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Abstract

This thesis presents why the transformer model of deep learning overshadowed its predeces-
sors LSTMs and classic RNNs in many natural language processing by explaining in detail its
inner workings. It covers the theoretical basis of the transformer model and how its components
from the encoder to decoder work together to produce valuable results. The application of the
transformer model is shown through a practical example named chatbot. The chatbot is imple-
mented using Python and Tensorflow framework, and the base architecture is the transformer
model. That example shows how attention is a powerful concept even with a small dataset.

Keywords: transformer,chatbot, deep learning, transformer model, transformer architecture,
AI, NLP
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1. Introduction

As natural language processing, NLP for short, is gaining market size and is supposed
to double in the next 5 years [1] companies like Google are trying to be at the top of the growth
curve. In 2017 Google released a research paper named "Attention is all you need"[2] where
they introduced the concept of Transformers. Before introducing transformer architecture, it will
be explained what NLP is and what are its most popular methods and use cases. Along with
that, Seq2Seq model will be welcomed with a bit more detail as it is relevant to the transformer
architecture and generative chatbot. This thesis will try to show in great detail how exactly and
why the transformer model works, and by doing so notice its superiority to predecessors LSTMs
and classic RNNs.

The application of the transformer model is shown through a chatbot. That example of
chatbot is used to show how good can transformer model work with limited data, how close is
human race to human-like robots, and the difference in answers when changing parameters for
training, and why a good set of parameters is important.

Also, we will take a look at BERT (Bidirectional Encoder Representations from Trans-
formers) and how it obtained state-of-the-art results on eleven natural language processing
tasks. [3].
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2. NLP Applications and Prerequisites

In this chapter the most common NLP methods will be presented along with math pre-
requisites for understanding transformer architecture and its inner workings.

2.1. NLP Applications

Natural language processing can be defined in different ways depending on the field
from which we are deriving the definition. The more actual definition, that grew out of the
field of linguistics is presented in the next sentence. "Natural language processing (NLP) is
a branch of artificial intelligence that helps computers understand, interpret and manipulate
human language. NLP draws from many disciplines, including computer science and compu-
tational linguistics, in its pursuit to fill the gap between human communication and computer
understanding." [4]

The most common use cases of NLP are [5] Named Entity Recognition, Sentiment Anal-
ysis, Text Summarization, Aspect mining and Topic modeling. Also, there is Machine Translation
and Speech-to-text conversion.

Named entity recognition or NER for short is method for recognizing entities in a body
of text. For example if in a sentence "I want to make a reservation for two at 7pm today.", the
goal of this method is to recognize entities such as time and number of people.

Sentiment analysis is used when we want to find out how positive, negative or neutral a
piece of text is. The most common sources for this analysis are customer reviews, surveys and
social media comments. If we have the sentence, "The gym is clean and well conditioned." The
output of sentiment analysis can be, or the score can be: 0.31562 and that represent a positive
comment. On the other hand if sentence for analysis is "The staff was rude." its score could be:
-0.62345 and that would represent a negative comment. If we try to input those sentences in an
online tool for sentiment analysis [6], for the first sentence the result is positive with confidence
of 98.3% and for the second sentence negative with confidence of 97.4%. Most common topics
or categories of sentiment analysis are: Opinion spam and utility of opinions, Opinion search
and retrieval, Sentiment analysis of comparative sentences, Feature-based sentiment analysis
and Sentiment and subjectivity classification. [7]

Text summarization can be split in two categories,extraction and abstraction[7]. Extrac-
tion method creates a summary from the text it is given, by extracting parts from that text.
Abstraction method generates new text based on the given text and main story or explanation
in that text. Input text in both categories is usually a news article, a research paper or a page
in the book.

Aspect mining is a method which identifies different aspects in the text. It is usually
used in conjugation with sentiment analysis to identify how positive or negative an aspect is.
For example, output can look like this: Pricing - negative. Aspect is the feature of the entity.
"Adam was very satisfied with the flavour of black tea at Starbucks"[8]. Here the positive opinion
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would be extracted about black tea(entity) whose aspect is flavour.

Topic modeling is the method of identifying the topic in the text. For example if we
have a text or list of comments from Google reviews about your local gym and its staff. The
output could be service, staff, personnel. The most common applications of topic modeling are
in: Medical industry, Scientific research understanding, Investigation reports, Recommender
systems... [9]

2.1.1. Machine Translation and Seq2Seq Model

Machine translation got its own section, because for its fulfillment,
Sequence-To-Sequence (Seq2Seq) model is used. The same model on which inner-workings
of Transformer architecture function, and the same model which is used in developing a gen-
erative chatbot, both of which are the main topics of this thesis. Abstract representation of the
Seq2Seq can be seen on Figure 1.

Machine translation as the name suggests is a method of translating a piece of text from
one language to another language, and by doing so keeping the meaning of the input text. The
most popular model used in machine translation is the Seq2Seq model.

Figure 1: Abstract representation of the Seq2Seq model; Source: [10]

Sequence-To-Sequence models are used in many different NLP tasks, such as DNA
sequence modeling, text summarization, speech recognition, and machine translation. Two
main components of the Seq2Seq model are an encoder and a decoder. Both of those main
components are usually recurrent neural network (RNN) or Long short-term memory (LSTM)
models combined in one big model. RNN or LSTM structure won’t be explained in this paper
as it is not necessary for understanding transformer architecture, but it is beneficial to read on
it[11].

In short, LSTMs are an upgrade onto the classic RNN that uses special units(they can
be seen on Figure 2) in addition to standard ones to help it learn longer dependencies of
sequences. RNNs are neural networks that differentiate from feed-forward neural networks by
having a feedback loop from output to input. They can remember the previous state and that
the previous state incorporates into the next input, allowing them to learn sequences such as
words in a sentence to predict another sentence. Also, they are used in predicting time series,
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Figure 2: Representation of the LSTM cell; Source: [12]

financial data, weather, and chatbots.[11]

The encoder’s job is to read the input sentence and encode the summarized information
into a context vector. The goal of the context vector is to encapsulate the information from input
elements so the decoder has a good starting point to make accurate predictions. The decoder’s
job is to take the final states of the encoder as its input states and start generating the output
sequence. All of the outputs are considered before making the next output.

