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ABSTRACT

A recent development of heterogeneous platforms (i.e. those containing different
types of computing units such as multicore CPUs, GPUs, and FPGAs) has enabled sig-
nificant improvements in performance of real-time data processing. However, due to
increased development efforts for such platforms, they are not fully exploited. To use
the full potential of such platforms, we need new frameworks and methods for captur-
ing the optimal configuration of the software. Different configurations, i.e. allocations
of software components to different computing unit types can be essential for getting
the maximal utilization of the platform. For more complex systems it is difficult to find
ad–hoc, good enough or the best configuration.

This research suggests the application of component based software engineering
(CBSE) principles, by which it is possible to achieve the same functionality of software
components across various computing units of different types, however with differ-
ent extra–functional properties (EFP). The objective of this research is to construct a
framework which optimizes the allocation of software components on a heterogeneous
computing platform with respect to specified extra-functional requirements.

The I-IV allocation framework, proposed by this research, consist of formalisms nec-
essary for modeling of a heterogeneous computing platform and exploring the design
space, which results with an optimal design decision. The I-IV allocation framework
was verified in two steps, focusing on two EFPs; the average power consumption and
the average execution time. The experimental platform was a tracked robot, developed
for the purpose of this research. It contains a CPU, a GPU and an FPGA, along with 32
software components deployable onto these units. Both steps resulted in a positive re-
sult confirming the claim that the I-IV framework, along with its Component allocation
model Mα correctly represents the heterogeneous system performance, with considera-
tion to multiple criteria.
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PROŠIRENI SAŽETAK

Usprkos tome da je u posljednjih nekoliko godina povećanje radnog takta središnje
procesne jedinice (CPU) usporeno, ako ne i zaustavljeno, performanse suvremenih raču-
nala i dalje rastu, ali ne zbog radnog takta. To znači da se i performanse računalnih pro-
grama više na ovaj način ne mogu unaprijediti, čak što više, daljnje povećavanje radnog
takta CPU-a pokazalo se neučinkovitim. Zbog toga, došlo je do suštinske promjene u
grad̄i procesora, odnosno to repliciranja procesnih jezgri te ugradbom dodatnih namjen-
skih procesnih jedinica koje su specijalizirane za odred̄eni tip zadataka. Najčešće su to
grafička procesna jedinica (GPU), programirljiva polja logičkih blokova (FPGA), integri-
rani krugovi specifične namjene (ASIC), itd. Istovremeno, zajednica prepoznala je veliki
istraživački potencijal heterogenih računalnih sustava, odnosno sustava sa mnoštvom
procesnih jedinica različitog tipa, obzirom da omogućuju izuzetna poboljšanja perfor-
mansi softvera.

Mnogi se istraživači već dulje vrijeme bave heterogenim računalstvom, što znači da
to nije nova ideja, no u posljednjih nekoliko godina, zbog fizičkih ograničenja vezanih
uz arhitekturu procesnih jedinica, heterogeno računalstvo postaje sve popularnija is-
traživačka tema. Uz izuzetno povećanje procesne moći, heterogeno računalstvo donosi
i mnogo izazova, prvenstveno za softverske inženjere. Naime, razvoj softvera za takve
sustave vrlo je zahtjevan zbog primjerice, potrebe za rukovanjem sa više različitih tipova
podataka ili programskih jezika unutar istog računalnog programa, kompatibilnosti po-
jedinih procesnih jedinica i konverzije tipova podataka, potrebe za specijaliziranim bib-
liotekama koda, korištenja različitih struktura podataka kroz više arhitekturalni slojeva
računala i računalnog programa, itd. Osim toga, obzirom na to da se heterogeni sustavi
prvenstveno koriste kao elementi ugradbenih računala u industriji, softverski inženjeri
uz funkcionalne zahtjeve, dodatnu pozornost moraju dati ne-funkcionalnim zahtjevima
(EFP).

Kako bi se upravljalo funkcionalnim i ne-funkcionalnim zahtjevima softvera, u složenim
heterogenim računalnim sustavima, često se primjenjuju načela komponentno orijen-
tiranog softverskog inženjerstva (CBSE), koja su u softverskoj zajednici dobro poz-
nata i dokazana. CBSE obuhvaća modele, metode i smjernice za softverske inžen-
jere koji razvijaju sustave temeljene na komponentama, odnosno grad̄evnim jedini-
cama koje komuniciraju putem ugovorno definiranih sučelja, koje se mogu samostalno
ugrad̄ivati i jednostavno zamjenjivati. Time, CBSE daje snažne temelje za prethodno
spomenute vezane uz razvoj softvera namijenjenog za heterogene računalne sustave.
U tom kontekstu, CBSE omogućuje postizanje jednake funkcionalnosti komponenata
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softvera alociranih na (različite) procesne jedinice (različitog tipa), no sa drugačijim
ne-funkcionalnim svojstvima. To znači da pojedine alokacije komponenata softvera
mogu biti više ili manje učinkovite obzirom na scenarije njihove primjene, odnosno
njihove ulazne parametre, što za sobom povlači i pitanje ukupnih performansi sus-
tava. Prema tome, zadatak arhitekta softvera najprije je definirati svojstva najbolje
alokacije obzirom na više kriterija, poput dostupnosti resurs, ne-funkcionalna svojstva i
ograničenja, a potom na konkretnoj heterogenoj računalnoj platformi učinkovito i pron-
aći takvu alokaciju.

Temeljni cilj ovog istraživanja je konstruirati okvir za optimizaciju alokacije kompo-
nenti softvera na heterogenoj računalnoj platformi, koji uzimajući u obzir ograničenja
resursa dostupnih na računalnim jedinicama (različitog tipa), specifikacije kompone-
nata softvera i ograničenja koja definira arhitekt sustava učinkovito pronalazi najbolju
alokaciju. Ova disertacija predlaže Alokacijski okvir I-IV sastavljen od formalnih eleme-
nata koji omogućuju stvaranje modela heterogenog računalnog sustava te pretraživanje
prostora potencijalnih alokacija, te definira korake kojima se postiže optimalna arhitek-
tura sustava. Kako u ovom slučaju prostor potencijalnih rješenja, odnosno alokacija
eksponencijalno raste (uz m dostupnih računalnih jedinica te n dostupnih komponenti
softvera, prostor rješenja je mn), razvijen je i prototip alata koji automatizira Alokacijski
okvir I-IV, što je inače dugotrajan ili čak neizvediv proces. Za opis ne–funkcionalnih svo-
jstava heterogenih sustava, koristi se Model za alokaciju komponenata Mα. Taj model,
primjenom težinske funkcije w omogućuje kvantifikaciju pojedinih alokacija čime je
omogućena njihova usporedba te procjena prikladnosti korištenja istih. Istovremeno,
težinska funkcija w daje uvid u performanse sustava u njegovoj ranoj fazi razvoja (čak
prije nego su komponente razvijene).

Vjerodostojnost Alokacijskog okvira I-IV provjerena je u dva koraka (eksperimenta),
pri čemu je fokus bio na dva ne-funkcionalna svojstva sustava: prosječni električni uči-
nak električne struje i prosječno vrijeme izvod̄enja operacija softvera. Eksperimentalna
platforma bila su robotska kolica sa heterogenim računalnim sustavom sačinjenim od
CPU-a, GPU-a te FPGA-a, zajedno sa tridesetak komponenata softvera koje je moguće
alocirati na te računalne jedinice.

Prvi korak provjere odnosio se na provjeru točnosti, odnosno procjenu prikladnosti
težinske funkcije w da kvantificira performanse pojedine alokacije. Postupak je prove-
den primjenom šest različitih alokacija koje predstavljaju dva različita scenarija izvod̄enja.
Odabrane alokacije, nakon što su kvantificirane težinskom funkcijom w, zapisane su
tablično i rangirane prema predvid̄enim performansama. Nakon toga, te iste alokacije
su implementirane na stvarnom sustavu, ranije spomenutim robotskim kolicima. Iscrp-
nim mjerenje (u intervalu pouzdanosti od 95%), zabilježene su performanse alokacija i
ponovno su rangirane u rang listu. Rezultat oba rangiranja bio je jednak, čime slijedi da
model za raspodjelu komponenata Mα, te njegova težinska funkcija w mogu korektno
predvidjeti performanse pojedine alokacije u realnom sustavu. Ovakav ishod, doveo
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je do drugog koraka provjere koji se odnosi na scenarij(e) u kojem postoji izrazito ve-
liki broj komponenti softvera te računalnih jedinica, čime prostor potencijalnih rješenja
postaje toliko velik pronalaženje najbolje alokacije metodom iscrpnog pretraživanja nije
moguće učinkovito provesti.

Obzirom da trenutna implementacija Alokacijskog modela I-IV definira heurističke
metode za rješavanje navedenog problema, drugi korak provjere za cilj ima procijeniti
sub-optimalno rješenje genetskog algoritma i metode simuliranog kaljenja. Uz heuris-
tičke metode, generirane su i proizvoljne alokacije, jer u nekim slučajevima su takve
alokacije podjednako dobre ili čak bolje od heurističkih metoda. U prvoj iteraciji, prov-
jeravala se preciznost navedenih metoda, odnosno njihovo odstupanje od optimalne
alokacije dane iscrpnim pretraživanje u prostoru do 512. Pokazalo se kako genetski
algoritam daje najbolja rješenja, odnosno alokacije koje minimalno odstupaju od opti-
malnog rješenja. Nadalje, za prostore rješenja izmed̄u 1020 do 3070 gdje iscrpno pre-
traživanje nije učinkovito, usporedba je pokazala da obje heurističke metode daju bolja
sub-optimalne alokacije od proizvoljno definiranih alokacija i to u najkraćem vremenu.
Iako je statistički vjerojatno, ni u jednom slučaju (u 55 ponavljanja, s povećavanjem
prostora rješenja) nije zabilježeno da proizvoljno generirana alokacija daje bolje per-
formanse od alokacije dobivene predloženim heurističkim metodama, čime je završila
validacija predloženog okvira i svih njegovih elemenata.
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GLOSSARY

heterogeneous
platform

a computing system which contains multiple processing units of
different types (it can also be referred to as heterogeneous com-
puting platform or heterogeneous system architecture (HSA))

heterogeneous
computing

a research discipline which deals with heterogeneous platforms

CPU central processing unit

GPU graphical processing unit

FPGA field programmable gate array

ASIC application specific integrated circuit

CBSE component based software engineering

EFP extra–functional property, a specification of a system which de-
scribes how should a system perform certain actions.

UML unified modeling language.

pipe–line style software architecture style in which the output of a previous
process is the input for the next process.

confidence inter-
val

a measure for expressing the uncertainty associated with a sam-
ple estimate of a population mean.

SWEBOK software engineering body of knowledge.

OpenCL open computing language library

OpenCV open computing vision library

CLB configurable logic block

allocation an allocation is a mapping of all n software components from
the set C to a (sub–) set of computing units U ′

I-IV framework component allocation framework
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TiWo a tracked robot, real–world platform containing a CPU, a GPU
and an FPGA.

S,G,E,D,H a combination of image filters executed in the given order, each
letter signifying the name of the filter. In this particular case,
Sobel, Gauss, Erode, Dilate, Hystogram.

GA a method for obtaining the optimal software allocation which
uses an exhaustive search.

GA a method for obtaining the (sub–) optimal software allocation
which uses a genetic algorithm.

SA a method for obtaining the (sub–) optimal software allocation
which uses simulated annealing

RAND randomly generated software allocation
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CHAPTER 1

INTRODUCTION

This chapter introduces the motivation and the research objectives of this thesis.
Based on these objectives, three research questions are derived which represent the
fundamental challenges of this work. Moreover, two hypothesis are made to suggest
the possible solutions to these challenges and also guide the research process. The
following sections emphasize the contribution of this research, its scope along with the
research method. The chapter ends by outlining the organization of the thesis.

During the 90s and early 2000s speed–ups of software largely relied on increasing
of central processing units (CPU) clock rate. When this became inefficient in mid 2000s
due to technological issues related to CPU chip design (heat dissipation, leakage cur-
rents, memory handling, etc.) a new paradigm of chip design was inevitable. It resulted
replication of processing cores within a single chip which enabled true parallel pro-
gram execution. The further development of this technology and the present day high
demand for data processing led to new considerations for performance enhancement
which eventually resulted in heterogeneous computing[1, 43].

Heterogeneous computing refers to systems which utilize more than one type of
processing units. Each computing unit type has different properties and is specialized
for specific types of tasks. Most common heterogeneous computing platforms consist of
CPUs, GPUs and FPGAs. Graphical processing unit (GPU) is a high performance system
capable of massive parallelism which CPUs traditionally cannot handle. However, its
processing benefits come at a higher power consumption price. To overcome this issue,
computer engineers often resort to use field programmable gate arrays (FPGAs) which
are essentially empty chips programmable for any purpose. Historically, FPGAs were
largely used for highly specific tasks by aerospace industry, today they are the large part
of embedded systems domain. Despite the previously mentioned advantages, compared
to CPUs and GPUs their appeal lags in unit cost and demanding development efforts for
even basic functionality.

In spite of advantages of heterogeneous platforms, they also carry new challenges
for software engineers. Software development for heterogeneous platforms is a complex
endeavor and the developers must handle communication and synchronization of dif-
ferent computing unit types, convert data between different data types and structures,
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use multiple programming languages, use specialized libraries etc. Additionally, this is
accompanied by traditional software engineering objectives like fulfilling the specified
functional requirements and conforming to extra–functional requirements.

1.1 Objective

In order to address issues described in the previous section and to handle such soft-
ware complexity this research proposes the application of component based software
engineering principles (CBSE) [27]. The main concern of CBSE is to deal with dynamic
configurations, variant explosions, scalability and reusability. CBSE provides methods,
models and guidelines for developers of component based systems. Building blocks of
such systems are software components, which have the following properties: a) contrac-
tually specified interfaces, b) independent deployability and c) replaceability. As such
CBSE provides a solid foundation to address challenges of heterogeneous computing.

The result of applying CBSE principles to software for heterogeneous computing is
a system composed of manageable building blocks, which are independent, replace-
able, reusable and enable various configurations based on the specification of extra–
functional properties (EFPs)1; e.g. energy consumption, processing time, memory re-
quirements, reliability, safety, security, maintainability, etc. By applying CBSE principles
to heterogeneous computing, it is possible to achieve the same functionality of software
components across various computing units of different types, however with different
EFPs. Consequently, some configurations can result in poor performance of software,
while others can result in great performance despite using advanced hardware [100].
Hence, the overall objective of this research is to:

Construct a framework which optimizes the allocation of software components on a hetero-
geneous computing platform with respect to specified extra-functional requirements.

The specific research goals derived from overall objective are the following:

RG-1: Develop a model which describes software components and a heterogeneous com-
puting platform.

Despite the existence of many component models, most of them do not address hetero-
geneous computing platforms. The model developed in this research needs to enable
the formal specification of a software architecture and its requirements along with the
formal specification of a hardware platform with the resources it provides.

RG-2: Define a framework for comparison of software allocations on a specific heteroge-
neous platform.

1Extra–functional properties – also referred to as Quality of Service, non–functional properties or/and
attributes [26]. Although there are subtle differences between these terms [25], in this work they will be
treated as synonyms.
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In order to find the optimal configuration, i.e. allocation of software components on a
targeted computing platform, one needs a framework which evaluates particular allo-
cations. By comparing feasible allocation alternatives, the goal is to find the one which
conforms to the requirements of the software system considering all multiple criteria
like energy efficiency, memory efficiency, processing speed, communication bandwidth
etc., while providing the best overall system performance.

RG-3: Implement a tool for automatized component allocation based on previous model.

With a large number of computing units and software components the design space of a
system grows exponentially so manual methods for finding an optimal allocation are not
efficient. Therefore, this research should deliver a prototype tool which automates this
process and provides an insight into the performance of a heterogeneous computing
platform in its early development phase; even before the components are developed.
This would greatly improve and simplify the allocation decision making for software
architect.

1.2 Research questions

This section uses the research challenges introduced in previous sections to elicit
concrete research questions, which will provide a foundation and a guideline for further
investigation of the presented subject.

The importance of the research in this domain is also recognized by European Com-
mission which is evident by the Horizon 2020 Work Programme for 2014–15, i.e. the
call for Advanced Computing which emphasizes heterogeneous computing as one of the
key challenges. Including the integration of hardware and software components and
working prototypes with emphasis on low-power, low-cost, security, reliability, scalabil-
ity etc. [34].

The current approach to software modeling is to apply concepts available in stan-
dardized notations, e.g. the most widely known UML2 (including its extensions and
derivatives). This enables software component designers to create compatible compo-
nents which conform to the same component model. Such models define the form,
the interface and the interactions of components. Similarly to this, but from the stand-
point of computing hardware, system architects model computing resources and their
communication using another family of standardized notations, i.e. architecture de-
scription languages (ADLs). To design an entire system, both hardware and software
in an early design phase, many modeling approaches can be use (e.g. UML Marte pro-
file, SysML, AADL, etc), however the goal here is to model both hardware and software
with considerations to the heterogeneous computing platform while capturing systems’
extra–functional properties necessary for architectural decision making and utilize this

2http://www.omg.org/spec/UML/
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information to suggest best design options. The first research question is as follows:

RQ-1: How to describe software components and a heterogeneous computing platform
using the same model?

RQ-1.1; In particular, how can this model represent communication parameters sepa-
rately from computing parameters?

RQ-1.2; How can this model incorporate specific constraints from a software archi-
tect?

RQ-1 entails two sub questions related to communication performance parameters and
design constraints imposed by a software architect. If the software allocation decision
is made solely based on the computing performance of the computing units, without
regard to communication it is likely that such allocation of software components will
not result in the best overall performance. It has been shown that the communica-
tion bottlenecks are a common issue[54] in CPU–GPU systems, so in order to predict
those in an early system design phase, it is necessary for a model to be able to sepa-
rate communication parameters from computing parameters, hence the RQ-1.1. The
question RQ-1.2 emerges from a necessity of a software architect to manually tweak
allocation parameters, deliberately prevents allocation of certain components to certain
computing units or to deliberately allocate several components together regardless of
the computing units.

Since each component allocation largely influences the overall performance of a
system, an allocation framework should be developed which would evaluate all the
allocation choices and select the best one. Moreover, a software architect using the
framework should also be able to specify the meaning of the best allocation, i.e. a choice
is given to optimize the performance of a designed system with respect to certain EFPs.
Consequently, a method for quantifying constraints and extra–functional parameters of
an allocation independently of their measurement units is necessary to compare differ-
ent extra–functional properties and put different allocations into perspective. However,
there is an issue with this since different system requirements are measured in different
units (e.g. megabytes for memory, watts for energy, time for processing speed). This
resulted with a second research question:

RQ-2: How to measure both the execution performance and communication intensity3

of a particular software allocation?

Additionally to the previous research question, there should be at least one alloca-
tion within the design space of all feasible allocations, which gives the best result with
respect to system requirements and constraints. Finding this allocation is hard due to
large number of constraints and due to the fact that for with large number of compo-

3The communication intensity is defined by the software architect with considerations to a modeled
system. It is a discrete numerical value which describes the information exchange between two particular
software components, for example a frequency of function calls (a software coupling metric [78]) or an
amount of exchanged data.
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nents and computing units, design space grows exponentially4. This issue brings the
final research question:

RQ-3: How to optimize software component allocation on a heterogeneous platform
in the cases with a large design space?

1.3 Contribution

The expected contributions of this research are inferred from the research goals RG-
1, RG-2 and RG-3, and they are the following:

– a formal model which describes a heterogeneous computing platform with respect
to the necessary resources for normal5 execution of software components, avail-
ability of resources provided by computing units and constraints defined by the
software architect,

– a framework for optimizing the allocation of software components on computing
units in heterogeneous computing environment, and providing an insight into the
performance of the future system in an early design phase,

– a method for the verification of the suggested model through the comparison of
system performance predicted by the suggested model and extensive real world
measurements,

– a tool which provides support for early-stage system design modeling and decision
making.

These contributions are aligned with the research direction defined by researches in-
volved in this domain of software engineering [58, 60, 111]. They address the coming
challenges of complexity, heterogeneity, dependability and adaptability. The findings
and conclusions presented in this thesis are applicable to distributed systems in auto-
motive networked systems, avionics, manufacturing and embedded systems [111].

Hypothesis

The flow of the research presented in this thesis is guided by the following hypothe-
sis:

H-1: The suggested framework for comparison of individual software component alloca-
tions onto computing units correctly represents the system performance if the model
for heterogeneous computing platform is substantially valid.

H-2: In a case with large number of allocation alternatives the developed algorithm for
automated search for optimal allocation finds the allocation which has significantly

4Having m computing units and n software components results in a design space of mn (chapter 3).
5One conforming to a given specification of functional and extra–functional requirements.
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better performance than random allocations.

The first hypothesis referrers to two main aspects of the subsequently suggested
framework for allocating software components onto a heterogeneous computing plat-
form. The first aspect relates the model for comparison of the heterogeneous system
performance. This means that the system performance predicted by a model needs truly
to reflect the system performance measured on a real–world system. It also suggests the
procedure for testing this part of the hypothesis. The second aspect of hypothesis H-1
refers to the content that such a model can contain, i.e. describe. This needs to be
clearly specified and defined by the model so a software architect can know to what
kind of systems this is applicable.

The second hypothesis considers the cases with large number of possible allocations
a software architect can choose from. In some occasions this number can be overwhelm-
ing for an exhaustive search method. Therefore, an automated method for generating
allocations should be designed. Depending on the design space size, it is acceptable to
consider sub–optimal solutions. Considering that there are different methods for ob-
taining sub–optimal solutions, each of the methods proposed in this work should be
benchmarked against each other to compare their performance. Furthermore, to em-
phasize the significance of the obtained result (i.e. allocation), the methods should
be benchmarked against randomly generated allocations to prove that in a statistically
significant number of occasions, the method(s) suggested in this work, generate allo-
cations with statistically significantly better performance than the performance of the
randomly generated ones (since there are no other existing models to which they could
be compared to).

The research scope

Considering the presented research questions and objectives the work presented in
this thesis classifies as a software optimization research, focusing on the emerging het-
erogeneous computing systems, i.e. systems which contain different types of computing
units with different computing paradigms. Having this in mind, one can infer the ques-
tion of who decides where does the software operate, i.e. execute? – With a commodity
of different computing units, one can surely place every software component to the
computing unit where it fits the most. This work presents the research about the best fit
of the software within the heterogeneous computing platform considering the following
scope:

– static system analysis, although the methods for optimizing software architecture
presented in this work are not applicable explicitly only to the static analysis of the
software architecture, they are verified in a static architecture environment. For
the dynamic software allocation analysis some additional considerations should
be made, hence the results of this research are bound to the static system analysis.
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– early stage design phase, the software architecture optimization techniques pre-
sented here is envisioned, designed and verified for the software architecture in
its early design stage with the goal of providing an insight into the future system
performance.

– extra–functional properties need to be quantifiable and measurable – the input of
the decision model to find the best fitting software architecture (allocation) can
account for unlimited number extra–functional properties, they are related to the
system performance, can be quantified, measurable or carefully estimated.

– the components are composed in a pipe–line architectural style – the method for find-
ing the optimal software architecture suggested by this work does not conform to
any particular software architecture or architectural style, however the verifica-
tion is made on the architecture with a pipe–lined architectural style. This means
that the software components are executed with a certain order defined by differ-
ent execution scenarios. Furthermore, the granularity of software components is
arbitrary and should be defined by the software architect.

– the model allows some approximations, although all the main inputs for the alloca-
tion decision model are exactly measured, in the interest of model simplification
and abstraction, it does allow some approximations.

– measurements are performed with confidence interval of 95%, since the confidence
index of 95% represents statistically significant results and it was possible to per-
form it with the available equipment, this value was selected as satisfactory.

The in detail classification of this research within the subject area of software architec-
ture optimization can be found in section 6.1.

1.4 Research method

The research method followed in this work is shown in Figure 1.1. It is a fusion
of good practices for performing software engineering research suggested by Mary
Shaw[104] and a general research method suggested by Richard Feynman[39]. The
presented method is custom developed for this research, however it is fairly general
and applicable to other software engineering research within the domain.

The research method consists of three distinctive repeatable phases. In the first
phase (the problem definition phase) one needs to identify and formulate the research
problem using current scientific knowledge. This refers to systematic study of related
publications available in relevant conference proceedings and journals. Once the prob-
lem is identified and formulated it needs to be grounded to a specific context. It needs
to be very clear and precise about the context of the problem and the assumptions un-
der which the suggested solutions/answers/explanations work. From this knowledge
one can derive specific research goals which lead to concrete research questions. In
this research, the type of research goals imposes a requirement for verification of the
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Figure 1.1: Three-phase research method developed and used in this thesis.

solution to gain trustworthiness of the suggested model. Therefore, in the first phase it
is also necessary to define the parameters for the verification of the proposed solution,
i.e. the experiment.

In the second phase (the solution phase) using current insights and known princi-
ples one needs to propose a solution to previously defined research question(s). The
proposed solution must not be vague. It must be clear and unambiguous because the
next step involves making an assumption, i.e. a prediction by the suggested model which
describes a phenomenon.

In the final stage (the verification stage), through experimentation is made by which
one verifies if the calculation results, i.e. the model prediction matches the measured
results obtained on a real–world system. If the experiment and the calculation do not
mach, the proposed solution is wrong, hence, it is necessary to repeat one of the previ-
ous phases, as shown in Figure 1.1. If the results of the experiment (repeated multiple
times) mach with the calculations, the solution is valid, which brings us to the last op-
tional step. When solution to the problem is found and verified, in scientific community
researchers report their findings through journal and conference papers, thus updating
the existing knowledge base.

1.5 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 – Background presents
the state–of–the–art research which motivated this thesis. It also briefly presents the
scientific discipline of software engineering, its historic development, along with the
fundamental facts about CPUs, GPUs and FPGAs necessary to follow and understand

8



Introduction

the research context of this thesis.
Chapter 3 – Mathematical Model of a Heterogeneous Computing Platform introduces
the mathematical model for the formal description of a set of heterogeneous comput-
ing units, a set of software components, a set of constraints and a cost function which
quantifies the quality of an allocation. Chapter 4 – Measurement presents the collection
process and an analysis of extra–functional properties for a component based software
architecture deployable on different computing units within a heterogeneous comput-
ing environment. Chapter 5 – I-IV Framework Verification shows the verification of the
suggested the I-IV framework. Chapter 6 – Related work presents the work of other
researchers closely related to this thesis, closely concerned to software architecture op-
timization and cyber–physical systems. And the final Chapter 7 – Conclusion concludes
the research, presents the answers to the research questions and outlines the future
work.
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CHAPTER 2

BACKGROUND

This chapter presents the state–of–the–art research which motivated this thesis. It
also briefly presents the scientific discipline of software engineering, its brief historic
development along with the justification and placement of this work within the com-
ponent based software engineering research. The related work presented in chapter is
a broad review of the field which includes, software modeling, software architecture,
heterogeneous computing systems, etc. Furthermore this chapter provides an overview
of the processing units (CPU, GPU, and FPGA) used in this research, along with their
fundamental design principles necessary to follow and understand the research context
of this thesis.

In last several years the increase of central processing unit (CPU) clock came to a
halt, but despite that the performance of computers is still growing. Although it used
to be a popular measure of processing power, the CPU clock frequency today hardly
has any mention. Since increasing the CPU clock frequency proved to be inefficient1

there has been a paradigm shift in the CPU architecture. Modern CPUs feature multi-
ple cores which enable real parallel processing. Depending on the task type, multicore
processors handle some tasks very well, however with some tasks they struggle. So, the
current processing platforms also have dedicated processing units specialized for cer-
tain tasks[84]. Having multiple types of computing units led to a new era in computer
science referred to as heterogeneous computing. The research presented in this work fo-
cuses on such systems which in particular consist of a central processing unit, graphical
processing unit (GPU) and field programmable gate arrays (FPGA).

Due to the parallel nature of graphics processing, GPUs evolved into high perfor-
mance systems capable of running thousands of threads simultaneously, spread across
hundredths of GPU cores [49]. In comparison to CPUs which typically have a lot less
processing cores, GPUs are superior however, for some tasks CPUs performs better while
for others GPUs do. The main difference is in the type of the task which they are de-
signed to handle. While CPUs are better in handling parallel tasks which involve a lot

1Related to energy consumption, thermal issues and caching [24].
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of branching i.e. decision makin. However, handling tasks without branching (e.g. sin-
gle instruction, multiple data - SIMD operations) is where GPUs excel and outperform
CPUs. As good as GPUs are for massive parallelism, there is a large drawback related to
high energy consumption which makes them undesirable for embedded systems. In em-
bedded systems, along with functional requirements, extra–functional properties (EFP)
are equally important. EFPs describe the quality attributes and ensure the proper be-
havior of a system. Usually they depend on characteristics of the underlying platform
and the architecture of the system, however some examples include reliability, latency,
real-time response, bandwidth, adaptability, accuracy, power efficiency etc. Therefore,
with regard to power consumption in particular, in embedded system designs GPUs are
often omitted by a more energy efficient alternative; field programmable gate array
(FPGA). FPGA is essentially an empty chip which is made to be programmed for any
for any custom functionality. Despite the advantages of FPGAs over GPUs (lower en-
ergy consumption by the factor of 10 times [42, 86] and physical size) the development
effort for even basic functionality is much greater than for GPUs. Still in some cases2

GPUs tend to outperform FPGAs [42, 44, 55, 86].

It is not likely that GPUs will replace CPUs, and FPGAs will replace GPUs in embed-
ded systems any time in the near future. Each of these computing units has advantages
and disadvantages. They complement each other so joining them in a single heteroge-
neous computing platform provides new possibilities for advancement in computing.

CPUs, GPUs and FPGAs come from different backgrounds and therefore have dif-
ferent programming paradigms. Developing software for such heterogeneous systems
is particularly hard since developers now need to handle more details, e.g. task types
(sequential or parallel) communication bandwidth between computing units, data type
conversions, energy consumption, development effort, pricing, etc. This work focuses
on the software engineering challenges related to exploiting the benefits of CPUs, GPUs
and FPGAs available on a single heterogeneous computing platform and the architec-
tural decision making concerned with placing software components to the best possible
computing unit.

2.1 Software engineering

2.1.1 The golden age

It has been bore than twenty years since Mary Shaw [103] famously questioned the
engineering of software engineering and set some foundations to bring it closer to other
engineering disciplines. Since then, there have been some remarkable advancements of

2Processing with less memory exchange between CPU and GPU; e.g. optical flow, detecting patterns
on large images, multiplying large matrices, N-body simulation, etc. FPGAs perform better for stream
processing and pipelines.
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the field, so in 2006 along with Paul Clements, Mary Shaw reported on the state of the
software discipline, namely focusing on software architecture [105]. It was suggested
that it typically takes 15 to 20 years for a technology to become ready for popularization.
How does this reflect on software architecture?

Comparing the rate at which results of previous work are used as a building block for
the subsequent research, software architecture matured and reached it’s golden age.
Also, there are other maturity indicators, such as: industrial trainings, certification pro-
grams for software architecture, standards, patterns and tactics, evaluation and valida-
tion methods, tools, journals, etc. The challenges for future software architecture re-
searchers in 2006 were mostly related to quality, formalization, modeling notation and
languages, assuring conformance of model and code, organizing architectural knowl-
edge and adaptation of software systems to changes.

In 2009, the paper about golden age of software architecture was revised [22].
Clements and Shaw reported that there are some strong indications that software ar-
chitecture is enjoying popularization, however they pointed out that “architecture will
always be architecture”, primarily thinking of new computing platforms which demand
new architecture styles and the possibility of a never ending loop, where new emerging
computing paradigms require new software architecture principles, ad infinum. How-
ever, ones which get to be old enough, get to see the same things repeating, but in the
different form.

2.1.2 Expanding body of knowledge for software engineers

Since appearance of new computing platforms demands new architectural styles,
software engineers need to broaden their design considerations. IEEE Computer Society
recognized this by expanding the knowledge areas for software engineers. In their latest
edition of SWEBOK v3.03, they included new topics for software design; architectural
decisions, software design tools, security and user interface design. In addition they
included new knowledge areas: economics, computing, mathematical and engineering
foundations [52].

