
O_HAI 4 Games - D4.3. Case Study 3 - Serious Games
& Autonomous Vehicles

Schatten, Markus

Other document types / Ostale vrste dokumenata

Publication year / Godina izdavanja: 2023

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:780964

Rights / Prava: Attribution-NonCommercial 3.0 Unported / Imenovanje-Nekomercijalno 3.0

Download date / Datum preuzimanja: 2024-09-18

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:780964
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://repozitorij.unizg.hr/islandora/object/foi:8190
https://dabar.srce.hr/islandora/object/foi:8190

Orchestration of Hybrid Artificial Intelligence
Methods for Computer Games

Case Study 3 - Serious Games & Autonomous Vehicles

This project was funded by the Croatian Science Foundation

Principal investigator:

Markus Schatten

Copyright © 2023 Artificial Intelligence Laboratory

PUBLISHED BY ARTIFICIAL INTELLIGENCE LABORATORY,
FACULTY OF ORGANIZATION AND INFORMATICS, UNIVERSITY OF ZAGREB

http://ai.foi.hr/ohai4games

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

Some of the results presented in this deliverable have been published in [59, 68, 69].

Technical Report No. AIL202301 – First release, May 2023, edit December 2023

Document compiled by: Markus Schatten with inputs from other project team members

This work has been supported in full by the Croatian Science Foundation under the project number
IP-2019-04-5824.

The following graphics under CC licences have been used:
• https://en.m.wikipedia.org/wiki/File:Smartphone_icon_-_Noun_Project_283536.
svg

• https://commons.wikimedia.org/wiki/File:Toll_Collect_Automat.jpg

http://ai.foi.hr/ohai4games
http://creativecommons.org/licenses/by-nc/3.0
https://en.m.wikipedia.org/wiki/File:Smartphone_icon_-_Noun_Project_283536.svg
https://en.m.wikipedia.org/wiki/File:Smartphone_icon_-_Noun_Project_283536.svg
https://commons.wikimedia.org/wiki/File:Toll_Collect_Automat.jpg

Contents

1 Project Description . 1

1.1 Abstract 1

1.2 Introduction 1

1.3 Team Members 4

2 Digital Twins and Autonomous Vehicles . 5

2.1 Introduction 5

2.2 Digital Twins in Autonomous Vehicles 6

2.3 Awkward Π-nguin Orchestration Infrastructure 6

2.4 Digital Twins as Game Actors 8

2.5 Discussion 10

2.6 Conclusion 11

3 Cognitive Agents & Smart Mobility . 13

3.1 Introduction 13

3.2 B.A.R.I.C.A. Infrastructure 14

3.3 Possible Applications to Smart Mobility 15

3.4 Conclusion & Future Research 17

4 Game Streaming & Intelligent Transport . 19

4.1 Introduction 19

4.2 Related Work 20

4.3 System Architecture 21

4.4 Application in Transport and Mobility Research 22
4.5 Advantages of Game Streaming Systems 23
4.6 Conclusion and Future Work 23

5 Student Projects . 25

5.1 Introduction 25
5.2 Building a Self-Driving RC Car 25
5.3 Autonomous Vehicles as a Multi-Agent System 27
5.4 Application of Artificial Intelligence in Racing Games 28

Bibliography . 31

1. Project Description

1.1 Abstract

Hybrid artificial intelligence (HAI) methods, which can be defined as the orchestration of comple-
mentary heterogeneous both symbolic and statistical AI methods to acquire more precise results,
are omnipresent in contemporary scientific literature. Still, the methodology of developing such
systems is in the most cases ad-hoc and depends from project to project. Computer games have
always been connected to the development of AI. From the earliest chess minmax algorithm
by Claude Shannon in 1949 to the more recent AlphaGo in 2015, computer games provide an
ideal testing environment for AI methods. Similarly, AI has always been an important part of
computer games, which have often been judged by the quality of their AI and praised if they
used an innovative approach. Computer games allow us to test AI methods, not only for fun and
leisure, but also for numerous other fields of human activity through the fields of serious games and
gamification. The project proposes to establish a new framework for the orchestration of hybrid
artificial intelligence methods with a special application to computer games. Therefore an ontology
of hybrid AI methods as well as a meta-model shall be developed that would allow for creating
models (ensembles) of hybrid AI methods. This meta-model would be implemented into a modular
distributed orchestration platform which would be further enriched with a number of modules to be
tested in four gaming related environments: (1) MMORPG games, (2) gamified learning platform,
(3) serious game related to autonomous vehicles and (4) a game for a holographic/volumetric
gaming console which would also be developed during the project.

1.2 Introduction

The application of HAI which can be defined as the orchestration of heterogeneous artificial
intelligence (AI) methods including both statistical and symbolic approaches in various domains
is omnipresent in current scientific literature. It is largely overlapping with the term hybrid
intelligence (HI) that has been defined as "the combination of complementary heterogeneous
intelligences (...) to create a socio-technological ensemble that is able to overcome the current
limitations of (artificial) intelligence." [16]. HI lies at the intersection of human, collective and

2 Chapter 1. Project Description

artificial intelligence, with the intent of taking the best of each.
There have been numerous studies recently addressing issues related to HAI and HI methods

in a multitude of application domains including but not limited to land-slide prediction [33], drug
testing [12], forecasting crude oil prices [78], prediction of wildfire [24], evaluation of slope
stability [31], modeling of hydro-power dam [9], wind energy resource analysis [21], industry 4.0
and production automation [5], airblast prediction [4], heart disease diagnosis [36] and these are
just a few references from 2018 until the time of writing this proposal. Most of these and such
studies report building HAI systems by combining various AI methods to acquire better and more
precise results. However, when it comes to methodology of the actual orchestration of HAI methods
the usual approach is ad-hoc and depends from project to project. The lack of methodology in
orchestrating HAI shall be addressed in the proposed project.

In a previous project sponsored by the Croatian Science Foundation (Installation Project No.
HRZZ-UIP-2013-11-8537 entitled Large-Scale Multi-Agent Modelling of Massively Multi-Player
On-Line Playing Games - ModelMMORPG - see [67] for details) a comprehensive methodology for
modelling large-scale intelligent distributed systems has been developed that includes a graphical
modelling tool and code generator (described in [66] and in more detail in [43]). The implemented
toolset allows for modelling complex multi-agent organizations and could be applied to numerous
applications domains [60, 61]. Herein, we would like to apply and incorporate this methodology to
the development of the HAI orchestration platform.

Computer games have always been connected to the development of AI. From the earliest
chess minmax algorithm by Claude Shannon in 1949 to the more recent AlphaGo™ in 2015,
computer games provide an ideal testing environment for AI methods. Similarly, AI has always
been an important part of computer games. Computer games have often been judged by the quality
of their AI and praised if they used an innovative approach like the ghosts in Pacman™ which
had individual personality traits (1980), Creatures™ which used neural networks for character
development (1996), Black & White™ which used the belief-desire-intention (BDI) model (2000),
F.E.A.R.™ which used automated planning algorithms (2005) and many others (see [82, pp. 8–15]
for a very detailed overview). Artificial intelligence in games is not only used for non-player
character (NPC) or opponent implementation, but also for various other parts of games [82, pp.
151–203] including but not limited to generation of content (graphics including levels and maps,
sound, narratives, rules and mechanics or even whole games like the Angelina game-generating
system [14]), player behaviour and experience modeling [82, pp. 203–259], as well as bot
development and automated game testing [82, pp. 91–151]. Due to their complex nature and
endless possibilities of creative design, computer games present us with an excellent opportunity to
study the orchestration of HAI in various scenarios – not only for fun and leisure but also for other
domains in form of serious games and/or gamification.

In the previously mentioned ModelMMORPG project, we have already used an open source
massively multi-player on-line role-playing game (MMORPG) called The Mana World (TMW)
for which we have implemented a high-level interface to test intelligent agents playing the game.
Additionally a number of connected game quests have been developed for various scenarios which
allowed us to build an automated game testing system [65]. Herein we would like to use this
interface to test orchestrated HAI methods, but also develop other testbeds for the planned platform.

Therefore, the main contribution of the proposed project shall be: (1) a comprehensive frame-
work for the orchestration of hybrid artificial intelligence methods for computer games allowing to
define models of HAI for various purposes, (2) an open source distributed cloud platform that will
allow to implement such models based on existing HAI methods and connect them directly from
game development platforms, (3) a set of best practices in developing HAI ensemble models tested
in at least four specific testbeds.

The integration of HAI methods, which combines both symbolic and statistical approaches,

1.2 Introduction 3

offers significant advancements in various domains, particularly in computer games and smart
mobility. This project aims to develop a framework for the orchestration of HAI methods and
test it across multiple gaming-related environments. The chapters that follow will delve into
specific applications and developments within this framework, demonstrating the versatility and
effectiveness of HAI in different contexts.

In the next chapter, we will explore the concept of Digital twin (DT) in the context of
autonomous vehicle (AV). This chapter lays the groundwork by discussing how DTs can benefit
from the orchestration of HAI methods, particularly in creating accurate and responsive virtual
models that interact with real-world data.

4 Chapter 1. Project Description

1.3 Team Members
Markus Schatten (Principal investigator)
Head of Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb
Jaime Andres Rincon Arango
Grupo de Tecnología Informática e Inteligencia Artificial (GTI-IA),
Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València
Bogdan Okreša Ðurić
Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb
Carlos Carrascosa
Grupo de Tecnología Informática e Inteligencia Artificial (GTI-IA),
Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València

Damir Horvat
Department of Quantitative Methods
Faculty of Organization and Informatics,
University of Zagreb

Vicente Julian
Grupo de Tecnología Informática e Inteligencia Artificial (GTI-IA),
Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València
Tomislav Peharda
Artificial Intelligence Laboratory,
Faculty of Organization and Informatics,
University of Zagreb

Glenn Smith
College of Education,
University of South Florida

Igor Tomičić
Center for Forensics, Biometrics and Privacy
Faculty of Organization and Informatics,
University of Zagreb
Neven Vrček
Department of Information Systems Development
Faculty of Organization and Informatics,
University of Zagreb

2. Digital Twins and Autonomous Vehicles

In this chapter, we offer a game development perspective on DTs, focusing on smart and autonomous
vehicles. A DT, which includes a virtual representation of a system throughout its lifecycle, utilizes
real-time input, simulation, reasoning, and machine learning to facilitate decision-making about the
actual system. This concept is described as an agent or actor within a simulated (game) environment.
We provide a conceptual model for developing DTs within an orchestration platform for hybrid
artificial intelligence services designed for complex game engines.

