
Karakterizacija profila sjajnosti meteorskih tragova i
usporedba s drugim linijskim fenomenima

Cerovec, Sven

Master's thesis / Diplomski rad

2025

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Organization and Informatics / Sveučilište u Zagrebu, Fakultet
organizacije i informatike

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:211:698042

Rights / Prava: Attribution-NonCommercial-NoDerivs 3.0 Unported / Imenovanje-Nekomercijalno-Bez
prerada 3.0

Download date / Datum preuzimanja: 2025-04-01

Repository / Repozitorij:

Faculty of Organization and Informatics - Digital
Repository

https://urn.nsk.hr/urn:nbn:hr:211:698042
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://repozitorij.foi.unizg.hr
https://repozitorij.foi.unizg.hr
https://zir.nsk.hr/islandora/object/foi:8655
https://repozitorij.unizg.hr/islandora/object/foi:8655
https://dabar.srce.hr/islandora/object/foi:8655

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

VARAŽDIN

Sven Cerovec

CHARACTERIZING METEOR BRIGHTNESS
PROFILES AND COMPARISON WITH

OTHER LINEAR PHENOMENA

MASTER’S THESIS

Varaždin, 2025

UNIVERSITY OF ZAGREB

FACULTY OF ORGANIZATION AND INFORMATICS

V A R A Ž D I N

Sven Cerovec

Student ID: 16136668

Programme: Information and Software Engineering

CHARACTERIZING METEOR BRIGHTNESS PROFILES AND
COMPARISON WITH OTHER LINEAR PHENOMENA

MASTER’S THESIS

Mentor:

Asst. Prof. Bogdan Okreša Ðurić, PhD

Varaždin, Veljača 2025

Sven Cerovec

Statement of Authenticity

Hereby I state that this document, my Master’s Thesis, is authentic, authored by me, and that,
for the purposes of writing it, I have not used any sources other than those stated in this thesis.
Ethically adequate and acceptable methods and techniques were used while preparing and
writing this thesis.

The author acknowledges the above by accepting the statement in FOI Radovi online system.

i

Abstract

This thesis presents the analysis of meteor brightness profiles using more than 26,000 images
from within the database maintained by the Sloan Digital Sky Survey (SDSS). In this work, FITS
images that contain linear features are studied to determine the differences representative of
meteor trails, along with other celestial and atmospheric phenomena, most commonly satellites,
to increase the knowledge of their unique lighting characteristics. Methods and tools used
in this thesis include Python, Astropy, and Matplotlib and it lays the foundation for automatic
classification of these linear features according to their brightness profiles.

Keywords: astrophysics; astrometry; meteor trails; image processing; linear feature detection;
brightness profiling

ii

Table of Contents

1. Introduction . 1

2. Work Methods and Techniques . 2

3. Central Thesis . 3
3.1. The History of Celestial Cartography . 3

3.1.1. Early Conceptions of the Celestial Sphere 3

3.1.2. Modern Age Star Catalogs and International Efforts 6

3.1.3. Computer Technology and Current Day Projects 8

3.2. Linear Artifacts in Astronomical Images . 12

3.2.1. Meteors and Meteor Trails . 12
3.2.2. SDSS Data Releases and FITS Files . 16
3.2.3. Linear Artifacts in FITS Images . 21

3.3. Identification and Classification of Linear Artifacts 28
3.3.1. Automated Linear Artifact Detection . 28
3.3.2. Linear Artifact Profiling . 37

3.3.3. Classification of Linear Artifacts . 42
3.4. Findings and Interpretations . 47

3.4.1. Evaluation Metrics for Classification of Linear Artifacts 48
3.4.2. Graphical User Interface for Trail Examination 53

3.4.3. Technical Obstacles and Improvement Possibilities 58

4. Conclusion . 59

5. Acknowledgments . 60

Bibliography . 63

List of Figures . 65

List of Tables . 66

List of Listings . 67

iii

1. Introduction

Meteors have long captivated scientific and public interest, but their transient nature
and momentary appearance challenge their observation and analysis. By extracting brightness
profiles of trails from images and feeding them into a neural network, this thesis applies deep
learning to classify genuine meteor trails from those of satellites or other noise.

The work presented in the following pages explores the identification, profiling, and
classification of linear artifacts in astronomical images, with a particular focus on meteors.
Detection of linear features is the starting point for a process that then continues with brightness
profile analysis and ends with classification of the feature. The methods discussed throughout
are rooted in image processing strategies and fortified through a graphical user interface that
enables manual evaluation. This work attempts to advance the analysis of transient linear
features.

The refinement of this approach has been facilitated considerably by modern surveys—most
notably the Sloan Digital Sky Survey—and by the work of Bektešević and Vinković [1] on the au-
tomatic detection of elongated streaks in FITS images. The relevant procedures are described,
such as detecting, profiling, and classifying meteor trails, in a manner so that specialized knowl-
edge is not strictly required.

1

2. Work Methods and Techniques

This chapter lists the tools, work methods, and techniques employed throughout this
study.

SAOImageDS9 (a widely used astronomical imaging and data visualization application)
was used to inspect astronomical images and distinguish meteor trails from non-meteor trails
for the neural network classifier’s training data.

The images were drawn from the Sloan Digital Sky Survey (SDSS), specifically Data
Release 9 (DR9).

Most of the data processing was done in Python and a wide range of its libraries. For
linear artifact detection and clustering, OpenCV (for edge detection and image transformation),
NumPy (for array operations), and scikit-learn (for any auxiliary clustering or distance metrics)
were employed. The profiling of linear artifacts relied again on a combination of OpenCV,
NumPy, and astropy (for reading and normalizing FITS data). Finally, the classification neural
network centered on scikit-learn’s MLPClassifier.

GitHub served as the repository for the project’s source code and documentation. The
project can be found on the following link:

https://github.com/svencerovec/meteor-profile

ChatGPT models GPT-4o, o1, and o3-mini-high were used for research purposes, de-
velopment suggestions, and code comments.

2

https://github.com/svencerovec/meteor-profile

3. Central Thesis

This chapter provides historical context and investigates solutions for brightness profil-
ing of linear artifacts in astronomical images. It begins with a survey of celestial cartography,
tracing early conceptions of the celestial sphere through modern star catalogs and culminat-
ing in the role of computer technology in current-day projects. Attention then shifts to linear
artifacts, examining meteors and meteor trails, the Sloan Digital Sky Survey (SDSS) data re-
leases, and the specifics of handling linear artifacts within FITS files. Following this overview,
the chapter outlines the classification procedures that form the core of the thesis, expanding on
how automated detection is combined with profiling and classification. The chapter concludes
with findings of the work, including evaluation metrics of the classification, a practical graphical
user interface, and a discussion of technical obstacles and possible improvements for future
research.

3.1. The History of Celestial Cartography

Wikipedia [2] defines celestial cartography as the aspect of astronomy and branch of
cartography concerned with mapping stars, galaxies, and other astronomical objects in the
celestial sphere. Merriam-Webster [3] defines uranography as the construction of celestial rep-
resentations (such as maps), derived from the Greek words ouranos meaning sky and graphia
meaning literature or writing. Encyclopedia Britannica [4] defines cosmology as a field of study
that combines the natural sciences, particularly astronomy and physics, in a joint effort to un-
derstand the physical universe as a unified whole. The effort to map the universe in the field
of cosmology is called cosmography. Celestial cartography, uranography, and cosmography
are some of the words one could use to describe the area of astronomy that aims to map the
universe. The language used throughout this work is celestial cartography.

Celestial cartography is a core tool in modern astronomy, but its inception is far more
mystical. To early man, the sky must have seemed like an unchanging sea of tiny bright specks,
and just as we charted the land and the sea we stand and sail on, so did ideas arise to map the
untouchable sea that is our night sky. Technological advancement throughout the ages has rev-
olutionized this field, due to the integration of computer technologies with data collection. This
section explores the journey of celestial cartography from its beginnings, through its scientific
metamorphosis in the modern era, to its current synergy with computer technologies. This sec-
tion’s first and second subsections cover the history of celestial cartography. The section draws
upon the work of Nick Kanas in his book titled Star Maps: History, Artistry, and Cartography [5].

3.1.1. Early Conceptions of the Celestial Sphere

The history of celestial cartography is a fascinating tale that spans several thousands
of years. Early civilizations gave constellations mythological meanings and believed that they
were images that represented different people, animals, or objects. Although the mythological

3

context of the sky was prominent throughout history and the same mythological meanings of
constellations have remained to this day, throughout time, it began to fade with the discovery of
more practical uses of celestial information. Driven by needs like timekeeping and navigation,
humanity began recording the positions of celestial bodies in detail and creating what is com-
monly referred to as celestial maps. The interest of ancient civilizations in celestial phenomena
has laid the foundation for a modern understanding of the cosmos.