2.1.2. NLP Pipeline

This section will explain what elements the classic NLP pipeline consists of. Also, the
elements of the the pipeline will be explained.

Figure 3: Basic NLP Pipeline; Source: Made in PowerPoint

The basic NLP pipeline can be seen on Figure 3 and it consist of this steps: Text pre-

4



processing -> Word embeddings -> Building and training the model -> Testing the model

Text preprocessing is a way of preparing the text for the model. To get the best results
the text, better to say the words have to be cleaned and normalized.[13] We start with expanding
contractions because we want "it’s" and "it is" to be the same thing when training the model.
Then we tokenize the words. That means if we have the sentence "I do not like cheese", we
convert that sentence into the list of words [’I’,’do’,’not’,’like’,’cheese’]. After that, it is good to
apply the lowercase function to all words because we also want ’I’ and ’i’ to mean the same
thing. We also remove all punctuation, but in some cases like a chatbot, it is good to leave
question marks in the list of words to improve accuracy. Also, it can be valuable to leave more
elements of punctuation. Still, we have to be careful because in a lot of cases that lowers the
accuracy because of additional clutter. After all of that, stemming or lemmatization are applied.
The difference between stemming and lemmatization is that stemming often does not produce
the morphological root of the word. For example, if there were words [’meeting’,’was’,’worse’]
then stemming (Porter stemmer) would produce [’meet’,’wa’,’wors’] and lemmatization would
produce [’meeting’,’be’,’bad’]. Lemmatization is more complicated but it usually produces better
results.[13]

Word embedding is a method of representing words as real-valued vectors. Each word
has a vector of fixed dimension. That vector can be learned while training neural network or
we can use already pre-trained word embeddings on a different dataset of which is popular
Word2vec.[11] Those vectors can capture similarities between words, popular examples are
queen and king. They would have similar vectors.

As Jason Brownlee said in his article, the best way to find out if you should use pre-
trained word embeddings or train them is to test which method of word embedding works best
for your use-case."Explore the different options, and if possible, test to see which gives the best
results on your problem. Perhaps start with fast methods, like using a pre-trained embedding,
and only use a new embedding if it results in better performance on your problem."[14]

When building the model, we choose the appropriate method for a specific problem,
some of which were mentioned earlier in this chapter, and then we train it. After that, we have
to test the model. Testing depends on the method of NLP but usually, it involves graphs to see
where it fails the most and it always includes giving new examples (examples that were not
used to train the model, i.e. the testing part of the dataset) to the model to see how it performs.

2.1.3. Why Python?

Python is the most popular programming language for Machine Learning[15]. In survey
that can be find here[15], Python is the most common choice for developers and researches in
the field of ML and Data analysis. Primarily the reason being easy syntax and a lot of libraries
which allow fast prototypes and testing of the end model.

Also, easy data validation. By using Python it is easier to find out why some algorithm is
not performing, while for example in C or C++ it can be hard to find is it a bug in implementation
or just a bad optimization. With Python, we create high-level abstractions for frameworks that
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allow treating most of the concepts as objects, and we do not have to worry about memory
management. It has well-built and optimized libraries and frameworks which save a lot of time.
Also, it has a low entry barrier, that allows the newer software engineers to learn and focus
on important aspects of machine learning and not on syntax. And the last point, it is portable
and extensible. Cross-language tasks can be performed effectively on python because of its
extensible and portable nature.[16]

2.2. Math Prerequisites

Topics that will be explained in this chapter are frequently used in machine learning. To
be completely correct without morphing this section into a 50 pages is hard task, while also
overtaking the rest of the thesis. For that reason a lot of details and mathematical tricks, bells
and whistles will be left out to capture the bigger picture. For those interested the sources for
more information in this section are [17] and [18]. This section should be a kind reminder of
what to recall, learn, remind yourself about, not a means to learn from it.

"A vector is an object that has both a magnitude and a direction."[19] For more complete
definition check out [17]. A vector is usually denoted as ~a. Two vectors are the same if they
have the same magnitude and direction. It is possible to define operations on vectors without
reference to a coordinate system. Some of which are subtraction, addition and multiplication
by scalar.

"Given a vector a and a real number (scalar) λ, we can form the vector λa as follows. If
λ is positive, then λa is the vector whose direction is the same as the direction of a and whose
length is λ times the length of a. In this case, multiplication by λ simply stretches (λ > 1) or
compresses (if 0 < λ < 1) the vector a.

If, on the other hand, λ is negative, then we have to take the opposite of a before
stretching or compressing it. In other words, the vector λa points in the opposite direction of a,
and the length of λa is |λ| times the length of a. No matter the sign of λ, we observe that the
magnitude of λa is |λ| times the magnitude of a: ‖λa‖ = |λ| ‖a‖".[19]

The frequent case in machine learning is multiplying to vectors together. The geometric
definition of the dot product says that the dot product between two vectors a and b is

a · b = ‖a‖ ‖b‖ cos(θ)

[19]

θ is the angle between vectors a and b. This formula is great for visualising and un-
derstating dot product but for using the formula in terms of vector components would make it
easier to calculate dot product between two vectors. When we take a look at unit vectors i, j, k
they are orthogonal, so any dot product with two distinct unit vectors is 0, i · k = i · j = j · k = 0.
The dot product between unit vector and itself is 1 because the angle is 0 and cos(θ) = 1,
i · i = j · j = k · k = 1. Expanding a · b in terms of components using unit vectors and
then simplifying by knowing products of unit vector we get the below formula. Scalar prod-

6



uct or dot product of vectors u = (u1, u2, u3) and v = (v1, v2, v3) is a scalar defined to be
u · v = u1v1 + u2v2 + u3v3.[20]

"Matrix multiplication or product between two matrices A and B is only defined if number
of columns in A is equal to number of rows in B. We multiply an m × n matrix A by an n × p
matrix B. The product AB is a matrix of size m× p."[21]

Formula for multiplying two matrices is

(AB)j,k =
n∑

r=1

Aj,rBr,k

[17]. The entry in row j, column k of AB is computed by taking row j of A, and column k of B,
multiplying together corresponding entries and then summing.

