integration Test WP" 

     

    SubClassOf:  

        acao:isPartOfArtifact only acao:SystemTestPlan, 

        acao:isPartOfArtifact some acao:SystemTestPlan, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:SystemIntegrationTask), 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:SystemIntegrationTask 
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             or acao:SystemTestTask), 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:IntegrationTest 

     

     

Class: acao:EnvironmentSetUpTask 

 

    Annotations:  

        rdfs:label "Environment Set-up Task", 

        rdfs:comment "The purpose of this task is to set-up development and other 

environment needed for project team in development process."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectSetUpA

ctivity> 

     

    SubClassOf:  

        acao:Task, 

        acao:isPerformedIn only acao:ProjectSetUpActivity, 

        acao:isPerformedIn some acao:ProjectSetUpActivity 

     

     

Class: acao:TaskCard 

 

    Annotations:  

        rdfs:comment "Basic documentation card containing the information on one 

task that is to be performed during the iteration. it is defined 

during the planning day and refined during implementation and wrap-up. 

It is part of the Product backlog document."@en, 

        rdfs:label "Task Card" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:WrapUpTask, 

        acao:isCreatedByTask only acao:IterationPlanningTask, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isPartOfArtifact only acao:ProductBacklog, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:WrapUpTask, 

        acao:isPartOfArtifact some acao:ProductBacklog, 

        acao:isUsedByTask some acao:AcceptanceTestGenerationTask, 

        mcao:isSimilarToArtifact some acao:TaskCard, 

        mcao:isSimilarToArtifact only acao:TaskCard, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isUsedByTask only  

            (acao:AcceptanceTestGenerationTask 

             or acao:PairProgrammingPractice 

             or acao:TestDrivenDevelopmentPractice 

             or acao:WrapUpTask), 

        acao:isUpdatedByTask only acao:WrapUpTask, 

        acao:isCreatedByTask some acao:IterationPlanningTask 
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Class: mcao:AppResource 

 

    Annotations:  

        rdfs:label "App Resource", 

        rdfs:comment "Platform specific, usually XML based, code which describes 

different application resorces, including values, controls etc."@en, 

        mcao:NOTICE "Axioms for isSimilarToArtifact are used in leaf elements."@en 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:hasArtifactType some acao:Code, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice 

     

     

Class: acao:CustomerEstablishmentTask 

 

    Annotations:  

        rdfs:label "Customer Establishment Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#StakeholderEs

tablishmentActivity>, 

        rdfs:comment "The purpose of this task is to establish the customer 

interest group that has the ultimate expertise, domain knowledge and 

authority of the requirements for the software product."@en 

     

    SubClassOf:  

        acao:isPerformedIn only acao:StakeholderEstablishmentActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:StakeholderEstablishmentActivity 
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Class: acao:WebService 

 

    Annotations:  

        rdfs:label "Web Service", 

        rdfs:comment "The web part of the system created in the development 

process."@en 

     

    SubClassOf:  

        not (acao:isUsedByTask some acao:Task), 

        mcao:hasReusabilityLevel some mcao:Completely, 

        acao:isUpdatedByTask only acao:SystemIntegrationTask, 

        acao:hasArtifactOrigin only acao:ServiceArtifact, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        mcao:isSimilarToArtifact some acao:WebService, 

        mcao:isSimilarToArtifact only acao:WebService, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        acao:Artifact, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:hasArtifactType some acao:Product, 

        acao:hasArtifactType only acao:Product, 

        acao:hasArtifactOrigin some acao:ServiceArtifact 

     

     

Class: acao:TestResults 

 

    Annotations:  

        rdfs:comment "Results are obtained during the whole development process 

testing tasks. At the end this document becomes part of System test 

report."@en, 

        rdfs:label "Test Results" 

     

    SubClassOf:  

        acao:isUpdatedByTask some acao:AcceptanceTestingTask, 

        acao:isUpdatedByTask only  

            (acao:AcceptanceTestingTask 

             or acao:PreReleaseTestingTask 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask), 

        acao:isUsedByTask only acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isCreatedByTask some acao:TestDrivenDevelopmentPractice, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUpdatedByTask some acao:SystemTestTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isPartOfArtifact some acao:SystemTestReport, 

        acao:isPartOfArtifact only acao:SystemTestReport, 

        acao:isCreatedByTask only acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask 
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Class: wpcao:APIDocumentation 

 

    Annotations:  

        rdfs:comment "WP API documentation from http://msdn.microsoft.com"@en, 

        rdfs:label "API Documentation WP" 

     

    SubClassOf:  

        mcao:APIDocumentation, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:RefactoringPractice 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>, 

        rdfs:comment "The purpose of refactoring is to improve existing software’s 

internal structure without modifying its external behavior. With small 

improvements to code, refactoring ensures that software is more 

modifiable, extendable, and readable. When refactoring is a regular 

habit during development it reduces the need to design up front. 

Instead the software is evolved by adapting to changes and improving 

the design of existing software. "@en, 

        rdfs:label "Refactoring Practice", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity> 

     

    SubClassOf:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn only  

            (acao:WorkingDayActivity 

             or acao:WorkingDayIn0IterationActivity), 

        acao:isPerformedIn some acao:WorkingDayActivity 

     

     

Class: acao:InitialProjectPlanningTask 

 

    Annotations:  

        rdfs:label "Initial Project Planning Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ScopeDefiniti

onActivity>, 

        rdfs:comment "The purpose of this task is to establish the initial plan for 

the forthcoming software development project regarding the timeline, 

rhythm and investments of the project. This is done in order to enable 

the further establishment of the project."@en 

     

    SubClassOf:  

        acao:Task, 

        acao:isPerformedIn only acao:ScopeDefinitionActivity, 

        acao:isPerformedIn some acao:ScopeDefinitionActivity 

     

     

Class: acao:Model 
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    Annotations:  

        rdfs:comment "Represents models that are created during the development 

process. Models could be observed as stand-alone artifacts, but are 

usually presented as a part of some document."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:TestDrivenDevelopmentPractice 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayAct

ivity>, 

        rdfs:comment "The purpose of TDD is to give the developers confidence that 

code they produce works and guide the design of the code to clearer 

more easily testable structure. TDD is also tightly coupled with 

refactoring practice because the test set that is produced with TDD is 

used while refactoring to ensurethat the change did not break the 

existing functionality of the system. In TDD the unit tests are 

written before the program code. The program code is then developed to 

work with the already written tests."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#WorkingDayIn0

IterationActivity>, 

        rdfs:label "Test Driven Development Practice" 

     

    SubClassOf:  

        acao:isPerformedIn some acao:WorkingDayIn0IterationActivity, 

        acao:Task, 

        acao:isPerformedIn only  

            (acao:WorkingDayActivity 

             or acao:WorkingDayIn0IterationActivity), 

        acao:isPerformedIn some acao:WorkingDayActivity 

     

     

Class: acao:MobileDProcessLibrary 

 

    Annotations:  

        rdfs:label "Mobile-D Process Library", 

        rdfs:comment "Process library describing the Mobile-D methodology in 

detail. Used as methodology guidelines in every phase."@en 

     

    SubClassOf:  

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        not (acao:isUpdatedByTask some acao:Task), 

        acao:hasArtifactType some acao:Document, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUsedByTask only acao:Task, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        mcao:isSimilarToArtifact only acao:MobileDProcessLibrary, 

        mcao:isSimilarToArtifact some acao:MobileDProcessLibrary, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:isUsedByTask some acao:Task, 

        acao:Artifact, 

        acao:hasArtifactType only acao:Document, 

        not (acao:isCreatedByTask some acao:Task) 
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Class: acao:DocumentationWrapUpTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:DocumentationWrapUpActivity 

     

    SubClassOf:  

        acao:TasksByActivities 

     

     

Class: acao:SystemTestPlan 

 

    Annotations:  

        rdfs:label "System Test Plan", 

        rdfs:comment "Contains the information on purpose, plan and definitions of 

tests."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUsedByTask some acao:ArchitectureLineDefinitionTask, 

        acao:isCreatedByTask some acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask only  

            (acao:InitialRequirementsAnalysisTask 

             or acao:PostIterationWorkshopTask 

             or acao:ProcessEstablishmentTask 

             or acao:SystemTestTask), 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUpdatedByTask some acao:ProcessEstablishmentTask, 

        acao:isUsedByTask some acao:SystemTestTask, 

        acao:isUpdatedByTask some acao:SystemTestTask, 

        acao:isUsedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:hasArtifactType some acao:Document, 

        not (acao:isPartOfArtifact some acao:Artifact), 

        acao:isUpdatedByTask some acao:InitialRequirementsAnalysisTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        mcao:hasReusabilityLevel only mcao:None, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:hasArtifactType only acao:Document, 

        acao:isUsedByTask only  

            (acao:ArchitectureLineDefinitionTask 

             or acao:ArchitectureLinePlanningTask 

             or acao:DocumentationWrapUpTask 

             or acao:IterationPlanningTask 

             or acao:ProcessEstablishmentTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:ProcessEstablishmentTask, 

        acao:isCreatedByTask only acao:InitialProjectPlanningTask, 

        acao:isUpdatedByTask some acao:PostIterationWorkshopTask 

     

     

Class: acao:Product 

 

    Annotations:  
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        rdfs:comment "Represents final product as most important project 

deliverable. "@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:TaskCardTemplate 

 

    Annotations:  

        rdfs:label "Task Card Template", 

        rdfs:comment "Mobile-D task card template."@en 

     

    SubClassOf:  

        mcao:hasReusabilityLevel some mcao:Completely, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:isPartOfArtifact some acao:TaskCard, 

        acao:hasArtifactType some acao:Template, 

        not (acao:isUpdatedByTask some acao:Task), 

        mcao:isSimilarToArtifact some acao:TaskCardTemplate, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:isUsedByTask only acao:IterationPlanningTask, 

        acao:isPartOfArtifact some acao:MobileDProcessLibrary, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 

        acao:Artifact, 

        acao:isPartOfArtifact only  

            (acao:MobileDProcessLibrary 

             or acao:TaskCard), 

        acao:hasArtifactType only acao:Template, 

        mcao:isSimilarToArtifact only acao:TaskCardTemplate, 

        not (acao:isCreatedByTask some acao:Task) 

     

     

Class: acao:PostIterationWorkshopTask 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#PlanningDayAc

tivity>, 

        rdfs:comment "The purpose of this task is to iteratively enhance the 

software development process to better fit the needs of current 

software project team. "@en, 

        rdfs:label "Post-iteration Workshop Task" 

     

    SubClassOf:  

        acao:isPerformedIn only acao:PlanningDayActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:PlanningDayActivity 

     

     

Class: mcao:AppScreenshot 

 

    Annotations:  

        rdfs:comment "Application screenshots showcasing final or intermediate 

application look. Screenshot is usually platform specific due to 

different native look and feel of every platform. Some exceptions are 

possible."@en, 
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        mcao:NOTICE "Closure axiom for isPartOfArtifact is used in leaf 

elements."@en, 

        rdfs:label "App Screenshot" 

     

    SubClassOf:  

        acao:isUpdatedByTask only  

            (acao:DocumentationWrapUpTask 

             or acao:SystemIntegrationTask), 

        not (acao:isUsedByTask some acao:Task), 

        acao:hasArtifactType only acao:Resource, 

        acao:isCreatedByTask only acao:AcceptanceTestingTask, 

        acao:isUpdatedByTask some acao:DocumentationWrapUpTask, 

        acao:isCreatedByTask some acao:AcceptanceTestingTask, 

        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        not (mcao:isSimilarToArtifact some acao:Artifact), 

        acao:isPartOfArtifact some acao:SADDDocument, 

        acao:hasArtifactType some acao:Resource, 

        mcao:hasReusabilityLevel some mcao:None 

     

     

Class: wpcao:DotNetClass 

 

    Annotations:  

        rdfs:comment "UML model element used to describe an existing .Net class 

that is to be used."@en, 

        rdfs:label ".Net Class" 

     

    SubClassOf:  

        mcao:UMLClassSDK, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact 

     

     

Class: acao:DeploymentPackage 

 

    Annotations:  

        rdfs:label "Deployment Package Android", 

        rdfs:comment "APK file created for publishing purposes."@en 

     

    SubClassOf:  

        acao:hasArtifactOrigin only acao:AndroidArtifact, 

        mcao:DeploymentPackage, 

        acao:hasArtifactOrigin some acao:AndroidArtifact 

     

     

Class: acao:Productionize 

 

    Annotations:  

        rdfs:comment "The Productionize and Stabilize phases are executed 

iteratively in order to develop all other features of the mobile 

product. Iterations start with planning day in Productionize phase. 

The first activity is post-iteration workshop which aims to enhance 

the development process to better fit the needs of the current 

software development team. The requirements analysis, iteration 

planning and acceptance test generation tasks follow and are executed 

during the planning day. The working day is based on implementation 

through test driven development, pair programming, continuous 
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integration and refactoring. This day ends with the task of informing 

the customer on new functionality. Finally, the release day includes 

the activities of integration and testing."@en, 

        rdfs:label "Productionize Phase" 

     

    SubClassOf:  

        acao:consistsOf some acao:ReleaseDayActivity, 

        acao:consistsOf some acao:PlanningDayActivity, 

        acao:consistsOf only  

            (acao:PlanningDayActivity 

             or acao:ReleaseDayActivity 

             or acao:WorkingDayActivity), 

        acao:Phase, 

        acao:consistsOf some acao:WorkingDayActivity 

     

     

Class: acao:Task 

 

    Annotations:  

        rdfs:comment "Tasks are performed in order to achieve defined goals."@en 

     

     

Class: acao:Explore 

 

    Annotations:  

        rdfs:comment "The aim of the first phase, called Explore, is to prepare the 

foundation for future development."@en, 

        rdfs:label "Explore Phase" 

     

    SubClassOf:  

        acao:consistsOf some acao:ProjectEstablishmentActivity, 

        acao:consistsOf some acao:ScopeDefinitionActivity, 

        acao:Phase, 

        acao:consistsOf some acao:StakeholderEstablishmentActivity, 

        acao:consistsOf only  

            (acao:ProjectEstablishmentActivity 

             or acao:ScopeDefinitionActivity 

             or acao:StakeholderEstablishmentActivity) 

     

     

Class: acao:PHPCode 

 

    Annotations:  

        rdfs:label "PHP Code", 

        rdfs:comment "PHP code developed during the implementation activities."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:hasArtifactOrigin only acao:ServiceArtifact, 

        mcao:hasReusabilityLevel only mcao:Completely, 

        acao:hasArtifactType some acao:Code, 

        mcao:isSimilarToArtifact some acao:PHPCode, 

        acao:isUsedByTask some acao:SystemTestTask, 

        mcao:isSimilarToArtifact only acao:PHPCode, 

        acao:Artifact, 

        acao:isUsedByTask some acao:DocumentationWrapUpTask, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 
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        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        acao:isPartOfArtifact some acao:WebService, 

        acao:hasArtifactOrigin some acao:ServiceArtifact, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:DocumentationWrapUpTask 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        mcao:hasReusabilityLevel some mcao:Completely, 

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:RefactoringPractice, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        acao:isPartOfArtifact only acao:WebService, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask 

     

     

Class: mcao:View 

 

    Annotations:  

        rdfs:comment "Represents platform specific, usually XML based, code that is 

used to describe user interface form or screen."@en, 

        rdfs:label "View" 

     

    SubClassOf:  

        acao:hasArtifactType only acao:Code, 

        acao:isUsedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PairProgrammingPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask 

             or acao:SystemTestTask 

             or acao:TestDrivenDevelopmentPractice), 

        acao:isUsedByTask some acao:TestDrivenDevelopmentPractice, 

        acao:hasArtifactType some acao:Code, 

        mcao:isSimilarToArtifact some mcao:View, 

        acao:isUpdatedByTask only  

            (acao:ContinuousIntegrationPractice 

             or acao:PreReleaseTestingTask 

             or acao:RefactoringPractice 

             or acao:SystemIntegrationTask), 

        acao:isUpdatedByTask some acao:SystemIntegrationTask, 

        acao:isUsedByTask some acao:PairProgrammingPractice, 

        acao:isUpdatedByTask some acao:ContinuousIntegrationPractice, 

        acao:isUsedByTask some acao:SystemTestTask, 
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        acao:isUsedByTask some acao:RefactoringPractice, 

        mcao:hasReusabilityLevel only mcao:Partially, 

        acao:isCreatedByTask some acao:PairProgrammingPractice, 

        mcao:hasReusabilityLevel some mcao:Partially, 

        acao:Artifact, 

        acao:isCreatedByTask only acao:PairProgrammingPractice, 

        acao:isUsedByTask some acao:PreReleaseTestingTask, 

        acao:isUpdatedByTask some acao:RefactoringPractice, 

        acao:isUpdatedByTask some acao:PreReleaseTestingTask, 

        acao:isUsedByTask some acao:ContinuousIntegrationPractice, 

        mcao:isSimilarToArtifact only mcao:View 

     

     

Class: acao:CustomerCommunicationEstablishmentTask 

 

    Annotations:  

        rdfs:comment "The purpose of this task is to agree on the customs of how 

the project manager/team will communicate with the customer during the 

software development. The aim is to ensure the appropriate, 

informative and intensive communication between the team and the 

customer to assure that all the stakeholders can access the 

information they need as soon as possible. Thus, it enables the fluent 

implementation of correct requirements. The effective communication 

isneeded between the customer group as well as the software 

developers, especially in the case of off-site customer."@en, 

        rdfs:label "Customer Communication Establishment Task", 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ProjectSetUpA

ctivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ProjectSetUpActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:ProjectSetUpActivity 

     

     

Class: acao:ArchitectureLineDescription 

 

    Annotations:  

        rdfs:label "Architecture Line Description", 

        rdfs:comment "Created during the architecture line planning task and 

updated in subsequent iterations. Contains the information on system 

context, technological scope, architectural risks etc. This document 

is part of project plan."@en 

     