Dating back 3,600 years to the late Bronze Age [6], the Nebra sky disc (shown in Figure
1) provides a unique glimpse into humanity’s early knowledge of celestial objects. Although the
disc is not quite what one would describe as an accurate star map, measuring about 30 cm
in diameter, it features a blue-green patina adorned with gold symbols representing the most
important celestial figures: the Sun, the Moon, and the stars. Whether the Pleiades, a cluster
of seven stars (known in mythology as The Seven Sisters), are also depicted on the disc is
debatable. If so, the disc would be one of human history’s first known representations of a
constellation. [7]

Figure 1: Photograph of the Nebra sky disc by Frank Vincentz [7]

The Nebra sky disc is more of an artistic depiction of the sky than a practical one. But
an example of a practical tool turned decorative is an object called the armillary sphere. It was
used to visualize the celestial sphere and calculate the positions of stars in the 3rd century
BC by scholars like Eratosthenes in Greece and China during the Han dynasty. Later, its use
spread to Islamic countries and continued into the Renaissance for education and navigation
training. Today, the armillary sphere can be found in libraries and households as decoration,
with modern technology having rendered it obsolete. [5]

4

A more practical example of an astronomical tool would be celestial maps, which were
historically found in atlases specifically dedicated to celestial cartography. However, they were
included in geographical atlases to complement terrestrial maps. These maps were used for
celestial navigation, which involves using stars and other celestial bodies to determine one’s
position on Earth, but also as educational tools. Early celestial maps serve as cultural indicators
that illustrate the state of knowledge and politics of their times and reflecting the cosmological
beliefs of early cultures such as the ancient Greeks. Celestial mapping uses coordinate sys-
tems projected onto the celestial sphere, akin to the latitude and longitude we use for planet
Earth, which change with the Earth’s movements. [5]

The connection between celestial and geographical cartography owes much of its promi-
nence to the contributions of the Greco-Egyptian astronomer and geographer Ptolemy. Ptolemy
authored two influential works in the scientific area of cartography: the Almagest and the Ge-
ographica. While his Almagest documents planetary positions in the sky and lunar cycles, its
counterpart, the Geographica, charts cities and landmarks on what was considered the Earth
at the time. [5] [6]

Geographica, representing a significant milestone in the history of geographical car-
tography, also yielded advances in the astronomical field, most notably within Ptolemy’s world
map. Although the map showed locations on the known Earth during its time (around 150 CE),
the methods used were enriched by astronomical observations. [8] Through the map, Ptolemy
introduced latitude and longitude as part of a planar coordinate system, which is now in com-
monplace use not only for planet Earth but for all spherical surfaces, including the celestial
sphere. [6]

Figure 2: Ptolemy’s 150 CE World Map (redrawn in the 15th century) [8]

As detailed in his Almagest, Ptolemy’s star catalog is a very influential astronomical work
that lists 1022 stars in 48 constellations. It includes each star’s location within its constellation,

5

its longitude and latitude on a similar coordinate system used in Ptolemy’s world map, and
its brightness on a scale from 1 to 6. [5] The star catalog influenced subsequent astronomical
studies and inspired similar catalogs, an example of which can be found in the following chapter
(Figure 3).

The fall of Rome greatly affected the area of astronomy. The work of the Greeks was
taken over by the Romans, who made few new contributions. In a way, progress in celestial
cartography had been halted. Throughout the Middle Ages, astrology was still used for practical
purposes, such as determining the appropriate time for medical operations. It was not until the
Renaissance period that astrology and astronomy were recognized as two different fields, as-
trology taking a more pseudoscientific and mystical role and astronomy a scientific and serious
one. [5]

The era between 1600 and 1800 is considered The Golden Age of pictorial celestial
cartography in Europe. Astronomers like Tycho Brahe and Johannes Hevelius could use im-
proved instruments to collect observational data. The data collected by Tycho Brahe and his
team was used by Johannes Kepler in 1627 in his publication named the Rudolphine Tables, a
star table consisting of 1005 stars (this was after Brahe died in 1601). Prodromus Astronomiae
by Johannes Hevelius, published posthumously by his wife, contained the Catalogus Stellarum,
a table of data collected from 1564 stars. [5]

The introduction of telescopes and micrometers further increased the accuracy of the
collected data. Printing technology evolved from woodblocks to intaglio processes, allowing
detailed images on copper and steel plates to be reproduced on paper. These technical ad-
vances in astronomical tools and printing technology created aesthetically pleasing and very
technically accurate celestial maps during this era. [5]

3.1.2. Modern Age Star Catalogs and International Efforts

Contemporary star atlases depict stars and other celestial objects with great precision,
aided by computer technology. Although modern atlases lack the historical and mythological
context of ancient celestial maps, the fundamental purpose of a star atlas remains unchanged:
to accurately represent the celestial sphere.

The 19th-century astronomer Friedrich Wilhelm August Argelander was a significant
contributor to the area of celestial cartography. One of Argelander’s most notable achievements
is in his star catalog, in which, following the footsteps of Ptolemy, Brahe, Hevelius, and other
astronomers, the attributes of each celestial object were represented through raw data in a
table. [5] The technique used by Argelander in his work is an improvement on the work of his
predecessors and a precursor to modern star mapping techniques using computer technology.
Figure 3 shows an example of his star catalog.

Photography had been integrated into astronomy by the early 19th century. J.W. Draper’s
1840 daguerreotypes of the Moon and Edmond Becqzerel’s daguerreotype of the Sun’s spec-
trum authored some of the earliest images of celestial phenomena. [5]

The following quote from the Library of Congress describes the definition of a da-

6

Figure 3: A table of star positions from Volume I of Argelander’s "Beobachtungen". This volume
covers the area of the sky between +45 and +80 degrees declination, published in 1846. The
information includes star numbers, magnitudes, right ascension, and declination. [5]

guerreotype and the process of creating one.

"The daguerreotype is a direct-positive process, creating a highly detailed image on
a sheet of copper plated with a thin coat of silver without the use of a negative. The
process required great care. The silver-plated copper plate had first to be cleaned
and polished until the surface looked like a mirror. Next, the plate was sensitized in
a closed box over iodine until it took on a yellow-rose appearance. The plate, held in
a lightproof holder, was then transferred to the camera. After exposure to light, the
plate was developed over hot mercury until an image appeared. To fix the image,
the plate was immersed in a solution of sodium thiosulfate or salt and then toned
with gold chloride." [9]

Due to the first daguerreotypes’ exposure times ranging from three to fifteen minutes,
they were unsuitable for portraits and other moving subjects. However, these extended ex-
posures were sufficiently long to capture stationary celestial objects like the Sun and Moon.
Advancements in telescopes, lenses, and photographic techniques further established photog-
raphy as one of the primary astronomical instruments, now commonly called astrophotography.
By the late 19th century, astronomers had already captured events such as Venus transiting
the Sun, morphological details on Mars, newly discovered comets and asteroids, and deep-sky
phenomena including nebulae and star clusters. [5] Ambitious projects surfaced with the aim
of mapping celestial objects using photography. Among them, the project Carte du Ciel (eng.

7

Map of the Sky) aimed to map stars across the entire sky.

The Carte du Ciel project, initiated in 1887, was an international effort to catalog and
map the positions of stars using photography. Observatories from around the world agreed
to photograph sections of the sky assigned to them with the goal of capturing approximately
25 million stars in photographs. Due to its apparent ambition, the project faced significant
challenges, and despite a decade of effort, the Carte du Ciel project remains incomplete. Sev-
eral sections were never finished due to resource limitations and technical difficulties. [5] The
project remains a testament to international scientific collaboration and the pursuit of under-
standing the cosmos, and it serves as a precursor to future projects such as the goals of the
Sloan Digital Sky Survey (SDSS) and Large Synoptic Survey Telescope (LSST).

3.1.3. Computer Technology and Current Day Projects

Like many other scientific fields, celestial cartography has been revolutionized by the
rapid advancements in computer technology. Modern telescopes generate enormous volumes
of data, which in turn require powerful computational power. In 1998, the Sloan Digital Sky
Survey surfaced, intending to answer fundamental questions about the universe by studying
hundreds of millions of celestial objects.

Although less ambitious than the Carte du Ciel project, the initial aim of the Sloan
Digital Sky Survey (SDSS) was to map a quarter of the sky in unprecedented detail. The
SDSS telescopes are located at Apache Point Observatory in the Sacramento Mountains of
New Mexico, where the atmosphere is exceptionally clear and dark. The main instrument, a
2.5-meter telescope, was specifically built to map large portions of the sky more efficiently than
previous telescopes. The telescope employs two reflecting mirrors and a pair of corrective
lenses to produce sharp and widefield images about three degrees across, roughly the size
of 30 Moons. This design allows for collecting detailed data on a vast swath of the night sky
at once. A separate 0.5-meter photometric telescope monitors subtle atmospheric changes to
ensure that the proper brightness of celestial objects is recorded. [10]

The 2.5 m wide-angle optical telescope conducted imaging and spectroscopic observa-
tions from 1998 until 2009, after which it operated exclusively in spectroscopic mode. As stated
in Encyclopedia Britannica [11], spectroscopy studies the absorption and emission of light and
other radiation by matter. This emission of light enables precise measurements of the chemical
composition, motion, and distance of celestial objects [11], which is why the resources for the
operation of the telescope were shifted to the collection of spectroscopic data after the initial
imaging phase had been completed.