Similar conclusionas are made in the literature review by Teich [111]. He pointed
out that software engineering overlaps with the hardware design discipline and that the
hardware-software codesign techniques should be known to anyone who wants to keep
up with challenges of increasingly complex electronic system designs. This goes for
SoC4 designers, software and hardware engineers, distributed systems in automotive,
networked systems, avionics, manufacturing, embedded systems. In this field tool–
supported specification, modeling, partitioning and synthesis of subsystems is of utmost

3Software engineering body of knowledge – an international standard which defines knowledge areas
for software engineering discipline

4SoC - system on a chip is an integrated circuit which integrates all the components of a computer
into a single chip
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importance in order to be able to build complex systems with tight extra-functional
constraints such as cost, performance, power, temperature, reliability and time [116].

2.2 Component based software engineering

In order to handle the increasing complexity and to provide functional cost–effective
solutions, software researchers and practitioners often use component–based technolo-
gies/principles. Instead developing all parts of the system from scratch, reusability and
modularity are the main concerns. Component based software engineering (CBSE) is a
branch of software engineering which deals with models, methods and frameworks for
development of component-based systems. The main principle of CBSE is separation of
concerns into smaller building blocks called components. Components are: a) easily re-
placeable, b) units of deployment and c) without observable state [110]. For this work,
the most suitable definition is one by Szysperski:

“A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to third-party composition” [109].

According to his definition, the function of a software component is independent of the
system on which it is deployed. Moreover, software components are independent of
each other and they communicate through well defined interfaces. This makes compo-
nents easily replaceable without the apparent affect to other components and to the rest
of the system.
CBSE principles provide a solid foundation for dealing with software engineering chal-
lenges related to heterogeneous computing platforms. Managing different computing
unit types, different data types, different processing rates, programming paradigms and
EFPs can be simplified by separating concerns in to smaller manageable units, i.e. com-
ponents. Each component would handle its own tasks, could be allocated to a dedicated
computing unit and be accessed via predefined interface. In order to design a software
system, an architect would choose components from a repository and join them together
into a complex system.

In the following section, presents the current main concerns for CBSE researchers
and explores the possibilities of applying CBSE principles to software design for hetero-
geneous computing platforms.
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2.3 Hot topics in software engineering research

To gain better understanding of currently popular topics in component based soft-
ware engineering and high performance embedded systems a simple three step analysis
was performed.

The first step involved discovering the main research issues and to get acquainted
with specific terms by seeking for related publications in IEEE Xplore database. The
search term software components, limited to last few years (2012-2015) resulted in more
than 4000 publications. This result was imported into a spreadsheet application for fur-
ther analysis. Next, the results were filtered to include only papers published in journals
and conferences which contain words ’software’ and ’comput*’ in their name. Further
filtering limited only publications which contain the word component in their title. This
resulted in 137 publications. Abstracts of these publications were inserted into a text
analyzer software5 to find most frequent words (excluding the words component, based
and software). According to this, most of publications report on research in: a) reuse,
b) frameworks, c) quality, d) architecture, e) reliability and f) performance.

The second step of searching for hot topics was to find most common subjects of
papers published in most influential journals6: IEEE Software, IEEE Transactions on
Software Engineering, Journal of Information and Software Technology, Journal of Sys-
tems and Software, ACM Transactions on Software Engineering and Methodology. Most
common topics were on a) reliability and testing [14, 29, 50, 50], b) software models,
system development and analysis [45, 61, 66, 83, 85, 119, 125], c) principles and CBSE
methods [27, 30, 31, 76, 92] and d) decision making in CBSE [11, 28].

By using the keywords from the lists of common research subjects obtained in pre-
vious two steps, a full state–of–the–art search was conducted which included the fol-
lowing databases: IEEE Xplore, ACM, Scopus, Web of Science and Google Scholar. The
resulting papers were classified in five classes:

• Software modeling for embedded systems
• Software architecture for embedded systems
• Modeling heterogeneous platforms
• CPU, GPU, FPGA systems
• Software component allocation

All the publications within these classes will be presented in the following subsec-
tions. These publications represent the state–of–the–art in component–based technolo-
gies and high–performance embedded systems. They were explored in order to discover
the research opportunities and guidelines for future work as suggested by other scien-
tists involved in this field.

5http://textalyser.net/
6Journals were chosen based on experience, however following two sources justify the selection of

journals: http://www.cse.chalmers.se/~feldt/advice/isi_listed_se_journals.html,
http://academic.research.microsoft.com/RankList?entitytype=4&topDomainID=2
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2.3.1 Software modeling for embedded systems

To better understand and communicate ideas about the code which runs computer
systems researchers and practitioners use software models. Software modeling is a
popular research topic and most of the current publications are focused on simulation
of hardware or software systems [38], testing [56], model verification and formaliza-
tion [17]. Within modeling community, model driven development (MDD) is a par-
ticularly hot topic. Although MDD is not a new idea, it is particularly interesting for
embedded systems researchers because it handles complexity well and minimizes hu-
man made errors, thus increasing the reliability of a system. A lot of publications focus
on creating models for industry verticals (i.e. DSL - domain specific languages) and on
redefining, refining, extending current models. To make them trustworthy, researchers
often deliver a demonstrators or a use–cases. Martinez et.al. argue that code–centric
embedded software development for embedded systems is complementary (and slowly
fading) to the new pervasive model–centric approach [73]. Khune et.al. bring this to the
next level by using model–centric approach which generates complete and executable
code [115].

Creating new models and software modeling techniques are the most common sug-
gestion for future researchers. It is emphasized to focus on modeling of particular
system properties and their representation and interpretation within the model [117].
Although software modeling reached the point of synthesizing executable code from
models, one also needs to consider higher levels of abstraction, i.e. the architecture of
the entire software product.

2.3.2 Software architecture for embedded systems

Along with software modeling, its architecture is a common subject within the mod-
eling community. Many researchers use a modeling languages to create software ar-
chitecture of a specific system and observe the system behavior through the model via
simulations. Through such observations, new system behavior and properties can be
discovered and used to form architectural (anti–) patterns.

Using the concepts of meta–architectures in architectural description languages (ADL)
Adel and Abbdellah created a meta–ontology which enables semantic mapping from
ADL to model driven architecture (MDA) platform [2]. This work is significant because
it creates a connection between software architecture and the platform it implements.
Although it a good model for bridging software architecture with the implementation
platform it is not applicable to heterogeneous systems. A work by Hause and Thom is
very similar [47]. They integrated MDA with SysML7 and UML8 to provide a holistic
view on requirements, concurrency, physical and logical architecture. Their main goal

7System modeling language – http://sysml.org/
8Unified modeling language – http://www.omg.org/spec/UML/
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was reusability. Similar work was done for multicore software development by Chihh-
siong et.al. In their paper [106] the focus is on a framework development for multicore
domain which enables automatic code generation from SysML models. Multicore has
also been topic of interest to El Marabti et.al. who presented language for modeling ap-
plication architecture and code generation flow for a multiple processor platform [77].
Once the architecture is well defined and the semantics of the model is clear, some ar-
chitectural patterns can be found. More on this can be found in the work by Sandrieser
et.al. who focused on heterogeneous platforms [99].

Many scientists mention heterogeneous platforms in their papers and it seems to
be a popular research subject, however only a few publications really focus on hetero-
geneous platforms which contain CPUs, GPUs and FPGAs. Modeling of heterogeneous
platforms is hardly a primary research problem of papers in this category. Very often,
heterogeneous platforms are related to verification or demonstrator of the publication.
This is further discussed in the following subsection.

2.3.3 Modeling heterogeneous platforms

An interesting research related to model driven development for embedded systems
has been conducted at Mälaralen University under the project PRIDE. A work by Brode
et.al. [12] and Calrson [18] presents an environment dedicated to the development of
distributed embedded systems using the ProCom [15] model. The approach is interest-
ing and novel because it implements an incremental approach to synthesizing runnable
representation of model entities. This largely contributes to simplification of complex
systems.

Next very common topic are GPU programming models. These models opened a
new path for exploiting massive parallelism of GPUs. Some authors are more hardware
oriented [7, 36, 113], and other are concerned with model driven engineering (MDE).
Since the primary interest of this thesis is on the software, one publication which stands
out is by Jablin et.al. Authors address the limitation of GPU-CPU communication and
present a fully automatic system for managing and optimizing this communication [54].

A paper [95] by Rodrigues et.al. addresses the development for GPU platforms
which uses MDE and MARTE [82]. The outcome is hybrid–meta model in UML MARTE
which can generate compilable OpenCL code. However there is a problem with MARTE,
SysML and AADL. These modeling languages can express the same concept in different
terms. Ziani et.al. addressed this issue with their own meta–model, RCES, which is a
unified meta–model for resource constrained embedded systems [126]. Also there are
timing related issues with AADL and MARTE which are addressed by Mallet et.al. [69].

This research area is relatively recent and there are a lot of calls for papers on these
subjects within software modeling community. Despite the existence of modeling lan-
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guages, researchers tend to avoid them in favor of their own proposals9 mostly because
existing languages are not explicit or expressive enough. Also heterogeneous comput-
ing mostly refers to combinations of CPU and GPU while other computing units are
neglected. The further investigation on this issue is presented in next subsection.

2.3.4 CPU, GPU, FPGA systems

Since heterogeneous platforms host computing units of different types, such as CPUs,
GPUs, and FPGAs, tasks which run on these units can be handled at very different rates.
This is due to communication latency or processing speed. Most of the researchers cur-
rently report on hardware and software issues related to handling systems with CPUs,
GPUs and FPGAs and performance evaluation for specific tasks.

A work [101] by Senouci et.al. addresses the difficulty of bridging communication
between processors in heterogeneous multiprocessor systems. Proposition of their work
is to use FPGA based middleware which would handle the glue code to bind all the
components together. Importance of middleware is also recognized by Ibrahim et.al.
who proposed message oriented middleware as a glue technology for heterogeneous
distributed system and also loosely coupled software systems [51]. Yang-Hsin et.al. pro-
posed software synthesis for middleware which can automatically generate software for
heterogeneous embedded systems [35]. Similar work is done by Chouhan et.al. [21].
In their paper authors address the problem of performing deployment for the hetero-
geneous platform using deployment heuristics. Xia and Chen focused on hardware and
presented a component based framework for embedded digital instruments [124] . Au-
thors point out that design of such systems should follow truly pattern–driven software
development methodology to achieve full reusability. In order to abstract both hardware
and software components new methods are needed which would enable independent
architecture regardless of implementation and location. Rincon et.al. addressed this
issue by defining a low overhead, system–wide communication architecture that offers
complete communication transparency [93]. Article [13] by Brinkschulte et.al. focuses
on providing a suitable communication platform for real-time applications in a hetero-
geneous environment in the form of middleware called OSA+. Also, some authors
address these issues by proposing component oriented approaches [65, 91].

Many papers also report on performance comparison between a CPU, a GPU and
an FPGA [9, 44, 55, 86]. It is obvious that different computing units excel at different
tasks. Careful allocation of tasks can result in best performance. Therefore modeling
of such system is an important step toward performance estimation in early design
phase. Similar observation is also reported by Senouci et.al. [101]. Since allocation of
different tasks can result in different performance, this is an interesting point for CBSE
researchers.

9More on this topic can be found in literature overview by Aleti [3]
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2.3.5 Software component allocation

Due to high dimensionality of modern enterprise systems and adaptive software sys-
tems which emerge from ubiquitous computing, some authors [123] argue that there is
a lack of formal methods to cope with the complexity. In the current literature some au-
thors [46, 87] consider that CBSE is a solution for supporting adaptation and complexity
reduction by enabling third parties to independently develop, deploy and compose parts
of the solution. In their paper, Massow et.al. used CBSE principles to show the architec-
tural runtime reconfiguration in distributed software systems using Palladio Component
Model using performance simulator called SLAstic.SIM [75].
Another research trend focuses on deployment alternatives. Lombardi et.al. [32] pro-
pose an extension of IEEE Recommended Practice for High Level Architecture Federa-
tion Development and Execution Process by providing an approach for optimizing the
allocation at high level. Their work resulted in a tool called S–IDE which provides
feasible deployment alternatives, however it lacks addressing multiple extra–functional
requirements. In [19] authors present an allocation method to improve resource uti-
lization and scheduling while keeping the decisions independent of platform imple-
mentation. The method determines the allocation using a genetic algorithm with an
optimization function (heuristic algorithms [107] are often used since allocation is a
NP-hard problem [53]).
Each deployment scheme may impose two kinds of delay on the overall performance,
communication due to remote invocations and computational due to resource shar-
ing [100]. Considering this, some authors focus on the bandwidth [19] while other
focus on computational delay [100, 118] using different optimization methods to find
the best solution.
Another important focus is brought forth by Bushehrian et. al. in [16]. According
to their experience, multiple resource constraints can sometimes be inter-dependent
and conflicting. Therefore the system must be viewed as a whole and its properties
need to be measured and modeled accurately because it can have great impact on the
trustworthiness of final result.

Most of the related work focuses on allocating components, optimizing performance
and utilizing some mathematical method to model and solve the problem. However,
heterogeneous systems and multi-objective design decision making needs to be further
investigated due to the presented issues. These are mostly related to the following chal-
lenges; solving compatibility issues of different computing paradigms in heterogeneous
computing, finding efficient methods for dealing with high dimensionality of problems
related to software deployment in such systems, deal with design decisions in a system-
atic and formal manor, deal with methods for quantifying extra–functional properties
in heterogeneous systems, increasing the time necessary to effectively design efficient
systems, etc. These challenges are the integrate part of the research presented in this
work.
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More of the closely related work relevant to the research subject of this thesis is
presented in detail in chapter 6.

2.4 Heterogeneous computing

The definition of heterogeneous computing is hardly ever mentioned in scientific
writing and publications. It almost used as a phrase or as a name for the type of com-
puter, rather than a strictly defined term. Generally heterogeneous computing refers
to computing systems which use more than one kind of processor10. However, a strict
definition by Gaster et.al. also provides an explanation for its purpose; heterogeneous
systems are assembled from different subsystems, each of them optimized to achieve
different optimization points or to address different workloads [43]. Slightly older
definition presents heterogeneous computing as well–orchestrated and coordinated ef-
fective use of a suit of diverse high–performance machines to provide super–speed pro-
cessing for computationally demanding tasks with diverse computing needs [1]. In
this research, the working definition will be the combination of previous two: hetero-
geneous computing refers complex systems composed of different kinds of processing
units which use different processing paradigms and are designed for different types of
tasks which work together in order to provide the best processing performance for di-
verse computing needs. While the term computing platform will be used, in the most
general sense, as whatever preexisting environment a piece of software is designed to run
within, obeying its constraints, and making use of its facilities[1]. Since the main focus
of this research are systems which contain multiple computing resources of different
types, the previous definition will be amended with the term heterogeneous to become
a heterogeneous computing platform. As such, the definition remains the same but the
preexisting environment refers to environment with many computing units of different
types, and also includes many software components which can be allocated onto these.

Present heterogeneous computing platforms typically contain software components
which can be assigned for execution among many different computing units such as
CPUs, GPUs, FPGAs, DSPs, ASICs, ASIPs11, etc. For this work the first three of these are
the most important.

2.4.1 Central processing unit

The central processing unit (CPU) is often referred to as the brain of a computer. It
is rightly so, because it manages and coordinates all the components of a computer. It
consists of arithmetic logic unit, control unit, set of registers, clock and several levels

10AMD Heterogeneous Computing Developer Central - http://developer.amd.com/

tools-and-sdks/heterogeneous-computing/ (accessed: 29.3.2015)
11DSP – digital signal processor, ASIC – application specific integrated circuit, ASIP – application specific

instruction sec processor
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of cache memory. CPU can be described on several different viewpoints, from low-level
transistors to a bit higher level which consist of logic units. This work will briefly present
the low level, all the basic constituent units of a CPU and focus on the instruction set
and processing type.

Motherboard, which connects all the components of the computer connects CPU
with random access memory, i.e. RAM. RAM usually stores three types of data; instruc-
tions, numbers (data), addresses. Usually CPU reads this data in order and processes
it, however it can also skip over some data and continue from different location in
the memory, hence random access. The control unit (CU) inside the CPU receives in-
structions form RAM and processes it further, usually in the arithmetic logic unit (ALU)
which commonly implements electronic circuits for addition, subtraction, comparison
etc. Temporary data, i.e. operands and results are stored in registers and transferred
between internal CPU components using a CPU bus. All the operations which occur
within a CPU are directed by the CPU clock, which synchronizes both internal and ex-
ternal communication. A time required to perform one such operation is called a CPU
cycle and it directly influences the processing speed.

Since the CPU is several orders of magnitude faster than RAM, data transferred
between CPU registers and RAM is stored in specialized memory to alleviate possible
bottlenecks, i.e. caches. Level one cache (L1) stores data which is instantly available
to the CPU, and it is measured in kilobytes while level 2 cache (L2) is slightly slower,
typically outside CPU and bigger, it can store several megabytes. In present multicore
designs, L1 and L2 cache memory can be typically private for processing cores, while
another cache memory level (L3) is added to be shared among the processing cores on
a single chip.

Typical instructions which are stored in memory are LOAD, STORE, ADD, COMPARE,

JUMP IF, OUT, IN etc. These instructions are used in assembly language to develop
machine programs. The available instructions are bound to the CPU architecture which
is defined by the instruction set architecture (ISA). The design of the CPU determines the
ISA which can be implemented on a particular chip. Instruction set architecture is well
defined, documented and standardized interface, i.e. contract between hardware and
software. It defines a functional definition of operations, modes and storage locations
supported by hardware and a precise description of how to invoke and access them.
And good ISA is defined by its pragrammability, implementability and compatibility
features [72].

For this work, the most interesting CPU designs12 are CISC (complex instruction set
computing) and RISC (reduced instruction set computing) since the most widely used
ISAs belong to these families, i.e. x86-64 to the former and ARM to the latter.

The main idea which guides CISC CPU design approach is to complete a task in as
few lines of assembly code as possible, and therefore it implements complex instructions

12More on this subject can be found in [48]
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which don’t need explicit calls of loading or storing functions. CISC also calls for using
complex multi-clock instructions, using less code, high cycles per second etc. [20].

RISC on the other hand, uses a different philosophy. It involves using single-clock
simple instructions, use registers to load data for instructions, low cycles per second
and large code sizes. Since each clock cycle is used to execute one instruction the
entire program executes in the roughly the same time as multi–cycle instruction usage.
In fact, in the CISC approach, on some level instructions are translated into RISC-like
operations [20, 48].

x86/x64

x86, also known as IA32 belongs to the CISC family and is traditionally more pow-
erful but less energy efficient. x86 dominant instruction format in world’s computers
running on Windows, Linux and since 2007 MacOS X. This instruction set architec-
ture was defined in 1985 with the introduction of Intel 80386 microprocessor which
extended the original 8086 architecture. This architecture is fading away in favor of
x86-64 architecture, originally developed by AMD which is a 64-bit extension of x86
architecture [10]. This basically means that the processor can address a memory space
of 264 bytes.

ARM

During the 80’s when CPU design took a greater momentum and appearance of
Apple Lisa with 16-bit processor, British company Acorn realized that existing 8-bit
machines should be upgraded to increase performance of future systems. Since they
already used RISC, their goal was to develop a high performance RISC processor, and
therefore Acorn RISC Machine, i.e. ARM13 was born in 1985 [64]. ARM belongs to
RISC family and it’s typically less powerful than x86, but more energy efficient, hence
it is majorly used in embedded systems.

Currently, with the growth of the marketplace for tablets, smartphones and other smart
devices running ARM processors, they enjoy a great popularity and they surpassed the
market of desktops and laptops using x86 ISA. Also, there is an interesting market phe-
nomenon happening today; traditionally low–power ARM is entering high–performance
server market, and traditionally high-performance x86 is entering low-power embed-
ded market. The recent research shows that today, RISC vs. CISC, i.e. ISA is irrelevant
for power and performance characteristics (at least for ARMv8 and higher)[10] since
present technology made them almost equally efficient.

13Later the acronym way changed to Advanced RISC Machine
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Multicore CPU

The processing speed is largely dependent on the CPU cycle duration. If the duration
of the cycle is reduced, more operations can be executed in the same amount of time.
Therefore during the 90’s and early 2000’s, speed–ups in software largely relied on
decrease of CPU cycle duration, i.e. higher operating frequency. However, due to the
current design of transistors there is a theoretical limit to how small a cycle can be
before CPU becomes inefficient (memory wall, ILP wall, power wall [48]).

To overcome the inefficiency of CPU design due to physical limitation, the current design
trend relies on replicating processing units, or more commonly refereed as processing
cores, within a single chip. This allows parallel execution of programs, i.e. threads
(independently manageable instructions), but also ended the La-Z-Boy era14. Therefore
if programmers want to make their program faster, with each generation of computers,
they need to make their programs more parallel, hence the Moores law, according to
Hennesy and Patterson is up to programmers. The switch from to multiple processors
per microprocessor led to the term core which is also used as a processor. Instead
multiprocessor microprocessor, the term multicore caught on [48]. The present day
chip production process enables the development of CPUs with a lot of cores on a single
chip with low energy consumption and shared internal memory (L3 cache). A typical
design is shown in Figure 2.1.
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Figure 2.1: CPU Architecture, left image shows a hierarchical design multicore processor where
cores share L3, and have their own L1 and L2 (AMD), while the right figure shows a design
where two cores share L2, and communicate via a memory controller (Intel) (from [90]).

In order to utilize multiple cores, on higher level often different libraries are used,
such as OpenMP or OpenCL. Currently modern compilers perform some compiler–level
optimizations and offer a programer set of libraries to be used for parallel programming
(e.g. Parallel in C#, multiprocessing in Python or Concurrent in Java). It can be
said that today it has became fairly common.

14refers to the present day programming problem where computing performance is programmers bur-
den, and the programs cannot run faster without an intervention from a programmer as it was in the
past
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2.4.2 Graphical processing unit

Previous section presented the current trend in processor design which obviously ex-
ploits parallel execution of programs. Since this is a key advantage of GPUs, in order to
understand theri design it is necessary to understand parallelism in computing. Accord-
ing to well known Flynn’s taxonomy of data–level and task–level parallelism, the two
most important groups for this work are: single instruction stream, single data stream
(SISD) and single instruction stream, multiple data streams (SIMD). SISD category is a
standard uniprocessor for which a programmer writes sequential code. On the other
hand SIMD category applies the same operation to multiple items of data. The same in-
struction is executed by multiple processors. SIMD is a characteristic of GPUs, although
there are SIMD ISA extensions for CPU’s (e.g. MMX, SSE, AVX) [48].

The GPUs are primarily made to handle processing of graphical models. These are
usually represented as triangles and any graphical transformation or rendering for the
user is made by applying a pipeline of operations15, e.g. lighting, camera simulation, ras-
terization, texturing, etc. These operations are often called shading tasks, and therefore
computing units and / or programs which can perform shading tasks are called shaders.
Historically, these were dedicated hardware elements. Since this made graphical hard-
ware hardwired, by design and necessity they evolved into a programmable computing
units called unified shader. This introduced GPUs with increased flexibility and added
support for longer programs, more registers, and flow-control primitives [67]. Unified
shader architecture provides one large grid of data–parallel floating–point processors
general enough to run different workloads which soon enough led to general purpose
graphics programming units, i.e. GPGPUs.

The highly parallel workload of real-time computer graphics demands high arith-
metic throughput, however tolerates a considerable latency, because images need to be
displayed only every 16 milliseconds (for 60FPS graphics). Where CPU is optimized
for low latency, GPUs are designed for high throughput[67]. For a pipelined design,
GPUs load data elements and process them in multiple execution cores. Data elements
enter the processor chip via an input port and successively flow through different cores
until the processed data elements leave the last core and the entire processor chip [90].
GPUs have a different architectural design point than CPUs mainly focusing on efficient
execution of parallel threads. This is apparent in the per-chip transistor budget where
GPU spends more on computation and less on on–chip cache and overhead[80].

Figure 2.2 shows a typical GPU processor array which contains many processor cores.
Depending on the manufacturer there are different terms associated for processor orga-
nizational units. It shows 128 streaming processors (SP) organized into 8 multithreaded
streaming multiprocessors (SM). Each SP core is highly multithreaded capable of tens
of concurrent threads 16. The processors connect with DRAM partitions via an inter-

15A series of sequentially executed operations.
16nVidia Tesla architecture has SPs with 96 concurrent threads[80]
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connection network[80]. SPs within each SM share a common texturing address unit,
texture filtering unit and L1, L2 cache [81].

îňě Ě¸®»żĽóÔ»Ş»´ Đż®ż´´»´·ł îë

Ý±®» î Ý±®» í Ý±®» ě

Ôď Ôď Ôď Ôď

Ôî Ôî Ôî Ôî

Ý±®» ď

Ôí Ýż˝¸» ř¸ż®»Ľ÷

˝®±ľż®

Ř§°»®óĚ®ż˛°±®¬ ł»ł±®§ ˝±˛¬®±´´»®

Ôď

Ý±®» ď

ÔîÝż˝¸» ř¸ż®»Ľ÷

Ý±®» î

Ôď

Ý±®» í

Ôď

ÔîÝż˝¸» ř¸ż®»Ľ÷

Ý±®» ě

Ôď

Ú®±˛¬óÍ·Ľ» Ţ« Ú®±˛¬óÍ·Ľ» Ţ«

ł»ł±®§ ˝±˛¬®±´´»®

řż÷ řľ÷

Ú·ąň îňé Ď«żĽóÝ±®» ßÓÜ Ń°¬»®±˛ ř´»ş¬÷ Şň ×˛¬»´ Ď«żĽóÝ±®» Č»±˛ ż®˝¸·¬»˝¬«®» ř®·ą¸¬÷ ż »¨żłó
°´» ş±® ż ¸·»®ż®˝¸·˝ż´ Ľ»·ą˛

Ě¸·
Bą«®»
©·´´ ľ»
°®·˛¬»Ľ
·˛ ľń©

Ř±¬

×˛°«¬ ß»łľ´»®

Ę¬¨ Ě¸®»żĽ ×«» Ů»±ł Ě¸®»żĽ ×«»

Í»¬«° ń Î¬® ń ĆÝ«´´

Đ·¨»´ Ě¸®»żĽ ×«»

Ó»ł±®§

ÔîÔîÔîÔîîÔîÔ

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

ÍĐÍĐ

ňňňňňňňňň
ĚÚ

ňňňňňňňňňň ňňňňňňňňňň ňňňňňňňňňň

Ôď

Ú·ąň îňč ß®˝¸·¬»˝¬«®ż´ ±Ş»®Ş·»© ±ş ŇŞ·Ľ·ż Ů»Ú±®˝» ččđđô »» Ĺďîčô ďíéĂ ş±® ż Ľ»¬ż·´»Ľ Ľ»˝®·°¬·±˛

Ě¸·
Bą«®»
©·´´ ľ»
°®·˛¬»Ľ
·˛ ľń©

îňěňíňî Đ·°»´·˛»Ľ Ü»·ą˛

Ú±® ż °·°»´·˛»Ľ Ľ»·ą˛ô Ľż¬ż »´»ł»˛¬ ż®» °®±˝»»Ľ ľ§ ł«´¬·°´» »¨»˝«¬·±˛ ˝±®» ·˛
ż °·°»´·˛»Ľ ©ż§ň Üż¬ż »´»ł»˛¬ »˛¬»® ¬¸» °®±˝»±® ˝¸·° Ş·ż ż˛ ·˛°«¬ °±®¬ ż˛Ľ ż®»
°ż»Ľ «˝˝»·Ş»´§ ¬¸®±«ą¸ Ľ·şş»®»˛¬ ˝±®» «˛¬·´ ¬¸» °®±˝»»Ľ Ľż¬ż »´»ł»˛¬ ´»żŞ»
¬¸» ´ż¬ ˝±®» ż˛Ľ ¬¸» »˛¬·®» °®±˝»±® ˝¸·° Ş·ż ż˛ ±«¬°«¬ °±®¬ô »» Ú·ąň îňę řł·ĽĽ´»÷ň
Űż˝¸ ˝±®» °»®ş±®ł °»˝·B˝ °®±˝»·˛ą ¬»° ±˛ »ż˝¸ Ľż¬ż »´»ł»˛¬ň

Đ·°»´·˛»Ľ Ľ»·ą˛ ż®» «»ş«´ ş±® ż°°´·˝ż¬·±˛ ż®»ż ·˛ ©¸·˝¸ ¬¸» żł» ˝±ł°«¬ż¬·±˛
¬»° ¸żŞ» ¬± ľ» ż°°´·»Ľ ¬± ż ´±˛ą »Ż«»˛˝» ±ş Ľż¬ż »´»ł»˛¬ň Ň»¬©±®µ °®±˝»±®
«»Ľ ·˛ ®±«¬»® ż˛Ľ ą®ż°¸·˝ °®±˝»±® ľ±¬¸ °»®ş±®ł ¬¸· ¬§´» ±ş ˝±ł°«¬ż¬·±˛ň
Ű¨żł°´» ş±® ˛»¬©±®µ °®±˝»±® ©·¬¸ ż °·°»´·˛»Ľ Ľ»·ą˛ ż®» ¬¸» Č»´»®ż¬±® Čďđ ż˛Ľ
Čďď °®±˝»±® Ĺďéęô ďđéĂ ş±® ¬¸» «˝˝»·Ş» °®±˝»·˛ą ±ş ˛»¬©±®µ °ż˝µ»¬ ·˛ ż
°·°»´·˛»Ľ ©ż§ ©·¬¸·˛ ¬¸» ˝¸·°ň Ě¸» Č»´»®ż¬±® Čďď ˝±˛¬ż·˛ «° ¬± čđđ »°ż®ż¬» ˝±®»
©¸·˝¸ ż®» ż®®ż˛ą»Ľ ·˛ ż ´±ą·˝ż´´§ ´·˛»ż® °·°»´·˛»ô »» Ú·ąň îňç ş±® ż˛ ·´´«¬®ż¬·±˛ň Ě¸»
˛»¬©±®µ °ż˝µ»¬ ¬± ľ» °®±˝»»Ľ »˛¬»® ¬¸» ˝¸·° Ş·ż ł«´¬·°´» ·˛°«¬ °±®¬ ±˛ ±˛» ·Ľ»
±ş ¬¸» ˝¸·°ô ż®» «˝˝»·Ş»´§ °®±˝»»Ľ ľ§ ¬¸» ˝±®»ô ż˛Ľ ¬¸»˛ »¨·¬ ¬¸» ˝¸·°ň

Figure 2.2: GPU Architecture of nVidia GeForce 8800 (from [90]). SP is a streaming processor,
TF is a texture filtering unit, TA is a texture address unit.

Programming multiprocessor GPUs is different than programming multicore CPUs.
As seen, GPUs provide several orders of magnitude larger parallelism with a continued
increase over the years. Therefore a scalable programming model is necessary to sim-
plify general purpose parallel computing and enable a programmer to write a code for
a single thread and programs thus scale transparently over a wide range of hardware
parallelism [80]. There are two mainstream programming models used for general pur-
pose GPU software development, OpenCL and CUDA. OpenCL is open source and it is
maintained by Khronos group, while CUDA is Nvidia specific. In this work, OpenCL was
used.

Programming model – OpenCL

OpenCL (Open Computing Library / Language) is an open and royalty–free parallel
computing API designed to enable GPUs and other task accelerating units to work in
tandem with a CPU, providing it additional raw computing power [4]. OpenCL enables
a transparent execution of programs with little regard of the underlying platform thus
increasing a cross–vendor software portability. It binds the low–level layer and draws
an explicit line between hardware and software. Upper–level software programmers
cannot see hardware specific implementations such as drivers and runtime. OpenCL
consists of tree main parts [4]:
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1) a language specification, which describes the syntax for writing programs which
run on supported accelerator units. These are referred to as kernels and they are
based on ISO C99 specification with some extensions and restrictions,

2) a platform layer API, which provides a developer with an access to software ap-
plication routines which query the system for the existence of OpenCL-supported
devices, and

3) a runtime API, which provides contexts to manage multiple OpenCL devices, i.e.
command queues, memory objects, kernel objects, etc.

Figure 2.3 shows OpenCL platform model which consists of one hosts and several
compute devices. Each compute device contains compute units which are divided in mul-
tiple processing elements. Considering the Figure 2.2, it represents a compute device,
each SM represents a compute unit and each SP represents a processing element. Pro-
cessing elements execute instructions as SIMD (single instruction, multiple data) or
SPMD (single program, multiple data). .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

. . .

