
Razvoj modela strojnog učenja koji igra video igru
žanra platformer u alatima Unity i TensorFlow

Alilović, Dario

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:449377

Rights / Prava: Attribution 3.0 Unported / Imenovanje 3.0

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:449377
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:7494
https://repozitorij.unizg.hr/islandora/object/foi:7494
https://dabar.srce.hr/islandora/object/foi:7494

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

VARAŽDIN

Dario Alilović

DEVELOPING A MACHINE LEARNING
MODEL FOR PLAYING A PLATFORMER

VIDEO GAME IN UNITY AND TENSORFLOW

MASTER’S THESIS

Varaždin, 2022

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

V A R A Ž D I N

Dario Alilović

Student ID: 0016130019

Programme: Information and Software Engineering

DEVELOPING A MACHINE LEARNING MODEL FOR PLAYING A
PLATFORMER VIDEO GAME IN UNITY AND TENSORFLOW

MASTER’S THESIS

Mentor:

Bogdan Okreša Ðurić, PhD

Varaždin, September 2022

Dario Alilović

Statement of Authenticity

Hereby I state that this document, my Master’s Thesis, is authentic, authored by me, and that,
for the purposes of writing it, I have not used any sources other than those stated in this thesis.
Ethically adequate and acceptable methods and techniques were used while preparing and
writing this thesis.

The author acknowledges the above by accepting the statement in FOI Radovi online system.

i

Abstract

This thesis deals with game development and the use of artificial intelligence in the domain
of video games, especially artificial neural networks. It covers some of the basics of game
development in the Unity game engine, as well as some basics of machine learning and artificial
intelligence. Basically, it follows the process of developing a platform game using the Unity
game engine and applying a deep q learning algorithm, developed using the Python library
TensorFlow, to teach the agent how to play said game. The thesis concludes that Unity is an
excellent reinforcement learning tool since it provides a secure and modular environment in
which agents can learn.

Keywords: AI; Machine Learning; Unity; TensorFlow; Game development; Platformer; Neural
networks

ii

Table of Contents

1. Introduction . 1

2. Work Methods and Techniques . 2

3. Game Development . 3

3.1. Unity Engine . 3

3.1.1. Unity Interface . 4

3.1.2. 2D Game Development Support . 11

3.1.3. Animations . 14
3.1.4. Scripting . 15

3.2. Platformer Games . 18

4. Artificial Intelligence . 19

4.1. Introduction . 19
4.2. Machine Learning . 20

4.2.1. Neural Networks . 20
4.2.2. Support Vector Machines . 24

4.2.3. Decision Tree Learning . 24

4.2.4. Q-learning . 25

4.2.5. Clustering . 26

4.2.6. Frequent Pattern Mining . 27

5. Practical Example . 28

5.1. Making a Game . 28

5.1.1. Implementing the Player . 28

5.1.2. Creating the Environment . 38

5.1.3. Background . 46

5.1.4. GUI . 47
5.2. Creating a Machine Learning Model . 49

6. Conclusion . 63

Bibliography . 67

List of Figures . 69

List of Tables . 70

iii

List of Listings . 71

iv

1. Introduction

Video games have been around for a while, improving in gameplay and graphics along
the way. Today there are many games in different genres and styles to choose from and they all
have their own setting and rules. We as humans observe these environments using our senses
such as sight and hearing, and take appropriate actions based on those senses. While in the
past it was extremely difficult to develop a game and often required an entire team, today one
person can make a game of their choice thanks to advances in programming languages and
more importantly game engines that provide the building blocks for such tasks.

This begs the question: can a computer learn to play a game by itself, using and reacting
to its own senses? The answer to this question is yes and this thesis explores this question.
This is where artificial intelligence comes into play. This area of research is one of the fastest
growing areas today and opens the door to many possibilities. Learning how to play a game is
just one example of using artificial intelligence. Although the goal of video games is to provide
entertainment, they can also be used as an environment for teaching some machine learning
algorithms. For example, a good car driving game simulation can act as an environment for
teaching algorithms for self-driving cars since they cannot be put into traffic to learn. Because
AI is so versatile, many other fields can benefit from this type of learning because learning in
simulations is a much safer alternative to real-life trial and error. A great example of this is
probably in the medical field, where an AI powered surgical assistant could not learn to operate
on real people.

There are a lot of other uses for AI, but this thesis will be focusing primarily on its use
in video games. The thesis will cover some basics of video game development, specifically 2D
platformers, some of the basics of artificial intelligence and machine learning and examples
of some of the algorithms. Finally, to conclude everything, a practical example of a platformer
game is presented together with a neural network brain that learns how to behave in the game
world.

1

2. Work Methods and Techniques

The first part of the thesis refers to game development and the description of the plat-
former game genre. This part mainly covers the basics of the Unity engine which is the chosen
tool for the game development part of the thesis, along with Visual Studio for scripting. Most
of the information needed to develop a game comes from Unity’s documentation, which is ex-
tremely user-friendly and easy to navigate. Because of this, most tasks from creating simple
objects to animating those objects are easy to implement. The visual part of the game (i.e.
level tiles, obstacles, pickups, ...), except for the player character and the parallax background,
is hand-drawn using GIMP.

The second part of the thesis deals with artificial intelligence and machine learning.
This section covers some of the basics of artificial intelligence and four approaches to it. It also
dives deeper into machine learning, a subfield of artificial intelligence, describing all types of
machine learning and several algorithms that belong to a particular type. All information on this
topic comes from various books on artificial intelligence and machine learning, along with some
scientific journals from Google Scholar and various websites that focus on this topic. The tools
used to develop the AI part are the Python programming language whose code was written
in Visual Studio Code, along with several python libraries, notably mlagents, TensorFlow and
Keras.

Finally, to connect these two parts, Unity mlagents toolkit package is used. The ap-
proach taken for the whole project is as follows. First, the learning agent is provided with
sensors that observe the world in which it is located. This is important because a neural net-
work that will adapt to that world needs concrete observations as input to be able to react to
them. These observations are then sent to a Python program that generates an action for the
agent. The agent then performs that action and gives the network an appropriate reward or
penalty depending on the quality of that action. The network then calculates the value of the
loss and adjusts its weights accordingly. This process does not stop until the player dies or a
set time expires (so the player does not get stuck) and spans multiple iterations.

2

3. Game Development

Game development is a process of developing a game. The whole process of develop-
ing a video game can be done by a single person or by a huge game making company with
teams dedicated to a specific part of the whole process. A single developer today can develop
a whole game in reasonable amount of time thanks to game development software, or game
engines, that became easily accessible and widespread in the recent years [1].

Game engines make the whole process of developing a game much easier, which is
why many developers choose to use them for their games. Most of them have built-in features
that handle rendering for 2D and 3D, collision detection and physics, sound and other features
along with the ability to write custom scripts [2].

Some of the more popular game engines are:

• Unity Engine

• Unreal Engine

• CryEngine

• Game Maker

• Construct

For the purposes of this paper, the Unity Engine will be used, which will be discussed in the
following chapter.

3.1. Unity Engine

Unity is a game engine that supports development of video games on most platforms
including desktops, computer consoles, virtual reality, augmented reality, mobile devices (an-
droid, iOS), TV platforms, Web platforms and others [3]. David Helgason, Nicholas Francis and
Joachim Ante developed the first version of Unity, which was released in 2005. They continued
improving the engine until 2008 when Unity began to grow in popularity, which allowed the com-
pany to expand. That same year, Apple introduced its App Store, which caught the attention
of Unity developers. They soon developed support for Apple’s iPhone, and since they were the
first in the industry to do so, Unity’s popularity skyrocketed. Large companies, such as Cartoon
Network, began using Unity to develop their own games, which further boosted the success of
the engine. Today, Unity is among the leading, if not the largest, environments for video game
development [4].

Although it is famous for its 3D capabilities, Unity can also be used to create 2D games,
for which it has some specific tools, along with tools that are used for both the 3D and 2D
development. The first difference that can be seen is the 2D view mode button located in the
top toolbar of the scene view which, when enabled, sets up the orthographic view that locks

3

the camera to look along the Z axis while the Y axis is the one pointing upwards [5]. This thesis
will focus exclusively on 2D development, and will not discuss any of the 3D specific features,
or any features that will not be used in developing a platformer game.

In the following few sections the Unity interface is addressed, and explained in detail the
purpose of all of its components that are used for the purposes of this thesis, specifically for the
process of developing a game.

3.1.1. Unity Interface

The project window, shown in figure 1, is a part of the interface that contains all the files
and directories related to the current project and it is the main way of finding files like assets,
images, sounds and other files that would be used. When starting a project, this window is
open by default and is typically located at the bottom of the screen. It consists of two columns,
one showing the file hierarchy and the other showing the contents of the currently selected
folder as a visual preview [6].

Figure 1: Project window

Top edge of the project window is the location of the browser toolbar. This toolbar has
a few tools related to the project window and its functions can be seen in table 1.

Table 1: List of tools in browser toolbar [6]

Property Description
Create menu Displays a list of Assets and other sub-folders you can add to the folder

currently selected.
Search bar Use the search bar to search for a file within your Project. You can

choose to search within the entire Project (All), in the top level folders
of your Project (listed individually), in the folder you currently have se-
lected, or within the Asset Store.

Open in Search Opens the Unity Search tool to refine your search.
Search by Type Select this property to confine your search to a specific type, for example

Mesh, Prefab, Scene.
Search by Label Select this property to choose a tag to search within.
Save Search Saves your search under Favorites in the left panel.
Hidden packages
count

Select this property to toggle the visibility of the packages in the Project
window.

The Scene view, shown in figure 2 is the interactive part of the interface, which is used while
creating a world. It can be used to select and position elements like characters, lights, cameras

4

or other game objects [7]. This view is essentially the main part of the interface as it is used to
create most of the visual parts of the game.

Figure 2: Scene view

To navigate the scene view, arrow keys can be used, as well as the mouse. Arrow key
navigation is pretty much how it would be expected as in up and down keys move camera up
and down and left and right keys move it sideways. The mouse navigation works on a drag
principle, which is implemented in two ways: Alt + middle-click + drag or Alt + Control + left-
click + drag. Holding a right mouse click allows user to pan around scene view. To zoom in
inside the scene view the user can choose between two options: scroll wheel or Alt + right-click
+ drag [8].

Game objects placed inside the scene view can be selected individually or as a group.
The selected object is highlighted with a orange outline in the scene view along with all its
children which are highlighted in a blue outline. To highlight the object, the user can click on it
in the scene view (in the case of multiple stacked objects, highlight will be cycled between all
the objects in the stack with every click) or select it in hierarchy window, which is described in a
later section. To select multiple objects in the scene view click and drag with a mouse will draw
a rectangle that selects anything in its boundaries, or a shift + left-click method can be used.
To select/deselect a specific object to/from selection there is control + left-click option [9].

To manipulate game object in the scene view, there are five transform modes that can
be selected in the toolbar or using a keyboard shortcut and each of them is shown in figure 3
in order as listed below:

• W for Move

• E for Rotate

• R for Scale

• T for RectTransform

• Y for Transform

5

In the center of the move gizmo, there is a small rectangle that can be used to drag
the object on X and Y axis, or the arrows can be used to move in only up/down or sideways.
When the rotate tool is selected, the rotate gizmo appears. It consists of circles that are used
to rotate the object along a specific axis. The scale tool is used to resize the object evenly on
all axes by clicking the rectangle in the middle of the scale gizmo, or to resize the object on one
axis individually by clicking the rectangles at the ends of the scale gizmo. The RectTransform
tool is commonly used in 2D to place or resize the game objects. By clicking and dragging the
circle in the middle of the gizmo, the user can move the object on one plane or by clicking and
dragging the corner circles the user can resize the object. Finally, the transform tool combines
Move, Rotate and Scale tools into one [10].

Figure 3: Object transformations

The Game view, shown in figure 4 is the part of the interface that is rendered from the cam-
era(s) and it represents the final look of the game. To control what the player sees, there must
be one or more cameras placed in a scene view that will then render the game in the game
view (or in a final, published game).

This window is used to test the game during development. For this purpose, there is a
play mode that can be started using the toolbar in the game view. All the changes made during
play mode will not persist after the reset.

At the top of the game view, there is a control bar that is used to control how the game is
rendered and played in the Unity environment and its tools along with their functions are listed
in table 2.

Figure 4: Game view

6

Table 2: List of tools in the control bar [11]

Button Function
Game/Simulator Click to enable the Game or Simulator view from the drop-down menu.
Display Select this to choose from a list of Cameras if you have multiple Cam-

eras in the Scene. This is set to Display 1 by default. You can assign
Displays to Cameras in the Camera module, under the Target Display
drop-down menu.

Aspect Select different values to test how your game looks on monitors with
different aspect ratios. This is set to Free Aspect by default.

Scale slider Scroll right to zoom in and examine areas of the Game screen in more
detail. This slider lets you zoom out to see the entire screen where the
device resolution is higher than the Game view window size. You can
also use the scroll wheel and middle mouse button to do this while the
application is stopped or paused.

Maximize on Play Click to enable: use this to maximize the Game view (100% of your
Editor window) for a full-screen preview when you enter Play mode.

Mute audio Click to enable: use this to mute any in-application audio when you enter
Play mode.

Stats Click this to toggle the Statistics overlay, which contains Rendering
Statistics about your application’s audio and graphics. This is very useful
for monitoring the performance of your application while in Play mode.