The operation of the SDSS project can be distinguished into several phases. From
2000 to 2005, SDSS-I produced widefield images and spectra spanning thousands of square
degrees and repeated imaging of a stripe in the southern Galactic cap. Then, from 2005 to
2008, SDSS-II introduced expansions such as the Sloan Extension for Galactic Understand-
ing and Exploration (SEGUE) to map the structure of the Milky Way and the Sloan Supernova
Survey to study distant Type Ia supernovae. The Sloan Legacy Survey, primarily undertaken in

8

SDSS-I, covered over 7,500 square degrees of the Northern Galactic Cap and enabled anal-
yses of large-scale cosmic structures. SEGUE obtained spectra for 240,000 stars to build a
3D map of the Galaxy, while the Sloan Supernova Survey discovered hundreds of new su-
pernovae in a 300 square-degree stripe. SDSS-III (2008–2014) encompassed four projects:
the Apache Point Observatory Galactic Evolution Experiment (APOGEE) for high-resolution in-
frared spectra of red giants, the Baryon Oscillation Spectroscopic Survey (BOSS) to measure
the expansion rate of the universe via baryon acoustic oscillations, the Multiobject Apache Point
Observatory Radial Velocity Exoplanet Large-area Survey (MARVELS) to monitor radial veloc-
ities and detect exoplanets, and SEGUE-2 which further examined the Galactic halo. SDSS-IV
(2014–2020) continued with the Extended Baryon Oscillation Spectroscopic Survey (eBOSS)
for cosmology, APOGEE-2 for more extensive infrared spectroscopy, and the Mapping Nearby
Galaxies at Apache Point Observatory (MaNGA) for two-dimensional maps of galaxy interiors.
Finally, SDSS-V (2020–present) employs automated fiber-positioning robots, targeting spec-
tra of millions of stars, black hole hosts, and interstellar gas, thus expanding and refining the
enduring SDSS legacy. [12]

The telescope imaging camera (shown in Figure 4), cooled to 190 K using liquid nitro-
gen, employs five photometric filters (see Table 1) and comprises 30 charge-coupled device
(CCD) chips (each 2048 × 2048 pixels), yielding a 120-megapixel array with reliable detections
of magnitudes of about 20-22 depending on the filter. [12] A CCD or a charge-coupled device
is "an integrated circuit containing an array of linked, or coupled, capacitors, which under the
control of an external circuit can transfer its electric charge to a neighboring capacitor." [13] Us-
ing a drift scan technique with choreographed adjustments in right ascension, declination, and
tracking rate, the system continuously records narrow sky strips while synchronously shifting
charges on the CCDs. [12]

Filter Wavelength
u Near-ultraviolet
g Green
r Red
i Near-infrared
z Longer-wavelength near-infrared

Table 1: SDSS Photometric Filters and Their Assigned Letter and Wavelength

This drift-scan method provided consistent astrometry across wide fields while minimiz-
ing detector readout overhead, although it also introduced slight distortions. After imaging, tar-
gets, including stars, galaxies, and quasars, were selected for spectroscopy by aligning optical
fibers through holes drilled in an aluminum plate at precise coordinates. Initially, the telescope’s
spectrograph captured 640 spectra simultaneously, which later upgraded to 1000, allowing six
to nine plates of data collection per night. During spectroscopic observations, the telescope fol-
lows the sky normally, keeping objects centered on their designated fiber tips for optimal data
quality. [12]

In the paper The Sloan Digital Sky Survey Monitor Telescope Pipeline, Tucker et al. [14]
introduce the following information about the inner workings of the SDSS. An east-west scan

9

Figure 4: The imaging camera of the SDSS telescope showcases the 5 rows (one for each
filter) of 6 charge-coupled devices per row. [12]

defines a ’strip,’ and two offset strips make a ’stripe.’ The imaging reaches r = 22.2 for 95%
detection repeatability in point sources. Photometric calibrations achieve an accuracy of about
0.02 mag in g, r, i, and about 0.03 mag in u, z, using a combination of telescopes: the USNO
(United States Naval Observatory) 1.0 m telescope for primary standard stars and the two
SDSS telescopes: the 0.5 m photometric telescope for nightly zero points and extinction, and
the 2.5 m telescope for scanning ’secondary patches.’ Follow-up spectroscopy targets galaxies,
quasars, and stars via a pair of 320-fiber multiobject spectrographs. Three main software
pipelines, one for processing data from the USNO 1.0 m, another for producing astrometry and
instrumental photometry from 2.5 m images, and a final calibration pipeline, work together to

10

compute and apply photometric zero points across the survey data.

The last of the software pipelines called the Monitor Telescope Pipeline (MTPIPE), is
a suite of Tcl and C codes designed to process and calibrate data from the photometric tele-
scope. It includes four main packages: preMtFrames, mtFrames, excal, and kali, run in that
order. preMtFrames sets up the directory structure and tests the raw data quality. The pack-
age mtFrames creates master-bias, flat, and fringe frames, then applies them to target images
before performing aperture photometry. The package excal calculates photometric solutions
(zero-points, extinction) from standard star observations. At the same time, kali handles astro-
metric calibration and applies the derived photometry to ’secondary patches’ used for transfer-
ring calibrations to the main SDSS 2.5 m telescope. [14]

According to Wikipedia [12], the SDSS is "a pioneering combination of novel instrumen-
tation as well as data reduction and storage techniques that drove major advances in astronom-
ical observations, discoveries, and theory." As stated in this chapter, there are many reasons
why the SDSS should receive praise, a noteworthy one being the unprecedented amount of
data generated each night and its storage and processing. It is estimated that the SDSS tele-
scope generates about 200 gigabytes of data each night; during the early 2000s, this was a
very large amount of data. [12] These data needed to be stored and accessed; this led to
advances in massive database storage and access technology, with the SDSS being the first
major astronomical project to make data available to the wider public in this form. [12]

In the paper The Sloan Digital Sky Survey and its Archive, Szalay et al. [15] describe
the SDSS archiving process. The paper notes that astronomers have standardized the Flexi-
ble Image Transport System (FITS) as a self-descriptive data format. Still, efforts at the time
also included ASCII and binary streaming solutions. The SDSS Operational Archive sends
coherent chunks of data containing several sky segments to the Science Archive for efficient
loading and clustering. About 20 GB arrive daily, so proper organization is crucial to avoid bot-
tlenecks during inserts into the hierarchy of spatial containers. Few SDSS attributes interest
most researchers, so a small ’tag’ dataset (e.g., positions, colors, size) that can be indexed and
searched quickly is isolated. A separate sample of 1% (around 10 GB) of the full database
offers a lightweight resource for algorithm testing and debugging. Data movement occurs in
a distributed system, with an analysis engine that processes large volumes in parallel and
only sends the final, reduced results to the user. The engine is tightly integrated with the
database server to avoid I/O and network bottlenecks. Vertical partitioning and sampling also
improve performance by limiting queries to popular attributes or smaller subsets of the data.
This scalable approach "rides Moore’s law," growing alongside rapidly increasing CPU speeds
and storage capacities. Ultimately, the goal had always been for astronomers to be able to pose
complex queries on an evolving, high-dimensional sky atlas and get rapid, detailed answers.
[15]

The spiritual successor of the SDSS is the Large Synoptic Survey Telescope (LSST)
project of the Vera C. Rubin Observatory. The Rubin Observatory houses the Simonyi Survey
Telescope. This telescope will capture images of the entire available sky every few nights,
covering a 3.5-degree diameter field of view. The images will be recorded by a 3.2-gigapixel

11

CCD camera, the largest digital camera constructed yet. The three-mirror design of the LSST
guarantees sharp images that contain those intricate details that astronomers are interested
in. By observing the same regions repeatedly, a dynamic cosmic atlas will be constructed,
enabling breakthroughs in fields such as supernova research, asteroid tracking, and cosmic
structure. The Rubin Observatory achieved its first light at the beginning of 2025. [16]

Ivezić et al. describe the LSST in The Astrophysical Journal :

Motivated by the evident scientific progress enabled by large sky surveys, three
nationally endorsed reports by The US National Academy of Sciences concluded
that a dedicated ground-based widefield imaging telescope with an effective aper-
ture of 6–8 m "is a high priority for planetary science, astronomy, and physics over
the next decade." The Large Synoptic Survey Telescope (LSST) described here is
such a system. Located on Cerro Pachón in northern Chile, the LSST will be a
large, widefield, ground-based telescope designed to obtain multiband images over
a substantial fraction of the sky every few nights. The survey will yield contiguous
overlapping imaging of over half the sky in six optical bands, with each sky location
visited close to 1000 times over 10 yr. [17]

From Ptolemy’s ancient star catalog to the photographic endeavors of the Carte du Ciel,
to the digital precision of the Sloan Digital Sky Survey and the current real-time data-driven
approach of the Vera C. Rubin Observatory’s LSST, these projects reflect humanity’s quest
to map the cosmos. The LSST represents the culmination of centuries of this cartographic
tradition.

3.2. Linear Artifacts in Astronomical Images

This section covers information about transient streaks that appear in images taken for
astronomical research, from the astrophysical processes that create them to data that capture
the momentary appearance of such objects. It starts with a subsection on meteors and their
influence on research. The second subsection goes further to the publicly available survey
data of the Sloan Digital Sky Survey and the FITS file format at the heart of most modern
astronomy imagery. Attention is finally turned to examples of meteor trails and some other
line-like structures that may appear from other causes.

