
Markovljev proces odlučivanja i njegova primjena u
kontekstu računalnih igara

Cerovec, Sven

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:794402

Rights / Prava: Attribution-NonCommercial 3.0 Unported / Imenovanje-Nekomercijalno 3.0

Download date / Datum preuzimanja: 2024-12-31

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:794402
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:6844
https://repozitorij.unizg.hr/islandora/object/foi:6844
https://dabar.srce.hr/islandora/object/foi:6844

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

VARAŽDIN

Sven Cerovec

MARKOV DECISION PROCESS AND ITS
APPLICATION IN THE CONTEXT OF

COMPUTER GAMES

BACHELOR’S THESIS

Varaždin, 2021

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

V A R A Ž D I N

Sven Cerovec

Student ID: 0016136668

Programme: Information Systems

MARKOV DECISION PROCESS AND ITS APPLICATION IN THE
CONTEXT OF COMPUTER GAMES

BACHELOR’S THESIS

Mentor:

Bogdan Okreša Ðurić, PhD

Varaždin, September 2021

Sven Cerovec

Statement of Authenticity

Hereby I state that this document, my Bachelor’s Thesis, is authentic, authored by me, and
that, for the purposes of writing it, I have not used any sources other than those stated in this
thesis. Ethically adequate and acceptable methods and techniques were used while preparing
and writing this thesis.

The author acknowledges the above by accepting the statement in FOI Radovi online system.

i

Abstract

Creating programs that play games has been around for some time, a while back programmers
were competing to create a program that plays chess perfectly, and they are still refining these
programs today. Classic games like chess are not the only games being affected, with the
increase in popularity of online games, arose a growing interest in gaming artificial intelligence.
Using information and programs made by other people on the internet I built my own that plays
the most popular game in the last decade; League of Legends. What helped make this program
was theory on Markov decision processes which have been used to solve real world problems
in the past. My findings confirmed that with the use of a Markov decision process model for the
creation of my artificial intelligence, it greatly improved the logic behind the bot I was creating.

Keywords: artificial intelligence, Markov chain, Markov decision process, League of Legends,
gaming, stochastic game, bot

ii

Table of Contents

1. Introduction . 1

2. Methods and work techniques . 2

3. Topic Elaboration . 3

3.1. Artificial Intelligence . 3

3.1.1. The umbrella term ‘Artificial intelligence’ 3

3.1.2. Talking mechanical handmaidens (A brief history of AI) 4

3.1.3. Virtual assistants, autonomous robotic vacuum cleaners and self-driving
cars . 6

3.2. Markov Decision Process . 7
3.2.1. Introduction to Markov chains . 7
3.2.2. Markov decision processes . 9

3.2.3. Markov Decision Processes and Artificial Intelligence 10

3.3. League of Legends . 11

3.3.1. The biggest Esport of all time . 11

3.3.2. League of Legends and me . 12

3.3.3. Welcome to Summoner’s Rift . 13
3.3.4. League of Bots . 16

3.4. S.A.M.F.I.E. (Smart Artificial Miss Fortune Intelligence Emulator) 17

3.4.1. Miss Fortune . 17
3.4.2. The first version . 20
3.4.3. Applying a Markov Decision Process model to S.A.M.F.I.E. 21

3.4.4. Testing and issues . 27

4. Conclusion . 29

Bibliography . 31

List of Figures . 32

List of Listings . 33

1. Code of ’main.py’ . 35

2. Code of ’vision.py’ . 44

3. Code of ’windowcapture.py’ . 45

iii

1. Introduction

When IBMs supercomputer Deep Blue defeated Russian grandmaster Gary Kasparov
back in 1997 in a gentleman’s game of chess everyone was dumbfounded, at the time it was
believed it would take decades for a computer to accomplish a feat as impressive as beating
the world champion of chess. But if artificial intelligence could conquer the best of us it could
conquer all of us, and so the topic of hostile AI had been made relevant once again.

The term artificial intelligence or the more commonly used acronym AI was coined in
1956 when the search for a solution to intelligence began, but many approached the problem
cautiously and questioned what would happen if AI would turn against us, if everything went
wrong. The idea of a post-apocalyptic future ruled by AI was born long before Deep Blue, in
1984 AI was all the rave with the release of the science fiction action film The Terminator.

Today, AI is a common conversation starter thanks to SpaceX owner and Tesla CEO
Elon Musk repeatedly warning us that AI would soon become just as smart as humans, the
main culprit being DeepMind, a research lab best known for developing AI systems that ‘crush
all humans at all games’. Before AI can go about exterminating all human life it first must learn
how to play League of Legends, a modern game and a mainstay Esport of the 21st century
gaming zeitgeist.

This paper will focus on a theoretical breakdown and explanation of Markov chains, how
they are intertwined with AI sciences and my work on a simple League of Legends AI system
that applies Markov chains, although I won’t be pitting it against the world champions in League
of Legends.

1

2. Methods and work techniques

For this paper I have gathered information mostly online trough services like Google
Scholar and Wikipedia. I have also used my own experiences and observations about the topic
in hopes of elevating it.

To develop the AI system for League of Legends I used Python, a programming lan-
guage that includes a module used to control mouse and keyboard inputs called PyAutoGUI,
another library I used was OpenCV, which is an advanced version of PyAutoGUI that is used
for object detection in images.

The most useful information always came from watching videos on YouTube, specifically
the YouTube channel ’Learn Code By Gaming’ [1] and their video series ’How To Bot with
OpenCV’. A chunk of the code I made regarding object detection is a modified version of theirs.
About PyAutoGUI, making bots and Python code in general I learned from the YouTube channel
Kian Brose [2] and their series on making bots for different games.

Testing the bot I made was as simple as running a game and the bot at the same time.
It went trough different test phases, such as testing if the bot can do a specific thing I wanted
it to, or at the end seeing if the bot could win a game against other bots all on it’s own, which
was the final goal I set for the bot to achieve.

Testing against human opponents wasn’t as successful, because the bot is using image
processing to detect what is happening on screen, it isn’t as fast as a human at reaction speeds.
Human opponents were quick to figure out the bot’s drawbacks and negatives, they were able
to abuse them and get advantages. I never intended the bot to win against a human, so this
didn’t come as a surprise.

To create and edit this paper in the LaTeX system of document preparation I used an
online cloud-based service called Overleaf, in a template designed to help create scientific
works for the Faculty of Organisation and Informatics provided by my mentor Bogdan Okreša
Ðurić.

2

3. Topic Elaboration

I have divided this paper into 4 chapters. The first is about artificial intelligence, it’s
definition, history and modern application. The second chapter is an introduction to the Markov
decision process. The third is about League of Legends in general, the game I built an AI
system for, the AI system that is the topic of the fourth and final chapter.

3.1. Artificial Intelligence

What is artificial intelligence? How did it come to be? What can we do with it? These
questions will be the topic of this chapter. I would find it hard to believe if you told me you haven’t
heard of the term ’artificial intelligence’ before, as it is an ever-present buzzword occasionally
popping up on social media and in news articles. Nevertheless, let’s first look at how to define
artificial intelligence, before moving on to other the questions in need of answering.

3.1.1. The umbrella term ‘Artificial intelligence’

Artificial intelligence (AI) refers to the simulation of human intelligence in machines that
are programmed to think like humans and mimic their actions. [3] AI can also be thought
of as a branch of computer science concerned with building smart machines capable of per-
forming tasks that typically require human intelligence. [4] To the question ‘What is artificial
intelligence?’ John McCarthy of Stanford University [5], a founder of the discipline of artificial
intelligence answers with: "It is the science and engineering of making intelligent machines,
especially intelligent computer programs. It is related to the similar task of using computers
to understand human intelligence, but AI does not have to confine itself to methods that are
biologically observable."

What even is intelligence? Oxford Dictionary [6] defines intelligence as "the ability to
acquire and apply knowledge and skills as well as to learn, understand and think in a logical
way about things". According to McCarthy varying kinds and degrees of intelligence occur
in people, many animals and some machines, but at what point can a machine be deemed
intelligent?

Human intelligence is often assessed with an intelligence quotient, a score derived from
a test that measures the ratio of the age at which a person normally makes a certain score to the
person’s actual age. You can certainly make a machine that solves IQ tests, but that machine
wouldn’t be very useful in other ways meaning IQ test can’t really be applied to AI. As of today,
we don’t really know how to assess whether or not something embodies artificial intelligence
and benchmarks that a machine would need to pass to be deemed AI change day by day as
technology advances. Machines and programs that were considered intelligent 10 years ago
are being disregarded today as inherent computer functions.

One way to distinguish between AI and non-AI is the Turing test named after English
scientist Alan Turing considered by many to be the father of AI. To Turing the question of whether

3

a machine can think is meaningless, he proposes a somewhat related question of whether a
machine can do well in game he called the Imitation Game. What follows is an explanation of
’The Imitation Game’.

"Suppose that we have a person, a machine, and an interrogator. The interrogator
is in a room separated from the other person and the machine. The object of the
game is for the interrogator to determine which of the other two is the person, and
which is the machine. The interrogator knows the other person and the machine by
the labels ‘X’ and ‘Y’ and at the end of the game says either ‘X is the person and Y is
the machine’ or ‘X is the machine and Y is the person’. The interrogator is allowed
to put questions to the person and the machine of the following kind: “Will X please
tell me whether X plays chess?” Whichever of the machine and the other person
is X must answer questions that are addressed to X. The goal of the machine is to
try to cause the interrogator to mistakenly conclude that the machine is the other
person; the goal of the other person is to try to help the interrogator to correctly
identify the machine." [7, ch. 1]

In recent years there have been computer programs capable of deceiving interrogators
in five minutes of questioning, none of them are convincing enough for what Turing envisioned
we would have, in fact it is safe to say Turing would be fairly disappointed as he predicted in
1950 [7] that in fifty years from the time of his writing, it will be possible to program computers
to play the imitation game so well that an average interrogator will have no more than a seventy
percent chance of making the right identification. Although we might need 50 more years to
have a convincing candidate that Turing would approve of, we are slowly getting there and might
soon be facing a breakthrough in AI sciences.

The Turing test is the most popular, but not the only test proposed for declaring if some-
thing can be considered artificial intelligence. Research on the measurement of intelligence
has been done and is still being done by the day because intelligence as of yet has not been
solved.