Gizmos Click this to toggle the visibility of Gizmos. To only see certain types
of Gizmo during Play mode, click the drop-down arrow next to the word
Gizmos and only enable the Gizmo types you want to see.

The Hierarchy window, shown in figure 5 displays all game objects placed in a scene. It can
be used to select, sort or group objects inside a scene, as well as add/remove them to/from
the scene. The Hierarchy window can also display other scenes, if they exist, with each scene
being displayed as a parent to objects currently placed inside it [12].

Figure 5: Hierarchy window

7

Parenting in Unity works in a way that all objects that are in a parent-child relationship
are linked together so if the parent gets moved, rotated or scaled, the child gets transformed
proportional to its parent. Also, as most of the parent-child hierarchies work, it is possible to
collapse all the child objects into one parent [12]. An example of grouping objects in a parent
can be seen in figure 6.

Figure 6: Parenting example

The Hierarchy window can also be used to create a new game object by right-clicking
on the empty space in it and selecting the game object that needs to be created, as shown in
figure 7 [12].

Figure 7: Creating a game object

8

To sort and group game objects through the Hierarchy window, the user can simply use
drag and drop technique. Alternatively, if the user wants to group multiple game objects into
one new parent, they can right-click selected objects and select "create empty parent" option
which creates an empty object (not visible in a scene) that acts as a parent to the selected
objects [12]. An example of creating an empty parent can be seen in figure 8.

Figure 8: Creating an empty parent

Through the Hierarchy window, it is also possible to duplicate, copy and paste game
objects, as well as disable visibility and pickability of the object. Enabling/disabling of the object
can be done by clicking on the eye icon left of the object in the Hierarchy window and the same
can be done for pickability only by clicking the hand icon next to the eye icon, as shown in figure
9 [12].

Figure 9: Disabling visibility and pickability

9

The Inspector window is also a very important tool in Unity. It is used to view and edit proper-
ties and setting for almost everything in the editor, including game objects, Unity components,
Assets, Materials and even editor settings and preferences. The inspector window shows differ-
ent options based on the currently selected items. If the game object is selected, the Inspector
window displays properties of all the components and materials of that object, which can then
be edited or reordered through it. This is especially useful when working with scripts, as the
public variables can be edited directly through the Inspector window without changing the value
in the script itself. This interaction of a script and the inspector window is represented in figure
10 [13].

Figure 10: Public property showing up in inspector window

Like any other development environment, Unity engine has its own Console window
(shown in figure 11) which displays errors, warnings and other messages the editor generates.
This window is used to find issues in the project, such as script compilation errors. A Debug
class can be used inside the script to print the value of a specific variable at the certain point
in the code. The console window works pretty much the same as most other development
environment console windows [14].

Figure 11: Console window

10

3.1.2. 2D Game Development Support

When developing a 2D game, the user must be familiar with the term "sprite". A sprite is
a graphic object [5], that is essentially a texture, but there are special techniques that are used
for combining and managing those textures which improves efficiency and is more convenient
during development faze.

Unity engine has a built in Sprite Editor which lets the user extract sprite graphics from
a single larger image. This method is useful when creating characters, for example. The larger
image could contain all the body parts of the character as separate elements.

Unity also has a physics engine specifically made for 2D games. The sprite can be
equipped with specialized components that give the sprite a specific feature [5].

Rigidbody 2D is a component that enables the physics engine to manipulate the object [15].
This component is used for communicating with the editor’s transform component, which de-
fines how the object is positioned, rotated and scaled, to calculate how different objects’ collid-
ers interact with each other. An example of this component can be seen in figure 12.

Figure 12: Rigidbody 2D comnponent

Collider 2D is a component that defines the shape of a game object and how that object
handles collisions. There are multiple different collider shapes but, the collider does not have
to be the shame shape as the object [16]. For example, a circle object can have a box collider
(square shape), and it would behave as a square. An example of this combination is shown in
figure 13.

11

Figure 13: Circle with Box Collider 2D component

Physics Material 2D is a component that is used to adjust the friction and bounce between
2D physics objects upon collision. This material is added to the collider component under the
"Material" field [17]. An example of this component can be seen in figure 14.

Figure 14: Physics Material 2D component

12

2D Joints are components that attach game objects together. They can be attached only to
objects that have a rigidbody 2D component applied to them, or to a fixed position in the world.
There are multiple different types of joints and they all have their own constraints that they apply
to the rigidbody [18]. For example, setup like the one in figure 15, with the hinge joint, would
make the circle behave a pendulum.

Figure 15: Joint component example

Constant Force 2D is a simple component that applies a constant force to a rigidbody making
them, for example, accelerate in one direction over time rather than the object starting with
a large velocity. This component applies both linear and torque forces continuously to the
rigidbody [19]. An example of this component is shown in figure 16.

Figure 16: Constant Force 2D component

Finally, Effectors 2D are components that, when used with collider component, direct
the physics forces in a specific way when colliders get in contact with eachother [20].

When talking about 2D game development, it is also worth mentioning tilemaps. Tilemap
[21] is a tool that uses tile assets for creating 2D levels. When the tilemap is added to the scene,
the grid component is added as a parent as well and it acts as a guide for tiles to be placed
onto the tilemap. To create or modify existing tiles that are placed in the tilemap, the Tile pallete
window [22] is used. Textures and sprites can be drag and dropped inside the tile pallete and
they become new tile assets that can then be used to create levels on the tilemap.

13

3.1.3. Animations

Unity has its own integrated animation system that can be used to create animated
game objects. This paper primarily focuses on sprite animations since the game being made
is a 2D game. Sprite animations [23] are animated clips made for 2D assets. The easiest and
the most efficient way of importing sprites for animations is using a sprite sheet [24], which is a
single file that contains multiple graphics in a grid formation. This way only one file needs to be
loaded for a single or even multiple animations. Unity has a system that can handle these types
of files, that is, it can slice them into separate animation frames. To do this, in the inspector the
sprite mode must be set to multiple [23] and the sprite editor can be opened for that file. The
sprite editor can then slice the image either automatically, or manually by selecting the grid size
of the sprite sheet [23]. An example of a sliced sprite sheet can be seen in figure 17.

Figure 17: Sliced sprite example

After the sprite has been sliced, an animation can be created through the animation
window. The newly created sprites can be dragged into the animation window and be arranged
as keyframes of the animation [23]. An example of a sprite animation keyframes can be seen
in figure 18.

14

Figure 18: Animation clip keyframes

For simple game objects like an animated tile, this would be enough, but for more com-
plex game objects, like a player sprite, which requires multiple animations for different states,
an animator controller is needed. Animator controller [25] is a tool that allows the creation of
animation transitions between multiple animation clips using a state machine. Every link be-
tween animations can have different parameters [26] that need to be met to actually transition
to that animation clip. These parameters can be of four basic types: integer, float, bool or a
trigger (a bool that is reset upon transition); and can be modified using scripts. An example of
an animator controller with multiple clips and transitions can be seen in figure 19.

Figure 19: Animator controller with clips and transitions

3.1.4. Scripting

Scripting is essential to building any application in Unity. It is used to control many
aspects of a game, such as player input, graphical effects, GUI, sound and many more [27].
Standard IDE in Unity is Visual Studio, but it can be manually set to any other editor. In case
of a programming language, the default one in Unity is C#, although it will support any .NET
language that can compile a compatible DLL [28]. When the script is created the initial skeleton
is set and it cen be seen in listing 1.

Listing 1: Default script skeleton

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class ExampleScript : MonoBehaviour

15

6 {

7 // Start is called before the first frame update

8 void Start()

9 {

10

11 }

12

13 // Update is called once per frame

14 void Update()

15 {

16

17 }

18 }

Scripts in Unity are basically just a custom component that can be added to the game
object. Like many other components, its variables can be edited through the inspector by simply
making a variable public or by adding an annotation [SerializeField] above the variable. The
annotation method can also be used to hide the public variable in the inspector by annotating
the variable with [HideInInspector] [29]. Instead of working like a standard program, Unity
passes control to the script by calling functions defined in it and regains control when those
functions finish their tasks. These functions are called event functions [30] and, as the name
implies, they are activated by events that happen during runtime. Unity supports many of these
functions, but the most important and most used event functions are the following:

• Update() - This function is called before each frame is rendered and before the
animations are calculated, which is why it is used to change the behavior of game
objects in the game (like position, rotation, state, ...).

• FixedUpdate() - This function is called before each physics update, and since they
occur at a different frequency than frame updates, it is used to write any physics
code to make it more accurate.

• LateUpdate() - This function is called after the Update and FixedUpdate functions
have been called. This is useful for things like moving camera position after all
game object transformations have been made.

• OnGUI() - This function is used when working with GUI elements in the game.

• OnCollisionEnter() - This function is called whenever a collision happens between
the object that has the script component and any other game object with a collider.
Two different but similar functions exist: OnCollisionStay() which is the one that is
called repeatedly while the collision is held and OnCollisionExit() which is the one
that is being called whenever the collision is broken. Alternatively, if the collider is
configured as a trigger OnTriggerEnter(), OnTriggerStay() and OnTriggerExit()
functions are called.

While talking about scripting it is important to mentions some of the most used and most
important built-in classes [31]. These classes are following:

16

• GameObject - This class represents all the objects that can exist in the scene and
provides methods to manipulate those objects.

• MonoBehaviour - Default base class that every script extends. It provides a frame-
work that allows scripts to be added as components to a GameObject and provides
hooks for event functions.

• Object - The default class for all objects that Unity can reference in the editor such
as GameObjects, Components, Textures, Sprites and others.

• Transform - This class provides methods that allow manipulation of GameObject
position, scale, and rotation, as well as the hierarchical relationship between parent
and child GameObjects.

• Vectors - Multiple classes used to express and manipulate 2D, 3D, and 4D points,
lines, or directions.

• Quaternion - This class represents absolute or relative rotation and has methods
that allow their creation and manipulation.ž

• ScriptableObject - This class represents a data container that is designed to store
large amounts of data.

• Time - Allows time manipulation and time measurement, as well as the ability to
control the number of frames per second of the project.

• Mathf - A class that contains common math functions that are needed in game
development.

• Random - Provides methods for generating common types of random values.

• Debug - Enables visualization of information from scripts in the editor.

• Gizmos and Handles - Allows lines and shapes to be drawn in the scene view and
game view.

17

3.2. Platformer Games

Platformer games have played a huge role in evolution of games and they are consid-
ered to be one of the first game genres [32]. The core of this game genre is a character that
is being controlled by the player, which has to avoid obstacles and defeat enemies while trying
to progress in game. These games can be divided into two groups: single screen platformers
and scrolling platformers [32].

Single screen platformer games are displayed as a single screen per level, with multiple
levels in game that progressively become more difficult. On the other hand, scrolling platformers
have levels that scroll based upon characters’ location and movement. Just like single screen
platformers, they have multiple levels that increase in difficulty as the player progresses [32].

Depending on the technology, there are four different types of platformers [32]. First type
is pure tile-based platformer. This type of platformer is the easiest one to implement because
the character position is limited to a position on a grid [32]. This makes implementing collisions
easy, but at the cost of precision when controlling movement. This problem could be solved
by investing more time in making good animations to cover it up. Movement is implemented
by copying the character to a tile that is adjacent to the current tile and if that tile is not an
obstacle, the movement is considered valid and it is rendered. Jumping in this type is limited
to only vertical or horizontal movements, so instead of being physics-based, these jumps are
purely visual effects.

Second type of platformer is smooth tile-based. This type of platformer is similar to
pure tile-based, with the difference being that the character is not bound to the grid [32]. To
implement collisions, smooth tile-based platformer uses an axis-aligned bounding box (AABB)
which is a rectangle that surrounds the character and is aligned with x, y and z axis of the world.
The movement here is calculated separately for each axis.

Third type is bitmask. Bitmask type [32] is similar to smooth tile-based type with the
difference being the grid tile size, which is composed of only one pixel. This method uses
more memory than the previous two methods, and the levels are made from whole images as
opposed to tiles combined into one whole. This method is rarely used in platformers and when
it is, it is usually because dynamic environment becomes an option.

Final type of platformer is vectorial. Vectorial platformers [32] use lines and polygons to
implement collision. Although, this method is very hard to implement, it is popularity is on the
rise because of commercial physics and game engines like Unity.

18

4. Artificial Intelligence

4.1. Introduction

Intelligence has been defined in many ways over the years and is a very controversial
topic today. To keep it simple, intelligence can be defined as the “ability to understand and
adapt to the environment by using inherited abilities and learned knowledge.” [33]

Artificial intelligence (AI) is regarded as one of the most interesting and fastest growing
fields today. The main goal of AI as a field is to create machines that can compute how to
behave in certain situations effectively and safely [34, str. 29]. There are two dimensions that
are used when considering AI [34, str. 31]: human vs. rational and thought vs. behaviour.
These dimensions produce a total of four combinations that have been researched separately
and using very different methods.

The first approach is acting humanly or better known as "The Turing test approach" [34,
str. 32]. The Turing test [35] is a famous test of intelligence proposed by Alan Turing that tests
the computer by giving it a set of written questions and seeing whether a human interrogator
can determine if the answers were written by a computer or a real person. If the interrogator
cannot tell whether the answers were submitted by a person or by a computer, the computer
passes the test. This type of test does not really determine if the machine is intelligent or not so
to make it a bit more complete and challenging, some researchers proposed a so called total
Turing test [35], that requires the machine to interact with objects and people in the real world
to pass.