Host

Compute Device

Compute Unit

Processing 

Element

Figure 2.3: OpenCL platform model

OpenCL programs consist of two parts, host code and device code. Host code is written
ina a general purpose programming languages, mostly C/C++ and executes on the
host (Figure 2.3). From a host code, a programmer calls the operations available in
the device code, i.e. kernel code which is written in OpenCL C and executes directly
on OpenCL devices. Kernel code is a unit of execution which performs a function that
can be executed in parallel. Parallelism is exploited by dividing a problem into an
n–dimensional index space. Each processing element in the index space is called a
work item and each one executes the same kernel function, but loads different data. n–
dimensional index space can be either 1 (array), 2 (image) and 3 (volume) dimensional
as shown in Figure 2.4.
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Figure 2.4: OpenCL Data–Parallelism, left side of the image shows data-parallelism operationg
over an array, while the right part shows data-parallelism for an image

Since each work item executes the same code but loads different data, this is data–
parallelism. Figure 2.4 shows how work items are organized in work groups with a
unique ID. For example, consider an image with resolution 512 × 512, both GLOBAL-
SIZE(0) and GLOBALSIZE(1) are equal to 512. Since there is one kernel execution per
pixel, there will be the total of 262144 kernel executions. Work item for pixel x = 15,
y = 40 would have a global ID (15, 40). OpenCL maps all the work items to be executed
onto an n–dimensional grid, also called NDRange (or an index space). Work groups are
executed together17 and work items within it share resources and can communicate (i.e.
streaming multiprocessor)[5]. However, the size of work groups are hardware specific.

2.4.3 Field programmable gate array

Previous decade yielded advances in object–oriented programming for code reuse
and parallel computing which resulted in new programming languages, frameworks
and tools which allow software engineer to quickly prototype and test different ap-
proaches in solving a particular problem. With increasing focus on parallelization and
concurrency, field programmable gate arrays (FPGAs) gained attention of the software
community. With recent advancement in its programming model and decrease in circuit
fabrication cost, FPGAs today enabled the creation of a custom circuit which implements
an algorithm using a development process almost similar to traditional CPU program-

17Work-groups which are executed together in a lockstep are also called warps by Nvidia literature,
and wavefronts by AMD.

27



Background

ming [122].

FPGA is a type of an integrated circuit (IC), an empty chip composed of off–the–
shelf basic programmable logic elements called logic cells. Modern FPGAs consist of up
to two million logic cells which can be configured to implement a variety of software
algorithms. Although traditional FPGA design flow is more similar to a regular IC than
a processor, an FPGA provides a significant cost advantages in comparison to an IC de-
velopment effort and much more flexibility since it is reconfigurable after fabrication.
The two main players in the FPGA market today the provide tools to make the FPGA
design process much faster; Xilinxs’ Vivado High-Level Synthesis (HLS) or Alteras’ SDK
for OpenCL. Figure 2.5 shows the time necessary to develop an initial version of the
same software application and the optimized version for different platforms. As seen,
FPGA optimized version provides the best performance, however in the time which ex-
ceeds typical design time limit in a software project. Therefore, historically, FPGAs are
used only in software projects where the performance was of utmost importance, e.g.
aerospace and defense, automotive, medical electronics, ASIC prototyping, high perfor-
mance computing, scientific instruments, etc. However, with a recent paradigm shift in
processor design towards multicore processors and program parallelization, a software
engineers need to structure algorithms in a way which leads to efficient parallelization
and performance. Therefore FPGA manufactures saw this as an opportunity to increase
FPGA presence in software projects. As shown in Figure 2.5 with appearance of new
programming models, closer to traditional software design rather to IC design, FPGA
programs can be developed faster and time to achieve the optimized version is reduced
under the typical design time limit.

For many years, FPGA development was closer to electrical engineering rather than
software engineering. The development of new tools, programming model for FPGAs
became more similar to CPU programming and offers constructs found in any of the
high level languages, such as iterations, selections, functions, etc. However, despite
bringing the development process closer to CPU programmers, one still needs a lot of
knowledge to understand how FPGAs work in order to gain the best performance. The
basic structure of the FPGA consists of: a) configurable logic blocks – CLBs, c) wires and
d) input/output blocks as it is shown in Figure 2.6.

Although the structure depicted in Figure 2.6 is sufficient to implement any algorithm,
the efficiency of the resulting implementation is limited in terms of computational
throughput, resources and clock frequency. Therefore, modern FPGAs also incorpo-
rate basic (commonly used) elements such as: embedded memory, phase–locked loops
for driving FPGA fabric at different clock rates, high speed serial transceivers, off–chip
memory controllers, multiply–accumulate blocks, etc.

Configurable logic blocks consists of a:

– LUT, a look up table is the basic building block capable of implementing any logic
function of n Boolean variables.
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Figure 2.5: Design time vs. application performance (from [122]). A design shift from register–
transfel level (RTL) model to hardware–level synthesis (HLS) dramatically reduced the design
time while keeping the application performance.

– Flip–flop, is the basic storage unit.
– multiplexor, is a selection circuit which selects any of the N input lines and feeds

it to the appropriate output.

Wires (interconnect) is a set of flexible routing connections which route the signals
between CLBs and input/output nodes. There are several different routing types, from
the ones designed to interconnect between CLBs, the fast horizontal and vertical long
lines spanning across the device, to global low–skew routing for clocking and other
global signals. The design software makes the interconnect routing task hidden to the
user unless it is specified otherwise, thus significantly reducing design complexity.

Input-output nodes (IOBs) provide the support for dozens of I/O standards and provid-
ing an interface between the FPGA and the rest of the platform.

Difference with CPU

The main difference between CPU and FPGA processing is the fixed architecture of
CPU. With a processor, the computation architecture is fixed so the job of the compiler
is to determine how to best fit the software application in the available processing struc-
tures. Performance depends on how well an application maps to the capabilities of a
processor. However with FPGAs, compilers job is to create a processing architecture
using the available hardware building block which best fit the software program.

Consider a simple function z = a+ b. FPGA compiler needs to compile the high level
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Figure 2-1: Basic FPGA Architecture

Figure 2.6: FPGA Architecture (from [122])

language into several LUTs required to achieve the size of the output operand18. Unlike
a processor where all computations share the same ALU, in a FPGA implementation of
the previous function the computation of z has a unique dedicated LUT(s). In addition
to assigning unique LUT resources per computation, FPGAs also differ from processors
in both memory architecture and cost of memory access. In general, the memory access
is instantaneous.

The processor clock frequency is one of the parameters which differ greatly between
CPU and FPGA. A typical CPU clock frequency is around 2GHz while a high end FPGA
would have around 500MHz. Given a choice between CPU and FPGA to develop a
software solution, one would easily choose CPU, however the clock rate for these two
options is highly misleading. Regardless of a CPU type, the instruction execution always
follows the same (simplified) stages: 1) fetch the instruction (IF), 2) decode the instruc-
tion (ID), 3) execute (EXE), 4) fetch data for the next instruction (MEM), 5) write back
the solution in local registers (or global memory) (WB).

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

IF ID EXE MEM WB

0 1 2 3 4 5 6 7 8

EXE

EXE

EXE

EXE

EXE

0 1 2 time

CPU FPGA

Figure 2.7: Instruction execution, CPU vs FPGA (from [122])

As shown in the left side of Figure 2.7 modern processor are capable of running the
instructions with some degree of overlap. This case is for uniprocessor, but the principle

18As a general rule, 1LUT is equivalent to 1bit of computation[122]
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is the same for multicores with multiplication of the same process. Also, the assumption
in the figure is that each of the instructions is executed in one processing cycle. The
right side of the Figure 2.7 shows the same execution process for an FPGA. As seen
it executes 5 different instructions in parallel. Each EXE is a custom circuit, and any
changes in the user application invoke changes to the circuit within FPGA. The full time
necessary for application execution in CPU is 9 time units, and in FPGA it’s 1.

Latency is the number of clock cycles it takes to complete an instruction, and in
the previous example for CPU it equals to 5 clock cycles per instruction. Application
latency in both FPGAs and CPUs is usually resolved by applying pipelining. For a CPU
this means overlapping the instructions which allows for a significant improvement in
performance. In the previous example instead latency of 25 (5 per instruction and there
were 5 instructions), the total latency was 9.

Consider the example shown in Figure 2.8. The function to be executed on an FPGA
consists of 5 building blocks. The time necessary for execution of each block is 2ns, so
the total execution time is 10ns. If the block is executed in one cycle, the design is
limited to 100MHz frequency (and latency remains 1 cycle). However, if the blocks are
organized in a pipeline, i.e. filter like nature, where the source of the next block is the
sink of the previous block, the maximum clock frequency is now 500MHz. In contrast to
a CPU and a GPU design, the design of an FPGA allows for high flexibility of operation
allocation and clock usage. Depending of the usage scenarios, the clock can be increased
to reduce latency or decreased to reduce overall power usage[122]. The operations
can be multiplied several hundred (or thousand times) across CLBs to achieve extreme
parallelism but also increase the throughput (number of cycles necessary to accept the
next input data).

Register O1 O2 O3 O4 O5 Register

10ns

2ns

Reg.

100 MHz

O1 O2 O3 O4 O5

500 MHz

Reg. Reg. Reg. Reg. Reg.

clock

clock

Figure 2.8: FPGA pipelining, depending on usage scenarios, a FPGA developer can choose
different implementation options, where as for a CPU or a GPU the design is permanent.
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IP cores

FPGA programming is more often done by electronics engineers rather than software
engineers. In this domain it is common to create an IC design and to reuse it many times,
therefore the similar thinking is applied to FPGA programming, each functionality, once
it is programmed a developer can choose to publish it and make it available for other
users. Such units of code which are widely available for reuse are called intellectual
property cores, IPs. IP is a fundamental building block of FPGA program design. It is
the product of human intellect which must be unique, novel and unobvious. IP cores are
a blueprint for electronic circuits which enable us to achieve some functionality faster
by reusing good, proven and working solutions to a particular known problem. For
instance this can be an algorithm for image filtering, MPEG engine, MP3 engine, Eth-
ernet network processor, specific CPU, etc. IP cores are grouped into three categories,
soft cores, firm cores and hard cores. Hard IP core is a physical manifestation of the IP
design, i.e. a mask layout of a circuit which cannot be changed. Soft cores are synthe-
sizable from HDL and provide better flexibility for the price of predictability. Firm IP
cores are in between two previous concepts.

2.5 Summary

The first part of this chapter presents the bond between the computing units and
the clarification for the need of multiple computing units of different types. Although
it has been shown by previous research that for certain problems GPUs perform a lot
better than CPUs, this does not mean that a CPU will be replaced from the current com-
puting models. Rather than replacing it, a GPU augments the computing system with
additional capabilities. Similarly, as the FPGA does along with other processing units
for accelerating specific casks, e.g. ASIC, ASIP, DSP, etc. However, in the presence of
multiple computing units capable of accelerating the same computing task, who decides
where does the task get to be executed?

Swebok 3.0 has shown that software engineers need to expand their knowledge areas
more towards the hardware. In the latest release it included architecture decisions as
well as computing, mathematical and engineering foundations as the required knowledge
of any software engineer. Other researchers have also shown that hardware–software
codesign techniques should be known to anyone who wants to keep up with challenges
of increasingly complex electronic systems, including SoC designers, software and hard-
ware engineers.

To cope with increasing complexity of computer systems, software engineers sug-
gest using component based software engineering (CBSE) approach. CBSE has been
known in the past as a method which provides a solid foundation for dealing with soft-
ware engineering challenges related to increased system complexity. It efficiently man-
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ages different computing unit types, data structures, processing rates and programming
paradigms by separating concerns into smaller manageable units, i.e. software compo-
nents. To effectively achieve the research objectives laid out by this work, CBSE needs
to be applied with considerations to related work in the field of a) software modeling
for embedded systems, b) software architecture for embedded systems, c) modeling
of heterogeneous systems, d) computing environments which include CPUs, GPUs and
FPGAs and e) deal with software component allocation (placing, mapping).

After briefly presenting the actual topics of the related fields, the second part of
this chapter provides and overview of heterogeneous computing necessary to follow the
course of further research presented in this thesis. This includes an overview of CPUs,
CPU families, multicore CPUs and their processing capabilities. Likewise it introduces
the GPUs and the processing model which they follow. Finally, this chapter presents
FPGAs along with their processing model and all necessary concepts a software engineer
should know to understand the subsequent chapters.
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CHAPTER 3

MATHEMATICAL MODEL OF A

HETEROGENEOUS COMPUTING PLATFORM

To precisely capture the properties of a heterogeneous computing system, software
engineering researchers often resort to formal modeling. This chapter introduces the
mathematical model for the formal description of a set of heterogeneous computing
units, a set of software components, a set of constraints and finally a cost function. The
cost function provides a software architect with the most suitable allocation of software
components to a heterogeneous computing units with regard to the given constraints,
simplifying the multi–criteria architectural decision making process.

3.1 Introduction

The first goal of this research (RG-1), is to develop a model which formally de-
scribes a set of software components1, a set of heterogeneous computing units and the
relationship which exists (or will exist) among them. The relationship is such that soft-
ware components perform operations, exhibit certain properties, and are realized on a
particular computing unit. The computing unit provides a resources necessary for the
realization of a software component.

The realization of a software component for a particular computing unit can also be
referred as an allocation; i.e. a particular software component is allocated on a particular
computing unit and it performs functions bound by a set of extra–functional properties (e.g.
timing, security, scalability, etc). However, depending on the properties of a computing
unit, a software component can have different performance, while providing the same
functionality. This is especially obvious in heterogeneous systems where computing
units are of different types and consist of vastly different computing paradigms.

Allocating the same software component on different computing units results in
different component behavior. Since a component oriented software architecture can

1Throughout this work, the word component refers to a software component, unless specified other-
wise.
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have a variety of allocations on a heterogeneous computing system, different allocations
can perform very differently, resulting with different behavior, on a system level. Not
from the functional, but rather from an extra–functional point of view. Considering
this, in a system with multiple software components and computing units, one can
wonder, how to allocate software components to computing units; in order to have
the best execution time, the maximal memory utilization, or to minimize the energy
consumption because the system is battery powered, etc.

These are the questions a software architect faces in an early design phase, and
he/she makes decisions which later on define the whole system. In order to answer
such questions, a software architect designing such system needs to have access to
information about the properties of software components and computing units. While
this thesis will not make any assumptions or strict procedures on how to obtain that
information, section 4.3 provides some suggestions.

This chapter2 deals with formalizing all the necessary information for architectural
decision making and providing a complete model of a heterogeneous computing plat-
form, resulting with a framework which provides an answer, to which allocation is the
best. The first and foremost task is to define what is an allocation.

3.2 Allocation function

The heterogeneous platform consists of two main elements, a set of heterogeneous
computing units and a set of software components. In order to realize some function-
ality, a component must be placed in an execution environment, i.e. a computing unit.
This relationship is shown in Figure 3.1. Software components communicate by calling
in different operations from other computing units, and this communication, i.e. data
flow is realized through physical connections which exist between computing units.
The heterogeneous platform H consists of the set of software components ci ∈ C, i =

0, ..., n and the set of computing units ui ∈ U , i = 0, ...,m, i.e. H = (C,U).
An allocation is a mapping of n software components from the set C to a (sub–) set

of computing units U ′, with |P| = mn being a set containing all possible allocations with
the size. The allocation is given by the following function:

Definition 3.1. Function α : C → U is a component allocation function where α(a) =

(p1, ..., pn) ∈ P defines a particular a–th allocation of components from C to computing
units from U .

According to this definition α is the allocation function, while α(a) is a particular solution
vector, i.e. allocation. I is noteworthy to understand that not all the computing units
need to necessarily host a component, but all software components need to be allocated,

2Some excerpts of this chapter have been published [108], and here they are revised and extensively
extended.
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Figure 3.1: Mapping, i.e. allocating software components to computing units

therefore some computing units from U may remain unused. This can also be written
as U ′, where U ′ ⊆ U .

The following example shows a sample allocation. In this particular case the number
of components is equal to number of computing units (n = m), and every computing
unit hosts one component. The position in solution vector α(a) represents a component
and its value represents the computing unit on witch it is allocated. In this example,
software component c1 is allocated to computing unit u1, c2 to u2, etc.

u1, u2, ... , um

↑ ↑ ↑

α(a) = (c1, c2, ... , cn)

In the real world heterogeneous systems the number of components is very often much
larger than the number of computing units, in the solution vector α(a), this would be
visible as multiple occurrences of the same value throughout the elements of the vector.

The allocation function α can now successfully generate different allocations. Con-
sider for a while, what allocations really are; different permutations (with repetition)
of software components and computing units. To evaluate which allocation is the best,
one needs to search through the space of mn possible answers, where m is the number
of computing units (|U| = m), and n is the number of components (|C| = n).
Obviously, the search space increases rapidly with the number of the components and
computing units, so to find the optimal component allocation with a respect to a particu-
lar goal is (at least) very time–consuming. This is because resource allocation problems
are inherently NP–hard [53]. So to find the best allocation it means to find a sub–
optimal, good enough solution obtained in a reasonable amount of time. Therefore,
one of the challenges of this thesis is to create a cost function which evaluates different
allocations and construct it in a way which is easy to automate.
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3.3 The allocation cost function

This section presents the construction of the cost function and the component al-
location model. The cost function uses the information contained in the model of the
heterogeneous platform in order to evaluate any particular allocation. The allocation
with the minimal cost is also the best one. The term best takes into the consideration
the following information defined by a software architect:

a) resource consumption, every software component consumes certain amount re-
sources of the computing unit to which it is allocated to, in order to realize its
function,

b) resource availability, every computing unit has a limited number of resources, and
also resources of different types which consequently reflects on the performance
of the components hosted by a particular unit,

c) architectural preference, any additional logical statement, which for example states
that two specific components must be allocated together, while the third one
should not be on the same computing unit. This can be achieved by the following
constraints:

i) components that must always be allocated together on the same platform
ii) components that must not be allocated on the same platform

iii) computing units must or cannot host same specific components

The component allocation model constructed in this chapter is referred as Mα, while
the cost function will be referred to as w. Both Mα and w will be incrementally built
and explained in detail through the subsequent sections3.

3.3.1 Elements of the cost function

For the component to execute in accordance to its specification, certain resources
need to be available. In different systems the relevance of a certain resource changes,
in some, one resource might be very important while others can be irrelevant. The
choice about which resources to include or exclude from the system design decision
process is made by a software architect. While the software architect can specify an
arbitrary number of resources, generally, the Mα model recognizes the following:

a) processing resources, resources provided by a computing unit necessary for realiz-
ing the functionality of software components

b) communication resources, resources provided by a computing unit necessary for
realizing data transfer between software components

3The reason behind this naming scheme is that letter M suggests the word model, and α is the alloca-
tion function. Therefore it could be read as allocation model
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Processing resource requirements

Having in mind a heterogeneous platform, each component that can be allocated on a
different computing unit also uses a different amount of resources depending on the
given computing unit type. The specification of the resources required by the compo-
nents allocated on the computing units is 3–dimensional. The first dimension specifies
the components, the second specifies computing units and the third specifies the amount
of necessary resources. This is formally written as an array:

Definition 3.2. For n software components, m computing units, and l different re-
sources, T = [tijk](n×m×l) is a resource requirement 3-d array where tijk is the value of
the k–th resource required by i–th software component allocated on the j–th computing
unit.

With the resource requirement array T , a software architect has the means to formally
specify the amount of any resource required by any component while it’s allocated on
a particular computing unit. For any particular allocation α(a), a software architect
can look up the required resources in the array T , add them up together and get the
resource cost. Formally, this is formally written as res function:

res
(
α(a)

)
=

l∑
k=1

n∑
i=1

tipik, (3.1)

where:

t – is the element of the resource consumption array T ,
l – is the number of different resources presented in array T ,
n – is the number of components,
a – is the a–th allocation vector,
pi – is the i–th element of α(a).

Communication requirements

While the function res (Equation 3.1) provides an information about the resource
consumption of any given allocation, one also needs to account for the communication
relationships between components. Communication can be viewed from two different
aspects:

a) software component communication, some components are used more frequently
than others and exchange a large amount of data (their activity is more intensive),

b) computing unit (hardware) communication, is bound by physical communication
channels and governed by different communication protocols (e.g. LAN, Blue-
tooth, CAN bus, etc.)
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Both hardware and software communication are realized on two different levels, first
is the internal and second is the external communication. The internal communication
refers to all communication channels available within a single component or computing
unit, while the external communication refers to all the communication channels which
exist and bind components or computing units together.
To quantitatively represent the communication between software components, a new
matrix is introduced in to the model Mα. It defines the communication intensity (e.g.
average number of function calls) of each component.

Definition 3.3. K = [kij](n×n) is a communication intensity matrix where kij represents
a communication intensity approximation between i–th and j–th software component.

If components i and j are not communicating then kij = 0. Also notice that K is
symmetric so the direction of the communication is irrelevant at this point. Additionally,
the definition 3.3 does not limit the user on how to quantify the values in matrix K.
This matrix is the first of two approximations used by the component allocation model
Mα, and as such it should be obtained by an experts’ suggestion or approximated with
guidance by measurements conducted on a real–world system.

To describe the communication further, one must also take into consideration that
different allocations have no impact on the communication intensity. In essence, this
means that wherever you place the components, they will always communicate with
the same intensity. However, from the perspective of hardware communication, this is
not the case. Different allocations make a big difference, since the physical communica-
tion paths used by software components may change. And because some of them may
be laggy while others my be quite fast, communication channels can be characterized
by a communication cost. The channels through which the data flows slower are more
expensive to use, while other channels with faster data transfer rates are less expensive.
This directly reflects on the overall system performance. Components which communi-
cate intensively between computing units with high communication cost have a larger
impact on overall performance than those communicating sporadically with less data
exchange. In heterogeneous computing environments connected via different types of
communication channels (e.g. Ethernet, CAN-bus, Wi-Fi, etc.) this is very common
[94]. With that in mind, a new matrix is introduced in to the Mα model, and it contains
information about the communication channel cost between computing units:

Definition 3.4. C = [cij](m×m) is a platform communication cost matrix where cij repre-
sents a communication cost between i–th and j–th computing unit. For i = j, cij = 0.

In addition to the res function which quantifies the performance of any given allocation
from the standpoint of processing resources, the new information available in matrices
K and C can be used to create an additional function which quantifies the communi-
cation performance. To find out the communication performance, one needs to look
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up the communication intensity between two components (kij) and multiply it by the
communication cost of the communication channel (cij). Formally, this is written as:

com
(
α(a)

)
=
∑
i≤j

kij · cpipj , (3.2)

where,

k – is the element of the communication intensity matrix K,
c – is the element of the platform communication cost matrix C.

Finally, to get the cost of any allocation, equations Equation 3.1 and Equation 3.2 are
joined in to a single cost function w

(
α(a)

)
:

w
(
α(a)

)
= res

(
α(a)

)
+ com

(
α(a)

)
(3.3)

When expanded, the final form of the cost function is:

w
(
α(a)

)
=

l∑
k=1

n∑
i=1

tipik +
∑
i≤j

kij · cpipj (3.4)

Although the current form of the cost function may be used for some purposes, it is
noteworthy to understand that there are some issues which have not been addressed.
The major issue here, presents the freedom given to a software architect to define any
number of different resources of different types. Consequently for the cost function
w this means that it deals with different measurement units with different orders of
magnitude. For example, having average memory usage in megabytes and average
latency in milliseconds, one does not simply compare these units, especially in formal
expressions. This presents a big issue since apples and oranges cannot be compared.
Further discussion about this issue and ways of handling it are dealt with in section 3.5.
Before this, the model Mα will be introduced with constraints presented in the following
section.

3.4 Constraints

The Equation 3.19 accounts for both processing and communication resource cost
for any given allocation. As such, it provides a good starting point for further extensions,
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namely including constraints. Since there are some allocations that are infeasible to
implement, the model Mα needs to be extended to contain such information. It should
consider:

a) limitation of available resources (both processing and communication resources),
each computing platform has limited resources, and some allocations can require
more resources than a computing system can provide,

b) architectural preference, a software architect can specify additional constraints,
such as which two components must or must not be allocated on the same com-
puting unit, etc.

If an allocation requires more resources than it is available, or if it does not submit to
constraints defined by an architect, it needs to be dismissed. To include these constraints
into the model Mα, it will be expanded with new information for dismissing infeasible
allocations.

3.4.1 Dismissing infeasible allocations due to limited resources

The current component allocation model consisting of matrices T , C,K, does not
provide the information about a resource availability. For that purpose, Mα is further
extended with two new matrices. The first one contains the information about the max-
imal availability of processing resource provided by a computing system. It is defined
as:

Definition 3.5. R = [rjk](m×l) is a computing unit resource matrix where rjk represents
k–th resource of a j–th computing unit.

The second matrix contains the information about physical communication constraint,
i.e. the bandwidth available between computing units. It is defined as follows:

Definition 3.6. B = [bij](m×m) is a bandwith matrix where bij represents communication
bandwidth available between i–th and j–th computing unit.

With this additional information contained in matrices R and B, a software architect
can account for the resource limitation and dismiss invalid allocations. For the verifi-
cation of invalid allocations, it is necessary to construct new parameters for the cost
function w. In cases where the given allocation is invalid, these parameters would ren-
der the result of the cost function useless. An intuitive way to do so is to multiply the
cost function with a parameter equal to 0 if the allocation is invalid. Therefore any
allocation for which w

(
α(a)

)
= 0, is declared as invalid and subsequently dismissed.

For this purpose, the cost function is updated with two factors. These factors are
functions which verify the availability of resources for a particular allocation. The first
one is resource constraint function ρ, and the second one is communication constraint
function κ. Resource constraint function ρ is defined as follows:
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ρ
(
α(a)

)
=


1, if a–th allocation does not exceed the maximum available processing

resources

0, otherwise

Formally, it this is written as:

ρ
(
α(a)

)
=

1, if
∑n

i=1

∑l
k=1

(
tipik

)
<
∑l

j=1 rpij

0, otherwise
(3.5)

where r – is the element of computing unit resource matrix R.

When the function ρ is added as a factor in the resource cost function defined by Equa-
tion 3.1, it then becomes:

res
(
α(a)

)
=

 l∑
k=1

n∑
i=1

tipik

 · ρ(α(a)
)

(3.6)

The resource cost function (Equation 3.6) now disregards any solution which exceeds
the available processing resources. Similarly to this, the communication cost function
is updated with function κ as a factor which invalidates the allocation if it exceeds the
communication cost. The new function can also result in values 1 or 0 depending on
the following:

κ
(
α(a)

)
=

1, if a–th allocation does not exceed the maximum available bandwith

0, otherwise

Formally written, the expression for κ becomes:

κ
(
α(a)

)
=

1, if
∑

i≤j
(
kij · cpipj

)
<
∑

i≤j bpij

0, otherwise
(3.7)

With the communication constraint defined, the Equation 3.2 can be updated to:

com
(
α(a)

)
=

∑
i≤j

kij · cpipj

 · κ(α(a)
)

(3.8)
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To simplify the notation of the individual constraint functions (i.e. factors) are grouped
in a single constraint function ctr:

ctr
(
α(a)

)
= ρ

(
α(a)

)
· κ
(
α(a)

)
(3.9)

Having defined the constraints for processing and communication resources, the previ-
ous version of the allocation cost function can be updated to:

w
(
α(a)

)
=

(
res
(
α(a)

)
+ com

(
α(a)

))
· ctr

(
α(a)

)
(3.10)

when expanded, its complete form of the allocation cost function is:

w
(
α(a)

)
=

 l∑
k=1

n∑
i=1

tipik +
∑
i≤j

kij · cpipj

 · ctr
(
α(a)

)
(3.11)

The function ctr will also be referred as solution validity product. If the product of all
its element is 1, the solution is valid. With this, the allocation cost function can account
for any constraint that comes out of physical and real world limitations. However, as
previously said, a software architect can define additional limitations which also affect
the final allocation. This is further described in the following section.

3.4.2 Dismissing infeasible allocations due to architectural specifi-

cation

The current, fairly broad, model of the component allocation can incorporate infor-
mation about all aspects of the system. It contains information about availability and
demand of processing resources and communication resources, which is enough to gen-
erate feasible allocations. However, in the real world, the allocation decision can very
rarely be made purely on hardware information alone. Often, there are human made
requirements which come into place because of several factors:

a) previous experience, although a certain allocation can be declared the best one
purely based on numbers, there could be some previous experience which sug-
gest otherwise. Mainly because of the factors which are hard to represent in the
model, for example; bad software drivers for certain hardware components, poor
documentation of components or computing units, incompatible systems, etc.

b) reusability, there might be legacy components available from previous successful
projects. If they work without issues, a software architect would gladly reuse
previously proven and robust solutions, rather than develop new ones. This is a
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typical architectural sacrifice of performance in exchange for higher reliability.
c) development effort, in some cases the optimal allocation could be the one which

is hard to implement and it would take more development effort than other al-
location which would perform slightly poorer, but would take lot less effort to
implement (e.g. an FPGA vs a CPU).

d) price, the best performing allocation can possibly also be the most expensive one,
therefore a software architect could sacrifice performance for a lower price.

To incorporate such architectural knowledge into the allocation cost function, in this
section the model Mα will be further extended. The extension will allow the specifica-
tion of the following constraints:

a) hosting capability, which provides an option to point out which components can
or can not be allocated to certain computing units.

b) mandatory joint allocations, which provides an option to point out which compo-
nents must mandatory be allocated together on the same computing unit.

c) forbidden joint allocations, which provides an option to point out which compo-
nents must not be allocated together on the same computing unit.

The constraint function ctr
(
α(a)

)
will be updated with these new constraints. Similarly

as for previously defined constraints, the new ones will invalidate the entire allocation
if these new constraints, i.e. conditions aren’t met.

Component hosting capability

The first architectural constraint that is introduced to the constraint function is the
computing unit hosting capability matrix D:

Definition 3.7. D = [dij](n×m) is the computing unit hosting capability matrix, where
dij represents a statement whether the i–th software component can be hosted on the
j–th computing unit.

The value of dij is either 0 or 1, depending on the following condition:

dij =

1, if i–th software component cannot be allocated to j–th computing unit

0, otherwise

To verify the architectural constraint from the previous definition ( 3.7), it is necessary
to construct a mathematical function which accordingly verifies the validity of the al-
location. This means that each pair of elements in an allocation α(a) = (p1, ..., pn), i.e.
solution vector needs to be evaluated against the matrix D. If any evaluation results in
0, the solution is not valid. Essentially, the constraint function needs to count all the
zeros of some allocation in accordance with matrix D. This function is defined as:
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δ
(
α(a)

)
=

1, if
∑n

i=1

(
dipi
)

= 0

0, otherwise
(3.12)

Mandatory joint allocations

As mentioned previously, a software architect can choose which components need to
be allocated together, regardless of the computing unit. For this purpose, a new matrix
is introduced to the model to contain this information. It is defined as:

Definition 3.8. Y = [yij](n×n) is the matrix of mandatory joint allocations, where yij rep-
resents a statement whether the i–th and j–th software component should be allocated
together on the same computing unit.

The values yij of the matrix Y can be 0 or 1 depending on the following conditions:

yij =

1, if i–th and j–th component must be allocated on the same computing unit

0, otherwise

To verify this constraint ( 3.8), similarly as in previous section, it is necessary to con-
struct a new function. This time, the function which will result in 1 if the allocation is
valid according to Y, and with 0 otherwise. This means that for each element of the
vector α(a), this function needs to use the look up matrix Y and verify if the component
is supposed to be allocated with some other component on the same computing unit.
For the solution vector α(a) this means that the same value (recall that the value of
the vector represents the computing unit) occurs on multiple (exact) positions (recall
that position of the vector represents the component). Essentially, this means counting
for invalid occurrences of computing units (u ∈ U) in the solution vector according
to matrix Y. To clarify further, consider the following example. The heterogeneous
system consists of 4 software components and 3 computing units, C = {c1, c2, c3, c4},
U = {u1, u2, u3}.