3.1.2. Talking mechanical handmaidens (A brief history of AI)

The idea of an inanimate object mimicking human behaviour is not only relevant today
but it is also an idea discussed by ancient Greek philosophers whose god Hephaestus was said
to have built talking mechanical handmaidens out of pure gold. Talking mechanical handmaid-
ens aren’t exclusively built by gods, people have also been creating robots for a while now, from
Egyptian statues with moving heads to factory machines and industrial robots to AI robots we
have today. Automating things is something we’ve been troubled with for the last few centuries,
and what better way to automate things than create a thing that automates things for you, hence
our obsession with artificial intelligence.

In the 1940s advances in psychology and our understanding of neural networks along-
side the rise of computers paved the way for the 1950s boom in AI technology. In 1950 Alan

4

Turing published his ’Computer Machinery and Intelligence’ which included the aforementioned
Turing Test, Claude Shannon published the paper ’Programming a Computer for Playing Chess’
and Isaac Asimov published the ’Three laws of robotics’. The phrase artificial intelligence was
first coined in 1956 at the "Dartmouth Summer Research Project on Artificial Intelligence". Led
by John McCarthy, the conference, which defined the scope and goals of AI, is widely consid-
ered to be the birth of artificial intelligence as we know it today. McCarthy would later go on to
establish the AI lab at Stanford in 1963. [4]

The expectations during the 1970s were too high for AI to achieve, research was being
backed by national governments and many believed we were on the verge of a breakthrough.
One of them was Marvin Minsky, co-founder of the MIT Artificial Intelligence Project alongside
McCarthy, who in 1970 told Life Magazine, “from three to eight years we will have a machine
with the general intelligence of an average human being.” It would soon be revealed that there
wasn’t enough computational power for a machine to even remotely exhibit intelligence. Frus-
tration with the progress of AI development (or lack thereof) dwindled the funds of academic
research. The period from 1974 to 1980 would henceforth be known as the First AI Winter. [8]

The term expert systems was introduced to the industry in the 1980s . An expert system
would learn how to respond to virtually every situation in a field from a human expert. Amateurs
and newcomers to a field could learn from these systems, it was in it’s essence an educational
tool. The Japanese government invested 400 million dollars into these systems as part of their
Fifth Generation Computer Project, but most of their goals were not met, AI once again fell out
of the limelight. [8]

In the 1990s and 2000s many of the goals had been achieved despite AI research
receiving less funding and publicity. In 1997 Gary Kasparov was defeated by Deep Blue, the
same year speech recognition software was implemented on the Windows Operating System.

The Chinese game called Go is a two player strategy board game in which the objective
is to capture more territory than the opponent, but compared to chess it is considerably more
complex and therefore harder to play for people as well as AI. The complexity of the ancient
game was seen as a major hurdle to clear for AI, but in 2016 for the first time Alpha Go, a
computer program developed by DeepMind won against world champion Lee Sedol. Later at
the 2017 Future of Go Summit AlphaGo beat Ke Jie, the number one ranked player in Go at
the time. [8] [4]

Programs that play games on their own are a hot topic in the E-sport community, as
of yet there aren’t any programs or more commonly known as bots (short for robot) that could
convincingly beat world champions in any single MOBA (Multiplayer online battle arena) but
things could change rapidly for the casual player for the worse. More on bots and how they
affect the gaming industry in a later chapter.

5

3.1.3. Virtual assistants, autonomous robotic vacuum cleaners and
self-driving cars

A beautiful morning. I get out of bed as my automated curtains slowly start raising,
letting in only a fraction of sunlight at a time. As I’m walking down the hallway to the kitchen,
the room temperature slightly increases with each step.

‘Good morning Alexa’ I say, after a short yawn.

‘Good morning. How was your sleep?’ asks Alexa with morbid curiosity in her voice
before patiently awaiting my answer.

‘It was okay.’ I reply. ‘I’ll get some more sleep in the Tesla.’

As I’m getting a beverage from my Samsung smart fridge, I feel a rigid object hitting my
ankle. It’s my Roomba. I stare wide-eyed at it persistently trying to get past my feet when I
realized my eyes hadn’t been opened wide, they were closed this entire time. I wake up in my
room, with no virtual assistant, no autonomous robotic vacuum cleaner and no self-driving car.
I sigh in utter disappointment.

Today, AI is everywhere. AI is in our computers, phones, cars, watches, fridges, doors,
stove tops, microwaves, supermarkets, cinemas. It is a prevalent topic in sciences such as
information technologies, psychology, ethics, philosophy, robotics and so on. We can apply
AI to just about anything. Although most of us are yet to own a Roomba, a smart home is
not that far from being the standard in the 1st world. AI is not exclusively a privilege of the
wealthy, according to David Mhlanga’s research [9] because the way AI technology is changing
education, agriculture and data collection in general it is also having a positive influence on
poverty reduction.

The first "robot citizen", a humanoid robot named [4] was created in 2016 by Hanson
Robotics and is capable of facial recognition, verbal communication and facial expression. In
2021 Tesla announced the development of what they [10] describe as "a general purpose, bi-
pedal, humanoid robot capable of performing tasks that are unsafe, repetitive or boring". It
seems that not only do we want something to think like us, we also want it to look like us.

Language recognition and translation has always been one of the main drives of AI
research. Any modern phone has speech recognition and controls for situations where you
would rather control your phone with speech instead of holding it in your hands. BERT was re-
leased in 2018 by Google, it is a natural language processing engine that achieved outstanding
performance on a number of standardised language understanding tasks.[4]

Self-driving cars are a benchmark yet to be perfected and fully utilised. Self-driving cars
use a variety of sensors to move safely, avoid obstacles and recognise relevant road signs with
very little or no human input. Waymo launched its Waymo One service in 2018, offering people
in Phoenix, Arizona rides trough the city in their autonomous vehicles. A handful of companies
have been given the green light to use self-driving cars for their operations and even racing
events and series have been launched for driverless cars.[4] [11]

Since the conception of COVID-19, AI has been used to fight the pandemic by speeding

6

up genome sequencing, making faster diagnoses, carrying out scanner analyses and occasion-
ally handling maintenance and delivery robots, with China being the main investor in these AI
technologies. [12] Baidu released it’s LinearFold AI algorithm [4] to vaccine developing teams
during the early stages of the pandemic. The algorithm was built for predicting the RNA se-
quence of the virus and it does so in seconds.

3.2. Markov Decision Process

Markov decision processes have been used to solve real world problems with AI, this
chapter talks about Markov chains, Markov decision processes and stochastic games.

3.2.1. Introduction to Markov chains

To explain what a Markov chain is, we first have to look at a certain type of process
called a Markov process. A Markov process has no memory of it’s past state, it’s past state is
irrelevant to what state the process will be in next. The current state of a Markov process is the
only information that influences where the process is going to go, this property is commonly
known as the Markov property. A Markov chain is the case of a Markov process having a
countable set of possible states. [13]

Figure 1: The drunkard problem [14]

Let’s first look at a more trivial example of a Markov chain, it is the problem of a drunkard
standing between two pubs [14], ’The Markov Chain’ and ’The Source and Sink’ as shown on
figure 1. The drunkard either moves 10 meters towards ’The Markov Chain’ with probability 1

2 or
he moves 10 meters towards ’The Source and Sink’ with probability 1

3 . He can also stay where
he is with the remaining probability of 1

6 . This random movement of the drunkard depicted
trough probabilities is called a one-dimensional random walk. We assume that once he arrives
at a pub the movement is done, we also assume that the pubs are 50 meters apart and that
the drunkard is initially standing 30 meters from ’The Markov Chain’ and 20 meters from ’The
Source and Sink’. As indicated on figure 1 the places he can stop by are E1, ..., E6, we can
think of these positions as states. The drunkard’s initial position can be described as the vector
(0, 0, 0, 1, 0, 0). After one move the probabilities of his position give us the vector (0, 0, 12 ,

1
6 ,

1
3 , 0),

after two moves the vector (0, 14 ,
1
6 ,

13
36 ,

1
9 ,

1
9). In our problem states E1 and E6 are considered

persistent states as the process is done after arriving at them. The other states are considered

7

transient because we would still move after arriving at these states.

Figure 2: An example of a Markov chain [15]

Let’s move on to Markov chains depicted on a simple graph. On figure 1 we can see
two states: A and E. When on state A, we could stay on state A or move to state E, indicated
by arrows. We have a sixty percent chance to stay on A, as indicated on the arrow originating
on A and looping back to it. We have a forty percent chance to move from state A to state E as
indicated on the arrow originating in A and pointing to E. We would have the same information
without the arrows looping into the same state because the sum of the values on the arrows
has to be equal to 1. For the purpose of demonstration these arrows have been kept, but we
usually would not indicate them as they are already implied.

Figure 3: Discrete time Markov chain with closed classes [13]

8

Figure 2 represents what is called a discrete time Markov chain [13]. In this type of
Markov chain, time it takes to move from one state to another is irrelevant, what is relevant is
the probability of jumping from one state to another. Let’s look at another example of a discrete
time Markov chain.

On figure 3 we have a Markov chain with states indicated by numbers one trough six,
it also doesn’t include the loops to the same state which are implied. What we can notice that
after moving from the starting point which is state 0, we would have no way to return back to
state 0 as neither state 1 or state 4 have arrows pointing back to state 0. This is what is called
a closed class or in other words a class that you can’t escape. There are three classes in this
example: {0},{1, 2, 3} and {4, 5, 6}, and the closed classes in this case would be {1, 2, 3} and
{4, 5, 6}. In these examples the closed classes are also recurrent, which means you move to
each state, returning again and again to every state. Class {4, 5, 6} is periodic as it always
goes in this order: 4 -> 5 -> 6 and returns back to state 4. [13]

Figure 4 shows a different type of Markov Chain called a continuous time Markov chain
[15]. In a continuous time chain the process makes a transition after the amount of time speci-
fied by the holding time — an exponential random variable, as opposed to a discrete time chain
where moving states is taken in time steps.

Figure 4: Continuous time Markov chain [13]

3.2.2. Markov decision processes

The Markov decision process expands what was defined with Markov chains as it satis-
fies the Markov property; what matters when moving states is only the current state. It is used
to model decision making where the outcome is partly random and partly under the control of
a decision maker. A Markov decision process contains the following [16]:

• A set of possible world states S,

• A set of possible actions A,

• A real valued reward function R(s,a).

9

The following text is an excerpt from page 10 of Jerzy Filar’s and Koos Vierzes book
’Competitive Markov Decision Processes’ that describes these three characteristics.