2.1 Introduction
DTs refer to virtual models that describe observed physical systems as accurately as possible. The
distinction between a DT and a simple simulation lies in the robustness of a DT concerning the
variety of processes that can be analyzed, as well as DTs often working with real-world data from
the simulated system. For instance, a simulation might target only a single parameterized use-case
for analysis, whereas a DT acts as a virtual environment capable of running all use-cases that a
physical model might encounter [49, 79]. Classically defined, a digital twin is "a virtual replica
of a real-world product, system, being, communities, even cities, that are continuously updated
with data from its physical counterpart, as well as its environment" [25]. Compared to a "classical"
model, which is defined as a simplification or abstraction of the real system, a DT can be seen as a
complete mirror image model.

A DT model could be developed for any complex system. Examples include wind turbines,
AVs, aircraft tracking, and more. Several authors consider DTs as the backbone of industry [13,
25, 29, 39]. Although the term was coined about 20 years ago, it has recently drawn significant
attention due to digital infrastructure becoming more integrated into industry, cities, communities,
and daily activities [6].

In this chapter, we will present the benefits and challenges of using an orchestrated game
development platform for implementing DTs of AVs, including the elimination of duplicated and
"boilerplate" code as well as the reuse potential of the original AV system code due to the introduced
modularity and process distribution. However, such benefits might come with the cost of additional
computing resources.

6 Chapter 2. Digital Twins and Autonomous Vehicles

2.2 Digital Twins in Autonomous Vehicles
Recently, there has been a continuous increase in research papers focused on using DTs for AVs.
For instance, [49] investigated how the DT concept can be advantageous for managing propulsion
in an electric vehicle. The concept involves a physical vehicle equipped with various sensors and
measurement systems that share propulsion information with a service system connected to the DT
environment. The service system conducts simulations within the DT environment and uses the
feedback to control the vehicle. Similarly, [79] proposed the use of the DT concept with a focus on
traffic modeling. They emphasize that accurate traffic simulations are crucial for AVs’s safety and
performance, as different traffic dynamics require the vehicle to adapt its driving style accordingly.
Additionally, the DT concept can be utilized for improving the economics of vehicle aspects, such
as fuel consumption, driver assistance systems, battery management systems, and vehicle power
electronics [8].

Vehicle safety and security is another critical domain requiring significant attention [2]. Re-
search highlights scenarios where a DT ensures consistent vehicle behavior in the event of a cyber
attack that could compromise data integrity and consistency, potentially leading to traffic accidents.
DTs are proposed to simulate data collection, data processing, and analytics to address these
concerns.

In the realm of autonomous vehicles alone, numerous aspects necessitate proper monitoring
and forecasting, which can be supported by the use of DTs. This indicates that developing DTs
is a complex task requiring meticulous planning and system architecture. AI and particularly
machine learning (ML) are highly advocated in this domain as they help predict and propose future
actions based on current circumstances. However, the use of these methods adds another layer of
complexity. As components evolve, it is essential to ensure that DT components are extendable
and modular to adapt to new requirements easily. For instance, the increasing number of AVs may
suggest the need for a different development paradigm [2, 8]. In this chapter, we will address
these challenges related to the need for complexity reduction and modularization of AV and DT
architectures.

2.3 Awkward Π-nguin Orchestration Infrastructure
In [58], we introduced a high-level conceptual model of our microservice orchestration platform,
depicted in Figure 2.1. We have partially implemented this platform as Awkward Π-nguin (APi), an
open-source, declarative agent-based programming language based on Π calculus [40] (a process
calculus) that allows us to model communication flows between microservices.1

APi is agent-based, meaning microservices are represented as autonomous agents, and is
also holonic [53], meaning agents can be organized hierarchically as holons. The APi platform
features a declarative engine implemented in Python, particularly using Smart Python Agent
Development Environment (SPADE) [46], with parts implemented in ANTLR (syntax parser) [48]
and BASH shell scripts (for inter-process communication). It is programming language agnostic,
allowing microservices to be implemented in any language that can be executed in UNIX-friendly
environments, and communication protocol agnostic, enabling services to communicate using
stdin/stdout process communication, files, HTTP, TCP, UDP, or WebSockets, with additional
protocols addable through a partially implemented plug-in system. This is achieved by creating
wrappers around each microservice to be used in an ensemble. These wrappers then behave as
agents within a holonic multi agent system (HMAS) and can serve as building blocks for creating
complex architectures. Essentially, APi is a high-level network implementation of the UNIX
inter-process communication system, based on input/output redirection where special programs
(filters) create complex processing chains. Each process reads the standard output of the previous

1APi is open source and available at https://github.com/AILab-FOI/APi

https://github.com/AILab-FOI/APi

2.3 Awkward Π-nguin Orchestration Infrastructure 7

Figure 2.1: High-level Conceptual Model [58]

process as its input and "filters" it to produce new output for the next process. The same basic
idea applies to APi, but with the added capability of distributing these processes (microservices or
agents) across various servers and enabling them to communicate over a network regardless of their
implementation.

The syntax of the APi programming language is influenced by Python and Π-calculus. The
following excerpt (Listing 2.1) demonstrates some of the main features of the language.

Listing 2.1: Example APi syntax

environment :
input1 => { ’val1’: ?x, ’val2’: ?y }
output1 <= { ’action’: ?act }

channel c :
{ ’data’->?x } -> { ’payload’ -> ?x }

agent a (x) :
input1 -> self
self -> ?x

agent b :
c -> self

8 Chapter 2. Digital Twins and Autonomous Vehicles

self -> output1

start a(c) & b

In this excerpt, a holon is defined, which communicates with the environment through chan-
nels input1 and output1. A local channel (c) is defined to transform messages of the form {
’data’->?x } (JSON format with logic variables) on the left-hand side and emit messages of
the format { ’payload’ -> ?x } on the right-hand side. Additionally, two agents (microser-
vice wrappers) are defined (a and b). Agents’ definitions correspond to service descriptors that
describe how to start the service, how it communicates, what type of service it is, etc., and can
take arguments. In each agent definition, there are one or more channel mapping definitions. For
example, agent a will direct messages from input1 to its own input (keyword self) and redirect
its outputs to the channel held in the variable ?x (an instantiation argument). Both agents are started
consecutively (when agent a finishes successfully, agent b will be started). The defined holon can
then be imported into other holons to create complex orchestration architectures. For example, if
the above holon had been defined in a file called holon1.api, we could import and use its output
as shown in Listing 2.2.

Listing 2.2: Example APi syntax

from holon1 import output1 as h1

agent a (...) :
h1 -> self

The platform is designed for the orchestration of AI and computer game-related microservices
as outlined in [57] and [63]. In this regard, it enables the connection and assembly of complex data
streaming applications, which is essential for the implementation of AV systems and consequently
DTs.

2.4 Digital Twins as Game Actors

A common software development pattern in computer game design is the actor model [34, 70],
which corresponds to the multiagent systems (MASs) model or more precisely to intelligent virtual
environments (IVEs) [42, 51]. In such environments, actors (agents) interact with their environment,
which consists of other (potentially intelligent and/or autonomous) agents as well as dynamic or
inanimate, static objects.

It has been argued that IVEs provide the necessary tools to develop, test, and monitor AVs
architectures [19, 57, 83]. In this chapter, we further argue that a serious game development
environment with an orchestration platform, as described in Section 2.3, can offer additional
benefits. Firstly, game development environments usually feature an integrated game engine
that provides essential components for developing IVEs, including but not limited to 3D physics,
various sensors, a simulation engine, AI methods, actor templates, cameras, logging facilities, etc.
Additionally, these environments offer instant visual monitoring of the environment. Secondly,
an orchestration platform allows us to implement complex data streaming ensembles that might
consist of various ML cloud services, which are usually too resource-intensive to be executed on a
single computer during a simulation and/or real-time monitoring.

To implement a DT of an AV, real-time monitoring of the vehicle in terms of sensor inputs, ac-
tuator outputs, and internal decision-making mechanisms is crucial. With an orchestration platform
where multiple cloud-based servers can handle various complex tasks like pattern recognition, auto-
mated planning, or reasoning, such a workload can be distributed and managed. In the following,

2.4 Digital Twins as Game Actors 9

we will demonstrate a simple proof-of-concept implementation of a DT of an AV using the APi
language.

An implementation of an AV system typically consists of several sensors (which might include
LiDAR, radar, cameras, etc.), several decision-making services (e.g., ML models, complex AI
algorithms including but not limited to search and planning techniques), several communication
services (interacting with relevant online services like traffic congestion information, routing
services, etc.), and several actuators (e.g., steering, car safety monitoring like tire pressure, fuel
or battery life, infotainment systems, etc.). All these subsystems can be wrapped into mutually
communicating agents inside a holon, as described in Section 2.3.

For simplicity, let us assume that the AV is a holon (i.e., a multi-agent system of various
components) that communicates by reading its sensors and relevant external services and writing
commands to appropriate actuators. An implementation of such a holon in APi would look similar
to the code in Listing 2.3.