    SubClassOf:  

        acao:isUsedByTask some acao:RequirementsAnalysisTask, 

        acao:isUpdatedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isCreatedByTask only acao:ArchitectureLineDefinitionTask, 

        acao:isPartOfArtifact only acao:ProjectPlan, 

        mcao:hasReusabilityLevel some mcao:None, 

        acao:isUsedByTask some acao:ArchitectureLinePlanningTask, 

        acao:isUsedByTask some acao:IterationPlanningTask, 

        acao:isCreatedByTask some acao:ArchitectureLineDefinitionTask, 

        acao:isPartOfArtifact some acao:ProjectPlan, 

        acao:hasArtifactOrigin only acao:MethodologicalArtifact, 

        acao:hasArtifactType some acao:DocumentElement, 

        acao:hasArtifactType only acao:DocumentElement, 

        acao:hasArtifactOrigin some acao:MethodologicalArtifact, 
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        mcao:hasReusabilityLevel only mcao:None, 

        acao:Artifact, 

        acao:isUpdatedByTask only acao:ArchitectureLinePlanningTask, 

        acao:isUsedByTask only  

            (acao:ArchitectureLinePlanningTask 

             or acao:IterationPlanningTask 

             or acao:RequirementsAnalysisTask), 

        not (mcao:isSimilarToArtifact some acao:Artifact) 

     

     

Class: acao:Licence 

 

    Annotations:  

        rdfs:comment "Represents individual-specific unique key that is obtained or 

used during the development process."@en 

     

    SubClassOf:  

        acao:ArtifactType 

     

     

Class: acao:PublishApplicationTask 

 

    Annotations:  

        rdfs:comment "Although Mobile-D does not explicitly define Publish 

Application Task (as methodology is defined prior to concept of mobile 

stores is introduced) it can be done during the System Test and Fix 

phase as a part of Working day. In that manner we add this task to the 

ontology as it is crutial for some artifacts that are strictly 

connected to application publishment."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#SystemTestAct

ivity>, 

        rdfs:label "Publish Application Task", 

        rdfs:label "Process Establishment Task" 

     

    SubClassOf:  

        acao:isPerformedIn only acao:SystemTestActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:SystemTestActivity 

     

     

Class: mcao:MapsSDK 

 

    Annotations:  

        rdfs:comment "Referenced platform specific libraries providing map 

component and use of maps in mobile application.."@en, 

        rdfs:label "Maps SDK" 

     

    SubClassOf:  

        mcao:AppReference 

     

     

Class: acao:ProjectEstablishmentTasks 

 

    EquivalentTo:  

        acao:isPerformedIn some acao:ProjectEstablishmentActivity 

     

    SubClassOf:  

        acao:TasksByActivities 
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Class: wpcao:ApplicationScreenshot 

 

    Annotations:  

        rdfs:comment "Application screenshots are created as needed for publishing 

process."@en, 

        rdfs:label "Application Screenshot WP" 

     

    SubClassOf:  

        mcao:AppScreenshot, 

        acao:isPartOfArtifact some wpcao:DeploymentPackage, 

        acao:hasArtifactOrigin only wpcao:WindowsPhoneArtifact, 

        acao:hasArtifactOrigin some wpcao:WindowsPhoneArtifact, 

        acao:isPartOfArtifact only  

            (acao:SADDDocument 

             or wpcao:DeploymentPackage) 

     

     

Class: acao:DocumentationWrapUpTask 

 

    Annotations:  

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#Documentation

WrapUpActivity>, 

        rdfs:label "Documentation Wrap-up Task", 

        rdfs:comment "The purpose of this task is to produce documentation. 

Software without documentation is a disaster. Source code is not the 

ideal medium for communicating the rationale, structure and interfaces 

of a system. Documentation will be produced for project stakeholders 

and not for the agile team."@en 

     

    SubClassOf:  

        acao:isPerformedIn only acao:DocumentationWrapUpActivity, 

        acao:Task, 

        acao:isPerformedIn some acao:DocumentationWrapUpActivity 

     

     

Class: acao:SystemIntegrationTask 

 

    Annotations:  

        rdfs:label "System Integration Task", 

        rdfs:comment "Complex products may require that the systemis divided into 

smaller subsystems. In the case of multi-team project, the purpose 

ofthis task is to integrate subsystems, which are generated inseparate 

teams, into a single product."@en, 

        acao:inActivity 

<http://www.foi.unizg.hr/ontologies/AndroidCaseArtifacts#ReleaseDayAct

ivity> 

     

    SubClassOf:  

        acao:isPerformedIn only acao:ReleaseDayActivity, 

        acao:isPerformedIn some acao:ReleaseDayActivity, 

        acao:Task 

     

     

Class: acao:ServiceArtifacts 

 

    EquivalentTo:  
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        acao:Artifact 

         and (acao:hasArtifactOrigin some acao:ServiceArtifact) 

     

    SubClassOf:  

        mcao:ArtifactsOrigin 

     

     

DisjointClasses:  

    

acao:DocumentationWrapUpActivity,acao:PlanningDayActivity,acao:PlanningDayIn0Iterat

ionActivity,acao:ProjectEstablishmentActivity,acao:ProjectSetUpActivity,acao:Releas

eDayActivity,acao:ScopeDefinitionActivity,acao:StakeholderEstablishmentActivity,aca

o:SystemTestActivity,acao:WorkingDayActivity,acao:WorkingDayIn0IterationActivity 

 

DisjointClasses:  

    

acao:Code,acao:Document,acao:DocumentElement,acao:Example,acao:Licence,acao:Model,a

cao:ModelElement,acao:Product,acao:Resource,acao:Software,acao:Standard,acao:Templa

te 

 

DisjointClasses:  

    

acao:Explore,acao:Initialize,acao:Productionize,acao:Stabilize,acao:SystemTestAndFi

x 

 

DisjointClasses:  

    

mcao:CompletlyResuableArtifacts,mcao:NotreusableArtifacts,mcao:PartiallyReusableArt

ifacts 

 

DisjointClasses:  

    

acao:AcceptanceTest,acao:AcceptanceTestTemplateSheet,acao:ArchitectureLineDescripti

on,acao:ArchitectureLinePlan,acao:ClassModelMobile,acao:ClassModelWeb,acao:DataMode

lMobile,acao:DataModelWeb,acao:DefectList,acao:DevelopmentUnrelatedSoftwareTool,aca

o:InitialRequirementsDocument,acao:IterationBacklog,acao:IterationsPlan,acao:JSONSt

andard,acao:MeasurementPlan,acao:MobileDProcessLibrary,acao:PHPCode,acao:ProductBac

klog,acao:ProductProposal,acao:ProjectManagementSoftwareTool,acao:ProjectPlan,acao:

ProjectPlanChecklist,acao:ProjectPlanChecklistTemplate,acao:ProjectPlanGanttChart,a

cao:SADDDocument,acao:StoryCard,acao:StoryCardTemplate,acao:SystemTestPlan,acao:Sys

temTestReport,acao:TaskCard,acao:TaskCardTemplate,acao:TestResults,acao:UIIllustrat

ions,acao:UMLClass,acao:WebDevelopmentEnvironment,acao:WebService,acao:WebServiceSp

ecification,mcao:APIDocumentation,mcao:AppDescription,mcao:AppIcon,mcao:AppManifest

,mcao:AppPrototypeFunctionality,mcao:AppReference,mcao:AppResource,mcao:AppScreensh

ot,mcao:DeploymentPackage,mcao:DevelopmentEnvironment,mcao:ExampleCode,mcao:Integra

tionTest,mcao:MapsKey,mcao:MobileApplication,mcao:SourceCode,mcao:TestDeviceDriver,

mcao:ThrowAwayPrototype,mcao:UMLClassSDK,mcao:UnitTest,mcao:View,mcao:ViewControlle

r,mcao:ViewElement 

 

DisjointClasses:  

    

acao:Activity,acao:Artifact,acao:ArtifactOrigin,acao:ArtifactType,acao:Phase,acao:T

ask 

 

DisjointClasses:  

    

acao:AcceptanceTestGenerationTask,acao:AcceptanceTestReviewTask,acao:AcceptanceTest

ingTask,acao:ArchitectureLineDefinitionTask,acao:ArchitectureLinePlanningTask,acao:

ContinuousIntegrationPractice,acao:CustomerCommunicationEstablishmentTask,acao:Cust
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omerEstablishmentTask,acao:DocumentationWrapUpTask,acao:EnvironmentSetUpTask,acao:I

nformCustomerTask,acao:InitialProjectPlanningTask,acao:InitialRequirementsAnalysisT

ask,acao:InitialRequirementsCollectionTask,acao:IterationPlanningTask,acao:PairProg

rammingPractice,acao:PostIterationWorkshopTask,acao:PreReleaseTestingTask,acao:Proc

essEstablishmentTask,acao:PublishApplicationTask,acao:RefactoringPractice,acao:Rele

aseCeremoniesTask,acao:RequirementsAnalysisTask,acao:SystemIntegrationTask,acao:Sys

temTestTask,acao:TestDrivenDevelopmentPractice,acao:WrapUpTask 

 

DisjointClasses:  

    

acao:AndroidArtifact,acao:MethodologicalArtifact,acao:OtherArtifact,acao:ServiceArt

ifact,wpcao:WindowsPhoneArtifact 

 

DisjointClasses:  

    

acao:AndroidArtifacts,acao:MethodologicalArtifacts,acao:OtherArtifacts,acao:Service

Artifacts,wpcao:WindowsPhoneArtifacts 
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EXTENDED ABSTRACT 

 

1. Introduction 

Development of mobile systems is a challenging task which differs from traditional 

development in several important aspects. According to Hosbond (2005), the two main sets of 

challenges should be addressed in the domain of mobile systems development, namely 

business related challenges and development specific challenges. In this research we will 

focus on development specific challenges and will give special attention to the usage of 

methodologies which according to some authors, like Rahimian and Ramsin (2008), Spataru 

(2010) or La and Kim (2009), should be firstly addressed. 

Classic or agile software development methodologies should be adapted for the development 

of mobile applications as the existing ones do not cover the specific mobile targeted 

requirements (La and Kim, 2009). There are several attempts from different authors to create 

new methodologies in order to cover the gaps in the domain of mobile applications. Some of 

them are Agile Risk-based Methodology (Rahimian and Ramsin, 2008), MASAM (Jeong et al., 

2008), and Mobile-D (Abrahamsson et al., 2004). But still, there is no comprehensive research 

that answers the question like which existing or new methodologies are suitable for 

development of mobile applications.  

On top of the list of methodology problems, the fragmentation problem forces the developers 

of mobile applications to focus on only specific platforms and versions (Manjunatha et al., 

2010), but as the development of mobile applications primarily aims a wide range of users, 

such approach is not the preferable option and the development teams reach for different 

solutions of the problem proposed by professional and scientific community. First, we would 

like to mention the approach that enables the development teams to use a mediatory language 

or just mediatory transform engine to code for several target platforms. Some of the most 

influential projects are MobiCloud (Manjunatha et al., 2010), Rhodes (Rhomobile, Inc., 2011) 

and Amanquah & Eporwei code generator (Amanquah and Eporwei, 2009). These attempts 

have several advantages but also have significant drawbacks, like their dependability on the 

efforts invested in the transform engine, specific APIs and specific domain, the lack of control 

over generated source code and similar. Another possible solution to the problem could be the 

introduction of adapter applications (adapters) as native applications for every target platform. 

According to Agarwal et al. (2009) this is one of the two main techniques for handling 

fragmentation. As standardization of APIs in mobile world is still not possible, the usage of 

programming techniques whereby the interface calls are wrapped, i.e. abstracted, in distinct 
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modules which are then ported across the platforms, is left as the other solution. The 

representatives of this approach are MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap, 

2011) or Adobe AIR® (Adobe Corporation, 2011). Almost all of the drawbacks stated for 

existing solutions that introduce a transform engine are also present in this solution. Finally, 

the third approach is to use web technologies and to develop cross-platform web applications, 

but this approach is out of our scope as it differs in many aspects (which also have their own 

drawbacks) from the basic assumptions taken in this research. 

Therefore, in this research we focused on proposing a solution that would enhance 

methodological interoperability among teams working on the same application but in different 

(and native) development environments. The research answers the following questions: (1) 

what methodologies and development approaches can be used in multi-platform mobile 

applications development; (2) what artifacts (required inputs and outputs of methodologically 

and methodically defined development steps) emerge during mobile applications 

development, (3) whether and to what extent there are similarities between these artifacts, and 

(4) whether it is possible to ontologically describe these artifacts, and create a basis for 

development of a system that would support the methodological interoperability. Thus, the 

main goal is to ontologically describe artifacts that arise in the methodologically managed 

process of mobile application development targeting two or more mobile platforms, and to 

create the basis for more efficient and interoperable process of multi-platform mobile 

applications development.  

In that sense the research aims to prove the following hypothesis: H1 - It is possible to create 

an ontological description of elements of methodological interoperability containing 

structural and semantic aspects of sets of artifacts created in the development process of a 

mobile application for two or more target platforms. 

The chapters of this summary are organized in accordance with the stated research questions. 

The second chapter brings a systematic review of mobile applications development 

methodologies; the results of the methodology implementation for two platforms are 

presented in the third chapter and in the fourth chapter we identify and cross-compare the 

artifacts that emerged in the process; in the fifth chapter the ontological definition of artifacts 

is given. In the last chapter we discuss the results and draw conclusions. 

 

2. Mobile applications development methodologies: a systematic review 

 “A systematic literature review (SLR) is a means of evaluating and interpreting all available 

research relevant to a particular research question, topic area, or phenomenon of interest. 

Systematic reviews aim to present a fair evaluation of a research topic by using a trustworthy, 
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rigorous, and auditable methodology” (Kitchenham and Charters, 2007). As the method of 

SLR is rather new in the field of software engineering (SE), first we analyzed the best 

practices in performing such time consuming and comprehensive method. The guidelines 

given by Kitchenham and Charters (2007) are followed and discussed by adding the 

recommendations and findings from other influential authors in the field. Special focus is 

given to the problem of performing the method by PhD students. The findings of this research 

phase are followed during the execution of SLR which is reported in the next sections. 

2.1. Performing the SLR 

After performing a short and preliminary review of the existing methodologies we concluded 

that the development for mobile devices differs from the standard development, the agile 

approach is widely used in methodologies for mobile development and none of the observed 

methodologies is applicable without additional efforts to make the process more fine-grained 

or more suitable to specific development environment and mobile application requirements. 

This indicates that a thorough and unbiased research is needed in order to get an overall 

overview of possible methodologies that could be followed while developing applications for 

mobile devices. 

Additionally, another preliminary research is performed to identify the existing systematic 

literature reviews on software development methodologies for development of mobile 

applications. The IEEExplore, ACM Digital library, INSPEC, CiteSeerX and GoogleScholar 

databases were searched by the following search query: (“literature review” OR SLR) AND 

(mobile development). According to information available in the mentioned databases, there 

are no existing systematic literature reviews covering the subject of software development 

methodologies for mobile applications development, which makes the need for such review 

even bigger. 

In order to address the issues determined in this analysis, this systematic review is aligned to 

answer the following research questions: 

RQ1 – What development methodologies and approaches are reported in literature as 

defined in theory or used in practice for mobile application development? 

RQ2 – Are the identified methodologies and approaches applicable for multi-platform 

mobile applications development? 

The review protocol was defined according to the instructions given in (Kitchenham and 

Charters, 2007) and the template used for the protocol is proposed by (Biolchini et al., 2005) 

and further explained by (Mian et al., 2005). Search string defined for the main research was 

(mobile AND ("software development" OR "system development" OR "application 

development" OR "program development") AND (methodology OR method OR approach OR 

framework OR process OR procedure OR model)) and it was executed on available relevant 



 

 

372 

 

electronic sources (journals and proceedings) in the field of SE as identified by the field 

experts Brereton et al. (2007), Hannay et al. (2007) and by Kitchenham and Charters (2007). 

The literature review was performed through several phases including the identification, 

inclusion and exclusion criteria application and quality assessment. Finally, 49 studies out of 

6761 were identified as relevant for data extraction and synthesis. 

As presented in Table 1 and Table 2 the total of 22 development methodologies and 7 

development approaches were identified as newly developed or used and eligible for multi-

platform mobile applications development. 

Table 1 - Developed methodologies and approaches 

Name Type 
Agile Methodology for Mobile Software Development M 

Agile Solo M 

Agile usability process M 

DEAL M 

Integrated Product Development Process for Mobile Software M 

Inter-combined Model M 

MASAM methodology M 

Methodology for Building Enterprise-Wide Mobile Applications M 

MicroApp visual approach M 

Mobile Application Development Methodology M 

Mobile-D M 

New media application prototyping M 

Systems Development Methodology M 

ViP (Virtual Platform) M 

Composite Application Software Development Process Framework A 

MobiLine A 

         Type: M - Methodology, A - Approach 

Table 2 - Used methodologies and approaches 

Name Type 
Design Science M 

Dynamic Channel Model M 

Extreme Programming M 

Kanban A 

Mobile-D M 

Mobile Engineering (MobE) M 

Mobile RAD M 

Rapid Application Development M 

Scrum M 

Model Driven Development A 

Model Driven Product Lines A 

Software Product Lines A 

Test Driven Development A 

         Type: M - Methodology, A - Approach 

 

Only one methodology is covered by more than one study, while all other methodologies are 

presented in a single identified study. Additionally, as expected, the methodologies and 

approaches in the mobile development field are rather new. Only 4 studies are more than 5 

years old, while all the other studies date in the last five years. The overall study quality 



 

 

373 

 

assessment score has the mean value of 2.735 out of 5 (68.38%) with the standard deviation 

of 0.903. This can be interpreted as relatively low study quality with high deviation in quality. 

On the other hand, more authors reported the usage of methodology or approach than the 

creation of new methodology. Total of 9 methodologies and 4 approaches have been reported 

as used. The important fact is that only one methodology (Mobile-D) identified as newly 

created was reported to have been used. The usage of this methodology was reported in five 

different studies, while all other new methodologies and approaches were not reported as ever 

being used. 