3.2.1. Meteors and Meteor Trails

According to the revised definitions of meteoroids and meteorites by Rubin and Gross-
man [18], meteoroids are "a 10 lm to 1-meter-size natural solid object moving in interplanetary
space," and meteorites are "a natural solid object larger than 10 lm in size, derived from a ce-
lestial body, that was transported by natural means from the body on which it formed to a region
outside the dominant gravitational influence of that body, and that later collided with a natural or
artificial body larger than itself". Meteors [18] are streaks of light produced when meteoroids,

12

usually fragments of asteroids or comets, enter the Earth’s atmosphere at high velocity and
burn up because of frictional heating. Although meteoroids are fairly small compared to other
celestial objects, traveling at tens of thousands of miles per hour, many meteoroids generate
so much heat that, in addition to glowing bright, they sometimes vaporize in a flash. Most ob-
servers would usually experience a meteor as a bright streak of fast movement across the night
sky. Though meteors exist only for fractions of seconds, they have held human fancy from aus-
picious portents to nightly wonders but are natural demonstrations of the processes shaping
our solar system. Meteor showers or meteor storms are commonly known events that occur
when Earth passes through streams of cosmic debris that burn up in the upper atmosphere.
Two of the most well-known annual meteor showers, the Perseids and Leonids, reach maxi-
mum activity in August and November, respectively. Both events have been seen to regularly
amaze observers with spectacular bursts of meteors.

The Leonids [19] are an annual prolific meteor shower from the comet Tempel–Tuttle,
which has historically produced meteor storms every 33 years or so. They obtain their name
from the apparent radiant of the constellation Leo, from which the meteors appear to emanate.
As Earth passes through streams of solid particles that are propelled when the frozen gases of
the comet boil off under solar heat, Leonid meteoroids enter our atmosphere. Larger fragments,
about 10 mm in diameter and weighing about 0.5 g, can produce quite bright meteors, and the
average Leonid shower delivers 12 to 13 [20] tons of material to Earth every year. Leonids
can produce storms exceeding 1,000 meteors per hour, sometimes as many as 100,000 me-
teors per hour, in striking contrast to the few meteors per hour typically seen during everyday
conditions.

The Perseid [22] meteor shower originates from what is known as the "Perseid cloud,"
which is a stream of cometary debris aligned with the orbit of Comet Swift-Tuttle, which has
an orbital period of 133 years. Most of the particles in this stream have been there for about a
thousand years. Still, a fresher dust filament ejected in 1865 can produce an early secondary
peak in activity about one day before the main shower maximum. In the region intersecting
Earth’s orbit, the cloud extends approximately 0.1 astronomical units (AU) in cross-sectional
width and approximately 0.8 AU along Earth’s orbital path, shaped over time by recurrent grav-
itational interactions with the planet. Typically visible from mid-July, Perseids reach peak rates
between 9th and 14th of August, depending on Earth’s relative position within the debris stream.
The hourly meteor counts can reach more than 60 at maximum under favorable conditions. Al-
though many meteoroids reach after dawn, they cannot be seen in daylight. Those observed
before midnight tend to travel at shallow angles through the upper atmosphere and so may
produce longer trails akin to bright fireballs; most Perseids vaporize at altitudes above about 80
kilometers.

In some contexts, meteor occurrences can become serious challenges, such as cre-
ating a nuisance for scientific and technological endeavors. Meteor showers can fill the at-
mosphere with huge volumes of cosmic debris, causing bursts of bright light to flash across
the sky and interfere with long-exposure astronomical imaging. Scientists have to go through
contaminated data to isolate legitimate signals, which may disrupt scientific research when the
cosmic events under study are faint or transient. In addition, high-velocity meteoroids can po-

13

Figure 5: Image of a Leonid Meteor by Navicore [21]

Figure 6: Image of Perseids by Ahmed abd Elkader Mohamed [22]

14

tentially threaten orbiting satellites and the International Space Station since small fragments,
at a speed of tens of kilometers per second, might damage sensitive instrumentation or degrade
its surface.

A notable example, launched on 12 July 1989 by the European Space Agency [23],
Olympus-1 was among the largest civilian communications satellites ever put into geostation-
ary orbit. It was used as a testbed for communications technology and broadcasting services.
Onboard the spacecraft were several payloads that tested transmission and directed broadcast-
ing. On 11 August 1993, during the peak of the Perseid meteor shower, Olympus-1 suffered an
unexpected control anomaly attributed to a meteoroid impact. The incident caused the satel-
lite to lose stabilization and enter an uncontrolled spin, eventually decommissioning later that
year. This incident then underlined how vulnerable spacecraft were to meteoroid collision and
brought new interest in protective measures and mitigation strategies for space assets operat-
ing in orbit exposed to a meteoroid and debris environment.

Severe meteor showers can also, for brief periods, interfere with radio communication
systems because the ionized trails left by burning meteors alter the signal’s propagation. The
observations of Price and Blum [24] in 1998 using the ELF/VLF (Extremely Low Frequency/Very
Low Frequency) method provide evidence that a considerable fraction of meteors, usually not
observable optically, contribute to ionospheric disturbances capable of affecting radio commu-
nications. These scientists recorded a peak flux of 15,000 meteors per hour in the ELF/VLF
band, while only 350 per hour were measured optically; it had been learned that smaller and
dimmer meteors generate detectable electromagnetic pulses. Knowing this, the temporal co-
incidence between the peak ELF/VLF counts and the time of the optical maximum, five to ten
minutes apart in this case, confirms that these signals are indeed of meteoric origin, as does
the fact that no such pulses were detected on nights with no heightened optical activity. It
also detects a secondary peak approximately 90 minutes before the optical maximum, which
may suggest that bursts of "subvisible" meteors often precede brighter, more easily observable
events. These findings showed that even meteors below the standard optical limiting magnitude
can contribute to ionospheric ionization, showing that severe meteor showers can interfere with
radio communication by changing its propagation paths.

Although meteors are generally considered natural marvels, these examples show that
they can personify a nuisance in exact observational and technological efforts. Because these
large-scale surveys, like the SDSS, aim to achieve clear, uncontaminated observations of stars,
galaxies, and other sources, images that contain meteor trails are generally excluded from
further analysis. Meteor trails have appeared in CCD frames, causing transient streaks con-
siderably reducing various artifact photometric and morphological measurements. However,
SDSS flagging (discarding) some frames with apparent meteor trails enhances confidence that
their data results are reliable or consistent for future surveys in mapping space without inter-
ference with transient events of meteors. Although they might be less spectacular than other
more massive bodies and complex phenomena in space, meteors nonetheless receive scien-
tific attention. They represent the direct representatives of the more limited mass of debris that
circulates our solar system and, as such, offer concrete evidence about the compositional and
dynamical processes by which the Sun has formed. Chemical analyses of meteorites inform

15

us about primordial materials that predate the Earth and are carriers of important clues to the
nature of the early solar nebula.

3.2.2. SDSS Data Releases and FITS Files

The SDSS Science Archive Server (SAS) provides access to astronomical data prod-
ucts, including images, spectroscopy, and calibrated catalogs. The releases of its data products
are made in a series of incremental Data Releases (DRs), each building upon previous ones
with new observations, expanded sky coverage, additional spectroscopic targets, and improved
data-processing pipelines. Below is a brief overview of how SDSS data releases have evolved
and what each of them included according to a series of articles published in The Astronomical
Journal [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39].

• Early Releases (DR1 to DR7)

DR1 (2003) was the first public data release that provided images and spectra for
a substantial portion of the sky, along with catalogs of extracted objects. [25] DR2
through DR7 continued to expand sky coverage, adding more imaging data in the
u, g, r, i, and z filters and a collection of spectroscopic measurements of galaxies,
quasars, and stars. These releases also incorporated improvements to the data
reduction and calibration pipelines. [26] [27] [28] [29]

• SDSS-III Era (DR8 to DR12)

DR8 introduced a recalibration of all previously released imaging data, significantly
improving photometric accuracy across the survey footprint. [30] DR9, DR10, and
DR11 gradually released data from the Baryon Oscillation Spectroscopic Survey
(BOSS), focusing on obtaining redshifts of galaxies and quasars to map the uni-
verse’s large-scale structure more precisely. DR12 (2014) was the final release
of SDSS-III, encompassing complete BOSS data, including spectra and improved
catalogs, as well as ancillary science programs (e.g., SEGUE-2 for stellar spec-
troscopy). [31] [32] [33]

• SDSS-IV Era (DR13 to DR17)

DR13 (2016) began the SDSS-IV project, which included several major surveys:
eBOSS (extended BOSS), MaNGA (Mapping Nearby Galaxies at APO), and APOGEE-
2 (infrared stellar spectroscopy). DR13 also provided new reductions for previously
collected data sets and improved data access tools. [34] DR14 (2017) and DR15
(2019) continued to release updated eBOSS, MaNGA, and APOGEE-2 data, of-
fering additional functionality in their data-access portals and more advanced data
products such as MaNGA data cubes (IFU spectroscopy of nearby galaxies). [35]
[36] DR16 (2019) contained final data from the eBOSS survey and updated MaNGA
and APOGEE-2 data products, including expanded sky coverage and deeper spec-
troscopic samples. [37] DR17 (2021) marked the final release of SDSS-IV. It con-
tained complete data sets from eBOSS, MaNGA, APOGEE-2, various ancillary pro-
grams, refined calibration procedures, and final catalogs. [38]

16

• Beyond DR17: SDSS-V

With the close of SDSS-IV, the survey moved to SDSS-V, which has its own set
of new and ongoing programs, including spectroscopic monitoring of various types
of objects and infrared exploration, the first of its releases being the DR18 (2023)
[39]. Future data releases under SDSS-V are expected to continue the tradition of
incremental improvements, expansion of sky coverage, and new data products.