Listing 2.3: AV holon implementation - AVHolon.api

environment :
sensor_1 => ...
...
sensor_n => ...
external_service_1 => ...
...
external_service_k => ...
actuator_1 <= ...
...
actuator_m <= ...

agent AV :
sensor_1 -> self
...
sensor_n -> self
external_service_1 -> self
...
external_service_k -> self
self -> actuator_1
...
self -> actuator_m

By defining the AV system in this way, we abstract away all internal communication mecha-
nisms, meaning that we now have standard communication interfaces (channels) for all included
components, and these interfaces can be reused. We can redirect them at will to other agents or
holons. This redirection capability is a special feature of the declarative engine of APi—it allows
us to listen to or write to any channel within the given scope (i.e., the current holon, which in this
case acts as a namespace). This feature is crucial for implementing a DT since it enables us to "tap
into" communication flows and process real-time data.

To gain the benefits of a DT, we should additionally add a corrective input, i.e., an additional
communication channel to allow for intervention if the AV system does not function as intended.
The environment would then look as shown in Listing 2.4.

Listing 2.4: Adding a corrective to the AV holon

environment :

10 Chapter 2. Digital Twins and Autonomous Vehicles

corrective => ...
sensor_1 => ...
...

...

With the prerequisites defined, implementing a DT using APi is now straightforward. We first
import all communication channels and redirect them to a new agent representing the DT. Finally,
we start the DT in parallel with the AV holon defined above, as shown in Listing 2.5.2

Listing 2.5: Digital twin implementation

from holonAV import sensor_1 as s1
...
from holonAV import sensor_n as sn

from holonAV import external_service_1 as e1
...
from holonAV import external_service_k as ek

from holonAV import actuator_1 as a1
...
from holonAV import actuator_m as am

from holonAV import corrective as cr

agent AVtwin :
s1 -> self
...
sn -> self
e1 -> self
...
ek -> self
a1 -> self
...
am -> self
self -> cr

start holonAV | AVtwin

In this way, the DT can monitor all inputs and outputs of the original AV system and use this
data to update its IVE, simulate and analyze its decision-making process, and send corrective
information if needed.

2.5 Discussion
The primary advantage of the orchestrated implementation described in Section 2.4 is its modular
approach, which significantly reduces code duplication, especially in "boilerplate" communication
code. In a non-orchestrated implementation, each service instance from the original AV system that
communicates in any way would need to be either rewritten or extended to forward data to the DT.
Additionally, for the implementation of the DT, each component simulation of the original system

2The | character between two agents denotes parallel execution.

2.6 Conclusion 11

would have to be recreated in an IVE, game engine, or other simulation environment using native
development tools and languages. By employing agent wrappers around these components, most of
the non-hardware-specific code can be reused, functioning similarly to the original setting.

However, there are some caveats. Wrapping the original AV system components as agents
introduces additional overhead code, which might require extra computing resources to operate and
communicate with the orchestration platform. These additional resources might not be available
or desirable in real-time and mission-critical settings. Another issue that remains unresolved with
this approach is the need to implement the update process of the IVE using real-time data from the
original AV system. These update components need to be implemented as additional services to
update the simulated environment based on sensory data and integrate with the other (potentially
reused) services. On the other hand, the integration process is relatively straightforward due to the
modularity of APi, allowing for the introduction of new components without altering the original
services’ code, which might not be feasible in a non-orchestrated setting.

2.6 Conclusion
In this chapter, we have discussed the benefits and challenges of using an orchestrated game
development platform for implementing DTs for AVs. Using the APi platform we are actively
developing, we demonstrated how to implement a basic DT ensemble. The key advantages of
using an orchestrated game development platform, besides the various building blocks provided
by game development software (especially game engines), include the elimination of duplicated
and "boilerplate" code, as well as the reuse potential of the original AV system code due to the
introduced modularity and process distribution. These benefits come with the cost of requiring
additional computing resources on the AV system side.

Our future research aims to implement a proof-of-concept digital twinning environment for
AVs, addressing some of the issues outlined above.

We have highlighted the potential of DTs in enhancing the functionality and safety of AVs.
The orchestration platform for HAI methods is crucial in managing complexity and ensuring the
accuracy of DTs. Moving forward, we will explore how similar principles apply to developing
cognitive agents in smart mobility, showcasing another facet of HAI application.

3. Cognitive Agents & Smart Mobility

Cognitive agents are artificial intelligence systems capable of communicating in ways that are
highly acceptable to humans. Technologies such as natural language processing (NLP), text to
speech (TTS), speech to text (STT), and motion capture (MoCap) are typically employed to provide
such interfaces. In this work-in-progress chapter, we present the current state of the B.A.R.I.C.A.
infrastructure that we have developed. This infrastructure facilitates the implementation of open-
source cognitive agents across a wide range of domains, capable of communicating in the Croatian
language. The aim of this study is to analyze potential applications of B.A.R.I.C.A. in smart
mobility, identify gaps to be addressed, explore possible applications, and provide implementation
guidelines.

3.1 Introduction
A cognitive agent is a specific class of intelligent agents employing numerous AI methods, in-
cluding but not limited to, ML and deep learning (DL) models, STT and TTS technologies, NLP,
knowledge bases (KBs), BDI models, as well as system automation for interacting with and learning
from humans [32]. Cognitive agents have gained significant popularity through various systems
developed by major software vendors such as Google (Assistant), Microsoft (Cortana), Apple (Siri),
and Amazon (Alexa). Their application domains include Internet of things (IoT) and fog computing
[20], education [7], home service robots [75], mental health therapy [72], cognitive radio [41], and
many more.

Smart mobility, representing a network of intelligent services, systems, processes, models,
and people aimed at making transportation easier, combines various technologies and elements of
mobility, enabling us to rethink the transportation infrastructure used in daily life and business.

In this chapter, we will present the current state of the B.A.R.I.C.A. cognitive agent infrastruc-
ture that we are actively developing [55] and demonstrate how it can be used to implement smart
mobility applications. Additionally, this study will use the Design Science Research Methodology
(DSRM), which provides specific guidelines for evaluation and iteration within research projects in
information technologies [47]. This chapter focuses on the first three activities of the design science
research process: (1) Problem identification and motivation (providing a selection of application

14 Chapter 3. Cognitive Agents & Smart Mobility

areas for cognitive agents in smart mobility), (2) Objectives of a solution (describing problems
that can be solved using our infrastructure), and partly (3) Design and development (outlining the
implementation steps needed to accomplish a solution).

3.2 B.A.R.I.C.A. Infrastructure

The primary motivation behind the B.A.R.I.C.A. system was to create an open-source cognitive
infrastructure for developing cognitive agents using the Croatian language. So far, we have been
able to implement the basic infrastructure as well as two use-cases (one as a presentation assistant
agent and another for university student support [55, 71]). The B.A.R.I.C.A. cognitive agent
system’s software architecture is shown in Fig. 3.1. The two main components are a cloud-based
back-end and an on-site front-end.

B.A.R.I.C.A. - Frontend API

B.A.R.I.C.A. - Controller

KB KB
Module Module

B.A.R.I.C.A. - Backend API

Storage

Controller

User Interface

Voice Graphical

External
services

Figure 3.1: B.A.R.I.C.A. software architecture [55]

The cloud-based back-end is part of a larger framework that encompasses a microservice

3.3 Possible Applications to Smart Mobility 15

orchestration platform embodying concepts of HMASs [53] and large-scale multiagent systems
(LSMASs) [60, 61] through its main components: a back-end application programming interface
(API), a controller, and a front-end API. This framework is being developed by the Orchestration
of Hybrid Artificial Intelligence Methods for Computer Games project (O_HAI 4 Games) [58,
63]. Each component serves a specific purpose:

1. The back-end API provides access to various microservices, including but not limited to,
KBs, AI modules, and external services. Thus, the back-end API can be considered the main
source of intelligent actions that the overall system is capable of.

2. The controller, which serves as a middle layer, acts as a microservice orchestration system
aimed at combining various back-end microservices with front-end API functions to provide
a coherent system.

3. The front-end API offers front-end applications easy-to-use functionality, abstracting away
all logic related to microservice orchestration.

The technologies used to build the cloud-based back-end are primarily various Python-related
technologies. The cognitive features of B.A.R.I.C.A. are implemented using the NLTK and
Chatterbot Python modules, providing chatbot and NLP capabilities. To transform text into speech,
the external service VoiceNotePad has been utilized.

The main front-end application is web-based, relying on JavaScript technologies such as jQuery
and Selenium for browser automation. The Python library Hovercraft has been used to provide the
graphical user interface (GUI). To support MoCap animations for speech sequences, CrazyTalk has
been used. B.A.R.I.C.A. is open source and available for free to anyone who wishes to implement
cognitive agents.

3.3 Possible Applications to Smart Mobility

There have been numerous applications of smart mobility in both industry and academia. Here,
we provide a brief selection of applications that might benefit from cognitive agents based on a
literature review [18, 23, 76]. The applications have been chosen based on two criteria: (1) ease of
implementation using the B.A.R.I.C.A. infrastructure, and (2) potential benefits for end-users if
such services are implemented. This list is not exhaustive, and other application areas could also
benefit from cognitive agents.

