
Izrada videoigre uloga s "gacha" mehanikama u
programskom alatu Godot

Stare, Iris

Undergraduate thesis / Završni rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:184196

Rights / Prava: Attribution-ShareAlike 3.0 Unported / Imenovanje-Dijeli pod istim uvjetima 3.0

Download date / Datum preuzimanja: 2025-01-19

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:184196
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:8419
https://repozitorij.unizg.hr/islandora/object/foi:8419
https://dabar.srce.hr/islandora/object/foi:8419

SVEUČILIŠTE U ZAGREBU

FAKULTET ORGANIZACIJE I INFORMATIKE

V A R A Ž D I N

Iris Stare

GACHA GAME DEVELOPMENT IN GODOT

UNDERGRADUATE THESIS

Varaždin, 2024.

UNIVERSITY OF ZAGREB

FACULTY OF ORGANISATION AND INFORMATICS

V A R A Ž D I N

Iris Stare

Identification number: 0036536833

Course: Informacijski i poslovni sustavi 1.2

GACHA GAME DEVELOPMENT IN GODOT

UNDERGRADUATE THESIS

Mentor:

Doc. dr. sc. Mladen Konecki

Varaždin, September 2024.

iii

Iris Stare

Statement of authenticity

I declare that my undergraduate thesis is the original result of my own work, in the making of

which no resources outside of the ones mentioned in the work were used. Ethically appropriate

and acceptable methods and techniques were used to create this work.

 Autor/Autorica potvrdio/potvrdila prihvaćanjem odredbi u sustavu FOI-

radovi

iv

Summary

This work outlines the creation of a game prototype in the Godot game engine. The prototype

aims to create a game that blends the role-playing game genre with the gacha game genre.

The main gameplay consists of the player attacking enemies using drawn gestures in order to

collect currency which is used to play gacha. The player engages with the gacha aspects to

unlock new gestures to use in battle. The work will showcase the game’s design and visual

elements. Then, the game’s architecture will be covered in detail, including the ability system,

the scene architecture, the singletons that control the flow of the game, the components which

scenes use, and the custom data objects used to represent various elements of the game. At

the end, it can be concluded that choosing the role-playing and gacha genres to develop a

game is incredibly demanding due to the technical overhead required to implement the bare

functionalities and content both genres require. Nevertheless, this kind of project is an

invaluable opportunity to learn more about the development of complex games.

Key words: Godot; video game; development; gacha; RPG; gestures; mechanics; systems;

architecture

v

Table of Contents

1. Introduction .. 1

2. Methodology ... 2

2.1. The Godot Game Engine .. 2

2.2. Godot Plugins ... 3

2.3. Aseprite .. 3

3. Game Design .. 4

3.1. Genre ... 4

3.2. Genre Inspirations .. 4

3.2.1. Xenoblade Chronicles 2 ... 4

3.2.2. Honkai: Star Rail .. 5

3.3. Story ... 6

3.4. Gameplay ... 7

3.4.1. Battle System ... 7

3.4.2. Gacha System ... 7

3.4.3. Gacha Units ... 8

3.4.4. Implemented Gestures ... 9

3.5. Visuals ...11

3.5.1. Characters ..11

3.5.2. Areas ..12

3.5.3. Icons and User Interface ...15

4. Game Architecture .. 20

4.1. Ability System ..20

4.2. Scene Architecture ..21

4.2.1. House Scene ..21

4.2.2. Interactable Objects ..22

4.2.3. Overworld Scene ..23

4.2.4. Overworld Player ..23

4.2.5. Battle Scene ...24

4.2.6. Battle Entity ...25

4.3. Singletons ..25

4.3.1. The Gesture Recognizer ...26

4.3.2. Event Bus ...26

4.3.3. Global Data ...27

4.3.4. Ability Database ..27

vi

4.3.5. Scene Manager ...27

4.3.6. Battle Manager..28

4.3.7. Gacha Manager ..29

4.4. Components ..30

4.4.1. Gesture Node ...30

4.4.2. Health Component ..30

4.4.3. ATB Component ...30

4.4.4. Ability Node ...31

4.4.5. Ability Effect Node ...31

4.5. Data Objects ..32

4.5.1. Gesture ...32

4.5.2. PlayerData ..33

4.5.3. EnemyData ...33

4.5.4. GachaUnitData ...34

4.5.5. MaterialData ...35

4.5.6. InventorySlot ...35

4.5.7. LootResource ...35

4.5.8. AbilityData ...36

4.5.9. EffectData ...37

5. Conclusion .. 39

6. References .. 40

7. List of Figures ... 42

8. List of Tables ... 43

1

1. Introduction

The concept of this undergraduate thesis is to create a prototype for a game that

combines role-playing game elements with gacha game elements using the Godot game

engine. Specific characteristics of both genres have been chosen to represent the genres in

this work. The role-playing game (abbreviated as RPG) aspects will be represented by the

battle system the game uses. Conversely, the gacha game aspects will be represented by the

abilities the player can use in the game. To unlock new abilities to use in battle, the player has

to win the abilities’ respective units from the gacha system.

The motivation behind developing an RPG with a gacha system comes from the

thought that a gacha system offers incredible replay value for the player. The player would be

incentivized to engage with the gacha system in order to win stronger abilities to use in battle.

Furthermore, the player would wish to keep playing the game until they have collected all of

the available gacha units.

Both RPGs and the gacha games are difficult to develop. The difficulty in developing

RPGs lies in the incredible number of different systems that interact together. Gacha games,

on the other hand, rely on having a large amount of content, as well as creating a gameplay

reason for why the player should engage with the gacha game mechanics. In order to

undertake both genres, this work focuses on tying together a small number aspects of both

genres. The gacha system is simple and features a small number of rewards. The game

implements RPG mechanics with its simplified combat system and levelling mechanics.

2

2. Methodology

2.1. The Godot Game Engine

Godot is a free, open-source, and general-purpose game engine. Starting life as a

private in-house engine made by Juan Linitsesky and Ariel Manzur, Godot was released as an

open-source project in 2014. [1] Godot supports both 2D and 3D projects and has export

options for several different platforms.

One of Godot’s unique qualities is its custom scripting language GDScript. GDScript is

a high level, dynamically-typed and object-oriented language similar to Python, and has tight

integration with the engine. [2] Due to this and the language’s ease of use which contributes

to speed of development, the game project uses GDScript as its programming language.

The Godot game engine has a particular design philosophy. The engine is made to

encourage object-oriented design using composition. [3] Composition allows objects in the

game to be composed out of other objects, each defining different behaviours that do not need

to be aware of each other to function. Inheritance of classes and defining custom classes is

supported by the engine as well.

Given this, the Godot Game Engine has a few key concepts that are integral to any

project made in the engine, which are the following [4]:

• Nodes – Nodes are the building blocks of every Godot project. Nodes are objects

that carry different properties, signals and functionalities out of the box. Godot

provides several different node types, such as Node2Ds, Node3Ds, and Control

nodes for user interface (abbreviated as UI) elements. A more concrete example of

a node would be a RigidBody2D node, which gives the object adjustable physics

settings that will automatically be run and applied upon project compilation. Nodes

can inherit from other nodes, and game developers can define their own node types

within the engine with their own properties and behaviours. Custom scripts can be

attached to nodes to make them execute specific behaviour, such as putting a

character movement script on a CharacterBody2D node to control the character.