2.2. Choosing development methodology 

As the basic assumption of the research is that methodological interoperability is platform and 

methodology independent (i.e. it can be performed on any methodology ontologically 

described), we can choose any of the 22 identified methodologies. To avoid random selection, 

the criterion used to choose development methodology was reported applicability of newly 

developed methodologies. Cross-analysis of the SLR results shows that Mobile-D is the only 

methodology specifically created for mobile applications development that was reported to be 

used in practice. In addition, we performed a research to identify other gray-literature sources 

published by the methodology creators and found that this methodology is thoroughly and in 

detail defined in several publications and the most important one is (Abrahamsson et al., 

2005a). 

 

3. Methodology implementation 

Mobile-D process (see Figure 1) includes five phases that are executed in partially 

incremental order. The aim of the first phase, called Explore, is to prepare the foundation for 

future development. The Initialize phase should describe and prepare all components of the 

application as well as to predict possible critical issues of the project. This phase is usually 

called zero iteration (0-iteration) phase as it, in addition to project set-up, includes the stages 

of planning day, working day and release day which are also used in Productionize phase. 

The idea of the 0-iteration phase is to assure the functionality of the technical development 

environment through the implementation of some representative features or through 

prototyping. The Productionize and Stabilize phases are executed iteratively in order to 

develop all other features of the mobile product. Iterations start with planning day in 

Productionize phase. The first activity is post-iteration workshop which aims to enhance the 

development process to better fit the needs of the current software development team. 

Requirements analysis, iteration planning and acceptance test generation tasks follow and are 

executed during the planning day. Working day is based on implementation through test 
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driven development, pair programming, continuous integration and refactoring. This day 

ends with the task of informing the customer on new functionality. Finally, the release day 

includes the activities of integration and testing. The Stabilize phase has the goal to finalize 

the implementation along with integrating subsystems if necessary. As this phase can contain 

additional programming and development, the activities are very similar to the activities in the 

Productionize phase. The only additional activity concerns documentation wrap-up. Iterations 

should result in a working piece of functionality at user level.  

 

Figure 1 - Mobile-D process 

Finally, System Test and Fix phase aims to detect if the produced system correctly implements 

the customer defined functionality. It also provides the project team feedback on the systems 

functionality and the defect information for the last fixing iteration of the Mobile-D process. 

This last iteration is not obligatory, but when fixing is needed it consists of the same activities 

as other implementation iterations already explained.  

Mobile-D strongly suggests the usage of Test Driven Development (TDD) which is connected 

to all Mobile-D phases. The basics and the state of the art in TDD can be found in (Hammond 

and Umphress, 2012). The purpose of TDD is to give the developers confidence that the code 

they produce works, as well as to guide the design of the code towards an easily testable 

structure. Additionally, the refactoring practice is also based on TDD to ensure that changes 

made to the code do not break any functionality (Abrahamsson et al., 2005a). 

In order to systematically observe the development process and to identify the artifacts 

created during it, we developed a prototype application, namely KnowLedge, for Android and 

Windows Phone target platform. The application intends to enable users learn and/or share 

knowledge in an interactive and social manner. Among others, the basic usage included 

functional requirements like browsing through categories to find existing knowledge on a 

topic or placing a request for a new explanation/instructions/tutorial, sharing knowledge in 

groups etc.  

The overall system architecture comprises service oriented architecture, mobile application, 

remote database and usage of the global positioning system. In addition, as it can be seen in 

Figure 2, the mobile application architecture is also intended to be multi-layered with three 

N iterations 

Explore Initialize Productionize Stabilize 
System Test 

and Fix 
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distinct but connected layers. The internal cohesion (see (Miller, 2008)) of the presented 

modules should be high, and at the same time the external coupling should be kept low.  

 
Figure 2 - Mobile application architecture 

The Mobile-D process with its clear technical specification was well documented and easy to 

follow and the overall development process took less time than initially planned. A few 

screenshots of the created application are visible in Figure 3. 

       

Figure 3 - Application screenshots 

In the case of Windows Phone application development, the whole process was performed 

again, but as the structure of the created artifacts was the same as in the Android case, the 

focus in this development process was put on identifying the means and possibilities of 

reusing the existing artifacts. Although we expected some similarities among the artifacts, the 

results were surprising: we found that many of the artifacts were completely or partially 

reusable. Even though we experienced some WP platform specific issues and some testing 
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issues, the duration of the development process in WP case was 30 working days shorter 

when compared to the planned duration and 16 working days (18.4%) shorter if compared to 

the Android development case. 

 

4. Identification of artifacts 

As there are many definitions of artifact (e.g. from Hilpinen (2011) or from Parker (2011)), 

we have adopted the definition from Conradi (2004) who says that artifact is “any piece of 

software (i.e. models/descriptions/code) developed and used during software development 

and maintenance”. As the goal of this research was to analyze only the structural and 

semantic aspects of the sets of artifacts, we performed an analysis only from the semantic 

concept view, while other possible views, such as procedural concept view or pragmatic 

concept view are not covered by it. Thus, we only observed the artifacts and their connection 

to the activities and tasks as it can be seen in Figure 4. 

 

 

Figure 4 - Focusing semantic of artifacts and their origin 

We performed the artifacts analysis in two steps. Firstly, we analyzed the Mobile-D process 

library (Abrahamsson et al., 2005a) and identified the documents and other platform-

independent deliverables at a high level of abstraction. Secondly, as the approach of 

identifying and grouping the artifacts only according to the phases of the origin would not be 

a good way, and as during the implementation phase we collected the additional data on the 

artifacts, we systematized and described all identified artifacts for both target platforms using 

the template presented in Table 3. 

Table 3 - Template for describing the identified artifacts 

Artifact name Type Description 

Phases inputs and outputs 
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Thus, from the conceptual point of view, we created a solid basis for identifying not only the 

documents that had been created, but also other artifacts that might be hard to identify if the 

project was performed outside the laboratory. 

Table 4 shows a part of the list of the identified artifacts, along with their initial classification, 

description and connection with the Mobile-D phases. We used standard CRU notation for 

denoting the artifacts that were created (C), used/read (R) and updated (U). 

Table 4 – Part of list of identified artifacts in development process for Android 

Artifact name Type Description 

Phases inputs and outputs 

I II III IV V 
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p

u
t 

O
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t 
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Mobile-D process 

library 
Document 

Process library describing the Mobile-D 

methodology in detail. Used as 

methodology guidelines in every phase. 

(Abrahamsson et al., 2005a) 

R  R  R  R  R  

Product proposal Document 

Generated before the development process. 

Describes the initial and general idea on 

the product. 

R          

Project plan Document 

Contains all information on project 

including definition of customer group, 

scope, planned activities and their duration, 

plans on documentation etc. Aligned with 

agile practices, this document is also 

updated during the iterations. 

 C R U R U     

… … …           

 

The identification process resulted in total of 60 different artifacts for Android development 

process and 61 artifacts for Windows Phone development process. The union of these two 

sets resulted in total of 71 identified artifacts that we grouped in 12 groups according to their 

type. 

In the cross-platform analysis we found that 50 artifacts (70.42% of all identified artifacts) are 

common to both development cases. Additionally, many of these common artifacts are 

platform independent as being products of methodological approach. In total, 20 out of 50 

identified common artifacts (40.00%) had been created or obtained only once, as these were 

identical in both development processes. On the other hand, there are 13 artifacts (26.00%) 

that could be partially reused while performing the development process for the second or any 

other target platform. Finally, we recognized 17 artifacts (34.00% of all common artifacts) 

with a very low level of possible reuse. They were classified as ones that should be developed 

from scratch for every target platform. A preview of results of the cross-platform analysis can 

be seen in Table 5. All other artifacts were classified as platform dependent artifacts, which 

also have some reusable semantic or syntactic parts like sequencing, iterations, algorithms etc. 
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Table 5 – A part of list of common artifacts in Android in WP case 

Artifact name Identical 
Partially 

reused 
Different 

Mobile-D process library X   

Product proposal X   

Initial requirements document X   

Project plan  X  

Project plan checklist  X  

Project plan checklist template X   

Project plan Gantt chart X   

Measurement plan  X  

Architecture line description   X 

…    

 

In total, 33 artifacts (66.00% of the common artifacts) are completely or partially reusable 

which encouraged us and provided a solid basis and motivation for semantic analysis that 

followed. 

 

5. The ontology for methodological interoperability 

The term “ontology” was taken from philosophy, but its use and meaning in computer science 

got a new and adapted perspective. As there is no consensus on the definition of ontology, in 

the context of this research we consider ontology as an explicit formal conceptualization of a 

shared understanding of the domain of interest which includes vocabulary of terms for 

describing the domain elements, semantics in order to define the relationships of the domain 

elements and pragmatics in order to define possible usages of these elements. 

5.1. Positioning the ontology development approach 

Noy and McGuinness (2001) gave a comprehensive overview of possible reasons for the use 

of ontologies. The authors recognized the usage of ontologies to: share common 

understanding of the structure of information among people or software agents, enable reuse 

of domain knowledge, make domain assumptions explicit, separate domain knowledge from 

the operational knowledge, and analyze domain knowledge. Additionally, the ontologies are 

used as intermediary mechanisms in intermediary-based approach to achieve semantic 

interoperability (Park and Ram, 2004) which is of special interest in this research. Such 

interoperability, according to Paulheim and Probst (2010), can be performed on different 

levels, and subsequently they define integration on the data source level, integration on the 

business logic level and integration on the user interface level, but surprisingly, 

interoperability on the methodological level is rarely mentioned in literature. 

Although there are different ontology types (see Lovrenčić (2007)), the ontology that is a 

subject of this research is classified as domain ontology. Domain ontology can be defined as a 
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network of domain model concepts (topics, knowledge elements) that defines the elements 

and the semantic relationships between them (Brusilovsky et al., 2005). The usage of domain 

ontologies is suitable to describe all content regarding chosen development methodology and 

approach. Similarly, there are several papers that give an extensive overview of ontology 

design methodologies, such as (Dahlem, 2011), (Lovrenčić, 2007) and (Kabilan, 2007). 

However, due to its characteristics of simplicity, focus on results and iterative approach, we 

can call the methodology proposed by Noy and McGuinness (2001), namely Ontology 

Development 101, as an agile ontology development methodology. Hence we found it as the 

most suitable for our research process and we used it in defining our ontology. Finally, there 

are various possibilities of using different ontology development tools and ontology 

development languages. The research performed by Khondoker and Mueller (2010) showed 

that by far the most widely used tool is Protégé. As Protégé is aligned with the OD101 

methodology, and widely used from scientists and practitioners in (among others) fields of 

Information Systems Development and Knowledge Management, we decided to use it in our 

research as well. Subsequently, as Protégé works with two ontology representation languages, 

Frames and OWL, we discussed both and selected OWL2 DL as the most appropriate 

language in our case. 

5.2. Developing the ontologies 

The ontology development process was performed in three steps. First we developed the 

Android case ontology and then the Windows Phone case ontology. Finally, we merged these 

two into a single ontology definition. 

The list of terms specific to our domain of interest was incrementally created during the 

whole ontology development process. The final list includes terms that are the base of our 

ontology: phase, activity, task, artifact, task input, task output, artifact type, artifact origin, 

artifact usage, artifacts hierarchy, reusability, artifact similarity. In the process of class and 

hierarchy definition, we followed the advice from Uschold and Gruninger (1996) and used the 

middle-out approach by first defining more salient concepts and then making generalizations 

and specializations as needed. The approach resulted in total definition of 152 classes 

organized in 7 top level classes for Android, 153 classes similarly organized for Windows 

Phone and 213 classes in the final merged ontology. The top level classes of the merged 

ontology are presented in Figure 5. 

In order to define knowledge on structure, semantics and usage of the ontology elements we 

defined 12 object properties for the two specific ontologies and 14 object properties for the 

final merged ontology. These properties are: consistsOf, createsArtifact, hasArtifactOrigin, 

hasArtifactType, includesArtifact, hasReusabilityLevel, isCreatedByTask, isPartOfArtifact, 
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isPerformedIn, isSimilarToArtifact, isUpdatedByTask, isUsedByTask, updatesArtifact, 

usesArtifact. 

 

Figure 5 - Top level classes in final ontology 

The figure describing a part of the final ontology shows that Artifact is finally connected with 

Task, ArtifactOrigin, ArtifactType and ReuseLevel. Among these relationships, the 

relationship with Task is the strongest as it is defined by three properties (each of them having 

their inversed property). Although existing, the relationships among other top level classes are 

not presented in this figure in order to maintain the focus on Artifact class only. 

Connecting the instances of classes with the defined properties we had to follow OWL 2 DL 

restrictions, rules and syntax. Additionally, OWL DL is based on Open World Assumption 

(OWA) logic paradigm, and the OWA paradigm assumes that we cannot conclude that 

something does not exist until it is explicitly stated that it does not exist. For example, in 

order to completely define the methodological artifacts we had to use closure axioms and to 

explicitly state that methodological artifacts were not created and not modified in our 

development process but just used. The example of such description is given in Code 1. 
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SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only Document 

hasArtifactType some Document 

isUsedByTask only Task 

isUsedByTask some Task 

not (isCreatedByTask some Task) 

not (isUpdatedByTask some Task) 

Code 1 - Sufficient class description in OWA paradigm 

During the development of the Android case ontology we put the focus on the ontology 

development process guided by selected development methodology and we developed the 

ontology from scratch. In the second iteration we put the focus on reuse of the existing 

ontology which proved its validity and flexibility and thus it validated the conceptual model 

that is the base for our ontologies targeting single platforms. 

In the development of unique ontological description, the focus was put on the ontology 

merging, updating and evaluation. Most of the merging process was done automatically (see 

Figure 6). After merging the two ontologies, we had no redundancy to deal with, and had no 

problems in updating the ontology with a new conceptualization. This proves that the 

ontology is both reusable and extendable. 

 

 

Figure 6 - Example of automatically merged ontology 

The basic terms defined for the Android Case ontology were reused in Windows Phone Case 

ontology and thus are included in the final ontology as well. As we aimed to enhance the 

acao: 

ProductBacklog 

acao: 

UnitTest 

acao: 

ProductBacklog 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#  

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology# 

            – reused construct  

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont. 
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ontology with the conceptualization on artifact reusability, we had to introduce a couple of 

new important terms (reusability and artifact similarity).  

The created ontology comprises 213 classes, 14 object properties and 2213 axioms defined in 

ALCRIF DL expression sub-language. The ontology in native OWL/XML format can be 

downloaded from http://barok.foi.hr/~zstapic/ont/mcao.owl, while full OWLDoc ontology 

documentation can be accessed and analyzed at http://barok.foi.hr/~zstapic/ont/mcao/doc/. 

5.3. Evaluating the final ontology 

In order to verify and validate our ontology, throughout the whole development process 

lifecycle, we have performed the following seven verification and validation mechanisms: 

1. Methodologically driven ontology development process 

2. Followed recommendation and advices from other authors 

3. Using reasoning tools to verify the ontology in each iteration 

4. Using W3C OWL validating tool 

5. Using the Ontology evaluation plug-in 

6. Using DL queries to obtain information via inference on ontology knowledge 

7. Checking the results by domain experts 

The first five evaluating mechanisms are connected with ontology verification and are used to 

lower the risks of making any syntactical and basic semantic errors throughout the whole 

ontology development process.  

The last two mechanisms are connected with ontology validation. These two mechanisms 

have been used at the end of the development process to check if the created ontology 

represents the domain knowledge in semantically correct way. Queries were created and 

executed upon the final ontology in order to answer all competency questions related to 

application development targeting any single platform and reusability semantics defined at the 

beginning of the ontology creation process. For example, in order to obtain all reusable 

artifacts that were used, created or updated during the Iteration Planning task we can use a 

query like this: 

 

Artifact 

 and ((isUsedByTask some IterationPlanningTask)  

   or (isCreatedByTask some IterationPlanningTask)  

   or (isUpdatedByTask some IterationPlanningTask)) 

 and (ReusableArtifacts) 

Code 2 - Reusable artifacts by task 

 

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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The query result: 

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan, 

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart, 

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate 

The following query enumerates artifacts with specific type of Document that are completely 

or partially reusable. 

Artifact  

 and (hasArtifactType some Document) 

 and ((hasReusabilityLevel some Completely) 

  or (hasReusabilityLevel some Partially)) 

Code 3 - Reusable artifacts by their type 

The query result: 

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog, 

ProductProposal, ProjectPlan 

 

All other queries were stated in a similar manner and results were analyzed by a domain 

expert. The use of evaluation mechanisms throughout the development process and positive 

validation are the proof of the quality and completeness of the ontology. This brings us to the 

final conclusion that the developed Multi-platform Case Artifacts Ontology represents a 

knowledge base that can be used in the development of information system aiming to guide 

development teams in achieving methodological interoperability by reusing artifacts created 

in the process of multi-platform mobile applications development. 

 

6. Discussion and conclusion 

Throughout the research we aimed to clearly point out at least five important aspects which 

should make the research process transparent and repeatable. We put special focus on the 

research motivation, results, contributions, rigor and evaluation. By research motivation we 

wanted to emphasize the reasons for performing the research activities. By results and 

contribution we aimed to systematize the obtained results and the contribution to knowledge. 

Discussing the research rigor we wanted to point out our approach and its main 

characteristics, and discussing the evaluation we wanted to underline the evaluation 

mechanisms that are used in order to verify and validate the used approach and the obtained 

results. 

In this research several limitations can be identified. For example, the biggest challenges that 

we faced in the first research phase were: the execution of a complicated and time-consuming 

scientific method of Systematic Literature Review by a single researcher; the institutional 
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subscriptions to the available scientific sources are very poor in Croatia but somewhat better 

in Spain; the lack of information about the performed projects on development of mobile 

applications in development companies targeting two or more target platforms made us 

develop a prototype application in laboratory; the proposed ontology presents only the 

development of one application for two target platforms; and we covered only one 

development methodology supported by one development approach. All mentioned issues can 

be recognized as the limitations of this research, but we have to keep in mind that this 

research process had the main goal of proposing a new framework or approach that can be 

used in solving the mobile platform fragmentation problem. 