The second approach is thinking humanly or "The cognitive modeling approach" [34, str.
33]. This approach tries to develop a program that not only completes its task successfully, but
also compares its "thought process" and steps to a person that is solving the same problem.
This approach is closely related to cognitive science and by working together, these fields have
been able to develop more rapidly.

The third approach is thinking rationally or "the laws of thought approach" [34, str. 35].
This approach uses logic or irrefutable reasoning processes to develop AI. The example of
such a way of thinking was presented by the Greek philosopher Aristotle and it reads [36]: if
Socrates is a man and all men are mortal, that would conclude that Socrates is mortal. For a
computer to "think" logically, it requires knowledge of the world that is certain which is in reality
rarely achievable. The theory of probability fixes this problem in a way by allowing the machine
to come to a conclusion based on uncertain information.

The fourth and final approach is acting rationally or "the rational agent approach" [34,
str. 36]. An agent is a thing that acts or does some work. Computer agents are a bit different
from regular agents in a way that they are required to operate autonomously, perceive their
environment, persist over a prolonged time period, adapt to change, and create and pursue
goals. To expand that even further, a rational agent is the agent that acts to achieve the best
outcome or, when the outcome is uncertain, the best expected outcome.

19

4.2. Machine Learning

Learning is a skill of improving performance based on observations about the world
[37]. When the learning agent is a computer, it is called machine learning. Machine learning
is a subfield of AI that studies the ability to improve performance based on experience [34, str.
31]. To learn something, a computer first collects data, then builds a model based on that data
and uses the model as a hypothesis of the world and as a software that can solve problems
[34, str. 1201].

There are three types of feedback that determine the main types of machine learning.
The first type is supervised learning which is the type of learning that observes input-output
pairs and creates a function that would give a certain output for a specific input [34, str. 1205].
It is used when there is a pre-established and labeled data that can be used for learning [38,
str. 8]. An example of this is image recognition, where the computer first learns about an object
on multiple images and then can predict that object on a different image.

The second type is unsupervised learning which is a type of learning that learns from
the input, but without an explicit feedback [34, str. 1206]. This type attempts to discover as-
sociations of inputs by searching for patterns without having access to a target output [39, str.
77].

The third type of learning is reinforcement learning which, as the name implies, learns
from reinforcement (rewards or punishments) [34, str. 1206]. The algorithm gets its feedback
from the environment based on how it is interacting with it, meaning that the agent will be in a
specific state at a specific time and decide to take action from all the available actions at that
state, for which it will receive an appropriate reward from the environment [39, str. 71].

4.2.1. Neural Networks

Neural networks are a machine learning algorithm that fall under the category of super-
vised learning. It is an approach to AI and ML that is based on the model of a biological brain.
It consists of a set of interconnected processor units called neurons [39, str. 59]. The artificial
neuron resembles its biological counterpart in a way that it has a number of inputs (x) that all
have their own weight (w) [39, str. 59]. The neuron also has a processing unit that calculates a
weighted sum of all the inputs and adds a bias weight (b) to that. The calculated value is then
fed to an activation function (g) that then calculates the output of the neuron [39, str. 59].
Neural networks that have two or more hidden layers are called deep neural networks [38, str.
7] and from this terminology arises the name deep learning [39, str. 65]. Figure 20 shows a
visual representation of the artificial neuron.

20

Figure 20: Artificial neuron model; based on [39]

The original neuron model [39, str. 60] had a Heaviside step activation function whose
purpose is to determine if the neuron should fire or not. The limitation of this function is that,
when connected to a network, the neurons could only calculate linear problems. That is where
the backpropagation algorithm [39, str. 60] comes into play. The invention of this algorithm al-
lowed a neural network to solve nonlinear problems. Today, there are several different activation
functions that, when used, yield a different type of a neural network.

To construct a neural network, a number of neurons need to be connected. The most
common structure used is the multi-layer perceptron [39, str. 60] (MLP) which structures its
neurons in multiple layers in such a way that no neurons on the same layer are interconnected.
Each neuron has its output connected to all the neurons on the next layer, becoming their
input. This continues until the last layer, whose outputs become the outputs of the entire neural
network, which is why this layer is also called the output layer. Accordingly, the first layer is
called the input layer, and all layers in between are called hidden layers [39, str. 60, 61].
Figure 21 shows an example of an MLP network.

Figure 21: MLP network example; based on [39]

21

To calculate the output of the network based on a given input, a process called forward
operation is applied, which sends inputs through the layers of the network with the ultimate
goal of generating outputs.

“ The steps of this process are as follows:

1. Label and order neurons.We typically start numbering at the input layer
and increment the numbers towards the output layer. Note that the in-
put layer does not contain neurons, nevertheless is treated as such for
numbering purposes only.

2. Label connection weights assuming that wij is the connection weight
from neuron i (pre-synaptic neuron) to neuron j (post-synaptic neuron).
Label bias weights that connect to neuron j as bj .

3. Present an input pattern x.

4. For each neuron j compute its output as follows: aj = g(
∑

i{wijai}+bj),
where aj and ai are , respectively, the output of and the inputs to neuron
j (n.b. ai = xi in the input layer); g is the activation function (usually the
logistic sigmoid function).

5. The outputs of the neurons of the output layer are the outputs of the
ANN.

” [39, str. 61, 62]

To "teach" the neural network to return the desired outputs based on the input, the
training algorithm needs to be implemented [39, str. 62]. The training algorithm adjusts the
weights (w and b) so that function f(x;w, b) matches the input dataset y, or f : x→ y.

The training algorithm requires a cost (error) function [39, str. 62] which is used to
determine the quality of any set of weights. The most common perfomance testing function for
training neural network is the squared Euclidean distance (error) between the vectors of the
output of the neural network (a) and the desired outputs from the dataset (y).

E = 1
2

∑
j(yj − aj)

2

To calculate weight updates that minimize this error function, the most common algo-
rithm used is the backpropagation [39, str. 63] or backward propagation of errors. This algo-
rithm calculates the partial derivative (gradient) of the function E with respect to each weight
of the neural network and adjusts the weights of the neural network following the calculated
gradient.

As the Euclidian error [39, str. 63] depends on the weights of the neural network, gra-
dient of E can be calculated with respect to any weight (θE

θwij
) and any bias weight (θEθbj), which

will determine the of error change if the weight values are changed. To determine how much
of that change will be implemented, a parameter η ∈ [0, 1] called learning rate [39, str. 63] is
used.

22

“ The basic steps of the backpropagation algorithm are as follows:

1. Initialize w and b to random (commonly small) values.

2. For each training pattern (input-output pair):

(a) Present input pattern x, ideally normalized to a range (e.g.,
[0;1]).

(b) Compute ANN actual outputs aj using the forward opera-
tion.

(c) Compute E according to its formula.

(d) Compute error derivatives with respect to each weight θE
θwij

and bias weight θE
θbj

of the ANN from the output to the input
layer.

(e) Update weights and bias weights as ∆wij = −η θE
θwij

and
∆bj = −η θE

θbj
respectively.

3. If E is small or you are out of computational budget, stop! Otherwise go
to step 2.

” [39, str. 63]

The problem with backpropagation is that it is not guarantied to find the global minimum
of the E because of the possibility of the plateaux areas the error function landscape which
has a near zero gradient which in turn results in near zero weight updates. There are a few
solutions to this problem [39, str. 64]:

• Random restarts: Rerunning the algorithm with new weight values. This is not good
for networks that are luck based.

• Dynamic learning rate: Modifying the learning rate parameter or creating a dynamic
learning parameter that increases when convergence is slow or decreases when
convergence is fast.

• Momentum: Adding a momentum amount to the weight update rule as follows:

∆w
(t)
ij = m∆w

(t−1)
ij − η θE

θwij

where m ∈ [0, 1] is the momentum parameter and t is the iteration of the weight
update.

The backpropagation can be implemented in two different learning modes, batch and
non-batch mode [39, str. 64]. Non-batch mode updates the weights every time the a training
sample is presented, which makes it unstable, but it can also be useful to avoid local minimum
convergence. Batch mode updates the weights only after all training samples are presented.
This feature makes it more stable than its counterpart, but there is a problem with the local

23

minimum convergence. To best utilize the better qualities of both approaches, it is common to
apply batch learning of randomly selected samples in smaller sizes.

Neural networks in the gaming industry are most commonly used for path navigation
due to their ability to adapt and learn [40]. For example, it can track the player’s movement and
adjust its behaviour accordingly making the game more challenging with time. To put it simply,
it allows the game to adapt to the player making their decisions influence the environment.

4.2.2. Support Vector Machines

Support vector machine [39, str. 66] (SVMs) is a supervised learning algorithm that
is trained to maximize the margin between the training examples of separate classes. By
introducing the attributes of new unseen example, the algorithm tries to predict which class it
belongs to. It is mostly used for text categorization, speech recognition, image classification,
hand-written character recognition and other similar areas.

Similarly to neural networks, this algorithm defines a function f that maps between
input and target outputs, but instead of trying to minimize the difference between the actual
output and the desired output, SVMs construct a hyperplane that maintains the largest distance
between the nearest data point of any other class, called a maximum-margin [39, str. 66]. That
margin divides the points of a class with label 1 from those with label -1 in a dataset, so the
distance between the derived hyperplane and the nearest point from eather class is maximized.
The hyperplane can be defined mathematically as w ·x− b = 0, where w represents the weight
vector, x the input attributes and b

||w|| determines the offset or the weight bias. The job of a
SVM is to predict the output while trying to:

• minimize ||w||,

• subject to yi(w · xi − b) ≥ 1, for i = 1, ..., n

the above problem is solvable only if the data points are linearly separable, which is
also called a hard-margin [39, str. 66], and if the data is not linearly separable, also called a
soft-margin [39, str. 66], the algorithm attempts to:

• minimize [1n
∑n

i=1max(0, 1− yi(w · xi − b))] + λ||w||2

This approach is more efficient in finding solutions for large, but sparse, datatsets. It is
also efficient in dealing with large feature spaces because the task complexity does not depend
on the dimensionality of the feature space [39].

4.2.3. Decision Tree Learning

Decision tree learning [39, str. 68] is another supervised learning algorithm which, as
the name implies, uses decision tree representation to map the data to its target value. The

24

way it is set up is that the inputs are represented as nodes and the outputs are represented
as the leaves of the tree. All possible values of the inputs are represented as branches that
originate in that node. The example of the decision tree can be seen in the figure 22.

Figure 22: Decision tree; based on [39]

The decision tree learning works in a way that it constructs a tree model that predicts the
value of target outputs based on a number of inputs. To construct a decision tree, the dataset
is split into subsets based on the selections made for the attributes of the dataset. This process
is repeated until the tree is fully constructed.

4.2.4. Q-learning

Q-learning [39, str. 74] falls in the category of reinforcement learning. It is a model free
learning algorithm that relies on tabular representation of Q(s, a) values, where it got its name
from. Q(s, a) is a representation of how good the action a is in state s. This algorithm learns
from experience, meaning it picks actions and receives rewards based on those actions. Its
goal is to maximise the expected reward in each state by picking the right action. The reward in
question is a weighted sum of the expected values of the discounted future rewards. Q-learning
works in a way that it updates the Q values, that are initially set by the designer, in a iterative
fashion.

“ Each time the agent selects an action a from state s, it visits state s′, it receives an
immediate reward r, and updates Q(s, a) value as follows:

Q(s, a)← Q(s, a) + α{r + γmaxQ(s′, a′)−Q(s, a)}

where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor. The learning
rate determines the extent to which the new estimate for Q will override the old
estimate. The discount factor weights the importance of earlier versus later rewards;
the closer γ is to 1, the greater the weight is given to future reinforcements. ” [39,
str. 74]

25

Since it is represented in a tabular form [39, str. 75], Q-learning has some limitations
with the size of the table and memory requirements. Also, since the learning is exponential
to the size of the table, it could also take a lot of time to process information. To bypass this
limitation, artificial neural networks are used to approximate the Q-value function.

4.2.5. Clustering

Clustering [39, str. 77] is the algorithm that falls under the category of unsupervised
learning. Its task is to find unknown groups of data so that data within a group (cluster) is
similar to each other but different from the data in other clusters. Clustering is important for
games, as it is used player modeling, game play and content generation [39, str. 77].

This algorithm places data into classes for which the labels are unknown prior to running
the algorithm and are discovered iteratively. The quality of generated clusters [39, str. 77] is
determined using two properties:

1. high intra-cluster similarity or high compactness

2. low inter-cluster similarity or good separation

Clustering can be realized as a number of different algorithms [39, str. 78], like hierar-
chical clustering, k-means , k-medoids, DBSCAN and self-organizing maps. These algorithms
are different in a way they define a cluster and form it. Every algorithm has its own purpose
and selecting a proper one for a specific task is essential.

K-means is considered the most popular clustering algorithm as it has a good balance
between simplicity and effectiveness. It works as follows:

“ Given k:

1. Randomly partition the data points into k nonempty clusters.

2. Compute the position of the centroids of the clusters of the current par-
titioning. Centroids are the centers (mean points) of the clusters.

3. Assign each data point to the cluster with the nearest centroid.

4. Stop when the assignment does not change; otherwise go to step 2.

” [39, str. 78]

Although it is simple and effective, k-means has its weaknesses [39, str. 78]. It can be
used only on data in a continuous space, number of clusters, k, needs to be defined in advance,
it can only find hyper-spherical clusters and it is sensitive to outliers so extreme values can
distort the distribution of the data and affect the performance of the algorithm. This is where
hierarchical clustering comes into play.