"We shall consider a process P that is observed at discrete time points t = 0, 1, 2, 3, ...

that will sometimes be called stages. At each time point t, the state of the process
will be denoted by Se. We shall assume that St is a random variable that can take
on values from the finite set S = {1, 2, ..., N} which from now on will be called the
state space. The phrase "the process is in state s at time t" will be synonymous with
the event St = s. We shall assume that the process is controlled by a controller or
a decision-maker who chooses an action a ∈ A(8) = {1, 2, ...,m(s)} at time t if the
process is in state s at that time. We may regard the action chosen as a realization
of a random variable At denoting the controller’s choice at time t. Furthermore, we
shall assume that the choice of a ∈ A(s) in state s results in an immediate reward
or output r(s, a), and in a probabilistic transition to a new state s′ ∈ S." [17]

The difference between a Markov decision process and a Markov chain is the addition
of actions and rewards. Actions allow the decision maker to make a choice what to do next,
rewarding them with the appropriate reward after changing states. If each state would have only
one action and the reward for making each action was the same, a Markov decision process
would reduce to a Markov chain. [16]

Markov decision processes are closely tied to stochastic games. According to Eilon
Solan a stochastic game "is played by a set of players. In each stage of the game, the play is
in a given state, taken from a set of states, and every player chooses an action from a set of
available actions. The collection of actions that the players choose, together with the current
state, determine the stage payoff that each player receives, as well as a probability distribution
according to which the new state that the play will visit." [18] Sounds familiar? Stochastic games
extend Markov decision process’ with competitive situations where more than one decision
maker is involved. It may not sound like it, but many of the games we play today on computers
and phones could be considered stochastic or at the very least to have stochastic properties.
For example, chess is the most commonly known stochastic game in the world.

3.2.3. Markov Decision Processes and Artificial Intelligence

Markov decision processes and stochastic games were initially used to model real-life
situations that arise in economics, political science, operation research and so on. Analysing
the game modeled after these situations can provide with crucial and decisive predictions and
recommended strategies.

Overexploitation means to harvest a renewable resource by multiple parties to the point
of diminishing returns, in economics the overexploitation of a common resource between two
or more parties is reffered to as ’the tragedy of the commons’. Solan and Vieille [18] men-
tion an example of a fishery war between two countries. Fish would thrive without unnatural
intervention, but the two countries were depleting the population of fish, it was approaching a

10

point where the fish would no longer be able to reproduce fast enough and would slowly die
out. In any given area the amount of fish living there can be considered a state in terms of
a Markov decision process. The countries can determine how many fish the fishermen can
catch, this would be considered an action. If the countries cooperate, they would be rewarded
with a larger population of fish and therefore a long-lasting food resource. This example has
extensively been analysed and studied as a stochastic game as it has a clear definition of
state-space, actions, rewards and it has two players.

Another example Solan and Vieille [18] mention is that of market games with money,
namely a problem regarding inflation. Inflation is the rate at which a cost of something in-
creases, typically the cost of living in a country. Study has been done on the origin of inflation
trough a stochastic game model. At every stage of the game, each player or so called agent
receives a random endowment of a perishable commodity. The agents then decide how much
they want to lend to or borrow from the central bank and after the transaction they consume
the amount of the commodity that they have. The conclusion of analysing this game was that
to make inflation appear it is enough to have uncertainty regarding the random endowments at
the start of each stage.

When dealing with a patient, healthcare workers have to make a decision from a myriad
of different treatment options taking into account every bit of information they can, pertaining
to their patient. Casey C. Bennett and Kris Hauser [19] approached making an AI framework
that ’thinks like a doctor’. A computer is able to process large streams of information at once,
something that humans can’t do so well which is extremely useful for doctors when having to
deal with a lot of patients at once, especially during the COVID-19 pandemic. Bennet’s and
Hauser’s approach used Markov decision process’ as a foundation, each patient has their own
state, needs an assigned action performed and the reward for the decision maker, in this case
the AI, would be helping a patient heal fully or at the very least reach better state. The results
of this research demonstrated that this approach worked and that such an AI would reduce the
costs of treatment and increase in the quality of choice of patient treatments.

3.3. League of Legends

Video games have dominated the entertainment industry for the last two decades, es-
pecially competitive multiplayer games. From the bunch of games spawned in the 2000s one
thrived and stayed on top of the industry since 2009. Let’s take a look at the biggest Esport of
all time.

3.3.1. The biggest Esport of all time

League of Legends, also reffered to as League or just LoL, is a MOBA (Multiplayer
Online Battle Arena) developed by Riot Games and publised in 2009 [20]. In a game of League
two teams of five players battle it out to try and push trough the enemy base and destroy their
nexus, a structure located inside the base which when destroyed, much like a check mate, ends
the game and secures the victory. With low system requirements, availability and it’s free-to-

11

play trait it has become not only the most played game in the world but also the most played
Esport. 115 million people play the game in 2021 on a monthly basis, statistically it has at least
one game started per second. [21]

Just as the Romans were inspired by ancient Greece, so were the founders of Riot
Games, Brandon Beck and Mark Merill, inspired by a game mode for Warcraft III: Reign of
Chaos. Warcraft III is a fantasy strategy game developed by Blizzard Entertainment, today
Blizzard is Riot’s competitor. Beck and Merill had an idea for a spiritual successor to one of
the game’s modes, called Defense of the Ancients (DotA), and just like the Romans, not only
were they inspired, but they also refined the defining characteristics of their predecessors. They
wanted to make a standalone game that would be supported over a longer period and one that
didn’t hold a price tag, so they hired people involved with DotA and went on to design League
of Legends. [20] [22]

League of Legends was released in North America on October 27, 2009 instantly re-
ceiving praise and gaining popularity and player numbers, so much that in 2011 the first World
Championship, or Worlds for short, was held at Dreamhack with a 100 000 USD prize pool.
From then, it would only get more viewers, players and the prize pool each year was getting
larger.

On League’s viewership and franchising Wikipedia writes:

"Online viewership and in-person attendance for the game’s esports events out-
performed those of the National Basketball Association, the World Series, and the
Stanley Cup in 2016. For the 2019 and 2020 League of Legends World Cham-
pionship finals, Riot Games reported 44 and 45 peak million concurrent viewers
respectively. Harvard Business Review said that League of Legends epitomized the
birth of the esports industry. As of April 2021, Riot Games operates 12 regional
leagues internationally, four of which – China, Europe, Korea, and North America
– have franchised systems. League games are typically livestreamed on platforms
such as Twitch and YouTube. The company sells streaming rights to the game; the
North American league play-off is broadcast on cable television by sports network
ESPN." [20]

3.3.2. League of Legends and me

Like most things in the entertainment industry, I heard about League through a friend.
I was eleven years old when I played my first game and for the last ten years I’ve been infat-
uated with it. Having played chess throughout middle school, the combination of strategy and
competitiveness was something that instantly caught my attention, but unlike chess League
had colourful graphics, fantasy and was played using a computer instead of an old-fashioned
wooden board and pieces. It was at a time when League was only starting it’s long rise to the
top of the gaming industry but all of my friends had already been playing it and we would plan
weekend nights to play together. I was at the top of my class in middle school with only a few
A’s out of reach from becoming a straight A student, but I wasn’t very good at League just yet.

12

Freshman year of high school didn’t bring many changes, my class was comprised of
mostly girls and out of the six boys four of us played League. This game brought us together,
during recess we would talk about the different combinations of characters, tactics and play
styles. During the coming years I would study less and play more, my grades were dropping to
mostly B-s but my League skills were slowly increasing. Motivation stemmed mostly from pure
competition but our high school was holding a League tournament at the end of each year, we
didn’t win a single one but it was always something to look forward to. In the final year of high
school I was able to reach the top 200 players on the smaller of two European servers and by
sheer chance I got noticed by a few top ranked players in my region in Croatia.

We formed our own team and started playing in amateur leagues and tournaments,
we were getting good enough to hold our ground against even the best teams in the Balkan
region. Somewhere along the way we lost the will to continue playing and would soon part ways.
University came along, it was holding it’s own League tournament and once again somehow I
found myself playing competitively for the Faculty of Organization and Informatics League team.
This time, we were consistently winning the university tournament which lead to a dean’s award
in sports despite many not considering Esport to be a real sport.

Gaming addiction is a real issue, but for me playing League was always something I did
and if I wasn’t doing it I would be doing something similar. To get good at something you have
to practice it, and to stay good you have to practice regularly. I don’t regret my time playing
League but too often I’ve been told that I am either wasting my life or that I was addicted
to it. League taught me skills that transcend the gaming world, to win the most games you
sometimes have to calm somebody on your team down trough only chat messages, your mind
and body should be in good condition if you want the highest chance of winning, starting a
game usually means committing anywhere from twenty minutes to an hour of free undisturbed
time and above all that you have to make many small calculations in a short amount of time
and react quickly to what is happening on the screen. It has become increasingly important to
fight gaming addiction in children and in some adults, it is also important to distinguish between
addiction and commitment to a hobby. Playing video games all day hurts the body especially
the sitting and staring at the screen part, so it is essential to take breaks and to exercise. It was
obvious to me even as a kid that I would at some point either have to address these issues or
face them and luckily I addressed them fairly quickly.

Using my knowledge about the game I have created a program using the programming
language Python that plays League, my own League of Legends bot. The difference between
League and games like chess and Go is that in League you have to not only make a good
decision you also have to react to what is happening in game, there is also no taking turns but
you have to constantly change what you’re doing according to all the given information.

3.3.3. Welcome to Summoner’s Rift

The flagship game mode in League of Legends is played on a square map called Sum-
moner’s Rift. The map is split diagonally so that on the bottom left is one team’s territory, or the
blue side and in the top right is the other team’s territory, or the red side. Because the map is

13

symmetrical there is no important difference that would tip the scales in favor of one side, but
there are minor differences. The map contains three lanes, two of the three follow the edge of
the map and are known as the top and bottom lane. The third lane is the fastest way from one
base to the other and follows the second diagonal, it is known as the middle lane. The areas
between the lanes are under one name called the jungle.

Figure 5: Layout of Summoner’s Rift; source: [20]

Each team consists of five players, each controlling a unique character called a cham-
pion. There are more than a hundred different champions in League, all with different abilities
and effects. Champions usually have two main resources. One is standard across all champi-
ons and it is referred to as HP (short for hit points) or just health. When a champion’s health
reaches zero they die and a short amount of time has to pass before the player can use them
again. This reappearance effect after dying is commonly known in video games as respawning.
The other resource depends on the design of the champion, but the most common one is mana.
Mana is used to cast abilities, when you’re out of mana you don’t die, but you can’t cast any
abilities. Both health and mana can be refilled at the corner of the allied base called the fountain
where you initially start the game from and where all allied champions respawn. Champions
passively also regenerate a small amount of health and mana wherever they are, although it is
not enough to be able to stay on the map without returning to the fountain indefinitely.