Y =



− 0 1 0

0 − 0 1

1 0 − 0

0 1 0 −


, and the solution vector is: α(a) = (u1, u2, u1, u3)

This means that the components c1, c3 and the components c2, c4 must be allocated on
the same computing unit. Here is the truth table which verifies if this is so:
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Y α ¬Y ∧ α

c1, c2 0 0 1

c1, c3 1 1 1

c1, c4 0 0 1

c2, c3 0 0 1

c2, c4 1 0 0 ← bad allocation

c3, c4 0 0 1

Although the above example seems to suggest that the XOR operator would be in or-
der, it fails to demonstrate what happens when a yij = 0 and pi = 1. In such cases
XOR would eliminate valid solutions. Therefore, the only case where a solution can be
invalid is when yij = 1, in all other cases it is always valid. As seen in this example,
the mandatory allocation which states that components c2 and c4 need to be allocated
together is not satisfied. Formally, this verification can be written as a function in the
following expression:

υ
(
α(a)

)
=


1,
∑

i<j ¬
[
¬yij ∧ [pi = pj]

]
= 0

0, otherwise
(3.13)

Note that in the definition, [ ] represents Iverson bracket notation defined as:

[P ] =

1, if P is true

0, otherwise

Forbidden joint allocations

The final constraint which a software architect can define is the forbidden allocation.
It can happen that for reasons previously described, an allocation where two or more
components are allocated to the same computing unit is forbidden. The information
about these allocations is contained in the matrix X , defined as:

Definition 3.9. X = [xij](n×n) is the matrix of forbidden joint allocations, where xij

represents a statement whether the i–th and j–th software component must not be
allocated together on the same computing unit.

The values in the matrix X can be 0 or 1 depending on the following cases:
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xij =

1, if i–th and j–th component must be allocated on separate computing units

0, otherwise
(3.14)

In a very similar fashion as for the mandatory allocations, each element of an allocation
α(a) needs to be verified against the matrix X . Consider the following example:

X =



− 0 1 0

0 − 0 1

1 0 − 0

0 1 0 −


, and the solution vector is: α = (u1, u2, u1, u3)

The following truth table evaluates the validity of the solution α:

X α ∧

c1, c2 0 0 0

c1, c3 1 1 1 ← bad allocation

c1, c4 0 0 0

c2, c3 0 0 0

c2, c4 1 0 0

c3, c4 0 0 0

As seen in the matrix X , the components c1 and c3, and the components c2 and c4 must
not be allocated on the same computing unit. Since the allocation α(a) allocates the
components c1 and c3 together it is not valid. The logical operator to find out invalid
solutions is AND. Therefore, the verification function will be defined as:

χ
(
α(a)

)
=

1, if
∑

i<j

[
xij ∧ [pi = pj]

]
= 0

0, otherwise
(3.15)

Where [ ], as previously, represents Iverson bracket notation. Also, notice that there
is a relationship between matrices Y and X according to which yij ∈ Y and xij ∈ S
follows that yij = ¬xij for i, j = 1, ..., n and yij = 1. This means that if two components
must be allocated together, it cannot happen that they are also forbidden to be allocated
together.
Finally, the constraint function (Equation 3.9) can be updated with the constraint func-
tion for verifying allocation preference(Equation 3.12), mandatory allocation (Equa-
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tion 3.13) and forbidden allocations (Equation 3.15). The final form of the constraint
function becomes:

ctr
(
α(a)

)
= ρ

(
α(a)

)
· κ
(
α(a)

)
· δ
(
α(a)

)
· υ
(
α(a)

)
· χ
(
α(a)

)
(3.16)

With this being the final form of the constraint function, the cost function can now
account for both physical resource limitations and limitations defined by a software
architect.

3.5 AHP – handling different measurement units

The role of the software architect, among many, is also to decide which resources
will be taken in consideration to evaluate different allocations. If an architect chooses to
evaluate allocations according to execution time, memory usage and energy consump-
tion, the cost function respectively deals with milliseconds, megabytes and watt–hours.
These are three different measurement units which can easily have different orders of
magnitude. Therefore, while the previously defined cost function w (Equation 3.11)
can compare and rank valid allocations, the problem with different types of resources
has still not been addressed. Also, these resources might have different importance. In
some scenarios one might prefer that the processing time is twice more important than
memory. To solve this problem, Analytic Hierarchy Process (AHP) will be used [96].

AHP is an effective tool used to deal with for complex multidimensional choices,
alternatives and tradeoffs. The decision maker is given the option to set priorities to
different information upon which the best choice is made. A benefit of applying AHP is
that it does not assume that the best choice is the one which consists of optimums of
individual choices. With AHP, a decision maker generates a weight for each criterion.
The higher the weight, the more important the corresponding criterion is. Different
criteria is weighted by using a pairwise comparison, by which the decision maker states
the importance of each criteria, while the AHP provides a mechanism to evaluate the
consistency of these statements. The procedure is mostly written and done in a tree
structure, where each branch represents a criterion. For the each depth level, a pairwise
comparison needs to take place. The size of the tree can be of arbitrary depth, and each
branch will have the different importance in the final decision. More on this topic can
be found in [97].

3.5.1 Applying AHP to decision making in component allocation

To apply the Analytic Hierarchy Process to making architectural decisions about al-
locating software components on a heterogeneous computing system, one level of hier-
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archy is sufficient. The decision tree is shown in (Figure 3.2). Each branch represents
one criteria which corresponds to one resource. The importance of each resource is
weighted using a trade–off vector F . The values it contains are calculated using AHP in
tree steps:

1) evaluate the resource importance with pairwise comparison matrix Mc,
2) calculate the principal eigenvector of the Mc,
3) asses the consistency of pairwise comparison.

α 
(1) 

Goal

Criteria

Allocations

k2k1 kl+l

. . .

. . .

f1 f2

f1+f2+...+fl+1 = 1

fl+1

α 
(2) 

α 
(a) 

Figure 3.2: Hierarchy for defining the criteria

Pairwise comparison

The first step in AHP is to create a comparison matrix Mc which contains all the
resources. The number of resources is defined in the resource consumption matrix T
and it is k. Since the cost function treats communication as a resource on its own, the
size of the comparison matrix is Mc is (k + 1) × (k + 1), where this one extra element
represents the communication. Mc has the following form:



k1 k2 . . . kl+1

k1 1 m1,2 . . . m1,l+1

k2 (m1,2)
−1 1 . . . m2,l+1

...
...

...
. . .

...

kl+1 (m1,l+1)
−1 (m2,l+1)

−1 . . . 1


=Mc (3.17)

Each resource, i.e. decision criteria needs to be compared with all other elements in the
matrix Mc. The elements m of the matrix usually have values which span from 1/9 to 9.
This is the standard AHP scale for comparing criteria and it is interpreted as follows: 1
– equal importance, 3 – slightly favoring, 5 – strong favors, 7 – very strong favoring, 9
– extreme favors.
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For instance, if resource k1 is slightly more important than resource k2, consequently
m1,2 = 3, and k2 compared to k1 would give the reciprocal value, m2,1 = 1/3. For i = j,
m = 1.

Calculating the principal eigenvector

The next step of AHP is to calculate normalized principal eigenvector and principal
eigenvalue4. If A is a square matrix, a non–zeoro vector C is called eigenvector iff there
exists a number λ, such that AC = λC. If indeed λ exists it is called an eigenvalue of
matrix A. The vector C is called eigenvector associated to the eigenvalue λ. The largest
eigenvalue is called principal eigenvalue (λmax). The eigenvector which corresponds to
principal the eigenvalue is called principal eigenvector (ω∗). To use it in AHP, the prin-
cipal eigenvector is normalized so that the sum of all elements equals 1. These values
are elements of the trade–off vector F used to provide weights to different criteria, or
in this case to different resources. With the introduction of F to Equation 3.11, the cost
function w becomes multi–criterion.

Verifying the consistency of pairwise comparison

The final step, before applying the weight vector F in the cost function is to verify
the consistency of a pairwise comparison. Since this is subjected to human judgment
it is prone to inconsistency. The improvement of consistent human input attributes to
validity of decision priorities. AHP deals with this issue by measuring the consistency
of prioritization in matrix Mc. Matrix Mc is consistent if mij,mjk = mik for all i, j, k.
The consistency is measured by calculating the consistency ratio CR. It is given as
CR = CI/RI, where CI is the consistency index and RI is the random consistency index.
CI is calculated as:

CI =
λmax − l
l − 1

(3.18)

where l is the number of different criteria. Since the model Mα defines k different
resources and communication, l = k + 1.
Random consistency index RI can usually be looked up in pre–calculated tables. How-
ever, if the tables do not contain the necessary values, one can easily calculate RI . More
on this topic can be found in [97]. Finally, with factor consistency index and random
consistency index, one can calculate the consistency ratio. If is CR ≤ 10%, the in-
consistency of pairwise comparison is acceptable, otherwise, it’s not, and the pairwise
comparison should be repeated.

Since different criteria, i.e. heterogeneous platform resources are measured in dif-
ferent units, it is likely that some values may differ in order of magnitude (e.g. tens of

4The reason why the principal eigenvector is used is that it invariant under hierarchic composition of
its own judgment matrix [98]
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milliseconds, thousands of megabytes or hundredths of milliamperes per hour). Hence,
before the calculation, the input matrices T , R and C need to be normalized, so all
the values are in range from 0 to 1. 1 is representing a maximum available amount
of a resource. Therefore, F becomes the only factor directly influencing the ratio of
importance of a certain resource in the final decision.
The expanded cost function, updated with the trade–off vector F is:

w
(
α(a)

)
=

 l∑
k=1

fk

n∑
i=1

tipik + fc
∑
i≤j

kij · cpipj

 · ctr
(
α(a)

)
(3.19)

Where fc is the last element of the vector, representing the importance of communica-
tion, and fk are the importance parameters for the non–communication resources. The
cost function now accounts for multiple–criteria.

Illustrative AHP example

To illustrate all steps of the AHP, consider a system with four software allocations
among which a software architect needs to choose. This choice should be made with
consideration to the overall system behavior for each allocation with regard to; system
availability (measured as percentage of up–time), systems’ average power consumption
(measured in watts), average latency of the system (measured in milliseconds) and
testability (measured as percentage of code coverage). Applying AHP addresses the
following problems; first, it dismisses the issue of different measurement units and
second, it results in consistent weights of the selected criteria.

GOAL

1.000

Availabiltiy 

0.5739

Average power 

consumption

0.2913

Average latency

0.0903

Testability

0.0445

α 
(1) 

α 
(2) 

α 
(3) 

α 
(4) 

Figure 3.3: AHP hierarchy example with four criteria and four alternatives

The first step of the AHP is to create a decision tree as shown in Figure 3.3. There
are four alternatives amongst which one should make a choice based on four criteria,
each of which contributing with different weight to the final decision. The weights are
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obtained by performing a pairwise resource comparison, i.e. by creating a Mc matrix,
as shown in the following expression (3.20):



availability avg.pwr.cons. latency testability

availability 1 3 7 9

avg.pwr.cons. 1/3 1 5 7

latency 1/7 1/5 1 3

testability 1/9 1/7 1/3 1

 =Mc (3.20)

The availability is the most important criteria, it is 3 times more important than av-
erage power consumption, 7 times more than latency and 9 times more than testability.
It follows by the average power consumption, latency and testability. By a coincidence
their order in the matrix Mc is given by their importance, however this is usually not
the case.

The Eigenvector of a given resource comparison matrix results to λmax = 4.2692.
The consistency index is CI = 0.0897 which gives the consistency ratio of CR = 9.97%.
Since it is smaller than 10%, the comparison of the resources can be considered as
consistent. The resulting priority vector is (0.5739, 0.2913, 0.0903, 0.0445), as shown in
figure Figure 3.3.

The final step is to consider the input values for each criteria given by the each al-
location and evaluate their weight by some function. Table 3.1 illustrates an example
with input values for each criteria and allocation, weighting particular criteria and ob-
taining the best allocation by a simple summing function. According to all the provided
information, the best performing allocation should be α(4).

Table 3.1: AHP example resource weigting. Each input is normalized and weighted. The final
result is obtained by summation of all parameters, less is better.

Raw inputs Normalized Weighted

α(1) α(2) α(3) α(4) α(1) α(2) α(3) α(4) α(1) α(2) α(3) α(4)

Availability
(unavailable in %)

2 1 5 1 0.2222 0.1111 0.5556 0.1111 0.1275 0.0638 0.3188 0.0638

Average power
consumption (W)

10 11 9 10 0.2500 0.2750 0.2250 0.2500 0.0728 0.0801 0.0655 0.0728

Average
latency (ms)

130 120 90 100 0.2955 0.2727 0.2045 0.2273 0.0267 0.0246 0.0185 0.0205

Testability (%) 90 40 60 50 0.3750 0.1667 0.2500 0.2083 0.0167 0.0074 0.0111 0.0093

Final 0.2437 0.1759 0.4140 0.1664

AHP can also contain sub–criteria with more complex trees and multiple levels. In
such cases, the same procedure is repeated on each sub–criteria level, but then, instead
achieving a goal, a sub–criterion should achieve the criterion goal. The total weight of
sub–criteria is equal to the weight of the criteria to which it belongs. Weighs from all
levels always sum up to 1.
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3.6 Accounting for the synergy effect

The current cost function, given by the Equation 3.19 evaluates an allocation and
attributes it with the number which reflects the weight of the solution with the respect
to multiple criteria. It accounts for processing resources, communication resources,
physical constraints, architectural constraints and constraints specified by an software
architect. Consider for a moment the current form of the res function:

res
(
α(a)

)
=

 l∑
k=1

fk

n∑
i=1

tipik

 · ρ(α(a)
)

(3.21)

Notice that the inner sum iterates and adds up the required resources from T without
any regard to the possibility that some components may already be allocated on a par-
ticular unit. This means that any new component allocated to a certain computing unit
always takes up the same amount of resources and the performance does not decay. In
the real world scenario this will very rarely be the case. Consider a CPU which hosts 5
software components, and upon them another 50 were added. The previous 5, or for
that matter all 55 components would hardly perform in the same way, as if there were
only one component allocated on a CPU. In some cases, new components might per-
form better (due to buffering algorithms, sharing resources, memory prediction, etc.),
and in other cases it would affect all the components so they would perform poorer.
In this work, this will be refereed to as the synergy effect, i.e. the effect of stacking up
components on the same computing unit. This is one of the essential characteristics of
any given allocation and the cost function w should account for this effect. Synergy ef-
fect can have positive or negative impact on the overall cost of a certain allocation. The
current res function does not account for effects which emerge when a single computing
unit hosts multiple software components.
Examining the type of a resource, there can be two types of availability of a resource
with respect to the synergy effect:

a) saturable availability, by adding new components to a computing unit, the per-
formance of all components declines (decays), non the less, new components can
still be added,

b) limiting availability, with addition of new components to a computing unit, the
resources are increasingly consumed until they are fully consumed and new com-
ponents cannot be added.

Consider the example shown in Figure 3.4. The left side of the figure represents satu-
rated resource availability. With addition of new components, at a certain point a com-
puting unit becomes saturated increasing the resource consumption and performance
decay. Also notice that in this example, the performance decay does not grow linearly,
meaning that there is a positive synergy effect. However, at a certain point, A comput-
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Figure 3.4: Left: saturable availability, right: limiting availability

ing unit is saturated and performance decay becomes to grow exponentially (but new
components can still be added). The right side of the figure represents an example of
limiting resource availability. Each new component allocated on a computing unit takes
up the same amount of resources, growing linearly up to the point where the resources
are completely consumed.

Information about synergy effect, i.e. about the performance of software components
allocated on computing units with different load, is approximated in the 3-dimensional
array S. First dimension represents computing units, second dimension represents the
number of components allocated to a computing unit (where maximal size is equal
to the total number of components (n)) and the third dimension represents a synergy
effect factor for different resources. Array S is defined as:

Definition 3.10. For n software components, m computing units, and l different re-
sources, S = [sijk](n×m×l) is a synergy factor approximation array where sijk is the factor
which compensates for the synergy effect of k–th resource on j–th computing unit while
it hosts i software components.

If sijk is less than 1, it means that new components added to a computing unit uses
less resources than a single component allocated on that unit. This is a positive synergy
effect. If s is bigger than 1, this is a negative synergy effect and it means that new
components consume more resources than one component by itself. To select the right
factor from the array S, one would need need to know how many components a specific
unit hosts (for a given allocation α(a)), and multiply the number of required resources t
from the array T with the proper s. To construct a function for selecting the right factor
s from the array S consider the following example. The heterogeneous system consists
of 4 software components and 3 computing units, C = {c1, c2, c3, c4}, U = {u1, u2, u3}.
Array S is given as:
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S =



1 1 1

0.9 0.7 1

0.95 0.75 1

1.2 1.4 1


, and the solution vector is: α = (u1, u2, u1, u3)

In this example, s22 = 0.7 means that if a current allocation has 2 components allocated
on the u2, the resource requirement given by the array T should be multiplied by 0.7,
i.e. there is a positive synergy effect. If the same computing unit hosts 4 components,
s24 = 1.4 and this is a negative synergy effect. Also, notice that computing unit u3 has
no synergy effect since all the factors are 1.

To modify the current res function, one final function needs to be constructed. The
input to this new function is an allocation along with a computing unit of interest, and
it would result in the number of components allocated on the given computing unit.
This number is then used to find the right s in the array S. This new function is defined
as:

η
(
α(a), j

)
=

n∑
i=1

[
pj = pi

]
(3.22)

Where [ ] is the Iverson bracket notation. If you consider the solution vector α(a) from
the previous example, here are some sample outputs; η (α, 1) = 2, η (α, 2) = 1. When
modified with the function η, function res becomes:

res
(
α(a)

)
=

 l∑
k=1

fk

n∑
i=1

(
tipik · sη(α,i),i,k

) · ρ(α(a)
)

(3.23)

And after updating the cost function, the last and final form is:

w
(
α(a)

)
=

 l∑
k=1

fk

n∑
i=1

(
tipik · sη(α,i),i,k

)
+ fc

∑
i≤j

kij · cpipj

 · ctr
(
α(a)

)
(3.24)

Since the synergy factor array is the second and final approximation of this model.
Since it is very hard to measure it in practice, it is suggested that it is obtained by exper-
imental experience or by an expert with good knowledge about the platform. However,
since it is an approximation it will introduce a level of uncertainty in the model, a
software architect can choose whether to use it or leave it out of the final cost function.

With this, the model Mα is complete, and based on all the information contained
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within it, the allocation decision can be made.

3.7 Summary

This chapter presented the component allocation model Mα which contains the
information about the heterogeneous computing platform, physical and architectural
defined constraints, allocation function, and a set of parameters necessary to make a
multi–criteria cost function for comparing performance of different component alloca-
tions. The component allocation model is defined as
Mα =

{
H, α, (T ,R, C,K,B) , (D,Y ,X ) ,Mc, F,S, w

}
, where:

H : is a heterogeneous computing platform, which consists of a set of software
components C, and a set of computing units U ,
α : is an allocation function which which maps a set of software components to a
set of computing units, i.e. α : C → U ,
(T ,R, C,K,B) : is a set of arrays which contain the information about resource
requirement and availability, with K being an approximation,
(D,Y ,X ) : is a set of matrices which contain the information about architectural
constraints,
Mc : is a resource pairwise comparison matrix,
F : is a trade–off vector, provided by AHP which contains importance weights for
each resource,
S : is a synergy effect approximation trade–off array
w : is an allocation cost function

As such, the model Mα provides all the information necessary to attribute each feasible
allocation of software components onto a heterogeneous (or homogeneous for that mat-
ter) computing platform, with a number. This number enables the comparison different
allocations. An allocation with the lowest non–zero cost is also the best. The idea be-
hind this model is to use it in an early design phase to provide a software architect with
a performance insight of future system. With this information, architectural decision
making is largely simplified.

The procedure in which a software architect can obtain the best allocation consists of
four steps:

I: Define the heterogeneous platform H, obtain the information about resource re-
quirements and availability (T ,R, C,K,B).

II: Define the architectural constraints (D,Y ,X ) and synergy effect trade–off array S
III: Perform a pairwise resource comparison and calculate the resource importance

trade-off vector F
IV: Find an allocation α(a) such that it is the lowest non–zero solution of the cost

function w, i.e. min

(
w
(
α(a)

))
> 0
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Henceforth, steps defined from I to IV for obtaining the optimal allocation of software
components to a heterogeneous computing platform will be referred as I-IV allocation
framework.
The following chapter presents the measurements on a real–world system which are
necessary to collect all the information about the model. This information can then
be used to determine the best allocation for that system and also presents the second
research goal RG-2 of this thesis.
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CHAPTER 4

MEASUREMENT

This chapter presents the collection process and an analysis of extra–functional prop-
erties for a component based software architecture deployable on different computing
units within a heterogeneous computing environment. The main extra–functional prop-
erties in focus of this research are the average execution time and the average power
consumption. The first is traditionally identified as a system quality which reflects the
overall performance, while the latter is becoming increasingly important in both every-
day industrial/office and embedded computing.

4.1 Environment – the heterogeneous platform

The design of present–day embedded systems and the accompanying software is
becoming ever more complex, and with an emergence of specialized computing units
for accelerating certain operations, this trend is growing. Along with the benefits, this
also carries some drawbacks, i.e. additional complexity which generates a variety of
(side–) effects that are hard to ignore while designing a software. With this issue of
growing, and sometimes even referred as unnecessary complexity, research in cyber-
physical systems is gaining popularity. From the cyber-physical systems theory perspec-
tive [89, 120], software is characterized by its physical properties, which are apparent
in its requirement and consumption of resources, e.g. time, energy, generated heat,
etc. [121]. For software architects this presents additional considerations in the soft-
ware design process. To deal with this additional complexity and considerations, this
research exploits the benefits of component based software engineering (CBSE). It fa-
cilitates techniques for expressing system characteristics in the form of extra–functional
properties [26], based on which software architects perform software design decisions.

The extra–functional properties which will be addressed from this point onward are
the following:

a) average execution time, as it reflects the temporal behavior of a certain imple-
mentation of the heterogeneous platform. This research, in particular, deals with
platform–dependent average execution time, as a most important system property
related to the system performance.
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b) average power consumption, as it directly affects major system design decisions,
e.g. the size of the power supply, design of the cooling system, number of voltage
regulators, etc. All of which influence on the physical size of the system, the
processing power it can contain, durability, reliability, etc. [74].

By no means are the previous two extra–functional properties the only ones, or the
most important ones which can be included in the Mα model. However, for the reasons
stated above, these were selected as particularly interesting ones for this thesis. In
addition, they are selected due to their their interesting reflection of the cyber–physical
theory, mainly thinking of the physical footprint exhibited by a software system. The
procedure of evaluating extra–functional properties of that kind is also refereed to as
profiling. Since this research deals with software components, it will be refereed to as
component profiling. All the components are profiled on the same computing platform,
a tracked robot which features three computing units of different kinds, a CPU, a GPU
and an FPGA. Its mechanical, electrical and software configuration are described in the
following section.

4.1.1 Hardware

Mechanics

The computing platform (U) used in this research is embodied within a tracked
robot named TiWo. It is built for the purpose of component profiling for this research
due to the lack of commercially available robots which have multiple processing units
of different types. It’s mechanical design features:

– a steel chassis, one of the greatest challenges in designing a robot is to minimize
its weight, while preserving the strength necessary to carry on board electronics.
After a several failed trails, 1.5 mm steel was chosen as it had the best structural
strength–to–weight ratio.

– geared stepper motors, chosen due to their torque, precision and ease of control by
a software. They provide enough torque to overcome the rolling resistance of the
robot maximally weighting 20 kg. TiWo has two Nema 23 steppers with planetary
gear boxes (with 4:1 ratio), with 20 Nm of torque, weighing 1.3 kg.

– an industrial grade plastic tracks, since it is hard to get hold of a custom made
rubber tracks, the ones which are currently in use are two sided timing belts made
from industrial grade plastic. This provides a good grip on rough surfaces. On
indoor smooth surfaces, some rolling may occur occasionally.

– industrial grade plastic bearings, metal bearings are avoided due to their weight.
– 3D printed sprockets, the original design had aluminum sprockets, but because

their weight, they were replaced by the 3D printed ones.
Weight was one of the most challenging issues of the mechanical design. Initially, the
total weight of the mechanical parts (chassis, sprockets, tracks and stepper motors)
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Figure 4.1: TiWo – design phases

without electronics was 17.8 kg. However with the chassis redesign, the weight was
reduced by 77%. Also, 3D printed sprockets are 92.5% lighter than the original alu-
minum ones. Considering these two design changes, the total weight was reduced by
53%, more precisely, down to 8.3 kg.

Electronics

The computing platform is composed completely with commercial–off–the–shelf (COTS)
components, and since the robots in the real–world scenarios (e.g. Mars rovers, mining
robots, robot submarines, etc.) rarely have access to a power supply and use batter-
ies, the components for TiWo were selected to minimize the power consumption. The
computing hardware consists of the following:

– CPU, Intel i3–3240 with 3.4 GHz, with two processing cores and hyper–threading
capability which enables four simultaneous threads.

– GPU, Sapphire Radeon HD7750 low profile graphics card with 1 GB of RAM mem-
ory.

– FPGA, Xilinx Spartan 6 (LogiPi board1).
– motherboard, mini-ITX Asus P8H61-I.
– memory, Kingston HyperX Blue 8 GB DDR RAM.

1LogiPi board, a Kickstarter FPGA project for RaspberryPi – http://valentfx.com/logi-pi/ accessed
in period between fall 2013, spring 2016
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– storage unit, Kingston HyperX Blue solid state drive 240 GB.
– vision system, Microsoft Kinect Sensor (1st generation).
– motor control, SainSmart M542 Microstepper motor driver, Arduino Mega for high

level motor control and communication with low–level hardware.
– power supply, M4 ATX intelligent power supply plugged into a laboratory 6–30 V

power source or 5 cell LiPo battery (Turnigy 5000 mAh, 6S battery).
– misc, 2x DC/DC converters, 2x16 LCD display.

In this list, three components are of particular interest for this research; the CPU, the
GPU and the FPGA. These three electronic components are the main on–board comput-
ing power, i..e the heterogeneous computing platform. These are used in the following
sections for the analysis of software allocation alternatives. Considering the component
allocation model Mα, the CPU, the GPU and the FPGA are the elements of the set of
computing units, U .

4.1.2 Software

The software components used for the analysis of allocation choices and verifying
the allocation I-IV framework are developed to work properly on both Windows and
Linux. However, for the purpose of component profiling and experimenting in this
research Linux Ubuntu 14.10 LTS was used. The following six components are used for
profiling:

– Image input component (II)
◦ Function: It is in charge for taking images from any available imaging de-

vice present in the system. Currently, the imaging device is Microsoft Kinect,
and therefore the component provides the functionality to load a) plain color
(RGB) image, b) infrared (IR) image, c) depth image and finally d) the com-
bination of IR and RGB image. The key implementation assumption of the
Image input component is the support of infrared and stereo vision.
◦ Allocation: The architectural constraint, due to the implementation of this

component, is that it can only be allocated on a CPU.
◦ Implementation: This component is implemented in Java, using a OpenK-

inect library which makes it work properly on both Windows and Linux.
– Image filtering component (IF)

◦ Function: It is probably the most important component due to its processing
ability. It accepts messages with two parameters, the first is the filtering chain
setup and the second one is the image to be processed. Currently it handles
five filters; a) a gaussian blur filter, b) a sobel filter, c) an erode filter, d)
a dilate filter and e) a hysteresis filter. Each filter can be used individually
or several of them can be combined in a filtering chain (implemented as a
pipeline).
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◦ Allocation: this component can be allocated on all three computing units, i.e.
on the CPU, the GPU and the FPGA (with some limitations further described
in the following section).
◦ Implementation: This component is implemented for several different pro-

cessing paradigms, all of which use a multi–layered approach. For the CPU
and GPU implementation the bottom layer was implemented in C++. OpenCL
was also used to implement filtering kernels which could be executed on both
the CPU and the GPU (without any changes). The intermediate layer is a Java
native interface (JNI) wrapper which handles the communication between
the top and the bottom layer. The top layer is implemented in Java, and pro-
vides functions to simply create the filtering chain out of the available filters
and to determine the execution environment (CPU or GPU). The implemen-
tation for the FPGA is different, it consists of four layers. The bottom layer
is implemented in VHDL. The second layer is in charge for communication
with the FPGA device and it is written in C++. The third layer is the JNI
wrapper which communicates with C++ code of the second layer, and with
the Java code of the fourth layer. The third layer implements the commu-
nication between the RaspberryPi (which contains the FPGA add–on board)
and the CPU. The communication is handled via the Ethernet using the UDP
protocol. The final layer is a high level layer which abstracts all the hardware
below. A software developer simply defines the filters which are supposed
to be used and an image on which they should be applied. After calling the
image filtering functions, all of the previously described layers are used to
deliver the processed image.

– Mission manager component (MM)

◦ Function: The component is in charge for implementing a simple parser
which handles the robot mission files. Mission files describe what a robot
should do using a simple syntax, e.g. (START, FORWARD, DETECT, UNTIL, OB-
JECT_DETECTED, etc.). This component is used in combination with the Main
control component and it waits for the signal to load the mission file. The
Main control component then uses the interpretation provided by this com-
ponent and communicates with the Actuator control component in order to
execute the mission.
◦ Allocation: This component can be allocated only on the CPU.
◦ Implementation: Mission manager component is completely implemented in

Java.

– Main control component (MC)

◦ Function: This component binds all other components together to form a
functioning whole. It initializes the communication channels between the
components and queues the Mission manager component to start with the
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mission execution. This component also provides a GUI.
◦ Allocation: This component can be allocated only on the CPU.
◦ Implementation: It is implemented entirely in Java and it uses several differ-

ent communication libraries like JSSC and Kryo along with the Java Swing
components for the user interface.

– Object detection component (OD)
◦ Function: It is one of the most important components. As the name suggests,

this component is used for detecting objects in the provided image. For the
purpose of this research, a custom Haar classifier was created to detect ar-
rows which show the robot the direction in which it should proceed. The
same classifier (without code rewriting) was tested on multiple computing
units.
◦ Allocation: This component can be allocated to the CPU and the GPU.
◦ Implementation: This component is separated in to three layers. The bottom

layer is written in C++, and uses OpenCV accelerated with OpenCL. This
layer uses the Haar classifier to detect the object in a provided image. The
result is passed to the upper layer through the intermediate layer, i.e. a JNI
wrapper. The higher level enables a software developer to select the desired
classifier and an image.

– Actuator control component (AC)
◦ Function: The role of this component is to scan the ports searching for the

interface with the lower level software. When found, it creates a messaging
environment and exchanges commands from the Main control component to
the lower level software. The lower level software is Arduino C code which
controls the stepper motors. This component also provides abstractions of
the low level commands (e.g. instead of dealing with binary coding for the
steps of the stepper motor, a developer simply sends the FORWARD message
and the lower software level deals with the controller signals).
◦ Allocation: This component can be allocated only on the CPU.
◦ Implementation: The component is implemented in Java. It is multi–threaded

to handle the two–way full duplex communication.

Figure 4.2 shows the simplified software architecture layout, and as one can notice,
not all the components communicate. The Main control component binds the function-
ality of all components into a functioning whole.

Only two components can be allocated on computing units different than CPU. The Im-
age filtering component can be allocated on the CPU, the GPU and the FPGA, while the
Object detection component can be allocated to the CPU and the GPU. Although this
might be a minor drawback, the important point about the implementation of Image
filtering component is the fact that each filter contained within this components can be
treated as a component on its own. Filters are merely grouped together in the same
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Figure 4.2: Simplified software architecture layout

component since they share the similar functionality and the same interface. Having
that said, Image filtering component consists of five sub–components, which can be
separated and individually allocated. For the time and power profiling in this chap-
ter however, it will be treated as a single component. Therefore, the set of software
components C for the model Mα has six, previously listed components.

4.2 The measuring procedure

For every software component described in the previous section two main properties
are measured; the average execution time and the average power consumption down to
the level of individual operations performed by the components. This section describes
and clarifies the measurement procedure for the component profiling.