Following the research goals defined at the beginning of the research process we identified 

methodologies that could be used for development of mobile applications; we implemented 

the chosen methodology and approach and created a mobile application targeting two target 

platforms; we identified and analyzed the artifacts that were created in this development 

process, and we created an ontological definition that describes the artifacts in accordance 

with Mobile-D methodology and from the reusability point of view. 

According to the results obtained during the ontology evaluation and testing, we can conclude 

that such ontological description represents a solid basis that can be used in development of 

an information system aiming to guide development teams in achieving methodological 

interoperability by reusing artifacts created in the process of multi-platform mobile 

application development. Additionally, we proved that our ontological description is highly 

flexible and extensible. This allows us to update it with information on new platform specific 

or platform independent artifacts without the need of changing the underling infrastructure 

which is defined by the main class hierarchy elements, value partitions and properties. 

Finally, the model allows the creation of Description Logic queries which can be used to 

acquire direct or indirect information encoded in the ontology knowledge. We showed 

examples of such queries which, among others, aimed to reach the information regarding the 

competency questions stated at the beginning of the ontology development. 

Therefore, we can conclude that it is possible to create an ontological description of the 

elements of methodological interoperability containing structural and semantic aspects 

of sets of artifacts created in the development process of a mobile application for two or 

more target platforms, which makes our H1 hypothesis confirmed. 

This research presents a comprehensive set of activities which resulted in a final product that 

is usable in its current state. However, by extending the contexts of using such ontology we 

can identify other possible research activities or even research directions that could be taken. 

In general, we recognize two main fields where this research sets the basis for future scientific 

and professional activities. Those fields are Software Engineering with particular focus on 
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mobile engineering and, secondly, Knowledge Engineering with particular focus on ontology 

development. The created ontology defines the basic infrastructure and elements in the 

proposed framework of methodological interoperability, which is stable for adding other 

platforms, but should be reanalyzed and redefined when it comes to using it for completely 

different methodologies. On the other hand, when talking about research activities in the field 

of software engineering, we have already mentioned the necessity of moving this research 

towards a new phase where a proper information system for guiding the artifacts reuse would 

be developed. The development of such a novel system is not a trivial task and it gives many 

research possibilities in domains of its design, functionality, relationships with the ontological 

knowledge base et cetera. 

Although there are ontologies defined to provide interoperability at different levels of an 

application development process, this novel approach aims to define interoperability at, until 

now unexplored, methodological level. Semantic descriptions created and evaluated in this 

research proved that the proposed approach and the supporting framework represent a solid 

basis for performing additional research in this field. However, developing this ontology is 

only the first step in the chain of activities to be implemented in order to develop a 

semantically supported system for methodological interoperability.  
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RESUMEN EXTENDIDO 

 

1. Introducción 

El desarrollo de sistemas móviles es una tarea exigente que se diferencia del desarrollo 

tradicional en diversos aspectos importantes. Según Hosbond (2005), los dos principales 

desafíos a superar en el dominio del desarrollo de sistemas móviles son los desafíos 

relacionados con el negocio y los desafíos específicos del desarrollo. En esta investigación 

nos centraremos en los desafíos específicos del desarrollo, con especial atención al uso de 

metodologías del software, ya que, según autores como Rahimian and Ramsin (2008), Spataru 

(2010) or La and Kim (2009), se trata de uno de los primeros aspectos a abordar. 

Las metodologías clásicas y ágiles para el desarrollo de software deben ser adaptadas al 

desarrollo de aplicaciones móviles ya que las actuales no cubren las necesidades específicas 

de este tipo de proyectos (La and Kim, 2009). Ha habido varios intentos de diferentes autores 

por crear nuevas metodologías con el objetivo de cubrir las lagunas existentes en el dominio 

de las aplicaciones móviles. Algunas de ellas son  Agile Risk-based Methodology (Rahimian 

and Ramsin, 2008), MASAM (Jeong et al., 2008), y Mobile-D (Abrahamsson et al., 2004). En 

todo caso aun no existe ninguna investigación exhaustiva que responda a preguntas como 

cuales de las metodologías nuevas o existentes son apropiadas para el desarrollo de 

aplicaciones móviles.  

Uno de los problemas más graves que debe afrontar la mencionada metodología es el de la 

fragmentación, que obliga a los desarrolladores de aplicaciones móviles a enfocarse 

únicamente en plataformas y versiones específicas (Manjunatha et al., 2010), cuando en 

realidad su principal interés es abarcar el mayor abanico posible de usuarios. Esta 

aproximación al desarrollo es poco deseable, lo que provoca que los equipos de desarrollo 

busquen diferentes soluciones de manos de la comunidad de profesionales y de la comunidad 

científica. Un primer tipo de solución es la que permite a los equipos de desarrollo utilizar un 

lenguaje intermedio o un motor de transformación intermedio para programar para distintas 

plataformas al mismo tiempo. Algunos de los proyectos más influyentes de este tipo son 

MobiCloud (Manjunatha et al., 2010), Rhodes (Rhomobile, Inc., 2011) y el generador de 

código de Amanquah & Eporwei (Amanquah and Eporwei, 2009). Estas propuestas tienen 

varias ventajas, pero también importantes inconvenientes como serían la dependencia en el 

esfuerzo invertido en el motor de transformación, en APIs específicas y en el dominio 

específico; la falta de control sobre el código fuente generado; así como otros problemas 

similares. El segundo tipo de solución sería la introducción de aplicaciones “adaptador” 
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nativas en todas las plataformas. Según Agarwal et al. (2009) esta es una de las técnicas 

disponibles para manejar la fragmentación. Como la estandarización de APIs en el mundo de 

los móviles resulta aun imposible, la única vía disponible para aplicarla es el uso de técnicas 

de programación en las que se hacen llamadas a las interfaces abstractas de módulos que han 

sido portados a todas las plataformas. Los casos más representativos de esta aproximación son 

MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap, 2011) ó Adobe AIR® (Adobe 

Corporation, 2011). Prácticamente todas los inconvenientes que se mencionaron en el caso de 

los lenguajes o motores de transformación siguen estando presentes en este segundo tipo de 

solución. Finalmente, una tercera solución sería el uso de tecnologías web para desarrollar 

aplicaciones web multi-plataforma, pero esta aproximación está fuera del alcance de esta 

investigación ya que difiere en muchos aspectos de las otras dos soluciones propuestas (e 

igualmente tiene sus propias desventajas). 

Por tanto, se centrá en la propuesta de soluciones para mejorar la interoperabilidad 

metodológica entre equipos que trabajan en la misma aplicación pero en diferentes entornos 

de desarrollo nativos. La investigación responderá a las siguientes preguntas: (1) qué 

metodologías y aproximaciones
46

 al desarrollo pueden utilizarse en el desarrollo de 

aplicaciones móviles multi-plataforma; (2) qué artefactos (entradas y salidas de las distintas 

fases del desarrollo que se han definido metodológica y metódicamente) surgen durante el 

desarrollo de aplicaciones móviles, (3) hasta qué punto existen similitudes entre estos 

artefactos y (4) si es posible describir estos artefactos ontológicamente y crear una base para 

el desarrollo de un sistema que soporte la interoperabilidad metodológica. En consecuencia, el 

objetivo principal es la descripción ontológica de los artefactos que surgen en el proceso de 

desarrollo de aplicaciones móviles para dos o más plataformas gestionado 

metodológicamente, y la creación de una base para un proceso más eficiente e interoperable 

de desarrollo multi-plataforma para móviles.  

En ese sentido, la investigación pretende probar la siguiente hipótesis: H1 – Es posible crear 

una descripción ontológica de los elementos de interoperabilidad metodológica que contenga 

aspectos estructurales y semánticos de los conjuntos de artefactos creados en el proceso de 

desarrollo de una aplicación móvil para dos o más plataformas. 

Los capítulos de este resumen están organizados de acuerdo con las preguntas de 

investigación planteadas. En el segundo capítulo se aborda la revisión sistemática de las 

metodologías de desarrollo de aplicaciones para móviles; el tercer capítulo muestra los 

resultados de la implementación de una metodología en dos plataformas distintas y en el 

 

                                                 
46

 Nota del traductor: De las dos posibles traducciones al castellano del término „development approach‟, que son 

„aproximación al/del desarrollo‟ y „enfoque de desarrollo‟, en este texto se ha optado por la primera.  
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cuarto capítulo identificamos y comparamos los artefactos que surgieron en dicho proceso; en 

el quinto capítulo se crea la definición ontológica de los artefactos y en el último capítulo se 

discuten los resultados y se alcanzan las conclusiones. 

 

2. Metodologías de desarrollo para aplicaciones móviles: Una revisión 

sistemática 

“La revisión sistemática de literatura es una forma de evaluar e interpretar todas las 

investigaciones relevantes sobre una pregunta de investigación, un tema o un fenómeno de 

interés. La revisión sistemática busca una evaluación justa de un tema de investigación 

mediante el uso de una metodología rigurosa, auditable y de confianza” (Kitchenham and 

Charters, 2007). Como el método de SLR (systematic literature review) es novedoso en el 

campo de la ingeniería del software, en primer lugar hemos analizado las mejores prácticas a 

la hora de aplicar un método tan exigente en horas de dedicación, y tan exhaustivo. Las guias 

proporcionadas por Kitchenham and Charters (2007) serán seguidas y discutidas a la vez que 

se incluyen las recomendaciones y hallazgos de otros autores influyentes en este ámbito. 

Hemos puesto especial interés en el problema de la aplicación de este método por estudiantes 

de doctorado. Los resultados de esta fase de investigación se muestran a continuación de la 

ejecución del método SLR en las siguientes secciones. 

2.1. Realización del SLR  

Tras realizar una breve revisión preliminar de las metodologías existentes hemos concluido 

que el desarrollo para móviles difiere del desarrollo estandar, que la aproximación ágil es 

ampliamente utilizada en metodologías para desarrollo móvil, y que ninguna de las 

metodologías observadas es aplicable sin esfuerzos extra para hacer el proceso más detallado 

y adecuado a los entornos de desarrollo y los requisitos específicos de las aplicaciones para 

móvil. Esto indica que es necesario realizar una investigación meticulosa e imparcial con el 

objetivo de conseguir una visión general de las posibles metodlogías que podrían utilizarse a 

la hora de desarrollar aplicaciones para dispositivos móviles.    

Además, se ha realizado una investigación preliminar adicional para identificar las revisiones 

sistematicas de literatura ya existentes en el ámbito de las metodologías de desarrollo de 

aplicaciones para móvil. Se han realizado busquedas en las bases de datos IEEExplore, ACM 

Digital library, INSPEC, CiteSeerX y GoogleScholar con la siguiente consulta: (“literature 

review” OR SLR) AND (mobile development). Según la información disponible en las citadas 

bases de datos, no existen revisiones sistemáticas de literatura que cubran el tema de las 

metodologías de desarrollo de aplicaciones móviles, lo cual hace que dicha revisión sea aun 

más necesaria. 
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En un intento de resolver los problemas descubiertos en este análisis, la revisión sistemática 

intentará contestar a las siguientes preguntas de investigación: 

RQ1 – ¿Qué metodologías de desarrollo y aproximaciones aparecen en la literatura, que 

hayan sido definidas teóricamente o aplicadas en la práctica para el desarrollo de 

aplicaciones para móvil? 

RQ2 – ¿Son las metodologías y aproximaciones aplicables en el desarrollo multi-

plataforma de aplicaciones móviles? 

El protocolo de revisión se definió de acuerdo a las instrucciones dadas en (Kitchenham and 

Charters, 2007) y usando la plantilla para el protocolo propuesta en (Biolchini et al., 2005) y 

explicada en más detalle por (Mian et al., 2005). La principal cadena de búsqueda usada en 

esta investigación fue (mobile AND ("software development" OR "system development" OR 

"application development" OR "program development") AND (methodology OR method OR 

approach OR framework OR process OR procedure OR model)), la cual se ejecutó sobre las 

fuentes de datos (revistas y actas de congresos) relevantes y disponibles en el ámbito de la 

ingeniería del software identificadas por los expertos de este campo Brereton et al. (2007), 

Hannay et al. (2007) and by Kitchenham and Charters (2007). 

La revisión de la literatura se llevó a cabo en diferentes fases incluyendo la identificación, la 

aplicación de criterios de inclusión y exclusión, y la evaluación de la calidad. Finalmente 49 

estudios de 6761 se identificaron como relevantes de cara a la extracción y síntesis de datos. 

Tal y como se presenta en las tablas 1 y 2, se identificaron un total de 22 metodologías de 

desarrollo y 7 aproximaciones al desarrollo, tanto de nueva creación como empleadas, y por 

lo tanto aplicables en el desarrollo de aplicaciones móviles multi-plataforma. 

Tabla 1 – Metodologías y aproximaciones desarrolladas 

Nombre Tipo 
Agile Methodology for Mobile Software Development M 

Agile Solo M 

Agile usability process M 

DEAL M 

Integrated Product Development Process for Mobile Software M 

Inter-combined Model M 

MASAM methodology M 

Methodology for Building Enterprise-Wide Mobile Applications M 

MicroApp visual approach M 

Mobile Application Development Methodology M 

Mobile-D M 

New media application prototyping M 

Systems Development Methodology M 

ViP (Virtual Platform) M 

Composite Application Software Development Process Framework A 

MobiLine A 

         Tipo: M - Metodología, A - Aproximación 
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Tabla 2 - Metodologías y aproximaciones empleadas 

Nombre Tipo 
Design Science M 

Dynamic Channel Model M 

Extreme Programming M 

Kanban A 

Mobile-D M 

Mobile Engineering (MobE) M 

Mobile RAD M 

Rapid Application Development M 

Scrum M 

Model Driven Development A 

Model Driven Product Lines A 

Software Product Lines A 

Test Driven Development A 

         Tipo: M - Metodología, A - Aproximación 

Una única metodología se trata en más de un estudio, mientras que el resto de metodologías 

se presenten en un único estudio de los identificados. Adicionalmente, y tal y como se 

esperaba, las metodologías y aproximaciones son bastante nuevas. Solo 4 estudios tienen más 

de 5 años de antigüedad, mientras que el resto de estudios datan de los últimos 5 años. La 

puntuación global de evaluación de la calidad obtenida en el estudio es de 2,735 sobre 5 

(68,38%) con una desviación estándar de 0,903. Esto indica que se trata de un estudio con una 

calidad relativamente baja y una alta desviación en calidad. 

Por otro lado, más autores informan sobre la utilización de una metodología y/o 

aproximación. Un total de 9 metodologías y 4 aproximaciones se presentaron como 

empleadas en los distintos estudios. El hecho más relevante es que solo una metodología 

(Mobile-D) de nueva creación de las identificadas ha sido utilizada. Esta metodología ha sido 

empleada en cinco estudios diferentes, mientras que no se ha halló evidencia en los estudios 

sobre uso del resto de nuevas metodologías y nuevas aproximaciones. 

2.2. Elección de la metodología de desarrollo 

Como la asunción básica de esta investigación es que la interoperabilidad metodológica es 

independiente de la plataforma y de la metodología (i.e. que puede conseguirse con cualquier 

metodología ontológicamente definida), podría elegirse cualquiera de las 22 metodologías 

identificadas. Para evitar una decisión aleatoria, el criterio empleado para elegir la 

metodología de desarrollo fue la novedad y aplicabilidad de la metodología de desarrollo 

según la literatura. El análisis cruzado de los resultados del SLR muestra que Mobile-D es la 

única metodología creada específicamente para el desarrollo de aplicaciones móviles que se 

utiliza en la práctica. Además, se realizó una búsqueda para identificar otras fuentes de 

literatura gris publicadas por los creadores de la metodología, y se encontró que esta 

metodología está documentada a fondo y en detalle contando con diferentes publicaciones de 

la cuáles al más relevante es (Abrahamsson et al., 2005a) 
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3. Implementación de la metodología 

El proceso Mobile-D (Figura 1) incluye cinco fases que se ejecutan en orden parcialmente 

incremental. El objetivo de la primera fase, llamada Explore, es preparar las bases para el 

futuro desarrollo. La fase Initialize debe describir y preparar todos los componentes de la 

aplicación a la vez que se predicen posibles problemas críticos en el proyecto. La fase 

Initialize a veces se denomina también fase de iteración cero (0-iteration) ya que además de la 

puesta en marcha del proyecto (project set-up), se incluyen fases adicionales como el 

planning day, working day y release day, que también se utilizan en la fase Productionize. La 

idea clave de la iteración 0 es asegurar la funcionalidad del entorno de desarrollo a través de 

la implementación de algunas de las características más representativas o a través de la 

creación de un prototipo. Las fases Productionize y Stabilize se ejecutan iterativamente y en 

orden para desarrollar el resto de características del producto. Cada iteración comienza con el 

planning day en la fase Productionize. La primera actividad es el taller post-iteración en 

donde se busca mejorar el proceso de desarrollo para que se ajuste mejor a las necesidades del 

equipo de desarrollo actual. Las siguientes fases que se ejecutan durante el planning day son 

el análisis de requisitos, la planificación de la iteración y la generación de pruebas de 

aceptación. En el working day se trabaja en la implementación mediante desarrollo guiado por 

pruebas, programación por pares, integración continua y refactorización. Este día finaliza con 

una tarea en la que se informa al cliente de la nueva funcionalidad desarrollada. Finalmente el 

release day incluye las actividades de integración y pruebas. La fase Stabilize tiene como 

meta finalizar la implementación, incluyendo la integración de subsistemas si fuese necesario. 

Como esta fase puede contener programación y desarrollo adicional, sus actividades son muy 

similares a las de la fase Productionize.  La única actividad adicional es la relacionada con el 

empaquetado de la documentación. Cada iteración completa debería resultar en una pieza de 

software funcional a nivel de usuario. 