All champions start the game at level 1. Champions get stronger by leveling up which
they achieve trough experience points, or XP for short. Level 18 is the maximum a champion
can be. XP is gained trough a few ways, the first of which is killing enemy champions. The
second way is by being around minions when they die, dealing the killing blow to a minion is not
required to get XP but that will come into play later. Minions are computer controlled units that
spawn in waves and walk down each of the lanes towards the enemy base until they meet and
attack enemy minions, structures or champions along their path. Minions have health and just
like champions will die if it reaches zero. The third way of getting XP is by killing monsters also
known as neutral camps inside the jungle. Neutral camps respawn at designated locations on

14

the map after a set amount of time. There are also two neutral objectives; Baron Nashor and
Dragon. These objectives take longer to kill but are worth the effort because of their impactful
rewards.

Figure 6: Minions fighting in the middle lane; source: [23]

Another important aspect of League is gold. All players get some gold at the start of the
game, and generate a small amount per second. Like XP, gold is gained trough killing enemy
champions and neutral camps but you can also gain gold from destroying enemy structures.
Minions also give gold but only upon dealing the killing blow, unlike XP for which you only need
to be in close proximity. Gold can be used to buy items in the store, which is located next to
each fountain. Items, when purchased, stay in your inventory and are an effective way to power
up your champion, a champion’s strength inside a game is usually approximated by looking at
their level and the items they have purchased.

Three types of structures exist in League: turrets, inhibitors and the nexus. There are
eleven turrets on each side of the map, represented on Figure 1 as small circles, there are
two turrets defending each nexus. Turrets target enemy minions and champions with a hard
hitting periodic attack and are stronger than champions for the entirety of the game, therefore
they need to be taken down with the help of minions, your own turrets can be used for safety
because of their inherent strength. Inhibitors are located behind each of the inner turrets inside
each base, there are six of them in total. When an enemy inhibitor is destroyed, for the next few
minutes a stronger minion called a super minion spawns with each allied minion wave in that
lane, accelerating the push to victory. The final structure, the nexus, when destroyed ends the
game with a victory for the team that managed to destroy it.

The five players in a team each serve their own unique purpose. The game has evolved
in a way that there is not much deviation from five roles in League, which are Top, Jungle, Mid,

15

Figure 7: Summoner’s Rift in game; source: [23]

ADC and Support. Top lane is mostly reserved for champions who can sustain damage and
champions who can fight on their own. Mid lane is where long range artillery mages and front
loaded burst champions meet. On the bottom lane reside two champions; an Attack Damage
Carry (ADC) or Marksman who relies on their basic attacks for damage that gets better the
longer the game goes on and a supportive champion that protects the ADC or a champion able
to lock opponents down and make plays. Lastly, the jungle role is tasked with collecting XP and
gold from the neutral camps in the jungle and help out the other lanes or try to outnumber the
enemy in a lane to score kills and take objectives.

3.3.4. League of Bots

To play League, you would have to create an account. Every account starts at level 1
(this is different from the in game level of a champion). As a requirement for playing League’s
ranked mode the account has to be at least level 30. Because of the in game chat feature,
almost every game there is at least one person on each team who will vent their frustrations
and lash out in the form of toxic chat messages. Toxicity is a defining characteristic of the
League of Legends player base and Riot has systems in place that detect toxic behavior and
give out two week bans although the systems are criticised by many for being insufficient.

Continuous toxic behaviour can get an account banned permanently, when that hap-
pens the toxic player will have to create another account but that would mean playing about
fifty games that last 30 minutes on average until the player can enter the ranked mode again.
For this player these fifty games are a waste of time, which is why they look to buy a level 30
account online. Buying and selling League accounts is against the Riot Games Terms of Ser-
vice but as long as there is a market for it, leveling accounts with bots or botting will continue to

16

exist.

3.4. S.A.M.F.I.E. (Smart Artificial Miss Fortune Intelligence
Emulator)

League of Legends is daunting to new players because of it’s complexity, but not to
S.A.M.F.I.E. who conquered it. S.A.M.F.I.E. is my own League bot, and the topic of this chapter,
along with how a Markov decision process model was used to improve it.

3.4.1. Miss Fortune

Before we can move to how S.A.M.F.I.E. actually works, we first need to look at the
character I decided it would be playing. This character is an ADC, meaning she excels at
dealing lots of damage from further away than most characters. Her name is Miss Fortune, and
yes, she is a pirate.

Figure 8: Screenshot of Miss Fortune in game;

Miss Fortune’s passive ability is called Love Tap and states that every time she attacks
a target that is different from her previous target the attack will deal extra damage. This means
that switching between targets when playing Miss Fortune will net more damage as opposed to
only attacking one target at a time. Even if you don’t switch targets, the extra damage will apply
at least once, so even a less experienced player can use it somewhat reliably.

The official text of Love Tap, Miss Fortune’s passive ability:

17

"INNATE: Miss Fortune’s next basic attack against an enemy that was not the target
of her previous basic attack will deal 50% - 100% (based on level) AD bonus physical
damage, halved to 25% - 50% (based on level) AD against minions." [24]

Miss Fortune’s first basic ability or Q ability is called Double Up (abilities are commonly
known by the key that needs to be pressed in order to use it). Double Up is a targeted ability,
when used it fires a shot at the target and then looks for a second target behind the first to
bounce to. It synergises with the passive ability as it applies the extra damage to both targets,
after it hits the second target the first one will again be eligible for the passive damage. This
ability has a low mana cost and is on a low cooldown (you can use it often), which means you
can use it almost whenever it is available, without being worried about running out of mana
(Miss Fortune’s secondary resource).

The official text of Double Up, Miss Fortune’s first basic ability:

"ACTIVE: Miss Fortune fires a shot at the target enemy that deals physical damage
upon its arrival, which then bounces to hit another enemy behind it. The shot ap-
plies on-hit effects at 100% effectiveness to both enemies hit, and applies on-attack
effects to the first enemy hit." [24]

Miss Fortune’s second basic ability or W ability is called Strut, it has a passive, and an
active component. Passively Miss Fortune moves faster if she hasn’t taken any damage in the
last five seconds. When the ability is activated, she will gain this movement speed even if she
took damage in the last five seconds. Additionally she attacks faster for the next four seconds.

The official text of Strut, Miss Fortune’s second basic ability:

"PASSIVE: Miss Fortune gains 25 bonus movement speed if she has not taken
persistent damage in the last 5 seconds. This bonus is increased to a greater
amount after another 5 seconds.

ACTIVE: Miss Fortune gains bonus attack speed for 4 seconds and brings Strut’s
passive effect to full power." [24]

Marking a new target with Love Tap reduces Strut’s cooldown by 2 seconds.

Miss Fortune’s third and final basic ability, or her E ability, is called Make It Rain. In
a target location Miss Fortune fires a rain of bullets that periodically deal damage and slow
enemies. This is useful when chasing enemies down in combination with the Strut passive
movement speed.

The official text of Make It Rain, Miss Fortune’s third basic ability:

"ACTIVE: Miss Fortune rains down hundreds of bullets onto the target location for 2
seconds, granting sight of the area and dealing magic damage to all enemies within
every 0.25 seconds and slowing them." [24]

18

Miss Fortune’s ultimate ability or R ability is called Bullet Time, and it is one of League’s
most damaging abilities. Miss Fortune fires waves of bullets in a cone in front of her for three
seconds, dealing tons of damage. It’s drawback is that without the help of other abilities, ene-
mies can move out of the way, but when used against other bots that don’t register it immedi-
ately, it is extremely impacting.

The official text of Bullet Time, Miss Fortune’s ultimate ability:

"ACTIVE: Miss Fortune channels for up to 3 seconds, firing several waves of bullets
in a spread of 6 projectiles per wave in the target direction, with each wave dealing
75% AD (+ 20% AP) physical damage to enemies hit." [24]

Figure 9: Screenshot of Miss Fortune’s abilities, as shown in game;

Miss Fortune is considered a simple champion. Having two passive abilities helps,
Make It Rain and Bullet Time are also lethal when used in conjunction for anything that stays
inside the abilities’ reach, and the combo can devastate an entire team. Her W is in almost all
cases used whenever she enters battle with a champion. Her Q ability is arguably the most
complex thing about her, it has to be used in an innovative way to be most effective because of
it’s unique bounce property and it’s synergy with her passive. Use of her Q is where good Miss
Fortune players shine. My bot is nowhere near a good Miss Fortune player.

The reasons behind choosing Miss Fortune are her simplicity, her basic ability combi-
nations and her being a ranged character. As stated above, three of her abilities need only to
be pointed at the enemy, the other ability, while her W, needs only to be activated. Bullet Time,
if used properly, can kill an enemy from full health if used at the right angle. Her range is very
useful, she can stay away from danger while slowly dwindling enemy resources. All of these
properties made her an appropriate choice for a League AI. Having tested with many other
champions, I found that Miss Fortune was the most consistent choice.

Runes are a set of power-ups a player can choose before going into a game. Figure 10
shows the runes I chose for the AI to use with short descriptions. Without going into too much
detail on the runes, the ones I chose are simple to use, and most of them help deal damage,
and are useful for the attack patterns I had my bot use.

Items are also an important factor. Figure 11 shows the items I had S.A.M.F.I.E buy,
they are a combination of common items purchased when playing Miss Fortune and items that
have very similar build paths. Expensive items are made up of smaller, less expensive items
that combine into the expensive item. The build path of an item is essentially all the smaller
items needed to combine into that specific item. You can of course purchase the item without
buying it’s components if you have enough gold for the full cost.

19

Figure 10: Runes I had S.A.M.F.I.E. use;

Figure 11: Items I had S.A.M.F.I.E. buy;

3.4.2. The first version

I started developing S.A.M.F.I.E. before starting to work on this paper. The first thing to
figure out was: how will my program detect what is on the screen. Consulting with the internet,
I found that a Python library exists that does the detection automatically trough a few different
functions. Python is an interpreted, object-oriented, high-level programming language and the
library in question is pyautogui. Pyautogui allowed me to not only detect images on the screen
but also check the RGB values of any specific pixel on the screen. Next, I needed to determine
which images I needed to detect, so that my bot can find and click on minions, champions and
turrets. As these things were always in motion relative to the camera, it wasn’t as simple as
taking a picture of these objects and trying to find them using pyautogui. Thankfully, I could

20

take images of the corners of the health bars of these objects and detect them trough those.
Health bars always stay on top of everything else on screen, so it was a nice solution to my
detection problem.