Let A be 2× 3 matrix

A =

[
3 −2 4

1 0 2

]
and B be the 3× 2 matrix

B =

1 4

2 −3

2 6


Then,

AB =

[
3 −2 4

1 0 2

]1 4

2 −3

2 6


=

[
3 ∗ 1 + (−2) ∗ 2 + 4 ∗ 2 3 ∗ 4 + (−2) ∗ (−3) + 4 ∗ 6

1 ∗ 1 + 0 ∗ 2 + 2 ∗ 2 1 ∗ 4 + 0 ∗ (−3) + 2 ∗ 6

]

=

[
7 42

5 16

]

In order to train the model gradient descent is used. Before showing any formulas
or presenting gradient descent in more detail, the good thing to look at is a simple neural
network(NN). Just as a reminder of a structure and composition of weights. Simple NN can be
seen below at Figure 4.

We are computing an estimate of loss L over the training set, computing the gradients of
the parameters Θ with respect to the loss estimate, and moving the parameters in the opposite
direction of the gradient. Partial derivative of the cost of the function C with respect to a weight
in the lth layer that connects kth neuron with jth neuron looks like this (2.1) where a represents
mth neuron in an Lth layer.[11]

∂C

∂wl
jk

=
∑

mnp...q

∂C

∂aLm

∂aLm
∂aL−1n

∂aL−1n

∂aL−2p

...
∂al+1

q

∂alj

∂alj

∂wl
jk

(2.1)
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Figure 4: Simple Neural Network; Source: [22]

The formula above represent a partial derivative with respect to weight and can be
found described in a lot more detail from this source [22]. A gradient of the function is a path
of the steepest ascent, in geometrical interpretation what path we need to take to reach a local
maximum in the least number of steps. And gradient descent is the path of steepest descent,
and we get it by taking steps proportional to the negative of the gradient. Another way of saying
is finding local minimum as a method of minimizing the loss function. A lot more information
about vector calculus, backpropagation and gradient descent can be found here [18].

Figure 5: Visualization of gradient descent; Source: [23]

Tensors can be defined as multidimensional arrays. A vector is a one-dimensional or
first-order tensor and a matrix is a two-dimensional or second-order tensor. They are highly
used in machine learning and also in the fields of physics and engineering. [24] In Python,
we can represent a tensor using an N-dimensional array(numpy.ndarray). The example be-
low shows the creation of a 3x3x3 tensor as NumPy ndarray. numpy.array function returns
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numpy.ndarray object type.

Listing 1: Tensor creation in Python

1 from numpy import array

2 T = array([

3 [[1,2,3], [4,5,6], [7,8,9]],

4 [[11,12,13], [14,15,16], [17,18,19]],

5 [[21,22,23], [24,25,26], [27,28,29]],

6 ])

7 print(T.shape)

8 print(T)

"Activation functions are used to define how the weighted sum of the input is trans-
formed into output. Activation functions are used in hidden and output layers. All hidden layers
usually use the same activation function, and the output layer can use a different one depending
on the type of predictions required by the model."[25] Linear functions are not used as activa-
tion functions because we can not use backpropagation(gradient descent) to train the model.
The reason for that being that derivative of a linear function is a constant and has no relation to
the input. That is why we use the non-linear functions shown below. Sigmoid activation(Figure:
6) function or logistic function is a function that has an S shape. The function takes any real
values as input and outputs values between 0 and 1.

s(x) =
1

1 + e−x

Figure 6: Sigmoid function; Source: [25]

The Hyperbolic tangent(Figure: 7) activation function(TanH for short) is similar to the
sigmoid function and it even has the S shape. The difference is it takes any real value as input
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and outputs the value between -1 and 1.

tanh(x) =
ex − e−x

ex + e−x

Figure 7: TanH function; Source: [25]

Rectified linear activation(Figure: 8) function(ReLU) is, at the moment, the most popular
activation function for hidden layers. The reason being its simplicity and effectiveness at over-
coming limitations of sigmoid and tanh functions. Specifically, it is less susceptible to vanishing
gradient. If the input value is negative then the output is 0.0, otherwise the value is returned.

relu(x) = max(0.0, x)

Figure 8: ReLU function; Source: [25]
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3. Transformer Architecture

In this chapter, we will take a detailed look at transformer architecture, explain the flow,
and explain how its components work.

Figure 9: The Transfomer - model architecture; Source: [2]

On the Figure 8 it is possible to see of which components does transformer architecture
consist of and its flow. Firstly, the input sentence is converted in more appropriate form for
machine learning which is a list of numbers with additional info, in this case positional info.
After the positional encoding on the left side of Figure 8 there is a structure of the encoder.

It consist of Multi-Head Attention whose job is to highlight connections between words,
and their relationship in the sentence. Also it consist of Feed forward network to further improve
representation of the input. In original paper there were 6 encoders [2] but number of encoders
and decoders is a parameter and by need it can be changed.