Hierarchical clustering [39, str. 79] is the algorithm that attempts to build a hierarchy of
clusters. It can be realised by two strategies [39, str. 79]:

26

• agglomerative - constructs hierarchies from the bottom up by gradually merging
data points together.

• divisive - constructs top-down hierarchies by splitting the data set.

This method does not require the explicit number of clusters defined beforehand, but it
needs a terminating condition [39, str. 79]. The steps of the agglomerative clustering algorithm
are as follows:

“ Given k:

1. Create one cluster per data sample.

2. Find the two closest data samples—i.e., find the shortest Euclidean dis-
tance between two points (single link)—which are not in the same clus-
ter.

3. Merge the clusters containing these two samples.

4. Stop if there are k clusters; otherwise go to step 2.

” [39, str. 79]

The divisive approach works in a way that the data is all in the same cluster by default,
and is split until every data has its own cluster which is defined by a split strategy [39, str. 79].

Once created, clusters can be visually represented as a tree diagram called dendrogram
[39, str. 79].

4.2.6. Frequent Pattern Mining

Frequent pattern mining [39, str. 80], as the name implies, is a set of techniques that
try to find frequent patterns and structures in provided data and falls under the category of
unsupervised learning. There are a few different types of frequent pattern mining, but only two
are being used in game AI. First one is frequent itemset mining [39, str. 80], which tries to find
structure in data that has no particular internal order, and the second one is frequent sequence
mining [39, str. 80], which tires to find structure in data based on its inherent temporal order.

One of the more popular algorithms for itemset mining is apriori [39, str. 80]. It is
used for mining datasets that contain sets of instances (transactions) each of which contains
a set of items, or an itemset. It is a very simple algorithm and it can be described as follows:
given a predetermined threshold named support (T), the algorithm detects the itemsets that
are subsets of at least T transactions.

General sequential patterns (GSP) [39, str. 80] is one of the more popular sequence
mining algorithms. It tries to find frequently occurring subsequences in a sequence or a set of
sequences or, more formally, in a dataset that contains samples that are sequences of events
(data sequence), a sequential pattern, that is defined as a subsequence of events, is a frequent
sequence if it occurs in samples of data regularly.

27

5. Practical Example

This chapter describes the steps involved in developing a platform game in Unity as
well, as developing and connecting the "brain" that will learn to play said game. First step is to
actually develop a game, followed by making a machine learning model that will play it.

Parts of the code used in this example, particularly for the player controller and the
neural network, are based on pre-existing code from [41] and [42].

5.1. Making a Game

This section shows the steps in creating a simple platform game that was developed
from scratch. An overview of the finished game can be seen in figure 23.

Figure 23: Preview of the finished game

5.1.1. Implementing the Player

For the purposes of this thesis, the physics and collisions, along with several other
components, are developed from scratch as opposed to using Unity’s built-in components as
it is a more flexible and reliable way of handling player movement, assuming it is implemented
correctly.

First step is to implement a sort of distance detection for the player. Ideal way to do
this is to use raycast. Rays originating from the player would need to be slightly recessed into
the player so they would never measure the distance of zero. Initially, the player is a simple
square and the sprite is added later. To create the desired behaviour, a script is created and
later added to the player. The controller script is created separately and is linked to the player
script as a required component. To know the bounds of the player sprite, a BoxCollider2D is a
required component in the controller.

The first script in line is the Player script. This script handles the user inputs, sends the

28

movement information to the Controller script, plays the appropriate animation for a specific
movement and toggles the menu popups. The full script can be seen in listing 2:

Listing 2: Player script: based on [41]

1 [RequireComponent(typeof(Controller))]

2

3 using System;

4 using System.Collections;

5 using System.Collections.Generic;

6 using UnityEngine;

7

8 [RequireComponent(typeof(Controller))]

9 public class Player : MonoBehaviour

10 {

11 public GUIController gui;

12 public GameObject checkpoint;

13 public int lives = 10;

14 public int score = 0;

15

16 public float jumpSpeed = 5;

17 public float movementSpeed = 5;

18 public float gravity = -5;

19

20 float currentJumpSpeed;

21 float currentMovementSpeed;

22 float currentGravity;

23

24 bool menuOpen = false;

25

26 Vector2 playerMovement;

27 Controller controller;

28

29 SpriteRenderer sprite;

30 Animator animator;

31

32 void Start()

33 {

34 animator = GetComponent<Animator>();

35 sprite = GetComponent<SpriteRenderer>();

36 controller = GetComponent<Controller>();

37 updateGuiLives();

38 resetToCheckpoint();

39 ResetPlayerMovement();

40 }

41

42 private void Update()

43 {

44 if (controller.collisions.top || controller.collisions.bottom)

45 {

46 playerMovement.y = 0;

47 }

48

49 if (Input.GetKey(KeyCode.Space) && controller.collisions.bottom)

29

50 {

51 playerMovement.y = currentJumpSpeed;

52 }

53

54 if (Input.GetKeyDown(KeyCode.Escape))

55 {

56 if (!menuOpen)

57 {

58 gui.ToggleMenu();

59 TogglePlayerMovement();

60 }

61 }

62

63 Vector2 movementDirection = new Vector2(Input.GetAxisRaw("Horizontal"),

Input.GetAxisRaw("Vertical"));

64

65 if (movementDirection.x == -1) sprite.flipX = true;

66 if (movementDirection.x == 1) sprite.flipX = false;

67

68 if (movementDirection.x != 0) animator.SetBool("PlayerRun", true);

69 else animator.SetBool("PlayerRun", false);

70

71 if (!controller.collisions.bottom)

72 {

73 animator.SetBool("PlayerIdle", false);

74

75 if (playerMovement.y > 0) animator.SetBool("PlayerJump", true);

76 else animator.SetBool("PlayerJump", false);

77

78 if (playerMovement.y < 0) animator.SetBool("PlayerFall", true);

79 else animator.SetBool("PlayerFall", false);

80 }

81 else

82 {

83 animator.SetBool("PlayerIdle", true);

84 animator.SetBool("PlayerFall", false);

85 animator.SetBool("PlayerJump", false);

86 }

87

88 playerMovement.x = movementDirection.x * currentMovementSpeed;

89 playerMovement.y += currentGravity * Time.deltaTime;

90 controller.Move(playerMovement * Time.deltaTime);

91 }

92

93 internal void resetToCheckpoint()

94 {

95 transform.position = checkpoint.transform.position;

96 }

97

98 internal void incrementScore(int increment)

99 {

100 score += increment;

101 gui.SetScoreText(score);

30

102 }

103

104 internal void removeLife()

105 {

106 lives--;

107 resetToCheckpoint();

108 updateGuiLives();

109 if (lives == 0)

110 {

111 showGameOverDialog();

112 }

113 }

114 private void updateGuiLives()

115 {

116 gui.SetLivesText(lives);

117 }

118

119 internal void levelComplete()

120 {

121 if (!menuOpen)

122 {

123 menuOpen = true;

124 gui.completeLevel();

125 TogglePlayerMovement();

126 }

127 }

128

129 private void showGameOverDialog()

130 {

131 if (!menuOpen)

132 {

133 menuOpen = true;

134 gui.GameOver();

135 TogglePlayerMovement();

136 }

137 }

138

139 private void TogglePlayerMovement()

140 {

141 if (currentGravity != 0) FrezePlayer();

142 else ResetPlayerMovement();

143 }

144

145 private void FrezePlayer()

146 {

147 currentGravity = currentJumpSpeed = currentMovementSpeed = 0;

148 playerMovement = Vector2.zero;

149 }

150

151 private void ResetPlayerMovement()

152 {

153 currentGravity = gravity;

154 currentJumpSpeed = jumpSpeed;

31

155 currentMovementSpeed = movementSpeed;

156 }

157 }

Next up is the RaycastController script which, as the name implies, implements ray-
casting to the game object it is attached to. Its job is to calculate the starting point of each
ray depending on the ray distance variable that is previously defined. Since it is defined that
the BoxCollider2D is a required component, the corners are found using the bounds function.
Listing 3 shows the raycast controller script and the result of this code can be seen in figure 24.
The rays are shown in the scene view using the Debug.DrawRay function.

Listing 3: Raycast controller: based on [41]

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 [RequireComponent(typeof(BoxCollider2D))]

6 public class RaycastController : MonoBehaviour

7 {

8 public LayerMask collisionMask;

9 public const float rayDistance = 0.2f;

10 public const float rayOffset = 0.02f;

11

12 [HideInInspector]

13 public int horizontalRays;

14 [HideInInspector]

15 public int verticalRays;

16 [HideInInspector]

17 public BoxCollider2D collider2d;

18 [HideInInspector]

19 public float horizontalRayDistance;

20 [HideInInspector]

21 public float verticalRayDistance;

22 [HideInInspector]

23 public RayOrngins rayOrigins;

24

25 public virtual void Awake()

26 {

27 collider2d = GetComponent<BoxCollider2D>();

28 }

29

30 public virtual void Start()

31 {

32 calculateRayDistance();

33 }

34

35 public void calculateRayDistance()

36 {

37 Bounds bounds = collider2d.bounds;

38 bounds.Expand(rayOffset * -2);

39

40 horizontalRays = Mathf.RoundToInt(bounds.size.y / rayDistance);

32

41 verticalRays = Mathf.RoundToInt(bounds.size.x / rayDistance);

42

43 horizontalRayDistance = bounds.size.y / (horizontalRays - 1);

44 verticalRayDistance = bounds.size.x / (verticalRays - 1);

45 }

46

47 public void updateRayOrigins()

48 {

49 Bounds bounds = collider2d.bounds;

50 bounds.Expand(rayOffset * -2);

51

52 rayOrigins.tl = new Vector2(bounds.min.x, bounds.max.y);

53 rayOrigins.tr = new Vector2(bounds.max.x, bounds.max.y);

54 rayOrigins.bl = new Vector2(bounds.min.x, bounds.min.y);

55 rayOrigins.br = new Vector2(bounds.max.x, bounds.min.y);

56 }

57

58 public struct RayOrngins

59 {

60 public Vector2 tl, tr, bl, br;

61 }

62 }

Figure 24: Result of the controller code above

To actually move the character, the controller script needs to be implemented and it

33

has to extend the raycast controller script to add a method for moving the player. This scripts
job is to take the movement information passed form the player script and move the player
if there are no obstacles in the way, which is determined using the functions defined in the
raycast controller script. Every time the Move function is called, the ray origins (where the first
ray in each direction is positioned) are calculated and new rays are cast depending on the ray
distance defined previously. If the player touches the obstacle on any side, the movement in
that direction is disabled. The Controller script can be seen in listing 4:

Listing 4: Player controller script: based on [41]

1

2 using System;

3 using System.Collections;

4 using System.Collections.Generic;

5 using UnityEngine;

6

7

8 public class Controller : RaycastController

9 {

10 public Collisions collisions;

11

12 public override void Start()

13 {

14 base.Start();

15

16 }

17 public void Move(Vector2 movement)

18 {

19 updateRayOrigins();

20 collisions.Reset();

21

22 if (movement.x != 0)

23 {

24 calculateHorizontalCollisions(ref movement);

25 }

26 if (movement.y != 0)

27 {

28 calculateVerticalCollisions(ref movement);

29 }

30

31 transform.Translate(movement);

32 }

33

34 private void calculateHorizontalCollisions(ref Vector2 movement)

35 {

36 float direction = Mathf.Sign(movement.x);

37 float rayLength = Mathf.Abs(movement.x) + rayOffset;

38

39 for (int i = 0; i < horizontalRays; i++)

40 {

41 Vector2 rayOrigin = (direction == -1) ? rayOrigins.bl : rayOrigins.br;

42

34

43 rayOrigin += Vector2.up * (horizontalRayDistance * i);

44 RaycastHit2D hit = Physics2D.Raycast(rayOrigin, Vector2.right *
direction, rayLength, collisionMask);

45

46 if (hit)

47 {

48 movement.x = (hit.distance - rayOffset) * direction;

49 rayLength = hit.distance;

50

51 collisions.left = direction == -1;

52 collisions.right = direction == 1;

53 }

54 }

55 }

56 private void calculateVerticalCollisions(ref Vector2 movement)

57 {

58 float direction = Mathf.Sign(movement.y);

59 float rayLength = Mathf.Abs(movement.y) + rayOffset;

60

61 for (int i = 0; i < verticalRays; i++)

62 {

63 Vector2 rayOrigin = (direction == -1) ? rayOrigins.bl : rayOrigins.tl;

64

65 rayOrigin += Vector2.right * (verticalRayDistance * i + movement.x);

66 RaycastHit2D hit = Physics2D.Raycast(rayOrigin, Vector2.up * direction,

rayLength, collisionMask);

67

68 if (hit)

69 {

70 movement.y = (hit.distance - rayOffset) * direction;

71 rayLength = hit.distance;

72

73 collisions.bottom = direction == -1;

74 collisions.top = direction == 1;

75 }

76 }

77 }

78

79

80

81 public struct Collisions

82 {

83 public bool top, bottom, left, right;

84

85 public void Reset()

86 {

87 top = bottom = left = right = false;

88 }

89 }

90 }

The final step in creating a player is to move the camera along with the player. Instead
of nesting a camera inside the player object to move with it, a small delay is added to prevent

35

sudden camera movements. This is achieved by placing a player inside a rectangle border
(camera window [43]) and when the player "pushes" onto a certain side of that border, the
camera moves in that direction. To put it simply, the player can freely move inside the border
without the camera moving. The script that controls this behaviour can be seen in listing 5, and
the visual example can be seen in figure 25.