Additionally, we provide guidelines on how such services might be implemented using the
B.A.R.I.C.A. infrastructure, focusing on components that might be missing and need to be integrated
or developed from scratch. Fig. 3.2 provides a conceptual overview of the various components that
need to be employed.
Electronic toll systems are systems that allow for the automation of toll payments, usually using

an embedded computing system connected to various traffic equipment like ramps or card
recognition systems. Cognitive agents can provide a natural language interface, automated
detection of vehicle types and/or passengers, automated payment, etc. To use the B.A.R.I.C.A.
infrastructure in electronic toll systems, as well as in any other embedded hardware, a new
embedded interface might need to be developed depending on the type of embedded software
and operating system used. In the case of an advanced microcontroller like the RaspberryPi,
which runs a full Linux operating system, the standard interface can be used since it relies
only on standard operating system software. In other cases, where no browser is available,
a new interface controller and likely a new user interface would need to be developed.
Additionally, a new module for electronic toll systems would need to be developed and
connected to the back-end API to allow the cognitive agent to understand the domain and
be used effectively. Other services, such as a payment system, can be developed as part
of the electronic toll system or as an additional module. From a hardware perspective, a

16 Chapter 3. Cognitive Agents & Smart Mobility

B.A.R.I.C.A. - Frontend APIs

B.A.R.I.C.A. - Controller

KB

KB

Electronic
toll

system
module

Variable
information

panel
module

B.A.R.I.C.A. - Backend API

Storage

Controller

User Interface

Voice Graphical

STANDARD (WEB BASED) INTERFACE

Storage

Controller

User Interface

Voice Graphical

MOBILE INTERFACE
Storage

Controller

User Interface

Voice Graphical

IOT (EMBEDDED BASED) INTERFACE

MOBILE APPLICATIONS
(using mobile interface)

EMBEDDED APPLICATIONS
(using IOT interface)

Smart
parking
module

Smartphone
service
module

Smart
crossroad

module

Public
transportation

module

Vehicle
sharing
module

WEB APPLICATIONS
(using standard interface)

Figure 3.2: B.A.R.I.C.A. software architecture for Smart Mobility

microphone and a loudspeaker need to be added to the installation if none are available.
Variable information panels can be enhanced with cognitive agents to provide a natural language

interface and two-way communication. To use the B.A.R.I.C.A. infrastructure in variable
information panels, assuming a PC or more advanced microcontroller is driving the panel,
no changes need to be made to the client. An additional module for the information domain
of the panel must be implemented and connected to the back-end API. If the panel lacks a
microphone and loudspeakers, these need to be installed to enable two-sided communication.
Since variable information panels are primarily designed to provide visual information,
introducing a cognitive agent would allow the panels to also provide information via audio,
with the possibility of answering individuals’ questions. Thus, expanding the pool of
information that may be provided through the panel.

Smart crossroads To use the B.A.R.I.C.A. infrastructure in smart crossroads, a new embedded
interface might need to be developed depending on the type of device that the crossroad is
intended to cover. A smart crossroads module would need to be developed and implemented
into the back-end API to cover features for the said domain. Depending on the use case,
various sensors might be needed to track events at a crossroad, which the module would need
to account for. In this context, a cognitive agent could assist people with visual disabilities
by informing them when it is safe to cross the road.

Smart parking lots To use the B.A.R.I.C.A. infrastructure in smart parking lots, they should be
equipped with sensors to monitor available spots, and a module that accesses that information.
The cognitive agent could help navigate individuals to an empty parking slot and assist with
ticket payments. These modules would then be integrated with the back-end API to enable
the cognitive agent to access parking lot availability information. This implies that a parking
lot would also need a device for user interaction. Depending on the types of devices available,

3.4 Conclusion & Future Research 17

the client may or may not need to change.
Vehicle sharing To use the B.A.R.I.C.A. infrastructure in vehicle sharing, the vehicle should have

a built-in smart device. Most new vehicles already include such devices, though their software
is usually not flexible enough to add additional applications. Therefore, a new client may
need to be developed to work with the available software. Cognitive agents can enhance
the vehicle-sharing experience by assisting multiple individuals who share the vehicle with
specifying destinations, answering questions about arrival times, helping with payments, etc.
To support two-sided communication, a microphone should be included if none is present,
though most newer vehicles already have them. For this use case, a separate module needs to
be developed and integrated with the back-end API, providing support for vehicle-sharing
features such as navigation and payment handling.

Public transport To use the B.A.R.I.C.A. infrastructure in public transport, assuming there are
smart devices (monitors or TVs) present, no changes are required on the client side since
such smart devices already support Internet browsers. However, additional modules for the
transport domain would need to be integrated into the back-end API to support these use
cases. In public transport, a cognitive agent could help users purchase and verify their tickets,
provide information about possible routes, check arrival times at destinations, and similar
use cases that may potentially combine information from different transport modes.

3.4 Conclusion & Future Research
In this chapter, we have provided an overview of the B.A.R.I.C.A. cognitive agent infrastructure,
which is an open-source platform for developing cognitive agents in the Croatian language. We are
actively developing this infrastructure as part of the O_HAI 4 Games project and a larger context
dealing with smart microservice orchestration.

As part of a design science research methodology process, we have developed a conceptual
overview model of various components that can be employed to implement smart mobility appli-
cations using B.A.R.I.C.A., as well as a number of possible use cases for this infrastructure and
cognitive agents in general, focusing on the benefits for end-users. Additionally, we have provided
guidelines on how such applications could be implemented using our infrastructure.

While B.A.R.I.C.A. is open source and free to use, it still includes several constraints for its
usage in smart mobility applications, mainly concerning the current client interface, which heavily
relies on a specific operating system (Linux) and browser automation (Chromium, Selenium).
Thus, to fully leverage the infrastructure, new client interfaces need to be developed that are either
platform-specific or, preferably, platform-independent, making them available on most platforms.

Our future research aims to build such interfaces, especially with the goal of making them
platform-independent, to reach as many end-user platforms as possible. One possibility we are
considering is using web assembly or pure JavaScript to embed the main functionality of the client
interface into any browser, allowing usage on any device that can run a modern Internet browser.

Cognitive agents, powered by advanced AI techniques, offer transformative potential in smart
mobility applications. From enhancing user interactions to automating complex processes, these
agents exemplify the practical benefits of HAI orchestration. The next chapter will shift focus
to game streaming and its implications for intelligent transport, demonstrating how HAI can
revolutionize user experiences in gaming and beyond.

4. Game Streaming & Intelligent Transport

In this chapter, we present and analyze a game streaming engine called Lag but Good Game
(laGGer), which is based on open-source technologies, standards, and protocols. We detail the
system’s architecture, which is grounded in multi-agent systems, and provide insights from the
design and development process of this complex system. We argue that game streaming systems
offer new and unprecedented opportunities in transport and mobility research, and we illustrate
several use cases demonstrating how such systems can facilitate emerging applications.

4.1 Introduction

The rapid growth of cloud computing and network technologies has led to the emergence of game
streaming services, enabling users to play high-quality games without requiring powerful hardware.
Commercial game streaming systems such as Nvidia GeForce Now [73], Microsoft xCloud [37],
the now-defunct Google Stadia [11], and others have gained significant attention and popularity in
recent years. However, these platforms often rely on proprietary software and protocols, limiting
the accessibility and adaptability of the technology. To date, no game streaming system has been
built exclusively using open-source software, open protocols, and standards.

In this chapter, we introduce a novel game streaming engine called laGGer, which is entirely
based on open-source technologies, aiming to increase the accessibility and flexibility of game
streaming services. This engine is designed using a design science approach, leveraging insights
from the complex process of developing multi-agent systems and containerized microservice
architectures. Our system enables the creation of game instances that are streamed to a web-based
client interface, allowing users to experience high-quality gaming on various devices.

Moreover, our orchestrated game streaming system facilitates user interaction by providing
audio and video streaming between users. This feature enhances the overall gaming experience
by enabling seamless communication and collaboration among players. By utilizing open-source
software, open protocols, and standards, our system offers an alternative to commercial game
streaming services, fostering innovation and promoting the development of new game streaming
applications and platforms.

20 Chapter 4. Game Streaming & Intelligent Transport

In the dynamic field of transport and mobility research, innovative digital technologies are con-
tinuously explored for their potential to enhance both the depth and breadth of research capabilities.
Game streaming technology, a relatively recent development in the digital landscape, presents a
unique set of opportunities for this domain. This technology, which allows for real-time streaming
of interactive game content from a server to a client device, has the potential to revolutionize the
way transport and mobility studies are conducted.

The inherent characteristics of game streaming technology, such as real-time data transmis-
sion, high accessibility, and user interaction capacity, make it a versatile tool for researchers and
professionals in the transport sector. It opens up new avenues for creating immersive, realistic,
and scalable simulations of various transport scenarios, facilitating advanced data collection and
analysis, and fostering effective training and educational programs.

Moreover, the ability of game streaming technology to support real-time communication
between users adds an additional layer of interactivity, enabling collaborative scenarios and studies
on group dynamics in transport situations. This aspect is particularly relevant in the context of
studying and developing solutions for connected and automated mobility systems.

In the following sections, we delve into the system’s architecture, detailing the design and
development process of this unique game streaming engine. Firstly, in section 4.2, we provide an
overview of related work. Then, in section 4.3, we describe the architecture of the implemented
system. In section 4.4, we present an overview of mobility and transport applications of game
streaming technology, and in section 4.6, we draw our conclusions and provide guidelines for future
research.

4.2 Related Work
Game streaming, also known as cloud gaming, is a technology that allows users to play video games
remotely by streaming game content from powerful servers to their devices. This enables gamers
to enjoy high-quality graphics and gameplay without needing powerful and expensive hardware
on their end. The motivation behind game streaming comes from the desire to make gaming more
accessible and convenient for users. By offloading the processing and rendering tasks to remote
servers, game streaming allows players to enjoy resource-intensive games on less capable devices
such as smartphones, tablets, or low-end computers. This approach also enables gamers to play
their favorite games without worrying about hardware upgrades or compatibility issues.

Game streaming technology leverages a combination of cloud computing, high-speed internet,
and video streaming protocols to deliver an optimal gaming experience. Cloud servers equipped
with powerful GPUs and CPUs process and render game content, while low-latency video streaming
protocols such as WebRTC, H.264, or VP9 transmit the gameplay to the user’s device in real-time.
Input from the user’s game controller or keyboard is sent back to the server, allowing for real-time
interaction with the game.