Encoders have now done their job and transformed the input sentence in the valuable
list of numbers. That list is used by decoder in its second Multi-Head Attention block to guide
focus depending on a input sequence. Decoder start its work by doing the same conversion of
the output in the list of numbers and the first difference being its Masked Multi-Head Attention
block whose job is to hide future words in the sentence when training so it does not have access
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to them. After that we come to the already mentioned second Multi-Head Attention block and
after that to the Feed Forward block with the same functionality as in the encoder. Now there
is a linear layer which is a classifier and we get a numerical value for every word in the corpus,
after that layer it is possible to choose the next predicted word with a help of Softmax function to
get probabilities for each word and choose one with the highest probability. Then the predicted
word with the rest of predicted words is fed into the decoder until end token is predicted or
maximum sentence length is reached.

3.1. Input Embedding and Positional Encoding

Input, in most cases a sentence, goes through the embedding layer. That is where
our clean sentence which had pre-processing applied to it is converted from a list of num-
bers(tokenization) to a vector.

Each word is converted into a vector of size 512(for the rest of the chapter the values
mentioned are values proposed in the original paper Attention is all you need). Output from
Input Embedding is a tensor of size numberOfWordsInASentenceX512. These embeddings
can be learned through the training to capture some insights between words or we can use
already pre-trained embeddings like Word2Vec. Then we apply positional encoding to those
vectors. Because transformer does not have recurrence like RNNs, we must add information
about positions into the input embedding. The authors of the original paper did that by using
sine and cosine functions. For every odd time step create a vector using cosine function and
for every even time step create a vector using sine function. Then add that vector to the corre-
sponding embedding vector. Those functions were chosen because they have linear properties
the model can easily use.[2]

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)

At the Figure 10 it is possible to see visually how the functions interweave and make up
a interesting pattern.

Input sentence: "The keyboard is working properly." Let’s say we have a embedding
vector for a word "keyboard" and it looks like this. [3.2, 0.4, 1.7, ..., 2.3, 4.1] We would want to add
a static positional vector to that vector, with the same size of 512. 512 is d in our formula, and
pos is position of a word in a sentence. For this example, "keyboard" is the second word in the
sentence so pos is equal to 1. The letter ’i’ in the above equations is index of embedding vector
0 for 3.2, 1 for 0.4 and so on. If we chose embedding dimension of 64 and for 10 tokens this
figure would represent that.
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Figure 10: Visual representation of positional encoding; Source: [26]

3.2. Multi-Head Attention

In this block, self-attention is performed. Self-attention is a way for the model to learn
which words to focus on when processing some other word. For example, if we have the
sentence ”The animal didn’t cross the street because it was too tired", we want to answer the
question what word does ’it’ refer to. Is it the animal or a street or something third? Self-attention
is a way of learning that ’it’ refers to the animal.[27]

Figure 11: Attention for the word ’it’; Source: [27]

The inputs are forwarded into three fully connected linear layers. They are named,
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query, key, and value.[28]

Figure 12: Scaled dot product attention; Source: [2]

Query and key matrices undergo dot product matrix multiplication to produce a score
matrix. At the begging random numbers are initialized to query, key and value matrices. The
first step is to multiply input matrix with the query, key and value matrices. To get Q, K and V
matrices as shown on the figure below (Figure: 13).

Figure 13: Workings Of Self-Attention; Source: [29]

After that we can start multiplying Q and K matrices to get the score matrix, that step
is shown on Figure 14 as the first MatMul looking from the bottom of the figure. The score
matrix determines how much focus should word put on other words. The higher the score the
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higher the focus. For our input sentence "The keyboard is working properly". The size of the
score matrix would be 5x5, because that is what we get when multiplying the 5x64 matrix with
another 5x64 matrix which is transposed so its size is 64x5(dimension of 64 as in the paper, it
does not have to be that value). Then the score matrix is scaled down by dividing by square
root of the dimension of the queries and the keys. That way we minimize exploding gradients.
Exploding gradient is a phenomenon which occurs when training the neural network during
backpropagation. While calculating gradients toward input layer they are getting bigger, and
that causes very large weight updates and causes gradient descent to diverge [28].

Figure 14: Score Matrix;Softmax(Q∗K
T

√
d

); Source: Made in PowerPoint

Then we apply the softmax function, which results in higher scores getting bigger and
lower scores smaller. Then we take attention weights and multiply them by value vector to get
the output vector which we send through the linear layer to process. It is called multi-head for
reason that there is more than one set of the query, key, and value vector. Each self-attention
is called a head. Output from every head(8) is concatenated into one big matrix of size 5x512

which then goes through the linear layer. Idea behind that is that each head is going to learn
specific attention and that results in the model having more representation power.[28]

3.3. Feed Forward

After the multi-head attention block, there is a feed-forward block. The feed-forward
block consists of a few fully connected linear layers to further improve the representation of the
input. Each word in a sentence goes through feed-forward network, it is just a linear layer that
gets applied to every word or position [28].

To the output from the multi-head attention block, original input is added and normal-
ization is applied. That is called the residual connection. Residual connections help the model
train by allowing gradients to flow through the model directly and retrain the residuals. A layer
of normalization is stabilizing the model by normalizing each feature, in contrast to the batch
normalization which is normalizing each sample. More about layer normalization can be found
from this source[30]. For example, let’s say we have the table shown below.

This table(Figure 16) represents input embeddings of a short sentence with dimension
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Figure 15: Representation of liner layer; Source: [29]

Figure 16: 3x5 matrix of input embeddings; Source: Made in PowerPoint

of 5 for this example. Usually it is much bigger, in the paper and our practical example we use
size of 512. For normalizing each element of a word embedding xi,k we use this formula:

x̂i,k =
xi,k − µi√
σ2i + ε

Formula can be find from this source [31] but it was first presented here [30]. If we apply
that formula for the first word and first element

x̂0,0 =
1.23− 0.81√

0.432 + 0.00001

we get normalized value for x̂0,0 = 0.98. ε is only for numerical stability and it represents
a small number in case the denominator becomes zero by chance.