• Scenes – Scenes can be roughly compared to Unity’s concept of Prefabs, with

added flexibility. Scenes are collections of several different nodes and can serve

different purposes. A scene can be as small as a collection of several different

nodes that make up a Player scene – for example, a CharacterBody2D node as

root, with a CollisionShape2D for providing collision functionality, and a Sprite2D

node to provide visuals for the scene. A scene can also be a large collection of

3

scenes representing an entire level or subset of a game world. Scenes can be

nested within other scenes.

• Scene Tree – Scenes are contained in a scene tree, similarly to how nodes within

scenes are contained in a tree of nodes. Each scene can be treated as its own

Scene Tree, though the scene tree usually implies the game’s currently-running

highest-level scene during runtime.

• Signals – Signals are particular to the Godot Game Engine, and allow developers

to implement the observer programming pattern [5] project-wide. Each node given

by the engine comes with its own set of signals that fire when certain conditions are

met. For example, the Area2D node has a signal that fires whenever a node of type

CharacterBody2D enters its collision radius. Developers can define their own

custom signals in code, as well as connect other signals to specific nodes.

2.2. Godot Plugins

The Godot Engine has its own Asset Library, where developers publish useful plugins

that extend the engine’s capabilities or provide extra functionalities. Several open-source and

free plugins have been used in the development of the game project:

• Godot Resource Groups [6] – This plugin allows the loading of resources from

folders on runtime. Generally, when a Godot project is compiled, all existing file

paths for loading resources or files become encoded, and therefore code which

relies on file paths becomes invalid. This plugin allows the easy loading and reading

of resources on runtime using file paths within the project even after compilation;

• Edit Resources as Table [7] - This plugin makes it easier to see all the resources

within a given folder and easily edit some of their properties, speeding up creation

of new assets;

• Aseprite Wizard [8] – The Aseprite Wizard plugin allows easy integration of

.aseprite files in the Godot Engine. In practice, it automates the process of assigning

animations to Sprite2D and AnimationPlayer nodes from .aseprite files. The

plugin provides different .aseprite file import options, as well.

2.3. Aseprite

Aseprite [9] is a software primarily meant for creating pixel art assets. It was first

released in 2014 and is developed by Igara Studio. Aseprite offers advanced sprite creation

and animation creation tools. All game assets have been created using Aseprite.

4

3. Game Design

3.1. Genre

The game project falls under the role-playing game (abbreviated as RPG) and gacha

game genres.

Role-playing games, in the context of video games, have a wide range of definitions

and properties. Most commonly, RPGs are defined as games where the player controls a

character within a fictional world. RPGs generally have a storyline that players can experience

through the completion of quests. Besides that, RPGs can have a variety of different game

mechanics and gameplay. Some RPGs make use of a turn-based system, where the player

can take their time to make decisions at their own pace. Some others use more dynamic, real-

time systems such as action RPGs. RPGs place great importance on the characters and

settings in the games.

Gacha games are a newer genre of video game. The main system of gacha games is

a reliance on gachapon-inspired systems as part of the core gameplay loop, where a player

spends some sort of material or currency to receive random rewards. Gacha games are

notorious for their monetization practices and are often compared to the loot box system of

other games. [9]

This game project incorporates the character, story-telling and combat elements of

RPGs with the random reward systems of gacha games. There is no monetization model;

instead, a player invests in-game resources to receive new playable units as their gacha

rewards.

3.2. Genre Inspirations

3.2.1. Xenoblade Chronicles 2

Xenoblade Chronicles 2 (abbreviated as XC2) is the primary inspiration behind the

prototype. Xenoblade Chronicles 2 is an RPG released in 2017 where players can play gacha

to win living weapons (called Blades) to use in the game. Materials to summon new Blades

can be gained through quests, with the player getting access to special Blades over the course

of the story by completing specific story objectives. XC2 features an incredibly long storyline,

taking over 100 hours to finish in some cases, with a rich cast of playable characters and a

5

large cast of Blades. The Xenoblade series of games are also known for their unique lore and

world-building. Every game’s playable world being set on top of gigantic titans. [10]

Figure 1: Xenoblade Chronicles 2's cover art (Monolith Soft, 2017., retrieved 2024.)

3.2.2. Honkai: Star Rail

Honkai: Star Rail (often abbreviated as HSR) is an RPG and gacha game developed

and released by miHoYo in 2023. HSR features traditional turn-based combat with a rich cast

of characters. As of the time of writing, there’s currently 56 characters in the game that have

been or are currently obtainable through the gacha system. Each character has their storyline

unlocked through Companion Quests, which are designed to make the character more

desirable to win in the gacha. Another motivation is the characters’ special abilities in combat.

The game has an overarching storyline across several different areas, each with its own

distinct gimmick enemies and cast of gacha characters.

6

Figure 2: Honkai: Star Rail's logo (miHoYo, 2023., retrieved 2024.)

3.3. Story

The story for the game underwent several revisions. Initially, the game was supposed

to have a grim-dark atmosphere, accompanied by a story which would incorporate elements

like spirits, ghosts and praying at temples. However, as the development went on and the

visual aesthetics of the assets changed due to time constraints and interest, a different

narrative started to emerge.

Eventually, the story took on a light-hearted tone in order to aid its new aesthetics.

Moreover, it was made to give context behind the gameplay loop, tying the story and gameplay

together to further incentivize the player.

The story is short and simple. It starts by introducing us to the player character. The

player character has a book, but its pages get stolen by some forest animals. The player needs

to confront the animals and defeat them in order to get back the tome’s pages. Using the

retrieved pages, the player can summon new drawings.

The aspects of defeating the animals and retrieving the pages tie together the main

concepts of the game – RPG battles and gacha.

7

Figure 3: Cutscene screenshot (Original work, 2024.)

3.4. Gameplay

3.4.1. Battle System

One of the core parts of every RPG is its battle system. The game doesn’t follow

traditional turn-based conventions; instead, the player character’s turn is based upon the

player’s gesture drawing speed, while the enemies use an Active Time Battle system to

determine turn order. Active Time Battle, abbreviated as ATB, replaces the concept of linear

turn queues with internal timers on each participant in the battle, where the battle participant’s

turn would arrive when the timer runs out, or fills the ATB gauge [18].

To attack, the player draws gestures over the enemies. The gestures trigger their

corresponding abilities to affect the targets. The player is able to unlock gestures to use in

battle by playing the gacha. After unlocking a gesture, the player can use it in battle as many

times as they wish, whenever they wish. The player needs to successfully finish a battle to get

awarded with currency to use in the gacha.

The way the ATB system works in the prototype is explained in more detail in section

4.4.3 – ATB Component.

3.4.2. Gacha System

The gacha system in this game is used as a tool to encourage prolonged gameplay

with added replay value, where the player would be incentivized to keep playing until they’ve

gotten desirable units, or collected all of the units currently available in the game. The way the

gacha system works in the prototype is explained in more detail in section 4.3.7 –Gacha

Manager.