Each data release increases the volume of imaging and spectroscopic data and typ-
ically refines data processing and calibration approaches. These upgrades help ensure that
scientists have access to the best possible measurements and catalogs for a wide range of
astronomical research, from Galactic archaeology to cosmological structure formation. All past
SDSS data releases remain publicly accessible through SAS and other portals; most of these
releases contain some form of information stored in FITS files.

In a conference proceeding from 1979, presented in a volume titled Image Processing in
Astronomy on page 445 lies an early discussion of the FITS image format in the form of paper
called FITS: A Flexible Image Transport System. In the paper, Wells, Greisen, and Harten
[40] introduce the Flexible Image Transport System (FITS) as a standard format for exchanging
astronomical data on magnetic tapes among various observatories. Historically, institutions
have been using unique software and data formats, making it challenging to share information
between them without translating file structures and rewriting code. FITS was conceived as a
self-documenting, human-readable, and machine-readable format to address this problem. It
accommodates n-dimensional, regularly spaced data arrays (e.g., images, spectra, and other
data products) and metadata describing the data. By defining a common and straightforward
structure, FITS prevents the need to endlessly adapt software to the internal conventions of
each institution.

The paper describes the organization of the FITS header. Each FITS file contains a
header that follows a card-based system consisting of 80-character lines (referred to as ’cards’),
each containing specific keywords and values. Essential metadata includes the dimensions of
the data array (NAXIS), the number of bits per pixel (BITPIX), and whether the file conforms
to the FITS standard (SIMPLE). Additional lines may follow for optional parameters: telescope
names, coordinate system definitions, observation dates, scaling factors, etc. All of these com-
ponents use ASCII text, so the headers are readable by humans and easily parsed by software.

A minimum set of header keywords (SIMPLE, BITPIX, NAXIS, NAXISn, and END) must
appear in the first header record for any FITS file so that even the most basic programs can
parse and process the data. Beyond these mandatory keywords, the authors also encourage
the addition of several other keywords for use in advanced interpretations. For example, key-
words such as CRVALn (reference coordinate value), CDELTn (coordinate increments), and
CTYPEn (coordinate axes types) can be used to describe the spatial or spectral properties of
the data. This balance between a core standard and the possibility to expand the data is what
makes FITS flexible for different use cases, from radio arrays to spectral line observations.

The paper concludes that the FITS format provides a mechanism for sharing n-dimensional

17

array data among institutions without the loss of information or the need for custom adaptation.
Its simple structural rules, particularly the header plus data approach, were designed to accom-
modate future advances in this field. Wells, Greisen, and Harten emphasize that FITS is not
only for astronomers; the generality of the format means that it could be applied to other fields
dealing with large data sets that require flexible and precise metadata.

The products among the SDSS data releases relevant to this study are the FITS files
that store imaging frames from individual observations conducted during SDSS runs, specifi-
cally the frames collected in DR12. These frames capture data in one of the five broad photo-
metric filters. Each frame file follows a structured naming convention that includes the specific
run identification, camera column, filter band, and field number. These elements identify the
region of the sky recorded in any given exposure. The files use bz2 compression and, once
uncompressed, can be opened with software such as SAOImage DS9 or Python’s Astropy
package.

The structure of each file comprises of the pixel data, stored as intensity counts, and
an accompanying header containing metadata. The header encodes information such as the
World Coordinate System, exposure time, air mass, and timestamps. This approach to data
storage allows for different image-processing and photometric tasks, tying each frame to pre-
cise celestial coordinates. Through SAS, various users can construct their own surveys or
focus on individual targets.

One example illustrating these conventions is a frame file named frame-g-004822-5-
0011.fits.bz2. In this case, the prefix "frame" means a raw CCD exposure rather than a com-
bined or processed image. The letter g indicates that the data were collected through the
g-band filter, which captured a specific portion of the optical spectrum. The six-digit number
’004822’ refers to the identification of the run, essentially the session in which the data were
collected, while the single-digit ’5’ signifies the camera column. Finally, ’0011’ denotes the
field number within that run and camera column. Figure 7 shows the contents of the frame file
exported from SAOImage DS9 after applying a filter to improve star visibility.

Listing 1 is a short Python session demonstrating how to open a FITS file and inspect its
structure using the astropy.io.fits module. First, we import the module and open the file, creating
an HDUList object. We then call hdul.info(), which displays a summary of each Header Data
Unit (HDU) within the file frame-g-004822-5-0011.fits. The HDUList object of this specific file
shows that the primary HDU is a 2D image (2048 × 1489) stored as 32-bit floats, the second
HDU is a 1D image extension of length 2048, also stored as 32-bit floats, and the next two are
binary tables containing various columns and their corresponding data types. This metadata
provides a quick overview of the arrangement of the different components within the FITS file.

Listing 2 shows a continuation of the Python session by examining the primary HDU.
The information that is given in primary_hdu.header specifies that the HDU contains a two-
dimensional image of dimensions 2048 × 1489 pixels (NAXIS1 = 2048, NAXIS2 = 1489) stored
in 32-bit floats (BITPIX = -32). The flux units are given in nanomaggies (BUNIT = ’nanomaggy’),
and the header includes observational information such as the observation date (DATE-OBS
= 2004-09-12) and the telescope pointing coordinates (RA = 305.79314, DEC = -22.074210).

18

Figure 7: frame-g-004822-5-0011.fits adjusted using Z-scale, SDSS Data Release 12 [41]

World Coordinate System keywords (CRVAL1, CRVAL2, CD1_1, CD1_2, etc.) indicate a fully
defined astrometric solution. Calibration parameters such as NMGY and NMGYIVAR enable
the conversion between pixel counts and physical flux. Inspection of primary_hdu.data confirms
that the HDU data is a 1489 × 2048 NumPy array containing float32 values, including small
negative numbers indicative of background subtraction or other reduction steps.

1 In [1]: import astropy.io.fits as fits

2 In [2]: hdul = fits.open('frame-g-004822-5-0011.fits')

3 In [3]: hdul.info()
4 Filename: frame-g-004822-5-0011.fits
5 No. Name Ver Type Cards Dimensions Format
6 0 PRIMARY 1 PrimaryHDU 96 (2048, 1489) float32
7 1 1 ImageHDU 6 (2048,) float32
8 2 1 BinTableHDU 27 1R x 3C [48896E, 2048E, 1489E]
9 3 1 BinTableHDU 79 1R x 31C [J, 3A, J, A, D, D, 2J, J, D,

D, E, E]↪→

Listing 1: Opening a FITS file and displaying the header data information

19

1 In [4]: primary_hdu = hdul[0]

2 In [5]: primary_hdu.header
3 SIMPLE = T /
4 BITPIX = -32 / 32 bit floating point
5 NAXIS = 2
6 NAXIS1 = 2048
7 NAXIS2 = 1489
8 EXTEND = T /Extensions may be present
9 BZERO = 0.00000 /Set by MRD_SCALE

10 BSCALE = 1.00000 /Set by MRD_SCALE
11 TAI = 4601680593.08 / 1st row - Number of seconds since Nov 17 1858
12 RA = 305.79314 / 1st row - Right ascension of telescope boresigh
13 DEC = -22.074210 / 1st row - Declination of telescope boresight (d
14 ...
15 DATE-OBS= '2004-09-12' / 1st row - TAI date
16 TAIHMS = '04:36:33.07' / 1st row - TAI time (HH:MM:SS.SS) (TAI-UT = appr
17 COMMENT TAI,RA,DEC,SPA,IPA,IPARATE,AZ,ALT,FOCUS at reading of col 0, row 0
18 ORIGIN = 'SDSS '
19 TELESCOP= '2.5m '
20 TIMESYS = 'TAI '
21 RUN = 4822 / Run number
22 FRAME = 19 / Frame sequence number within the run
23 CCDLOC = 55 / Survey location of CCD (e.g., rowCol)
24 STRIPE = 291 / Stripe index number (23 <--> eta=0)
25 STRIP = 'N ' / Strip in the stripe being tracked.
26 ...
27 CUNIT1 = 'deg ' /Units
28 CUNIT2 = 'deg ' /Units
29 CRPIX1 = 1025.00000000 /X of reference pixel
30 CRPIX2 = 745.000000000 /Y of reference pixel
31 CRVAL1 = 304.748702242 /RA of reference pixel (deg)
32 CRVAL2 = -22.0319479594 /Dec of reference pixel (deg)
33 CD1_1 = -7.98875046723E-05 /RA deg per column pixel
34 CD1_2 = 7.55601500338E-05 /RA deg per row pixel
35 CD2_1 = 7.55953774176E-05 /Dec deg per column pixel
36 CD2_2 = 7.99170527941E-05 /Dec deg per row pixel
37 ...
38 RERUN = '301 ' / rerun
39 HISTORY SDSS_FRAME_ASTROM: Astrometry fixed for dr9 Thu Jun 21 07:49:33 2012

40 In [6]: primary_hdu.data
41 Out[6]:
42 array([[-0.01843262, -0.03240967, 0.01426697, ..., 0.01654053,
43 0.00730896, -0.02041626],
44 [-0.01374817, 0.00493622, -0.04174805, ..., -0.00655365,
45 0.01193237, -0.00193596],
46 [0.02828979, 0.03295898, 0.00492859, ..., -0.01118469,
47 -0.04815674, 0.04888916],
48 ...,
49 [0.00999451, 0.0333252 , 0.00532532, ..., -0.00146103,
50 -0.0199585 , -0.03845215],
51 [-0.02737427, -0.03668213, 0.02865601, ..., -0.01531982,
52 -0.0199585 , -0.00608063],
53 [-0.0133667 , -0.00868225, -0.02734375, ..., -0.01069641,
54 -0.03845215, -0.03381348]], dtype='>f4')

Listing 2: Displaying the header data information of the primary HDU

20

3.2.3. Linear Artifacts in FITS Images

There are several astrophysical, and sometimes artificial, reasons why linear features
might occur in a FITS image taken by the SDSS. A meteor creates streaks across the field
of view during exposure because of rapid motion across the sky. As noted by Bektešević and
Vinković [1], satellites that cross the field of view appear to produce similar types of linear
artifacts. These features often have uniform brightness or periodic changes in brightness if the
object is rotating. Comets could also show trails if their apparent motion through space in a
given exposure time is large enough.