3.4. Output Embedding and Masked Multi-Head Attention

The decoder’s job is to generate text sequences. It has similar layers to the encoder
layer, the difference being an additional masked multi-head attention layer. The decoder is
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autoregressive, it takes a list of previous outputs as inputs and the encoder outputs that contain
the attention information from the input. The decoder stops generating when it receives the
end token as an output. Output embedding is the same size as input embedding with the same
number of columns, 512 [28].

Input for the decoder is a sentence in a different language or answer to the question if
we are working with a chatbot. Then it goes through the same positional encoding. Masked
multi-head attention is a bit different because the decoder is autoregressive and we need to
prevent it from looking at future tokens while training. For that reason, look-ahead mask is
applied before softmax and after calculating the scores. The second multi-head attention layer
takes values and keys from the output from encoder to know on which words from input to focus
on and it creates queries from the data flowing from below.

The Decoder differs from the encoder by three components that work slightly different:
Masked Multi-Head Attention, last Linear Layer and Softmax. That can be seen on Figure 9.

Starting input for the decoder is a "start" token which goes through embedding layer
which converts it to a embedding vector and then positional encoding is applied the same as
in encoder block. After that it goes to Masked Multi-Head Attention block. The answer to the
sentence ("The keyboard is working properly") in previous example is "Yes it is". After calcu-
lating the scores in Masked Multi-Head Attention attention mask in applied to attention scores.
Attention scores for the answer "Yes it is" could be something like this Figure 17(Numbers in
the examples below are just for the visual aid, they are not calculated).

Figure 17: Attention Scores Decoder; Source: Made in PowerPoint

At the Figure 18 attention mask can be seen. Negative infinities are in places we want
to mask so decoder can not use attention weights of the future words. Mask is added to the
attention scores and then the softmax function is applied. After than we get result which can
be seen on Figure 19.

The next block is Multi-Head Attention. It works exactly the same as in the encoder with
only difference being that key and values matrices come from the output of the encoder. Key
and values matrices are copies of the output from the encoder [28].
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Figure 18: Attention Mask; Source: Made in PowerPoint

Figure 19: Attention Scores After The Mask and Softmax are applied; Source: Made in Power-
Point

3.5. Output

The penultimate layer is the linear layer that acts as a classifier. If a vocabulary size is
14000 the output is going to be 14000. And then that output is fed into the softmax layer to get
probabilities for each word. Index of the highest score is taken and that is the predicted word.
It is predicting until the end token is reached.

The answer "Yes it is" is of size 5 when "start" and "end" token are included. Let the
imaginary vocabulary size be 14000. That means that the output from last decoder is a matrix
of size 5x512. That output is going into linear layer of size 512x14000 and then the final matrix
has size 5x14000. That can be seen visually on Figure 20. Softmax function is applied to
get probabilities for each word in our vocabulary and we choose the words with the highest
probabilities.
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Figure 20: Visualization of Linear Layer Calculations; Source: Made in PowerPoint
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4. Practical Example

In this chapter transformer-based generative chatbot is going to be made. The goal of
this chapter is not to make state-of-the-art model that can be competition to BERT or similar
models. The goal of this chapter is to show basic flow of NLP and practical example where
Transformer architecture is used.

In first section it is shown how dataset was prepared for NLP with code snippets and
short explanations. In the second section of this chapter development of the chatbot will be
tackled, that includes preparing functions that convert data in more suitable format for training
and later evaluation, and components of Transformer Architecture. The last section of this
chapter will be testing the chatbot, in that section multiple parameters are going to be changed
and then we will compare the results.

4.1. Preparing the Dataset

The dataset used in this practical example is a popular dataset with 220,579 conversa-
tional exchanges with the name Cornell movie dialog corpus. The dataset can be found on this
source [32].

Listing 2: Importing The Dataset

1 import pandas as pd

2 data = pd.read_csv("/content/drive/MyDrive/Cornel-Question&Answers-shorterVersion2.

csv")

3 pd.set_option(’display.max_colwidth’, None)

4 data.head()

Figure 21: Importing The Dataset; Source: Github Repository 1

At the Figure 21 and Listing 2 it can be seen that dataset is being imported using pandas
library [33]. Pandas library is an open source data analysis tool which in this case helped to
import the csv file. First few rows of the dataset are printed and already some unnecessary
characters can be seen. For example, in the row 4 there are dashes like this "–". That can hurt
the training because those characters are adding adversity we do not need to understand the
sentence. Also, contractions can be noticed. They introduce diversity in the dataset because
sometimes short form of some part of the sentence and sometimes the long one is used. The
example being in the row three in the column named question, "You’re" can later in dataset
be written as "You are" and we would have two different tokens for the same meaning. The
important thing to note is that shorter version of said dataset is used, 15000 pairs of question
and answer. The reason for that being speed of the training, which is going to be discussed
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more in section Testing The Chatbot.

Listing 3: Fixing contractions

1 data[’question_tokenized’] = data[’question’].apply(lambda x: [contractions.fix(word

) for word in str(x).split()])

2 data[’answer_tokenized’] = data[’answer’].apply(lambda x: [contractions.fix(word)

for word in str(x).split()])

3 data.head()

Figure 22: Fixing contractions; Source: Github Repository 1

In Figure 22 and Listing 3 it is possible to see that short forms of words are turned into
the long ones. The same example in the row three and now in the column "question_tokenized"
is now in his long form "You are".

The next step is to convert all words to the lowercase. Example of doing that can be
seen on Figure 23 and Listing 4. The reason for using lowercase form of the words is the same
as before, for fixing contractions and getting rid of unnecessary characters. Diversity is being
removed, so we do not have multiple tokens in our dictionary that mean the same thing, as that
can lower accuracy of the chatbot.