8

It costs 1 paper – the currency for playing gacha in the game – to do 1 gacha draw.

3.4.3. Gacha Units

Below is a table listing all of the gacha units implemented in the game, along with their

rarities. There are 11 different units in total obtainable in the game. All of the unit art is original

work.

Table 1: Implemented gacha units

Unit Art Unit Name Rarity Unit Ability

Archer Super Rare Precision Shot

Bolt Rare Thunder Strike

Catastrophe Common Cherry Bomb

Brick Man Common Brick Throw

Firefly Common Lantern Flame

Lovebug Common Renewal

9

Lunny Rare Moon Shine

Halley Super Rare Meteor Shower

Speenda Common Confusion

Ichor Rare Cleanse Drop

Venomnion Rare Poison Splash

Each gacha unit can be levelled up an infinite number of times. To level up a unit, the

player has to pay a gold fee and give up 1 unit of material that the gacha unit needs. The player

can obtain additional materials to level up gacha in the event they receive a duplicate of a

gacha unit they already have.

When levelled up, the gacha unit’s stats increase. The stats rise linearly in relation to

the gacha unit’s level. The gold fee to level up a unit rises exponentially in relation to the gacha

unit’s level.

3.4.4. Implemented Gestures

Below is a table listing all of the recognizable gestures in the game, along with the

ability that the gesture triggers.

10

Table 2: List of implemented gestures

Gesture Gesture Name Ability Ability Description

Arrow Precision Shot There is a 50% chance that you will one-

shot the enemy.

Bolt Thunder Strike There is a chance that thunder will strike

random enemies 1-5 times.

Bomb Cherry Bomb Hits the targeted enemy and its direct

neighbours like a bomb.

Square Brick Throw Throw a brick. It will probably land on the

enemy.

Fire Lantern Flame Permanently lowers the opponent's

maximum HP and burns the enemy over a

duration of time.

Heart Renewal Heal yourself by a certain amount.

Moon Moon Shine Induces fear in the opponents. There is a

chance for enemies to miss their turn.

Star Meteor Shower Summons a meteor shower. Hits all

enemies on the field for a great amount of

damage.

Spiral Confusion Induces confusion in the opponents.

There is a chance for enemies to attack

each other on their turn.

Waterdrops Cleanse Drop Heals the player from any applied status

effects.

Skull Poison Splash Poisons the enemies around the target

and the target itself. Permanently lowers

the target enemy's max HP.

11

3.5. Visuals

3.5.1. Characters

The game uses pixel art graphics in order to make it easier to produce assets. To unify

the visual style, the colour palette Resurrect 64 made by Kerrie Lake [11] has been used as a

guideline in the creation of all assets.

Figure 4: Resurrect 64 palette (Source: Kerrie Lake, 2019.)

The player character’s appearance underwent the most changes, going from a tall and

lean appearance to a shorter, rounder and more approachable look.

12

Figure 5: Initial player appearance (Original work, 2024.)

Figure 6: Final player appearance (Original work, 2024.)

Figure 7: Enemy sprites (Original work, 2024.)

3.5.2. Areas

The game features two playable areas – the house and the forest.

13

The forest uses a hand-drawn tile set for its foreground environment, while parallax

layers serve as a backdrop. The background parallax layers give the forest an illusion of depth

and vastness. The forest motif was chosen due to the popular usage of forested and grassy

areas as starting zones in most video games (an example being the first starter stages of every

2D Sonic game). The forest serves as an area where the player can go and earn more currency

to play gacha by defeating enemies, as well as test out newly gotten abilities.

The house is meant to be an area of respite and the protagonist’s in-game dwelling.

The house would serve as a hub area where the player can heal, play gacha, and manage

their units. The writing table (located on the right side of Figure 8.) which functions as a place

where the player can summon new units, has been moved from the entrance to the middle of

the house (as seen in Figure 9 and Figure 10) in order to encourage the player to walk further

into the room and to prevent accidental interactions happening immediately upon entering or

exiting the house.

Figure 8: Initial sketch of the player's house (Original work, 2024.)

Figure 9: Finished player room asset (Original work, 2024.)

14

Figure 10: Player house appearance in-game (Original work, 2024.)

Figure 11: In-game forest area (Original work, 2024.)

Figure 12: Forest area in-engine (Original work, 2024.)

15

Figure 13: In-game battle scene (Original work, 2024.)

Figure 14: Battle scene in-engine (Original work, 2024.)

3.5.3. Icons and User Interface

The game’s user interface (abbreviated as UI) features pixel art and uses a pixel font

to display text in order to remain consistent with the character sprites.

Upon starting the game, the start screen is shown. The player has the option of making

a new save file, or loading an already existing save file. After selecting a save file, the opening

cutscene begins playing.

16

Figure 15: Start screen (Original work, 2024.)

The player, when opening the standard user interface, has access to 3 different tabs

with various options: Units, Items, and Menu. Units shows the player a list of the currently

acquired units along with more information, Items shows the number of materials the player

has in their inventory, and Menu allows the player to save or quit their game.

Figure 16: Units tab (Original work, 2024.)

17

By pressing the “More…” button, the player can access the respective unit’s upgrade

tab. The player is able to cycle between the units in their possession by pressing the arrow

buttons.

Figure 17: Unit Upgrade window (Original work, 2024.)

Figure 18: Items tab (Original work, 2024.)

18

Figure 19: Menu tab (Original work, 2024.)

Figure 20: Finished material sprites and assorted icons (Original work, 2024.)

19

Figure 21: Sprites used for UI backgrounds, panels and buttons (Original work, 2024.)

Both icons and UI backgrounds are implemented using AtlasTextures. An

AtlasTexture is a resource type in Godot which allows the developer to use a small region

of a larger image as the texture.

When interacting with the table, the player can access the gacha menu, shown in Figure

22. The player has the option of drawing 1 gacha at a time or drawing 5 gacha at a time.

Figure 22: Gacha draw interface (Original work, 2024.)

20

4. Game Architecture

The following chapter is going to describe the game’s architecture and underlying

systems, with an emphasis on specific areas of interest. The chapter is split into 5 sub-

chapters. The first chapter, Ability System, aims to explain the concept behind the ability

system in the game. Following Ability System is the chapter Scene Architecture which shows

and explains the scene tree setups of the areas in the game and the characters. After that

comes the chapter Singletons which lists all of the main singletons in the game and their

functions. Following Singletons is the chapter Components, which aims to explain the

functionalities of several different custom component nodes in the game. Lastly, the chapter

Data Objects explains the different custom resources in the game and how they are used.

4.1. Ability System

The ability system is one of the most modular and configurable systems of the game.