Listing 5: Camera controller script: based on [41]

1

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5

6 public class CameraController : MonoBehaviour

7 {

8 public Controller player;

9 public Vector2 focusAreaSize;

10

11 public float verticalOffset;

12

13 FocusArea focusArea;

14

15 void Start()

16 {

17 focusArea = new FocusArea(player.collider2d.bounds, focusAreaSize);

18 }

19

20 private void LateUpdate()

21 {

22 focusArea.Update(player.collider2d.bounds);

23

24 Vector2 focusPosition = focusArea.center + Vector2.up * verticalOffset;

25

26 transform.position = (Vector3)focusPosition + Vector3.forward * -10;

27 }

28

29 private void OnDrawGizmos()

30 {

31 Gizmos.color = new Color(1, 0, 0, .5f);

32 Gizmos.DrawCube(focusArea.center, focusAreaSize);

33 }

34

35 struct FocusArea

36 {

37 public Vector2 center;

38 public Vector2 cameraMove;

39 float top, bottom, left, right;

40

41 public FocusArea(Bounds playerBounds, Vector2 size)

42 {

43 top = playerBounds.min.y + size.y;

44 bottom = playerBounds.min.y;

45 left = playerBounds.center.x - size.x / 2;

36

46 right = playerBounds.center.x + size.x / 2;

47

48 cameraMove = Vector2.zero;

49 center = new Vector2((left + right) / 2, (top + bottom) / 2);

50 }

51

52 public void Update(Bounds playerBounds)

53 {

54 float moveOnX = 0;

55 float moveOnY = 0;

56

57 if (playerBounds.min.x < left)

58 {

59 moveOnX = playerBounds.min.x - left;

60 }

61 else if (playerBounds.max.x > right)

62 {

63 moveOnX = playerBounds.max.x - right;

64 }

65

66 if (playerBounds.min.y < bottom)

67 {

68 moveOnY = playerBounds.min.y - bottom;

69 }

70 else if (playerBounds.max.y > top)

71 {

72 moveOnY = playerBounds.max.y - top;

73 }

74

75 top += moveOnY;

76 bottom += moveOnY;

77 left += moveOnX;

78 right += moveOnX;

79

80 center = new Vector2((left + right) / 2, (top + bottom) / 2);

81 cameraMove = new Vector2(moveOnX, moveOnY);

82 }

83 }

84 }

37

Figure 25: Camera moving border

Finally, the player sprite is added and animated. Since it takes a long time to draw
movement for the player sprite and it is not the main focus of the thesis, the player sprites are
downloaded from ctaftpix website and can be seen in figures 26 27 28.

Figure 26: Idle player sprite, downloaded from [44]

Figure 27: Jump player sprite, downloaded from [44]

Figure 28: Run player sprite, downloaded from [44]

5.1.2. Creating the Environment

The level is build using a rectangular tilemap. The created sprites are inserted into the
tile pallete window, which is used to "draw" the selected sprite on the tilemap grid. "2D tilemap
extras" package [45] is used to make the animated sprites for the tilemap. Creation of one

38

animated tile can be seen on figure 29. The previously sliced image can then be inserted in
the animation slots in the inspector window in the desired order, after which the speed of the
animation is defined along with the collider type for the tile. The example of animating the tile
can be seen in figure 30.

Figure 29: Creating an animated tile

39

Figure 30: Example of a tile animation

After creating all the elements in the pallete, the level can be easily painted by using the
tile pallete tools. The finished product can be seen in figure 31.

Figure 31: Finished level layout

To add a bit more difficulty to the game, another obstacle is introduced to be placed
above ground. The script that controls those obstacles and lava is very simple. All it does is
detect if another collider contacted the current collider. It then checks if that collider is a player
collider and if it is, sends the kill information to that player. The script can be seen in listing 6:

Listing 6: Player kill script

1

2 using System.Collections;

40

3 using System.Collections.Generic;

4 using UnityEngine;

5

6 public class PlayerKill : MonoBehaviour

7 {

8 Player player;

9

10 private void Start()

11 {

12

13 }

14

15 void OnCollisionEnter2D(Collision2D collision)

16 {

17 if(collision.gameObject.layer == 3)

18 {

19 player = (Player)collision.gameObject.GetComponent("Player");

20 player.removeLife();

21 }

22 }

23 }

After that, the reward system is added in a form of coin pickups. The script that controls
the coins is similar to the killing script in a way that it detects the collider collision and if that
collider is player it rewards adds points to that player and disables itself from the scene. The
script that controls this behaviour can be seen in listing 7:

41

Listing 7: Script for adding points to player

1

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5

6 public class AddScore : MonoBehaviour

7 {

8 private int scoreIncrement = 10;

9 Player player;

10

11 private void Start()

12 {

13

14 }

15

16 private void OnCollisionEnter2D(Collision2D collision)

17 {

18 if (collision.gameObject.layer == 3)

19 {

20 player = (Player)collision.gameObject.GetComponent("Player");

21 player.incrementScore(scoreIncrement);

22 gameObject.SetActive(false);

23 }

24 }

25 }

To cross the created lava lakes, the moving platforms are added to the level. The script
that controls their behaviour also extends the raycast controller script, because to properly
carry the player, the platform needs to determine if the player is actually on board. It moves at a
calculated speed between two points located in the scene, and if the player is onboard it moves
the player in the same direction and at the same speed. The script that handles this behaviour
can be seen in listing 8:

Listing 8: Moving platform controller: based on [41]

1

2 using System;

3 using System.Collections;

4 using System.Collections.Generic;

5 using UnityEngine;

6

7 public class MovingPlatformsController : RaycastController

8 {

9 public LayerMask passengerMask;

10 public Vector2 move;

11 public float moveSpeed = 10;

12

13 public GameObject startPosition;

14 public GameObject endPosition;

15

16 GameObject currentTarget;

42

17

18 public override void Start()

19 {

20 base.Start();

21 transform.position = startPosition.transform.position;

22 currentTarget = endPosition;

23 }

24

25 void Update()

26 {

27 updateRayOrigins();

28

29 CheckMoveArea();

30 Vector2 velocity = (currentTarget.transform.position - transform.position).

normalized * moveSpeed * Time.deltaTime;

31

32 MovePassengers(velocity);

33 transform.Translate(velocity);

34 }

35

36 private void CheckMoveArea()

37 {

38 if(Vector2.Distance(currentTarget.transform.position, transform.position) <

0.1f)

39 {

40 if (currentTarget == endPosition) currentTarget = startPosition;

41 else if (currentTarget == startPosition) currentTarget = endPosition;

42 }

43 }

44

45 void MovePassengers(Vector2 velocity)

46 {

47 HashSet<Transform> movedPassengers = new HashSet<Transform>();

48 float directionX = Mathf.Sign(velocity.x);

49 float directionY = Mathf.Sign(velocity.y);

50

51 if (velocity.y != 0)

52 {

53 float rayLength = Mathf.Abs(velocity.y) + rayOffset;

54

55 for (int i = 0; i < verticalRays; i++)

56 {

57 Vector2 rayOrigin = (directionY == -1) ? rayOrigins.bl : rayOrigins.

tl;

58

59 rayOrigin += Vector2.right * (verticalRayDistance * i);

60 RaycastHit2D hit = Physics2D.Raycast(rayOrigin, Vector2.up *
directionY, rayLength, passengerMask);

61

62 if (hit)

63 {

64 if (!movedPassengers.Contains(hit.transform))

65 {

43

66 movedPassengers.Add(hit.transform);

67 float pushX = (directionY == 1) ? velocity.x : 0;

68 float pushY = velocity.y - (hit.distance - rayOffset) *
directionY;

69

70 hit.transform.Translate(new Vector3(pushX, pushY));

71 }

72 }

73 }

74 }

75

76 if (velocity.x != 0)

77 {

78 float rayLength = Mathf.Abs(velocity.x) + rayOffset;

79

80 for (int i = 0; i < horizontalRays; i++)

81 {

82 Vector2 rayOrigin = (directionX == -1) ? rayOrigins.bl: rayOrigins.

br;

83 rayOrigin += Vector2.up * (horizontalRays * i);

84 RaycastHit2D hit = Physics2D.Raycast(rayOrigin, Vector2.right *
directionX, rayLength, passengerMask);

85

86 if (hit)

87 {

88 if (!movedPassengers.Contains(hit.transform))

89 {

90 movedPassengers.Add(hit.transform);

91 float pushX = velocity.x - (hit.distance - rayOffset) *
directionX;

92 float pushY = 0;

93

94 hit.transform.Translate(new Vector3(pushX, pushY));

95 }

96 }

97 }

98 }

99

100 if (directionY == -1 || velocity.y == 0 && velocity.x != 0)

101 {

102 float rayLength = rayOffset * 2;

103

104 for (int i = 0; i < verticalRays; i++)

105 {

106 Vector2 rayOrigin = rayOrigins.tl + Vector2.right * (

verticalRayDistance* i);

107 RaycastHit2D hit = Physics2D.Raycast(rayOrigin, Vector2.up,

rayLength, passengerMask);

108

109 if (hit)

110 {

111 if (!movedPassengers.Contains(hit.transform))

112 {

44

113 movedPassengers.Add(hit.transform);

114 float pushX = velocity.x;

115 float pushY = velocity.y;

116

117 hit.transform.Translate(new Vector3(pushX, pushY));

118 }

119 }

120 }

121 }

122 }

123 }

The last thing added is the goal that the player needs to reach to finish the level. The
goal is represented by a simple door that detects the player collision and sends the information
that the level is completed to the player. The script that controls that behaviour is shown in
listing 9:

Listing 9: The goal controller

1

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5

6 public class LevelComplete : MonoBehaviour

7 {

8 Player player;

9

10 private void Start()

11 {

12

13 }

14

15 void OnCollisionEnter2D(Collision2D collision)

16 {

17 if (collision.gameObject.layer == 3)

18 {

19 player = (Player)collision.gameObject.GetComponent("Player");

20 player.levelComplete();

21 }

22 }

23 }

The finished level can be seen in figure 32:

45

Figure 32: Finished level layout with obstacles and rewards

5.1.3. Background

To make the background more interesting, instead of placing a static image behind the
level, a parallax background is placed instead. Since it is a lot of work to draw the components
of this background and it is not the main focus of this thesis, the parallax background is imported
from the Unity asset store. The asset already comes with a example code so it needs to be
slightly modified. The script takes multiple images defined beforehand along with moving speed
defined for each of the layers and moves them accordingly. The images that are not inside the
camera focus area are moved to be in front of it to give the effect of a never ending background.
The script can be seen in listing 10:

Listing 10: Parallax background controller, downloaded from [46]

1

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5

6 public class ParallaxBackground_0 : MonoBehaviour

7 {

8 public float verticalOffset = 1;

9 [Header("Layer Setting")]

10 public float[] Layer_Speed = new float[7];

11 public GameObject[] Layer_Objects = new GameObject[7];

12

13 private Transform _camera;

14 private float[] startPos = new float[7];

15 private float boundSizeX;

16 private float sizeX;

17 private GameObject Layer_0;

18 void Start()

19 {

46

20 _camera = Camera.main.transform;

21 sizeX = Layer_Objects[0].transform.localScale.x;

22 boundSizeX = Layer_Objects[0].GetComponent<SpriteRenderer>().sprite.bounds.

size.x;

23 for (int i=0;i<5;i++){

24 startPos[i] = _camera.position.x;

25 }

26 }

27

28 void Update(){

29 for (int i=0;i<5;i++){

30 float temp = (_camera.position.x * (1-Layer_Speed[i]));

31 float distance = _camera.position.x * Layer_Speed[i];

32 Layer_Objects[i].transform.position = new Vector2 (startPos[i] +

distance, _camera.position.y + verticalOffset);

33 if (temp > startPos[i] + boundSizeX*sizeX){

34 startPos[i] += boundSizeX*sizeX;

35 }else if(temp < startPos[i] - boundSizeX*sizeX){

36 startPos[i] -= boundSizeX*sizeX;

37 }

38

39 }

40 }

41 }

5.1.4. GUI

Final thing added to the game is the GUI. It consists of two parts: the visible information
and hidden menus that pop up on certain events. The visible part show the info about player
lives and the current score which are set through the player script shown in the section before.
The same principle works for the hidden menus. The player script sends the information which
menu needs to be displayed at a certain time. The script controlling this behaviour can be seen
in listing 11:

Listing 11: GUI controller

1

2 using System;

3 using System.Collections;

4 using System.Collections.Generic;

5 using UnityEngine;

6 using UnityEngine.UI;

7 using TMPro;

8

9 public class GUIController : MonoBehaviour

10 {

11 public GameObject lives;

12 public GameObject score;

13 public GameObject finalScore;

14 public GameObject gameOver;

15 public GameObject levelComplete;

47

16 public GameObject menu;

17

18 public void ToggleMenu()

19 {

20 if (menu.activeInHierarchy) menu.SetActive(false);

21 else menu.SetActive(true);

22 }

23

24 public void SetLivesText(int lives)

25 {

26 this.lives.GetComponent<Text>().text = "×" + lives;

27 }

28

29 public void SetScoreText(int score)

30 {

31 string scoreText = "";

32 if (score > 1000) scoreText = "Score: " + score;

33 if (score < 1000) scoreText = "Score: 0" + score;

34 if (score < 100) scoreText = "Score: 00" + score;

35 if (score < 10) scoreText = "Score: 000" + score;

36

37 this.score.GetComponent<Text>().text = scoreText;

38 this.finalScore.GetComponent<TextMeshProUGUI>().text = scoreText;

39

40 }

41

42 public void GameOver()

43 {

44 gameOver.SetActive(true);

45 }

46

47 internal void completeLevel()

48 {

49 levelComplete.SetActive(true);

50 }

51

52

53 }

An example of the menu popup can be seen in figure 33. The buttons shown in the
example are controlled using a simple script that only takes the name of the scene that needs
to be loaded, and loads it using the Unity SceneManagement library. The script can be seen in
listing 12.