Microservice orchestration [62] using software containers, such as Docker, refers to the process
of automating, managing, and coordinating the deployment, scaling, and intercommunication of mi-
croservices in a distributed system. Microservices [74] are small, independent, and loosely-coupled
services that together form a larger, more complex application. Containerization, using technologies
like Docker, packages each microservice with its dependencies and runtime environment, ensuring
consistency and isolation across various stages of development and deployment. Examples of
microservice orchestration using containers can be found in various domains, such as e-commerce
platforms, content management systems [15], and even game streaming services as in our case [56,
64]. Companies like Netflix, Uber, and Spotify have adopted microservices and containerization
technologies to manage their large-scale, distributed applications.

MASs are a branch of artificial intelligence that focuses on the design, modeling, and implemen-
tation of complex distributed intelligent systems composed of multiple autonomous agents. These

4.3 System Architecture 21

agents, which can be software programs or physical entities, interact and collaborate with each
other to achieve common or individual goals [54, 80]. By leveraging the collective intelligence of
multiple agents, MASs can address complex problems that are difficult or impossible to solve using
a single-agent approach. The motivation behind multi-agent systems comes from the need to model
and implement complex distributed intelligent systems that can adapt to dynamic environments,
handle uncertainties, and autonomously solve problems [1, 10].

Examples of multi-agent systems can be found in various domains, including robotics (swarm
robotics [17], cooperative robot teams [52]), traffic management (autonomous vehicles [26], traffic
control, e.g., [81]), logistics (supply chain management [22], distributed scheduling), and even game
development (NPC - Non-Playing Character - coordination [44], dynamic game environments).

4.3 System Architecture

The system’s architecture is depicted in Figure 4.1. As shown, the system comprises a game
streaming agent that orchestrates a pool of game agent containers. Additionally, a videoconferencing
agent handles the establishment of video conference instances for each game session using Web
Real-Time Communication (WebRTC) connections managed by a Janus [3] server.

Server agent

Player agent 1
Player 1

IF game
instance

Player agent N

Player N IF game
instance

python-glulxe interface

python-glulxe interface

textual input/output

textual input/output

XMPP messaging

XMPP messaging

Figure 4.1: System Architecture [56]

22 Chapter 4. Game Streaming & Intelligent Transport

Game agents are implemented using Docker, enabling different types of services to run in
isolated environments, referred to as containers or cartridges in laGGer. Typically, a container
service can be accessed, controlled, and configured through a command-line interface (CLI).
However, the CLI is not ideal for services designed to provide visual data. Consequently, games
are not inherently suitable to run as Docker containers without proper support.

To address this, X11 protocol support facilitates the streaming of visual data from a Docker
container. X11, the X Window System [30], is a protocol that enables applications to draw visual
objects. Essentially, X11 streams an application’s output to the user’s screen and can operate with
distributed machines, where one handles processing and another handles display. X11’s secure
protocol is often used for remote machine access, employing a client-server model where the X
Server resides on the user machine and the X Client on the remote machine, enabling bidirectional
data flow [28].

X11 can also be integrated with Docker [77], allowing graphical user interfaces (GUIs) to
run inside a container and stream visual output to the user display. Since X11 transports bitmaps
(high-level visual data representations), it can stream visual data from any service running in a
Docker container without additional adjustments. If a service in a Docker container provides a
GUI and Docker is configured with X11, visual data streams to the user display seamlessly with a
running X Server.

With X11 support, a game can be launched as a Docker container on a cloud server responsible
for heavy processing, with the visual output streamed to the user. This means users do not need
powerful hardware for processing, just sufficient resources for display.

To stream graphical data to a web browser, we utilized virtual network computing (VNC).
noVNC is an HTML client and JavaScript library based on VNC concepts, enabling connection to a
remote machine whose output is streamed to the user browser. This approach requires no additional
software installation or setup on the user’s machine, only a modern web browser.

noVNC [27] employs websockets to communicate with a VNC server. VNC [50] facilitates
screen sharing and manipulation, with configurations for tunneling X11 protocol data to the web.

Integrating these technologies supports streaming a game’s visual output, computed remotely,
to the user display via a browser. Using a MAS approach, specifically SPADE, we integrated all
described technologies into a coherent system, as shown in Figure 4.1.

Running game instances in Docker containers allowed us to build an orchestration platform
supporting numerous users and game instances simultaneously. The platform scales up the number
of instances on demand, accommodating new users. The system also enables real-time videoconfer-
encing between users in a game instance using the Janus WebRTC server. Thus, we implemented a
complete game streaming platform using exclusively open standards, open protocols, and open-
source software1.

4.4 Application in Transport and Mobility Research

In the following section, we explore the specific ways game streaming technology can be leveraged
in transport and mobility research. This includes simulation and training, data collection and
analysis, testing of automated and connected mobility solutions, gamification in transport, and the
development of resilient transport systems and logistics.
Simulation and Training A city’s public transport authority could use the game streaming system

to create a virtual environment replicating the city’s actual road and traffic conditions. Bus
drivers could then use this virtual environment for training, learning to navigate the city’s

1The current state of the system is available under an open source license at https://github.com/AILab-FOI/
laGGer

https://github.com/AILab-FOI/laGGer
https://github.com/AILab-FOI/laGGer

4.5 Advantages of Game Streaming Systems 23

streets, handle various traffic situations, and respond to emergencies without real-world risks,
significantly improving their preparedness and response times.

Testing of Automated and Connected Mobility Solutions A company developing an autonomous
vehicle could use the game streaming system to create a virtual city with various traffic sce-
narios, weather conditions, and unexpected events. The company could then test how well
their autonomous vehicle navigates this virtual city, identifying and addressing any issues in
a safe, controlled environment.

Gamification in Transport A city could use the game streaming system to create a game where
citizens earn points for using public transport, cycling, or walking instead of private cars.
These points could be redeemed for rewards, such as discounts on public transport tickets,
encouraging more sustainable transport habits among citizens.

Resilient Transport Systems and Logistics A logistics company could use the game streaming
system to simulate various disruptions to their supply chain, such as road closures or port
delays. They could then use these simulations to develop and test strategies for managing
these disruptions, ensuring they can deliver goods on time despite unexpected challenges.

4.5 Advantages of Game Streaming Systems

Game streaming systems offer several advantages over traditional game engines, particularly for
applications in transport and mobility research:
Hardware Accessibility Game streaming systems, like laGGer, require less powerful hardware

on the user’s end because the heavy processing is done on the server side. This means users
can access and interact with complex simulations from any device with a good internet
connection, including lower-end computers, tablets, or even smartphones.

Central Deployment and Updates With a game streaming system, updates or changes to the
simulation can be made centrally on the server and instantly become available to all users.
This is much more efficient than updating software on each individual user’s device.

Real-Time Communication Game streaming systems can facilitate real-time communication
between users, which can be valuable in transport and mobility research. For example, in
a training scenario, instructors could provide real-time feedback to trainees. In a research
scenario, researchers could observe and communicate with participants in real time as they
interact with the simulation.

Scalability Game streaming systems can typically handle a larger number of simultaneous users
than traditional game engines. This is particularly useful in research studies involving large
numbers of participants or training programs for large organizations.

Data Collection and Analysis Consider a research project studying driver behavior in response
to different traffic signal timings. The game streaming system could simulate various traffic
signal scenarios, and researchers could collect data on how drivers respond to each scenario.
This data could then be analyzed to optimize traffic signal timings for improved traffic flow
and reduced congestion. Because all user interactions occur on the server, game streaming
systems facilitate more comprehensive data collection and analysis. Every action taken by
the user in the simulation can be recorded and analyzed, providing valuable insights for
research or feedback for training.

4.6 Conclusion and Future Work

Building on our work with the laGGer game streaming engine, we see a future where these systems
become integral to transport and mobility research. The inherent advantages of game streaming
systems, such as accessibility, ease of updates, real-time communication, scalability, and data

24 Chapter 4. Game Streaming & Intelligent Transport

collection, have already proven their value. However, we believe that the true potential of these
systems is yet to be fully realized.

In our future research, we aim to delve deeper into the application areas outlined in this chapter.
We will focus on how game streaming technology can be leveraged in transport and mobility
research, with a particular emphasis on gamification in transport and the development of resilient
transport systems and logistics.

Our goal is to further explore and demonstrate how these systems can significantly contribute
to these research areas, thereby advancing our understanding and application of game streaming
technology in transport and mobility.

This chapter introduced the laGGer game streaming engine and explored its potential applica-
tions in transport and mobility research. By leveraging open-source technologies and HAI methods,
we can create scalable, interactive simulations that provide valuable insights and training opportu-
nities. The integration of game streaming with smart mobility solutions exemplifies the broader
impact of HAI orchestration, tying together the themes and developments discussed throughout
this report.

In summary, this report has demonstrated the diverse applications and benefits of HAI orches-
tration across multiple domains, from digital twins in autonomous vehicles to cognitive agents in
smart mobility and game streaming in intelligent transport. By connecting these chapters through
common methodologies and integrated conclusions, we can appreciate the comprehensive potential
of HAI in transforming modern technologies and enhancing user experiences.

5. Student Projects

5.1 Introduction

In this chapter, we explore three student projects that were conducted as part of their master’s
theses. Each project investigates different applications of artificial intelligence and autonomous
systems, contributing valuable insights and advancements in their respective areas. The projects are
as follows:
Building a Self-Driving RC Car Ivan Oršolić developed a self-driving RC car, implementing

various AI algorithms to achieve autonomous navigation and control. This project focuses on
the practical challenges and solutions in creating a scaled-down autonomous vehicle [45].

Autonomous Vehicles as a Multi-Agent System Rene Maruševec examined the application of
multi-agent systems in the context of autonomous vehicles. This study investigates how
individual autonomous agents can collaborate to improve overall system performance and
safety [38].