 

Figura 1 – Proceso Mobile-D 

Finalmente, la fase de System Test and Fix tiene la función de detectar si el producto 

implementa correctamente su funcionalidad tal y como la ha definido el cliente. También 

proporciona feedback al equipo de desarrollo sobre la funcionalidad del sistema e información 

sobre errores que resultará necesaria para la última iteración de reparaciones en el proceso 

N iterations 

Explore Initialize Productionize Stabilize 
System Test 

and Fix 
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Mobile-D. Esta última iteración no es obligatoria salvo que el sistema necesite alguna 

reparación, en cuyo caso se realizarán las mismas actividades que en otras iteraciones de 

implementación que ya se han explicado.  

El proceso Mobile-D recomienda encarecidamente la aplicación del desarrollo guiado por 

pruebas ó TDD (del inglés, Test Driven Development), ya que está conectado con todas las 

fases Mobile-D. Las bases y el estado del arte del TDD pueden encontrarse en (Hammond and 

Umphress, 2012). El propósito del TDD es dar a los desarrolladores confianza en que el 

código que producen funcionará correctamente, así como guiar el diseño de la estructura del 

código para que resulte sencillo de probar. Además la práctica de la refactorización también 

se basa en el TDD, para asegurar que los cambios realizados sobre el código no producen 

errores en la funcionalidad ya programada (Abrahamsson et al., 2005a).  

Para poder observar sistemáticamente el proceso de desarrollo y para identificar los artefactos 

que se crean en él, hemos desarrollado una aplicación prototipo llamada KnowLedge, para las 

plataformas Android y Windows Phone. La aplicación pretende dar la posibilidad a sus 

usuarios de aprender y compartir conocimiento de una forma interactiva y social. Entre otros, 

el uso básico de la aplicación incluye requisitos funcionales como explorar categorías para 

encontrar una fuente de conocimiento sobre un tema particular; enviar peticiones para obtener 

nuevas explicaciones, instrucciones o tutoriales; compartir el conocimiento dentro de un 

grupo de usuarios; etc.  

La arquitectura general del sistema incluye una parte basada en servicios, la aplicación móvil, 

la base de datos remota y el uso de un sistema de posicionamiento global. Además, como 

puede observarse en la Figura 2, la arquitectura de la aplicación móvil también pretende ser 

multicapa con tres capas distintas interconectadas. La cohesión interna (ver (Miller, 2008)) de 

los módulos debe ser alta, mientras que el acoplamiento externo debe mantenerse bajo.  

 

Figure 2 - Arquitectura de la aplicación móvil 

 

APIs 

3rd party APIs 

Local Database 

Program Logic 

User Interface 

Web 

service 

interface 

Web 

service 

Mobile Application 



 

 

396 

 

El proceso Mobile-D resultó sencillo de seguir gracias a su clara especificación técnica y a su 

buena documentación, y el proceso de desarrollo completo fue más rápido de lo inicialmente 

planeado. En la Figura 3 se muestran algunas capturas de pantalla de la aplicación. 

     

Figura 3 – Capturas de pantalla de la aplicación KnowLedge 

En el caso del desarrollo de la aplicación de Windows Phone el proceso se aplicó de nuevo 

por completo, pero como la estructura de los artefactos generados era la misma que en el caso 

de Android, en este caso nos centramos en la identificación del significado (semántica) de los 

distintos artefactos y en sus posibilidades de reutilización. Aunque esperábamos algunas 

similitudes entre los artefactos, los resultados fueron sorprendentes: gran parte de los 

artefactos resultaron completamente o parcialmente reutilizables. A pesar de que se 

experimentaron algunos problemas específicos para la plataforma Windows Phone y algunos 

problemas durante las pruebas, la duración del proceso de desarrollo en esta plataforma se 

acortó en 30 días de trabajo comparándolo con la duración planificada, y en 16 días de trabajo 

(18.4%) comparándolo con el caso de Android. 

 

4. Identificación de artefactos 

Al haber numerosas definiciones de artefacto (p. ej. de Hilpinen (2011) ó de Parker (2011)), 

hemos adoptado la definición de Conradi (2004) que dice que un artefacto es “cualquier pieza 

de software (i.e. modelos/descripciones) desarrollada y utilizada durante el desarrollo y el 

mantenimiento de software”. Dado que la meta de esta investigación es analizar únicamente 

los aspectos estructurales y semánticos del conjunto de artefactos, hemos realizado un análisis 

desde el punto de vista del concepto semántico, mientras que otros posibles puntos de vista 

como el del concepto procedural o el del concepto pragmático no se han cubierto. Por tanto, 
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únicamente hemos observado los artefactos y sus conexiones con las actividades y tareas, tal 

y como se muestra en la Figura 4. 

 

 

Figura 4 - Semántica de los artefactos y en su origen  

 

El análisis de artefactos se realizó en dos pasos. En primer lugar analizamos la librería del 

proceso Mobile-D (Abrahamsson et al., 2005a) e identificamos a alto nivel los documentos y 

el resto de entregables independientes de la plataforma. En segundo lugar, como la 

aproximación de identificar y agrupar los artefactos en función de las fases de origen no sería 

adecuada, y como durante la fase de implementación se recolectaron datos adicionales de los 

artefactos, decidimos sistematizar y describir todos los artefactos identificados para ambas 

plataformas usando la plantilla presentada en la Tabla 3. 

Tabla 3 – Plantilla para describer los artefactos identificados 

Nombre del 

artefacto 
Tipo Descripción 

Input y output de cada fase 

I II III IV V 
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u
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t 

 

Por tanto, desde un punto de vista conceptual, hemos creado una base solida para identificar 

no solo los documentos que han sido creados, si no también otros artefactos que podrían ser 

difíciles de identificar si el proyecto fuese desarrollado fuera del laboratorio. 

La Tabla 4 muestra parte de la lista de artefactos identificados, junto con su clasificación 

inicial, descripción y conexión con las fases del proceso Mobile-D. Hemos usado la notación 

estándar CRU para denotar los artefactos creados (C), usados/leídos (R) y actualizados (U). 

 

Producing Using some 

Performed by 

utilizing 

Consists of Mobile-D 

Process 

Methods and 

Practices 
Tools 

Inputs 

Outputs Activities 

and Tasks 

Artifacts 
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Tabla 4 – Lista parcial de artefactos identificados en el proceso de desarrollo para Android 

Nombre del 

artefacto 
Tipo Descripción 

Input y output de cada fase 

I II III IV V 

In
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u
t 
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u

tp
u

t 
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t 
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u
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u

t 
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O
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O
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u
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O
u

tp
u

t 

Mobile-D process 

library 
Documento 

La Mobile-D process library describe la 

metodología Mobile-D en detalle. Se 

utiliza como guía de la metodología en 

todas sus fases. (Abrahamsson et al., 

2005a) 

R  R  R  R  R  

Product proposal Documento 

Se genera antes de comenzar el proceso de 

desarrollo. Describe la idea general inicial 

del producto. 

R          

Project plan Documento 

Contiene toda la información sobre el 

proyecto incluyendo la definición del 

cliente, alcance, actividades planificadas y 

su duración, planes de documentación, etc. 

Si se utiliza junto con prácticas ágiles, este 

documento también se actualiza durante las 

iteraciones. 

 C R U R U     

… … …           

 

El proceso de identificación resultó en un total de 60 artefactos diferentes para el proceso de 

desarrollo en Android y 61 artefactos para el de Windows Phone. La unión de estos dos 

conjuntos resulto en un total de 71 artefactos identificados que se pueden agrupar en 12 

grupos según su tipo.  

En el análisis multi-plataforma encontramos que 50 artefactos (70,42% de todos los 

identificados)  son comunes a ambos desarrollos. Además muchos de los artefactos comunes 

son independientes de la plataforma ya que se trata de productos propios de la aproximación 

metodológica. En total, 20 de los 50 artefactos comunes identificados (40,00%) han sido 

creados y obtenidos una única vez, ya que eran idénticos en ambos procesos de desarrollo. 

Por otra parte, hay 13 artefactos (26,00%) que solo pueden ser reutilizados parcialmente 

mientras se realiza el desarrollo en la segunda o posteriores plataformas. Finalmente, 

reconocimos 17 artefactos (34,00% de todos los artefactos comunes) con un nivel muy bajo 

de posible reutilización. Estos han sido identificados como los artefactos que deben ser 

desarrollados desde el principio para cada plataforma de destino. La pre-visualización de 

resultados del análisis multi-plataforma puede encontrarse en la Tabla 5. El resto de artefactos 

han sido clasificados como artefactos dependientes de la plataforma, los cuales tienen algunas 

partes semánticas o sintácticas reutilizables como las secuencias de instrucciones, iteraciones, 

algoritmos, etc. 
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Tabla 5 – Lista parcial de artefactos comunes en Android y Windows Phone 

Nombre del artefacto Idéntico 
Parcialmente 

Reutilizable 
Diferente 

Mobile-D process library X   

Product proposal X   

Initial requirements document X   

Project plan  X  

Project plan checklist  X  

Project plan checklist template X   

Project plan Gantt chart X   

Measurement plan  X  

Architecture line description   X 

…    

En total 33 artefactos (66.00% de los artefactos comunes) son completamente o parcialmente 

reutilizables. Esto nos lleva a concluir que los resultados obtenidos motivan y proporcionan 

una sólida base para el análisis semántico que se muestra a continuación. 

 

5. La ontología para la interoperabilidad metodológica 

El término “ontología” ha sido tomado del ámbito de la filosofía, pero su uso y significado en 

informática toma una perspectiva nueva y adaptada. Como no existe consenso sobre la 

definición de ontología, en el contexto de esta investigación consideramos que una ontología 

es una conceptualización explícita y formal de un conocimiento común compartido en un 

dominio de interés que incluye un vocabulario de términos para describir los elementos del 

dominio, la semántica para definir las relaciones de los elementos del dominio, y la 

pragmática para definir los posibles usos de estos elementos. 

5.1. Enfoque para el desarrollo de la ontología 

Noy and McGuinness (2001) ofrecen un revisión exhaustiva de las posibles razones para usar 

ontologías. Estos autores reconocen el uso de ontologías para: compartir conocimiento común 

sobre la estructura de cierta información entre personas o agentes software, permitir la 

reutilización de conocimiento del dominio, hacer explícitas las suposiciones de un dominio, 

separar el conocimiento de un dominio del conocimiento operacional, y analizar el 

conocimiento de un dominio. Adicionalmente, las ontologías se emplean como mecanismos 

intermediadores en el enfoque centrado en la intermediación (intermediary-based approach) 

para conseguir interoperabilidad semántica (Park and Ram, 2004) que es de especial interés 

en esta investigación. Tal interoperabilidad, de acuerdo a Paulheim and Probst (2010), puede 

realizarse a diferentes niveles que después definen la integración en el nivel de datos, la 

integración en el nivel de lógica de negocio y la integración en el nivel de interfaz de usuario, 

pero sorprendentemente, la interoperabilidad a nivel metodológico rara vez se menciona en la 

literatura. 
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Aunque existen diferentes tipos de ontologías (veáse Lovrenčić (2007)), la ontología objeto 

de esta investigación se clasifica como una ontología del dominio. Una ontología del dominio 

puede definirse como una red de conceptos del modelo del dominio (temas, elementos del 

conocimiento) que definen los elementos y las relaciones semánticas entre ellos (Brusilovsky 

et al., 2005). El uso de ontologías del dominio es adecuado para describir todo tipo de 

contenido relacionado con la metodología de desarrollo y la aproximación al desarrollo. 

Igualmente, existen diversos estudios que proporcionan una visión general sobre 

metodologías para el diseño de ontologías, como son (Dahlem, 2011), (Lovrenčić, 2007) y 

(Kabilan, 2007). Sin embargo, por sus características en lo relativo a simplicidad, enfoque en 

los resultados y aproximación iterativa, podemos citar la metodología propuesta por Noy and 

McGuinness (2001), es decir Ontology Development 101 (OD101), como una metodología 

ágil de desarrollo de ontologías. Esta es la razón por la que la consideramos como la más 

conveniente para nuestro proceso de desarrollo y por la que la emplearemos para definir 

nuestra ontología. Finalmente, existen distintas posibilidades en cuanto a las herramientas de 

desarrollo de ontologías y los lenguajes de desarrollo de ontologías. La investigación 

realizada por Khondoker y Mueller (2010) mostró que con diferencia Protégé es la 

herramienta más empleada. Como Protégé está alineada con la metodología OD101 y es 

ampliamente utilizada por científicos y profesionales en campos como el Desarrollo de 

Sistemas de Información y la Gestión del Conocimiento entre otros, decidimos usarla en 

nuestra investigación también. Con posterioridad y dado que Protégé trabaja con dos 

lenguajes de representación, Frames y OWL, comparamos ambos y seleccionamos OWL2 DL 

como el más apropiado en nuestro caso. 

5.2. Desarrollo de las ontologías 

El proceso de desarrollo de la ontología se llevó a cabo en tres pasos. Primero se desarrolló 

una ontología para el caso de Android, después se desarrolló una metodología para el caso de 

Windows Phone y finalmente se fusionaron ambas ontologías en una única. 

La lista de términos que aparecen en el dominio de interés se creó incrementalmente durante 

todo el proceso de desarrollo. La lista final de términos que son la base de la ontología 

incluye: phase, activity, task, artifact, task input, task output, artifact type, artifact origin, 

artifact usage, artifacts hierarchy, reusability, artifact similarity. Para el proceso de 

definición de clases y su jerarquía, seguimos las directrices de Uschold y Gruninger (1996) y 

usamos una aproximación del centro hacía afuera (middle-out) definiendo en primer lugar los 

conceptos más destacados para luego realizar las generalizaciones y especializaciones 

necesarias. Esta aproximación produjo un total de 152 clases de definición organizadas en 7 

clases de alto nivel para Android; 153 clases igualmente organizadas para Windows Phone y 
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213 clases en la ontología fusionada final. Los artefactos de alto nivel de la ontología final se 

presentan en la figura 5.  

Para definir el conocimiento de la estructura, semántica y uso de los elementos de la ontología 

se definieron 12 propiedades de objeto para las dos ontologías específicas y 14 propiedades de 

objeto para la ontología fusionada final. Estas propiedades son: consistsOf, createsArtifact, 

hasArtifactOrigin, hasArtifactType, includesArtifact, hasReusabilityLevel, isCreatedByTask, 

isPartOfArtifact, isPerformedIn, isSimilarToArtifact, isUpdatedByTask, isUsedByTask, 

updatesArtifact, usesArtifact. 

 

Figura 5 – Artefactos de alto nivel de la ontología 

La figura que describe parte de la ontología final muestra que Artifact está finalmente 

conectado con Task, ArtifactOrigin, ArtifactType y ReuseLevel. De entre estas relaciones, la 

relación con Task es la más fuerte dado que está definida con tres propiedades (cada una de 

las cuales tiene la propiedad invertida). Aunque existen, las relaciones entre el resto de clases 

de alto nivel no se presentan en la figura con el fin de que esta se centre en los artefactos 

únicamente. 

Para conectar las instancias de las clases con las propiedades definidas se siguieron las 

restricciones, reglas y sintaxis de OWL 2 DL. Adicionalmente, OWL DL se basa en 

paradigma lógico Open World Assumption (OWA). Este paradigma asume que no se puede 
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concluir que algo no existe hasta que se afirma explícitamente que no existe. Por ejemplo, 

para definir completamente los artefactos metodológicos tuvimos que usar axiomas de 

clausura y declarar explícitamente que tales artefactos no se crean ni se modifican durante el 

proceso de desarrollo. Simplemente se utilizan. Un ejemplo de dicha descripción se muestra 

en el fragmento de código 1. 

SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only Document 

hasArtifactType some Document 

isUsedByTask only Task 

isUsedByTask some Task 

not (isCreatedByTask some Task) 

not (isUpdatedByTask some Task) 

Código 1 - Descripción de clase suficiente en el paradigma OWA 

Durante el desarrollo de la ontología para el caso de Android nos centramos en el proceso de 

desarrollo guiado por la metodología de desarrollo seleccionada desarrollando la ontología 

desde cero. En la segunda interacción nos centramos en reutilizar la ontología existente 

probando su validez y flexibilidad. Esto validó por lo tanto el modelo conceptual que es la 

base de las ontologías dirigidas hacía una única plataforma. 

Durante el desarrollo de la descripción ontológica unificada nos centramos en la fusión, 

actualización y evaluación. La mayoría del proceso de fusión se realizó automáticamente 

(veáse Figura 6). Tras la fusión de las dos ontologías, no hubo redundancia de la que ocuparse 

al igual que tampoco problemas al actualizar la ontología con nuevos conceptos. Esto prueba 

que la metodología es la vez reusable y extensible. 

Los términos básicos definidos para la ontología del caso de Android se reutilizaron en la 

ontología para el caso de Windows Phone y por lo tanto se incluyen también en la ontología 

final. Como pretendíamos mejorar nuestra metodología con la conceptualización referente a la 

reutilización de artefactos, tuvimos que introducir un par de términos nuevos importantes 

(reusability y artifact similarity). 

La ontología creada consta de 213 clases, 14 propiedades de objeto y 2213 axiomas definidos 

en el sub-lenguaje de expresión ALCRIF DL. La ontología en el formato nativo OWL/XML 

puede descargarse de http://barok.foi.hr/~zstapic/ont/mcao.owl, mientras que la 

documentación completa OWLDoc de la ontología puede encontrase en 

http://barok.foi.hr/~zstapic/ont/mcao/doc/. 