Non-astronomical sources of linear features include cosmic rays that strike the tele-
scope. Depending on the telescope’s angle, these energy particles can yield bright streaks
across the image or other point-like features. Internal reflections within the telescope’s opti-
cal system can also produce linear features, which may be recognizable by their tendency to
lie parallel or perpendicular to bright objects in the field; in imaging, this phenomenon is also
known as ghosting.

If the data contamination is too significant, FITS files containing linear features become
unusable for research regarding the intended astronomical targets. Such linear features can
distort the light profiles of stars, galaxies, or other objects, making it hard to extract valid pho-
tometric or spectroscopic measurements. The features also introduce signal interference that
complicates image analysis; where a linear feature intersects key regions of interest, the af-
fected data may need to be excluded altogether.

The following section presents some examples of trails captured in FITS images of
DR12 of the SDSS [41], both of meteors and satellites crossing the field of view during the
exposures. Depending on the object’s speed, trajectory, and reflectivity, they can appear as
linear streaks of various widths, brightnesses, and uniformities.

Figure 8 shows a narrow diagonal streak across the image from the top left to the
bottom right. This streak is reasonably constant in brightness and width, a typical signature
of an object in fast motion during exposure. Given that it is fairly even in illumination, it would
suggest a steady release of light over the exposure. Still, slight variations along the trail reflect
minor fluctuations in the object’s luminosity as it passed through the camera’s field of view.
These trail characteristics are indicative of those produced by meteors.

Figure 9 shows the same diagonal streak, now plotted using a reduced intensity that
highlights the apparent faintness of the streak. By reducing the overall brightness, the translu-
cent nature of this specific streak becomes more evident, as do the minor variations in its
apparent width or brightness. These two figures display the minutely varying brightness in the
meteor profile, although the illumination during its passage is reasonably consistent.

The bright, nearly vertical linear feature slightly to the right of the center in Figure 10 is
a satellite trail produced by a satellite passing through the field during exposure. A satellite trail
is typically a smooth, unbroken streak since the satellite is in sunlight at a more or less constant
level as it moves across the frame.

21

Figure 8: frame-g-000109-5-0090.fits, showing a meteor trail [41]

Figure 9: frame-g-000109-5-0090.fits with reduced intensity [41]

22

Figure 10: frame-g-000109-5-0125.fits, showing a satellite trail [41]

23

Figure 11 shows the same streak but with a reduced brightness intensity. This indicates
that the streak has an even width and brightness along its length, and its linear profile is uniform,
a feature of satellite trails that passed through during the exposure. Compared to the meteor
trail in Figure 9, this trail does not show any translucency, which is shown to be the main
difference between the meteor trail and the satellite trail.

Figure 11: frame-g-000109-5-0090.fits with reduced intensity [41]

Figure 12 presents a thin diagonally oriented streak with a very low brightness of what
appears to be a meteor that is either further away or smaller in size. The narrow width of the trail
shows only a short or relatively dim emission of light, but the consistent alignment and continuity
would point out the steady motion of the object. This modest linear feature is relatively thin, a
typical feature of satellite trails. However, this trail has slight variations in brightness along its
path, and its width varies ever so slightly; these are indicative features of meteor trails.

Figure 13 shows a noticeably wide streak oriented diagonally, resulting from a bright
meteor that passed within the camera’s field of view. This width suggests that the camera
experienced partial saturation, which made the trail appear broader compared to other fainter
events. The uniform brightness along the band demonstrates the presence of a steadily radi-
ating meteor during an intense flash as it traversed the captured sky. The steady decrease in
brightness along the trail profile, as opposed to a flat and sudden drop in the brightness that
satellites demonstrate, shows that this particular trail is a meteor.

Figure 14 shows a diagonally oriented streak, which, while quite faint, occupies a vast
band throughout the frame. This broad, diffuse appearance would suggest that the meteor was
bright enough to have spread out or saturated the imaging system, yet not as bright as some

24

Figure 12: frame-z-008149-5-0096.fits, containing a thin, faint meteor trail [41]

Figure 13: frame-i-006177-3-0331.fits, containing a wide, bright meteor trail [41]

other examples. Its consistent thickness and uninterrupted continuity point to a smooth and
uniform passage across the field during exposure. This example shows that although a meteor

25

trail can be extensive, it does not mean it must also be bright and luminous.

Figure 14: frame-r-002566-1-0334.fits, containing a faint although wide meteor trail [41]

Figure 15 diagonally across the center of the image shows a trail exhibiting subtle re-
peated variations in brightness along its length. This suggests that the object in question is
rotating; the reflected sunlight from an elongated rotating satellite varies periodically, with its
rotation causing brightness fluctuations as it passes over the camera exposure. The distinctly
segmented appearance of the trail indicates a stable rotation rate, with fluctuation in brightness
occurring regularly during the exposure. This example shows that although the trail seems
translucent at points, it is still most likely a satellite that made it due to this apparent rotation
and continuity. The trail suggests that the satellite that made it has one side that reflects light
more brightly and another that does not.

The trail in Figure 16 extends diagonally across the field of view, displaying a unique
streak contrasting sharply against the background. It appears to be the trail of a meteor burn-
ing up very close to the Earth’s surface; this is indicated by the width of the trail and by its
translucency. Its width appears consistent along its length, suggesting a uniform brightness
distribution. The upper portion of the trail seems slightly more luminous, which may indicate
variations in the meteor’s intensity as it traversed the camera’s field.

Figure 17 shows another meteor trail with a unique property. In several segments of the
trail, faint extensions appear to branch away from the primary streak, creating the impression
of small "tails" being shed from the main body.

Although the examples here illustrate some characteristic features that may help dis-
tinguish between meteors and satellites, such trails can frequently resist easy classification

26

Figure 15: frame-z-003355-6-0110.fits, containing what appears to be a trail of a rotating satel-
lite [41]

Figure 16: frame-u-002243-5-0072.fits, containing a very wide meteor trail [41]

27

Figure 17: frame-r-000094-5-0168.fits, containing a meteor trail with branching tails [41]

through mathematical models. Differences in brightness, speed, and trajectory sometimes fall
within an overlap where a classification may not be clear-cut. However, most trails show tell-
tale features, such as consistent thickness or periodic fluctuations, which enable them to be
correctly identified. These examples provide a basis for the trail classification process.

3.3. Identification and Classification of Linear Artifacts

This section presents a framework for analyzing linear artifacts in astronomical images,
from their detection and brightness profiling to their classification as a meteor or non-meteor
trail. It is organized into three subsection, each addressing a step in the analysis of linear arti-
facts. In the first subsection, an automated linear artifact detection methodology is introduced.
The second subsection focuses on the profiling process that extracts brightness profiles and
computes metrics for a given trail. The third and final subsection presents a neural network clas-
sification model that distinguishes genuine meteor trails from non-meteor trails. The processes
in this section combine into a pipeline framework designed to automatically detect, profile, and
classify trails as they appear in astronomical images.

3.3.1. Automated Linear Artifact Detection

The Linear Feature Detection Algorithm (LFDA) developed in the work of Bektešević and
Vinković [1] addresses the challenge of automatically identifying linear artifacts in astronomical

28

images, which are generally dismissed as noise. Building on the Hough transform, which,
according to Fischer [42] is a technique that can be used to isolate features of a particular
shape within an image, the LFDA adds steps to remove bright sources (e.g., stars and galaxies)
so that linear features dominate in Hough space, reducing false positives and making it possible
to detect fainter streaks that standard methods would miss.

Automatic detection of linear features or artifacts may not be strictly necessary for data
sets of fewer than 100,000 images due to manageable manual inspection times. Still, the value
of such a tool as LFDA becomes evident when dealing with millions of images. In these sce-
narios, the algorithm must be highly efficient and should take less than a second per image to
avoid a long processing time. Although the parallel nature of LFDA is a step toward achieving
this speed, issues remain, such as data transfer, memory constraints, and false detections.
For example, a 1% error rate could still leave tens of thousands of images requiring manual
verification. In contrast, tightening the detection thresholds could miss faint features. LFDA
was developed to incorporate it into a pipeline where strategies need to be employed for paral-
lelization and data management to meet both the performance and accuracy demands in sky
surveys of larger scales.

The LFDA workflow begins by stripping out known objects and then searching for bright
and, if necessary, dim linear features. In each pass, morphological operations like erosion
and dilation eliminate noise and accentuate dominant features, while histogram equalization
and brightness enhancement boost faint trails. Edge detection and contour detection isolate
candidate shapes, which are further analyzed using minimum-area rectangles. In LFDA, Canny
edge detection is used, which, according to Fischer [43], takes a grayscale image as input and
produces an image showing the positions of tracked intensity discontinuities as output. In the
final steps of the LFDA, the Hough transform is used to identify linear structures, although it
can produce false positives if discs of stars or galaxies remain in the image.