Figure 12: Some images I used to detect various things on the screen, from the left: ally
champions, ally minions, enemy champions, enemy minions, enemy structures, enemy plated
turrets, store button, ultimate ability button;

Next, I had to define the logic my bot would work by. I worked on the logic part directly
inside the code, which in hindsight wasn’t efficient and left me with a less ’smart’ bot. If the
program detected a minion it would attack the minion, if it detected a turret it attacked the turret
and so on. This worked fine in games without enemy champions, it would win the game, but
it was losing when it had an opponent. There were some problems that pyautogui couldn’t
solve. For example, pyautogui would detect the first image from the top of the screen, but there
were lots of minions on the screen and it couldn’t tell me how many minions there were. The
detection was also extremely slow, League is a fast paced game and if the bot had too many
things to detect, it would make it react slowly to what was happening on screen. The bot stayed
in this initial version, and at the time I started working on this thesis and learning about Markov
chains and Markov decision processes.

3.4.3. Applying a Markov Decision Process model to S.A.M.F.I.E.

When I came back to working on the bot, I was equipped with more knowledge and had
more ideas to make the bot work better. Instead of using pyautogui for screen detection I used
OpenCV, OpenCV is another Python library, but using it allowed me to detect multiple instances
of the same image on one screenshot, meaning I could detect all the minions on the screen
as opposed to only seeing one minion with pyautogui. I found out about OpenCV trough the
YouTube channel "Learn Code by Gaming" [1], and I modified their code to suit what I needed
to detect with S.A.M.F.I.E. First thing I did was write up a pseudocode for the logic I wanted
my bot to work on. Writing this pseudocode proved to be far better than working by heart and
hence it yielded better results.

Listing 1: Pseudocode I based S.A.M.F.I.E. on

1 lvl up if can

2 buy items if can

3 if low hp back

4

5 if see turret

6 if no friendly minions

7 retreat

8 if no enemy minions and no enemy champions

21

9 attack enemy turret

10 if enemy minions and no enemy champions

11 attack enemy minions

12 if enemy minions and enemy champions

13 retreat

14

15 else

16 if no enemy minions and no enemy champions

17 move forward

18 if enemy minions and no enemy champions

19 walk behind my wave

20 clear enemy minions

21 if there are friendly minions

22 if enemy minions and enemy champions

23 if num of friendly minions > num of enemy minions + 1

24 attack enemy champion

25 else

26 attack enemy minions

27 else

28 retreat until friendly minions

Another thing I did was use newfound knowledge of Markov decision processes and
stochastic games to determine what states S.A.M.F.I.E. would be moving to and from, as well
as the actions it would be taking and rewards it would gain. The states I landed on were
as follows: attacking turrets, attacking champions, farming, going back, moving forward and
retreating. As the randomness of moving from one state to the other is determined by the
screenshot the bot takes, it is hard to quantify the probabilities of moving from one state to
another without historic data. Rewards are also random and determined trough the game, not
every action will lead to a reward. Killing minions, champions and destroying turrets gives gold
to the champion, and gold can be seen as a reward, but it all depends on whether or not the
bot’s action works for that situation, so the bot works on a priority system that decides what
action the bot will take. Most of the program is contained inside a while loop that repeats itself.
What is not inside the while loop are preparations the bot does at the start of the game, like
buying the starting item and waiting for the initial minion wave.

The going back state appears at the very start of the while loop, S.A.M.F.I.E. checks if
it’s health bar is low by checking a specific pixel on the health bar. If it’s health is low it will
use the movement speed boost on W and it’s defensive ability Barrier located on the F key
that gives it a shield. S.A.M.F.I.E. then starts moving away, towards it’s base, until there are
no enemy champions and enemy minions, and meanwhile always checks if it has at any point
died. If it hasn’t died it presses B, which is the recall button. Recalling returns S.A.M.F.I.E. to
the ally base after 8 seconds of waiting, where it waits a bit more to gain health and mana,
before continuing to move forward. This means the next state after the going back state is
always going to be the move forward state.

Listing 2: Going back state

1 if pixelLowHP == (1, 13, 7) or time.time() - backTimer >= 300:

2 dead = False

22

Figure 13: Markov chain modelled for S.A.M.F.I.E;

3 rightClick(1666, 1056)

4 useW()

5 if pixelLowHP == (1, 13, 7):

6 useF()

7 while len(enemy_champions) or len(enemy_minions):

8 rightClick(1666, 1056)

9 screenshot = wincap.get_screenshot()

10 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

11 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

12 pixelDead = pyautogui.screenshot().getpixel((711, 1032))

13 if pixelDead == (185,185,185):

14 dead = True

15 sleep(0.5)

16 if dead == False:

17 keyboard.press("b")

18 sleep(0.01)

19 keyboard.release("b")

20 sleep(13)

21 backTimer = time.time()

22 GOING_BACK += 1

23 else:

24 while pixelDead == (185,185,185):

25 pixelDead = pyautogui.screenshot().getpixel((711, 1032))

26 backTimer = time.time()

27 continue

23

The moving forward state happens when there are no enemy targets on the screenshot
S.A.M.F.I.E. takes. Before moving forward, it checks if the shop icon is on the screen and if it
locates the shop button it first buys items. The shop icon appears only when S.A.M.F.I.E. is in
the ally base.

Listing 3: Moving forward state

1 if pyautogui.locateOnScreen(’shop.png’, confidence=0.95):

2 if doransSold == False and gameTimer > 1200:

3 doransSold = True

4 rightClick(1090,1010)

5 buyItem()

6 sleep(1)

7 rightClick(1885, 842)

8 MOVING_FORWARD += 1

9 continue

The attacking champions state occurs when there are only enemy champions on screen
without enemy minions or when S.A.M.F.I.E. has gained a minion advantage, meaning that ally
minions outnumber enemy minions. It attacks champions in a pattern, it starts by using E and
W to catch up them, following with Q and Ignite, which is it’s offensive spell located on D. If after
all that the enemy is still alive, S.A.M.F.I.E. checks if it’s ultimate ability is available and uses it
if it is.

Listing 4: Attacking champions state

1 rightClick(ally_minions[0][0]+30,ally_minions[0][1]+60)

2 sleep(0.2)

3 if len(enemy_champions):

4 win32api.SetCursorPos((enemy_champions[len(enemy_champions)-1][0]+20,

enemy_champions[len(enemy_champions)-1][1]+150))

5 useE()

6 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+40,enemy_champions[len(

enemy_champions)-1][1]+120)

7 useW()

8 sleep(1)

9 keyboard.press("s")

10 sleep(0.01)

11 keyboard.release("s")

12 screenshot = wincap.get_screenshot()

13

14 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

15 if len(enemy_champions):

16 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,enemy_champions[len(

enemy_champions)-1][1]+80)

17 useQ()

18 useD()

19 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,enemy_champions[len(

enemy_champions)-1][1]+80)

20 sleep(1)

21 screenshot = wincap.get_screenshot()

22 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

23 ultimate_available = vision_ultimate.find(screenshot, 0.98)

24

24 if len(enemy_champions):

25 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,enemy_champions[len(

enemy_champions)-1][1]+80)

26 if len(ultimate_available):

27 useR()

28 sleep(3)

29 ATTACKING_CHAMPION += 1

30 continue

The farming state could also be called the attacking minions state, but farming is League
terminology for just that. S.A.M.F.I.E. attacks minions when it hasn’t gained a minion advantage
and when there are no enemy champions on screen. In between attacks it also moves behind
her own minion wave so that it is always in a good position.

Listing 5: Farming state

1 rightClick(ally_minions[len(ally_minions)-1][0],ally_minions[len(ally_minions)

-1][1]+80)

2 sleep(0.1)

3 screenshot = wincap.get_screenshot()

4 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

5 if len(enemy_minions):

6 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,enemy_minions[len(

enemy_minions)-1][1]+60)

7 useQ()

8 FARMING += 1

9 continue

The retreating state is different from the going back state. Retreating happens when
there are enemies and no ally minions. S.A.M.F.I.E. moves back for a short amount of time,
but doesn’t completely return to base. This happens when the area isn’t safe enough to be
offensive, but is dangerous enough to warrant a retreat.

Listing 6: Retreating state

1 rightClick(1666, 1056)

2 sleep(0.2)

3 RETREATING += 1

4 continue

The attacking turrets state occurs when there are no enemy champions, no enemy
minions and at least two ally minions. Of course, an enemy turret has to be present as well. If
this case happens, S.A.M.F.I.E. will attack the turret until the situation changes.

Listing 7: Attacking turrets state

1 screenshot = wincap.get_screenshot()

2 enemy_turret = vision_enemyTurret.find(screenshot, 0.95)

3 enemy_turretPlate = vision_enemyTurretPlate.find(screenshot, 0.95)

4 if len(enemy_turret):

5 rightClick(enemy_turret[len(enemy_turret)-1][0]+75,enemy_turret[len(enemy_turret

)-1][1]+150)

6

25

7 if len(enemy_turretPlate):

8 rightClick(enemy_turretPlate[len(enemy_turretPlate)-1][0]+75,enemy_turretPlate[

len(enemy_turretPlate)-1][1]+150)

9 ATTACKING_TURRET += 1

10 continue

The priority system works this way: if the screenshot the S.A.M.F.I.E. takes has an en-
emy turret in it, it checks if there are any ally minions because it can’t tackle the turret alone, and
if there are no friendly minions it will retreat until it sees ally minions. If there are ally minions and
enemy minions next to the turret, S.A.M.F.I.E. will prioritise the minions. If there is at least one
enemy champion next to the turret, S.A.M.F.I.E. will retreat. This way I minimised the deaths
S.A.M.F.I.E. would sometimes have next to turrets (it still sometimes dies to the turret regard-
less). If there are no turrets, S.A.M.F.I.E. will look to gain a minion advantage on her opponent,
before attacking their champion. If there are no turrets and no enemy champions, S.A.M.F.I.E.
will just try to kill all enemy minions when there are ally minions nearby. A video of S.A.M.F.I.E.
playing is available on YouTube at: https://www.youtube.com/watch?v=KAZ0gmMLlVg.

I had the program count how many times it entered each state. Using this historic data
I could make a very rough estimate of what probabilities each state had when moving to other
states. I entered this data into a probability matrix that corresponds to the Markov chain in
figure 13.

Figure 14: Probability matrix for S.A.M.F.I.E. states;

How to read the probability matrix on figure 14: the letters on the edge are the afore-
mentioned states (T = attacking turrets, C = attacking champions, R = retreating, F = farming,
M = moving forward, B = going back). Let’s say I want to look at what probability S.A.M.F.I.E.
has when moving from state F to state M. I would look at the row containing state F, that is the
fourth row, and would then look for column M. The value corresponding from that movement
between states is 0.08, meaning that S.A.M.F.I.E. has an 8 per cent chance to move from state
F to state M. These values are again, rough estimates.