 

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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Figura 6 – Ejemplo de fusión automatica de ontologías 

5.3. Evaluación de la ontología final 

Para verificar y validar la ontología, durante el ciclo de vida del proceso de desarrollo, se han 

llevado a cabo los siete mecanismos siguientes de verificación y validación: 

1. Proceso de desarrollo de la ontología dirigido metodológicamente 

2. Seguir las recomendaciones y consejos de otros autores 

3. Uso de herramientas de razonamiento para verificar la ontología en cada iteración 

4. Uso de la herramienta de validación para W3C OWL 

5. Uso del plug-in de evaluación de ontologías 

6. Uso de consultas DL para obtener información vía inferencia sobre el 

conocimiento de la ontología 

7. Comprobación de los resultados por expertos en el dominio 

Los primeros cinco mecanismos de evaluación están relacionados con la verificación de la 

ontología y se emplearon para reducir el riesgo de cometer errores sintácticos y semánticos 

durante todo el proceso de desarrollo de la ontología. 

Los últimos dos mecanismos están relacionados con la validación de la ontología. Estos dos 

mecanismos se emplearon al final del proceso de desarrollo para comprobar si la ontología 

representa el domino de conocimiento de una forma semánticamente correcta. Las consultas 

se crearon y ejecutaron sobre la ontología para responder las cuestiones relativas al desarrollo 

para una única plataforma y a la reusabilidad semántica definidas al principio del proceso de 

creación de la ontología. Por ejemplo, para obtener todos los artefactos reutilizables que se 

usaron, crearon o actualizaron durante la tarea Iteration Planning, se puede usar una consulta 

como la siguiente: 

acao: 

ProductBacklog 

acao: 

UnitTest 

acao: 

ProductBacklog 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao – IRI prefix of http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#  

wpcao – IRI prefix of http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology# 

            – reused construct  

Android Case Artifact Ontology Automatically merged ontology WindowsPhone Case Artifact Ont. 
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Artifact 

 and ((isUsedByTask some IterationPlanningTask)  

   or (isCreatedByTask some IterationPlanningTask)  

   or (isUpdatedByTask some IterationPlanningTask)) 

 and (ReusableArtifacts) 

Código 2 – Artefactos reutilizables por tarea 

El resultado de la consulta: 

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan, 

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart, 

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate 

La siguiente consulta enumera los artefactos del tipo específico Document que son completa o 

parcialmente reutilizables. 

Artifact  

 and (hasArtifactType some Document) 

 and ((hasReusabilityLevel some Completely) 

  or (hasReusabilityLevel some Partially)) 

Código 3 – Artefactos reutilizables por tipo 

El resultado de la consulta es el siguiente: 

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog, 

ProductProposal, ProjectPlan 

El resto de consultas se declararon de forma similar y los resultados fueron analizados por un 

experto en el dominio. El uso de mecanismos de evaluación a lo largo del proceso de 

desarrollo junto con la validación positiva son prueba de la calidad y completitud de la 

ontología. Esto nos lleva a la conclusión final que es que la ontología de artefactos del caso 

multi-plataforma representa una base de conocimiento que puede ser empleada en el 

desarrollo de un sistema de información con el objetivo de guiar a los equipos de desarrollo 

para conseguir interoperabilidad metodológica mediante la reutilización de los artefactos que 

se creen en el proceso de desarrollo de aplicaciones móviles multi-plataforma. 

 

6. Discusión y conclusiones 

A lo largo de esta investigación hemos señalado al menos cinco aspectos importantes que 

deben hacer que el proceso de investigación sea transparente y repetible. Hemos puesto 

especial énfasis en la motivación, resultados, contribuciones, rigor y evaluación de la 

investigación. En cuanto a la motivación hemos querido destacar las razones para realizar la 

investigación. En lo relativo a resultados y contribución hemos tenido como objetivo 

sistematizar los resultados obtenidos y la contribución al conocimiento. En la discusión sobre 

el rigor de la investigación hemos querido señalar nuestro enfoque y sus principales 



 

 

405 

 

características, y en la discusión sobre la evaluación queríamos hacer especial hincapié en los 

mecanismos de evaluación empleados para verificar y validar el método empleado y los 

resultados obtenidos. 

En esta investigación se pueden identificar varias limitaciones. Entre ellas se mencionan las 

siguientes: (1) El mayor reto al que se hizo frente en la primera fase de la investigación fue 

que la realización de la revisión sistemática de la literatura fue llevada a cabo por un único 

investigador resultando complicada y consumiendo mucho tiempo. (2) Las suscripciones 

institucionales a las fuentes de datos científicas disponibles son muy pobres en Croacia y algo 

mejores en España. (3) La falta de información sobre proyectos desarrollados para el 

desarrollo de aplicaciones móviles en compañías de desarrollo para dos o más plataformas 

nos obligó a desarrollar una aplicación prototipo de laboratorio. (4) La ontología presenta solo 

el desarrollo para dos plataformas objetivo. Y (5), solo se ha cubierto una metodología de 

desarrollo y una aproximación al desarrollo. Todos los problemas mencionados pueden 

reconocerse como limitaciones de esta investigación, pero debemos tener en cuenta que el 

objetivo principal de la investigación es proponer un nuevo marco o aproximación que pueda 

emplearse para afrontar el problema de la fragmentación en plataformas móviles.  

Siguiendo los objetivos de investigación definidos al principio del proceso, hemos 

identificado las metodologías que se podrían emplear para el desarrollo de aplicaciones 

móviles; hemos implementado la metodología y la aproximación seleccionadas y hemos 

creado una aplicación móvil para dos plataformas; hemos identificado y analizado los 

artefactos creados durante el proceso, y hemos creado una definición ontológica que describe 

los artefactos conforme a la metodología Mobile-D desde el punto de vista de la reutilización. 

De acuerdo a los resultados obtenidos durante la evaluación y prueba de la ontología, 

podemos concluir que la representación ontológica representa una base sólida que puede ser 

empleada en el desarrollo de un sistema de información que tenga el objetivo de guiar a los 

equipos de desarrollo a que consigan interoperabilidad metodológica reutilizando los 

artefactos creados en el proceso de desarrollo de aplicaciones móviles multi-plataforma. 

Además,  

Además, hemos probado que la descripción ontológica es altamente flexible y extensible, lo 

que permite actualizarla con información sobre nuevos artefactos, dependientes o 

independientes de la plataforma, sin necesidad de cambiar la infraestructura subyacente dada 

por la jerarquía principal de clases y las particiones de valor o propiedades definidas. 

Finalmente, el modelo permite la creación de consultas en Lógica Descriptiva (Description 

Logic) que pueden emplearse para obtener información codificada en el conocimiento de la 

ontología directa o indirectamente. Hemos mostrado ejemplos de tales consultas destinadas, 
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entre otras cosas, a obtener información sobre las cuestiones de competencia declaradas al 

principio del desarrollo de la ontología.  

Por lo tanto, podemos concluir que es posible crear una descripción ontológica de los 

elementos de interoperabilidad metodológica que contenga aspectos estructurales y 

semánticos de los conjuntos de artefactos creados en el proceso de desarrollo de una 

aplicación móvil para dos o más plataformas, lo que confirma nuestra hipótesis H1. 

Esta investigación presenta un amplio conjunto de actividades que han dado lugar a un 

producto final que se puede utilizar en su estado actual. Sin embargo, mediante la ampliación 

de los contextos de uso de dicha ontología podemos identificar otras actividades de 

investigación posibles o incluso líneas de investigación que podrían adoptarse. En general, 

reconocemos dos campos principales en los que esta investigación sienta las bases para 

futuras actividades científicas y profesionales. Esos campos son la Ingeniería de Software con 

especial énfasis en la Ingeniería Móvil y, en segundo lugar, la Ingeniería del Conocimiento, 

con especial énfasis en el desarrollo de ontologías. La ontología creada define la 

infraestructura básica y los elementos del framework propuesto para la interoperabilidad 

metodológica, que es estable para añadir nuevas plataformas, pero que debe reanalizarse y 

redefinirse cuando se trate de utilizarlo para metodologías completamente distintas. Por otro 

lado, cuando se habla de las actividades de investigación en el campo de la ingeniería de 

software, ya hemos mencionado la necesidad de trasladar la investigación a una nueva fase en 

la que se desarrollará un sistema de información adecuado para guiar en la reutilización de 

artefactos. El desarrollo de un sistema tan novedoso no es una tarea trivial y da muchas 

posibilidades de investigación en el ámbito de su diseño, su funcionalidad, y su relación con 

la base de conocimiento ontológico entre otras cosas. 

Aunque existen ontologías definidas para proporcionar interoperabilidad a diferentes niveles 

del proceso de desarrollo de aplicaciones, este nuevo enfoque tiene por objetivo definir la 

interoperabilidad al, hasta ahora inexplorado, nivel metodológico. Las descripciones 

semánticas creadas y evaluadas en esta investigación prueban que el enfoque y el framework 

que los sustenta representan una base sólida para llevar a cabo más investigación en este 

ámbito. Sin embargo, el desarrollo de esta ontología es sólo el primer paso en la cadena de 

actividades que se deberían implementar a fin de desarrollar un sistema de apoyo semántico 

para la interoperabilidad metodológica. 
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PROŠIRENI SAŽETAK 

 

1. Uvod 

Razvoj mobilnih aplikacija je izazovan zadatak koji se razlikuje od tradicionalnog razvoja u 

nekoliko važnih aspekata. Prema Hosbondu (2005), dva glavna skupa izazova trebala bi se  

rješavati u domeni razvoja mobilnih sustava. To su izazovi povezani s poslovanjem i izazovi 

specifični za razvoj. U ovom istraživanju usredotočit ćemo se na izazove specifične za razvoj, 

te ćemo posebnu pozornost obratiti na korištenje metodike razvoja. Neki autori, kao što su 

Rahimian i Ramsin (2008), Spataru (2010) ili La i Kim (2009), upravo korištenje metodike 

razvoja smatraju prioritetom pri razvoju mobilnih programskih proizvoda. 

Postojeće klasične i agilne metodike razvoja softvera ne pokrivaju posebne zahtjeve razvoja 

mobilnih aplikacija te bi u tu svrhu trebale biti prilagođene (La i Kim, 2009). Postoji nekoliko 

pokušaja različitih autora koji su kreirali nove metodike kako bi uklonili nedostatke u domeni 

razvoja mobilnih aplikacija, a neke od njih su Agilna metodika bazirana na uklanjanju riziku 

(Rahimian i Ramsin, 2008), MASAM (Jeong et al., 2008) i Mobile-D (Abrahamsson et al., 

2004). Ipak, nismo pronašli sveobuhvatno istraživanje koje odgovara na bitna pitanja kao na 

primjer koje postojeće ili nove metodike su pogodne za razvoj mobilnih aplikacija. 

Povrh problema sa primjenom metodike, problem fragmentacije prisiljava programere 

mobilnih aplikacija da se u razvoju usredotoče samo na određene platforme i verzije 

(Manjunatha et al., 2010). Budući da su mobilne aplikacije prvenstveno usmjerene na širok 

spektar korisnika, takav pristup nije poželjan i razvojni timovi posežu za različitim rješenjima 

i pristupima koji su predloženi od strane stručne i znanstvene zajednice. Prvo, želimo 

spomenuti pristup koji omogućuje razvojnim timovima koristiti posrednički jezik ili pak 

posrednički sustav za transformaciju kôda kako bi pisali jedan kôd za nekoliko ciljanih 

platformi. Neki od najutjecajnijih projekata su MobiCloud (Manjunatha et al., 2010), Rhodes 

(Rhomobile, Inc., 2011) i Amanquah & Eporwei generator koda (Amanquah i Eporwei, 

2009). Ovi pokušaji imaju nekoliko prednosti, ali također imaju i značajne nedostatke, kao što 

su ovisnost o naporima uloženim u sustav za transformaciju, korištenje specifičnih API-ja i 

primjena u samo specifičnim domenama, nedostatak kontrole nad generiranim izvornim 

kodom i slično. Drugo moguće rješenje problema fragmentacije moglo bi biti uvođenje 

adapter aplikacija (prilagodnika) kao izvornih aplikacija za svaku ciljanu platformu. Prema 

Agarwal et al. (2009) ovo je jedan od dva glavna pristupa rješavanju problema fragmentacije. 

Budući da standardizacija API-ja u mobilnom svijetu još uvijek nije moguća, korištenje 

tehnika programiranja u kojima su pozivi prema sučeljima omotani, to jest apstrahirani, u 
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odvojene module koji su potom prilagođeni različitim platformama ostaje kao jedino rješenje. 

Predstavnici ovakvog pristupa su MobiVine (Agarwal et al., 2009), PhoneGap (PhoneGap, 

2011) i Adobe AIR® (Adobe Corporation, 2011). Gotovo svi nedostaci navedeni za rješenja 

koja su temeljena na transformaciji koda također postoje i u ovom pristupu. Na posljetku, 

treći pristup je korištenje web tehnologija i razvoj više-platformskih web aplikacija, ali kako 

se u mnogim aspektima razlikuje od pretpostavki ovog istraživanja, ovaj pristup (koji također 

ima svoje nedostatke) nije u domeni ovog istraživanja. 

Stoga, ovo istraživanje fokusira se na prijedlog rješenja koje bi omogućilo veću metodološku 

interoperabilnost između timova koji razvijaju istu aplikaciju ali na različitim (urođenim) 

razvojnim okruženjima. Istraživanje odgovara na sljedeća pitanja: (1) koje metodike i razvojni 

pristupi mogu biti korišteni pri razvoju mobilnih aplikacija: (2) koji artefakti (zahtijevani ulazi 

i rezultati provedbe aktivnosti) nastaju pri razvoju mobilnih aplikacija, (3) postoje li i kako su 

velike sličnosti između artefakata i (4) je li moguće ontološki opisati ove artefakte i kreirati 

osnovu za razvoj sustava koji bi omogućio metodološku interoperabilnost. Stoga, osnovni cilj 

istraživanja je ontološki opisati artefakte koji nastaju u metodički upravljanom procesu 

razvoja mobilne aplikacije za dvije ili više platformi te time kreirati osnovu za efikasniji i 

interoperabilniji proces razvoja više-platformskih mobilnih aplikacija.  

S tim u vezi, definirana je i hipoteza istraživanja koja glasi: H1 - Moguće je definirati 

ontološki opis elemenata metodološke interoperabilnosti takav da sadrži strukturne i 

semantičke aspekte u skupovima artefakata koji nastaju u procesima razvoja mobilne 

aplikacije za dvije ili više mobilnih platformi.  

Poglavlja ovog sažetka su organizirana sukladno postavljenim istraživačkim pitanjima. Drugo 

poglavlje prikazuje sustavni pregled literature o metodikama razvoja mobilnih aplikacija; 

treće poglavlje prikazuje rezultate implementacije metodike pri razvoju za dvije platforme; u 

četvrtom poglavlju prikazana je ontološka definicija artefakata, a u posljednjem poglavlju 

prikazani su diskusija rezultata i zaključak.  

 

2. Metodike razvoja mobilnih aplikacija: sustavni pregled literature 

 “Sustavni pregled literature (SLR) predstavlja način vrednovanja i interpretiranja svih 

dostupnih rezultata istraživanja relevantnih za definirano istraživačko pitanje, područje ili 

fenomen od interesa. Sustavni pregled ima za cilj prikazati objektivno vrednovanja 

istraživačke teme korištenjem vjerodostojne, stroge i provjerljive metodike” (Kitchenham i 

Charters, 2007). Budući da je SLR metoda nova u području softverskog inženjerstva (SE), 

prvo smo analizirali najbolju praksu u provođenju ove složene i vremenski zahtjevne metode. 

Pri tome smo slijedili opis provedbe metode dan u (Kitchenham i Charters, 2007), koji smo 
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upotpunili preporukama i rezultatima drugih utjecajnih autora u području SE. Posebna 

pozornost je usmjerena na provođenje metode od strane doktorskih studenata. Rezultati ovog 

istraživanja su korišteni pri provedbi SLR-a, kako je prikazano u sljedećem poglavlju. 

2.1. Provedba SLR-a 

Rezultati preliminarnog istraživanja o postojećim metodikama razvoja pokazali su da se 

razvoj za mobilne uređaje razlikuje od razvoja ostalih aplikacija, da je agilni pristup najčešće 

korišten u metodikama razvoja mobilnih aplikacija te da niti jedna od promatranih metodika 

nije primjenjiva bez dodatnih napora kako bi se proces detaljnije opisao ili prilagodio 

specifičnim razvojnim okruženjima ili zahtjevima mobilnih aplikacija. Ovo ukazuje na 

potrebu sveobuhvatnog i objektivnog istraživanja kako bi se dobio uvid u metodike koje se 

mogu koristiti za razvoj aplikacija za mobilne uređaje. 

Također, provedeno je i drugo preliminarno istraživanje kako bi se identificirali postojeći 

sustavni pregledi literature o metodikama razvoja mobilnih aplikacija. Pretražene su 

IEEExplore, ACM digitalna biblioteka, INSPEC, CiteSeerX i GoogleScholar baze podataka 

korištenjem sljedećeg upita: (“literature review” OR SLR) AND (mobile development). 

Informacije dostupne u spomenutim bazama podataka pokazuju da ne postoji sustavni pregled 

literature koji pokriva područje metodika razvoja mobilnih aplikacija. To potvrđuje potrebu za 

ovakvim istraživanjem. 

Kako bi istraživanjem obuhvatili navedene ciljeve, definirana su sljedeća istraživačka pitanja: 

RQ1 – Koje metodike i pristupi razvoja su prikazani u literature kao definirani u teoriji ili 

korišteni u praksi razvoja mobilnih aplikacija? 

RQ2 – Jesu li identificirane metodike i pristupi primjenjivi za razvoj više-platformskih 

mobilnih aplikacija? 

Protokol sustavnog pregleda je definiran sukladno naputcima danim u (Kitchenham i 

Charters, 2007) dok je predložak korišten za izradu protokola definiran u (Biolchini et al., 

2005) i dodatno pojašnjen u (Mian et al., 2005). Upit korišten u glavnom istraživanju je bio 

(mobile AND ("software development" OR "system development" OR "application 

development" OR "program development") AND (methodology OR method OR approach OR 

framework OR process OR procedure OR model)) i izvršen je na dostupnim relevantnim 

elektronskim izvorima (časopisi i zbornici) u polju softverskog inženjerstva kako su predložili 

Brereton et al. (2007), Hannay et al. (2007) te Kitchenham i Charters (2007). 