Application of Artificial Intelligence in Racing Games Luka Mandić explored the use of arti-
ficial intelligence techniques in racing games. The project aims to simulate real-world
applications of AI in vehicles by creating intelligent, adaptive opponents within a game
environment [35].

The following sections will delve into the details of each project, highlighting the methodologies
used, challenges faced, and the results obtained.

5.2 Building a Self-Driving RC Car

The project "Building a Self-Driving RC Car" by Ivan Orsolic aims to create a scaled-down model
of an autonomous vehicle using a remote-controlled (RC) car. The project encompasses the entire
process from hardware selection and assembly to software development and machine learning
model training.

The hardware platform includes various components such as the RC car model, electronic speed
controllers (ESC), servo motors, batteries, and sensors. The choice of these components is critical
for ensuring the vehicle’s capability to navigate and perform autonomous tasks. The embedded

26 Chapter 5. Student Projects

system, which serves as the brain of the RC car, includes a microcontroller that processes sensor
data and controls the actuators.

Figure 5.1: The assembled car [45]

The software architecture integrates multiple machine learning techniques to enable the car
to drive autonomously. This involves data acquisition, labeling, and training a neural network to
recognize and respond to various driving scenarios. The project employs a convolutional neural
network (CNN) to process images from the car’s camera and make driving decisions.

Figure 5.2: The car track [45]

The vehicle’s performance is tested on a track designed to simulate real-world driving conditions,
including lane changes and obstacle avoidance. This practical implementation demonstrates the
feasibility and challenges of developing autonomous driving systems at a smaller scale, providing
valuable insights for larger-scale applications.

5.3 Autonomous Vehicles as a Multi-Agent System 27

This project showcases the integration of hardware and software in building an autonomous
vehicle as well as highlights the potential of using scaled-down models for educational and research
purposes in the field of autonomous driving.

5.3 Autonomous Vehicles as a Multi-Agent System

The project "Autonomous Vehicles as a Multi-Agent System" by Rene Maruševac explores the
integration of multi-agent systems (MAS) with machine learning models to enhance the functionality
and safety of autonomous vehicles (AVs). This study focuses on developing robust services for
lane line detection and traffic sign classification, both critical for autonomous driving.

The lane line detection service employs a basic yet effective algorithm to identify lane markings.
This approach involves parameter tuning to optimize performance for different road conditions.
While the initial implementation performs well on straight roads, it struggles with curved roads.
The project suggests potential improvements, such as employing a geometrical model or a deep
learning approach with convolutional neural networks (CNNs) for better accuracy in real-world
applications.

Figure 5.3: Lane line as detected by the algorithm [38]

For traffic sign classification, the project implements a deep learning model based on the
LeNet-5 architecture, which is foundational in modern computer vision applications. Using the
German Traffic Sign Recognition Benchmark (GTSRB) dataset, the model achieves a test accuracy
of 94.2%. This demonstrates the effectiveness of CNNs in recognizing traffic signs, which is
essential for the safe operation of AVs. The project highlights the importance of parameter tuning
and suggests using more advanced architectures like VGGNet for higher accuracy.

The study also provides a comprehensive comparison of various object detection algorithms,
including YOLO, SSD, and Faster R-CNN, analyzing their speed and accuracy trade-offs. For
instance, YOLO offers real-time performance with acceptable accuracy, making it suitable for
applications where speed is critical. In contrast, Faster R-CNN provides higher accuracy but at the
cost of increased computational requirements, which may not be feasible for real-time applications
on resource-constrained devices .

28 Chapter 5. Student Projects

Figure 5.4: Traffic sign classification [38]

In conclusion, the project successfully integrates machine learning models into a MAS frame-
work to enhance AV capabilities. It emphasizes the need for continuous improvement and adaptation
of these models to handle the dynamic and unpredictable nature of real-world driving environments.
By leveraging advanced machine learning techniques and robust MAS architectures, this study
paves the way for more reliable and efficient autonomous driving systems.

5.4 Application of Artificial Intelligence in Racing Games

The third project, "Application of Artificial Intelligence in Racing Games," undertaken by Luka
Mandić, explores the integration of AI methodologies within racing game environments. This
project leverages advanced machine learning techniques to simulate and improve AI behavior in
racing scenarios, providing insights applicable to both virtual and real-world autonomous driving
systems.

The project begins with an overview of the evolution of artificial intelligence in racing games,
tracing its history from early implementations to contemporary uses. It highlights key milestones
such as the introduction of AI in games like "Pole Position" and "Super Mario Kart," where AI-
controlled opponents provided dynamic and challenging gameplay experiences. This historical
context sets the stage for understanding the advancements and current state of AI in gaming.

A significant part of the project focuses on the technical implementation of neural networks and
genetic algorithms within the Unity game engine. The author develops a racing game prototype
where AI agents, represented as cars, navigate a racetrack using learned behaviors. The neural
networks are trained to handle steering and acceleration, enabling the cars to complete laps
autonomously. The training process involves feeding the neural network various inputs related to
the car’s environment and desired outcomes, iteratively improving its performance.

The project also delves into the use of genetic algorithms to optimize the neural networks.
Genetic algorithms mimic the process of natural selection, evolving the neural network’s parameters
over successive generations to enhance performance. This approach allows the AI to learn and adapt
to the racing environment, improving its ability to navigate the track efficiently and effectively.

Several figures from the thesis illustrate key aspects of the implementation:
The practical section of the thesis provides detailed explanations of the code and algorithms

used, including the implementation of the Unity environment, the setup of the car model, and the
integration of the neural networks and genetic algorithms. The project demonstrates the potential
of AI to create more realistic and challenging game environments, while also offering insights into
how similar techniques can be applied to real-world autonomous vehicle systems.

By bridging the gap between gaming and real-world applications, this project not only enhances
the gaming experience but also contributes to the broader field of AI research in autonomous
systems. The methodologies and findings presented in this project underscore the versatility and

5.4 Application of Artificial Intelligence in Racing Games 29

Figure 5.5: 3D road model in Unity [35]

Figure 5.6: Sensors on the Car [35]

potential of AI in various domains, from entertainment to transportation.

Bibliography

[1] Hosny Ahmed Abbas, Samir Ibrahim Shaheen, and Mohammed Hussein Amin. “Orga-
nization of Multi-Agent Systems: An Overview”. In: International Journal of Intelligent
Information Systems 4.3 (2015), page 46. ISSN: 2328-7675. DOI: 10.11648/j.ijiis.
20150403.11 (cited on page 21).

[2] Sadeq Almeaibed et al. “Digital twin analysis to promote safety and security in autonomous
vehicles”. In: IEEE Communications Standards Magazine 5.1 (2021), pages 40–46 (cited on
page 6).

[3] A. Amirante et al. “Janus: A General Purpose WebRTC Gateway”. In: Proceedings of the
Conference on Principles, Systems and Applications of IP Telecommunications. New York,
US-NY: Association for Computing Machinery, Oct. 2014, pages 1–8. ISBN: 978-1-4503-
2124-2. DOI: 10.1145/2670386.2670389. (Visited on 05/21/2023) (cited on page 21).

[4] Danial Jahed Armaghani et al. “Airblast prediction through a hybrid genetic algorithm-ANN
model”. In: Neural Computing and Applications 29.9 (2018), pages 619–629 (cited on
page 2).

[5] Aydin Azizi. “Hybrid artificial intelligence optimization technique”. In: Applications of
Artificial Intelligence Techniques in Industry 4.0. Springer, 2019, pages 27–47 (cited on
page 2).

[6] Michael Batty. Digital twins. 2018 (cited on page 5).

[7] Amy Baylor. “Intelligent agents as cognitive tools for education”. In: Educational technology
(1999), pages 36–40 (cited on page 13).

[8] Ghanishtha Bhatti, Harshit Mohan, and R Raja Singh. “Towards the future of smart electric
vehicles: Digital twin technology”. In: Renewable and Sustainable Energy Reviews 141
(2021), page 110801 (cited on page 6).

https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.11648/j.ijiis.20150403.11
https://doi.org/10.1145/2670386.2670389

32 Chapter 5. Student Projects

[9] Kien-Trinh Thi Bui et al. “A novel hybrid artificial intelligent approach based on neural fuzzy
inference model and particle swarm optimization for horizontal displacement modeling of
hydropower dam”. In: Neural Computing and Applications 29.12 (2018), pages 1495–1506
(cited on page 2).

[10] Juan C. Burguillo. “Self-Organization”. In: Self-Organizing Coalitions for Managing Com-
plexity. Emergence, Complexity and Computation 29. Cham: Springer International Publish-
ing, 2018. Chapter 6, pages 89–100. ISBN: 978-3-319-69898-4. DOI: 10.1007/978-3-319-
69898-4_6 (cited on page 21).

[11] Marc Carrascosa and Boris Bellalta. “Cloud-gaming: Analysis of google stadia traffic”. In:
Computer Communications 188 (2022), pages 99–116 (cited on page 19).

[12] Wei Chen et al. “Novel hybrid artificial intelligence approach of bivariate statistical-methods-
based kernel logistic regression classifier for landslide susceptibility modeling”. In: Bulletin
of Engineering Geology and the Environment (2018), pages 1–23 (cited on page 2).

[13] Armando W Colombo et al. “Industrial cyberphysical systems: A backbone of the fourth
industrial revolution”. In: IEEE Industrial Electronics Magazine 11.1 (2017), pages 6–16
(cited on page 5).

[14] Michael Cook, Simon Colton, and Azalea Raad. “Inferring Design Constraints From Game
Ruleset Analysis”. In: 2018 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE. 2018, pages 1–8 (cited on page 2).

[15] Tariq Daradkeh and Anjali Agarwal. “Modeling and Optimizing Micro-Service Based Cloud
Elastic Management System”. In: Simulation Modelling Practice and Theory 123 (2023),
page 102713. ISSN: 1569190X. DOI: 10.1016/j.simpat.2022.102713. (Visited on
05/21/2023) (cited on page 20).