26

3.4.4. Testing and issues

The first goal I set for S.A.M.F.I.E. was to beat a game without any other player or bot
inside the game. This was a simple goal, S.A.M.F.I.E. in it’s current iteration can beat this
anywhere from 15 to 25 minutes, if a human player accomplished this in that amount it would
be considered slow, but for a bot it is a satisfying result.

The second goal was for S.A.M.F.I.E. to beat a game of intro bots. Intro bots are the
new player friendly version of League’s bot, this game mode is littered with botting accounts so
it will usually be a game of ten bots fighting each other. Intro bots pretty much let the players
win, they are very easy to beat. S.A.M.F.I.E. never lost in this game mode and would most likely
win in ninety nine out of a hundred games.

The third goal, and the most challenging, was for S.A.M.F.I.E. to beat a game of beginner
bots. S.A.M.F.I.E. suffered great hardships in this mode. Beginner bots are also easy to beat
for a human player, but they won’t let you win all the time like intro bots. During testing with
beginner bots was when most of the tweaking of the attack pattern S.A.M.F.I.E. uses happened
and other minor details were being fixed. In it’s current iteration, S.A.M.F.I.E. can beat beginner
bots in about 80 to 90 per cent, but what I didn’t expect was for S.A.M.F.I.E. to make, what is
called a pentakill. A pentakill is when a single player kills all five of the players on the opposing
team, S.A.M.F.I.E. accomplished this against beginner bots, and it made me incredibly proud.
Although I do admit that it was primarily luck that the enemy team of bots stuck together and
died from S.A.M.F.I.E.’s ultimate ability.

Figure 15: Screenshot of S.A.M.F.I.E. seconds before scoring a pentakill;

Although S.A.M.F.I.E. works well, there are a couple of issues regarding the image
processing it uses. A few times per game S.A.M.F.I.E. would detect champions or turrets when
they weren’t there. Another issue is when minions or champions walk next to the turret, their
health bars will stay on top of the turret’s health bar, meaning S.A.M.F.I.E. would play as if there
was no enemy turret, and would die from it, as shown on figure 16. These issues are hard or
impossible to avoid, so I am fairly satisfied with the results S.A.M.F.I.E. accomplished. The full

27

code of the bot can be found appended at the bottom of this document.

Figure 16: Screenshot of minion health bars overlapping with the turret health bar;

28

4. Conclusion

Artificial intelligence is affecting the world now more than ever, and so are computer
games. These two industries are intertwined in many ways, some ethical, others not so much.
Companies are trying to make AI that play games autonomously, when such a program is devel-
oped, human players of the game stop being relevant when talking about optimal, highest level
of play. This is especially damaging to online multiplayer games that aren’t able to recognise
when an AI is playing, cheaters in these games will thrive.

This thesis started with a general exploration into AI science, Markov decision pro-
cesses and League of Legends. The goal of this project was to apply a Markov decision
process model to an autonomous AI player. Through examples of bots made by other people,
I made my own bot for my favorite game, League of Legends. I called the bot S.A.M.F.I.E. and
made it play against AI in special game modes of the game, to try and see how far I can push
my own bot.

Before the final version of S.A.M.F.I.E. was made, I modelled a Markov decision process
after the gameplay of League of Legends. A Markov decision process consists of states, in my
case an example of a state would be attacking an enemy, it also consists of probabilities the
process has when moving to another state. To move to a different state, my bot would need
to make an action, another property of Markov decision processes, an example of an action
would be when trying to attack an enemy the bot has to right click on the enemy. Rewards also
come into play trough in game currency; gold. Killing enemies awards the player with gold, so
I set up a priority system for the bot to know who to attack and when it should attack them.

S.A.M.F.I.E. works well and can convincingly beat the AI that usually new players play
against in the CO-OP vs AI mode in League of Legends. It was made using Python, a pro-
gramming language that allowed me to use OpenCV, which is a module for object recognition
in images. S.A.M.F.I.E. takes screenshots periodically and based on the image and objects it
detects, makes a decision and executes specific commands.

For development of S.A.M.F.I.E., modelling a Markov decision process and defining the
states the bot could operate in helped me solve what logic, decisions and priorities I would
need to take in account when writing the code. Markov decision processes proved useful
enough to use when creating AI that plays games, and in general any real life situation that can
be gamified.

29

Bibliography

[1] (). “Opencv object detection in games python tutorial,” [Online]. Available: https://
www.youtube.com/watch?v=KecMlLUuiE4&list=PL1m2M8LQlzfKtkKq2lK5xko4X-

8EZzFPI (visited on 08/13/2021).

[2] (2020). “How to make advanced image recognition bots using python,” [Online]. Available:
https://www.youtube.com/watch?v=YRAIUA-Oc1Y (visited on 08/15/2021).

[3] (). “Artificial intelligence,” Investopedia, [Online]. Available: https://www.investopedia.
com/terms/a/artificial-intelligence-ai.asp (visited on 08/15/2021).

[4] (). “Artificial intelligence,” Built In, [Online]. Available: https://builtin.com/artificial-
intelligence (visited on 08/15/2021).

[5] J. McCarthy, “What is artificial intelligence?,” 1998.

[6] (). “Intelligence,” Oxford Learner’s Dictionaries, [Online]. Available: https : / / www .
oxfordlearnersdictionaries.com/definition/english/intelligence (vis-
ited on 08/15/2021).

[7] G. Oppy and D. Dowe, “The Turing Test,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed., Winter 2020, Metaphysics Research Lab, Stanford University, 2020.

[8] (2017). “The history of artificial intelligence,” Harvard University, [Online]. Available: https:
//sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/

(visited on 08/15/2021).

[9] D. Mhlanga, “Artificial intelligence in the industry 4.0, and its impact on poverty, innova-
tion, infrastructure development, and the sustainable development goals: Lessons from
emerging economies?” Sustainability, vol. 13, no. 11, 2021, ISSN: 2071-1050. DOI: 10.
3390/su13115788.

[10] (2017). “Artificial intelligence autopilot,” Tesla, [Online]. Available: https : / / www .
tesla.com/AI (visited on 08/15/2021).

[11] Wikipedia contributors, Autonomous racing — Wikipedia, the free encyclopedia, [Online;
accessed 30-August-2021], 2021.

[12] (2020). “Ai and control of covid-19 coronavirus,” Council of Europe, [Online]. Available:
https : / / www . coe . int / en / web / artificial - intelligence / ai - and -

control-of-covid-19-coronavirus (visited on 08/15/2021).

[13] J. R. Norris, Markov chains, 2. Cambridge university press, 1998.

30

https://www.youtube.com/watch?v=KecMlLUuiE4&list=PL1m2M8LQlzfKtkKq2lK5xko4X-8EZzFPI
https://www.youtube.com/watch?v=KecMlLUuiE4&list=PL1m2M8LQlzfKtkKq2lK5xko4X-8EZzFPI
https://www.youtube.com/watch?v=KecMlLUuiE4&list=PL1m2M8LQlzfKtkKq2lK5xko4X-8EZzFPI
https://www.youtube.com/watch?v=YRAIUA-Oc1Y
https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp
https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp
https://builtin.com/artificial-intelligence
https://builtin.com/artificial-intelligence
https://www.oxfordlearnersdictionaries.com/definition/english/intelligence
https://www.oxfordlearnersdictionaries.com/definition/english/intelligence
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://doi.org/10.3390/su13115788
https://doi.org/10.3390/su13115788
https://www.tesla.com/AI
https://www.tesla.com/AI
https://www.coe.int/en/web/artificial-intelligence/ai-and-control-of-covid-19-coronavirus
https://www.coe.int/en/web/artificial-intelligence/ai-and-control-of-covid-19-coronavirus

[14] R. J. Wilson, Introduction to Graph Theory. New York: Prentice Hall/Pearson, 2010, ISBN:
027372889X 9780273728894.

[15] Wikipedia contributors, Markov chain — Wikipedia, the free encyclopedia, [Online; ac-
cessed 4-September-2021], 2021.

[16] ——, Markov decision process — Wikipedia, the free encyclopedia, [Online; accessed
8-September-2021], 2021.

[17] J. Filar and K. Vrieze, Competitive Markov decision processes. Springer Science & Busi-
ness Media, 2012.

[18] E. Solan and N. Vieille, “Stochastic games,” Proceedings of the National Academy of
Sciences, vol. 112, no. 45, pp. 13 743–13 746, 2015.

[19] C. C. Bennett and K. Hauser, “Artificial intelligence framework for simulating clinical
decision-making: A markov decision process approach,” Artificial intelligence in medicine,
vol. 57, no. 1, pp. 9–19, 2013.

[20] Wikipedia contributors, League of legends — Wikipedia, the free encyclopedia, [Online;
accessed 31-August-2021], 2021.

[21] (2021). “Total league of legends player count.” [Online; accessed 31-August-2021], [On-
line]. Available: https://leaguefeed.net/did-you-know-total-league-of-
legends-player-count-updated/ (visited on 08/31/2021).

[22] ——, Warcraft iii: Reign of chaos — Wikipedia, the free encyclopedia, [Online; accessed
1-September-2021], 2021.

[23] (2021). “Map (league of legends).” [Online; accessed 2-September-2021], [Online]. Avail-
able: https : / / leagueoflegends . fandom . com / wiki / Map _ (League _ of _
Legends) (visited on 09/02/2021).

[24] (). “League of legends wiki,” [Online]. Available: https://leagueoflegends.fandom.
com/wiki/League_of_Legends_Wiki (visited on 09/15/2021).