Listing 4: Lower All The Words

1 data[’question_tokenized’] = data[’question_tokenized’].apply(lambda x: [word.lower

() for word in x])

2 data[’answer_tokenized’] = data[’answer_tokenized’].apply(lambda x: [word.lower()

for word in x])

3 data.head()

Figure 23: Lower All The Words; Source: Github Repository 1

On Figure 24 and on Figure 5 it is possible to see the result of removing unnecessary
characters. But we still have some, so custom function is used to further clean the dataset.
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Only question marks are left because use of a question mark can change the meaning of a
sentence drastically. Use of the custom function and its result can be seen on Figure 25 and
Listing 6.

Listing 5: Removing Unnecessary Characters

1 punc = string.punctuation

2 data[’question_tokenized’] = data[’question_tokenized’].apply(lambda x: [word for

word in x if word not in punc])

3 data.head()

Figure 24: Removing Unnecessary Characters; Source: Github Repository 1

Listing 6: Removing Unnecessary Characters With The Custom Function

1 def clean(x):

2 for i,word in enumerate(x):

3 wordNew = re.sub(’[\-_,.‘"\’]’, ’’, word)

4 if len(wordNew)<1:

5 x.remove(word)

6 elif word != wordNew:

7 x[i] = wordNew

8 return x

9 data[’question_tokenized’].apply(lambda x: clean(x))

10 data[’answer_tokenized’].apply(lambda x: clean(x))

11 data.head()

Figure 25: Removing Unnecessary Characters With The Custom Function; Source: Github
Repository 1

Now that the dataset is clean, we are going to count the words. On Figure 26 and Listing
7 it is possible to see mapping of each word into a number that represent how many times in a
dataset that word is repeated, and number of unique words in the dataset(12642).

Listing 7: Number Of Unique Words And Number Of Repetitions For Each Word
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1 word_count = {}

2 for question in data[’question_tokenized’]:

3 for word in question:

4 if word not in word_count:

5 word_count[word] = 1

6 else:

7 word_count[word] += 1

8 for answer in data[’answer_tokenized’]:

9 for word in answer:

10 if word not in word_count:

11 word_count[word] = 1

12 else:

13 word_count[word] += 1

14 print(len(word_count))

15 print(word_count)

Figure 26: Number Of Unique Words And Number Of Repetitions For Each Word; Source:
Github Repository 1

On Figure 27 and Listing 8 four main tokens are introduced. "<PAD>" will be used as
padding when sentences are of different length. Length taken is length that corresponds to the
biggest length of the sentence in a batch of sentences and pad the rest so they have the same
length[28]. Batch size is a parameter we choose and can depend on a dataset and purpose of
the model [28] and for the best results it is the best to test it. The main reason for using batches
is to improve training time and escape looping thorough every example in dataset and doing
back-propagation. The next token is "<OUT>" that is the token used when the word is not in our
word_indexed dictionary because it is to rare in the dataset. Threshold set for removing words
is set to 5, that means only words that can be found more than 5 times in the dataset will be
used for training. The reason being that there is a high chance of a word being misspelled or a
name, and lowering time needed for training.

Listing 8: Number Of Words In The Final Dictionary And Words being Uniquely Mapped To A
Number

1 threshold= 5

2 words_indexed = {}

3 word_number = 4

4

5 tokens = [’<PAD>’, ’<OUT>’, ’<SOS>’, ’<EOS>’]

6 for token in tokens:

7 words_indexed[token] = len(words_indexed)

8

9 for word, count in word_count.items():

10 if count >= threshold:

11 words_indexed[word] = word_number

12 word_number += 1

13

14 numberOfWords = len(words_indexed)
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15 print(numberOfWords)

16 print(words_indexed)

Figure 27: Number Of Words In The Final Dictionary And Words being Uniquely Mapped To A
Number; Source: Github Repository 1

Then tokens "<SOS>" and "<EOS>" that represent start of sentence and end of sen-
tence tokens, which are used by Transformer to have the starter token to start generating and
end token to stop when that token is reached. Code used for adding those two tokens can be
found on Listing 9 and examples of sentences after the tokens are added on Figure 28.

Listing 9: Adding "<SOS>" AND "<EOS>" Tokens To The Sentences

1 for question in data[’question_tokenized’]:

2 question.append(’<EOS>’)

3 question.insert(0,’<SOS>’)

4

5 for answer in data[’answer_tokenized’]:

6 answer.append(’<EOS>’)

7 answer.insert(0,’<SOS>’)

8 print(data[’question_tokenized’])

Figure 28: Added SOS AND EOS Token To The Senteces; Source: Github Repository 1

Now the only thing left to do is to add "<OUT>" tokens and convert words into number
using the word_indexed dictionary that was made before. Code for that part can be seen on
Listing 10 and on Figure 29 it is possible to see converted sentences.

Listing 10: Converting Sentences To Integers

1 def convertToInt(inputSen):

2 global words_indexed

3 sen_into_int = []

4 for word in inputSen:

5 if word not in words_indexed:

6 sen_into_int.append(words_indexed[’<OUT>’])

7 else:

8 sen_into_int.append(words_indexed[word])

9 return sen_into_int

10

11 data[’question_tokenized_int’] = data[’question_tokenized’].apply(lambda x:

convertToInt(x))

12 data[’answer_tokenized_int’] = data[’answer_tokenized’].apply(lambda x: convertToInt

(x))

13 data.head(50)
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Figure 29: Sentences Converted To Integers; Source: Github Repository 1

4.2. Development of the Chatbot

For the base transformer architecture Tensorflow Resources will be used as a source
[34]. It uses the same parameters as presented in paper "Attention is all you need"[2]. The
difference being sizes of those parameters, smaller sizes of number of layers, and neurons
in deep feed-forward network. The reason being computational strength and time of training.
Parameters used can be seen in Listing 11.