It allows the developer to create new abilities by stacking together a series of effects, each

with its own duration, stats, targets and chance to trigger. The effects are independent of each

other, and the ability executes them in sequential order. This configuration allows abilities to

range from simple one-shot attacks to multi-step executions with different targets. To illustrate,

below is an example sequence of an ability in the game, which would make the target enemy

take damage over time before scattering some damage to its neighbours:

1.) Modulate Colour Effect – it turns the targeted enemy blue to indicate the effect has

started,

2.) Change Stat Effect – changes the ATB_fill stat of the targeted enemy’s ATB

Component to make it slower, to indicate that the enemy cannot execute actions

due to being frozen,

3.) Damage Over Time Effect – applies 20 damage (primary_stat) every tick for the

duration of 10 seconds (secondary_stat) to the targeted enemy,

4.) Particle Effect – plays particle effects over the targeted enemy to indicate that the

Damage Over Time (shortened DoT) effect has ended,

5.) Flash Effect – similarly to above, makes the targeted enemy entity flash white to

indicate that the enemy has broken out of its frozen status,

6.) Modulate Colour Effect – changes the enemy’s colour back to normal,

7.) Particle Effect – uses AOE_EXCLUDE_LIMIT to target the enemy’s neighbours and

plays particle effects over them, indicating that the effect has spread,

21

8.) Flash Effect – uses AOE_EXCLUDE_LIMIT to make the target enemy’s neighbours

flash blue,

9.) Direct Attack – uses AOE_EXCLUDE_LIMIT to apply a burst of damage to the target

enemy’s neighbours,

10.) Change Stat Effect – changes the originally targeted enemy’s ATB_fill back

to normal,

11.) Wait Effect – waits 0.5 seconds until the effect can signal that it has finished,

thus finishing the ability’s execution.

Each ability has its own glyph or gesture that it gets triggered by. Abilities get

instantiated as AbilityNode nodes and as the BattleManager singleton’s children. This

setup makes abilities execute independently of the targets, which also allows each ability to

have different targets for each step of execution. A drawback of this approach is the fact that

enemies lack awareness of which abilities they’re currently being targeted by; there is no easy

way to introduce limits on the number of currently applied status effects.

Removing effects works by iterating through all of the child nodes of BattleManager,

and checking if each ability’s effects share the same targets. If the effect shares the same

targets as the targets on which the ability is to be removed, an effect_finished signal is

emitted on those nodes, cutting the effect’s duration short and essentially removing it from the

target.

4.2. Scene Architecture

4.2.1. House Scene

CanvasModulate darkens the entire screen by a specified colour, giving the room a

darker appearance. The NonInteractible node holds sprites for the non-interactible objects

in the house, and the collision shapes for the floor and walls. The Interactible node holds

all of the interactable objects within the scene. WorldEnvironment is a node that’s necessary

for the scene to have lighting, and allows the PointLight2D node to give off light.

22

Figure 23: House scene tree (Original work, 2024.)

4.2.2. Interactable Objects

Each interactable object’s root node is a node of type InteractableItem, or a node

that inherits from InteractableItem and overrides its _on_interaction and

_on_interaction_exited functions. InteractableItem requires a reference to an

InteractableArea.

The Label shows up when the player walks into the interactable object’s

InteractableArea. The InteractableArea has an array of objects toggled_when_near.

The objects in toggled_when_near are hidden by default. When the player enters the

InteractableArea, it iterates through each object in toggled_when_near and makes the

object visible to indicate an interaction is possible.

Figure 24: Interactable object scene tree (Original work, 2024.)

23

4.2.3. Overworld Scene

The overworld scene tree can be split into three sections: the background, the

environment, and the actors.

The background is comprised of a single TextureRect for the background colour, and

several different Parallax2D nodes for parallax layers.

The environment (represented by the Environment Node2D in the scene tree) consists

of a TileMapLayer and HomeTP. The TileMapLayer represents the collision environment built

using tiles. The HomeTP node is an InteractableArea that allows the player to teleport back

to the house on interaction.

The actors represent the actors in the level. The player can freely move around the

level with the camera following them. The enemies are static and cannot move. When the

player comes into contact with the enemies, the game switches to the battle scene.

Figure 25: Overworld scene tree (Original work, 2024.)

4.2.4. Overworld Player

The player’s root node is a CharacterBody2D node, which allows the developer to

implement custom movement code. The root node requires references to a battle trigger

Area2D, AnimationPlayer, Sprite2D, and Health Component to function properly.

OverworldBattleContact is responsible for detecting whether the player has collided with an

OverworldEnemy.

The user interface scenes are on the player entity, as this allows the player to easily

open the menu from anywhere within the game outside of battle.

24

Figure 26: Overworld player's scene tree (Original work, 2024.)

4.2.5. Battle Scene

The BattleScene, similarly to the overworld scene, has a lot of parallax layers. The

BattlePlayer and BattleEntities are found on the second to last parallax layer. The player

is able to move the camera slightly with their mouse.

The BattleEntities node generates a random number at the start of battle and

spawns the corresponding number of enemies in the scene.

Figure 27: Battle scene tree (Original work, 2024.)

25

4.2.6. Battle Entity

The EnemyBattleEntity root node requires references to an EnemyData, an

AttackLabel, an ATB Component, a Sprite2D, and a CollisionShape2D to function properly.

The AttackLabel displays the attack the enemy has chosen to execute. The

CollisionShape2D determines the area within which the player can draw gestures over

enemies. The Sprite2D displays the enemy unit’s art as a sprite. The ATB Component is

responsible for ticking down the enemy’s ATB gauge and sending signals to execute attacks.

When instantiated, the EnemyBattleEntity takes in the EnemyData’s information and

initializes the appropriate components with it. All battle enemies use the same scene but can

look and act differently according to the type of EnemyData the root node holds.

Figure 28: Battle Enemy's scene tree (Original work, 2024.)

4.3. Singletons

The following systems have been implemented using Autoloads [12], Godot’s version

of the singleton pattern [13]. Autoloads are scripts or scenes that have been set to be

automatically instantiated at the top of the Scene Tree on runtime, and are able to be

26

referenced and called upon within any script no matter its location without having to instantiate

the classes first.

4.3.1. The Gesture Recognizer

The game’s main battle mechanic relies on gesture recognition. Instead of traditional

turn-based gameplay, players attack enemies using drawn gestures. The gesture recognizer

within the game is based off the $Q stroke-gesture recognizer [14], modified to fit the game’s

needs.

The recognizer itself is implemented as a singleton called QPointCloudRecognizer,

which has a function called classify. The classify function takes in a Gesture custom

resource, compares the gesture to each of the pre-set gesture templates using the greedy

cloud match algorithm, and returns the name of the recognized gesture. The rest gets handled

by the GestureNode.

The $Q recognizer implementation in Godot used in the project has been developed

specifically for this game project, but has been published and is available on GitHub as well

[15].

4.3.2. Event Bus

The GlobalEventsBus singleton is an implementation of the event bus pattern [16] that

often appears in Godot projects. An event bus in Godot usually has signals defined in a global

singleton script. Nodes from anywhere within the project can emit and connect to functions in

the global script without having to implement the signals themselves. This approach is useful

in keeping nodes decoupled and unaware of each other while still allowing necessary data and

events to pass through project-wide. The GlobalEventsBus defines the following signals:

• Gesture_classified – passes through gesture of type StringName and owner

of type Node

• Gacha_unit_acquired – passes through unit_data of type GachaUnitData

• Triggered_battle – passes through scene_where_triggered of type

SceneTree and battle_scene_name of type String

• Battle_ended – passes through has_fleed of type bool

• Loot_scene_ended

• Ability_upgraded – passes through ability of type AbilityData

• Unit_leveled_up – passes through unit of type GachaUnitData

27

4.3.3. Global Data

The GlobalData singleton is responsible for sending signals regarding player data and

modifying the player data resource. It holds a reference to the currently selected player data

resource (of type PlayerData) and is responsible for handling registering new gacha and

battle rewards to the player. The function defines its own signal player_data_changed that

gets emitted whenever the currently selected PlayerData resource gets modified.