Pregled literature proveden je kroz nekoliko faza uključujući identifikaciju primarnih izvora 

literature, primjenu kriterija uključivanja i isključivanja te procjenu kvalitete. To je na kraju iz 

početnih 6761 izvor rezultiralo odabirom 49 relevantnih naslova na kojima je provedena faza 

dohvata podataka i sinteze rezultata. 
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Kako je prikazano u tabelama 1 i 2, ukupno su identificirane 22 metodike i 7 pristupa razvoju. 

Ove metodike i pristupi su novo-kreirani (tabela 1) ili postojeći (tabela 2), a pogodni su za 

razvoj više-platformskih mobilnih aplikacija. 

Tabela 1 – Novo-kreirane metodike i pristupi razvoju 

Naziv Tip 
Agile Methodology for Mobile Software Development M 

Agile Solo M 

Agile usability process M 

DEAL M 

Integrated Product Development Process for Mobile Software M 

Inter-combined Model M 

MASAM methodology M 

Methodology for Building Enterprise-Wide Mobile Applications M 

MicroApp visual approach M 

Mobile Application Development Methodology M 

Mobile-D M 

New media application prototyping M 

Systems Development Methodology M 

ViP (Virtual Platform) M 

Composite Application Software Development Process Framework P 

MobiLine P 

         Tip: M - Metodika, P - Pristup 

Tabela 2 – Korištene metodike i pristupi 

Naziv Tip 
Design Science M 

Dynamic Channel Model M 

Extreme Programming M 

Kanban P 

Mobile-D M 

Mobile Engineering (MobE) M 

Mobile RAD M 

Rapid Application Development M 

Scrum M 

Model Driven Development P 

Model Driven Product Lines P 

Software Product Lines P 

Test Driven Development P 

         Tip: M - Metodika, P - Pristup 

Samo je jedna metodika spomenuta u nekoliko izvora literature, dok su sve druge metodike 

prisutne isključivo u jednom izvoru. Također, kao što se i očekivalo, metodike i pristupi u 

području razvoja mobilnih aplikacija su novi. Samo 4 izvora literature su stariji od 5 godina, 

dok su svi drugi izvori mlađi. Provedena procjena kvalitete literature rezultirala je prosječnom 

ocjenom 2,735 od 5 (68,38%) uz standardnu devijaciju od 0,903 iz čega se može zaključiti da 

je kvaliteta literature relativno niska s velikim razlikama od izvora do izvora. 

S druge strane, više autora je prikazivalo korištenje postojećih metodika ili pristupa. Ukupno 

9 metodika i 4 pristupa su korišteni. Važno je spomenuti da je samo jedna metodika 

identificirana kao novo-kreirana i ujedno korištena u nekom drugom primjeru. Korištenje ove 

metodike je prikazano u pet različitih izvora, dok ostale novo-kreirane metodike i pristupi 

nisu prikazani kao korišteni osim u originalnim studijama. 



 

 

413 

 

2.2. Odabir razvojne metodike 

Jedna od osnovnih pretpostavki ovog istraživanja povećanja metodološke interoperabilnosti je 

neovisnost o platformi i primijenjenoj metodici (to jest, može se primijeniti na bilo koju 

metodiku ontološki opisanu). Stoga, za nastavak istraživanja možemo odabrati bilo koju od 

ukupno 22 identificirane metodike. Kako bi izbjegli nasumični odabir, definiran je kriterij za 

odabir koji je temeljen na učestalosti korištenja novo-kreirane metodike u nekom drugom 

primjeru osim u originalnim studijama. Analiza SLR rezultata je pokazala da je samo Mobile-

D metodika specifično kreirana za razvoj mobilnih aplikacija i ujedno u drugim izvorima 

prikazana kao korištena u praksi. Također, provedeno je dodatno istraživanje takozvane sive 

literature kako bi se pronašli dodatni materijali o odabranoj metodici. Rezultati su pokazali da 

je metodika detaljno opisana od strane njenih autora u nekoliko studija od kojih se važnošću 

ističe (Abrahamsson et al., 2005). 

 

3. Implementacija metodike 

Mobile-D proces (pogledaj sliku 1) uključuje pet faza koje se izvode u djelomično 

inkrementalnom pristupu. Cilj prve faze, pod nazivom Istraži, je pripremiti osnove za budući 

razvoj. Faza Inicijaliziraj bi trebala opisati i pripremiti sve komponente aplikacije, te 

prepoznati kritične točke projekta. Faza inicijalizacije se obično naziva i nulta iteracija (0-

iteracija) budući da osim postavljanja projekta uključuje i planiranje, izradu i isporuku koji 

se inače koriste u fazi produkcije. Ideja 0-iteracije je osigurati funkcionalnost razvojnog 

okruženja na način da se implementiraju određeni reprezentativni dijelovi funkcionalnosti 

tehnikom prototipiranja. Faze Produkcije i Stabiliziranja se izvode iterativno sve dok se ne 

razviju sve funkcionalnosti mobilnog proizvoda. Iteracija počinje planiranjem u fazi 

produkcije, a prva aktivnost je poslije-iteracijska radionica koja ima za cilj poboljšati 

razvojni proces kako bi bolje odgovarao novonastaloj situaciji i potrebama tima. Nakon toga 

slijede zadaci analize zahtjeva, planiranja iteracije i kreiranja testova prihvatljivosti i 

izvršavaju se tijekom dana planiranja (eng. Planning day). Radni dan (eng. Working day) se 

temelji na implementaciji temeljenoj na paradigmama razvoja vođenog testiranjem, 

programiranja u paru, neprestane integracije i optimizacije programskog kôda. Ovaj dan 

završava zadatkom obavještavanja naručitelja o novim funkcionalnostima. Konačno, dan 

isporuke (eng. Release day) uključuje aktivnosti integriranja i testiranja rješenja. Faza 

Stabiliziranja ima za cilj dovršiti implementaciju te ukoliko je potrebno integrirati 

podsustave. Kako ova faza može također uključivati razvoj i programiranje, aktivnosti su 

slične aktivnostima faze produkcije. Jedina dodatna aktivnost se odnosi na pripremu 

dokumentacije. Svaka iteracija bi trebala završiti novom funkcionalnošću koja je spremna za 

isporuku korisniku. 
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Slika 1 - Mobile-D proces 

Posljednja, faza Sistemskog testiranja i ispravke pogrešaka služi za provjeru funkcionalnosti 

kreiranog sustava u usporedbi s korisničkim zahtjevima. Također projektnom timu daje 

povratnu informaciju o funkcionalnosti sustava i uočenim pogreškama kako bi se provelo 

ispravljanje pogrešaka kao posljednja iteracija Mobile-D procesa. Ova posljednja iteracija nije 

obvezna, ali kad se provodi onda sadrži sve aktivnosti kao i ostale već pojašnjene faze koje 

sadrže implementaciju. 

Mobile-D sugerira korištenje razvoja upogonjenog testiranjem (eng. Test Driven 

Development – TDD) koji je sastavni dio svih Mobile-D faza. Osnovne i napredne koncepte 

TDD-a može se pronaći u (Hammond i Umphress, 2012). Svrha TDD-a je dati programerima 

sigurnost da je kôd koji kreiraju ispravan te voditi dizajn programskog kôda u strukturu koja 

je lako provjerljiva testovima. Također, optimizacija i restrukturiranje kôda (eng. refactoring) 

se temelje na TDD-u kako bi se osiguralo da promjene nastale na postojećem kôdu nisu 

pokvarile postojeće funkcionalnosti (Abrahamsson et al., 2005). 

Kako bi semantički promotrili proces razvoja te identificirali artefakte koji se u njemu koriste 

i nastaju, razvili smo prototipnu aplikaciju, nazvanu KnowLedge, za Android i Windows 

Phone platforme. Aplikacija ima za cilj omogućiti korisnicima učenje i/ili dijeljenje znanja na 

interaktivan način u obliku društvene mreže. Između ostalih, osnovne funkcionalnosti 

aplikacije uključuju pregledavanje postojećih kategorija i pronalazak postojećeg znanja o 

određenoj temi, slanje zahtjeva za novim pojašnjenjem/instrukcijama/uputama, dijeljenje 

znanja u grupama i slično. 

Sustav je temeljen na servisno orijentiranoj arhitekturi, mobilnoj aplikaciji, udaljenoj bazi, te 

korištenju globalnog sustava za pozicioniranje (GPS). Također, kako se može vidjeti na slici 

2, arhitektura mobilne aplikacije je također višeslojna s tri odvojena ali povezana sloja. 

Unutarnja kohezija (pogledaj (Miller, 2008)) prikazanih modula je visoka nasuprot vanjskoj 

(međusobnoj) povezanosti koja je niska. 

N iteracija 

Istraži Inicijaliziraj Produciraj Stabiliziraj 
Testiraj sustav i 

popravi 
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Slika 2 – Arhitektura mobilne aplikacije 

Metodika Mobile-D ima jasnu tehničku dokumentaciju i jako je dobro dokumentirana te ju je 

bilo jednostavno slijediti pri razvoju koji je u konačnici trajao kraće nego je bilo inicijalno 

planirano. Nekoliko slika ekrana kreirane aplikacije su vidljive na slici 3.  

       

Slika 3 – Slike ekrana aplikacije 

U slučaju razvoja za Windows Phone, cijeli proces je ponovljen, ali budući je struktura 

kreiranih artefakata ostala ista kao u Android scenariju, tijekom ovog procesa razvoja 

pokušalo se fokusirati na načine i mogućnosti ponovnog iskorištavanja postojećih artefakata. 

Iako smo očekivali određene sličnosti između artefakata, rezultati su bili iznenađujući. 

Zaključili smo da su mnogi artefakti u potpunosti ili djelomično iskoristivi. Stoga, iako smo 

tijekom razvoja Windows Phone aplikacije imali određenih problema specifičnih za WP 

platformu te određenih problema s testiranjem, trajanje procesa razvoja je u WP slučaju 

API-ji 

API-ji treće 

strane 

Lokalna baza podataka 

Programska logika 

Korisničko sučelje 

Sučelje 

prema web 

servisu 
Web servis 

Mobilna aplikacija 
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skraćeno za 30 radnih dana u usporedbi s planom, te za 16 radnih dana (18,4%) u usporedbi s 

procesom razvoja za Android. 

 

4. Identifikacija artefakata 

Budući da postoji više definicija artefakta (npr. od Hilpinena (2011) ili od Parkera (2011)), za 

potrebe ovog istraživanja najprikladnija je definicija od Conradija (2004) koji kaže da je 

artefakt „bilo koji dio softvera (to jest model/opis/kôd) kreiran i korišten tijekom razvoja i 

održavanja računalnog programa“. Kako je cilj ovog istraživanja bio analizirati strukturalne i 

semantičke aspekte niza artefakata, proveli smo analizu samo promatrajući semantičke 

koncepte, dok drugi pristupi, kao promatranje proceduralnih koncepata ili pragmatičnih 

koncepata nisu uključeni. Stoga, samo smo promatrali artefakte i njihove veze prema 

aktivnostima i zadacima, kako je prikazano na slici 4.  

 

 

Slika 4 – Fokusiranje na semantiku i izvor artefakata 

Analiza artefakata je provedena u dva koraka. Prvo, analizirali smo Mobile-D procesnu 

biblioteku (Abrahamsson et al., 2005) i identificirali dokumente i druge isporuke koje su 

neovisne o platformi, a definirani su na visokoj razini apstrakcije. Zatim drugo, budući da 

pristup u identificiranju i grupiranju artefakata isključivo temeljem faze izvornog nastanka 

nije dobar, te budući da smo tijekom implementacije prikupili dodatne informacije o 

artefaktima, sistematizirali smo i opisali sve identificirane artefakte za obje platforme 

koristeći predložak kao u tabeli 3.  

Tabela 3 – Predložak opisa artefakata 

Naziv artefakta Tip Opis 

Ulazi i izlazi po fazama 

I II III IV V 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

 

Producira Koristi 

Provedeni 

korištenjem 

Sastoji se Mobile-D 

Proces 

Metoda i 

praksi 
Alate 

Ulazi 

Izlazi Aktivnosti i 

zadaci 

Artefakti 
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Stoga, konceptualno, kreirali smo temelje identificiranja ne samo kreiranih dokumenata već i 

onih artefakata koje bi bilo teško identificirati da je projekt realiziran izvan laboratorija. 

Tablica 4 prikazuje dio liste identificiranih artefakata, uključujući i inicijalnu klasifikaciju, 

opis i vezu prema fazama Mobile-D procesa. Koristili smo klasičnu CRU notaciju kako bi 

smo označili artefakte koji su bili kreirani (C), korišteni/čitani (R) i ažurirani (U).  

Tabela 4 – Dio liste identificiranih artefakata u procesu razvoja za Android 

Naziv artefakta Tip Opis 

Ulazi i izlazi po fazama 

I II III IV V 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

U
la

z 

Iz
la

z 

Mobile-D procesna 

biblioteka 
Dokument 

Procesna biblioteka koja detaljno opisuje 

Mobile-D metodiku. Korištena je kao 

vodić za implementaciju svake faze. 

(Abrahamsson et al., 2005) 

R  R  R  R  R  

Prijedlog projekta Dokument 

Kreiran prije procesa razvoja. Opisuje 

inicijalnu ideju i osnovne funkcionalnosti 

proizvoda. 

R          

Projektni plan Dokument 

Sadrži sve informacije o projektu 

uključujući podatke o korisnicima, domenu 

projekta, planirane aktivnosti i njihovo 

trajanje, planove dokumentacije i slično. U 

skladu je s agilnom praksom, te je ažuriran 

tijekom iteracija. 

 C R U R U     

… … …           

 

Proces identificiranja rezultirao je s ukupno 60 različitih artefakata za Android slučaj te s 61 

artefakt za Windows Phone slučaj. Spoj ova dva niza artefakata rezultirao je s ukupno 71 

identificirani artefakt grupiran u 12 grupa sukladno tipu. 

U analizi artefakata obiju platformi zaključili smo da 50 artefakata (70,42% svih 

identificiranih artefakata) su zajednički za oba razvojna procesa. Također, mnogi od ovih 

zajedničkih artefakata su neovisni o platformi jer su rezultat metodičkog pristupa. Ukupno, 20 

od 50 identificiranih zajedničkih artefakata (40,00%) su kreirani ili korišteni samo jedanput 

jer su bili identični u oba razvojna procesa. Također, 13 artefakata (26,00%) se moglo 

djelomično ponovno iskoristiti pri procesu razvoja za drugu (i svaku sljedeću) platformu. 

Konačno, prepoznali smo 17 artefakata (34,00% svih zajedničkih artefakata) s veoma malom 

razinom moguće ponovne iskoristivosti. Ti artefakti su klasificirani kao oni koje je potrebno 

ponovno razviti za svaku novu platformu. Dio rezultata unakrsne analize može se vidjeti u 

tablici 5. Svi ostali artefakti su klasificirani kao ovisni o platformi, te također imaju određene 

ponovno iskoristive semantičke ili sintaktičke elemente kao što su slijed, iteracije, algoritmi i 

slično. 
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Tabela 5 – Dio zajedničkih artefakata za Android i WP proces razvoja 

Naziv artefakta Isti 
Djelomično ponovno 

korišten 
Različit 

Mobile-D procesna biblioteka X   

Prijedlog projekta X   

Dokument inicijalnih zahtjeva X   

Projektni plan  X  

Lista provjere projektnog plana  X  

Predložak liste provjere projektnog plana X   

Gantogram X   

Plan mjerenja  X  

Opis arhitekture sustava   X 

…    

 

Ukupno, 33 artefakta (66,00% zajedničkih artefakata) su potpuno ili djelomično ponovno 

iskoristiva. Stoga, možemo zaključiti da su ovi rezultati ohrabrujući te predstavljaju čvrste 

temelje i motivaciju semantičkoj analizi koja slijedi. 

 

5. Ontologija za metodološku interoperabilnost 

Izraz "ontologija" preuzet je iz filozofije, ali su njegova uporaba i značenje u računalnoj 

znanosti dobili novu i prilagođenu dimenziju. S obzirom da ne postoji konsenzus o definiciji 

ontologije, u kontekstu ovog istraživanja, pojam ontologija promatramo kao eksplicitnu 

formalnu konceptualizaciju dogovorenog razumijevanja promatrane domene koja uključuje 

rječnik pojmova koji opisuju elemente domene, značenje kako bi se definirale veze elemenata 

domene i pragmatiku u cilju definiranja moguće uporabe tih elemenata. 

5.1. Definiranje pristupa razvoju ontologije 

Noy i McGuinness (2001) su dali sveobuhvatan pregled mogućih razloga za korištenje 

ontologija. Autori su prepoznali mogućnost korištenja ontologija za: dijeljenje uobičajenog 

razumijevanja strukture informacija među ljudima ili softverskim agentima, omogućavanje 

ponovnog korištenja znanja određene domene, eksplicitno navođenje pretpostavki domene, 

odvajanje znanja o domeni od operativnog znanja, analiziranje znanja o određenoj domeni. 