Listing 11: Parameters Used In Transformer Architecture For Our Model

1 num_layers = 4

2 d_model = 128

3 dff = 512

4 num_heads = 8

5 dropout_rate = 0.1

Dropout rate is technique used to improve accuracy of chatbot predictions on new inputs
by stopping network from over-fitting, or said in another words learning to much on specific
dataset so it does not perform good on new inputs. More accurate description is this one
from Goldberg. "Another effective technique for preventing neural networks from overfitting
the training data is dropout training. The dropout method is designed to prevent the network
from learning to rely on specific weights. It works by randomly dropping (setting to 0) half of the
neurons in the network (or in a specific layer) in each training example in the stochastic-gradient
training."[11]

Now that base parameters are defined, we can start working on Transformer Architec-
ture. The code can be found in this Github Repo 1 and is originally from [34]. For that reason
code will not be explained as it supersedes range of this thesis, focus will be on changes that
had to be made to the dataset we had tokenized, to be able to fit in and correlate with the
structure that is requested by transformer from TensorFlow.
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Data we have is in a list and we want this datatype:
<class ’tensorflow.python.data.ops.dataset_ops.PrefetchDataset’>. First is needed to convert
our data into a Tensorflow(TF) Dataset type and then use .prefetch() function from TF to convert
it to PrefetchDataset Code for this part can be seen on Listing 12.

Listing 12: Converting Data To An Appropriate Format

1 listOfQuestionsNpArray=data[’question_tokenized_int’].values

2 listOfAnswersNpArray=data[’answer_tokenized_int’].values

3 tensorQuestions=tf.ragged.constant(listOfQuestionsNpArray,dtype=tf.int64)

4 tensorAnswers=tf.ragged.constant(listOfAnswersNpArray,dtype=tf.int64)

5 datasetNew = tf.data.Dataset.from_tensor_slices((tensorQuestions,tensorAnswers))

6 def make_batches(ds):

7 return (

8 ds

9 .cache()

10 .shuffle(BUFFER_SIZE)

11 .batch(BATCH_SIZE)

12 .map(converToTensor, num_parallel_calls=tf.data.AUTOTUNE)

13 .prefetch(tf.data.AUTOTUNE))

14

15

16 train_batches = make_batches(datasetNew)

Also, helper function are needed. Helper function convertSentenceToTensor can be
found on Listing 13. Its purpose is to convert a sentence user types into a form our model can
work with. It consist of basic NLP preprocessing and then conversion to tensor datatype and ex-
panding a dimension. Because the model does not accept [2,34,56,2] but accepts [[2,34,56,2]].

Listing 13: convertSentenceToTensor Function

1 def convertSentenceToTensor(sentence):

2 sentence = [contractions.fix(word) for word in str(sentence).split()]

3 sentence = ’ ’.join(map(str, sentence))

4 sentence = str(sentence).split()

5 sentence = [word.lower() for word in sentence]

6 sentence = [word for word in sentence if word not in punc]

7 sentence = clean(sentence)

8 sentence.append(’<EOS>’)

9 sentence.insert(0,’<SOS>’)

10 sentence = convertToInt(sentence)

11 sentence = tf.convert_to_tensor(sentence, dtype=tf.int64)

12 sentence = tf.expand_dims(sentence, 0)

13 return sentence

Example of simple sentence and result when that function is applied to it, can be seen
on Figure 30.

Figure 30: Convert Sentence To Tensor Example; Source: Github Repository 1
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Listing 14: fromIntToWords() Function

1 inv_words_indexed = {value:key for key, value in words_indexed.items()}

2 def fromIntToWords(output):

3 sentence = []

4 for number in output[0]:

5 #print(inv_words_indexed[number])

6 #with tf.Session() as sess: print(number.eval())

7 word = inv_words_indexed[number.numpy()]

8 if number.numpy() not in [0,1,2,3]:

9 sentence.append(word)

10 sentence = " ".join(sentence)

11 return sentence

On Listing 14 it is possible to see another helper function that is used to convert list
of numbers into a sentence. It is used when model makes its prediction and return a list of
numbers, then we have to convert it back to a readable sentence. Example of use can be seen
on Figure 31.

Figure 31: Sentences Converted To Integers; Source: Github Repository 1

Also, the function where a lot of custom changes were made is called evaluate and
can be seen on Listing 15. Changes include using our converter to tensor, custom function for
returning start and end tokens, or to be more precise for returning their indexes. Also, as in
the end printing attention_weight is not of such a value we removed that, but it is highly useful
when trying to figure out good parameters and see how weights are changing.

Listing 15: evaluate Function

1 inv_words_indexed = {value:key for key, value in words_indexed.items()}

2 def evaluate(sentence, max_length=40):

3 sentence = convertSentenceToTensor(sentence)

4 encoder_input = sentence

5 start, end = returnTokens()

6 output = tf.convert_to_tensor([start])

7 output = tf.expand_dims(output, 0)

8

9 for i in range(max_length):

10 enc_padding_mask, combined_mask, dec_padding_mask = create_masks(

11 encoder_input, output)

12

13 # predictions.shape == (batch_size, seq_len, vocab_size)

14 predictions, attention_weights = transformer(encoder_input,

15 output,

16 False,

17 enc_padding_mask,

18 combined_mask,

19 dec_padding_mask)
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20

21 predictions = predictions[:, -1:, :] # (batch_size, 1, vocab_size)

22 predicted_id = tf.argmax(predictions, axis=-1)

23 # concatentate the predicted_id to the output which is given to the decoder

24 # as its input.

25 output = tf.concat([output, predicted_id], axis=-1)

26 # return the result if the predicted_id is equal to the end token

27 if predicted_id == end:

28 break

29

30 text = fromIntToWords(output)

31 return text

High overview of Transformer class can be seen on Listing 16 where it is possible to
see main components. Those are Encoder, Decoder and final layer, and with what parameters
they are initialized.