Many different signals are subscribed to the player_data_changed signal in order to

correctly display and update UI functions. Scripts use the singleton to read and to modify the

player data resource as well.

4.3.4. Ability Database

The GlobalAbilityDatabase singleton makes use of the Godot Resource Groups

addon. It holds a Dictionary [17] of abilities called abilities_dict. When first instantiated,

it loads all of the available gesture templates from the ability_data folder and saves them

into a resource group. The resource group then gets loaded into the abilities array. The

singleton iterates through each ability (of type AbiltiyData) in the ability array and saves the

ability into the abilities_dict, using the ability’s belonging_glyph property as the key and

the AbilityData resource itself as the value for each key-value pair in the dictionary.

The singleton’s abilities_dict is used for matching the drawn gesture to the

gesture’s corresponding ability and for the passing of the belonging ability along to whichever

functions need it.

4.3.5. Scene Manager

The GlobalSceneManager singleton is responsible for handling the loading and

switching of game scenes. Scenes are stored in a Dictionary called scenes, with the key

being the scene name and the value being the file path to the .tscn file. It is possible to access

any potential scene by simply specifying a String with the desired scene name.

The singleton, aside from changing scenes, also holds a resource of type

OverworldPersistenceData. This resource saves the last position of the player in the world

as well as the enemy which triggered the scene switch. In the case where the player

successfully defeats all of the enemies in a battle, the overworld enemy that instantiated the

battle gets removed upon loading the overworld again; if the player has lost or fled the battle,

the GlobalSceneManager disregards the OverworldPersistenceData and loads the player’s

home scene instead, resetting the overworld enemies.

28

4.3.6. Battle Manager

The BattleManager singleton is responsible for handling all of the gameplay actions

during the battle portion of gameplay. It has two custom defined signals,

ability_recognized_on_target which passes along the recognized ability (of type

AbilityData) and the target on whom the ability was initially cast on (of type BattleEntity),

and updated_enemies_array which informs nodes of whether the number of targets in the

scene has changed. It also holds an array of BattleEntity called entities_array and an

array of EnemyData called enemies_killed. It also has a reference to the BattlePlayer node

in the scene simply called player.

Whenever a new battle screen is loaded in, the singleton registers all of the entities in

the scene, saves them in an entities_array array of type BattleEntity, and subscribes to

the appropriate signals.

It also implements the return_targets function, which takes in two arguments: a

BattleEntity called sender and an TargetType enum value target_type. It finds the index

of the sender in the entities_array, saves it under sender_i and then runs a check for what

type of TargetType was passed through to return a targets array of nodes:

• SINGLE – returns only the sender BattleEntity,

• AOE – short for “Area of Effect”, it returns all of the entities on the battle field,

excluding the player,

• AOE_LIMIT – it returns the sender entity, and the entity to the left and right of it. Or,

it returns an array of entities at sender_i, sender_i-1 and sender_i+1 positions,

• AOE_EXCLUDE – it returns all of the entities on the battle field, excluding the player

and the sender,

• AOE_EXCLUDE_LIMIT – it returns an array of entities in entities_array at

sender_i-1 and sender_i+1, without the sender,

• AOE_INCLUDE_PLAYER – same as AOE, except it includes the player,

• RANDOM_INCLUDE_PLAYER – chooses a random target within entities_array,

where the player is also included in the random selection,

• RANDOM_EXCLUDE_PLAYER – chooses a random target within entities_array,

where the player is excluded in the random selection,

• PLAYER – returns only the player.

EffectNodes request a list of targets for effects to be applied on using

return_targets.

29

Whenever an enemy’s ATB gauge gets filled, the enemy executes an attack using the

execute_enemy_ability function. The BattleManager receives the signal from the enemy,

looks at the list of abilities the enemy can execute and picks a random one to execute. When

an enemy dies, the BattleManager handles enemy death logic: spawning the appropriate

death effects, and adding the enemy’s custom resource to the enemies_killed array. The

resources in this array will later be used to determine which rewards the player should get at

the end of a battle.

The BattleManager adds abilities to the scene using the spawn_ability function. The

spawn_ability function takes in an ability of type AbilityData and a target of type

BattleEntity as arguments. It instantiates a new node of type AbiliyNode and assigns it

the appropriate ability data and primary target. It then adds it to the scene tree as a child of the

BattleManager singleton.

Finally, the BattleManager is also responsible for detecting whether the battle has

finished or not. There are two conditions for winning a battle: there being only one entity left in

the entities_array, and that entity being of type BattlePlayer. When these conditions are

satisfied, the BattleManager declares the battle won, generates a LootResource using data

from the enemies_killed array, cleans up the scene of stray child nodes, and switches the

scene.

4.3.7. Gacha Manager

The GlobalGachaManager singleton is responsible for all gacha-related activities in the

game. It generates a list of gacha units to give to the player when requested. The gacha is

able to be tuned by the developer being able to set rarity values for each “tier” of rarity. There

are 3 tiers of unit rarity: Common (C), Rare (R), and Super Rare (SR). In the prototype, Rare

has a 30% chance, and Super Rare has a 5% chance of being drawn. The

GlobalGachaManager also takes into account the player’s “pity count” value, where if the

number of concurrent draws without getting an SR rarity unit exceeds the pity count number,

the player forcibly receives a SR rarity unit in order to introduce fairness and reduce frustration.

When the singleton is instantiated, it grabs a list of all of the available units and sorts

them into their respective arrays according to rarity: gacha_C, gacha_R, and gacha_S. When

the player plays the gacha, a random decimal number from 0 to 1 is generated. The singleton

first checks the pity count value, and if the player has gone enough times without a SR unit it

appends a SR unit to the gacha unit array and resets the pity count value. Otherwise, the

random number gets compared to the draw probabilities for each tier of rarity, and if it falls

within the interval, it picks a random unit from the corresponding rarity’s gacha array and

30

appends it to the results array. At the end of the function, the gacha result is returned as an

array of GachaUnitData and the gacha reward is registered to the current player’s

PlayerData.

4.4. Components

Components are nodes that give their parent nodes specific functionalities.

Components are meant to be modular and reusable across a variety of parent nodes, and

generally do not rely on knowledge of other components in the scene tree.

4.4.1. Gesture Node

Gesture nodes, when attached to a BattleEntity, allow the player to draw and

recognize gestures over the targets using the mouse. When detection is triggered, the Gesture

node takes in the currently drawn gesture and runs a normalization process so the drawn

gesture can be saved as a type of Gesture custom resource. Then, it calls the

QPointCloudRecognizer singleton and passes it the drawn gesture to get compared to the

existing templates. When a match is found and returned, the Gesture node sends a signal

containing its own parent (the target over which the gesture was drawn on) and finds the

gesture’s corresponding ability using GlobalAbilityDatabase. The returned AbilityData

resource is then passed on to the BattleManager so it can get instantiated as an

AbilityNode.