[16] Dominik Dellermann et al. “Hybrid intelligence”. In: Business & Information Systems
Engineering (2019), pages 1–7 (cited on page 1).

[17] Marco Dorigo, Guy Theraulaz, and Vito Trianni. “Swarm Robotics: Past, Present, and Future
[Point of View]”. In: Proceedings of the IEEE 109.7 (July 2021), pages 1152–1165. ISSN:
0018-9219, 1558-2256. DOI: 10.1109/JPROC.2021.3072740. (Visited on 05/21/2023)
(cited on page 21).

[18] Ricardo Faria et al. “Smart mobility: A survey”. In: 2017 International conference on internet
of things for the global community (IoTGC). IEEE. 2017, pages 1–8 (cited on page 15).

[19] F Pereira Ferreira, Giorgenes Gelatti, and S Raupp Musse. “Intelligent virtual environment
and camera control in behavioural simulation”. In: Proceedings. XV Brazilian Symposium on
Computer Graphics and Image Processing. IEEE. 2002, pages 365–372 (cited on page 8).

[20] Fotis Foukalas. “Cognitive IoT platform for fog computing industrial applications”. In:
Computers & Electrical Engineering 87 (2020), page 106770 (cited on page 13).

[21] Tonglin Fu and Chen Wang. “A hybrid wind speed forecasting method and wind energy
resource analysis based on a swarm intelligence optimization algorithm and an artificial
intelligence model”. In: Sustainability 10.11 (2018), page 3913 (cited on page 2).

[22] Pezhman Ghadimi et al. “Intelligent Sustainable Supplier Selection Using Multi-Agent
Technology: Theory and Application for Industry 4.0 Supply Chains”. In: Computers &
Industrial Engineering 127 (Jan. 2019), pages 588–600. ISSN: 03608352. DOI: 10.1016/j.
cie.2018.10.050. (Visited on 05/21/2023) (cited on page 21).

[23] IZIX. What Is Smart Mobility? [Online]. Accessed: 13 Jun 2022. Feb. 23, 2021. URL:
https://blog.izix.eu/en/what-is-smart-mobility (visited on 07/05/2022) (cited
on page 15).

https://doi.org/10.1007/978-3-319-69898-4_6
https://doi.org/10.1007/978-3-319-69898-4_6
https://doi.org/10.1016/j.simpat.2022.102713
https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1016/j.cie.2018.10.050
https://doi.org/10.1016/j.cie.2018.10.050
https://blog.izix.eu/en/what-is-smart-mobility

5.4 Application of Artificial Intelligence in Racing Games 33

[24] Abolfazl Jaafari et al. “Hybrid artificial intelligence models based on a neuro-fuzzy system
and metaheuristic optimization algorithms for spatial prediction of wildfire probability”. In:
Agricultural and Forest Meteorology 266 (2019), pages 198–207 (cited on page 2).

[25] Yuchen Jiang et al. “Industrial applications of digital twins”. In: Philosophical Transactions
of the Royal Society A 379.2207 (2021), page 20200360 (cited on page 5).

[26] Peng Jing et al. “Agent-Based Simulation of Autonomous Vehicles: A Systematic Literature
Review”. In: IEEE Access 8 (2020), pages 79089–79103. ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2020.2990295. (Visited on 05/21/2023) (cited on page 21).

[27] Martin Joel et al. noVNC - the open source VNC client. [Online; accessed 21-May-2023].
2023. URL: https://novnc.com (cited on page 22).

[28] Brian Joerger. What You Need To Know About X11 Forwarding. [Online; accessed 21-
May-2023]. 2022. URL: https://goteleport.com/blog/x11-forwarding/ (cited on
page 22).

[29] David Jones et al. “Characterising the Digital Twin: A systematic literature review”. In:
CIRP Journal of Manufacturing Science and Technology 29 (2020), pages 36–52 (cited on
page 5).

[30] Oliver Jones. Introduction to the X Window System. Prentice Hall, 1989 (cited on page 22).

[31] Mohammadreza Koopialipoor et al. “Applying various hybrid intelligent systems to evaluate
and predict slope stability under static and dynamic conditions”. In: Soft Computing (2018),
pages 1–17 (cited on page 2).

[32] In Lee. Encyclopedia of E-business Development and Management in the Global Economy.
IGI Global, 2010 (cited on page 13).

[33] Mengshan Li et al. “Prediction of pKa values for neutral and basic drugs based on hybrid
artificial intelligence methods”. In: Scientific reports 8.1 (2018), page 3991 (cited on page 2).

[34] Craig A Lindley. “The Gameplay Gestalt, Narrative, and Interactive Storytelling.” In: CGDC
Conf. Citeseer. 2002 (cited on page 8).

[35] Luka Mandić. “Application of Artificial Intelligence in Racing Games”. Master’s thesis.
Master’s thesis. University of Zagreb, Faculty of Organization and Informatics, 2021 (cited
on pages 25, 29).

[36] Gunasekaran Manogaran, R Varatharajan, and MK Priyan. “Hybrid recommendation system
for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy
inference system”. In: Multimedia tools and applications 77.4 (2018), pages 4379–4399
(cited on page 2).

[37] Xavier Marchal et al. “An Analysis of Cloud Gaming Platforms Behaviour Under Synthetic
Network Constraints and Real Cellular Networks Conditions”. In: Journal of Network and
Systems Management 31.2 (2023), pages 1–31 (cited on page 19).

[38] Rene Maruševec. “Autonomous Vehicles as a Multi-Agent System”. Master’s thesis. Mas-
ter’s thesis. University of Zagreb, Faculty of Organization and Informatics, 2021 (cited on
pages 25, 27, 28).

[39] Tsega Y Melesse, Valentina Di Pasquale, and Stefano Riemma. “Digital twin models in
industrial operations: A systematic literature review”. In: Procedia Manufacturing 42 (2020),
pages 267–272 (cited on page 5).

[40] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge university
press, 1999 (cited on page 6).

https://doi.org/10.1109/ACCESS.2020.2990295
https://doi.org/10.1109/ACCESS.2020.2990295
https://novnc.com
https://goteleport.com/blog/x11-forwarding/

34 Chapter 5. Student Projects

[41] JI Mitola. “Cognitive radio. An integrated agent architecture for software defined radio.”
PhD thesis. Kungliga Tekniska Hogskolan (Sweden), 2002 (cited on page 13).

[42] B Okreša Ðurić et al. “MAMbO5: a new ontology approach for modelling and managing
intelligent virtual environments based on multi-agent systems”. In: Journal of Ambient
Intelligence and Humanized Computing 10.9 (2019), pages 3629–3641 (cited on page 8).

[43] Bogdan Okreša Ðurić. “Organizational Modeling of Large-Scale Multi-Agent Systems with
Application to Computer Games”. PhD thesis. Faculty of Organization and Informatics,
University of Zagreb, 2018 (cited on page 2).

[44] Bogdan Okreša Ðurić. “Organizational Modeling of Large-Scale Multi-Agent Systems with
Application to Computer Games”. Doctoral thesis. Varaždin, HR: University of Zagreb, 2019.
236 pages. URL: https://urn.nsk.hr/urn:nbn:hr:211:783555 (cited on page 21).

[45] Ivan Oršolić. “Building a Self-Driving RC Car”. Master’s thesis. Master’s thesis. University
of Zagreb, Faculty of Organization and Informatics, 2021 (cited on pages 25, 26).

[46] Javier Palanca et al. “SPADE 3: Supporting the New Generation of Multi-Agent Systems”.
In: IEEE Access 8 (2020), pages 182537–182549 (cited on page 6).

[47] Ken Peffers et al. “Design Science Research Process: A Model for Producing and Presenting
Information Systems Research”. In: (2020). DOI: 10.48550/ARXIV.2006.02763. URL:
https://arxiv.org/abs/2006.02763 (cited on page 13).

[48] Hridesh Rajan. “ANTLR: A Brief Review”. In: (2022) (cited on page 6).

[49] Anton Rassõlkin et al. “Digital twin for propulsion drive of autonomous electric vehicle”. In:
2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of
Riga Technical University (RTUCON). IEEE. 2019, pages 1–4 (cited on pages 5, 6).

[50] T. Richardson et al. “Virtual Network Computing”. In: IEEE Internet Computing 2.1 (1998),
pages 33–38. ISSN: 10897801. DOI: 10.1109/4236.656066. (Visited on 05/21/2023) (cited
on page 22).

[51] JA Rincon et al. “Developing adaptive agents situated in intelligent virtual environments”. In:
International conference on hybrid artificial intelligence systems. Springer. 2014, pages 98–
109 (cited on page 8).

[52] Yara Rizk, Mariette Awad, and Edward W. Tunstel. “Cooperative Heterogeneous Multi-
Robot Systems: A Survey”. In: ACM Computing Surveys 52.2 (Mar. 2020), pages 1–31.
ISSN: 0360-0300, 1557-7341. DOI: 10.1145/3303848. (Visited on 05/21/2023) (cited on
page 21).

[53] Sebastian Rodriguez et al. “Holonic multi-agent systems”. In: Self-organising Software.
Springer, 2011, pages 251–279 (cited on pages 6, 15).

[54] Stuart J. Russell and Peter Norvig, editors. Artificial Intelligence: A Modern Approach.
4th edition. Pearson Series in Artificial Intelligence. Harlow, UK: Pearson Education Limited,
2022. ISBN: 978-1-292-40113-3 (cited on page 21).