31

https://leaguefeed.net/did-you-know-total-league-of-legends-player-count-updated/
https://leaguefeed.net/did-you-know-total-league-of-legends-player-count-updated/
https://leagueoflegends.fandom.com/wiki/Map_(League_of_Legends)
https://leagueoflegends.fandom.com/wiki/Map_(League_of_Legends)
https://leagueoflegends.fandom.com/wiki/League_of_Legends_Wiki
https://leagueoflegends.fandom.com/wiki/League_of_Legends_Wiki

List of Figures

1. The drunkard problem [14] . 7

2. An example of a Markov chain [15] . 8

3. Discrete time Markov chain with closed classes [13] 8

4. Continuous time Markov chain [13] . 9

5. Layout of Summoner’s Rift; source: [20] . 14

6. Minions fighting in the middle lane; source: [23] 15

7. Summoner’s Rift in game; source: [23] . 16

8. Screenshot of Miss Fortune in game; . 17

9. Screenshot of Miss Fortune’s abilities, as shown in game; 19

10. Runes I had S.A.M.F.I.E. use; . 20

11. Items I had S.A.M.F.I.E. buy; . 20

12. Some images I used to detect various things on the screen, from the left: ally
champions, ally minions, enemy champions, enemy minions, enemy structures,
enemy plated turrets, store button, ultimate ability button; 21

13. Markov chain modelled for S.A.M.F.I.E; . 23

14. Probability matrix for S.A.M.F.I.E. states; . 26

15. Screenshot of S.A.M.F.I.E. seconds before scoring a pentakill; 27

16. Screenshot of minion health bars overlapping with the turret health bar; 28

32

List of Listings

1. Pseudocode I based S.A.M.F.I.E. on . 21

2. Going back state . 22

3. Moving forward state . 24

4. Attacking champions state . 24

5. Farming state . 25

6. Retreating state . 25

7. Attacking turrets state . 25

33

Appendices

1. Code of ’main.py’

1 from time import sleep

2 import time

3

4 from pyscreeze import pixel

5 from windowcapture import WindowCapture

6 from vision import Vision

7 import win32api, win32con

8 import keyboard

9 import pyautogui

10

11 def rightClick(x,y):

12 win32api.SetCursorPos((x,y))

13 win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTDOWN,0,0)

14 sleep(0.05)

15 win32api.mouse_event(win32con.MOUSEEVENTF_RIGHTUP,0,0)

16

17 def leftClickAA(x,y):

18 keyboard.press("a")

19 sleep(0.01)

20 keyboard.release("a")

21 win32api.SetCursorPos((x,y))

22 win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,0,0)

23 sleep(0.05)

24 win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,0,0)

25

26

27 def lvlUp():

28 keyboard.press("ctrl+r")

29 sleep(0.05)

30 keyboard.release("r")

31 keyboard.press("ctrl+q")

32 sleep(0.05)

33 keyboard.release("q")

34 keyboard.press("ctrl+e")

35 sleep(0.05)

36 keyboard.release("e")

37 keyboard.press("ctrl+w")

38 sleep(0.05)

39 keyboard.release("w")

40 keyboard.release("ctrl")

41 sleep(0.05)

42

43 def buyItem():

44 keyboard.press("z")

45 sleep(0.2)

46 keyboard.release("z")

47 sleep(0.1)

48 rightClick(600,340)

49 sleep(0.05)

50 rightClick(665,340)

35

51 sleep(0.05)

52 rightClick(720,340)

53 sleep(0.05)

54 rightClick(775,340)

55 sleep(0.05)

56 rightClick(830,340)

57 sleep(0.05)

58 rightClick(885,340)

59 sleep(0.05)

60 rightClick(940,340)

61 sleep(0.05)

62 rightClick(600,460)

63 sleep(0.05)

64 rightClick(665,460)

65 sleep(0.05)

66 rightClick(720,460)

67 sleep(0.05)

68 rightClick(775,460)

69 sleep(0.05)

70 rightClick(830,460)

71 keyboard.press("z")

72 sleep(0.2)

73 keyboard.release("z")

74

75 def buyStartingItem():

76 keyboard.press("z")

77 sleep(0.2)

78 keyboard.release("z")

79 sleep(0.1)

80 rightClick(600,340)

81 sleep(0.05)

82 win32api.SetCursorPos((1018,156))

83 win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,0,0)

84 sleep(0.05)

85 win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,0,0)

86 keyboard.press("z")

87 sleep(0.2)

88 keyboard.release("z")

89

90 def useQ():

91 keyboard.press("q")

92 sleep(0.01)

93 keyboard.release("q")

94

95 def useW():

96 keyboard.press("w")

97 sleep(0.01)

98 keyboard.release("w")

99

100 def useE():

101 keyboard.press("e")

102 sleep(0.01)

103 keyboard.release("e")

36

104

105 def useR():

106 keyboard.press("r")

107 sleep(0.01)

108 keyboard.release("r")

109

110 def useD():

111 keyboard.press("d")

112 sleep(0.01)

113 keyboard.release("d")

114

115 def useF():

116 keyboard.press("f")

117 sleep(0.01)

118 keyboard.release("f")

119

120 wincap = WindowCapture()

121 screenshot = wincap.get_screenshot()

122

123 vision_enemyMinion = Vision(’enemyMinionHP.png’)

124 vision_enemyChampion = Vision(’enemyHP.png’)

125 vision_enemyTurret = Vision(’enemyTurretHP.png’)

126 vision_enemyTurretPlate = Vision(’enemyTurretHPplate.png’)

127 vision_allyMinion = Vision(’alliedMinionHP.png’)

128 vision_ultimate = Vision(’ultimateAbility.png’)

129 vision_allyChampion = Vision(’alliedChampion.png’)

130 sleep(2)

131

132 ATTACKING_CHAMPION = 0

133 ATTACKING_TURRET = 0

134 FARMING = 0

135 GOING_BACK = 0

136 MOVING_FORWARD = 0

137 RETREATING = 0

138

139

140 backTimer = time.time()

141 gameTimer = time.time()

142 doransSold = False

143

144 keyboard.press("y")

145 sleep(0.01)

146 keyboard.release("y")

147 sleep(10)

148 buyStartingItem()

149 rightClick(1885, 842)

150 sleep(12)

151 keyboard.press("s")

152 sleep(0.01)

153 keyboard.release("s")

154 sleep(45)

155

156 while(not keyboard.is_pressed(’l’)):

37

157 lvlUp()

158

159 screenshot = wincap.get_screenshot()

160 pixelLowHP = pyautogui.screenshot().getpixel((841, 1053))

161

162 enemy_turret = vision_enemyTurret.find(screenshot, 0.9)

163 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

164 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

165 ally_minions = vision_allyMinion.find(screenshot, 0.95)

166 enemy_turretPlate = vision_enemyTurretPlate.find(screenshot, 0.9)

167

168 if pixelLowHP == (1, 13, 7) or time.time() - backTimer >= 300:

169 dead = False

170 rightClick(1666, 1056)

171 useW()

172 if pixelLowHP == (1, 13, 7):

173 useF()

174 while len(enemy_champions) or len(enemy_minions):

175 rightClick(1666, 1056)

176 screenshot = wincap.get_screenshot()

177 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

178 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

179 pixelDead = pyautogui.screenshot().getpixel((711, 1032))

180 if pixelDead == (185,185,185):

181 dead = True

182 sleep(0.5)

183 if dead == False:

184 keyboard.press("b")

185 sleep(0.01)

186 keyboard.release("b")

187 sleep(13)

188 backTimer = time.time()

189 GOING_BACK += 1

190 else:

191 while pixelDead == (185,185,185):

192 pixelDead = pyautogui.screenshot().getpixel((711, 1032))

193 backTimer = time.time()

194 continue

195

196 if len(enemy_turret) or len(enemy_turretPlate):

197 if len(ally_minions) < 3:

198 rightClick(1666, 1056)

199 sleep(0.3)

200 RETREATING += 1

201 continue

202 if not len(enemy_minions) and not len(enemy_champions):

203 screenshot = wincap.get_screenshot()

204 enemy_turret = vision_enemyTurret.find(screenshot, 0.95)

205 enemy_turretPlate = vision_enemyTurretPlate.find(screenshot, 0.95)

206 if len(enemy_turret):

207 rightClick(enemy_turret[len(enemy_turret)-1][0]+75,enemy_turret[len(

enemy_turret)-1][1]+150)

208

38

209 if len(enemy_turretPlate):

210 rightClick(enemy_turretPlate[len(enemy_turretPlate)-1][0]+75,

enemy_turretPlate[len(enemy_turretPlate)-1][1]+150)

211 ATTACKING_TURRET += 1

212 continue

213 if len(enemy_minions) and not len(enemy_champions):

214 rightClick(ally_minions[len(ally_minions)-1][0]+30,ally_minions[len(

ally_minions)-1][1]+60)

215 sleep(0.1)

216 screenshot = wincap.get_screenshot()

217 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

218 if len(enemy_minions):

219 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,enemy_minions[

len(enemy_minions)-1][1]+60)

220 FARMING += 1

221 continue

222 if len(enemy_minions) and len(enemy_champions):

223 rightClick(1666, 1056)

224 sleep(0.3)

225 RETREATING += 1

226 continue

227 else:

228 if not len(enemy_minions) and not len(enemy_champions):

229 if pyautogui.locateOnScreen(’shop.png’, confidence=0.95):

230 if doransSold == False and gameTimer > 1200:

231 doransSold = True

232 rightClick(1090,1010)

233 buyItem()

234 sleep(1)

235 rightClick(1885, 842)

236 MOVING_FORWARD += 1

237 continue

238 if not len(enemy_minions) and len(enemy_champions):

239 screenshot = wincap.get_screenshot()

240 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

241 if len(enemy_champions):

242 keyboard.press("2")

243 keyboard.release("2")

244 win32api.SetCursorPos((enemy_champions[len(enemy_champions)

-1][0]+20,enemy_champions[len(enemy_champions)-1][1]+150))

245 useW()

246 useE()

247 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+40,

enemy_champions[len(enemy_champions)-1][1]+120)

248 sleep(1)

249 keyboard.press("s")

250 sleep(0.01)

251 keyboard.release("s")

252 screenshot = wincap.get_screenshot()

253

254 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

255 if len(enemy_champions):

256 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

39

enemy_champions[len(enemy_champions)-1][1]+80)

257 useQ()

258 useD()

259

260 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

enemy_champions[len(enemy_champions)-1][1]+80)

261 sleep(1)

262 screenshot = wincap.get_screenshot()

263 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

264 ultimate_available = vision_ultimate.find(screenshot, 0.98)

265 if len(enemy_champions):

266 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

enemy_champions[len(enemy_champions)-1][1]+80)

267 if len(ultimate_available):

268 useR()

269 sleep(3)

270 ATTACKING_CHAMPION += 1

271 continue

272 ally_champions = vision_allyChampion.find(screenshot, 0.95)

273 if time.time() - gameTimer <= 1200:

274 if len(ally_minions):

275 if len(enemy_minions) and not len(enemy_champions):

276 rightClick(ally_minions[len(ally_minions)-1][0],ally_minions[len

(ally_minions)-1][1]+80)

277 sleep(0.1)

278 screenshot = wincap.get_screenshot()

279 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

280 if len(enemy_minions):

281 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,

enemy_minions[len(enemy_minions)-1][1]+60)

282 FARMING += 1

283 continue

284 if len(enemy_minions) and len(enemy_champions):