4.4.2. Health Component

The HealthComponent node is responsible for displaying and modifying the parent’s

custom resource during battle. The health component handles damage and healing

calculations before changing the values on the parent resource. HealthComponent also has

helper functions for changing the maximum possible health value, updating health UI displays,

as well as spawning damage number labels. This allows the HealthComponent to be used on

both the BattlePlayer and EnemyEntity instead of resources having to implement their own

functions, as well as allowing AbilityEffects to simply interact with the HealthComponent

of whichever entity it targets instead of having to run additional checks.

4.4.3. ATB Component

The ATB system in the game is implemented using ATBComponent custom nodes.

ATBComponents inherit from the Timer class, allowing them to run timers, pause and un-pause

31

timers, and signals whenever a timer has run out. On initialization, the ATBComponent grabs

its parent’s resource and sets the ATB_fill variable to the resource’s

default_ATB_fill_speed, if it has one.

The ATB_fill variable of type float represents the amount of time it takes for the

current_ATB variable to increase by 1. Given that ATB gauges have a constant maximum

value of 100, variation in time needed to fill the gauge is achieved by changing the length of

ATB_fill.

4.4.4. Ability Node

The Ability Node is instantiated as a child of the BattleManager singleton node. It is

initialized with an AbilityData resource. The Ability node iterates through each EffectData

in the AbilityData effects array and spawns an AbilityEffect node matching the

EffectData type.

When all of the AbilityEffect nodes have been instantiated, the Ability node starts

executing the effects in sequential order, using a state machine-like setup. The Ability node

subscribes itself to the AbilityEffect’s node effect_finished signal and starts executing

the first child node. When the Ability node receives the effect_finished signal, it

increases its internal counter and begins executing the next child’s ability. It will do so until it

finds no next child to execute. When that happens, the Ability node will conclude that the

ability has finished executing and will delete all of its child nodes before deleting itself.

4.4.5. Ability Effect Node

Effect nodes shouldn’t be used by themselves. Instead, for each resource that inherits

from EffectData, there is a corresponding node that inherits from Effect and implements

functionality that uses the data from the EffectData resources to affect entities. The Effect

node has an upgrade_data variable of type AbilityData and an effect_data variable of

type AbilityEffect, as well as a targets array. The execute_effect function is supposed

to be overridden by any classes that inherit from it. The Effect node has its upgrade_data

and effect_data set by its parent Ability node before getting initialized. After initialization,

the Effect node populates its targets array using the GlobalBattleManager singleton’s

function return_targets.

The following nodes inherit from Effect:

• ChangeStatNode – for each target, it changes the corresponding stat by either

primary_stat or secondary_stat, depending on the type of stat to change,

32

• ModulateColourNode – tints each target in the specified colour,

• DamageOverTimeNode – creates a timer that is set to TICK_DURATION length. When

it times out, it applies primary_stat damage to each target, and increases its

internal counter by 1. When the counter equals secondary_stat (which

corresponds to length of the effect), it declares the effect finished and stops

applying damage,

• DirectAttackNode – simply changes the health of every target by the specified

amount

• EntityShakeEffectNode – makes each target’s sprite shake. The shake lasts for

shake_duration amount of time, the possible sprite offset is determined by

shake_intensity, and the speed at which the sprites interpolate between the

values is determined by shake_speed.

• FlashEffectNode – tints the targets with the specified colour for only a brief

amount of time before returning the colour back to normal,

• ParticleEffectNode – spawns the specified particle effects scene over the

targets and plays it,

• RemoveEffectNode – ends the execution of the specified effect over the targets,

• WaitEffectNode – acts as a “buffer” between effects by waiting for the specified

amount of time before sending the effect_finished signal.

4.5. Data Objects

The game heavily relies on custom data containers, called custom resources [19] in

Godot, to store specific values, run checks, and to determine which objects to instantiate.

Therefore, it would be appropriate to list all of the different prevalent data types in the game

and explain what each one does first, as the architecture heavily relies on these different

custom resources.

Each custom resource will have its properties listed along with the data type, followed

by any functions the resource might have.

4.5.1. Gesture

The Gesture custom resource is used for storing data that represents the gestures the

player can draw. Gestures are also the templates which drawn gestures get compared to. The

Gesture custom resource has the following variables:

• Gesture_name – StringName, represents the name of the symbol of the gesture

33

• Points – Array of Vector3, where the z value holds the stroke index instead of a

position coordinate,

• Points_int – Array of Vector3i, where the points are remapped from float to int

• LUT – Dictionary, short for Look-Up Table. It is used for optimization in the gesture

recognition algorithm.

4.5.2. PlayerData

The PlayerData custom resource is used for storing any information relevant to the

player, including the player’s stats and all of the units and materials they currently have. The

PlayerData declares the following variables:

• Player_data_name – String, used for displaying save data names

• Experience_curve – Curve, representing the 2D curve along which the player

should get their experience rewarded compared to their current level.

• Acquired_abilities – Array of AbiltiyData, the abilities the player is

able to execute in battle,

• Acquired_gacha – Array of GachaUnitData, the list of gacha units the

player currently has,

• Acquired_inventory – Array of InventorySlot, where each InventorySlot has its

own material of type MaterialData and amount of type int,

• Max_health – int, maximum possible health at the player’s current level,

• Current_health – int, the player’s current health value,

• Level – int, the player’s current level

• Current_experience – int, the player’s current experience,

• Gold – int, the player’s current amount of gold, used for upgrading units,

• Papers – int, the player’s current amount of currency used to play gacha,

• Player_pity – int, representing the number of gacha rewards the player got

without receiving a unit of Super Rare rarity. This is implemented to introduce some

fairness mechanics to the gacha system, where the player must receive a reward

of Super Rare rarity after a number of “unsuccessful” pulls.

• Current_party – Array of GachaUnitData

4.5.3. EnemyData

The EnemyData custom resource is used to represent an enemy. It gets added to a

BattleEntity node upon instantiation, and then the BattleEntity node modifies its

34

parameters according to the data in EnemyData. The EnemyData custom resource has the

following variables:

• Enemy_name – String, the enemy’s name,

• Death_particles – PackedScene, the GPUParticles2D scene that should be

instantiated on the enemy’s defeat,

• Physical_health – int, the amount of maximum health the enemy has,

• Average_gold – int, the average amount of gold the enemy awards upon defeat,

• Average_experience - int

• Spirit_energy – int, the number of papers the enemy should award upon

defeat,

• Default_ATB_fill_speed – float, the default speed at which the ATB gauge

should fill. Because all ATB gauges have the same maximum number, the fill speed

gets varied by the number of “ticks” it takes to fill the gauge. The tick length is

determined by dividing default_atb_fill_speed with an ATB_DIV constant,

found in the ATB Component,

• ATB_variability – float, the potential variability of the ATB fill speed of the

enemy, to reduce scenarios where groups of enemies all attack at the same time,

• Enemy_abilities – Array of EnemyAbilityData, listing which attacks the enemy

could potentially execute.