4.2.1 The average execution time

The average execution time of the components was measured and recorded by the
custom software which was used for all the components. The elapsed time, i.e. execu-
tion time of a certain operation available on each component was calculated by recoding
the starting and the finishing time of the operation. Although there were some issues
related to faster operations (measured in nanoseconds), these issues were handled and
described in this section. For each of the computing units the procedure was similar but
a bit different, for the;

a) CPU, Figure 4.3 shows the points at which the CPU average execution time was
measured. All the components are accessible from Java code, and therefore, for
every component the execution time was measured in Java code (System.nanoTime()
). The figure shows A as the starting point of time measurement, while B is the
time when the operation is finished. The time B − A represents the elapsed time,
i.e. the execution time of a certain operation (service) provided by a component.
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Figure 4.3: Time measurement points for the CPU

b) GPU, a GPU component cannot be executed without using a CPU, so the mea-
surement points should include both of these computing units. Consider the ones
shown in Figure 4.4. Respectively the points A and D are the starting and ending
point of executing a operation on the GPU. The points B and C are the starting
and ending time of executing a GPU kernel. C − B is the execution time of a
GPU kernel, while D − A is the total execution time necessary to send and ob-
tain data processed by the software component allocated to the GPU. Therefore,
(B −A) + (D−C) is the data loading time, i.e. the time necessary to transfer the
data to and from GPU. Time was measured in both Java and C++ code.
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Figure 4.4: Time measurement points for the GPU

c) FPGA, the average execution time was measured similarly as for the GPU. Fig-
ure 4.5 shows the measurement points. As previously, both the execution time
and the data loading time were measured. Regardless to one extra computing
unit between the CPU and FPGA, there were four measurement points. D − A

is the total execution time (including the data transfer) of the operation on the
FPGA, while C − B is only the execution time necessary for the FPGA to finish
an operation. Hence, (B − A) + (D − C) is the data loading time. All the time
measurements were performed in both Java and C++ code.

The measured execution time(s) of the operations provided by all the components were
stored in a structured file for later processing. For the three components (all of them
written fully in Java; Mission manager, Main control and Actuator control), using Java
commands to record the operation starting and finishing time was not adequate. Some
operations were executing to fast to draw any meaningful conclusions from the data,
since the elapsed time, fairly often turned out to be negative. According to Java docu-
mentation, the previously mentioned System.nanoTime() method “provides nanosecond
precision, but not necessarily nanosecond accuracy”, and also “no guarantees are made
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Figure 4.5: Time measurement points for the FPGA

about how frequently values change”2. Therefore, a special tool was used to profile
operations with extremely fast execution time, VisualVM. It is a tool to monitor and
troubleshoot Java applications. Among many features, it can attach to any running
Java application and perform time profiling. The level of precision is down to a single
operation, with minimal overhead on monitored application3.

4.2.2 Average power consumption measurement

In order to perform the power consumption profiling of the software components,
a high–precision multimeter was used; GwInstek GDM–8342. Other than the precision
its most important features include recording measurements external USB storage units,
controlling the sampling rate and simultaneously measuring the current and the voltage.

Once the device all is setup for measurement and the statistical number of necessary
samples is calculated, it is very important to determine the measurement points. Fig-
ure 4.6 shows several different measurement points for the computing units:

a) CPU, is connected to the motherboard via the socket with several hindered pins
which makes it inaccessible for direct current measurement. Therefore, the cur-
rent was measured at the point A (Figure 4.6), right at the power source. While
this point provides the power consumption for the entire motherboard, a simple
technique by Collange et.al. can be used to obtain only the CPU’s power consump-
tion ( [23]). This is further discussed in the coming sections.

b) GPU, initial measurements of power consumption for the GPU was performed us-
ing a PCI–Express pull–up board, i.e. the point B. However measurements have
shown that this point exposes only the 3.3 V rail without the 12 V rail. Since the
majority of the power goes through the 12 V rail, this point wasn’t acceptable.
Another option involved using current clamps however there is a questionable
measurement precision of this method. Finally, the measurements took place at

2JavaDoc, http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#nanoTime ac-
cessed in June 2015

3VisualVM http://visualvm.java.net/, accessed June 2015

67

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html#nanoTime
http://visualvm.java.net/


Measurement

Power source

Motherboard 

(&CPU)

PCI-Express

GPU
RaspberryPi LogiPi

Mul.-

meter

Intel PowerGadget

Supervise CPU power 

consumption

Point CPoint B

Point A
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the point A, as for the CPU.
c) FPGA, since it was on board a Raspberry PI, it can be supplied via a USB cable.

Therefore, some modifications to USB cable were made which provided the ac-
cess to the series for current measurement. As the Figure 4.6 shows, the power
consumption was measured at the point B.

Besides the high–precision multimeter, Intel’s Power Gadget tool was used to addition-
ally monitor the power consumption. It is a software tool provided by Intel which uses
low level software hooks to approximate the power drain. However, the measurements
have shown that this tool is very imprecise and cannot be used to augment the data
recorded by the multimeter. Instead, it was used to monitor the CPU activity while the
idling parameters were measured for other computing units. For example, while mea-
suring GPU power consumption, using the Power Gadget the activity of the CPU was
monitored to make sure it is idling so it doesn’t affect the measurement. In addition to
Intel’s Power Gadget, htop was also used for the same purpose.

Considering the measurement points, an obvious question is how to measure only
the power consumption of the CPU without any other disturbance. Do do that a similar
approach was used as suggested by Collange et.al. in their paper on the power con-
sumption from a software perspective. The main idea behind this goal is to measure
the CPU’s average power consumption with as little load as possible, i.e. measure the
idling average power consumption. Having the CPU idling average power consumption,
if one wants to obtain the average power consumption of a certain software, it is nec-
essary to execute this software and measure and detect for how much does the average
power consumption increase above the idling power consumption. Finally, the power
consumption of software being profiled is the difference between the average power
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consumption measured while it was executed and the idling average power consump-
tion of a computing unit. However, since CPU is prone to running other tasks, a certain
modifications of OS could be made to make it more predictable, and the measurements
must be repeated multiple times.

Although it seems simple, it is far from it. During the measurements for this research,
the CPU was continuously supervised not to execute other tasks, and all the unneces-
sary operating system tasks were killed and reduced to only the essential ones. However,
once getting the large enough sample of the idling power consumption and comparing
it to the sample collected while iteratively executing the software components in a con-
trolled manor the results were substantial. The exact same method was used for the
GPU.

Considering this method, one can quickly come to the conclusion that the power con-
sumption data acquired by this way is not 100% accurate, meaning that it contains some
amount of overhead generated from the supporting hardware infrastructure, namely
the motherboard, the memory and the storage. However, the power consumption of the
solid state drive is very low, so for this research it could be left out. Also, a CPU without
RAM, and a motherboard can hardly operate by itself, therefore it could be argued that
it is welcoming to consider the entire supporting hardware infrastructure of the CPU in
such measurements.

As for the GPU related measurement, knowing the idling power consumption of the
CPU it is easy to extract the power consumption of the GPU alone (while measuring
at the point A Figure 4.6). Similarly as for the CPU, for the GPU it is also welcoming
to measure the power consumption of the entire supporting hardware infrastructure
(at least, for this research it is), which is the reason behind using the measurement
point A. And as the idling power consumption of the CPU was subtracted from the GPU
power consumption measurement, it could be noticed that the GPU cannot really work
without the CPU. Therefore, when a component is allocated to the GPU, it will always
leave a power consumption footprint on the CPU also. Such components in reality use
two computing units and influence on their power consumption, so for their true power
consumption it is advisable to monitor both computing units. It was done this way in
this research. While the CPU’s idling power consumption was not attributed to soft-
ware components allocated on the GPU, the extra load of the CPU in such cases was
considered. Figure 4.7 shows how can one recognize the physical footprint a software
component leaves on the power measurement curve of a computing unit. It is easily
to distinguish between the idling computing unit and the computing unit under a load.
When measuring the real average power consumption the data inside the yellow box
was used, while the rest represents the intentional idling of the unit and it was dis-
missed. This idling was intentionally built in so that the raise of the power consumption
could be detected more efficiently.

The particular case of Figure 4.7 shows the power consumption of a GPU executing the
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Figure 4.7: Measurement sample, 1 – function call, 2 – GPU active, 3 – intentional idle, 4 –
discarded data, 5 – area with real average power consumption (yellow box).

Image filtering component in a controlled manor; ten operations executed in a row with
500ms of delay in between. Notice also that every power raise (e.g. the beginning at
point 1) starts with a small peak. This is attributed to the activity of both CPU and GPU
(2), i.e. loading the data to the GPU. Also, a similar occurrence can be noticed after the
operation is complete (3).

4.2.3 Measurement steps and parameters

The measurement steps necessary to acquire the average execution time and the
average power consumption of the components presented in subsection 4.1.2 are the
following:

1) Initial measurement, before recording the real data which is used to draw conclu-
sions, an initial sample was taken. This sample was processed and analyzed to
find out how does the measured characteristic of the component behave,

2) Initial verification of the standard deviation and the confidence interval, the initial
data sample was analyzed using Minitab4 to determine the standard deviation and
the confidence interval that could be expected for the real data mean,

3) Calculating the necessary number of samples, based on the initial measurement the
number of samples necessary to satisfy the selected confidence interval of 95% was
determined. The confidence interval of 95% was selected under the assumption
that it will reflect a good enough estimation of the measured values,

4) Performing the real measurement, once the number of samples was known, the
repeated measurements took place(more details on this are given in the following
subsections),

5) Statistical analysis of the measured data, using Minitab the collected data was ana-
lyzed to acquire the mean value, standard deviation and to perform the t–test. In

4a statistical tool, available at https://www.minitab.com/, accessed through the summer and winter
of 2015

70

https://www.minitab.com/


Measurement

one case, data normality was also verified (one data set with less than 30 samples)

The next subsection presents all the parameters of the measurement, along with the
guiding remarks for anyone with a desire to repeat the measurements and recreate the
results.

Measuring idle current and voltage

Before proceeding to power profiling of software components, as it was described
previously, it is first necessary to obtain the average idling power consumption for each
of the computing units. To do this, for each computing unit, all the unnecessary process-
ing tasks were killed and reduced to bare essentials. For the GPU this meant reducing
the graphics operations of the operating system to minimum (e.g. reducing mouse
movements and performing GUI operations, basically reducing all operations which
might cause the Linux X–system to redraw the screen). For the CPU this meant killing
the unnecessary processes, e.g. auto update, background servers, daemons, etc. As
for the FPGA, this meant only to not load the program to the FPGA memory, since by
default it doesn’t handle any operations until it is explicitly initiated.

The results of measuring idling power consumption for the computing units at hand are
the following:

a) CPU, initial measurements have shown that the current ant the voltage of the
idling CPU have stable values with low standard deviation. There were 4900
samples taken for both the current and the voltage at 10 Hz (10 samples per
second), while the GPU and the FPGA were not connected to the system.

b) GPU, similarly as for the CPU, the GPUs voltage and current consumption was
stable with low standard deviation. The measurement performed at the points A
and C (Figure 4.6) with 4900 samples at the 10 Hz rate. 30–40% of the current
was flowing through the 12 V rail which could not be accessed through the point
C. Therefore, the point A was used, with FPGA absent from the system.

c) FPGA, used an enhanced 5 V, 2 A USB power supply. Since the LogiPi board
(FPGA) is connected to the robot through the RaspberryPi, two measurements
were made to get the maximal precision of the average idling power consumption.
Both measurements were performed with 1550 samples at 10 Hz sampling rate.
The first measurement was without the LogiPi board present in the system while
the second one was with the board present in the system and with binary file
loaded (VHDL executable), but with no processing data. The average idling power
consumption was the difference between these two measurements.

Throughout the measurement, a stable power supply was used (Codegen 400W,
model 300XX) so there were no major voltage drops and in the remaining measure-
ments there was no need to simultaneously measure both power and voltage. In later
measurements, only current was measured with higher sampling rate.
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Having obtained the average power consumption of computing units in ther idle
state, the next step is to measure the changes which occur while processing data.

Measuring component performance

For every component, the average power consumption and the average execution
time were thoroughly, thoughtfully and carefully measured and recorded. This section
presents the measurement parameters which were used for component profiling. The
parameters are organized into structured tables containing the following information:

a) Number of runs, the number of repeated calls of the same operation within the
component.

b) Sample size, contains the information about the number of samples which were
recorded for a particular component. It varies depending on the duration of the
performed operation and previously determined standard deviation, and there-
fore the value in the table can contain both the minimal and maximal number of
samples which were taken for the particular component.

c) Usable sample size, the recorded samples contain extra data which should be re-
moved, e.g. known outliers, extremes, intentional idling between operation calls
etc as shown in Figure 4.7. So this row shows the number of samples which are
usable for future analysis.

d) Sampling rate, the number of samples per a time unit, i.e. sampling frequency (it
is only applicable for the measurement of the current).

e) Repeated measurements with different parameters, some components are capable
of handling different parameters which means that their load is different, e.g.
different image size, mission file content, etc. This row shows number of repeated
measurements for the same component but with a different data inputs.

f) Remarks, miscellaneous comments related to the measurement.

The measurement parameters for all the components

Table 4.1 shows measurement parameters for the Image filtering component and the
case when it is allocated to the CPU. The sample size, depending on the input image
was between 3000 and 8000. However all these samples were not usable, so after
initial processing, the number of usable samples was between 500 and 4420. Table 4.1
presents the data for both the average power consumption and the average execution
time.
Measuring the current resulted in 30 files, on average containing 4000 data samples,
which were then processed and filtered. The measurement of execution time also re-
sulted in 30 files, each containing 50 rows of data. After the initial processing (with
custom Java programs) of both current and execution time, the data was analyzed in
Minitab.
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Table 4.1: Measurement parameters for the Image filtering component, allocated on the CPU

Image filtering component - CPU Current Time

Number of runs 50 50

Sample size 3000 – 8000 50

Usable sample size 500 – 4420 50

Sampling rate 40 Hz –

Repeated measurements with diff. param. 30 30

Remarks

Before each measurement, there was a 5 second pause time, which was necessary for the current to
stabilize (after setting up the measurement environment), and between each run (call) there was 0.5s of
intentional delay. The current measurement setup was for up to 10A, i.e. 3 decimal points of precision.
Each filter setup was measured 5 times with different input image size: a) QVGA 4:3 320× 240 , b) VGA
4:3 640× 480, c) SXGA 4:3 1280× 960, d) FHD 16:9 1920× 1080, e) 8KFD 1:1 8192× 8192.
The resolutions QVGA–HD were selected due to their popularity in the image processing community,
except for the 8KFD resolution which was selected to test the extreme inputs, i.e. to yield the maximum
processing power of a computing unit. Since the components could be arranged to perform different
filtering chains, the following configurations were examined: (Sobel), (Gauss), (Sobel, Gauss), (Sobel,
Gauss, Erode), (Sobel, Gauss, Erode, Dilate), (Sobel, Gauss, Erode, Dilate, Hysteresis).

Table 4.2 shows the measurement parameters for the same component, but allocated
on the GPU. The number of samples was smaller than previously because the operations
were on average performed faster. The measurement resulted with 30 files, on average
containing 2000 rows of the current related data, and with 30 additional files containing
50 rows of time related data. These 60 files were also parsed by a Java program and
analyzed in Minitab.

Table 4.2: Measurement parameters for the Image filtering component, allocated on the GPU

Image filtering component - GPU Current Time

Number of runs 50 50

Sample size 1500 – 3900 50

Usable sample size 400 – 1800 50

Sampling rate 40 Hz –

Repeated measurements with diff. param. 30 30

Remarks

The same setup as for the CPU, see table Table 4.1. This procedure included measuring both the data
loading time and the data processing time.

Table 4.3 shows the measurement parameters for the Image filtering component allo-
cated on the FPGA. As for the CPU and GPU, the measurement resulted in 60 files which
were then parsed in Java and analyzed in Minitab. Number of samples for measuring
the current was not deviating as much as for the CPU and the GPU (which is further dis-
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cussed in the following section), and usable sample for measuring time was not always
the same to the number of runs. In some cases, the operation duration was reported
as a negative value, which was due to C++s’ inability to guarantee time measurement
accuracy. These values were dismissed. But since the time was measured on both C++
and Java layers, Java recorded the total execution time (data transfer and processing)
which was always usable. In addition, the measurements for FPGA were repeated only
six times. Once for each filter setup only for the QVGA resolution, since the IP core only
supported QVGA.

Table 4.3: Measurement parameters for the Image filtering component, allocated on the FPGA

Image filtering component - FPGA Current Time

Number of runs 550 550

Sample size 4100 – 4300 550

Usable sample size 470 – 610 390 – 550

Sampling rate 40 Hz –

Repeated measurements with diff. param. 6 6

Remarks

Although the general remarks are the same as for the previous two measurements, an image input of only
one resolution was used, i.e. QVGA. In order to process multiple resolutions, the FPGA would need an
IP core which provides the option to change the resolution, but unfortunately, LogiPi provides only an IP
core for the QVGA resolution. Similarly as for the GPU, for the FPGA there were two measuring points for
the execution time. The first one at the LogiPI which is equivalent to the processing time, and the second
one in the main Java program, which also includes the data transfer time, as explained previously.
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Table 4.4 shows the measurement parameters for the Object detection component, al-
located on the CPU. Similarly as for the Image detection component, there was a five
second waiting time before the start of each measurement, which was enough for the
current to stabilize. Also, before each run there was a one second delay to make data
analysis easier later on. This measurement resulted with 24 files, 12 for both the current
and the time data, which was parsed and analyzed further.

Table 4.4: Measurement parameters for the Object detection component, allocated on the FPGA

Object detection component - FPGA Current Time

Number of runs 250 250

Sample size 5000 – 7000 250

Usable sample size 2300 – 3500 250

Sampling rate 40 Hz –

Repeated measurements with diff. param. 6 6

Remarks

To perform the object detection, a custom Haar classifier was used. It was trained using OpenCV with
OpenCL extensions. The resulting classifier is an XML file which is used by C++ code to classify, i.e. to
detect an object. The same XML file was used for both CPU and GPU detection. The object in question is
an arrow (points the direction in which robot should go). For each measurement, three different images
were used, two containing, and one without an object to detect in two different sizes, 640 × 480 and
1920× 1080.

Table 4.5 shows the measurement parameters for the Object detection component al-
located on the GPU. As previously, the measurement resulted with 24 files which were
parsed and further analyzed in Minitab.

Table 4.5: Measurement parameters for the Object detection component, allocated on the GPU

Object detection component - GPU Current Time

Number of runs 250 250

Sample size 5500 – 5800 250

Usable sample size 1300 – 1450 250

Sampling rate 40 Hz –

Repeated measurements with diff. param. 6 6

Remarks

The measurement setup and remarks are the same as for the CPU, see table Table 4.4

The measurement parameters for the Image input component, allocated on the CPU is
shown are Table 4.6. Measurements resulted with 8 files, 4 of which were related to
current data, with average of 10000 rows, and other 4 related to time data with 500
rows. In each run, image of the same resolution was acquired, however with different
method; RGB, infrared, depth or combined.
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Table 4.6: Measurement parameters for the Image input component, allocated on the CPU

Image input component - CPU Current Time

Number of runs 500 500

Sample size 9000 – 13000 500

Usable sample size 4800 – 8900 500

Sampling rate 40 Hz –

Repeated measurements with diff. param. 4 4

Remarks

For this component four different repeated measurements were performed; a) normal RGB image, b)
infrared image, c) RGB depth image, d) infrared and RGB image combined. The maximal supported
resolution for the hardware at hand (Microsoft Kinect) was 640× 480 px.

The measurement for the Main control component, which can be allocated only on
the CPU is shown in Table 4.7. This is also the first component for which the time
was measured using the VisualVM. Measuring the average power consumption for this
component was very exhaustive, since the operation needs to last long enough to be
detected by the multimeter, and the operations within this component were very short.
To detect current changes a large sample size was needed with 10000 repeated runs.

Table 4.7: Measurement parameters for the Main control component, allocated on the CPU

Main control component - CPU Current Time

Number of runs 1000 – 10000 1000 – 10000

Sample size 200 – 2500 1000 – 10000

Usable sample size 50 – 2000 1000 – 10000

Sampling rate 40 Hz –

Repeated measurements with diff. param. 6 6

Remarks

For this component there were six repeated measurements, i.e. one measurement for each of the most
common operations. Time measurements were performed using VisualVM.

Table 4.8 shows the measurement parameters for the Actuator control component allo-
cated on the CPU. Similarly as for the previous component, the average execution time
for this one was also measured using VisualVM. In order to detect any changes in the
current measurement, the sample size varied between 2000 and 10000.
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Table 4.8: Measurement parameters for the Actuator control component, allocated on the CPU

Actuator control component - CPU Current Time

Number of runs 2000 – 10000 2000 – 10000

Sample size 160 – 770 2000 – 10000

Usable sample size 29 – 301 2000 – 10000

Sampling rate 40 Hz –

Repeated measurements with diff. param. 3 3

Remarks

For this component three repeated scenarios were measured. Since this component deals with parsing
and transferring messages to the lower–level software, each possible message was used. The component
was set up in a way to change messages for each run.

The measurement for the final component is shown in Table 4.9. The operations per-
formed by this component had a short duration so there was 25000 samples necessary
to detect changes in the usage of current.

Table 4.9: Measurement parameters for the Mission manager component, allocated on the CPU

Mission manager component - CPU Current Time

Number of runs 25000 25000

Sample size 1040 25000

Usable sample size 398 25000

Sampling rate 40 Hz –

Repeated measurements with diff. param. 1 1

Remarks

For this component only one measurement was enough, since at an each run, there is only one basic
operation used (top level operation – facade pattern). The operation deals with reading the mission file
and translating it in a set of available commands. 10 different mission files were used in all of the runs
(i.e. each mission file was used 2500 times).

Considering the measurement setup presented in this section, it is evident that
the measurements were performed systematically and exhaustively. The next section
presents the analysis of the collected data along with its interpretation necessary to use
it as an input to the Mα model.

77



Measurement

4.3 The results

This section presents the results of measurements along with the corresponding sta-
tistical analysis. The measurements resulted with 183 files, containing 450470 rows of
raw data. These files were processed by a custom Java program and analyzed further in
Minitab and Microsoft Excel. Table 4.10 shows particular details and numbers related
to the generated files. The data about the Main controller, Actuator controller and the
Mission manager component is absent from the table since these components were pro-
filed with VisualVM, which does not provide raw text files. But, the raw data stored in
the VisualVM file format was stored for the analytical purposes.

All the collected data within this research, along with software code is publicly avail-
able, as Open Science Data at URL-s provided on the last page of this thesis (CV page).

Table 4.10: Quick facts about the collected data

Files Records (raw)

Sample size Current Time Current Time

Image filtering, CPU 30 30 94820 10920

Image filtering, GPU 30 30 82251 10680

Image filtering, FPGA 6 12 25175 82716

Object detection, CPU 6 6 37988 1572

Object detection, GPU 6 6 34184 1566

Image input, CPU 4 4 44771 2021

Main control, CPU 5 – 6620 –

Actuator control, CPU 3 – 1246 –

Mission manager, CPU 1 – 1040 –

Idle, CPU 1 – 4900 –

Idle, GPU 1 – 4900 –

Idle, FPGA 2 – 3100 –

Total 95 88 340995 109475

Each measurement result presented in this section will contain the same structure with
the following statistical data; the number of samples (N), the mean value of the mea-
sured variable (Mean), standard deviation (Std.dev.), standard error (SE Mean) and the
upper and the lower bound of the confidence interval of 95% (95% CI).

The meaning of the confidence index

The clarification for the confidence index is shown in Figure 4.8. x̄ represents a sam-
ple mean, while µ represents the mean of the population, i.e. the real mean value of the
measured variable. Standard error (SE), is the measure of variability or more precisely
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an estimate of the standard deviation of the sampling distribution. It is calculated as
SE = σ/

√
N , meaning that the larger the sample, the smaller the SE, and also the wider

the -SE, SE area shown in Figure 4.8. So to get the 95% confidence interval, standard
error is multiplied by 1.96, which is a widely known statistical multiplier given by the
normal distribution, also known as z–table5. Consequently to this, it is possible to claim
that the real mean value is between the upper and lower bound of the confidence in-
terval at the level of significance of 95%. Working this procedure backwards, one can
obtain the number of necessary samples in order to achieve this significance, with an
initial guess of the standard deviation.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

x µ

SE-SE

1.96 SE-1.96 SE

95% confidence interval

Figure 4.8: 95% confidence interval explained

4.3.1 Idle system results

Since there is no such thing as idle execution time, this section applies only to the
average power consumption. It shows the results of measuring the average idle power
consumption for each computing unit, i.e. the CPU, the GPU and the FPGA. These
values represent the default power consumption of a running system with no particular
processing tasks. Any change in these values indicates some processing, i.e. executing
a software which leaves a physical footprint. The results are shown in Table 4.11.

5Since the population mean is unknown, t–table must be used, however for N > 30, z– and t– tables
can be considered the same.
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Table 4.11: Average power consumption of an idling system.

Variable N Mean Std.dev. SE Mean 95% CI

CPU only

I (A) 4151 0.783378 0.007274 0.000113 0.783157 0.783599

U (V) 4151 11.7942 0.0082 0.0001 11.7940 11.7945

P (W) 4151 9.23935 0.08554 0.00133 9.23675 9.24195

CPU and GPU

I (A) 4695 1.02991 0.00619 0.00009 1.02974 1.03009

U (V) 4695 11.7704 0.0068 0.0001 11.7702 11.7706

P (W) 4695 12.1225 0.0730 0.0011 12.1204 12.1246

FPGA

I (A) 1550 0.478842 0.006028 0.000153 0.478541 0.479142

U (V) 1550 4.84153 0.00462 0.00012 4.84130 4.84176

P (W) 1550 2.31831 0.02943 0.00075 2.31684 2.31978

Table 4.11, clearly shows that when using only the CPU, the entire system consumes
9.23 W. Not just the CPU, but its entire supporting electronic infrastructure (mother-
board, memory, caches, etc.). When the CPU is not processing any data the power
consumption is very stable so any data processing would significantly raise the power
consumption and it could be easily detected (Figure 4.7). Furthermore, the table shows
that the average power consumption of the idling GPU is 12.12 W, and of the idling
FPGA it is 2.31 W. Considering that the total power consumption of the system contain-
ing only a CPU is 9.23 W, notice that when the GPU is added, the power average power
consumption increases for only 2.89 W. This might seem low, but keep in mind that this
is a low profile GPU. Also, the measurements have shown that when the GPU is present,
the CPU is used a bit less (about 15% less as indicated by the Intel Power Gadget) since
the graphics rendering is offloaded to the GPU. So, in reality the GPU does consume a
bit more than 2.89 W but it is somewhat irrelevant. Rather than being interested for a
precise power consumption of a particular unit, the main concern here is the average
raise of the power consumption when a computing unit is under load by a software
component.

All the measured values presented in Table 4.11 were statistically verified with
Minitab. A typical output from Minitab is shown in Figure 4.9. It includes a histogram
plot, a report on the statistical power6 of the sample and the confidence interval com-
ments. Since there are 185 different measurements, showing all the outputs as images
would not be very useful or presentable, so instead of this all the results are organized

6The average power consumption values presented in Table 4.11 have the statistical power of 100%
for accuracy of at least 2% around the mean.
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in the tables showing: the mean value, the standard error and the confidence interval.

Sample size 4151

Mean 9,2394

   95% CI (9,2367; 9,2420)

Standard deviation 0,085538

Target 9,23

Statistics

< 0,05).

The mean of Watt 2 is significantly different from the target (p

Yes No

0 0,05 0,1 > 0,5

P < 0,001

9,609,529,449,369,289,209,129,04

9,23

before interpreting the test results.

the data to the target. Look for unusual data

•  Distribution of Data: Compare the location of

9,2367 and 9,2420.

be 95% confident that the true mean is between

estimating the mean from sample data. You can

•  CI: Quantifies the uncertainty associated with

from 9,23 at the 0,05 level of significance.

•  Test: You can conclude that the mean differs

Does the mean differ from 9,23?

Distribution of Data

Where are the data relative to the target? Comments

1-Sample t Test for the Mean of CPU Power

Summary Report

difference of 0,0923?

What sample size is required to detect a

7 60%

8 70%

9 80%

12 90%

Sample Size Power

4151 100,0

Your Sample

9,6

9,4

9,2

9,0

you would have a 100,0% chance of detecting the difference.

If the true mean differed from the target by 0,0923 in either direction,

For α = 0,05 and sample size = 4151:

Difference
0,0029391 0,0043046

Power
< 40% 60% 90% 100%

100,0%

0,0923

Data in Worksheet Order

Investigate any outliers (marked in red).

What is the chance of detecting a difference of 0,0923?

1-Sample t Test for the Mean of CPU Power

Diagnostic Report

Figure 4.9: Example of Minitab t–test report

4.3.2 Software component performance results – average power

consumption

Image filtering component

Table 4.12 shows by how much, on average, has the average power consumption
increased above the value of idling power consumption while executing the Image fil-
tering components with different inputs.

Here is an example of how to properly interpret the table. Consider the S,G row
and the QVGA column. The value 3.0382 W means that the average power consump-
tion of the CPU increases for 3.0382 W above the idling power consumption, while it is
executing operations from the Image filtering components, with the filtering configura-
tion Sobel, Gauss. The rows respectively represent the following filtering configurations:
(Sobel), (Gauss), (Sobel, Gauss), (Sobel, Gauss, Erode), (Sobel, Gauss, Erode, Dilate),
(Sobel, Gauss, Erode, Dilate, Hysteresis), while the columns represent different com-
puting units; the CPU, the GPU and the FPGA, along with input images of different sizes
(see Table 4.1).
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Table 4.12: Image filtering component, average power consumption in Watts, for different
inputs and operations

CPU GPU FPGA

Resolution QVGA VGA SXGA FHD 8KFD QVGA VGA SXGA FHD 8KFD QVGA

S 2.9639 3.3125 3.9570 5.4504 16.2547 4.6727 5.4307 5.7839 6.4830 19.9107 2.4345

G 2.9009 3.0186 3.5086 3.8794 16.7041 4.7375 5.0400 5.4460 5.6532 19.7565 2.4395

S,G 3.0382 3.2566 3.9846 7.2490 16.2969 5.8686 5.6862 6.7314 9.4641 20.5100 2.4348

S,G,E 3.1493 3.5405 4.4101 8.2373 16.4579 6.0381 5.9074 9.6826 9.9184 20.6782 2.4352

S,G,E,D 3.3123 3.6256 7.5179 9.2339 16.4832 6.1793 6.2664 9.9228 10.6593 20.6151 2.4318

S,G,E,D,H 3.3966 3.8535 7.6358 9.1231 16.7893 6.2688 6.4524 9.9566 11.4692 21.3956 2.4383

To put this data (Table 4.12) in perspective, its visualization is shown in Figure 4.10.
The data is grouped by the image size for each computing unit and it reveals that:

a) increasing the filter size does not proportionally increase the power consumption;
consider the combination QVGA, VGA for CPU and QVGA, FHD for GPU. Notice
that filter SGEDH does not increase the power consumption to be the equivalent
to the sum of individual filters. In the Mα this is called a positive synergy effect.

b) increasing the image size reduces the power consumption difference between the CPU
and the GPU; for larger images (8KFD and FHD) the CPU consumes on average
20% less power than the GPU, and for smaller images (QVGA, VGA and SXGA)
even up to 40% less.

c) the FPGA is a category of its own; regardless of the filter size, the FPGA consumes
about the same amount of power (which is expected considering that it always
uses the same number of CLBs).

QVGA VGA SXGA FHD 8KFD QVGA VGA SXGA FHD 8KFD QVGA
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Figure 4.10: Image filtering component, average power consumption in Watts, for different
inputs and operations – barchart

Since the lower is better, it seems reasonable to assume that the best computing unit
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is the FPGA, followed by the CPU and the GPU. However, there is a drawback with
the FPGA measurement since the used IP core only supports the QVGA resolution. Re-
gardless of this, from the design principles of the FPGA it is known that the power
consumption depends on the amount of used CLBs. Since the current IP always hosts
all the filters, but only a selected few are used, it constantly uses the same number
of CLB-s, which results with a constant power consumption. Similar observations are
made by Flowers [41] and Kestur [57].

Object detection component

Table 4.13 shows the average raise of power consumption expressed in Watts for
the Object detection component with different inputs. Considering the VGA row and
column II of the CPU, the number 2.5818W is interpreted as the average raise of av-
erage power consumption in the case when the CPU is executing the Object detection
component, with a second VGA image (previously explained in Table 4.4).