Listing 16: Transformer class

1 class Transformer(tf.keras.Model):

2 def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,

3 target_vocab_size, question_input, answer_target, rate=0.1):

4 super(Transformer, self).__init__()

5

6 self.encoder = Encoder(num_layers, d_model, num_heads, dff,

7 input_vocab_size, question_input, rate)

8

9 self.decoder = Decoder(num_layers, d_model, num_heads, dff,

10 target_vocab_size, answer_target, rate)

11

12 self.final_layer = tf.keras.layers.Dense(target_vocab_size)

4.3. Testing the Chatbot

In this section the bot will be tested and its performance will be analyzed when working
with unfamiliar data. Parameters that were used to train chatbot are batch size of 32, and
threshold for words equal to 5. Important thing to note is that the chatbot was trained on 5000
pairs on questions and answers, the reason being speed of training. On Figure 32 it is possible
to see accuracy on training dataset after 350 epochs(it says epoch 25 because training was
started from a checkpoint). Accuracy of 86.12% is in theory really good, and only after 350
epoch for which it took more than 17 hours in total.

Real life results show good results, but if taken into consideration that only 5000 pairs
of questions and answers are used and in only 350 epochs of training, they can be considered
really good for a basic Transformer Architecture. The terms good and really good are subjective
terms, so the best way is to show examples of conversations. Example of a short conversation
can be seen on Figure 33. Input is original input from human, not from a dataset, and a
prediction is the output chatbot gives.
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Figure 32: Results After 350 Epochs: Github Repository 1

Using GPU from Google it takes around 17 seconds for one epoch using parameters
above, that is reasonable and can be used, and on my hardware it takes around 3 minutes and
30 seconds. And those were the stats when the above chatbot was trained.

On 15000 pairs and with threshold of 5 on Google GPU it takes about 40 seconds and
on my hardware about 5 minute for one epoch. But, Google GPU is limited and depending on
a request from other users it is distributed, so it frequently disconnects.

Before settling on the parameters above, few of them were tested on first five epochs
to see its performance. All tests were done on 5000 pairs. These are the results after the fifth
epoch:
batch_size = 16 and threshold = 5 results in average accuracy of 31.54%
batch_size = 32 and threshold = 5 results in average accuracy of 31.10%
batch_size = 32 and threshold = 2 results in average accuracy of 29.52%
batch_size = 64 and threshold = 5 results in average accuracy of 29.38%
batch_size = 16 and threshold = 2 results in average accuracy of 28.51%
batch_size = 64 and threshold = 2 results in average accuracy of 27.21%

Chosen pairs as before stated were parameters of batch_size equal to 32 and threshold
equal to 5. Even though the best result is at the batch_size equal to 16 and the threshold
equal to 2, that combination was not chosen because of the training time. To train the model
with batch_size of 16 for one epoch it takes on average 48 second with Google GPU and on
average 16 second with batch_size of 32. That is a substantial difference which is not worth
the 0.4 percent increase in accuracy, and decrease in time for training is substantial.
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Figure 33: Short Conversation Between Human And Chatbot: Github Repository 1
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5. BERT

"BERT is short for Bidirectional Encoder Representations from Transformers. BERT
only uses blocks of the encoders of the Transformer in a novel way that does not make use of a
decoder stack "[28]. BERT has the ability to not only look at the past words but looks at all the
words in the sentence just like us humans. BERT (base) consists of 12 encoder blocks, like the
one shown in Figure 34. BERT (large) consists of 24 encoder blocks.

Figure 34: The Encoder block; Source: [28]

BERT obtained state-of-the-art results on eleven natural language processing tasks. A
good example to single out is its performance at GLUE(The General Language Understanding
Evaluation). Both BERT(base) and BERT(large) outperformed all systems on all tasks by a
substantial margin, they obtained on average 4.5% and 7.0%, respectively, the improvement
over the prior state-of-the-art.[3]

Figure 35: BERT - GLUE performance; Source: [3]

The reason for mentioning BERT in this thesis is that BERT at the moment of writing
is one of the best tools available for understanding human language, along with RoBERTa,
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ALBERT and XLNet[35]. What differentiates BERT from previous language models is its ability
to learn on the entire set of of words in a corpus or sentence rather than learning from ordered
sequence that is left to right or right to left. That is more like us homo sapiens approach to a
sentence, before deciding meaning of a word in a sentence we look at the words that precede
it and follow it, not one way or the other.

At the end of 2019 Google started using BERT in its search engine and it greatly improve
quality of the results after the search.[36]

Figure 36: Comparison Between Old And New Search Results(After BERT); Source: [36]

At Figure 36 it is possible to see a difference in the search results for search "2019 brazil
traveler to usa need a visa". Before implementation of BERT in the Google search engine,
Google understood the query as if US citizen wanted to travel to Brazil, which is wrong. After
the implementation of BERT, Google correctly recognized that the person behind query wants
to know if he can travel to US without visa if he is Brazil citizen.
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6. Conclusion

In conclusion, Transformer Architecture cleverly uses attention to not require additional
neural network like LSTM does to keep track of long dependencies between words in a sen-
tence. Additionally, it allows parallelization of calculations, and that enables faster training,
whereas in classic RNNs calculations are performed sequentially. Parallelization can be tracked
through the whole model, even in the decoder, where it uses a clever trick called masking to
achieve it. Furthermore, its performance produces state-of-the-art results in more than 10 NLP
tasks using modified architecture like BERT, whose architecture is based on a stack of Trans-
former encoders, or ALBERT. Those facts make Transformer Architecture go-to architecture
for solving NLP tasks, chatbots, text generation, machine translation, and many other different
application areas.

The chatbot made was a success and there is already some indication of understanding
the meaning of the sentence on just 5000 pairs of questions and answers and 350 epochs of
training. It is definitely not close to a human in any way, but it was also not a goal to make
a state-of-the-art chatbot, as it would take a lot more research and resources to do so. The
goal was to use combined theoretical concepts from this thesis into a practical example while
at the same time marveling at the genius of those ideas while building a chatbot, and that was
accomplished.
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Appendix



1. Code Appendix

Link to the code on Github:

https://github.com/markoBel3/Generative-Chatbot-TransformerArchitecture
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