4.5.4. GachaUnitData

The GachaUnitData custom resource represents all of the information that makes up

a gacha unit. It implements the following variables:

• Unit_name – String, the name of the gacha unit,

• Rarity – enum of type RarityRank, possible values COMMON = 1, RARE = 2,

SUPER_RARE = 3, used to determine the unit’s rarity in the gacha,

• Unit_ability – AbilityData, the ability the unit unlocks,

• Unit_art – Texture, the unit’s sprite,

• Level_up_mat – MaterialData, the material the unit uses to level up,

• Current_level – int, the unit’s current level. Starts from 1.

GachaUnitData has two additional functions:

• Level_up – this increases the unit’s current level, and samples a value along the

abilities upgrade curve to upgrade the stats by,

35

• Get_upgrade_cost – returns an int. Samples a value along the abilities cost curve

to determine how much the next upgrade will cost in gold.

4.5.5. MaterialData

The MaterialData custom resource is used to hold information about upgrade

materials. Originally, it was intended for each material to have a shop purchase price, but the

material shop hasn’t been implemented.

• Material_name – String, the material’s name,

• Material_sprite – Texture, the material’s sprite.

4.5.6. InventorySlot

The InventorySlot custom resource is used to represent a single slot of inventory

space in the PlayerData. Due to the inventory system’s simplicity, the inventory itself is just

an array of type InventorySlot on the player. The InventorySlot custom resource defines

the following variables:

• Amount – int, the number of resources in the inventory slot,

• Material – MaterialData, the material the slot holds.

As soon as the player runs out of a specific material, the material’s belonging

InventorySlot gets removed from the PlayerData and the inventory UI.

4.5.7. LootResource

The LootResource custom resource is generated at the end of every battle that

determines how much gold, experience and papers should be awarded to the player. It has

the following variables:

• Experience_curve – Curve, the curve along which experience awarded should

scale,

• Gold – int, the number of gold to award to the player,

• Paper – int, the number of papers to award to the player,

• Experience – int, the number of experience points to award to the player.

The LootResource also has the following functions:

• Generate_resource – calls the calculate_experience, calculate_gold and

calculate_paper functions to assign values to experience, gold and papers,

36

• Calculate_experience – grabs the player’s current level using the GlobalData

singleton’s player_data property of type PlayerData, then iterates through the

number of enemies defeated. For each enemy defeated, it samples a point along

the experience curve using the following formula:

exp = experience_curve.sample(float(level)/100) * 100

and adds the result of exp to experience. The more enemies the player has

defeated, the more experience they get,

• Calculate_gold – takes in an array of EnemyData, then iterates through each

EnemyData in the array and sums up the amount of gold each enemy drops to award

to the player,

• Calculate_paper – takes in an array of EnemyData, then iterates through each

EnemyData in the array and sums up the amount of paper each enemy drops to

award to the player.

4.5.8. AbilityData

The AbilityData cusom resource is used to describe abilities within the game and

hold all of the information an ability needs to function. It has the following variables:

• Ability_name – String, the name of the ability,

• Ability_description – String, the ability’s description,

• Belonging_glyph – String, the name of the gesture that triggers the ability to

execute,

• Primary_stat – int, representing the additional number of points to add to each

AbilityEffect’s primary_stat, essentially serving as an upgrade stat,

• Secondary_stat – float, same as above, meant to be summed with each

AbilityEffect’s secondary_stat,

• Chance_to_trigger – float, same as above, meant to be summed with each

AbilityEffect’s chance_to_trigger,

• Effects – Array of AbilityEffect, representing the chain of execution of

AbilityEffects that make up the ability.

The AbilityData resource has the following functions to make it easier to modify

resources:

• Upgrade_primary_stat – increases the primary_stat by value

• Upgrade_secondary_stat – increases the secondary_stat by value

37

• Upgrade_trigger_chance – increases the chance_to_trigger stat by value

4.5.9. EffectData

EffectData is a custom resource meant to represent a single “step” of an ability. It can

have different target types and different primary and secondary values. EffectData has the

following variables:

• Target_type – enum of TargetType, with the following possible values: SINGLE,

AOE, AOE_LIMIT, AOE_EXCLUDE, AOE_EXCLUDE_LIMIT, AOE_INCLUDE_PLAYER,

RANDOM_INCLUDE_PLAYER, RANDOM_EXCLUDE_PLAYER, PLAYER. A description of

what each TargetType does can be found in section 4.3.6 – BattleManager.

• Primary_stat – int, meant as the effect’s primary minimum possible

stat

• Secondary_stat – float, meant as the effect’s secondary minimum

possible stat

• Chance_to_trigger – float, meant as the effect’s minimum possible

chance to trigger

EffectData by itself is not meant to be used. Instead, different types of effects should

inherit from the EffectData resource, allowing them to use the basic EffectData properties

while implementing their own. The following resources inherit from EffectData:

• ChangeStatEffect – changes the chosen stat_to_change by primary_stat

• DamageOverTimeEffect – has a TICK_DURATION constant, variability and

particle_effect,

• DirectAttack – implements no special properties, changes the current_health

by primary_stat. If the value is negative, it adds health instead,

• EntityShakeEffect – implements shake_duration, shake_intensity and

shake_speed variables to determine in which manner an entity’s visuals should

shake

• FlashEffect – implements flash_colour of type Color and flash_duration of

type float variables

• ModulateColourEffect – implements colour of type Color, to determine what

colour to tint the entity, and modulation_speed of type float, to determine how

long it takes to change the entity’s modulate property to the desired colour

• ParticlesEffect – particles of type PackedScene, serves as decorative particle

effects that should trigger at some point within the ability

38

• RemoveEffect – implements effect_to_remove with possible values of “DoT” =

0 and “Stat Change” = 1,

• WaitEffect – implements wait_time of type float, serves as a decorative effect

with its purpose only being to add additional time to the ability’s execution or wait

for other effects in the ability to finish before proceeding.

This lends itself to a highly flexible and configurable ability system, where a new data

container for a new type of effect can be added simply by making a new script and making it

extend EffectData.

39

5. Conclusion

Creating this prototype has made me consciously aware of the sheer amount of work

and thought that goes into the development behind each genre of game.

Role playing games and gacha games are genres that require an incredible amount of

effort, time and material to develop. Not only do they require a great amount of visual and art

resources and writing to truly make them shine, each genre has a plethora of underlying

systems that need to be taken into account during development. RPGs need turn queues,

enemies, data management, stat management, modifiers, equipment, mechanics, items, and

a plethora of other things depending on how complex you want the system to be. Gacha games

often need to feature an incredibly vast and varied cast of characters, with each update

bringing more to the game. That is without taking into account the networking implications of

gacha games. When combined, the underlying architectures can get very complex and very

large very quick. My own project wasn’t nearly as complex as a full-fledged RPG, but still turned

out to be the most demanding thing I’ve worked on so far.

During the development of this prototype, I have come upon many limitations, that due

to time and knowledge constraints, that have forced me to scrap earlier parts of my progress

or change the plan entirely. I have researched game mechanisms, code architecture, and

different programming patterns in hopes of developing an easily expandable and modular

game. There were no tutorials or guides for Godot – or other game engines – on developing

expandable games with complex systems such as this, only broad guidelines.