Table 4.13: Object detection component, average power consumption in Watts, for different
inputs and operations (I – III different images, with II not containing the object to detect).

CPU GPU

Image I II III I II III

VGA 2.6470 2.5818 2.5791 4.3107 4.2505 4.1807

FHD 8.1050 8.0098 7.8658 17.2423 17.3589 17.3035

The visualization of the Table 4.13 is presented in Figure 4.11. The data is grouped by
the platform and the image size. As expected, the CPU is more power efficient than the
GPU. For VGA images the CPU, on average, consumed 39% less power than the GPU,
while for the FHD image it consumed 54% less. This shows that with increase of the
image size, the power consumption of the GPU raises. As a side note, the measurements
have shown that using the same Haar classifier for object detection, the CPU was more
accurate in detecting an object it was looking for.
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Figure 4.11: Object detection component, average power consumption by a computing unit in
Watts – barchart (I – III different images, with II not containing the object to detect).

Remaining components

The results of measuring average power consumption for the Image input, Main
controller, Mission manager and Actuator control components are shown in Table 4.14
and in Figure 4.12. Considering the functionality of the remaining components, it is
understandable that they can be deployed only on the CPU.

As one can notice, the Image input (II) component has the largest average power con-
sumption (since it uses additional hardware, Microsoft Kinect), followed by the Main
controller (MC), the Mission manager (MM) and the Actuator controller (AC).

Table 4.14: Image input, Mission manager, Main controller and Actuator control components,
average power consumption in Watts for different operations

CPU CPU

Image input Main controller

RGB 17.6445 Send commands 1.2998

IR 18.6397 Keyboard enable 5.1148

RGB depth 13.0443 Load image 6.9616

RGB + IR 19.6724 Set image 10.7998

Initiate FPGA comm. 7.2446

Mission manager Actuator control

Load mission 10.7572 Initiate 1.1435

Send message 3.1826

List ports 1.0401

Notice that the average power consumption of each of these components differs de-
pending on the called operations. Consider the Main control component and notice that
the Send command operation increases the average power consumption for only 1.29 W,
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Figure 4.12: Remaining software components, average power consumption by a computing
unit in Watts – barchart

while the Set image operation increases it for 10.79 W. Therefore it would be very mis-
leading to claim the average power consumption of this component is simply the mean
value of all the values presented in the table. So to be exact in making claims about the
average power consumption it is necessary to know which operations are called to be
able to determine the real average power consumption of a given component. This will
be further discussed later on, but first the results for the average execution time will be
shown in the next section.

4.3.3 Software component performance results – average execution

time

Image filtering component

The Table 4.15 shows the average execution time expressed in milliseconds for each
operation of the Image filtering component. The structure of the table is equivalent to
the ones used to present the average power consumption of this component.
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Table 4.15: Image filtering component, average execution time in milliseconds, for different
inputs and operations

CPU GPU FPGA

Resolution QVGA VGA SXGA FHD 8KFD QVGA VGA SXGA FHD 8KFD QVGA

S 1.78 4.29 16.65 26.91 769.28 0.32 1.28 5.06 8.49 113.72 124.19

G 2.29 6.79 25.61 42.32 1253.36 0.60 2.15 8.69 14.41 189.51 124.42

S,G 3.11 8.36 31.74 52.80 1590.83 0.83 3.46 13.67 17.43 289.80 125.10

S,G,E 3.32 10.29 37.55 67.07 1909.40 1.16 5.00 14.38 16.87 380.75 125.47

S,G,E,D 3.63 11.11 49.26 76.24 2235.89 1.59 7.00 15.48 19.39 529.36 124.87

S,G,E,D,H 4.04 11.47 50.04 80.43 2345.60 1.49 5.80 15.12 18.22 481.97 124.62

To put these values in the perspective, the data is visualized in the Figure 4.13. It reveals
several interesting details:

a) increasing the filter size increases the execution time, however not proportionally,
once again there is a positive synergy effect present. The case in which the CPU
is processing a FHD image shows this effect very clearly. Having five filtering op-
erations (SGEDH) does not increase the execution time five times over. Moreover,
in the GPU–QVGA configuration, notice that there is almost no synergy effect. It
is obvious that GPU performs much better when using multiple operations, orga-
nized as in a pipeline.

b) increasing the image size increases the execution time, which is expected. The unit
with the best execution time is the GPU. For larger images (FHD, 8KFD) the CPU
takes on average 76% more processing time than the GPU, but for smaller images
(QVGA, VGA, SXGA) the difference is a bit less, 63%.

c) FPGA is once again a category on its own, regardless of the filter size, the average
execution time is always almost the same and also the poorest.
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Figure 4.13: Image filtering component, average execution time in milliseconds – barchart
(logarithmic scale)
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Object detection component

The following table (Table 4.16) shows the average execution time expressed in mil-
liseconds for the Object detection component. For the interpretation example, consider
the II column of the CPU and the VGA row. The number 22.98 ms represents the aver-
age execution time of the Object detection component with the second VGA input image
while allocated to the CPU. The inputs and the table structure is the same as its average
power consumption equivalent.

Table 4.16: Object detection component, average execution time in milliseconds, for different
inputs and operations (I – III different images, with II not containing the object to detect).

CPU GPU

Image I II III I II III

VGA 22.37 22.98 21.32 5.70 5.72 5.70

FHD 185.78 186.31 184.80 6.26 6.25 6.21

The visualization of Table 4.16 is presented in Figure 4.14. The structure of the diagram
is the same as its average power consumption equivalent. One can notice that changing
the image size affects the GPU a lot less than the CPU. For the VGA image, on average,
the CPU took 74% time more than the GPU, and for FHD image, this increased to 97%.
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Figure 4.14: Object detection component, average execution time in milliseconds – barchart
(logarithmic scale, I – III different images, with II not containing the object to detect))

Remaining components

Finally, the measurement results for the remaining components are shown in Ta-
ble 4.17. Since some of the values differ in orders of magnitude, the graphical rep-
resentation shown in Figure 4.15 reveals some interesting details. Depending on the
operations provided by each of the components, notice that the Image input component
is the most consistent one, i.e. the averages do not deviate as much as for the other
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components. The Main controller and the Actuator control components have opera-
tions which differ even at the order of magnitude.

Table 4.17: Image input, Mission manager, Main controller and Actuator control components,
average execution time in milliseconds for different operations

CPU CPU

Image input Main controller

RGB 3.27 Send commands 7.15

IR 2.26 Keyboard enable 0.01

RGB depth 2.73 Load image 57.14

RGB + IR 5.15 Set image 1.55

Initiate FPGA comm. 58.92

Mission manager Actuator control

Load mission 0.80 Initiate 0.00216

Send message 7.21300

List ports 0.00065

The conclusion is very similar as for the average power consumption; it is nor prac-
tical, or correct but rather highly misleading, to use the average execution time of the
component as the sum of averages divided by the number of operations.
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Figure 4.15: Remaining components, average execution time in milliseconds – barchart (loga-
rithmic scale)

Having all the measurement results and considering all the observations made in
this section, the next one presents a more detailed discussion about the implications of
the collected data.
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4.3.4 Discussion

Having the measurement results for both the average power consumption and the
average execution time for each operation provided by each of the components, reason-
ing about the data one could reach the following conclusion:

Firstly, consider the average power consumption. Although the FPGA has the best perfor-
mance for the Image filtering component, in this particular case it supports only one image
resolution. Therefore, the CPU performed the best, while the GPU performed the poorest.
For the Image detection component, the CPU also performed better than GPU. Secondly,
considering the average execution time, for the Image filtering component the GPU had the
best overall execution time, followed by the CPU and the FPGA, which performed surpris-
ingly bad. As for the Object detection component, the GPU performed much better than
the CPU. It would be safe to assume that the FPGA and CPU are the best from the power
consumption point of view, while the GPU is the best considering the average execution
time.

Although it may seem reasonable, that kind of reasoning is seriously misleading. The
objective of this work is not to discover or to make a claim which platform is the best,
but rather to hypothesize that no single platform is the best. Furthermore, the goal
is to find the best software allocation given the heterogeneous computing platform.
Therefore, before making any conclusions, there are two points to be considered.

The first one is with the regard to the FPGA. It seems that the FPGA performed
very badly considering its the average execution time. However, it must be taken into
account that it does include the end–to–end processing time. This time consists of the
data loading time, the data processing time, and the result returning time. According
to the results, the real execution time (only) took on average 0.08% of the total time.
Therefore, the FPGA was actually extremely efficient, however the data transfer cost was
quite larger since it was connected to the rest of the system via a LAN cable. Modern
FPGAs contain both the CPU and the GPU on a single board, therefore this issue could
be easily handled. Another case for the FPGA is the fact that only one IP core was
available. There is no doubt that with better access to IP cores, focused on more efficient
image processing this issue could be handled and the FPGA could perform just as well
(given the way FPGAs work, explained in subsection 4.3.2, average power consumption,
point c).). Some research results point out that in some cases it can outperform GPUs
[6, 41, 112].

The second point is regarding the CPU and the GPU. The first one seems to be better
in power efficiency while the latter seems to be better in processing performance. How-
ever, it would be reasonable to assume that the GPU must be better. Regardless to the
fact that it consumes more power, it performs the processing much faster. So, overall
it should be better (high performance = low power, as suggested by Wolf [121]). To
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further clarify this claim, it is necessary to consider the average energy consumption7 of
both computing units.

The comparison of the average energy consumption is presented in the following
images. For the Image filtering component, Figure 4.16 shows the percentage difference
of average energy consumption between the CPU and the GPU while the Figure 4.17
shows that difference between the CPU and the FPGA, and finally Figure 4.18 shows
the percentage difference in energy consumption between the CPU and the GPU for the
Object detection component.

The data presented in these images is interpreted as follows. Consider the value of
71% in the Figure 4.16 for the configuration S-QVGA. This number indicates that the
GPU’s energy consumption was 71% less than the CPU’s while using Sobel filter with
a QVGA image. As one may notice, all three images are presented as heat–maps to
enhance the visibility of the differences. In Figure 4.17 one can notice that the CPU
used 98% less energy than the FPGA (with data transfer included). In the Figure 4.18
one can notice that for the Object detection component the GPU used between 59% and
95% less energy than the CPU.

The most interesting observations however, can be made in Figure 4.16. In most cases
the GPU uses less energy than the CPU. This can be seen by redder areas. In spite of
that, there are cases for which the advantage of the GPU is very low or none, this can be
seen in bluer areas. The figure shows a very clear blue cluster focused around QVGA–
VGA images with SGE–SGEDH filters. This suggests that when faced with making a
design decision, a software architect needs additional considerations to decide where
to allocate a component. Considerations like the GPU price, development effort, data
transfer costs, etc. Therefore, an architect should weight the benefits and drawbacks of
introducing new computing units to the system.
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71% 51% 56% 62% 82%

57% 47% 47% 50% 82%
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33% 19% 16% 70% 75%

18% -9% 59% 71% 70%

32% 15% 61% 72% 74%
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Figure 4.16: Redder means greater percent of
CPU energy consumption over GPU. Bluer area
is where CPU is comparable to GPU.
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Figure 4.17: Redder means less percent of
FPGA energy consumption over CPU. CPU con-
sumes less energy (end–to–end).

7Energy consumption is calculated as E = P · t
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Figure 4.18: Redder means greater percent CPU energy consumption over GPU.

One could suggest that for the SGED-VGA case it is better to use the CPU than the GPU,
and rightly so. However, different implementations would produce completely different
heat maps and such claims couldn’t be made.

The one certainty highlighted by the data is that, a conclusion to decide which plat-
form is the best and what configuration should be used is not simple and straightfor-
ward. As the matter of fact the term best is very vague in this case. A software architect
decides what is the best with consideration to a lot of different parameters ranked by
(different) importance, i.e. multiple criteria.

In addition to this, a very important case presented by the measurements is that an
architect should also consider different scenarios. The scenarios determine the usage
of software components, their operations, and the expected input data. If software
component usage scenarios are considered in the allocation decision, they can greatly
improve it, or when they are left out, make it worse.

The conclusion of this brief discussion to consider different software usage scenarios,
and that this work in no way suggests which computing unit is the best, but rather
that different implementations can have completely different results. Nonetheless, the
underlying decision making process to decide how the software allocation takes place
remains the same. In this case, it is argued that the I-IV framework is capable in doing
so (RG-2).

4.4 Summary

This chapter presented the results of measuring the average power consumption
and the average execution time of the software components allocated across different
computing units. The use case is built upon the tracked robot TiWO, equipped with the
heterogeneous computing platform. This chapter also covers, in detail description of
the robots mechanics, hardware (electronics) and software.

There are three computing units, a CPU, a GPU and an FPGA for which detailed spec-
ifications given in the hardware related subsection 4.1.1. The software for profiling
consists of six components: Image input component, Image filtering component, Mis-
sion manager component, Main control component, Object detection component and
the Actuator control component.
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The data collected by component profiling suggests that with the respect to the
average power consumption, the FPGA seems to be the most efficient one, followed
by the CPU and the GPU. The GPU is the most power hungry component, however it
has shown the best data processing performance with respect to the average execution
time. While the FPGA was very efficient in that regard as well, using its end–to–end data
revealed that its data transfer time is huge and that it increases the overall performance
of the system. Having a SoC platform with all three components on a single board, such
communication overhead would certainly produce different results, where these data
transfers would probably be reduced.

Regardless of the measurement results, determining the best computing platform
proved to be very hard since the term best is ambiguous. The main goal is to determine
the allocation of software components to utilize the best aspects of all computing units.
Also different considerations, i.e. decision parameters can have different importance
for different scenarios. Hence, it is suggested to use multiple criteria approach with
strong emphasis on considering the software component execution scenarios. These
can greatly affect the overall system performance since there is little reason that for one
scenario, the optimal software architecture should fit also for other scenarios in which
different input data causes components to behave differently, i.e. to exhibit different
EFPs. So by taking different execution scenarios into account, a software architect can
improve the system’s performance.
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CHAPTER 5

I-IV FRAMEWORK VERIFICATION

The challenge of this chapter is to verify the I-IV framework by putting the estab-
lished hypotheses to the test. The verification is performed by proposing six allocations
α(1−6) obtained both manually and computationally. The performance of these alloca-
tions is predicted by the weighting function w(α) defined by the component allocation
model Mα and evaluated by measurements. For the I-IV framework to be valid, the
allocation performance obtained by these methods should match.

5.1 Mα validation

The assumption of the hypothesis H-1 is that the component allocation model Mα

correctly represents the system performance if the model substantially represents its
extra–functional properties. In order to verify the hypothesis H-1, two aspects of the
Mα are considered; a) its trustworthiness and b) its substantial validity.

The trustworthiness of the component allocation model Mα is verified by comparing
the performance of the allocation predicted by the weight function w and the perfor-
mance of the allocation obtained by measuring its behavior on the real–world platform.
This section presents such verification of the model through the following two step ex-
periment.

In the first step a four different allocations will be ranked according to their per-
formance given by the weighting function w of the Mα model. In the second step,
these allocation will be implemented on the previously described TiWo platform. The
performance of these allocations will be measured with the same rigorous criteria as
presented in chapter 4. Like the performance of allocations in the first step, these will
also be ranked in a list. If the rankings obtained by the first and second step match, it
can be concluded that the component allocation model Mα accurately represents and
predicts the performance of the allocation for the heterogeneous computing platform.
Hence, H-1 will be accepted. However, if there is any difference between two raking
lists, H-1 will be rejected.

Furthermore, an important aspect of the hypothesis H-1 is related to the content, i.e.
the extra–functional properties represented in the Mα model. All the data needs to be
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substantially valid, meaning that the content needs to be a) of a certain quality and b)
of a certain type. The quality (a)) referrers to the statistical representability of the input
data, as it was described in the previous chapter. All the measurements need to satisfy
a statistical confidence interval of 95%.

b) refers to the content type represented in the model. It requires that all the extra–
functional properties should be a) quantifiable and b) represented in a less–is-better
way, i.e.the lower its quantified value is, the better for the entire system. This is due
to the fact that the I-IV framework minimizes the weight w function in the component
allocation model Mα.

The Research and Technology Organization (RTO) by NATO refers to non–functional
properties as —ilities, i.e. a set of properties which describe the behavior of the system
rather than its function. Typical examples of these include; reliability, availability, fault
tolerance, testability, maintainability, performance, software safety, software security,
etc. [79]. All of which can be quantified in a less–is-better way. Some of them are
obtained by measuring, while others can be approximated. Needless to say, the ones
obtained by measurement work better with the model.

Having that said, according to a Classification Framework for Software Component
Models by Crnkovic et.al. [26], the following component modes should be applicable to
Mα: BIP, BlueArX, COMDES II, Fractal, Koala, Palladio, PECOS, PIN, ProCom, ROBO-
COP, RUBUS, SaveCCM, SOFA 2.0,

Since both average execution time and average power consumption are quantifiable
and their value is such that lower–is–better, the inputs to the component allocation
model Mα used in this thesis is substantially valid and can be used to test the hypothesis
H-1.

5.1.1 Experimental execution scenarios

The measurement results obtained in the previous chapter revealed different input
parameters for an allocation can largely impact the overall system performance so a
software architect should consider multiple different execution scenarios. Having that
said, the experimental allocations for testing the hypothesis H-1 consider two scenarios
which differ by the processing intensity.

Furthermore, to verify the Mα model it is necessary to have access to several imple-
mentations of various execution scenarios. Since there are only a few components avail-
able, their granularity will be changed and they will be separated into several smaller
components. Currently, the Image filtering and the Object detection components allow
for their granularity to be reduced in a way that each of their operations can be repack-
aged as a single component. The Figure 5.1 shows all the available components after
repackaging original ones. In the real–world use cases, a software architect determines
the level of granularity.

94



I-IV Framework Verification
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Figure 5.1: The Image filtering and the Object detection components let software architect
make a lot of design choices, therefore these are named elective components, while the rest of
components are obligatory and offer less design choices, these are named must–have components.

The new components which emerged after repackaging the Image filtering and the
Object detection component are elective components, meaning that a software architect
gets to choose whether or not to introduce them in the allocation model. The rest of the
components are must–have components, since all of their operations are necessary for the
normal operational flow of the case–study platform, the TiWo robot (subsection 4.1.1).
The experimental scenarios include the components in the first two columns shown in
Figure 5.1. These 32 components will be organized into scenarios with sequential, i.e.
pipelined execution. Since the Image filtering and Object detection components are
the part of its vision system, a pipelined architecture is a reasonable choice since each
image needs to be processed by some filtering algorithms to enhance edges, remove
colors, remove certain layers, etc. This is usually followed by analyzing the processed
images and discovering meaningful information for the robot. The order in which the
components are be organized in a pipeline is arbitrarily selected.

The selected experimental scenarios used for the verification are the following:

Scenario 1:

SV GA → SGEV GA → SGESXGA → SGEDHSXGA → ODV GA → ODFHD → SGEDFHD

→ SGEDHFHD → SQV GA → GQV GA → SGQV GA.

Scenario 2:

SGSXGA → SGESXGA → SFHD → GFHD → SGFHD → SGEFHD → SGEDDFHD →
ODFHD → SQV GA → SGEQV GA → SGEDHQV GA.

The arrows signify the execution order and as it can be seen by the input image sizes, the
Scenario 1 is less intensive for processing, while the Scenario 2 requires more processing
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due to larger image inputs.
For both of scenarios three allocations will be generated and ranked according to their
performance:

a) a manual allocation, not defined randomly but as a best educated guess based on
the results in chapter 4.

b) a solution obtained by the I-IV framework without using the synergy effect ap-
proximation.

c) a solution obtained by the I-IV framework with application of the synergy effect
approximation.

5.1.2 Manually obtained allocations

Both previously defined scenarios need to be allocated on the TiWo platform. Re-
garding the allocation choices related to the components defined in the Scenario 1,
three1 components can be allocated on all three computing units (CPU, GPU and FPGA),
while the rest of the components can be allocated on only two computing units (CPU,
GPU), hence there are 33 · 28 = 6912 possible allocations. The manual allocation for the
Scenario 1 is shown in Table 5.1.
In order to avoid any intentional misplacement, the results from section 4.3 were used
to place the selected components to the most intuitively straightforward computing
unit. Hence, the CPU hosts components with the VGA and SXGA input image sizes, for
which, according to the measurements it should excel and even outperform the GPU.
The GPU hosts all components with FHD image inputs along with the object detection
components, while the FPGA hosts components with QVGA input images. The load of
all the computing units is somewhat balanced.

Table 5.1: Manual component allocation for the Scenario 1

Computing unit Components Hosted
components

CPU SV GA, SGEV GA, SGESXGA, SGEDHSXGA 4

GPU ODV GA, ODFHD, SGEDFHD, SGEDHFHD 4

FPGA SQVGA, GQVGA, SGQVGA 3

In the similar way, the components defined in the Scenario 2 are allocated to the com-
puting units on which they should perform the best. The resulting allocation is shown
in Table 5.2.
The Scenario 2, as it may be noticed involves much heavier input data than the previ-
ous one, and thus most of the components are allocated on the GPU. The component

1Filtering components hosted by the FPGA can only be in QVGA (subsection 4.1.2). There are three
QVGA components which can be hosted on all computing units, the remaining 8 can be only hosted by
the CPU and GPU.

96



I-IV Framework Verification

Table 5.2: Manual allocation, Scenario 2

Computing unit Components Hosted
components

CPU SGSXGA, SGESXGA 2

GPU SFHD, GFHD, SGFHD, SGEFHD, SGEDHFHD, ODFHD 6

FPGA SQVGA, SGEQVGA, SGEDHQVGA 3

allocation options are the same as for the Scenario 1, meaning that there are 6912 pos-
sible allocations. The load balance of the resulting allocation is skewed toward the GPU
since it hosts six components, followed by the FPGA with three components and the CPU
with only two components. The reason why the GPU has the highest load is because
the measurements have shown that the CPU does not have good performance when it
hosts components with FHD image inputs.

5.1.3 Obtaining allocations by I-IV framework

The inputs for the Mα model are collected in chapter 4. Since the focus is on the
average power consumption and the average execution time, the communication pa-
rameters for the model were set to the default values (all zeros or all ones). As such,
they do not have an impact on the resulting allocation since this is not desirable in this
particular case.

For both scenarios, the input values are the same for all parameters except for the
Computing unit hosting capability matrix (D) and the Resource requirement array (T ).
For the Scenario 1, these two inputs are indexed with the number 1 and for the Sce-
nario 2, with number 2. The original values (obtained by measurements) of arrays and
matrices presented in the following section can also be found in the Table 4.12 and the
Table 4.13 for average power consumption, and for the average execution time in the
Table 4.15 and the Table 4.16. The next subsection shows the input values for the Mα

model.

I-IV framework input data

The following expression (5.1) respectively presents the Communication intensity
matrix K, Platform communication cost C and Bandwidth matrix B. From these in-
puts it can be seen that the matrix K allowed each component to communicate with
every other component without limits. Matrix C shows that the communication be-
tween all the components is occurring with the same intensity, while B shows that
there are no bandwidth limitations. These matrices are populated by the default data,
and the respective order of components in the matrix is the following: SQV GA, SV GA,
GQV GA, SGQV GA, SGEV GA, SGESXGA, SGEDFHD, SGEHSXGA, SGEDHFHD, ODV GA,
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ODFHD.

K =



0 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0



, C =


1 1 1

1 1 1

1 1 1

 ,B =


1 1 1

1 1 1

1 1 1

 , (5.1)

The expression 5.2 presents a Resource requirement 3-d array for the Scenario 1. The
first dimension in the array represents different software components (11 of them),
the second dimension represents computing units (3 of them) while the third dimen-
sion represents computing resources (2 of them, i.e. the average execution time and
the average power consumption respectively). If the values in the array are compared
with data presented in Table 4.13, one may notice different a parameter for the Object
detection components (T1, second column, last two rows). This is because the mea-
surement of the Object detection component was always considered for three different
input images, and thus the average time and average power consumption of these three
measurements were taken as an input to the T1.

T1 =





1.78 4.29 2.29 3.11 10.29 37.55 76.24 50.04 80.43 22.22
185.63

0.32 1.28 0.6 0.83 5 14.38 19.39 15.12 18.22
5.7066

6.24

124.19
0

124.42
125.1 0 0 0 0 0 0 0




2.9639 3.3125 2.9009 3.0382 3.5405 4.4101 9.2339 7.6358 9.1231 2.6025 7.9935

4.6727 5.4307 4.7375 5.8686 5.9074 9.6826 10.6593 9.9566 11.4692 4.2473 17.3015

2.4345
0

2.4395 2.4348
0 0 0 0 0 0 0





, (5.2)

The next three matrices shown by the expression 5.3 respectively present the Com-
puting unit resource matrix R, the Pairwise resource comparison matrix Mc, and the
Computing unit hosting capability matrix D. The values in the matrix R represent the
maximal availability of the resources in question. For the purpose of experiments in this
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chapter, all the values are set to the high enough value so that each computing unit can
host all the available components. This is because it has been shown that the resources
in question cannot be completely consumed any of the computing units, i.e. all the
resources have saturable availability (chapter 3). Simply put, for the selected scenarios
the computing units used here will always have enough resources.

The matrix Mc shows the pairwise comparison of all resources (chapter 3). Respectively,
the average execution time, the average power consumption and the communication
overhead approximation. The values in the matrix are such that they increase the im-
portance of the average power consumption while the average execution time is of the
secondary importance. The communication is setup to be of almost no significance in
the allocation decision. Thus, the calculation of the trade–off vector F resulted with
value (0.36, 0.58, 0.06).

Finally, the matrix D1 makes a constraint by which the FPGA can host only three soft-
ware components, since 1 means cannot host.

R =

500 500 500

500 500 500

 ,Mc =


1 0.5 9

2 1 9

0.1 0.1 1

 ,D1 =


0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 1 1 1 1

 . (5.3)

Expression 5.4 shows the Mandatory joint component allocation matrix Y and the For-
bidden joint component allocation matrix X . Notice that there are two architectural
constraints presented in these matrices. The first one is given by the matrix Y, and
it states that components SQV GA and GQV GA must be allocated on the same comput-
ing unit, regardless to which. The second constraint, in X states that components
ODV GA and SGEDHFHD must under no circumstance be allocated on the same com-
puting unit. To simplify the allocation decision making, manually obtained allocations
do not need to necessarily follow these two constraints.

Y =



0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0



,X =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0



, (5.4)

The final 3-d array, presented in expression 5.5 presents how does the resource con-
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sumption scale in situations where one computing unit hosts multiple software com-
ponents. As it was observed by measurements, a component, once it shares resources
with other components, changes its requirement positively or negatively, i.e. the afore-
mentioned synergy effect. The expression shows the approximation of that effect. Since
this is an approximation, it should be given by measurements or experience, however
an architect is not obliged to use it and it can be left out from the model by setting it
to the default value (all values in the array should equal to 1). In this experiment, two
different allocations will be obtained by the I-IV framework, one with and one without
applying the array S. This will also provide the insight about the reliability of a such
approximation.

S =




1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1

1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1

1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1



1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1

1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1

1 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 1 1





, (5.5)

For the Scenario 2, all the inputs remain the same, however since the components
changed, the Resource consumption array changes, along with the Computing unit host-
ing capability matrix. The values of these inputs are respectively shown in expressions
5.6 and 5.7. The order of components is now SQV GA, SFHD, GFHD, SGSXGA, SGFHD,
SGEQV GA, SGESXGA, SGEFHD, SGEDHQV GA, SGEDHFHD, ODFHD, while the order
of computing units remains the same.

T2 =





1.78 26.91 42.31 31.74 52.8 3.32 37.55 67.07 4.04 80.43
185.63

0.32 8.49 14.41 13.67 17.43 1.16 14.38 16.87 1.49 18.22 6.24

124.19
0 0 0 0

125.47
0 0

124.62
0 0




2.9639 5.4504 3.8794 3.9846
7.249

3.1493 4.4101 8.2373 3.3966 9.1231 7.9935

4.6727
6.483

5.5632 6.7314 9.4641 6.0381 9.6826 9.9184 6.2688 11.4692 17.3015

2.4345
0 0 0 0

2.4352
0 0

2.4383
0 0





. (5.6)

D2 =


0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 0 1 1

 , (5.7)
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The allocations obtained by the I-IV framework

The Table 5.3 presents the allocation for Scenario 1 obtained with the I-IV frame-
work, without using the synergy effect approximation. Eight out of eleven components
are allocated to the CPU, only three were allocated to the GPU, while the FPGA was not
used at all. The similarity between the manually defined solution can be made since all
the components with FHD input images were allocated to the GPU.

Table 5.3: I-IV framework allocation for Scenario 1

Computing unit Components Hosted
components

CPU SV GA, SGEV GA, SGESXGA, SGEDHSXGA, 8

ODV GA, SQVGA, GQVGA, SGQVGA

GPU ODFHD, SGEDFHD, SGEDHFHD 3

FPGA — 0

The result of allocating components in for the Scenario 2 by using I-IV framework with-
out the synergy effect approximation array is presented in the Table 5.4. Seven out of
eleven components were placed on the CPU, four to the GPU, while the FPGA was once
again left blank.

Table 5.4: I-IV framework allocation for Scenario 2

Computing unit Components Hosted
components

CPU SGSXGA, SGESXGA, GFHD, SGFHD, 7

SQVGA, SGEQVGA, SGEDHQVGA

GPU SFHD, SGEFHD, SGEDHFHD, ODFHD 4

FPGA — 0

For the previous two allocations generated by the I-IV framework, the synergy effect
array S was not used. However, by applying it, the I-IV framework results with a differ-
ent allocation, for the Scenario 1 it is shown in Table 5.5. Six out of eleven components
are placed on the CPU, while the remaining five are placed on the GPU leaving FPGA
once again unused. It is noticeable that all components with larger image inputs are
placed to the GPU.
Applying the array S in the I-IV framework for the Scenario 2 the resulted with the
allocation shown in Table 5.6. For the first time, with I-IV framework, the FPGA is used
for two out of eleven components. The CPU hosts five components and therefore, once
again the majority, while the GPU hosts four components. GPU hosts only components
with FHD input images, while interestingly, the CPU host two such components, but
with smaller filter sizes, i.e. less operations are performed.
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Table 5.5: Calculated allocation, with synergy tradeoff applied, Scenario 1

Computing unit Components Hosted
components

CPU SGEV GA, SGESXGA, ODV GA, SQVGA, GQVGA,SGQVGA 6

GPU SV GA, ODFHD, SGEDHSXGA, SGEDFHD, SGEDHFHD 5

FPGA — 0

Table 5.6: Calculated allocation, with synergy tradeoff applied, Scenario 2

Computing unit Components Hosted
components

CPU SGSXGA, SGESXGA, GFHD, SFHD, SQVGA 5

GPU SGFHD, SGEFHD, SGEDHFHD, ODFHD 4

FPGA SGEQVGA, SGEDHQVGA 2

Having both manual allocations, and allocations obtained by the I-IV framework the
next step is to evaluate them against the weight function w, with an incentive to predict
how would they perform on the real–world platform. The result of this step is a raking
list of allocations by their performance. This is not obtained manually, but rather with
a custom tool; SCALL, the software component allocator.

5.1.4 SCALL – software component allocator tool

A system with n components and m computing units leaves software architects with
mn possible allocations to choose from. This makes finding the best allocation laborious
and even infeasible for large n and m. Therefore, a tool which supports and automates
this process is essential for aiding in architectural decision making. This section presents
a software component allocator, SCALL, a Eclipse plugin used to make allocation deci-
sions.

For the implementation of SCALL several Eclipse based technologies were used;
Eclipse Plug–in Development (PDE), Eclipse Modeling Framework (EMF) and Graphical
Modeling Project (GMF). This tool chain delivers a good platform for the development
of customized tools; EMF provides a modeling framework and code generation facili-
ties, while GMF provides a set of generative components which create an infrastructure
for development of graphical editors (as shown in Figure 5.3).