Osim toga, ontologije se koriste kao posredni mehanizam u specifičnom pristupu za 

postizanje semantičke interoperabilnost koji je temeljen na posrednicima (eng. intermediary-

based approach) (Park i Ram, 2004) što je od posebnog značenja u ovom istraživanju. Takva 

interoperabilnost prema Paulheimu i Probstu (2010), može se definirati na različitim 

razinama: semantička interoperabilnost na razini izvora podataka, na razini poslovne logike i 

na razini korisničkog sučelja, ali začudo, interoperabilnost na metodičkoj razini se rijetko 

spominje u literaturi. 
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Iako postoje različite vrste ontologija (vidi Lovrenčić (2007)), ontologija koja je predmet 

ovog istraživanja je klasificirana kao ontologija domene. Ontologija domene može se 

definirati kao mreža pojmova modela domene (teme, elementi znanja) koji definiraju 

elemente i značenjske odnose među njima (Brusilovsky et al., 2005). Korištenje ontologije 

domene pogodno je za opisivanje cjelokupnog sadržaja vezanog za metodiku i pristup razvoja 

aplikacija. Isto tako, postoji nekoliko radova koji daju opsežan pregled metodika razvoja 

ontologije, kao što su (Dahlem, 2011), (Lovrenčić, 2007) i (Kabilan, 2007). Međutim, zbog 

svojih karakteristika kao što su jednostavnost, fokusiranje na rezultate i iterativni pristup, 

možemo Noy i McGuinnessovu (2001) metodiku Ontology development 101 nazvati agilnom 

metodikom razvoja ontologije, a to je razlog zašto ju smatramo kao najpogodniju za korištenje 

tijekom ovog istraživanja. Konačno, tu su i mogućnosti korištenja različitih alata i jezika za 

razvoj ontologije. Istraživanje provedeno od strane Khondokera i Muellera (2010) pokazuje 

da se za razvoj ontologija daleko najviše koristi alat pod nazivom Protégé. Budući da je 

Protégé usklađen s metodikom OD101 te se naširoko koristi od strane znanstvenika i 

stručnjaka u područjima razvoja informacijskih sustava i upravljanja znanjem, odlučili smo ga 

koristiti i u našem istraživanju. Napokon, s obzirom da Protégé radi s dva jezika prikaza 

ontologije, okviri i OWL, oba smo razmotrili i odabrali OWL2 DL kao primjereniji jezik u 

našem slučaju. 

5.2. Razvoj ontologija 

Proces razvoja ontologije je izveden u tri koraka. Prvo smo razvili ontologiju za Android 

platformu, a zatim i ontologiju za Windows Phone platformu. Na kraju smo spojili kreirane 

ontologije u konačnu, zajedničku, ontološku definiciju. 

Popis pojmova koji se pojavljuju u našoj domeni interesa postupno je nastajao tijekom cijelog 

procesa razvoja ontologije. Konačan popis koji su temelj za našu ontologiju uključuje sljedeće 

pojmove: faza, aktivnost, zadatak, artefakt, ulazi u zadatak, rezultati zadatka, tip artefakta, 

podrijetlo artefakta, korištenje artefakta, hijerarhija artefakata, ponovna iskoristivost, 

sličnost artefakata. U procesu definiranja klasa i hijerarhije, slijedili smo savjet od Uscholda i 

Gruningera (1996) i koristili pristup od sredine prema vani (eng. middle-out approach) tako 

što smo prvo definirali važnije koncepte a zatim po potrebi stvorili generalizacije i 

specijalizacije. Pristup je rezultirao s ukupno definirane 152 klase koje su organizirane u 7 

vršnih klasa za Android platformu, 153 klase slično organizirane za Windows Phone 

platformu i 213 klasa u završnoj spojenoj ontologiji. Vršne klase iz konačne ontologije su 

prikazane na slici 5. 

U cilju definiranja znanja o strukturi, semantici i uporabi elemenata ontologije definirali smo 

12 svojstava objekata za dvije specifične ontologije i 14 svojstava objekata za konačnu 

spojenu ontologiju. 
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Ta svojstva su: sastojiSeOd, stvaraArtefakt, imaPodrijetloIzArtefakta, imaTipArtefakta, 

uključujeArtefakt, imaRazinuPonovneIskoristivosti, stvorenJeUZadatku, dioJeArtefakta, 

izvodiSeU, sličanJeArtefaktu, ažuriranJeUZadatku, korištenJeUZadatku, ažuriraArtefakt, 

koristiArtefakt (eng.: consistsOf, createsArtifact, hasArtifactOrigin, hasArtifactType, 

includesArtifact, hasReusabilityLevel, isCreatedByTask, isPartOfArtifact, isPerformedIn, 

isSimilarToArtifact, isUpdatedByTask, isUsedByTask, updatesArtifact, usesArtifact). 

 

Slika 5 – Vršne klase u konačnoj ontologiji 

Slika koja opisuje dio završne ontologije pokazuje da je artefakt u konačnici povezan sa 

Zadatkom (eng. Task), PodrijetlomArtefakta (eng. ArtifactOrigin), TipomArtefakta (eng. 

ArtifactType) i RazinomPonovneIskoristivosti (eng. ReuseLevel). Među tim odnosima, veza sa 

Zadatkom (Task) je najjače jer je definirana s tri svojstva pri čemu svako svojstvo ima 

odgovarajuće povratno svojstvo. Iako postoje, odnosi među ostalim vršnim klasama oni nisu 

prikazani na ovoj slici kako bi se fokusirali samo na Artefakt. 

Za spajanje instanci klasa s utvrđenim svojstvima morali smo slijediti OWL 2 DL sintaksu, 

ograničenja i pravila. Osim toga, OWL DL temelji se na paradigmi logike otvorenog svijeta 

(eng. Open world assumtion), a OWA paradigma polazi od toga da ne možemo zaključiti da 

nešto ne postoji dok nije eksplicitno navedeno da to ne postoji. Na primjer, kako bi se u 

potpunosti definirali metodički artefakti moramo koristiti završne aksiome i izrijekom navesti 
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da takvi artefakti nisu stvoreni niti modificirani u našem razvojnom procesu. Oni su samo 

korišteni. Primjer takvog opisa je dat u kôdu 1. 

SubClass Of: 

Artifact 

hasArtifactOrigin only MethodologicalArtifact 

hasArtifactOrigin some MethodologicalArtifact 

hasArtifactType only Document 

hasArtifactType some Document 

isUsedByTask only Task 

isUsedByTask some Task 

not (isCreatedByTask some Task) 

not (isUpdatedByTask some Task) 

Kôd 1 – Dovoljan opis klase u OWA paradigmi 

Tijekom razvoja ontologije za Android platformu stavili smo naglasak na proces razvoja 

ontologije vođen odabranom metodikom razvoja. U ovom slučaju proces razvoja je proveden 

iz početka. U drugoj iteraciji smo stavili naglasak na ponovnu iskoristivost postojeće 

ontologije što je dokazalo njenu valjanost i fleksibilnost. Time je potvrđen i konceptualni 

model koji je osnova naših ontologija koje opisuju razvoj za jednu platformu. 

U razvoju jedinstvenog ontološkog opisa, naglasak je stavljen na spajanje, ažuriranje i 

evaluaciju ontologije. Veći dio procesa spajanja je učinjen automatski (vidi sliku 6). Nakon 

spajanja dvaju ontologija, nije bilo redundancije kojom bi se morali baviti, te nismo imali 

problema u nadogradnji ontologije s novim znanjem. To dokazuje da je ontologija ponovno 

iskoristiva i da se može proširiti. 

 

Slika 6 – Primjer automatski spojene ontologije 

 

acao: 

ProductBacklog 

acao: 

UnitTest 

acao: 

ProductBacklog 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao: 

ProductBacklog 

acao: 

UnitTest 

wpcao: 

UnitTest 

acao: 

JavaCode 

wpcao: 

CSCode 

acao – IRI prefiks od http://www.foi.unizg.hr/ontologies/AndroidCaseArtifactOntology#  

wpcao – IRI prefiks od http://www.foi.unizg.hr/ontologies/WindowsPhoneCaseArtifactOntology# 

            – ponovno korišteni konstrukt  

Ontologija u Android razvoju Automatski spojena ontologija Ont. u Windows Phone razvoju 
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Osnovni pojmovi definirani u ontologiji razvoja za Android su korišteni u izradi ontologije 

razvoja za Windows Phone i na taj način su također uključeni i u konačnu ontologiju. Kako 

smo se usmjerili na nadogradnju ontologije sa znanjem o ponovnoj iskoristivosti artefakta, 

morali smo uvesti dva nova važna pojma (ponovna iskoristivost i sličnost artefakata). 

Kreirana ontologija sastoji se od 213 klasa, 14 objektnih svojstava i 2213 aksioma definiranih 

pomoću ALCRIF-DL jezika izraza. Ontologija u izvornom OWL/XML formatu može se 

pronaći na http://barok.foi.hr/~zstapic/ont/mcao.owl, dok punoj OWLDoc dokumentaciji 

ontologije može se pristupiti i analizirati ju na http://barok.foi.hr/~zstapic/ont/mcao/doc/. 

5.3. Vrednovanje završne ontologije 

Kako bismo provjerili ispravnost i valjanost naše ontologije, tijekom trajanja cijelog procesa 

razvoja, koristili smo sljedećih sedam mehanizama provjere ispravnosti i valjanosti: 

1. Metodički vođen proces razvoja ontologije 

2. Implementacija preporuka i savjeta drugih autora 

3. Korištenje alata za zaključivanje kako bismo provjerili ontologiju u svakoj iteraciji 

4. Korištenje W3C OWL alata za provjeru 

5. Korištenje Protégé dodatka za vrednovanje ontologije 

6. Korištenje DL upita za dohvat informacije zaključivanjem nad opisanim znanjem 

7. Provjera rezultata od strane stručnjaka 

Prvih pet mehanizama za vrednovanje su povezani s verifikacijom ontologije i koriste se kako 

bi se smanjio rizik kreiranja sintaktičkih ili osnovnih semantičkih pogrešaka tijekom cijelog 

procesa razvoja ontologije. 

Posljednja dva mehanizma su povezana s validacijom ontologije. Ova dva mehanizma koriste 

se na kraju razvojnog procesa kako bi provjerili predstavlja li kreirana ontologija domenu 

znanja na semantički ispravan način. Upiti su kreirani i izvršeni na konačnoj ontologiji kako 

bi se odgovorilo na sva unaprijed definirana pitanja povezana s razvojem aplikacija za 

odredišnu platformu i pitanja vezana uz ponovnu iskoristivost artefakata kako je definirano na 

početku procesa izrade ontologije. Na primjer, kako bi dobili sve ponovno iskoristive 

artefakte koji su korišteni, stvoreni ili ažurirani tijekom zadatka planiranja iteracije možemo 

koristiti ovakav upit: 

Artifact 

 and ((isUsedByTask some IterationPlanningTask)  

   or (isCreatedByTask some IterationPlanningTask)  

   or (isUpdatedByTask some IterationPlanningTask)) 

 and (ReusableArtifacts) 

Kôd 2 – Artefakti koji se mogu ponovo koristiti u nekom zadatku 

 

http://barok.foi.hr/~zstapic/ont/mcao.owl
http://barok.foi.hr/~zstapic/ont/mcao/doc/
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Rezultat upita: 

AcceptanceTest, IterationBacklog, IterationsPlan, MeasurementPlan, 

ProductBacklog, ProjectPlan, ProjectPlanChecklist, ProjectPlanGantChart, 

StoryCard, StoryCardTemplate, TaskCard, TaskCardTemplate 

Sljedeći upit nabraja artefakte određene vrste dokumenta koji se potpuno ili djelomično mogu 

ponovo koristiti. 

Artifact  

 and (hasArtifactType some Document) 

 and ((hasReusabilityLevel some Completely) 

  or (hasReusabilityLevel some Partially)) 

Kôd 3 – Ponovno iskoristivi artefakti određenog tipa 

Rezultat upita: 

InitialRequirementsDocument, MobileDProcessLibrary, ProductBacklog, 

ProductProposal, ProjectPlan 

 

Svi drugi upiti su kreirani na sličan način, a rezultate su analizirali stručnjaci iz domene 

razvoja softvera. Korištenje mehanizama provjere ontologije tijekom cjelokupnog razvojnog 

procesa, te pozitivni rezultati vrjednovanja su dokaz kvalitete i dovršenosti ontologije. To nas 

dovodi do konačnog zaključka da kreirana Ontologija razvoja za više-platformi predstavlja 

bazu znanja koja se može koristiti pri razvoju informacijskog sustava koji bi imao za cilj 

voditi razvojne timove kako bi povećali metodološku interoperabilnost ponovnim korištenjem 

artefakata kreiranih u procesu razvoja više-platformskih mobilnih aplikacija. 

 

6. Rasprava i zaključak 

Tijekom istraživanja željeli smo jasno istaknuti pet važnih aspekata kako bi proces 

istraživanja učiniti transparentnim i ponovljivim. Pri provedbi svake aktivnosti poseban 

naglasak smo stavili na motivaciju, rezultate, doprinos, strogost i evaluaciju istraživanja. Pod 

aspektom motivacije željeli smo u svakoj fazi naglasiti razloge za obavljanje istraživačkih 

aktivnosti. Rezultatima i doprinosom željeli smo po fazama sistematizirati dobivene rezultate i 

doprinos znanju. Raspravljajući o istraživačkoj strogosti htjeli smo ukazati na naš pristup i 

njegove glavne karakteristike te raspravljajući o evaluaciji htjeli smo naglasiti mehanizme 

koji su korišteni kako bi provjerili i potvrdili korišteni znanstveni pristup i dobivene rezultate. 

U ovom istraživanju može se identificirati nekoliko ograničenja. Na primjer, najveći izazovi s 

kojima smo se suočili u prvoj fazi istraživanja bili su izvršenje komplicirane i dugotrajne 

znanstvene metode sustavnog pregleda literature od strane jednog istraživača, nepostojanje 

institucionalnih pretplata na dostupne znanstvene izvore u Hrvatskoj te nešto malo bolje 
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stanje u Španjolskoj, nedostatak informacija o završenim projektima o razvoju mobilnih 

aplikacija u razvojnim tvrtkama koje su orijentirane na dvije ili više ciljanih platformi što nas 

je natjeralo da razvijemo prototipnu aplikaciju u laboratoriju, predložena ontologija 

predstavlja razvoj samo jedne aplikacije za dvije platforme te pokriva samo jednu razvojnu 

metodiku podržanu jednim razvojnim pristupom. Svi navedeni problemi mogu biti prepoznati 

kao ograničenja ovog istraživanja, ali moramo imati na umu da je ovaj istraživački proces 

imao za glavni cilj predložiti novi pristup (okvir) koji se može koristiti u rješavanju problema 

fragmentacije mobilnih platformi. 

Slijedeći istraživačke ciljeve definirane na početku istraživačkog procesa identificirali smo 

metodike koje se mogu koristiti za razvoj mobilnih aplikacija; implementirali smo izabranu 

metodiku i pristup i stvorili mobilnu aplikaciju za dvije mobilne platforme; identificirali smo i 

analizirali artefakte koji su nastali u ovom razvojnom procesu te stvorili ontološku definiciju 

koja opisuje mogućnost ponovne iskoristivosti artefakata u skladu s Mobile-D metodikom.  

Prema rezultatima koji su dobiveni tijekom provjere i testiranja ontologije možemo zaključiti 

da ovakav ontološki opis predstavlja čvrstu osnovu za razvoj informacijskog sustava koji bi 

vodio razvojne timove prema postizanju metodološke interoperabilnosti uz ponovno 

korištenje artefakata stvorenih u procesu razvoja više-platformskih mobilnih aplikacija. Osim 

toga, dokazali smo da je naš ontološki opis fleksibilan i proširiv što nam omogućuje njegovo 

ažuriranje informacijama o novim artefaktima bez potrebe za promjenom infrastrukture 

definirane elementima hijerarhije klasa, pobrojanim vrijednostima (eng. value partitions) i 

objektnim svojstvima. Konačno, model omogućuje kreiranje DL upita koji se mogu koristiti 

za stjecanje izravne ili neizravne informacije ugrađene u znanje opisano ontologijom. U 

prethodnom poglavlju pokazali smo primjere takvih upita kojima smo između ostalog 

odgovorili na pitanja postavljena na samom početku razvoja ontologije. 

Dakle, možemo zaključiti da je moguće definirati ontološki opis elemenata metodološke 

interoperabilnosti takav da sadrži strukturne i semantičke aspekte u skupovima 

artefakata nastalih u procesu razvoja mobilnih aplikacija za dvije ili više mobilnih 

platformi, čime je H1 hipoteza potvrđena.  

Ovo istraživanje predstavlja sveobuhvatan skup aktivnosti koje su rezultirale konačnim i 

uporabivim proizvodom. Međutim, proširujući kontekste korištenja takve ontologiju, možemo 

prepoznati druge moguće istraživačke aktivnosti pa čak i istraživačke smjerove koji se mogu 

poduzeti. U principu, prepoznajemo dva glavna područja gdje ovo istraživanje postavlja 

temelj za buduće znanstvene i stručne aktivnosti. Ta područja su programsko inženjerstvo s 

posebnim naglaskom na mobilno inženjerstvo i inženjerstvo znanja s posebnim naglaskom na 

razvoj ontologije. Stvorena ontologija definira osnovnu infrastrukturu i elemente u 

predloženom okviru metodološke interoperabilnosti koji je stabilan za dodavanje znanja o 
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drugim platformama ali bi ga trebalo ponovno analizirati i redefinirati kada je u pitanju 

korištenje za opis novih i potpuno različitih metodika. S druge strane, kada se govori o 

istraživačkim aktivnostima u području programskog inženjerstva, već smo spomenuli potrebu 

prelaska na sljedeću fazu istraživanja tijekom koje bi bio razvijen odgovarajući informacijski 

sustav za podršku metodološkoj interoperabilnosti i ponovnom korištenju artefakata. Razvoj 

takvog novog sustava nije trivijalan zadatak i daje mnoge mogućnosti istraživanja u području 

dizajna, funkcionalnosti, povezanosti s ontološkom definicijom znanja i tako dalje. 

Iako postoje ontologije definirane da osiguraju interoperabilnost na različitim razinama u 

procesu razvoja aplikacija, ovaj novi pristup ima za cilj definirati interoperabilnost na, do 

sada ne istraženoj, metodičkoj razini. Semantički opisi kreirani i provjereni ovim 

istraživanjem dokazali su da predloženi pristup i infrastrukturalni okvir predstavljaju solidnu 

osnovu za nastavak istraživanja u ovom području. Stoga, razvoj ove ontologije je samo prvi 

korak u nizu aktivnosti koje treba provesti kako bi se razvio cjeloviti semantički podržan 

informacijski sustav za metodološku interoperabilnost. 
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