The first step implemented in the algorithm is to remove known objects in the image.
Object removal can be almost trivial when object catalogs or image differencing products exist
(as they do in LSST), leaving primarily linear features and other artifacts behind. The LFDA
incorporates an object removal module, which removes objects based on survey data (e.g.,
SDSS photoObj files containing objects’ data and their positions). In SDSS, the approach
involves filtering out objects by magnitude caps and observed frequency, then masking them
with simple squares scaled by each object’s Petrosian radius, that is, the object’s radius based
on its brightness profile. Although this method is lightweight in computational terms, it still
preserves transient linear features, avoiding the overmasking of potential trail detections but
substantially cleaning up the image for subsequent steps.

Minimal image processing is used to detect bright linear features to avoid excessive
contrast that could introduce noise. The images are initially converted to 8-bit depth using a
floor function, then undergo histogram equalization followed by a dilation step. After that, Canny
edge detection is applied with a weaker threshold to identify the objects’ borders. The contours
of these edges are fitted with minimum-area rectangles filtered by length and elongation criteria.
Potential lines for both the processed image and its version with overlaid rectangles are then

29

derived via the Hough transform. The two sets of lines are compared, rejecting those with
different slopes (θ) or positions (r), which helps eliminate common false positives such as star
diffraction spikes.

When searching for dim linear features, the LFDA first raises faint pixel values above
a minimum threshold and then adds a constant flux, making it so that these subtle trails per-
sist after conversion to 8-bit and histogram equalization. This step accentuates noise, which is
then reduced via an erosion-dilation sequence tuned to preserve barely visible lines. The sub-
sequent steps, such as edge detection, contour analysis, and minimum-area rectangle fitting,
mirror those used for bright lines. Line sets from the processed and reconstructed images are
compared so that spurious detections are left out and the actual faint trails are confirmed.

In tests performed for the LFDA, comparing lines derived from minimum-area rectan-
gles with those from the processed image significantly reduced false positives, especially those
caused by partially removed or highly structured objects. Genuine, extended, bright features
generally satisfy the constraints and appear consistently in both reconstructions, whereas spu-
rious detections typically do not. Occasionally, an extremely bright, highly structured, or poorly
masked object may still generate a false positive that must be manually checked.

False negatives can occur if the masking inadvertently removes too much of a faint
trail, is too weak to survive morphological processing, or has brightness dips that break the
expected linear profile. However, performance evaluations on various SDSS frames showed
that the algorithm could detect lines with low error rates in 0.1 to 0.3 seconds per frame. It
can also readily adapt to different observational data sets by adjusting relevant parameters.
Including LFDA in survey pipelines, particularly those employing image differencing and object
removal, can provide efficient tracking of linear features across vast data volumes and is a
step toward the goal of fully automated detection, classification, and extraction of fundamental
physical properties of these features.

For this project, the TrailDetector class was created that takes conceptual inspiration
from the LFDA project but forgoes its more complex steps; this suits the smaller data set of
26,600 FITS files that were noted from the resulting trail detections of the LFDA. Instead of
removing all cataloged objects or applying elaborate morphological operations, this class relies
on more direct image normalizations, such as ZScale or Percentile scaling, along with straight-
forward erosion and dilation. By limiting parameters (such as the thresholds for Canny edge
detection or Hough transforms), this approach becomes inherently easier to tune for a nar-
rower range of image types. Just as LFDA differentiates between bright and dim features with
successive passes and extensive morphological cleanups, this class also performs two main
detection modes, "bright" and "dim." It performs an essential step based on Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) to handle overlapping detections. As a
result, it provides enough functionality to detect trails reliably without the overhead of advanced
masking, brightness modeling, or object removal that characterizes the LFDA.

The imports for the TrailDetector class found in Listing 3 provide a foundation for the
class’s capabilities. The standard library os is used for file handling, while numpy offers nu-
merical operations and array manipulation. OpenCV (cv2) is central to operations like edge

30

1 import os
2 import numpy as np
3 import cv2
4 import matplotlib.pyplot as plt
5 from astropy.io import fits
6 from astropy.visualization import (
7 ImageNormalize,
8 PercentileInterval,
9 SqrtStretch,

10 ZScaleInterval,
11)
12 from scipy.spatial.distance import pdist, squareform
13 from sklearn.cluster import DBSCAN

Listing 3: Imports for the TrailDetector class

1 class TrailDetector:
2 def __init__(
3 self,
4 canny_params=None,
5 hough_params=None,
6 dbscan_eps=150,
7 dbscan_min_samples=2,
8):
9 self.canny_params = canny_params or {"threshold1": 6, "threshold2": 18}

10 self.hough_params = hough_params or {
11 "rho": 1,
12 "theta": np.pi / 180,
13 "threshold": 250,
14 "minLineLength": 300,
15 "maxLineGap": 150,
16 }
17 self.dbscan_eps = dbscan_eps
18 self.dbscan_min_samples = dbscan_min_samples

19 self.merged_lines = []
20 self.best_line = None

Listing 4: Constructor of the TrailDetector class

detection (Canny) and line detection (Hough transform). Matplotlib’s pyplot is used to visu-
alize the results. Astropy ’s FITS utilities read astronomical data files, and its visualization
tools (ImageNormalize, etc.) perform image stretching and normalization. Finally, scipy dis-
tance routines (pdist, squareform) and the DBSCAN algorithm of scikit-learn enable the class
to group detected line segments, producing the final trail candidates of a given image.

The TrailDetector class constructor found in Listing 4 accepts various parameters that
control the stages of trail detection. By default, it sets Canny edge detection thresholds (canny_params)
and Hough transform parameters (hough_params) to reasonable starting values, ensuring
edge and line detection work for typical astronomical images. The DBSCAN parameters (db-
scan_eps and dbscan_min_samples) specify how loosely or strictly the line segments must
cluster to be merged into a single trail. Internally, the constructor also initializes merged_lines
and best_line as empty placeholders for the eventual aggregated line segments and the single
best trail candidate, respectively.

Much like the LFDA, in the detect_trails method of the TrailDetector class (found in

31

1 def detect_trails(self, fits_file, save_processed=False,
processed_dir="processed_images"):↪→

2 if save_processed:
3 os.makedirs(processed_dir, exist_ok=True)

4 lines_bright = self._attempt_detection(
5 fits_file=fits_file,
6 mode='bright',
7 save_processed=save_processed,
8 processed_dir=processed_dir
9)

10 if lines_bright:
11 self.merged_lines = lines_bright
12 self.best_line = self._choose_best_line(lines_bright)
13 return [self.best_line]

14 lines_dim = self._attempt_detection(
15 fits_file=fits_file,
16 mode='dim',
17 save_processed=save_processed,
18 processed_dir=processed_dir
19)
20 if lines_dim:
21 self.merged_lines = lines_dim
22 self.best_line = self._choose_best_line(lines_dim)
23 return [self.best_line]

24 print(f"No trails detected in {fits_file} after both attempts.")
25 return []

Listing 5: The detect_trails method of the TrailDetector class

Listing 5, two different detection modes (bright and dim) are being tested for a given FITS file to
maximize the chance of identifying a potential linear artifact. If a bright linear feature is detected
on the first pass, the algorithm selects the best candidate, defined here as the longest line, from
the set of discovered lines and returns it immediately. If there are no detections in the bright
mode, it proceeds to a second pass, which adjusts the parameters to look for subtler trails,
again choosing the best line if multiple candidates are found.

The _attempt_detection method found in Listing 6 takes a FITS file and processes it
according to a specified "mode," either "bright" or "dim." Depending on the mode, it first applies
the relevant steps to emphasize potential trails. After normalizing and transforming the image,
the method uses OpenCV’s Canny edge detection and the Hough transform to identify line
segments that could represent trails. These line segments are then grouped using a DBSCAN
process that groups similar lines into a smaller set of merged lines. The final set of lines is
returned for further evaluation.