SCALL consists of two main parts; a) Eclipse based model editor and b) PyAllocator;
Eclipse based model editor – every model represented in SCALL editor corresponds

to the metamodel depicted in Figure 5.2. The metamodel uses a standard EMF Ecore
notation. Unlike UML or its profiles (e.g. Marte) which could have been also used
for SCALL, this metamodel uses a small number of straightforward concepts. Having a
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System

Name : EString

Software

Name : EString

Hardware

Name : EString

SWNode

Name : EString

HWNode

Name : EString

SWLink

Name : EString

Unit : EString

Value : EString

HWLink

Name : EString

Unit : EString

Value : EFloat

Bandwith : EFloat

Resource

Name : EString

Unit : EString

Value : EString

platforms

0..*

softwares

0..*

SWNodes

0..*

SWLinks0..*

HWNodes

0..*

HWLinks0..*

SWResources

0..*

SWDesc

0..1

SWSrc

0..1

HWResources

0..*

HWDesc
0..1

HWSrc
0..1

Figure 5.2: SCALL metamodel in Ecore notation

custom model, it is easier to focus on the recognition of important concepts without a
burden of large industry standard models and reason about them more effectively. If
they prove to be valuable in the future, these concepts can be added to standard models.

Eclipse based model editor is used to design the system. Figure 5.2 shows that the
System consists of two main compartments: Software and Hardware. The Software

is used to host a component model. It can consist of three main concepts; SWNodes,
SWLinks and Resources. SWNodes represent software components which communicate
via SWLinks and require some Resources to meet their execution specification. A SWN-

ode can be associated with any number of links and resources, however all the SWNodes
need to define values for all resources used in the model.
Similarly, the computing platform is represented by Hardware which can host HWNodes,
HWLinks and Resources. HWNodes represent (heterogeneous) computing units which
communicate via HWLinks and provide a set of Resources. HWLinks represent physi-
cal communication media for which the current metamodel recognizes two attributes:
bandwidth and communication cost (matrices B and C). Software compartment hosts
SWNodes with corresponding resource demand. For SWLinks through which components
communicate, allocation model also uses communication intensity (currently a place-
holder for future reference, e.g. number of function calls).

PyAllocator – a Python script which employs the multi–objective heuristic allocation
method. Python was chosen for its simplicity in handling complex algorithms with rich
and fast libraries (e.g. NumPy, SciPy) . From a model created in Eclipse, SCALL extracts
previously described matrices which are necessary for making an allocation decision.
Once all the matrices are collected, they are converted to JSON format and sent to the
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PyAllocator which performs the allocation. Using AHP, PyAllocator calculates weights
for each resource (trade–off vector F) and verifies the consistency of the users input.
Finally, the solution is obtained by a heuristic algorithm and sent to Eclipse based model
editor to be displayed for the user. Detailed description of the decision model can be
found in [108].

Figure 5.3: SCALL screen shot, showing software (left) and hardware (right) architecture side–
by–side

Features

To provide an insight about the software allocation on a heterogeneous platform and
also to give a performance estimation, SCALL currently has the following features:

a) Model creation, a user can simultaneously model software and hardware archi-
tecture of the system. For software components, the user can add resources and
model their communication channels. The same can be done for computing units,
within the same view.

b) Model visualization, enables easier model creation and better overview of the sys-
tem. Instead of a classical approach of adding elements to a tree-like structure
this approach enables drag–n–drop of model elements from a palette and a side–
by–side view of both software and hardware architecture.

c) Pairwise resource comparison, Having a complete model ready for analysis, the user
needs to perform a manual pairwise resource comparison using AHP notation [97]
(i.e. determine which resources are more important).

d) Software component allocation, SCALL uses the described process to perform a
multi–objective allocation of software components on a heterogeneous platform.
The procedure results in a (sub–)optimal solution. There are four ways of gener-
ating the optimal allocation; a) by a genetic algorithm, b) by simulated annealing,
c) by the exhaustive search and d) by randomly generating the allocation.
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The full source code is available on GitHub for which an URL is given at the end of this
thesis.

5.1.5 Experiment simulation – ranking allocations using Mα

Both manual and allocations generated by the I-IV framework are written as an
ordered n-tuple, where n represents the number of software components. A value of
a tuple at a certain position represents a computing unit to which the software com-
ponent is allocated. Currently, this value is an element from {CPU,GPU, FPGA} in
that respective order. The order of the elements in the tuple for the Scenario 1 is the
following:

SQV GA, SV GA, GQV GA, SGQV GA, SGEV GA, SGESGA, SGEDFHD , SGEDHSGA, SGEDHFHD , ODV GA, ODFHD

1 2 3 4 5 6 7 8 9 10 11

 .

For example, if the fifth element of this arrangement has the value CPU , it means
that the fifth component, i.e. SGEV GA is allocated on the CPU . Using this notation
the following allocations are weighted and ranked using by the function w from the
component allocation model Mα.

The solution obtained by the I-IV framework, with synergy effect array set to default
values is:

α(1) = (CPU,CPU,CPU,CPU,CPU,CPU,GPU,CPU,GPU,CPU,GPU) .

The solution obtained by the I-IV framework with applying synergy effect array S values
presented in expression 5.5 is:

α(2) = (CPU,GPU,CPU,CPU,CPU,CPU,GPU,GPU,GPU,CPU,GPU) .

The solution obtained manually, as explained in Subsection 5.1.2 is:

α(3) = (FPGA,CPU, FPGA,FPGA,CPU,CPU,GPU,GPU,GPU,GPU,GPU) .

For the Scenario 2, the values of the solution vector components are the same as for
the Scenario 1, however the order of the components changed to:
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SQV GA SFHD GFHD SGSGA SGFHD SGEQV GA SGESGA SGEFHD SGEDHQV GA SGEDHFHD ODFHD

1 2 3 4 5 6 7 8 9 10 11

 .

The solution obtained by the I-IV framework, with synergy effect array set to default
values is:

α(4) = (CPU,GPU,CPU,CPU,CPU,CPU,CPU,GPU,CPU,GPU,GPU) .

The solution obtained by the I-IV framework with applying synergy effect array S values
presented in expression 5.5 is:

α(5) = (CPU,GPU,CPU,CPU,GPU,CPU,CPU,GPU,CPU,GPU,GPU) .

The solution obtained manually, as explained in the subsection 5.1.2 is:

α(6) = (FPGA,GPU,GPU,CPU,GPU, FPGA,CPU,GPU, FPGA,GPU,GPU) .

The next step is to rank allocations α(1−6). This is performed by evaluating these
allocations by the weight function w. The Table 5.7 presents the result of evaluating
allocations which do not apply the S array. The column Rank shows the rank of the
solution while the column Evaluation result shows the value given by the function w.
The lower the rank the better the allocation. The Table 5.8 shows the evaluation scores
and ranking of the allocations which use the S array.

Table 5.7: Ranking of allocations α(1), α(3),
α(4), α(6) – solutions without using array S.

Allocation Evaluation
result

Rank

α(3) 3,3888 3
Scenario 1

α(1) 2,6957 1

α(6) 3,5908 4
Scenario 2

α(4) 2,9374 2

Table 5.8: Ranking of allocations α(2), α(3),
α(5), α(6) – solutions using array S.

Allocation Evaluation
result

Rank

α(3) 1,9348 3
Scenario 1

α(2) 1,7155 1

α(6) 2,2326 4
Scenario 2

α(5) 1,8626 2

The next step is to implement these software components, allocate them on the TiWo
platform and by measurement obtain their real world performance to rank them.
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5.1.6 The experiment: manual allocations vs. I-IV obtained alloca-

tions

By applying the same measurement procedure and parameters as described in chap-
ter 4, allocations α(1−6) were subjected to the real–world performance evaluation. For
each allocation, the average execution time and the average power consumption were
measured. The results are shown in Tables 5.9 and 5.10. The weights for the resources
shown in the table are obtained by the pairwise comparison (expression 5.3) inspired
by the AHP which results with the trade–off vector F . These are the same as for the I-IV
framework. The final score (column Result) is obtained in the same way as the weight
function w evaluates the solution in the model Mα, i.e. as PAV G · PW + tAV G · tW . With
this, the measurement units are dismissed and the result is interpreted as less is better.

Table 5.9: Manual allocations vs. allocations generated by the I-IV framework without applying
of the synergy effect array

Allocation
Average power
consumption
[W](PAV G)

Average
execution time
[ms](tAV G)

Time
weight
(tW )

Power
weight
(PW )

Result Rank

α(3) 31,0731 8887,6262 0,36 0,58 3217,5678 3
Scenario 1

α(1) 32,3924 4153,5888 0,36 0,58 1514,0796 1

α(6) 31,9835 11071,8959 0,36 0,58 4004,4329 4
Scenario 2

α(4) 32,1609 6221,8502 0,36 0,58 2258,5194 2

Table 5.10: Manual allocations vs. allocations generated by the I-IV framework with application
of the synergy effect array

Allocation
Average power
consumption
[W](PAV G)

Average
execution time
[ms](tAV G)

Time
weight
(tW )

Power
weight
(PW )

Result Rank

α(3) 31,0731 8887,6262 0,36 0,58 3217,5678 3
Scenario 1

α(2) 32,9684 4051,0150 0,36 0,58 1477,4871 1

α(6) 31,9835 11071,8959 0,36 0,58 4004,4329 4
Scenario 2

α(5) 33,2779 6226,1707 0,36 0,58 2260,7226 2

The most important column is the rank, which for both tables unequivocally match
to the ones predicted by the I-IV framework in the previous subsection (Tables 5.7,
5.8). Therefore, the hypothesis H-1 is accepted it is henceforth accepted that the I-
IV framework correctly represents the system performance of the heterogeneous computing
platform at hand.

While the aforementioned tables match, it is also interesting to notice that the al-
location which applies the synergy effect array performed better (w(α(2)) = 1447.48)
then the allocation without it (w(α(1)) = 1514.07). Since this was also predicted by the
model (2.6957 vs 1.7155), such result gives an additional straight to the validity of I-IV
framework. However, since this array is obtained by experience, i.e. it introduces a
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degree of uncertainty due to its approximation. It is strongly suggested to use it with
caution and this in mind.

Experiment details and statistical analysis of the results

The measurements were conducted using the same parameters and method as shown
in chapter 4. The mean values, errors and the upper and lower bound of the 95% con-
fidence interval are shown in the table Table 5.11.

Table 5.11: Time and current measurement results used for ranking (direct Minitab outputs)

Allocation N Mean (A, ms) St.dev. SE Mean CI-lower (95%) CI-upper (95%)

Current (A)

α(1) 30 2,7898 0,0333 0,0061 2,7774 2,8022

α(2) 30 2,8394 0,0786 0,0146 2,8095 2,8693

α(3) 30 2,6762 0,0405 0,0074 2,6611 2,6913

α(4) 30 2,7699 0,0796 0,0145 2,7401 2,7996

α(5) 30 2,8661 0,1115 0,0204 2,8244 2,9077

α(6) 30 2,7546 0,0562 0,0103 2,7336 2,7756

Time (ms)

α(1) 30 4153,59 38,41 7,01 4139,25 4167,93

α(2) 30 4051,02 38,39 7,13 4036,41 4065,62

α(3) 30 8887,60 167,90 30,70 8824,90 8950,30

α(4) 30 6221,85 34,2 6,24 6209,08 6234,62

α(5) 30 6226,17 35,78 6,53 6212,81 6239,53

α(6) 30 11071,90 131,80 24,10 11022,70 11121,10

The measurements were repeated 30 times to ensure a large enough sample. Notice
that the standard deviation is very low for all current measurement data meaning that
the true measured value lies in a very narrow confidence interval, for which the upper
and lower bound are within two decimal places. Measuring the time produced a higher
standard deviation, but since it is measured in milliseconds, the presented values are
acceptable since the confidence interval is very narrow.
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5.2 I-IV framework performance for large search spaces

The hypothesis H-2 states that in the case of a large number of allocation choices
the I-IV framework finds an allocation which performs significantly better than a set of
random allocations. Given a set of components n and a set of computing units m, the
search space required to scan in order to find the best allocation is mn. Since there are
no known algorithms that could find an optimal allocation in the polynomial time, a
sub–optimal good enough solution is also acceptable. Therefore, this hypothesis will be
accepted if following conditions are met:

a) the sub–optimal allocation provided by the I-IV framework is not significantly
worse than the optimal allocation obtained by the exhaustive search, i.e. the
optimal solution. Minimal sacrifice of the resulting allocation performance for the
maximal decrease of the search time is acceptable.

b) the sub–optimal allocation provided by the I-IV framework performs significantly
better in the significant number of cases in comparison with a set of randomly
generated allocations.

The evaluation of these conditions starts by comparing the performance difference
between the optimal allocation obtained by the exhaustive search method and sub–
optimal allocation obtained by heuristic methods implemented in the I-IV framework.

5.2.1 Optimization methods

The specification of the I-IV framework does not formally define any method for
optimizing the software component allocation, and as such it is the subject to deeper
investigation of this subject in the future, however its current implementation in SCALL
provides two heuristic methods for obtaining the allocation; by the genetic algorithm
and by the simulated annealing algorithm. This subsection presents the comparison of
the performance of allocations obtained by four different methods:

1) by using the genetic algorithm (GA),
2) by using the simulated annealing algorithm (SA),
3) by performing an exhaustive search (ES), which finds the real optimal allocation,
4) and finally by generating 30 consecutive randomly generated allocations and con-

sidering the best (min), the worst (max) and the average (avg) performing allo-
cation in this set (RAND).

Genetic algorithm implementation and its setup

Genetic algorithm is an adaptive heuristic local search algorithm inspired by the prin-
ciples of natural selection. It falls into the category of evolutionary algorithms which
provide a efficient techniques for addressing large search spaces with a goal of finding
the most robust and best rated solution according to a fitness criteria. Mimicking the
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same basic principles as observed in nature, the outcome of the genetic algorithm is a an
array which represents a sub–optimal, good enough solution to an optimization prob-
lem. The algorithm starts by randomly generating the initial population of candidate
solutions, or in this case, allocations. Next, it uses tree operators; the selection operator,
the crossover operator and the mutation operator. The selection operator evaluates the
goodness of the solution, i.e. allocation performance by applying the fitness function,
which is in this case function w. Then, on the individuals which passed the selection, a
crossover operator is applied which produces an offspring carrying the characteristics of
both individuals which produced it. This process is also refereed to as mating. Finally,
the mutation operator is applied to the offspring, which with some low probability en-
ables them to develop their own new characteristics, or more precisely to change value
at the certain position of the array. This is repeated on the individuals which passed the
selection criteria and one such iteration is called a generation.

Given the initial values of these parameters one should be careful. If the population
size is to loo small the search space will not get good coverage. If the population is
to big, the epoch (all iterations) time is increasing and a chance for each individual to
explore the neighborhood is somewhat restricted. For the mutation rate, if the value is
to high there is a chance to skip over the optimal solution, and if it is to low there is a
chance for it to get stuck in the local minimum. As for the crossover operator, for this
particular problem it is important that it respects the order of individual chromosomes,
i.e. array elements.

Table 5.12: Genetic algorithm - DEAP parameters

Parameter Value Interpretation

crossover cwTwoPoint executes a two-point crossover on the input sequence
individuals

mutation mutFlipBit
flips the value of the input sequence individual with a
certain probability, set to 20% (initial configuration is set
to 5% – toolbox parameters)

selection selTournament
selects k individuals form the input and uses k
tournaments of turnsize individuals. The turnsize is set to
3, while k is 300

method eaSimple simplest form of the genetic algorithm

population 300 random solutions which are evolved toward better
solutions

generations 40 number of iterations

The entire I-IV framework is implemented in Python 3.5 as a part of PyAllocator,
and to implement the solver which uses a genetic algorithm, DEAP library was used
[40]. It is an evolutionary computation framework for rapid prototyping and testing
with support of parallelization and multiprocessing instruments. Table 5.12 presents
the setup parameters for the DEAP library.
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Simulated annealing implementation and setup

Simulated annealing is an optimization algorithm inspired by metallurgic process of
metal annealing. When a liquid metal is cooled rapidly, the molecules within it tend to
obtain a more random structure, or what is in metallurgy known as reduced crystallinity.
However, if the metal is gradually cooled the resulting material ends up in a state with
low tension energy. This basic principle is transferred to the function optimization. The
algorithm has a starting and an ending temperature, while each temperature point has
an energy value determined by the objective function (in this case function w). Each
iteration reduces the temperature for a predetermined value. The temperature is used
to control the variability of the candidate solutions, where larger temperatures allow
more variations and lower temperatures allow less variations. Unlike other methods,
Simulated annealing is prone to resist getting stuck at a local minimum since in the each
iteration, the solution is accepted even if it is not the best one. It called a candidate
solution which is accepted with a certain probability of being the optimal solution. The
search for the best allocation using Simulated annealing is also implemented in Python
3.5 with Simanneal library 2 as a part of PyAllocator. The algorithm parameters are
shown in the following table (Table 5.13).

Table 5.13: Simulated annealing - Simannel parameters

Parameter Value Interpretation

Tmax 1000000 Starting temperature

Tmin 0.5 Ending temperature

i 20000 Number of iterations

As it can be seen in Table 5.13, the initial temperature is very high to allow for
high variability of the candidate solutions. However, with gradual cooling, variability
is reduced. The Simanneal implementation of the simulated annealing algorithm does
not require one to define the change of the temperature in each step, but it does allow
to specify the number of iterations. Then, it calculates the temperature change of each
step using a nonlinear function.

In this work, these optimization algorithms are not the main research subject so
their in–detail analysis was not performed since it is out of scope. There was minor
tweaking of input parameters until the algorithms started to produce satisfying solu-
tions. Once that happened the parameters remained the same throughout the research.
But still, producing a better optimization method used for allocating software compo-
nents in a heterogeneous computing environment might be an interesting subject for
the optimization community and the future work.

2https://github.com/perrygeo/simanneal, accessed in December, 2015
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5.2.2 Optimizing the software architecture

The goal of the experiments presented in this section is to evaluate how do the
sub–optimal allocations obtained by the heuristic methods compare to the optimal al-
locations obtained by the exhaustive search, both in the means of time to obtain the
solution and the solution precision.

Due to the lack of access to the real–world heterogeneous computing platforms with
larger number of software components and computing units, the inputs for the I-IV
framework were randomly generated3. In particular, the resource availability matrix
was generated so that it always provides enough resources, and the inputs related to
architectural constraints were generated with a function which is prone to generating
more zeros than ones. This means that the resulting platform had less architectural
constraints due to the danger of generating systems with infeasible solutions. In this
experiment, these are not considered since they would not provide any meaningful
information.

Once the inputs were generated, using the I-IV framework the best allocations for
each of the generated heterogeneous platforms were optimized, that is, its weight func-
tion w was minimized using the previously defined methods (1–4), i.e. GA, SA, ES and
RAND.

There there were two experiments performed, the first one dealing with the preci-
sion of the optimization methods, and the second one dealing with extreme number of
allocation choices.

Determining the best optimization method – experiment 1

The first experiment deals with allocation performance. The goal is to determine
how good of a performance have the allocations allocations provided by the heuristic
approach in comparison to the real optimal allocations, and a set of randomly gener-
ated allocations. Since the search space grows rapidly, only 14 different heterogeneous
platforms were randomly generated to experiment with. The ES optimal allocation was
calculated only once, while the GA, SA and the RAND allocations were recalculated 30
times.

The results have shown that the GA and the SA always converge in the same al-
location and therefore it is unnecessary to repeat them multiple times for the future
experiments, if their initial conditions do not change. For the RAND approach, the 30
repetitions generated a variety of allocations with different performances. The perfor-
mance of allocations obtained by each of the method is shown in Table 5.14 as the
average deviation from the optimal allocation in percent.

The columns m, n and k in the table Table 5.14 are respectfully the number of com-

3The simulation of heterogeneous platform is implemented with Python 3.5 and executed on a server
with 2× Intel®Xeon®CPU E7-4830, 8GB Ram, and Linux
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puting units, the number of software components an the number of different resources.
The column t[s] shows the average search time to necessary obtain the solution.

Given the search space size ranging between 28 and 512 the performance for different
methods varies. Obtaining the randomly generated allocations was instantaneous, since
the time necessary to generate it is the time necessary to generate a random array of a
certain length and values. For the exhaustive search, the time was better than both GA
and SA up until 37 beyond which it increased exponentially. For the largest search space
of of 512 it took more than 1 day and 14 hours to find the optimal solution, while the
GA and the SA took significantly less. Also notice that the GA almost regardless of the
search space size took about the same amount of time, and for the SA took more time
for smaller search space and less time for larger search space.

Table 5.14: Comparison of allocation performance between the optimal solutions, randomly
generated solutions and solutions obtained by the genetic algorithm and the simulated anneal-
ing.

ES GA SA RAND

m n k t[s] dif.[%] t[s] dif.[%] t[s] dif.[%] t[s] dif.min[%] dif.max[%] dif.avg [%]

2 8 5 0,179 0 7,839 0% 18,005 0% 0,001 10% 101% 33%

2 9 5 0,475 0 7,922 0% 19,228 0% 0,001 5% 108% 33%

2 10 5 0,819 0 8,556 0% 19,899 0% 0,001 3% 62% 25%

3 7 5 1,333 0 7,537 0% 17,484 0% 0,001 8% 266% 114%

3 8 5 4,000 0 7,654 0% 18,316 0% 0,001 5% 256% 78%

3 9 5 14,000 0 8,246 0% 19,960 0% 0,001 11% 118% 54%

4 8 5 57,000 0 7,985 0% 19,726 0% 0,001 58% 370% 172%

4 9 5 238,000 0 8,602 2% 20,658 2% 0,001 32% 260% 120%

4 10 5 679,000 0 4,277 2% 10,726 4% 0,001 22% 167% 82%

5 9 5 1727,000 0 7,453 6% 18,240 7% 0,001 43% 339% 145%

5 10 5 4298,000 0 4,292 3% 10,681 4% 0,001 108% 355% 195%

5 11 5 24328,000 0 4,400 7% 11,422 13% 0,001 40% 205% 125%

5 12 5 139988,000 0 5,149 5% 13,373 12% 0,001 46% 213% 125%

The column dif.[%] shows the difference in percentage between allocation perfor-
mance for the GA, SA and RAND in comparison to the performance of optimal allocation
obtained by the ES. For all allocations obtained by the ES this is obviously 0. For the
GA generated allocations, the greatest difference is 7%, and for the SA generated allo-
cations it is 13%. Comparing these to the allocations obtained by RAND, the allocations
are always worse than allocations from both the GA and the SA. The performance of
each generated RAND allocation was also evaluated using the function w, and the table
presents the minimal, maximal and average performing randomly generated allocation.
The minimal offset is 3% and it occurs in lower search spaces while the largest offset
was 370%. On average, the smallest difference (min) was 33% worse than the optimal
one, while for the largest (max) this was 195%. In all 14 cases both the GA and the
SA provided better allocations. For better overview, the data presented in Table 5.14 is
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shown in Figure 5.4.
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Figure 5.4: Difference in allocation performance in percentage for GA, SA and RAND (min,
max, avg.) – logarithmic scale is used.

The gray area shown in Figure 5.4 represents the area in which lies the performance
of all allocations obtained by RAND. The performance of the GA and the SA generated
allocations are the same as the optimal allocation up to the search space of size 48, but
toward the end, for the large search spaces, the allocation provided by the GA performed
slightly better.

A different perspective of this data is shown in figure Figure 5.5, which presents the
performance each methods’ optimal allocation by the weight obtained from the function
w. The image reveals that the allocation with minimal weight generated by the RAND
gets fairly close to the optimal solution in the search spaces between 29 and 37. But for
larger search spaces, the difference starts to grow and never (for these search spaces)
reaches it anymore. Also, the image shows the big differences between the best, the
worst and the average performing allocation provided by the RAND.

The time necessary to obtain the best allocation by each of the methods reveals
interesting information shown in Figure 5.6, which might otherwise be hard to notice in
the previously presented Table 5.14. The image uses logarithmic scale because there is
a great discrepancy between the time necessary to obtain allocations by the ES and time
necessary to obtain allocations by the GA and the SA. The RAND was not considered
in this image at this point, since it does hardly depend on the search space size. It can
be seen that after 39 the GA and the SA significantly outperform the time necessary to
obtain the solution by the ES. The time keeps increasing to the point beyond which it
is unreasonable to keep waiting for the algorithm to finish. For the last configuration
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Figure 5.5: Solution weight for ES, GA, SA and RAND (min, max, avg.).

the search space was 512 so for the ES to find the optimal allocation it took more than
1 day and 14 hours, while the GA and the SA it took only about 10 seconds. And the
sub–optimal allocations were performing only 5 – 13% worse than the optimal one.
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Figure 5.6: The comparison of time necessary to generate the allocation for the ES, GA, and SA
approach. Since the scale is logarithmic, values smaller than 1 second are not shown.
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Given the results presented in Table 5.14, one can safely sacrifice the allocation
performance for the time necessary to obtain it, since the performance of the sub–
optimal solution does not differ much from the performance of the optimal allocation.
With this, the resulting conclusion of the first experiment is that the GA and the SA, i.e.
default optimization methods of the I-IV allocation framework provide a satisfactory
sub–optimal allocation.

For the second experiment it is necessary to verify whether the allocations obtained
by the standard I-IV allocation framework optimization methods produce significantly
better performing allocations than the ones obtained by the RAND method for extremely
large search spaces.

Extreme number of allocation choices – experiment 2

The following challenge is to determine the difference between solution perfor-
mance obtained by the I-IV frameworks GA and SA approach and the RAND approach
described previously, but for much larger search space which is beyond the exhaus-
tive search method. In the previous experiment for the largest search space of 512 it
took 1 day and 14 hours, but to find an optimal allocation in any search space larger
than a dedicated supercomputer would be required, which could maximally exploit the
multiprocessing options of the programming language, the operating system and the
computing platform. This is not the point, however, the goal is to find the sub–optimal
allocation with satisfactory performance in the reasonable amount of time which is also
better than (any) randomly generated allocation, which might not always be the case
[37].

The following experiment utilizes the GA and SA approaches currently implemented
in the I-IV framework PyAllocator and compares the performance of their allocations
against the allocations provided by the RAND approach. The heterogeneous computing
platform were randomly generated 55 different configurations, for search spaces rang-
ing between 1020 and 3070. This represents systems with at least 10 computing units
and 20 components and at most 30 computing units and 70 components. Needles to
say, these search spaces are huge.

The Table 5.15 shows the result of the experiment. For each input configuration, the
GA and the SA allocations were obtained only once (since they always converge to the
same solution), while randomly generating allocations was repeated 30 times for which
the best, the worst and the average performing ones were considered.
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Table 5.15: Comparison between allocation performance between the randomly generated so-
lution and solutions obtained by the genetic algorithm and simulated annealing.

GA SA RAND
m n t[s] w t[s] w t[s] wmin wmax wavg

10 20 26,628 2,912 74,593 2,957 0,001 3,808 7,009 5,186
10 21 28,164 2,760 72,611 3,079 0,001 3,953 6,582 5,148
10 22 29,164 2,906 79,888 3,282 0,001 5,363 6,718 6,111
10 23 30,762 3,227 83,862 3,370 0,001 4,070 6,842 5,641
10 24 31,431 3,782 84,711 4,243 0,001 5,576 8,152 6,927
10 25 33,434 4,053 90,629 4,432 0,001 6,456 8,649 7,268
10 26 35,462 4,196 95,492 4,723 0,001 5,782 8,723 6,910
10 27 35,998 4,810 101,252 5,070 0,001 6,356 8,888 7,718
10 28 44,770 5,275 127,298 5,712 0,001 6,851 12,257 9,138
10 29 95,885 5,741 269,554 6,432 0,001 7,266 10,123 9,011
10 30 48,036 6,015 127,904 6,440 0,001 7,730 11,884 9,768
15 30 45,746 5,223 125,520 5,630 0,001 6,262 10,329 8,834
15 31 46,798 5,631 128,692 6,135 0,001 6,392 10,928 9,281
15 32 48,929 5,447 135,545 6,073 0,001 7,401 11,336 9,409
15 33 49,741 6,083 137,846 6,459 0,001 9,004 12,867 10,771
15 34 50,071 6,172 141,651 6,967 0,001 8,250 12,228 10,792
15 35 69,343 6,599 208,502 7,027 0,001 10,374 12,748 11,458
15 36 111,701 6,741 292,588 7,402 0,001 8,662 16,788 11,367
15 37 51,100 8,415 134,683 8,672 0,001 10,376 12,719 11,575
15 38 48,710 7,555 136,984 8,484 0,001 9,206 13,183 11,297
15 39 52,773 8,327 143,015 9,032 0,001 11,748 15,586 13,118
15 40 54,685 8,825 150,836 10,077 0,001 12,687 18,107 14,975
20 40 71,239 7,632 194,272 8,688 0,001 10,255 14,220 12,354
20 41 73,955 8,547 200,734 9,357 0,001 11,368 15,167 13,068
20 42 70,651 9,034 200,700 10,167 0,001 12,232 15,468 13,892
20 43 82,418 9,746 238,263 10,381 0,001 13,291 15,744 14,313
20 44 140,296 9,293 374,990 10,084 0,001 13,388 16,212 14,582
20 45 64,216 9,807 178,302 11,100 0,001 13,881 16,614 15,355
20 46 68,961 10,510 187,678 11,491 0,001 12,570 16,248 14,291
20 47 70,828 10,371 186,847 11,582 0,001 13,693 20,084 16,756
20 48 95,357 11,401 279,861 11,554 0,001 14,856 17,091 16,180
20 49 65,833 11,581 170,524 12,882 0,001 14,522 19,284 16,357
20 50 60,639 11,652 164,146 12,037 0,001 15,291 17,756 16,237
25 50 99,916 11,603 275,124 12,785 0,001 15,226 18,972 17,549
25 51 100,899 11,359 277,760 12,117 0,001 15,112 19,918 17,397
25 52 125,097 12,580 378,551 13,693 0,001 15,866 21,735 18,213
25 53 146,266 13,727 362,663 14,196 0,001 17,623 20,137 18,563
25 54 87,978 12,922 243,903 14,642 0,001 16,781 21,787 19,375
25 55 88,763 13,159 240,268 14,819 0,001 17,603 21,102 19,575
25 56 122,090 14,199 337,524 15,866 0,001 18,499 22,653 20,481
25 57 75,274 15,177 205,297 16,753 0,001 19,662 25,710 21,921
25 58 59,323 15,433 157,836 16,386 0,001 20,062 22,196 21,387
25 59 53,869 15,564 145,786 17,288 0,001 19,005 25,570 22,083
25 60 54,796 15,826 147,463 17,623 0,001 21,621 25,706 23,199
30 60 138,227 16,197 383,529 17,239 0,001 21,483 26,635 22,817
30 61 138,060 16,368 376,397 17,813 0,001 22,010 28,255 24,207
30 62 200,428 15,930 550,680 18,040 0,001 21,794 26,686 24,251
30 63 118,552 18,579 320,035 19,943 0,001 24,067 27,380 25,705
30 64 139,171 18,546 396,114 20,100 0,001 22,668 26,882 24,691
30 65 107,300 17,678 271,994 20,007 0,001 22,874 27,429 25,693
30 66 75,646 18,974 199,672 21,173 0,001 24,008 28,605 26,186
30 67 66,483 19,604 180,153 20,792 0,001 24,567 31,476 27,123
30 68 66,549 19,110 190,358 21,981 0,001 25,463 29,415 26,688
30 69 79,100 20,704 212,217 21,345 0,001 25,424 30,117 27,798
30 70 66,955 21,665 184,047 22,716 0,001 26,504 34,565 29,610
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Considering only the performance of the allocation, that is its weight provided by
weight function w, the results from the Table 5.15 are visualized in Figure 5.7.
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Figure 5.7: The performance of the allocations generated by GA, SA, and RAND as given by
function w.

For each configuration, i.e. for each search space the GA provides allocations with
the best performance, followed by allocations provided by the SA. The RAND however,
provided the allocations with the worst performance, regardless whether it has the
worst, best or average performing one among the 30 consecutively generated ones.
Once again, the domain of the RAND allocations performance shaded in gray. Its best
performing allocation got relatively closely to the performance of the ones generated by
the GA and the SA around 1530, however not in the single point did it perform better.
With growing solution space its best solutions performed worse, for a relatively same
amount. Comparing allocations obtained by the SA and the GA, it can be seen that
the allocations obtained by the SA method performed well up until 1540. Beyond that
point its allocations mostly performed worse than the allocations obtained by the GA,
however at several places it came fairly close.