I have learned that combining two incredibly demanding genres to develop such as

RPGs and gacha games together is an incredibly demanding undertaking due to the technical

requirements both genres have. Despite this, I have chosen this as my theme because I found

myself incredibly inspired by the games mentioned at the start of the work. I consider gacha

systems to be an incredibly powerful way of adding replay value and content to any kind of

game genre, if handled responsibly. Figuring out and making each part of the game by hand

was a hard but rewarding experience. Developing this prototype has taught me a lot about

setting up a framework for making expandable games. Hopefully, the experience gained from

this will aid me in further game development projects.

40

6. References

[1] G. Engine, ‘First public release!’, Godot Engine. Accessed: Aug. 18, 2024. [Online].
Available: https://godotengine.org/article/first-public-release/

[2] ‘GDScript reference’, Godot Engine documentation. Accessed: Aug. 18, 2024. [Online].
Available:
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/tutorials/scripting/gdscri
pt/gdscript_basics.html

[3] ‘Godot’s design philosophy’, Godot Engine documentation. Accessed: Aug. 18, 2024.
[Online]. Available:
https://docs.godotengine.org/en/stable/getting_started/introduction/getting_started/introd
uction/godot_design_philosophy.html

[4] ‘Overview of Godot’s key concepts’, Godot Engine documentation. Accessed: Aug. 18,
2024. [Online]. Available:
https://docs.godotengine.org/en/stable/getting_started/introduction/getting_started/introd
uction/key_concepts_overview.html

[5] ‘Observer · Design Patterns Revisited · Game Programming Patterns’. Accessed: Aug.
18, 2024. [Online]. Available: https://gameprogrammingpatterns.com/observer.html

[6] J. Thomä, derkork/godot-resource-groups. (Aug. 16, 2024). GDScript. Accessed: Aug.
18, 2024. [Online]. Available: https://github.com/derkork/godot-resource-groups

[7] don-tnowe, don-tnowe/godot-resources-as-sheets-plugin. (Aug. 16, 2024). GDScript.
Accessed: Aug. 18, 2024. [Online]. Available: https://github.com/don-tnowe/godot-
resources-as-sheets-plugin

[8] V. Gerevini, viniciusgerevini/godot-aseprite-wizard. (Aug. 17, 2024). GDScript. Accessed:
Aug. 18, 2024. [Online]. Available: https://github.com/viniciusgerevini/godot-aseprite-
wizard

[9] D. Capello, ‘Aseprite’. Accessed: Sep. 07, 2024. [Online]. Available:
https://www.aseprite.org/

[10] T. Dang, ‘The addictive design of mobile gacha games’. Accessed: Jan. 31, 2024.
[Online]. Available: http://www.theseus.fi/handle/10024/805479

[11] ‘Xenoblade ChroniclesTM 2 - Nintendo Switch - Games - Nintendo’. Accessed: Aug. 20,
2024. [Online]. Available: https://www.nintendo.com/au/games/nintendo-
switch/xenoblade-chronicles-
2/?srsltid=AfmBOop3Bd7blUO_Km4IaT9SlR0JTiWh_9lBOr3XL2hYR_Yvqs2UA3eN

[12] ‘Active Time Battle (Concept)’, Giant Bomb. Accessed: Aug. 19, 2024. [Online].
Available: https://www.giantbomb.com/active-time-battle/3015-95/

[13] ‘Resurrect 64 Palette’. Accessed: Aug. 20, 2024. [Online]. Available:
https://lospec.com/palette-list/resurrect-64

[14] ‘Singletons (Autoload)’, Godot Engine documentation. Accessed: Aug. 18, 2024. [Online].
Available:
https://docs.godotengine.org/en/latest/tutorials/scripting/tutorials/scripting/singletons_aut
oload.html

[15] ‘Singleton · Design Patterns Revisited · Game Programming Patterns’. Accessed: Aug.
18, 2024. [Online]. Available: https://gameprogrammingpatterns.com/singleton.html

[16] R.-D. Vatavu, L. Anthony, and J. O. Wobbrock, ‘$Q: a super-quick, articulation-invariant
stroke-gesture recognizer for low-resource devices’, in Proceedings of the 20th
International Conference on Human-Computer Interaction with Mobile Devices and
Services, Barcelona Spain: ACM, Sep. 2018, pp. 1–12. doi: 10.1145/3229434.3229465.

[17] angrychill, angrychill/q-dollar-gesture-godot. (Aug. 15, 2024). GDScript. Accessed: Aug.
22, 2024. [Online]. Available: https://github.com/angrychill/q-dollar-gesture-godot

[18] ‘The Events bus singleton · GDQuest’, GDQuest. Accessed: Aug. 18, 2024. [Online].
Available: //gdquest.com/tutorial/godot/design-patterns/event-bus-singleton/

41

[19] ‘Dictionary’, Godot Engine documentation. Accessed: Aug. 18, 2024. [Online]. Available:
https://docs.godotengine.org/en/stable/classes/classes/class_dictionary.html

[20] ‘Resources’, Godot Engine documentation. Accessed: Aug. 19, 2024. [Online]. Available:
https://docs.godotengine.org/en/stable/tutorials/scripting/tutorials/scripting/resources.html

42

7. List of Figures

Figure 1: Xenoblade Chronicles 2's cover art (Monolith Soft, 2017., retrieved 2024.) 5

Figure 2: Honkai: Star Rail's logo (miHoYo, 2023., retrieved 2024.) 6

Figure 3: Cutscene screenshot (Original work, 2024.) 7

Figure 4: Resurrect 64 palette (Source: Kerrie Lake, 2019.) 11

Figure 5: Initial player appearance (Original work, 2024.) 12

Figure 6: Final player appearance (Original work, 2024.) 12

Figure 7: Enemy sprites (Original work, 2024.) 12

Figure 8: Initial sketch of the player's house (Original work, 2024.) 13

Figure 9: Finished player room asset (Original work, 2024.) 13

Figure 10: Player house appearance in-game (Original work, 2024.) 14

Figure 11: In-game forest area (Original work, 2024.) 14

Figure 12: Forest area in-engine (Original work, 2024.) 14

Figure 13: In-game battle scene (Original work, 2024.) 15

Figure 14: Battle scene in-engine (Original work, 2024.) 15

Figure 15: Start screen (Original work, 2024.) 16

Figure 16: Units tab (Original work, 2024.) 16

Figure 17: Unit Upgrade window (Original work, 2024.) 17

Figure 18: Items tab (Original work, 2024.) 17

Figure 19: Menu tab (Original work, 2024.) 18

Figure 20: Finished material sprites and assorted icons (Original work, 2024.) 18

Figure 21: Sprites used for UI backgrounds, panels and buttons (Original work, 2024.) 19

Figure 22: Gacha draw interface (Original work, 2024.) 19

Figure 23: House scene tree (Original work, 2024.) 22

Figure 24: Interactable object scene tree (Original work, 2024.) 22

Figure 25: Overworld scene tree (Original work, 2024.) 23

Figure 26: Overworld player's scene tree (Original work, 2024.) 24

Figure 27: Battle scene tree (Original work, 2024.) 24

Figure 28: Battle Enemy's scene tree (Original work, 2024.) 25

43

8. List of Tables

Table 1: Implemented gacha units 8

Table 2: List of implemented gestures 10