285 if len(enemy_minions) > len(ally_minions)+3:

286 rightClick(1666, 1056)

287 sleep(0.2)

288 RETREATING += 1

289 continue

290 elif len(ally_minions) < len(enemy_minions)+1:

291 rightClick(ally_minions[len(ally_minions)-1][0],ally_minions

[len(ally_minions)-1][1]+80)

292 sleep(0.1)

293 screenshot = wincap.get_screenshot()

294 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

295 if len(enemy_minions):

296 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,

enemy_minions[len(enemy_minions)-1][1]+60)

297 useQ()

298 FARMING += 1

299 continue

300 else:

301 rightClick(ally_minions[0][0]+30,ally_minions[0][1]+60)

302 sleep(0.2)

40

303 if len(enemy_champions):

304 win32api.SetCursorPos((enemy_champions[len(

enemy_champions)-1][0]+20,enemy_champions[len(

enemy_champions)-1][1]+150))

305 useE()

306 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+40,enemy_champions[len(enemy_champions)

-1][1]+120)

307 useW()

308 sleep(1)

309 keyboard.press("s")

310 sleep(0.01)

311 keyboard.release("s")

312 screenshot = wincap.get_screenshot()

313

314 enemy_champions = vision_enemyChampion.find(screenshot,

0.95)

315 if len(enemy_champions):

316 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

317 useQ()

318 useD()

319 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

320 sleep(1)

321 screenshot = wincap.get_screenshot()

322 enemy_champions = vision_enemyChampion.find(screenshot,

0.95)

323 ultimate_available = vision_ultimate.find(screenshot, 0.98)

324 if len(enemy_champions):

325 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

326 if len(ultimate_available):

327 useR()

328 sleep(3)

329 ATTACKING_CHAMPION += 1

330 continue

331 else:

332 if len(ally_champions)>=2:

333 if len(enemy_champions):

334 win32api.SetCursorPos((enemy_champions[len(enemy_champions)

-1][0]+20,enemy_champions[len(enemy_champions)-1][1]+150))

335 useE()

336 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+40,

enemy_champions[len(enemy_champions)-1][1]+120)

337 useW()

338 sleep(1)

339 keyboard.press("s")

340 sleep(0.01)

341 keyboard.release("s")

41

342 screenshot = wincap.get_screenshot()

343 enemy_champions = vision_enemyChampion.find(screenshot,

0.95)

344 if len(enemy_champions):

345 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

346 useQ()

347 useD()

348 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

349 sleep(1)

350 screenshot = wincap.get_screenshot()

351 enemy_champions = vision_enemyChampion.find(screenshot,

0.95)

352 ultimate_available = vision_ultimate.find(screenshot, 0.98)

353 if len(enemy_champions):

354 leftClickAA(enemy_champions[len(enemy_champions)

-1][0]+50,enemy_champions[len(enemy_champions)

-1][1]+80)

355 if len(ultimate_available):

356 useR()

357 sleep(3)

358 ATTACKING_CHAMPION += 1

359 continue

360 if len(enemy_minions):

361 screenshot = wincap.get_screenshot()

362 enemy_minions = vision_enemyMinion.find(screenshot, 0.95)

363 if len(enemy_minions):

364 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,

enemy_minions[len(enemy_minions)-1][1]+60)

365 FARMING += 1

366 continue

367 rightClick(1885, 842)

368 MOVING_FORWARD += 1

369 continue

370 else:

371 rightClick(1666, 1056)

372 sleep(0.3)

373 RETREATING += 1

374 continue

375 else:

376 if len(enemy_champions):

377 win32api.SetCursorPos((enemy_champions[len(enemy_champions)

-1][0]+20,enemy_champions[len(enemy_champions)-1][1]+150))

378 useE()

379 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+40,

enemy_champions[len(enemy_champions)-1][1]+120)

380 useW()

381 sleep(1)

382 keyboard.press("s")

383 sleep(0.01)

42

384 keyboard.release("s")

385 screenshot = wincap.get_screenshot()

386 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

387 if len(enemy_champions):

388 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

enemy_champions[len(enemy_champions)-1][1]+80)

389 useQ()

390 useD()

391 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

enemy_champions[len(enemy_champions)-1][1]+80)

392 sleep(1)

393 screenshot = wincap.get_screenshot()

394 enemy_champions = vision_enemyChampion.find(screenshot, 0.95)

395 ultimate_available = vision_ultimate.find(screenshot, 0.98)

396 if len(enemy_champions):

397 leftClickAA(enemy_champions[len(enemy_champions)-1][0]+50,

enemy_champions[len(enemy_champions)-1][1]+80)

398 if len(ultimate_available):

399 useR()

400 sleep(3)

401 ATTACKING_CHAMPION += 1

402 continue

403 if len(enemy_minions):

404 rightClick(enemy_minions[len(enemy_minions)-1][0]+30,enemy_minions[

len(enemy_minions)-1][1]+60)

405 useQ()

406 FARMING += 1

407 continue

408 rightClick(1885, 842)

409 MOVING_FORWARD += 1

410 continue

411

412 print(’Attacking enemy champions: ’)

413 print(ATTACKING_CHAMPION)

414 print(’Attacking enemy turrets: ’)

415 print(ATTACKING_TURRET)

416 print(’Farming: ’)

417 print(FARMING)

418 print(’Going back: ’)

419 print(GOING_BACK)

420 print(’Moving forward: ’)

421 print(MOVING_FORWARD)

422 print(’Retreating: ’)

423 print(RETREATING)

43

2. Code of ’vision.py’

1 import cv2 as cv

2 import numpy as np

3

4

5 class Vision:

6 needle_img = None

7 needle_w = 0

8 needle_h = 0

9 method = None

10

11 def __init__(self, needle_img_path, method=cv.TM_CCOEFF_NORMED):

12 self.needle_img = cv.imread(needle_img_path, cv.IMREAD_UNCHANGED)

13

14 self.needle_w = self.needle_img.shape[1]

15 self.needle_h = self.needle_img.shape[0]

16

17 self.method = method

18

19 def find(self, haystack_img, threshold=0.5):

20 result = cv.matchTemplate(haystack_img, self.needle_img, self.method)

21

22 locations = np.where(result >= threshold)

23 locations = list(zip(*locations[::-1]))

24

25 rectangles = []

26 for loc in locations:

27 rect = [int(loc[0]), int(loc[1]), self.needle_w, self.needle_h]

28 rectangles.append(rect)

29 rectangles.append(rect)

30 rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps

=0.5)

31

32 points = []

33 if len(rectangles):

34 for (x, y, w, h) in rectangles:

35 center_x = x + int(w/2)

36 center_y = y + int(h/2)

37 points.append((center_x, center_y))

38

39 return points

44

3. Code of ’windowcapture.py’

1 import numpy as np

2 import win32gui, win32ui, win32con

3

4

5 class WindowCapture:

6

7 w = 0

8 h = 0

9 hwnd = None

10 cropped_x = 0

11 cropped_y = 0

12 offset_x = 0

13 offset_y = 0

14

15 def __init__(self, window_name=None):

16

17 if window_name is None:

18 self.hwnd = win32gui.GetDesktopWindow()

19 else:

20 self.hwnd = win32gui.FindWindow(None, window_name)

21 if not self.hwnd:

22 raise Exception(’Window not found: {}’.format(window_name))

23

24 window_rect = win32gui.GetWindowRect(self.hwnd)

25 self.w = window_rect[2] - window_rect[0]

26 self.h = window_rect[3] - window_rect[1]

27

28 border_pixels = 0

29 titlebar_pixels = 0

30 self.w = self.w - (border_pixels * 2)

31 self.h = self.h - titlebar_pixels - border_pixels

32 self.cropped_x = border_pixels

33 self.cropped_y = titlebar_pixels

34 self.offset_x = window_rect[0] + self.cropped_x

35 self.offset_y = window_rect[1] + self.cropped_y

36

37 def get_screenshot(self):

38 wDC = win32gui.GetWindowDC(self.hwnd)

39 dcObj = win32ui.CreateDCFromHandle(wDC)

40 cDC = dcObj.CreateCompatibleDC()

41 dataBitMap = win32ui.CreateBitmap()

42 dataBitMap.CreateCompatibleBitmap(dcObj, self.w, self.h)

43 cDC.SelectObject(dataBitMap)

44 cDC.BitBlt((0, 0), (self.w, self.h), dcObj, (self.cropped_x, self.cropped_y)

, win32con.SRCCOPY)

45

46 signedIntsArray = dataBitMap.GetBitmapBits(True)

47 img = np.fromstring(signedIntsArray, dtype=’uint8’)

48 img.shape = (self.h, self.w, 4)

49

45

50 dcObj.DeleteDC()

51 cDC.DeleteDC()

52 win32gui.ReleaseDC(self.hwnd, wDC)

53 win32gui.DeleteObject(dataBitMap.GetHandle())

54

55 img = img[...,:3]

56 img = np.ascontiguousarray(img)

57

58 return img

59

60 @staticmethod

61 def list_window_names():

62 def winEnumHandler(hwnd, ctx):

63 if win32gui.IsWindowVisible(hwnd):

64 print(hex(hwnd), win32gui.GetWindowText(hwnd))

65 win32gui.EnumWindows(winEnumHandler, None)

66

67 def get_screen_position(self, pos):

68 return (pos[0] + self.offset_x, pos[1] + self.offset_y)

46

	1 Introduction
	2 Methods and work techniques
	3 Topic Elaboration
	3.1 Artificial Intelligence
	3.1.1 The umbrella term ‘Artificial intelligence’
	3.1.2 Talking mechanical handmaidens (A brief history of AI)
	3.1.3 Virtual assistants, autonomous robotic vacuum cleaners and self-driving cars

	3.2 Markov Decision Process
	3.2.1 Introduction to Markov chains
	3.2.2 Markov decision processes
	3.2.3 Markov Decision Processes and Artificial Intelligence

	3.3 League of Legends
	3.3.1 The biggest Esport of all time
	3.3.2 League of Legends and me
	3.3.3 Welcome to Summoner's Rift
	3.3.4 League of Bots

	3.4 S.A.M.F.I.E. (Smart Artificial Miss Fortune Intelligence Emulator)
	3.4.1 Miss Fortune
	3.4.2 The first version
	3.4.3 Applying a Markov Decision Process model to S.A.M.F.I.E.
	3.4.4 Testing and issues

	4 Conclusion
	Bibliography
	List of Figures
	List of Listings
	1 Code of 'main.py'
	2 Code of 'vision.py'
	3 Code of 'windowcapture.py'