Since the solutions obtained by the GA performed the best, an interesting compar-
ison is illustrated in the Figure 5.8. It shows the difference in percentage between the
best performing allocation provided by the GA in comparison to the performance of al-
locations provided by the SA and the RAND method. Although there are no surprises,
this image offers a different perspective of the data. It reveals that in the most cases
the SA allocations performed about 15% worse then the GA allocations. Sometimes
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however it can get really close regardless of the search space. The most obvious thing
to notice is that the RAND allocations have a fairly large difference between the best
and worst performing one, and that with the increase of the search space this difference
decreases. Furthermore, with increasing the search space, the difference between the
best performing randomly generated solution and the solution obtained by the GA and
SA gets narrower. The closest the best randomly generated allocation performance got
to the allocations generated by the GA and the SA was for the search space of 1531.
At that point it was 14% worse than the GA solution, and only 4% worse than the SA
solution. Nonetheless, even in best cases allocations given by the RAND method are on
average 33% worse than the allocations obtained by the GA, and 22% worse than the
allocations obtained by the SA, while on average it is on 55% worse than GA and 42%
worse than SA.
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Figure 5.8: Difference in allocation performance as a offset from the GA solution in percent.

Given the large search spaces which are dealt with in this subsection, the processing
time necessary to obtain the optimal allocation is an important consideration. Since the
randomly generated allocations always take the same amount of time, they were left
out of this comparison illustrated in Figure 5.9. As it can be seen, the processing time
for obtaining the allocation is somewhat related to the search space size. Both the GA
and SA methods processing time steadily increases with the raising search space. The
GA method took less time to provide a solution than the SA did, almost in perfect
proportion. At the beginning the time raises steadily, however toward the end the
steady rise becomes unpredictable, thus resulting in outliers seen along the time curve.
This is not attributed to search space size but to the measurement conditions. As for
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the previous experiment, the data was processed on a non–dedicated server with no
guarantee over its load. Hence, the repeated measurements have shown that there
is no regularity in the appearing of these outliers, and as such, they are attributed to
different processing load of the server and other OS processes. This was also verified on
a dedicated platform which did not produce outliers but the results followed the same
pattern. A final remark is given to the comparison of the processing time of the GA and
the SA. For the maximal search space of 3070 the processing time was under 100 seconds
for the GA approach and under 200 seconds for the SA approach, which is not nearly
close close to 1 day and 14 hours the ES took to process a way smaller search space of
512.
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Figure 5.9: The time necessary to obtained the solution for large design spaces, compared
between the GA and SA approach.

The conclusion of the experiments

The experiment results shown in the Table 5.15 reveal that not in a single con-
figuration the randomly generated allocation outperformed an allocation obtained by
the heuristic methods used in the I-IV allocation framework. Statistically, given a long
enough time and much more tries, it should certainly produce an allocation which is
the same or possibly better than the one produced by the I-IV framework, however for
the 55 configurations in this experiment this did not occur. Therefore, it is concluded
that the I-IV framework and its current implementation of optimizing the software al-
location for large search spaces performs significantly better than the algorithm which
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randomly generates software allocations and also it does so in a significant number of
cases. Furthermore, it should be noted that the parameters of the GA and the SA were
not reconfigured for each tested configuration, however tweaking them could proba-
bly produce in even better allocations in less time, but, as a proof–of–concept, both
algorithms performed well.

With this, the experiments are complete and by the examination of the results by the
tables 5.14 and 5.15 the hypothesis H-2 is accepted.

5.3 Summary

This chapter provides the verification of the I-IV allocation framework, a main con-
tribution of this thesis in accordance to the research method shown in Figure 1.1.

The first hypothesis H-1, states that the framework for comparison of individual soft-
ware component allocations correctly represents the system performance if the model
for the heterogeneous computing platform is substantially valid. In order to verify this
claim the following experiment involving the I-IV framework and its component alloca-
tion model α was proposed.
Given a set of real–world software components, computing units and different execu-
tion scenarios, the performance of an allocation as predicted by the model α should
exactly match the performance of an allocation implemented and measured on a real–
world platform. For that purpose, 6 different software allocations were selected, which
represent 2 different execution scenarios. These allocations were evaluated by weight-
ing function w from the model α and ranked by their performance. The procedure of
measuring the inputs necessary for the model α is described in chapter 4.
Then, these allocations, i.e. software architectures were implemented on a real–world
platform and their performance was measured. To be more precise, both power con-
sumption and execution time were measured within the confidence interval of 95%.
The resulting data was weighted by using a simplified AHP method presented in chap-
ter 3, based on which the allocations were ranked by their performance. The resulting
performance ranking obtained by measurements performed on a real–world platform
perfectly aligned with allocation performance rankings obtained by the I-IV framework.
Hence, the hypothesis H-1 was accepted.

The second hypothesis, H-2 states that in a case with large number of allocation
choices, the I-IV allocation framework finds an allocation which has significantly better
performance than randomly generated allocations. To verify this claim, the hypothesis
was tested through two experiments.

The first one involved comparing the performance of the sub–optimal allocations
generated by heuristic methods of I-IV framework with the performance of the optimal
allocations obtained by performing an exhaustive search. The I-IV framework does
not define the optimization method in the cases where exhaustive search is infeasible,
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however its current implementation lets software architect choose between the genetic
algorithm and the simulated annealing algorithm.

For the first experiment a number of heterogeneous platforms were generated and for
each of them the best performing allocation was chosen, using the exhaustive search,
the genetic algorithm, the simulated annealing algorithm and randomly generating allo-
cations (RAND). The search space span between 28 and 512, where the base represents
the number of computing units and the exponent represents the number of software
components. Having that kind of search space, it is immediately clear that there is
no known algorithm which could find the optimal solution in a polynomial time and
that the sub–optimal solution would need to be satisfactory. For each generated hetero-
geneous platform, the optimal allocation given by the ES was compared against ones
provided by the GA, the SA and the RAND in order to verify which method will provide
the most accurate solution. Also, for each configuration, i.e. search space RAND was
repeated 30 times and based on this 3 different allocations were selected, the average
performing one, the best performing one and the worst performing one. The results
have shown that the GA performed the best considering both the time it took to obtain
an allocation and the performance of an allocation. On average, in all cases it took less
than 10 seconds while the SA took between 10 and 21 seconds. In the worst case ES
took more than 1 day and 14 hours.

From the standpoint of performance, in a worst case the allocation performance pro-
vided by GA was 7% worse than the optimal one, and for the SA this was 13%. The
allocations obtained by RAND were at best closest to optimal solution with the 3% dif-
ference, but only for small search spaces. For larger search spaces this raised up to 22%
and its worst allocation was 370% worse than the optimal allocation and on average it
was 100% worse. Given these results the GA was accepted as an algorithm to provide
allocations with satisfying performance, given both the time and precision.

For the second experiment the main interest was the performance of the GA in com-
parison to the RAND method for extremely large search spaces. The goal was to discover
is it reasonable to use the GA (and SA) approach to find the optimal allocation of soft-
ware components or would randomly generated allocations (RAND method) perform
just as well. The search spaces to experiment with were ranging between 1020 and 3070

which are beyond the reach of the exhaustive search method and finding the optimal
solution.

The results have shown that for such search spaces the GA provides the best perform-
ing allocations in the least amount of time, followed by the SA. Interestingly, the area
between the worst and the best performing randomly generated solution was larger at
the beginning and decreased towards the end of the defined search space. Regardless to
which it never, not in a single case, outperformed the solution obtained by the GA nor
the solution obtained by SA. At its best it was on average 33% worse than the allocation
obtained by the GA and 22% worse than the allocation obtained by the SA. On average,
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the allocation obtained by the RAND was 55% worse than the GA and 42% worse than
the allocation obtained by SA.
Given the results from both the first and the second step of the experiment of testing the
H-2 hypothesis, it was clearly shown that the allocations obtained by the I-IV framework
are significantly better than the best randomly generated allocations in a significant
number of cases. Statistically it should happen that, given a large enough search space,
the RAND would produce at least one allocation which performs better than the one
generated by I-IV framework. However in 55 different configurations tested here this
did not occur, but even if it did it would be statistically insignificant. Therefore, the
hypothesis H-2 was accepted.
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CHAPTER 6

RELATED WORK

One of the main concerns of this thesis is software architecture optimization using
a multi–criteria decision making process. This is a difficult task since it involves com-
plex analysis and solving problems which very often classify as NP hard. Numerous
researchers from different backgrounds such as mathematics, computer science, elec-
trical engineering, etc. dealt and deal with this issue and their research resulted with
many papers, which very often tackle the same issue but from different viewpoints. This
chapter presents the work of other researchers closely related to this thesis.

6.1 Research classification

The research on the sheer complexity of the design decisions involved in making
a software architecture for today’s increasingly complex systems resulted in numerous
papers from authors with various backgrounds. It is therefore not so easy to classify the
related work, which was troubling for many researchers involved with allocation issues
of high performance computing. To solve this mess, in 2014 Aleti et. al. performed a
systematic literature review which dealt with classifying current software architecture
optimization methods and approaches [3]. It was a laborious task which involved
classifying 188 papers from different research communities, and as its authors report
their investigation was guided by the following goals: a) classification framework and
taxonomy for existing architecture optimization approaches, b) to provide a state of the
art in this domain and c) to point out trends, gaps and research directions. Each of the
papers is classified by the a) problem, b) solution and c) validation.

According to the classification framework by Aleti et. al.[3], the research presented
in this thesis classifies as follows:

• Problem category: performance optimization
– specific categorization: performance, energy
– domain: embedded systems
– design phase: design time
– constraints: general (cost, performance, mapping, etc.)
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• Solution category: allocation
– degree of freedom: allocation
– quality evaluation: model based
– architecture representation: optimization model, (custom architectural model,

EMF)
– optimization strategy: approximation (heuristic)
– constraint handling: prohibit (for architectural constraints), penalty (for al-

location performance)
• Verification category: experiment
Comparing the research to papers analyzed in the aforementioned literature review,

along with the latest publications (from ACM, IEEE Xplore, Google Scholar and Scopus)
the most closely related work to this research deals with:

• allocation, placement, mapping – of processing tasks to different, very often, dis-
tributed computing resources.

• heterogeneous system software architecture – a very few research papers directly
deal with heterogeneous systems and the ones which do, focus on distributed
multi–processor systems. Only several publications deal with a context specific
as CPU, GPU, FPGA, and the ones which do, concern with benchmarking perfor-
mance of these computing units.

• energy, power – is a growing interest in software architecture community, mostly
coming from the embedded systems and transiting to the new area of cyber–
physical systems.

6.2 Software architecture optimization

The chapter 2 presents several different scientific fields which motivated this thesis.
One can notice that the research closely related to this thesis is conducted by people
from different backgrounds and that it is motivated by different, but generically similar
problems. This section points out the closest related work associated with software
architecture optimization. In particular, this section provides an overview of related
research with the focus on input model types, optimization goals, model assumptions,
degrees of freedom and results. The selected research papers are chosen based on their
relevance to this research, experimentation and verification techniques, architectural
input models, optimization algorithms and problem domain.

Koziolek and Reussner introduced a generic quality optimization framework for the
design space exploration and optimizing any component based model for a number
of quality properties and an arbitrary number of degrees of freedom [59]. This novel
metamodel can support any component based metamodel, however they used OMG
EMOF metamodeling language to represent input models. From such inputs, they derive
the models automatically with a generic tool, independent of the component based
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model applies an existing multi–objective optimization. With this metamodel called a
Generic Degree of Freedom Metamodel, they can represent any changeable metamodel
element. The values within the model represent the Degree of Freedom Instance which
defines a design space in the form of the Cartesian product among different instances.
The solution vector is obtained by evolutionary optimization.

Similarly, Malek et.al. developed an extensible framework for finding the most ap-
propriate deployment architecture for a distributed software system with respect to mul-
tiple (conflicting) QoS1 dimensions [68]. Their framework supports formal modeling of
the allocation problem, and in their paper they evaluate it for precision and execution–
time complexity. The authors focus on several QoS parameters, in particular, availabil-
ity, latency, communication security, energy consumption and memory constraint. Their
optimization strategy, i.e. the input model assumes that the software architect knows
the constraints of the input parameters. The optimization was performed by a Mixed–
Integer nonlinear Programming Algorithm (MINLP), a Greedy Algorithm and a Genetic
Algorithm in order to maximize the overall objective function which is subject to a set
of known constraints. This framework was verified by an experiment with 12 compo-
nents, 5 deployment hosts and 8 different services. They report the Genetic Algorithm
provided the best results, followed by the Greedy Algorithm and MINLP. In addition to
everything said, an important characteristic of this framework is that it can be used in
both run– and design– time.

Another, relatively generic framework is Sesame by Pimentel et. al. [88]. Sesame
provides a high level modeling and simulation methods and tools for efficient system–
level performance evaluation. Authors use a Y–chart2 design based methodology for
an early design space exploration. This framework includes the application models,
mapping model, performance model and performance result. The constraints are repre-
sented as functions, and the goal of the architecture optimization is to identify a set of
solutions which are superior in accordance to these functions. In their paper, authors fo-
cus on processing time, power consumption and total system cost, while the validation
is made using Sesame’s system level simulation environment which allows architectural
exploration at different abstraction levels. A case study for Motion–JPEG encoder is
made to clarify the model in detail.

The results of the previous work have shown that applying different optimization
strategies has an impact to the time necessary to obtain the solution and to the re-
sult quality. A good comparison of the optimization strategies for the similar context is
performed by Martens et. al. in their work presenting a hybrid approach for munlti–
attribute QoS optimization [70]. In their paper authors proposed a combined use of
analytical optimization techniques and evolutionary algorithms to efficiently identify a
significant set of design alternatives, from which an architecture that best fits the differ-

1QoS – quality of service, the overall performance of a service provided by a system, often used in the
context of telecommunication and networking

2It provides three perspectives on the system design, behavioral, structural and physical
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ent quality objectives can be selected. The model for their work is based on the Palladio
Component Model [8]. I uses input annotations for availability, cost and performance
to describe the input model attributes. The optimization proceeds in three steps. The
first step generates an initial candidate and a search problem formulation with consid-
eration to degrees of freedom (component allocation, server configuration and compo-
nent selection). In the second step, the solution is optimized using analytic techniques
resulting in the Pareto–optimal solution candidates derived by Mixed–Integer Linear
Programming (MILP). The third and final step uses the solution candidates obtained
by the analytic techniques and performs evolutionary optimization. With the described
model and procedure authors are able to predict system performance using SimuCom
simulations and PerOpteryx. This hybrid approach proved to be superior to analytic
optimization alone.

Predicting performance by applying the input parameters for the model has also
been a subject to previous research. Martens et. al. also published a framework for au-
tomatically improving software models through quantitative prediction of quality prop-
erties, such as performance, reliability, and cost [71]. Their approach is most suited
for composed based architecture (authors used Palladio) since such models encapsulate
the functionality and can be independently used. As such, they are easy to manipulate
with. The degrees of freedom in their paper were the processing speed, the number of
servers, the components allocation and the component selection. The optimization step
consisted of three steps. The first one was used to formulate the problem and derive a
initial candidate. The second step derives the best solution candidates through evolu-
tionary optimization while the third step presents the results. Candidate solutions are
Pareto–optimal and they represent the prediction of the performance of a future system.

A work by Islam et. al. focuses more on distributed embedded systems, software
component allocation, extra–functional requirements and both safety and non–safety
critical operations. Unlike previously mentioned related papers, this one concerns
specifically on mapping software components to hardware nodes with the goal to re-
duce error propagation [53]. Authors divide their problem in two stages, a) assigning
software components to suitable hardware nodes and b) scheduling software execution.
The assumption is that all the hardware nodes and software components can commu-
nicate with each other. To represent software components they used graph based ap-
proach, where the nodes represents software components which can be of two types,
safety critical components and non–safety critical components. Additionally, the soft-
ware components are subsequently decomposed in smaller units, i.e. jobs. The input
models proposed by Islam et. al. provides the fault model for both hardware and soft-
ware faults along with the constraints (binding constraints, dependability constraints,
computing constraints, communication and timing constraints), which are represented
by formal expressions. The suggested an 11 step algorithm which results with the map-
ping of software components onto hardware nodes uses the heuristic approach to obtain
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the solution. To introduce data structures for support of job ordering and node avail-
ability, authors use a similar matrix based expressions as is used in this thesis. The
presented algorithm guarantees the solution quality, reduces the search space and con-
sistently provides the same mapping over many runs and thus being robust.

A very similar work related to allocation of tasks rather than components was made
by El-Sayed et. al. Although the context is in borderline similarity to this research, the
methodology applied resembles the one used in this thesis. El-Sayed et. al. presented a
heuristic tool called Configuration Planner which determines the allocation and prior-
ity of processing tasks [33]. The input model of the software design can be in various
forms but authors used Message Sequence Charts to display scenarios and UML Collabo-
ration Diagram for describing object interactions. The model assumes a known resource
requirements (represented by formal expressions), and the goal is to satisfy time con-
straints for each represented scenario. The allocation is found by using MULTIFIT-COM
tool, which requires the knowledge of execution demand and communication overhead
for each task in each scenario. Using a set of weight function, MULTIFIT-COM com-
bines the execution cost and the communication cost to exploit the solution space and
provides the task ranking. Further steps of the algorithm improve the task allocation
until the algorithm is complete. The solution was verified using a statistical evalua-
tion which involved generating a large sample of randomly generated systems. Their
method succeeded in finding a feasible solution for more than 80% of samples tested,
and depending on the input sample size they managed to raise the utilization of the
CPU by 60–80% with 20–35 optimization iterations.

6.3 Software architecture physical footprint

The focus on the average power consumption presented in this thesis is mostly in-
spired by a currently growing trend in embedded systems, the cyber–physical theory.
This perspective, characterizes software by its physical properties, which are apparent
in its requirement and consumption of resources, e.g. time to execute, the power con-
sumed, the generated heat, etc. [89, 120].

For software architects this presents additional considerations in the software design
process. Component based software engineering facilitates techniques for expressing
these system characteristics in the form of extra–functional properties [26], based on
which software architects perform software design decisions.

A very important paper was made by Lee, in which he questions the fundamental
approach to computing today [62]. Lee argues that the mismatch between abstractions
for passage of time and concurrency of physical processes impede technical progress.
Additionally, Lee suggests several research directions to make embedded systems easier
to manage, control and predict. Lee calls for top–to–bottom rethinking of computation
in order to identify computing abstractions that currently present obstacles for future
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progress and which would span across multiple engineering disciplines, e.g. computer
science, mechanical and electrical engineering. The main research suggestions focus
on explicitly implementing timing in programming languages and embedding system
predictability on all design levels (memory, concurrency, networking, pipelining, etc),
etc.

Similar observations, about software leaving a physical footprint on the computing
hardware are the subject of several chapters in the Computers as Components: Princi-
ples of Embedded Computing System Design book by Wolf [121]. He points out the
power consumption as a particularly important design metric for battery–powered sys-
tems due to their limited lifetime. The power consumption can be optimized through
several techniques without any intervention into hardware, but rather by applying cer-
tain software design principles. In his IEEE Software special issue publication, as Lee,
Wolf calls for rethinking the design principles of embedded systems with consideration
to software’s physical footprint [120].

A research by Asano et al. reports that for image processing (2D filters), a GPU is by
far the best platform, followed by a CPU, but only for filters up to a certain size, beyond
which an FPGA surpasses both a CPU and a GPU [6]. However, the experiment results
by Pauwels et al., show that for the real–time image processing an FPGA is without
doubt the most suitable platform [86]. A comparison between a CPU and a GPU by
Lee et al., showed that the performance gap between these platforms is not different in
orders of magnitude as it is often considered [63].

For software architects this means that the current software models must support
multiple criteria. There are several papers that take into consideration software profiling
from the perspective of energy consumption [102], and a lot more from the perspective
of execution time [62, 114], however additional research in this area is required for
component based frameworks.
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CHAPTER 7

CONCLUSION

This is the final chapter of this thesis which presents a brief overview of all previous
chapters, emphasizes the research goals, answers the research questions and presents the
promising directions for future research.

7.1 Model of the heterogeneous platform

The research presented in this thesis introduces the mathematical model for the for-
mal description of a heterogeneous platform. This model, Mα contains the information
about the heterogeneous computing platform, the physical and the architecturally de-
fined constraints, the allocation function and the set of parameters necessary to make
a multi–criteria weighting function used for comparing the performance of different
software component allocations.

As such, the component allocation model Mα provides all the information necessary
to attribute each feasible allocation of software components onto a heterogeneous com-
puting platform (or homogeneous for that matter), with a number. This number enables
the comparison of different allocations. An allocation with the lowest non–zero weight
is also the best. The idea guiding the development of this model is to enable software
architects to use it in the early system design phase and provide them an insight into the
performance of a future system. Having this information, architectural decision making
is largely simplified.

The procedure in which a software architect can obtain the best allocation consists of
four steps:

I: define the heterogeneous platform H, obtain the information about resource re-
quirements and availability,

II: define the architectural constraints and (approximate / measure) the synergy ef-
fect trade–off array,

III: perform a pairwise resource comparison and calculate the resource importance
trade–off vector,
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IV: find an allocation α(a) such that it is the lowest non–zero solution of the cost

function w, i.e. min

(
w
(
α(a)

))
> 0.

The steps I-IV represent the framework for obtaining the (sub–) optimal allocation of
software components onto a heterogeneous computing platform.

7.2 Measurement of software allocation performance

The data collected in this research suggests that with the respect to the average
power consumption, the FPGA seems to be the best computing unit, followed by the
CPU and the GPU. The GPU is the most power hungry component, however it also has
the best data processing performance in respect with the average execution time. While
the FPGA was very efficient in that regard as well, the end–to–end measurement of the
average execution time increased its overall performance. With a SoC platform, having
all three computing units on the same bus, results would be different, and therefore,
claims stated in this research are platform specific, but the modeling and measurement
techniques are general and reusable.

Regardless of the measurement results, determining the best computing platform
proved to be very hard since the term best depends on the external circumstances, i.e.
requirements. The main question at hand is to determine the best allocation of software
components across different computing units to utilize the best aspects of all computing
units, having in mind that different decision parameters can have different importance
for different scenarios. Hence, it is this research suggests to use multi–criteria approach
with strong emphasis on various execution scenarios. It was shown that different sce-
narios can have different performance and that considering them, a software architect
can improve the architectural design of a system.

7.3 I-IV framework acceptability

Hypothesis H-1

The hypothesis H-1, states that the framework for comparison of individual soft-
ware component allocations correctly represents the system performance if the model
for the heterogeneous computing platform is substantially valid. In order to verify this
the following experiment was proposed: given a set of real world software compo-
nents, computing units and different execution scenarios, the performance predicted
by the component allocation model Mα should exactly match the performance of these
components in real world obtained by measurements. For that purpose, six different
software allocations were chosen which represent two different execution scenarios.
These allocations were evaluated by the weight function w of the component allocation
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model Mα and ranked by their performance. Then, these allocations were implemented
on a real–world platform and their performance was measured.

These six allocations were then ranked by the weight predicted by the component
allocation model Mα, and by the data obtained by measurement. The ranks were per-
fectly aligned, and the hypothesis H-1 was therefore accepted.

Hypothesis H-2

The hypothesis H-2 claims that, given a large number of software components and
computing units which results with a huge search space of possible allocations, the I-IV
framework finds an allocation which has significantly better performance than a random
allocation. To verify this statement, the hypothesis was tested in two steps.

The first step involved comparing the performance of sub–optimal allocations pro-
vided by the I-IV framework with performance of the optimal allocation. This is due
to the fact that for large search space, one cannot use the exhaustive search method,
and since a heuristic method needs to be used it is desirable to select the one which
provides the allocations with minimal performance offsets from the optimal one. The
I-IV framework does not define the optimization method, however its current imple-
mentation allows a software architect choose between the genetic algorithm (GA) and
the simulated annealing algorithm (SA).
The solutions of these approaches were verified by generating random parameters for
the Mα model, i.e. random heterogeneous computing platforms, and for each of these,
four different approaches were compared to obtain the best performing allocation, us-
ing: the exhaustive search (ES), the genetic algorithm (GA), the simulated annealing
(SA) and three randomly generating allocations (the best, the worst and the average
performing one) (RAND). The results have shown that the GA performed the best con-
sidering both the time it took to obtain the solution and its performance. From the
standpoint of performance, in the worst case, the allocation provided by the GA per-
formed 7% worse than the optimal one, and for the SA this was 13%. The allocations
obtained by the RAND were at best closest to optimal allocation with the difference of
3%, but only for a very small search space. For larger search spaces this raised up to
22%, while its poorest allocation performance was 355% worse than the optimal allo-
cation. On average it allocations generated by the RAND were performing 100% worse.
Given these results GA was accepted as a descent algorithm to provide allocations with
satisfying performance.

The second step involved verifying how do allocations obtained by the best per-
forming heuristic method compare to randomly generated allocations with huge search
spaces. More precisely, how would solutions generated by the GA compare to the best,
the worst and the average performing randomly generated allocation. For this experi-
ment, the search spaces were ranging between 1020 and 3070, for which the exhaustive
search is infeasible. The results have shown that in such search spaces the GA provides
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the best performing allocations in the least amount of processing time.
Given the results from both the first and the second step of the experiment, i.e. the

testing of the hypothesis H2, it is clearly shown that the allocations obtained by the I-IV
framework are significantly better than randomly generated allocations in a significant
number of case. Statistically it should happen that, given a large enough search space,
the RAND approach would produce at least one allocation which performs better than
the one generated by I-IV framework. However in 55 different configurations tested
here this did not occur and therefore, the hypothesis H-2 was accepted.

7.4 Research questions and research goals

The research conducted in this thesis was guided by three research goals and three
research questions which were met and answered in previous chapters, although all of
them were not explicitly emphasized. This subsection will emphasize the answers of the
research questions and the research goals.

Research goals

The first research goal (RG-1) was to develop a model capable of describing a het-
erogeneous computing platform, including both software components and computing
units of different types. This model could then be used to make performance predic-
tions in the early design phase of a computing system.The component allocation model
Mα presented in this research consists of a heterogeneous computing platform H which
includes both a set of software components C and a set of computing units U , along with
a set of resource constraints, a set of architectural constraints, trade-off vectors and a
weighting function. Using all of these constructs, the performance of any particular
allocation of software components across various computing units can be quantified.

Along with the component allocation model Mα, this thesis presents the I-IV frame-
work which is used to generate the (sub–)optimal software allocation by minimizing the
weight function w. This function is used to quantify and compare allocations in order to
find the one which has the minimal, non–zero weight through a set of predefined steps,
which was the second research goal (RG-2). The suggested I-IV allocation framework
defines four steps for obtaining the optimal allocation of software components, these in-
volve I) defining the heterogeneous platform and the resource constraints, II) defining
the architectural constraints and the synergy effect trade-off, III), performing a pairwise
resource comparison and IV) minimizing the weight function w.

However, the number of possible allocations, i.e. the solution space grows exponen-
tially by adding new software components to the model. Therefore, the manual search
is at best laborious, and in reality infeasible. Therefore, the third research goal RG-
3 suggested automating the I-IV framework with a software tool. Chapter 5 presents
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SCALL – a software component allocator tool which uses heuristic algorithms to gen-
erate software allocations. The allocations obtained by SCALL are sub–optimal but
acceptable, since the tool exploits a trade–off between the time necessary to obtain the
allocation and the predicted performance of an allocation. SCALL is deployed as an
Eclipse plug–in, with core algorithms developed in Python 3.5.

Research questions

The research question (RQ-1) asks how can one describe software components and
heterogeneous computing platform using the same model? Furthermore how can this
model represent communication separately from the processing parameters and how
can this model incorporate architectural constraints? – This research question was a
direct consequence of the first research goal. Therefore, the answer to this research
question is the mathematical model presented in chapter 3. This model separates the
processing performance parameters from the communication performance parameters
in two cost functions. These cost functions can be written as one equation by using
the AHP method for comparing phenomenons measured in different units. This single
equation becomes a weighting function used to compare individual software alloca-
tions. Besides that, the architectural constraints defined by the software architect are
incorporated in the model with matrices, array and constraint functions which describe
the relation between components and the hosting capabilities of computing units.

The second research question (RQ-2) deals with measuring performance and com-
munication intensity of particular software component allocated on a particular comput-
ing unit. The detailed answer is given in chapter 4. In short, the performance parame-
ters which are measured are the average power consumption and the average execution
time. Both of these are thoroughly measured for each software component allocated on
multiple different computing units. The results of these measurements generated 183
files with almost half a million rows of raw data. All the values were measured and ver-
ified to satisfy the statistical confidence interval of 95%. The measured values represent
the real–world performance of each software component allocated to each computing
unit (with some exceptions). As such, these values were used to verify the correctness,
i.e. the trustworthiness of the component allocation model Mα. Furthermore, since
the communication was not the main concern of the measurements of this thesis, it
does provide an answer on to how to quantify it. As for the performance, by using
specialized software tools like VisualVM and considering different execution scenarios,
one can measure the exact data delivery time, bandwidth usage and the communication
intensity by counting the number of calls to each of the components.

The final research question (RQ-3) deals with optimizing the software architecture
for which the full answer is provided in chapter 5. To obtain the optimal software alloca-
tion, four different methods were used and compared, 1) the exhaustive search, 2) the
genetic algorithm, 3) the simulated annealing and 4) randomly generating software al-
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locations. As expected, the exhaustive search provided the best performing allocations
in comparison to other methods, but since this approach is not applicable for larger
number of software components and computing units, other approaches were also con-
sidered. The genetic algorithm provided the best allocations in the means of the time
necessary to obtain it and its performance. In addition it has been shown that in the sig-
nificant number of occasions the proposed I-IV framework generates significantly better
allocations than any randomly generated allocations.

7.5 Future work

Although this is the concluding chapter of this thesis, the research related to this
subject is by no means complete, there are plenty of interesting research directions for
future researchers, in particular:

• communication minimization, a subject of many researchers, specifically in the au-
tomotive and aircraft industry. Minimizing the communication between different
components reduces vehicle wiring, consequently saving weight and reducing the
communication latency. Since this research does not focus on the communication
but merely considers it, it should be investigated in future.

• research into heuristics, it was shown that the allocations generated by heuristic
approaches are trustworthy and perform better than randomly generated ones.
However, during the verification the parameters of both approaches, (the genetic
algorithm and the simulated annealing) were not tweaked to improve their per-
formance. Therefore, it is possible that these approaches can be further improved
to provide even better allocations in less time. Since for large number of software
components and computing units the time necessary to obtain the result grows, it
would be interesting to obtain allocations in the least possible amount of time to
appeal for larger systems (e.g. cloud, docker).

• dynamic systems, the I-IV framework was designed for static analysis of a system
int its early design phase, however some scenarios require fast, i.e. dynamic adap-
tations of the software architecture depending on the environmental changes. The
future research should consider such scenarios, upgrade and verify the I-IV frame-
work for dynamic software configuration.

• improve FPGA component design, due to the lack of available IP cores, this research
focused more on software components for CPUs and GPUs. The rapid development
of FPGA programming models and their recent integration into widely available
computing environments will soon enough make FPGAs an essential part of any
embedded computer. This has been seen with GPUs, so sooner or later it will hap-
pen with FPGAs. This puts forward the question of who gets to decide where does
the software get to be executed? – While this research suggests the framework
for architectural decision making, future research should consider more software
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components which are truly independent of the computing environment and ver-
ify how good of an allocation can the I-IV framework produce.

• improve SCALL and make it web oriented, at this point SCALL is developed in
Python, Eclipse and it is partially generated from the EMF model to conform to
the development preferences of the modeling community. Since its main decision
making algorithm (PyAllocator) is made entirely in Python and also completely
decoupled from the visual representation of the model, in future it should be web
oriented. A web application would provide better accessibility among software ar-
chitect practitioners, where they would have a better chance to provide feedback.
This would also make the tool completely platform independent.

• consider different scenarios, although I-IV framework was verified on a heteroge-
neous platform of a robot, it is in no way bounded purely to embedded systems.
One of the major interests for its future development is to apply it to other scenar-
ios, e.g. docker allocation, hardware–software codesign, integration with existing
component models, etc.

• lessons from cyber–physical theory, this research, as did ones before it related to
cyber–physical computing, shows that a software has its own physical footprint. In
future investigation it would be interesting to find out to what end can a software
allocation, architecture and architectural style influence the physical parameters
of the embedded systems, mainly focusing on the energy consumption.

— EOF —
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