48

Figure 33: Example of a button that loads the main menu scene

Listing 12: Scene loader

1

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using UnityEngine.SceneManagement;

6

7 public class MenuController : MonoBehaviour

8 {

9 public void LoadScene(string sceneName)

10 {

11 SceneManager.LoadScene(sceneName);

12 }

13 }

5.2. Creating a Machine Learning Model

The deep Q learning algorithm will be used to develop the player’s "brain". The Ten-
sorFlow library will be used to develop this part. TensorFlow [47][p. 265, 266] is a free open
source library used in machine learning and artificial intelligence projects. It supports various
applications, but mainly focuses on training and inference of deep neural networks. Tensor-
Flow’s high-level APIs are based on the Keras [48] API standard, which enables fast creation
and training of neural networks. Since the ML part is developed outside the Unity project, the
Unity-ML Agents Toolkit [49] package will be used to connect the two parts. It is an open source
package that allows games and simulations developed in Unity to act as training environments
for intelligent agents. This kit already has machine learning algorithms and models developed
[50], which is not what this project needs, but it contains a Python low-level API [50] that al-
lows direct interaction with the Unity environment using Python. This is how the network will be
connected to the developed Unity environment.

The first attempt at the development was a simple network with four outputs (move
left, move right, do not move and jump) which proved to be extremely slow at learning so the

49

approach that was finally used is two separate networks that are connected to the same input.
One network controls movement (move left, move right and do not move) and the second one
controls jumping (jump and do not jump). The model of the described network can be seen in
the figure 34 where blue nodes represent the input layer, green nodes the output layers and
gray the hidden layers.

Figure 34: Visual representation of the neural network

The network has nineteen inputs, three of which are X, Y and Z coordinates of the
player, and the rest are raycast distances. Eight raycast distances measure the distance from
the player to the platforms in the level, and the other eight measure the distance from the player
to obstacles. They are arranged in a way that each direction as one ray (up, down, left and right)
as well as diagonal rays (top left, top right, bottom left and bottom right).

In order to enable the Python program to interact with the player, it is necessary to make
some changes in the player script. Instead of extending the MonoBehaviour script, the Player
script should extend the Agent script. Once this is done, another script called BehaviourParam-
eters is automatically added to the player object. This script controls the necessary environment
variables, such as the name of the behavior, the number of observations (inputs), actions (how
many outputs it receives), and more. An example of a script object can be seen in the figure
35.

50

Figure 35: BehaviourParameters script example

To enable the player object to request decisions from a Python program, a Decision-
Maker script should also be added to the object. Other changes that needed to be made were:
move everything from the Update function to the OnActionReceived function, override the Col-
lectObservations function and define observations (inputs), define rewards/penalties and im-
plement rays that measure distances. After all changes, the script looks as shown in the listing
13.

Listing 13: Modified player script

1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using UnityEngine;

5 using Unity.MLAgents;

6 using Unity.MLAgents.Actuators;

7 using Unity.MLAgents.Sensors;

8

9 //public class Player : MonoBehaviour

10 [RequireComponent(typeof(Controller))]

11 public class Player : Agent

12 {

13 public GUIController gui;

14 public GameObject checkpoint;

15 public Transform target;

51

16 public int lives = 10;

17 public int score = 0;

18

19 public float jumpSpeed = 5;

20 public float movementSpeed = 5;

21 public float gravity = -5;

22 private bool isHeuristic = false;

23

24 float currentJumpSpeed;

25 float currentMovementSpeed;

26 float currentGravity;

27

28 bool menuOpen = false;

29

30 private collisionDistances obstacles;

31 private collisionDistances level;

32

33 private int actionCounter = 0;

34

35 Vector2 playerMovement;

36 Controller controller;

37

38 SpriteRenderer sprite;

39 Animator animator;

40 BoxCollider2D collider2d;

41

42 void Start()

43 {

44 collider2d = GetComponent<BoxCollider2D>();

45 obstacles.reset();

46 level.reset();

47 animator = GetComponent<Animator>();

48 sprite = GetComponent<SpriteRenderer>();

49 controller = GetComponent<Controller>();

50 updateGuiLives();

51 resetToCheckpoint();

52 ResetPlayerMovement();

53 }

54

55 public override void CollectObservations(VectorSensor sensor)

56 {

57 sensor.AddObservation(transform.position);

58 //sensor.AddObservation(target.position);

59

60 sensor.AddObservation(obstacles.top);

61 sensor.AddObservation(obstacles.bottom);

62 sensor.AddObservation(obstacles.left);

63 sensor.AddObservation(obstacles.right);

64 sensor.AddObservation(obstacles.tRight);

65 sensor.AddObservation(obstacles.tLeft);

66 sensor.AddObservation(obstacles.bRight);

67 sensor.AddObservation(obstacles.bLeft);

68

52

69 sensor.AddObservation(level.top);

70 sensor.AddObservation(level.bottom);

71 sensor.AddObservation(level.left);

72 sensor.AddObservation(level.right);

73 sensor.AddObservation(level.tRight);

74 sensor.AddObservation(level.tLeft);

75 sensor.AddObservation(level.bRight);

76 sensor.AddObservation(level.bLeft);

77 }

78

79 private void Update()

80 {

81 obstacles = calculateCollisionDistances(6);

82 level = calculateCollisionDistances(7);

83 }

84

85 public override void OnActionReceived(ActionBuffers actions)

86 {

87 AddReward(-0.3f);

88 //---------------- Movement part ----------------

89 // 0-0: Don’t move

90 // 0-1: Right

91 // 0-2: Left

92 // 1-0: Don’t jump

93 // 1-1: Jump

94 int movementCode = actions.DiscreteActions[0];

95 int jumpCode = actions.DiscreteActions[1];

96

97 if(actionCounter >= 1000)

98 {

99 AddReward(-20f);

100 restartScene();

101 }

102 actionCounter++;

103

104 if (controller.collisions.top || controller.collisions.bottom)

105 {

106 playerMovement.y = 0;

107 }

108

109 if (jumpCode == 1 && controller.collisions.bottom)

110 {

111 playerMovement.y = currentJumpSpeed;

112 }

113

114 Vector2 movementDirection = new Vector2(0, 0);

115

116 if (movementCode == 1)

117 {

118 movementDirection.x = 1;

119 sprite.flipX = false;

120 }

121 if (movementCode == 2)

53

122 {

123 movementDirection.x = -1;

124 sprite.flipX = true;

125 }

126

127

128 //---------------- Animation part ----------------

129 if (movementDirection.x != 0) animator.SetBool("PlayerRun", true);

130 else animator.SetBool("PlayerRun", false);

131

132 if (!controller.collisions.bottom)

133 {

134 animator.SetBool("PlayerIdle", false);

135

136 if (playerMovement.y > 0) animator.SetBool("PlayerJump", true);

137 else animator.SetBool("PlayerJump", false);

138

139 if (playerMovement.y < 0) animator.SetBool("PlayerFall", true);

140 else animator.SetBool("PlayerFall", false);

141 }

142 else

143 {

144 animator.SetBool("PlayerIdle", true);

145 animator.SetBool("PlayerFall", false);

146 animator.SetBool("PlayerJump", false);

147 }

148

149 playerMovement.x = movementDirection.x * currentMovementSpeed;

150 playerMovement.y += currentGravity * Time.deltaTime;

151 controller.Move(playerMovement * Time.deltaTime);

152 }

153

154 public override void Heuristic(in ActionBuffers actionsOut)

155 {

156 isHeuristic = true;

157 ActionSegment<int> discreteActions = actionsOut.DiscreteActions;

158 int jump = Input.GetKey(KeyCode.Space) ? 1 : 2;

159

160 int move;

161 if (Input.GetAxisRaw("Horizontal") == 1) move = 1;

162 else if (Input.GetAxisRaw("Horizontal") == -1) move = 2;

163 else move = 3;

164

165 discreteActions[0] = move;

166 discreteActions[1] = jump;

167

168 if (Input.GetKeyDown(KeyCode.Escape))

169 {

170 if (!menuOpen)

171 {

172 gui.ToggleMenu();

173 TogglePlayerMovement();

174 }

54

175 }

176 }

177

178 void OnCollisionEnter2D(Collision2D collision)

179 {

180 //Obstacles

181 if (collision.gameObject.layer == 6)

182 {

183 AddReward(-50f);

184 if (isHeuristic)

185 {

186 removeLife();

187 }

188 else

189 {

190 restartScene();

191 }

192 }

193 //Target

194 if (collision.gameObject.layer == 8)

195 {

196 levelComplete();

197 AddReward(200f);

198 EndEpisode();

199 actionCounter = 0;

200 }

201 //Coins

202 if (collision.gameObject.layer == 9)

203 {

204 incrementScore(10);

205 collision.gameObject.SetActive(false);

206 AddReward(100f);

207 }

208 }

209

210 internal void resetToCheckpoint()

211 {

212 transform.position = checkpoint.transform.position;

213 }

214

215 internal void incrementScore(int increment)

216 {

217 score += increment;

218 gui.SetScoreText(score);

219 }

220

221 internal void removeLife()

222 {

223 lives--;

224 resetToCheckpoint();

225 updateGuiLives();

226 if (lives == 0)

227 {

55

228 showGameOverDialog();

229 }

230 }

231 private void updateGuiLives()

232 {

233 gui.SetLivesText(lives);

234 }

235

236 internal void levelComplete()

237 {

238 if (!menuOpen)

239 {

240 menuOpen = true;

241 gui.completeLevel();

242 TogglePlayerMovement();

243 }

244 }

245

246 private void showGameOverDialog()

247 {

248 if (!menuOpen)

249 {

250 menuOpen = true;

251 gui.GameOver();

252 TogglePlayerMovement();

253 }

254 }

255

256 private void TogglePlayerMovement()

257 {

258 if (currentGravity != 0) FrezePlayer();

259 else ResetPlayerMovement();

260 }

261

262 private void FrezePlayer()

263 {

264 currentGravity = currentJumpSpeed = currentMovementSpeed = 0;

265 playerMovement = Vector2.zero;

266 }

267

268 private void ResetPlayerMovement()

269 {

270 currentGravity = gravity;

271 currentJumpSpeed = jumpSpeed;

272 currentMovementSpeed = movementSpeed;

273 }

274

275 private void restartScene()

276 {

277 score = 0;

278 gui.SetScoreText(score);

279

280 resetToCheckpoint();

56

281

282 AddScore[] coins = FindObjectsOfType<AddScore>(true);

283

284 foreach (AddScore coin in coins)

285 {

286 coin.gameObject.SetActive(true);

287 }

288

289 Checkpoint[] checkpoints = FindObjectsOfType<Checkpoint>(true);

290

291 foreach (Checkpoint checkpoint in checkpoints)

292 {

293 checkpoint.gameObject.SetActive(true);

294 }

295

296 MovingPlatformsController[] platforms = FindObjectsOfType<

MovingPlatformsController>(true);

297

298 foreach (MovingPlatformsController platform in platforms)

299 {

300 platform.Start();

301 }

302

303 EndEpisode();

304 actionCounter = 0;

305 }

306

307 private struct collisionDistances

308 {

309 public float top;

310 public float bottom;

311 public float left;

312 public float right;

313

314 public float tRight;

315 public float bRight;

316 public float tLeft;

317 public float bLeft;

318

319 public void reset()

320 {

321 top = bottom = left = right = tRight = tLeft = bRight = bLeft = 0;

322 }

323 }

324

325 private collisionDistances calculateCollisionDistances(int layer)

326 {

327 collisionDistances dst;

328 Bounds bounds = collider2d.bounds;

329

330 //top ray

331 Vector2 origin = new Vector2(bounds.min.x + (bounds.size.x / 2f), bounds.max

.y -0.1f);

57

332 RaycastHit2D hit = Physics2D.Raycast(origin, Vector2.up, 1f, layer);

333 dst.top = hit ? hit.distance : 1f;

334

335 //bottom ray

336 origin = new Vector2(bounds.min.x + (bounds.size.x / 2f), bounds.min.y + 0.1

f);

337 hit = Physics2D.Raycast(origin, Vector2.down, 1f, layer);

338 dst.bottom = hit ? hit.distance : 1f;

339

340 //left ray

341 origin = new Vector2(bounds.min.x + 0.1f, bounds.min.y + (bounds.size.y / 2f

));

342 hit = Physics2D.Raycast(origin, Vector2.left, 1f, layer);

343 dst.left = hit ? hit.distance : 1f;