[55] Markus Schatten, Bogdan Okreša Ðurić, and Tomislav Peharda. “A Cognitive Agent for
University Student Support”. In: 2021 IEEE Technology & Engineering Management Con-
ference - Europe (TEMSCON-EUR) (TEMSCON-EUR 2021). May 2021 (cited on pages 13,
14).

https://urn.nsk.hr/urn:nbn:hr:211:783555
https://doi.org/10.48550/ARXIV.2006.02763
https://arxiv.org/abs/2006.02763
https://doi.org/10.1109/4236.656066
https://doi.org/10.1145/3303848

5.4 Application of Artificial Intelligence in Racing Games 35

[56] Markus Schatten, Bogdan Okreša Ðurić, and Tomislav Peharda. “Towards a Streamed
Holographic 3D Game Engine”. In: Proceedings of the Central European Conference on
Information and Intelligent Systems. Edited by Neven Vrček, Lourdes Guàrdia, and Petra Grd.
Varaždin, HR: Faculty of Organization and Informatics, Sept. 2022, pages 17–22. (Visited
on 12/11/2021) (cited on pages 20, 21).

[57] Markus Schatten, Bogdan Okreša Ðurić, and Igor Tomičić. “Towards Simulation of Ambient
Intelligence in Autonomous Vehicles using Car Racing Games”. In: Central European
Conference on Information and Intelligent Systems. Faculty of Organization and Informatics
Varazdin. 2019, pages 3–6 (cited on page 8).

[58] Markus Schatten, Bogdan Okreša Ðurić, and Igor Tomičić. “Orchestration Platforms for
Hybrid Artificial Intelligence in Computer Games-A Conceptual Model”. In: 2020 Central
European Conference on Information and Intelligent Systems. Varaždin, Croatia: Faculty of
Organization and Informatics, 2020, pages 3–8 (cited on pages 6, 7, 15).

[59] Markus Schatten, Tomislav Peharda, and Igor Tomicic. “Towards an Orchestrated Game
Development Approach to Digital Twinning in Autonomous Vehicles”. In: Central European
Conference on Information and Intelligent Systems. Faculty of Organization and Informatics
Varazdin. 2022, pages 3–8 (cited on page 2).

[60] Markus Schatten, Jurica Ševa, and Igor Tomičić. “A roadmap for scalable agent organizations
in the internet of everything”. In: Journal of Systems and Software 115 (2016), pages 31–41
(cited on pages 2, 15).

[61] Markus Schatten, Igor Tomičić, and Bogdan Okreša Ðurić. “A review on application domains
of large-scale multiagent systems”. In: Central european conference on information and
intelligent systems. 2017 (cited on pages 2, 15).

[62] Markus Schatten, Igor Tomičić, and Bogdan Okreša Ðurić. “Orchestration Platforms for
Hybrid Artificial Intelligence in Computer Games – A Conceptual Model”. In: Central
European Conference on Information and Intelligent Systems. Central European Conference
on Information and Intelligent Systems. Edited by Vjeran Strahonja, William Steingartner,
and Valentina Kirinić. Varaždin, HR: Faculty of Organization and Informatics, University of
Zagreb, 2020, pages 3–8 (cited on page 20).

[63] Markus Schatten, Igor Tomičić, and Bogdan Okreša Ðurić. “Towards Application Program-
ming Interfaces for Cloud Services Orchestration Platforms in Computer Games”. In: 2020
Central European Conference on Information and Intelligent Systems. Varaždin, Croatia:
Faculty of Organization and Informatics, 2020, pages 9–14 (cited on pages 8, 15).

[64] Markus Schatten, Igor Tomičić, and Bogdan Okreša Ðurić. “Towards Application Program-
ming Interfaces for Cloud Services Orchestration Platforms in Computer Games”. In: Central
European Conference on Information and Intelligent Systems. Central European Conference
on Information and Intelligent Systems. Edited by Vjeran Strahonja, William Steingartner,
and Valentina Kirinić. Varaždin, HR: Faculty of Organization and Informatics, University of
Zagreb, Oct. 7–9, 2020, pages 9–14 (cited on page 20).

[65] Markus Schatten et al. “Agents as bots–an initial attempt towards model-driven mmorpg
gameplay”. In: International conference on practical applications of agents and multi-agent
systems. Springer. 2017, pages 246–258 (cited on page 2).

[66] Markus Schatten et al. “Automated MMORPG Testing–An Agent-Based Approach”. In: In-
ternational conference on practical applications of agents and multi-agent systems. Springer.
2017, pages 359–363 (cited on page 2).

36 Chapter 5. Student Projects

[67] Markus Schatten et al. “Large-Scale Multi-Agent Modelling of Massively Multi-Player On-
Line Role-Playing Games–A Summary”. In: Central European Conference on Information
and Intelligent Systems. 2017 (cited on page 2).

[68] Markus Schatten et al. “A cognitive agent’s infrastructure for smart mobility”. In: Trans-
portation Research Procedia 64 (2022), pages 199–204 (cited on page 2).

[69] Markus Schatten et al. “An Orchestrated Game Streaming System for Transport and Mobility
Research”. In: Transportation Research Procedia 73 (2023) (cited on page 2).

[70] Danielle R Silva et al. “A synthetic actor model for long-term computer games”. In: Virtual
Reality 5.2 (2000), pages 107–116 (cited on page 8).

[71] Tajana Šokec. Modeliranje kontekstualno svjesnog agenta za razgovor na hrvatskom jeziku
uz pomoć konačnog automata i strojnog učenja. Rektorova nagrada Sveučilišta u Zagrebu.
Mentor: Markus Schatten. 2019 (cited on page 14).

[72] Shinichiro Suganuma, Daisuke Sakamoto, and Haruhiko Shimoyama. “An embodied conver-
sational agent for unguided internet-based cognitive behavior therapy in preventative mental
health: feasibility and acceptability pilot trial”. In: JMIR mental health 5.3 (2018), e10454
(cited on page 13).

[73] Mirko Suznjevic, Ivan Slivar, and Lea Skorin-Kapov. “Analysis and QoE evaluation of cloud
gaming service adaptation under different network conditions: The case of NVIDIA GeForce
NOW”. In: 2016 Eighth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE. 2016, pages 1–6 (cited on page 19).

[74] Johannes Thönes. “Microservices”. In: IEEE Software 32.1 (2015), pages 116–116. ISSN:
0740-7459, 1937-4194. DOI: 10.1109/MS.2015.11. (Visited on 05/21/2023) (cited on
page 20).

[75] Chien Van Dang et al. “Application of soar cognitive agent based on utilitarian ethics theory
for home service robots”. In: 2017 14th International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI). IEEE. 2017, pages 155–158 (cited on page 13).

[76] Peter Viechnicki et al. “Smart mobility – Reducing congestion and fostering faster, greener,
and cheaper transportation options”. In: (2015) (cited on page 15).

[77] Martin Viereck. X11docker. [Online; accessed 21-May-2023]. 2023. URL: https://github.
com/mviereck/x11docker (cited on page 22).

[78] Minggang Wang et al. “A novel hybrid method of forecasting crude oil prices using complex
network science and artificial intelligence algorithms”. In: Applied energy 220 (2018),
pages 480–495 (cited on page 2).

[79] Shao-Hua Wang, Chia-Heng Tu, and Jyh-Ching Juang. “Automatic traffic modelling for
creating digital twins to facilitate autonomous vehicle development”. In: Connection Science
34.1 (2022), pages 1018–1037 (cited on pages 5, 6).

[80] Michael Wooldridge. An Introduction to MultiAgent Systems. 2nd edition. Glasgow, UK:
John Wiley & Sons Ltd., 2009. 484 pages. ISBN: 978-0-470-51946-2. URL: http://www.
cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/IMAS2e.html (cited on
page 21).

[81] Jiachen Yang, Jipeng Zhang, and Huihui Wang. “Urban Traffic Control in Software Defined
Internet of Things via a Multi-Agent Deep Reinforcement Learning Approach”. In: IEEE
Transactions on Intelligent Transportation Systems 22.6 (June 2021), pages 3742–3754. ISSN:
1524-9050, 1558-0016. DOI: 10.1109/TITS.2020.3023788. (Visited on 05/21/2023)
(cited on page 21).

https://doi.org/10.1109/MS.2015.11
https://github.com/mviereck/x11docker
https://github.com/mviereck/x11docker
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/IMAS2e.html
http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/IMAS2e.html
https://doi.org/10.1109/TITS.2020.3023788

5.4 Application of Artificial Intelligence in Racing Games 37

[82] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games. Cham:
Springer International Publishing, 2018. ISBN: 978-3-319-63519-4. DOI: 10.1007/978-3-
319-63519-4 (cited on page 2).

[83] Tao Zhang et al. “A novel platform for simulation and evaluation of intelligent behavior of
driverless vehicle”. In: 2008 IEEE International Conference on Vehicular Electronics and
Safety. IEEE. 2008, pages 237–240 (cited on page 8).

https://doi.org/10.1007/978-3-319-63519-4
https://doi.org/10.1007/978-3-319-63519-4

	1 Project Description
	1.1 Abstract
	1.2 Introduction
	1.3 Team Members

	2 Digital Twins and Autonomous Vehicles
	2.1 Introduction
	2.2 Digital Twins in Autonomous Vehicles
	2.3 Awkward -nguin Orchestration Infrastructure
	2.4 Digital Twins as Game Actors
	2.5 Discussion
	2.6 Conclusion

	3 Cognitive Agents & Smart Mobility
	3.1 Introduction
	3.2 B.A.R.I.C.A. Infrastructure
	3.3 Possible Applications to Smart Mobility
	3.4 Conclusion & Future Research

	4 Game Streaming & Intelligent Transport
	4.1 Introduction
	4.2 Related Work
	4.3 System Architecture
	4.4 Application in Transport and Mobility Research
	4.5 Advantages of Game Streaming Systems
	4.6 Conclusion and Future Work

	5 Student Projects
	5.1 Introduction
	5.2 Building a Self-Driving RC Car
	5.3 Autonomous Vehicles as a Multi-Agent System
	5.4 Application of Artificial Intelligence in Racing Games

	Bibliography