344

345 //right ray

346 origin = new Vector2(bounds.max.x - 0.1f, bounds.min.y + (bounds.size.y / 2f

));

347 hit = Physics2D.Raycast(origin, Vector2.right, 1f, layer);

348 dst.right = hit ? hit.distance : 1f;

349

350 //bottom left ray

351 origin = new Vector2(bounds.min.x + 0.1f, bounds.min.y + 0.1f);

352 hit = Physics2D.Raycast(origin, Vector2.down + Vector2.left, 1f, layer);

353 dst.bLeft = hit ? hit.distance : 1f;

354

355 //top left ray

356 origin = new Vector2(bounds.min.x + 0.1f, bounds.max.y - 0.1f);

357 hit = Physics2D.Raycast(origin, Vector2.up + Vector2.left, 1f, layer);

358 dst.tLeft = hit ? hit.distance : 1f;

359

360 //bottom right ray

361 origin = new Vector2(bounds.max.x - 0.1f, bounds.min.y + 0.1f);

362 hit = Physics2D.Raycast(origin, Vector2.down + Vector2.right, 1f, layer);

363 dst.bRight = hit ? hit.distance : 1f;

364

365 //top right ray

366 origin = new Vector2(bounds.max.x - 0.1f, bounds.max.y - 0.1f);

367 hit = Physics2D.Raycast(origin, Vector2.up + Vector2.right, 1f, layer);

368 dst.tRight = hit ? hit.distance : 1f;

369

370 return dst;

371 }

372 }

Once everything is set in unity, the Python program can communicate with the envi-
ronment. The Python program defines the already described structure of the neural network
and enables saving and loading of these networks using the Keras library. Adam’s optimizer
is used to update the weights using the loss values of the networks. The rest of the program
is simply communication with the environment and inserting inputs into the network. To adjust
the learning process, the variables learningRate (what percentage of the corrected value will

58

be applied to the weight) and explorationRate (a number that defines a threshold that decides
when to use network output and when to use random output) need to be modified in the range
0-1. The Python program can be seen in listing 14.

Listing 14: Deep Q Network program: based on [42]

1 from argparse import Action

2 from pickle import TRUE

3 import re

4 from select import select

5 from sre_constants import LITERAL_UNI_IGNORE

6 from wsgiref.util import application_uri

7 import numpy as np

8 import mlagents

9 from mlagents_envs.environment import UnityEnvironment, ActionTuple

10 import tensorflow as tf

11 import keras

12 from keras import layers

13 from keras import initializers

14 from keras import optimizers

15

16

17 def constructQNetwork(stateDim: int, moveActionDim: int, jumpActionDim: int) ->

keras.Model:

18 inputs = layers.Input(shape=(stateDim,))

19 hiddenLayer1 = layers.Dense(

20 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(inputs)

21 hiddenLayer2 = layers.Dense(

22 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer1)

23 hiddenLayer3 = layers.Dense(

24 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer2)

25 hiddenLayer4 = layers.Dense(

26 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer3)

27 hiddenLayer5 = layers.Dense(

28 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer4)

29 hiddenLayer6 = layers.Dense(

30 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer5)

31 qValuesMove = layers.Dense(

32 moveActionDim, kernel_initializer=initializers.initializers_v2.Zeros,

activation="linear")(hiddenLayer6)

33

34 hiddenLayer7 = layers.Dense(

35 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(inputs)

36 hiddenLayer8 = layers.Dense(

37 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer7)

59

38 hiddenLayer9 = layers.Dense(

39 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer8)

40 hiddenLayer10 = layers.Dense(

41 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer9)

42 hiddenLayer11 = layers.Dense(

43 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer10)

44 hiddenLayer12 = layers.Dense(

45 20, activation="relu", kernel_initializer=initializers.initializers_v1.

HeNormal)(hiddenLayer11)

46 qValuesJump = layers.Dense(

47 jumpActionDim, kernel_initializer=initializers.initializers_v2.Zeros,

activation="linear")(hiddenLayer12)

48

49 qNetwork = keras.Model(inputs=inputs, outputs=[qValuesMove, qValuesJump])

50 return qNetwork

51

52

53 def calculateLossValue(qValue: tf.Tensor, reward: tf.Tensor) -> tf.Tensor:

54 loss = 0.5 * (qValue - reward) ** 2

55 return loss

56

57

58 if __name__ == "__main__":

59 selection = 0

60 while(selection != "1" and selection != "2"):

61 print("---------------[Main menu]---------------")

62 print("[1] New network")

63 print("[2] Load network")

64 print("---")

65 selection = input("Selection: ")

66

67 print("Start Unity environment!")

68

69 learningRate = 0.5

70 explorationRate = 0.05

71

72 movements = np.array([0.0, 0.5, 0.8])

73 jumps = np.array([0.0, 0.0])

74

75 env = UnityEnvironment(file_name=None)

76 env.reset()

77

78 behaviorNames = env.behavior_specs

79 behaviorName = list(behaviorNames)[0]

80

81 obsSpec, actSpec = behaviorNames[behaviorName]

82

83 numOfObservations = obsSpec[0].shape[0]

84 numOfActionsMove = actSpec[1][0]

85 numOfActionsJump = actSpec[1][1]

60

86

87 if(selection == "1"):

88 qNetwork = constructQNetwork(numOfObservations, numOfActionsMove,

numOfActionsJump)

89 else:

90 loaded = False

91 while not loaded:

92 save = input("Save path: ")

93 try:

94 qNetwork = keras.models.load_model(save)

95 loaded = True

96 except:

97 print("Path ", save, " doesn’t extist or is not a save file!")

98 number = False

99 while not number:

100 try:

101 iterations = int(input("Number of iterations: "))

102 number = True

103 except:

104 print("Invalid number!")

105

106 optimizer = optimizers.Adam(learning_rate=learningRate)

107

108 for iteration in range(iterations):

109 with tf.GradientTape(persistent=True) as tape:

110 env.reset()

111 decisionSteps, terminalSteps = env.get_steps(behaviorName)

112

113 agent = -1

114 done = False

115 episodeRewards = 0

116 while not done:

117 if len(decisionSteps) >= 1:

118 agent = decisionSteps.agent_id[0]

119

120 spec = behaviorNames[behaviorName][1]

121

122 observations = decisionSteps[agent].obs[0]

123 state = tf.constant([observations])

124

125 qValues = qNetwork(state)

126

127 epsilon = np.random.rand()

128 if epsilon <= explorationRate:

129 actMove = np.random.choice(len(movements))

130 actJump = np.random.choice(len(jumps))

131 else:

132 actMove = np.argmax(qValues[0])

133 actJump = np.argmax(qValues[1])

134

135 action = ActionTuple()

136

137 action.add_discrete(np.array([[actMove, actJump]]))

61

138

139 env.set_actions(behaviorName, action)

140 env.step()

141

142 decisionSteps, terminalSteps = env.get_steps(behaviorName)

143 if agent in decisionSteps:

144 reward = decisionSteps[agent].reward

145 episodeRewards += reward

146 if agent in terminalSteps:

147 reward = terminalSteps[agent].reward

148 episodeRewards += reward

149 done = True

150

151 qValueMove = qValues[0][0, actMove]

152 qValueJump = qValues[1][0, actJump]

153

154 lossValueMove = calculateLossValue(qValueMove, reward)

155 lossValueJump = calculateLossValue(qValueJump, reward)

156

157 gradients = tape.gradient([lossValueMove, lossValueJump], qNetwork.

trainable_variables)

158

159 optimizer.apply_gradients(zip(gradients, qNetwork.

trainable_variables))

160

161 print(f"Total rewards for episode {iteration + 1} is {episodeRewards}")

162 del tape

163

164 correct = False

165 while not correct:

166 saveModel = input("Save model? (Y/N)")

167 if(saveModel != "Y" and saveModel != "y" and saveModel != "N" and saveModel

!= "n") :

168 print("Invalid option!")

169 else:

170 correct = True

171

172 if(saveModel == "Y" or saveModel == "y"):

173 filePath = input("Save as: ")

174 qNetwork.save(filePath)

175

176 env.close()

To train the agent first the Python program needs to be executed. After all is set there,
the Unity can start the game simulation and the agent will start to move and observe its envi-
ronment, slowly learning what is the best course of action in a specific scenario. Generally, the
agent learns the correct moving direction within 20 iterations (lives), depending on the learning
rate and exploration rate that have been defined, and the rest learns a bit later. It is also worth
noting that the moving platforms were greatly slowing down the learning process and, to speed
up everything, were removed from the level and level was simplified a bit.

62

6. Conclusion

This thesis explores two different fields of work and combines them to explore how they
work together, the first being game development and the second being artificial intelligence.

The Unity game engine was used for the game development part and acted as the
environment for the machine learning algorithm. The scripts were written in Visual Studio while
the GIMP was used for the visuals of the game. Overall, the game development process was
pretty straight forward mainly due to the good documentation by Unity and the very active online
community.

Python is used to build on the developed game, creating a Deep Q Network in the
Tensorflow and Keras libraries and linking it together using the mlagents library. Two different
approaches were tried: one neural network that controls everything and two networks that
control movement and jumping. It turned out that the two networks were much more efficient
at doing the job, so this approach was chosen for this experiment. To simplify everything, both
networks shared the same input layer since they required the same observations.

After everything is set up, simulations are started. Initially, the expectation was that the
network would learn fast since the game is not that difficult to complete. This expectation turns
out to be false, as the computer doesn’t perceive the game the same way we humans do and it
takes a lot of trial and error to actually figure out what it’s supposed to do. After hours of training,
it was concluded that the level was too complicated for a single agent to learn in a reasonable
amount of time (because the ML algorithm was developed to support only one agent), and the
moving platforms were found to be the culprit. Because they had a changing position, the AI
was getting confused and the whole process was taking too long. In order to speed everything
up, they were removed from the level, and the level itself was slightly simplified, which greatly
improved the agent’s performance.

Overall, what proved to be the most difficult was finding a way to connect the Python
program to the Unity environment since the Unity MLAgents toolkit already has its own built-in
AI algorithms and was not really meant to be an intermediary for custom Python programs.
Fortunately, there was a low-level Python API in the package that did just that, although it had
a bit of sparse documentation so it took a bit of trial and error to get everything working.

Finally, the whole project is available publicly on the following link: https://drive.
google.com/drive/folders/1nRKQl2ZqAt_jU8xP2BZzPKs1qi-VdOZq?usp=sharing

63

https://drive.google.com/drive/folders/1nRKQl2ZqAt_jU8xP2BZzPKs1qi-VdOZq?usp=sharing
https://drive.google.com/drive/folders/1nRKQl2ZqAt_jU8xP2BZzPKs1qi-VdOZq?usp=sharing

Bibliography

[1] “Video game development - Wikipedia.” (), [Online]. Available: https://en.wikipedia.
org/wiki/Video_game_development (visited on 06/07/2022).

[2] “What Is Game Development?” (), [Online]. Available: https://www.freecodecamp.
org/news/what-is-game-development/ (visited on 06/07/2022).

[3] “Programming and Scripting with Unity | Unity.” (), [Online]. Available: https://unity.
com/solutions/multiplatform (visited on 06/07/2022).

[4] “How Unity3D Became a Game-Development Beast.” (), [Online]. Available: https:
/ / insights . dice . com / 2013 / 06 / 03 / how - unity3d - become - a - game -

development-beast/ (visited on 06/07/2022).

[5] “Unity - Manual: 2D.” (), [Online]. Available: https://docs.unity3d.com/Manual/
Unity2D.html (visited on 06/19/2022).

[6] “Unity - Manual: The Project window.” (), [Online]. Available: https://docs.unity3d.
com/Manual/ProjectView.html (visited on 06/19/2022).

[7] “Unity - Manual: The Scene view.” (), [Online]. Available: https://docs.unity3d.
com/Manual/UsingTheSceneView.html (visited on 06/19/2022).

[8] “Unity - Manual: Scene view navigation.” (), [Online]. Available: https://docs.unity3d.
com/Manual/SceneViewNavigation.html (visited on 06/19/2022).

[9] “Unity - Manual: Pick and select GameObjects.” (), [Online]. Available: https://docs.
unity3d.com/Manual/ScenePicking.html (visited on 06/19/2022).

[10] “Unity - Manual: Position GameObjects.” (), [Online]. Available: https://docs.unity3d.
com/Manual/PositioningGameObjects.html (visited on 06/19/2022).

[11] “Unity - Manual: The Game view.” (), [Online]. Available: https://docs.unity3d.
com/Manual/GameView.html (visited on 06/19/2022).

[12] “Unity - Manual: The Hierarchy window.” (), [Online]. Available: https://docs.unity3d.
com/Manual/Hierarchy.html (visited on 06/21/2022).

[13] “Unity - Manual: The Inspector window.” (), [Online]. Available: https://docs.unity3d.
com/Manual/UsingTheInspector.html (visited on 06/21/2022).

[14] “Unity - Manual: Console Window.” (), [Online]. Available: https://docs.unity3d.
com/Manual/Console.html (visited on 06/21/2022).

64

https://en.wikipedia.org/wiki/Video_game_development
https://en.wikipedia.org/wiki/Video_game_development
https://www.freecodecamp.org/news/what-is-game-development/
https://www.freecodecamp.org/news/what-is-game-development/
https://unity.com/solutions/multiplatform
https://unity.com/solutions/multiplatform
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://docs.unity3d.com/Manual/Unity2D.html
https://docs.unity3d.com/Manual/Unity2D.html
https://docs.unity3d.com/Manual/ProjectView.html
https://docs.unity3d.com/Manual/ProjectView.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/ScenePicking.html
https://docs.unity3d.com/Manual/ScenePicking.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/Console.html
https://docs.unity3d.com/Manual/Console.html

[15] “Unity - Manual: Rigidbody 2D.” (), [Online]. Available: https://docs.unity3d.com/
Manual/class-Rigidbody2D.html (visited on 06/23/2022).

[16] “Unity - Manual: Collider 2D.” (), [Online]. Available: https://docs.unity3d.com/
Manual/Collider2D.html (visited on 06/23/2022).

[17] “Unity - Manual: Physics Material 2D.” (), [Online]. Available: https://docs.unity3d.
com/Manual/class-PhysicsMaterial2D.html (visited on 06/23/2022).

[18] “Unity - Manual: 2D Joints.” (), [Online]. Available: https://docs.unity3d.com/
Manual/Joints2D.html (visited on 06/23/2022).

[19] “Unity - Manual: Constant Force 2D.” (), [Online]. Available: https://docs.unity3d.
com/Manual/class-ConstantForce2D.html (visited on 06/23/2022).

[20] “Unity - Manual: Effectors 2D.” (), [Online]. Available: https://docs.unity3d.com/
Manual/Effectors2D.html (visited on 06/23/2022).

[21] “Unity - Manual: Tilemap.” (), [Online]. Available: https://docs.unity3d.com/
Manual/class-Tilemap.html (visited on 08/13/2022).

[22] “Unity - Manual: Creating a Tile Palette.” (), [Online]. Available: https://docs.unity3d.
com/Manual/Tilemap-Palette.html (visited on 08/13/2022).

[23] “Introduction to Sprite Animations - Unity Learn.” (), [Online]. Available: https : / /
learn.unity.com/tutorial/introduction-to-sprite-animations# (vis-
ited on 08/15/2022).

[24] “Export animations for mobile apps and game engines.” (), [Online]. Available: https:
//helpx.adobe.com/animate/using/create-sprite-sheet.html (visited on
08/15/2022).

[25] “Unity - Manual: Animator Controller.” (), [Online]. Available: https://docs.unity3d.
com/Manual/class-AnimatorController.html (visited on 08/15/2022).

[26] “Unity - Manual: Animation Parameters.” (), [Online]. Available: https://docs.unity3d.
com/Manual/AnimationParameters.html (visited on 08/15/2022).

[27] “Unity - Manual: Scripting.” (), [Online]. Available: https://docs.unity3d.com/
Manual/ScriptingSection.html (visited on 08/17/2022).

[28] “Unity - Manual: Creating and Using Scripts.” (), [Online]. Available: https://docs.
unity3d.com/Manual/CreatingAndUsingScripts.html (visited on 08/17/2022).

[29] “Unity - Manual: Variables and the Inspector.” (), [Online]. Available: https://docs.
unity3d.com/Manual/VariablesAndTheInspector.html (visited on 08/17/2022).

[30] “Unity - Manual: Event Functions.” (), [Online]. Available: https://docs.unity3d.
com/Manual/EventFunctions.html (visited on 08/17/2022).

[31] “Unity - Manual: Important Classes.” (), [Online]. Available: https://docs.unity3d.
com/Manual/ScriptingImportantClasses.html (visited on 08/17/2022).

[32] T. Minkkinen, “Basics of Platform Games,” 2016.

[33] C. Ruhl. “Intelligence: Definition, Theories & Testing.” (2020), [Online]. Available: https:
//www.simplypsychology.org/intelligence.html (visited on 06/28/2022).

65

https://docs.unity3d.com/Manual/class-Rigidbody2D.html
https://docs.unity3d.com/Manual/class-Rigidbody2D.html
https://docs.unity3d.com/Manual/Collider2D.html
https://docs.unity3d.com/Manual/Collider2D.html
https://docs.unity3d.com/Manual/class-PhysicsMaterial2D.html
https://docs.unity3d.com/Manual/class-PhysicsMaterial2D.html
https://docs.unity3d.com/Manual/Joints2D.html
https://docs.unity3d.com/Manual/Joints2D.html
https://docs.unity3d.com/Manual/class-ConstantForce2D.html
https://docs.unity3d.com/Manual/class-ConstantForce2D.html
https://docs.unity3d.com/Manual/Effectors2D.html
https://docs.unity3d.com/Manual/Effectors2D.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/Manual/class-Tilemap.html
https://docs.unity3d.com/Manual/Tilemap-Palette.html
https://docs.unity3d.com/Manual/Tilemap-Palette.html
https://learn.unity.com/tutorial/introduction-to-sprite-animations#
https://learn.unity.com/tutorial/introduction-to-sprite-animations#
https://helpx.adobe.com/animate/using/create-sprite-sheet.html
https://helpx.adobe.com/animate/using/create-sprite-sheet.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/AnimationParameters.html
https://docs.unity3d.com/Manual/AnimationParameters.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/ScriptingSection.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/Manual/EventFunctions.html
https://docs.unity3d.com/Manual/EventFunctions.html
https://docs.unity3d.com/Manual/ScriptingImportantClasses.html
https://docs.unity3d.com/Manual/ScriptingImportantClasses.html
https://www.simplypsychology.org/intelligence.html
https://www.simplypsychology.org/intelligence.html

[34] S. Russell and R. Norvig, Artificial Intelligence: A Modern Approach, 4th ed. Harlow, UK:
Pearson Education Limited, 2020, p. 2145.

[35] “The Turing Test (Stanford Encyclopedia of Philosophy/Spring 2022 Edition).” (), [Online].
Available: https://stanford.library.sydney.edu.au/archives/spr2022/
entries/turing-test/ (visited on 07/22/2022).

[36] “Logic and natural language.” (), [Online]. Available: https://web.stanford.edu/
$%5Csim$bobonich/glances%20ahead/III.logic.language.html (visited on
07/22/2022).

[37] “What is Learning?” (), [Online]. Available: https://www.queensu.ca/teachingandlearning/
modules/students/04_what_is_learning.html (visited on 07/22/2022).

[38] H. Kinsley and D. Kukieła, Neural Networks from Scratch in Python. Harrison Kinsley,
2020.

[39] G. N. Yannakakis and J. Togelius, Artificial intelligence and games. 2018.

[40] J. Qualls and D. J. Russomanno, “Applications of Neural-Based Agents in Computer
Game Design,” Evolutionary Computation, 10/2009. DOI: 10.5772/9601.

[41] “GitHub - SebLague/2DPlatformer-Tutorial: A 2D Platform Controller in Unity.” (), [Online].
Available: https://github.com/SebLague/2DPlatformer-Tutorial (visited on
09/10/2022).

[42] “A Minimal Working Example for Deep Q-Learning in TensorFlow 2.0 | by Wouter van
Heeswijk, PhD | Towards Data Science.” (), [Online]. Available: https://towardsdatascience.
com/a-minimal-working-example-for-deep-q-learning-in-tensorflow-

2-0-e0ca8a944d5e (visited on 09/09/2022).

[43] I. Keren. “Scroll Back: The Theory and Practice of Cameras in Side-Scrollers.” (2015),
[Online]. Available: https://www.gamedeveloper.com/design/scroll-back-
the- theory- and- practice- of- cameras- in- side- scrollers (visited on
08/12/2022).

[44] “Free Pixel Art Tiny Hero Sprites - CraftPix.net.” (), [Online]. Available: https://craftpix.
net/freebies/free-pixel-art-tiny-hero-sprites/ (visited on 08/12/2022).

[45] “2D Tilemap Extras | 2D Tilemap Extras | 1.6.0-preview.1.” (), [Online]. Available: https:
//docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/

manual/index.html (visited on 08/11/2022).

[46] “Free 2D Cartoon Parallax Background | 2D Environments | Unity Asset Store.” (), [On-
line]. Available: https://assetstore.unity.com/packages/2d/environments/
free-2d-cartoon-parallax-background-205812 (visited on 08/12/2022).

[47] M. Abadi, P. Barham, J. Chen, et al., “TensorFlow: A system for large-scale machine
learning,”

[48] “TensorFlow Core | Machine Learning for Beginners and Experts.” (), [Online]. Available:
https://www.tensorflow.org/overview (visited on 09/09/2022).

[49] A. Juliani, V.-P. Berges, E. Teng, et al., “Unity: A General Platform for Intelligent Agents,”
09/2018. arXiv: 1809.02627.

66

https://stanford.library.sydney.edu.au/archives/spr2022/entries/turing-test/
https://stanford.library.sydney.edu.au/archives/spr2022/entries/turing-test/
https://web.stanford.edu/$%5Csim$bobonich/glances%20ahead/III.logic.language.html
https://web.stanford.edu/$%5Csim$bobonich/glances%20ahead/III.logic.language.html
https://www.queensu.ca/teachingandlearning/modules/students/04_what_is_learning.html
https://www.queensu.ca/teachingandlearning/modules/students/04_what_is_learning.html
https://doi.org/10.5772/9601
https://github.com/SebLague/2DPlatformer-Tutorial
https://towardsdatascience.com/a-minimal-working-example-for-deep-q-learning-in-tensorflow-2-0-e0ca8a944d5e
https://towardsdatascience.com/a-minimal-working-example-for-deep-q-learning-in-tensorflow-2-0-e0ca8a944d5e
https://towardsdatascience.com/a-minimal-working-example-for-deep-q-learning-in-tensorflow-2-0-e0ca8a944d5e
https://www.gamedeveloper.com/design/scroll-back-the-theory-and-practice-of-cameras-in-side-scrollers
https://www.gamedeveloper.com/design/scroll-back-the-theory-and-practice-of-cameras-in-side-scrollers
https://craftpix.net/freebies/free-pixel-art-tiny-hero-sprites/
https://craftpix.net/freebies/free-pixel-art-tiny-hero-sprites/
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/index.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/index.html
https://docs.unity3d.com/Packages/com.unity.2d.tilemap.extras@1.6/manual/index.html
https://assetstore.unity.com/packages/2d/environments/free-2d-cartoon-parallax-background-205812
https://assetstore.unity.com/packages/2d/environments/free-2d-cartoon-parallax-background-205812
https://www.tensorflow.org/overview
https://arxiv.org/abs/1809.02627

[50] “ml-agents/Python-API.md at main · Unity-Technologies/ml-agents · GitHub.” (), [Online].
Available: https://github.com/Unity- Technologies/ml- agents/blob/
main/docs/Python-API.md (visited on 09/09/2022).

67

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Python-API.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Python-API.md

List of Figures

1. Project window . 4

2. Scene view . 5

3. Object transformations . 6

4. Game view . 6

5. Hierarchy window . 7

6. Parenting example . 8

7. Creating a game object . 8

8. Creating an empty parent . 9

9. Disabling visibility and pickability . 9

10. Public property showing up in inspector window 10

11. Console window . 10

12. Rigidbody 2D comnponent . 11

13. Circle with Box Collider 2D component . 12

14. Physics Material 2D component . 12

15. Joint component example . 13

16. Constant Force 2D component . 13

17. Sliced sprite example . 14

18. Animation clip keyframes . 15

19. Animator controller with clips and transitions . 15

20. Artificial neuron model; based on [39] . 21

21. MLP network example; based on [39] . 21

22. Decision tree; based on [39] . 25

23. Preview of the finished game . 28

68

24. Result of the controller code above . 33

25. Camera moving border . 38

26. Idle player sprite, downloaded from [44] . 38

27. Jump player sprite, downloaded from [44] . 38

28. Run player sprite, downloaded from [44] . 38

29. Creating an animated tile . 39

30. Example of a tile animation . 40

31. Finished level layout . 40

32. Finished level layout with obstacles and rewards 46

33. Example of a button that loads the main menu scene 49

34. Visual representation of the neural network . 50

35. BehaviourParameters script example . 51

69

List of Tables

1. List of tools in browser toolbar [6] . 4

2. List of tools in the control bar [11] . 7

70

List of Listings

1. Default script skeleton . 15

2. Player script: based on [41] . 29

3. Raycast controller: based on [41] . 32

4. Player controller script: based on [41] . 34

5. Camera controller script: based on [41] . 36

6. Player kill script . 40

7. Script for adding points to player . 42

8. Moving platform controller: based on [41] . 42

9. The goal controller . 45

10. Parallax background controller, downloaded from [46] 46

11. GUI controller . 47

12. Scene loader . 49

13. Modified player script . 51

14. Deep Q Network program: based on [42] . 59

71

	1 Introduction
	2 Work Methods and Techniques
	3 Game Development
	3.1 Unity Engine
	3.1.1 Unity Interface
	3.1.2 2D Game Development Support
	3.1.3 Animations
	3.1.4 Scripting

	3.2 Platformer Games

	4 Artificial Intelligence
	4.1 Introduction
	4.2 Machine Learning
	4.2.1 Neural Networks
	4.2.2 Support Vector Machines
	4.2.3 Decision Tree Learning
	4.2.4 Q-learning
	4.2.5 Clustering
	4.2.6 Frequent Pattern Mining

	5 Practical Example
	5.1 Making a Game
	5.1.1 Implementing the Player
	5.1.2 Creating the Environment
	5.1.3 Background
	5.1.4 GUI

	5.2 Creating a Machine Learning Model

	6 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Listings