The _preprocess_bright method found in Listing 7 enhances the image so that bright
linear features are more easily detected. It begins by applying the ZScaleInterval algorithm
through ImageNormalize, a technique that scales pixel intensities to balance out extreme bright-
ness values. The image is then converted to an 8-bit format, which makes the image ready for
further operations, such as histogram equalization. This equalization redistributes the pixel
intensity range to heighten local contrast, helping features stand out. In the end, a 4×4 mor-
phological kernel is used for erosion (which reduces noise and removes smaller objects) and

32

1 def _attempt_detection(
2 self,
3 fits_file,
4 mode,
5 save_processed=False,
6 processed_dir="processed_images"
7):
8 with fits.open(fits_file) as hdul:
9 image_data = hdul[0].data

10 if mode == 'bright':
11 processed = self._preprocess_bright(image_data)
12 else:
13 processed = self._preprocess_dim(image_data)

14 if save_processed:
15 base_no_ext = os.path.splitext(os.path.basename(fits_file))[0]
16 out_name = f"{base_no_ext}_{mode}_processed.png"
17 out_path = os.path.join(processed_dir, out_name)
18 cv2.imwrite(out_path, processed)
19 print(f"Saved pre-processed '{mode}' image to: {out_path}")

20 edges = cv2.Canny(processed, **self.canny_params)
21 lines = cv2.HoughLinesP(edges, **self.hough_params)
22 if lines is None:
23 return []

24 lines_data = self._process_lines(lines)
25 if len(lines_data) == 0:
26 return []

27 merged = self._merge_lines(lines_data)
28 return merged

Listing 6: The _attempt_detection method of the TrailDetector class

33

1 def _preprocess_bright(self, image_data):
2 norm = ImageNormalize(image_data, interval=ZScaleInterval())
3 float_img = norm(image_data)
4 gray_8u = cv2.convertScaleAbs(float_img)
5 equ = cv2.equalizeHist(gray_8u)
6 kernel = np.ones((4, 4), np.uint8)
7 equ = cv2.erode(equ, kernel, iterations=1)
8 equ = cv2.dilate(equ, kernel, iterations=1)
9 return equ

Listing 7: The _preprocess_bright method of the TrailDetector class

1 def _preprocess_dim(self, image_data):
2 image_data = np.nan_to_num(image_data, nan=0.0, posinf=0.0, neginf=0.0)
3 norm = ImageNormalize(
4 image_data,
5 interval=PercentileInterval(1, 99),
6 stretch=SqrtStretch()
7)
8 float_img = norm(image_data)
9 gray_8u = cv2.convertScaleAbs(float_img)

10 equ = cv2.equalizeHist(gray_8u)
11 kernel = np.ones((3, 3), np.uint8)
12 equ = cv2.erode(equ, kernel, iterations=1)
13 kernel = np.ones((9, 9), np.uint8)
14 equ = cv2.dilate(equ, kernel, iterations=1)
15 return equ

Listing 8: The _preprocess_dim method of the TrailDetector class

dilation (which expands the core of the now dilated objects). The resulting image retains promi-
nent bright linear artifacts while substantially reducing noise.

In the _preprocess_dim method shown in Listing 8, the image is prepared to highlight
faint linear features without overwhelming the image with noise. First, all invalid pixel values
are replaced with zeros to avoid skewing subsequent operations. The data is then normalized
using a (1–99) percentile interval combined with a SqrtStretch, brightening dim signals while
keeping the overall range balanced. After converting the resulting data to an 8-bit image, local
contrast is enhanced by histogram equalization. Finally, morphological erosion (with a 3×3
kernel) is applied to remove minor artifacts, followed by dilation (with a 9×9 kernel) to restore
the essential structure of any residual faint features.

The _merge_lines method found in Listing 9 combines lines that share similar positions,
endpoints, and orientations into a single representative line. It begins by defining a distance
measure that sums the spatial separation of the endpoints of the lines and the angular differ-
ence between them. These distances are passed to the DBSCAN algorithm, which groups
segments with low mutual distances into clusters. For every identified cluster, the method cal-
culates the mean coordinates of the endpoint, producing a single ’merged’ line to represent all
segments of that cluster.

In addition to the two main processing methods, the TrailDetector class also includes
several helper methods. The _process_lines method takes raw line data from the Hough trans-
form, calculates geometric properties like length and angle for each line, and returns them in a

34

1 def _merge_lines(self, lines_data):
2 def custom_distance(l1, l2):
3 pos_dist = np.hypot(l1[0] - l2[0], l1[1] - l2[1])
4 angle_dist = abs(l1[5] - l2[5])
5 return pos_dist + 50 * angle_dist

6 dist_matrix = squareform(pdist(lines_data, metric=custom_distance))
7 clustering = DBSCAN(
8 eps=self.dbscan_eps,
9 min_samples=self.dbscan_min_samples,

10 metric= "precomputed"
11).fit(dist_matrix)

12 merged_lines = []
13 for label in set(clustering.labels_):
14 if label == -1:
15 continue
16 cluster = lines_data[clustering.labels_ == label]
17 x1_mean = int(cluster[:, 0].mean())
18 y1_mean = int(cluster[:, 1].mean())
19 x2_mean = int(cluster[:, 2].mean())
20 y2_mean = int(cluster[:, 3].mean())
21 merged_lines.append([x1_mean, y1_mean, x2_mean, y2_mean])
22 return merged_lines

Listing 9: The _merge_lines method of the TrailDetector class

1 from trail_detector import TrailDetector
2 detector = TrailDetector()
3 detector.detect_trails("frame-g-000250-5-0189.fits")
4 [[1569, 11, 1810, 1478]]
5 detector.plot_trails("frame-g-000250-5-0189.fits")

Listing 10: Example usage of the TrailDetector class

convenient array. The _choose_best_line method selects the longest line from a list of merged
candidates as the primary trail of interest. The plot_trails method overlays this chosen line on
the original FITS image for visualization, and save_merged_lines writes the line’s coordinates
to a text file.

The Listing 10 shows an example of using the TrailDetector class. The example starts
by importing the TrailDetector class and creating an instance without specifying any custom pa-
rameters. The detect_trails method is then called on the FITS file "frame-g-000250-5-0189.fits"
and returns a list containing one detected line with coordinates: [1569, 11, 1810, 1478]. The list
of numbers represents the pixel coordinates (x1, y1, x2, y2) of the start and end points of the
most prominent linear trail found in the image. The original content of the file "frame-g-000250-
5-0189.fits" can be viewed in Figure 18, the image was altered using ZScale so that the trail
is visible. Using the plot_trails method with the same FITS file overlays this line on the image,
visually representing the detection result shown in Figure 19.

The complete code of the TrailDetector class can be found in the appendices.

35

Figure 18: frame-g-000250-5-0189.fits altered using ZScale [41]

Figure 19: Result of the plot_trails method of the TrailDetector class for file frame-g-000250-5-
0189.fits

36

3.3.2. Linear Artifact Profiling

Objects that reflect light in astronomical images can be described using what is com-
monly referred to as brightness profiles that are closely tied to their physical characteristics like
size or light reflectivity. As an example, in the research of Mackey and Gilmore [44], Surface
brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic
Cloud, data from the Hubble Space Telescope was collected for 53 rich Large Magellanic Cloud
clusters to derive their structural parameters (e.g., core radii, outer slopes, total luminosities).
They observed interesting structural features across the clusters; younger clusters exhibited
bumps and dips in their brightness profiles, while older ones showed behavior closely tied to
the collapse of their core. The authors found that although most clusters follow a "standard"
evolution (maintaining relatively small cores), some develop large, diffuse cores due to their
unique stellar populations or external influences. This study is a good example of how bright-
ness profiles can be used to gather information about the structure of celestial objects.

Brightness profiling of celestial objects is essential to modern astronomy, particularly as
wide-field surveys like the SDSS and LSST continue to generate vast amounts of data. The
brightness profiling of linear artifacts is crucial since this information could give insights into the
objects causing these streaks. Profiling moving celestial objects has also been a longstand-
ing practice in astronomy; for instance, in 1987, Jewitt and Meech [45] measured the radial
surface brightness profiles of 10 comets at continuum wavelengths using CCD cameras. De-
spite the expectation that a spherically symmetric, steady-state coma (the envelope around the
nucleus of a comet) would have a logarithmic derivative, the actual measurements revealed
steeper profiles and a monotonic decrease with increasing distance from the nucleus. Inter-
preting these results with Monte Carlo models that accounted for solar radiation pressure led
the authors to propose that the grains dominating the optical signal were not perfectly coupled
to the sublimated gas.

Trail profiling is referred to here as the analysis of each linear artifact’s geometric and
photometric properties once detected. Examining attributes such as shape, length, width,
brightness gradients, and intensity dips or flares forms a basis for differentiating between me-
teor trails, satellite tracks, or other phenomena. The TrailProfiler class was developed for this
project, which provides a specialized environment for dissecting the linear trails flagged by auto-
mated detection methods (e.g., the TrailDetector class). TrailDetector locates potential streaks
in an image, TrailProfiler refines these findings by collecting and organizing further information
about each trail’s spatial extent.

The TrailProfiler class relies on a handful of Python libraries to handle file management,
numerical processing, and visualization tasks. The os module is used for file and directory
operations, such as checking paths or saving outputs. NumPy provides array structures and
mathematical functions for manipulating pixel data. Matplotlib ’s pyplot is used, much like in the
TrailDetector class, for the generation of plots, and the astropy is used because of its tools for
manipulating astronomical images (e.g., PercentileInterval, SqrtStretch). The map_coordinates
from scipy.ndimage supports interpolation and pixel sampling, which makes it possible to ex-
tract specific regions of interest within an image.

37

1 class TrailProfiler:
2 def __init__(self, fits_file, point1, point2, output_dir="trail_profiles"):
3 self.fits_file = fits_file
4 self.point1 = point1
5 self.point2 = point2
6 self.output_dir = output_dir
7 self.image_data = None
8 self.normalized_data = None
9 self.brightness_profiles = []

10 self.line_coordinates = []
11 self._load_image_data()
12 self._ensure_output_directory()
13 self._analyze_perpendicular_lines()

Listing 11: Constructor of the TrailProfiler class

The constructor of the TrailProfiler class shown in Listing 11 accepts a FITS file path
along with two coordinates representing the endpoints of the trail under investigation. Upon
initialization of an instance of the class, it reads the image data, ensures an output directory
exists for saving results, and begins an initial analysis of lines perpendicular to the specified
trail. These perpendicular lines extract brightness profiles along the streak and will later be
used in the characterization of the trail.

The private method on Listing 12, _analyze_perpendicular_lines, samples brightness
values along multiple lines perpendicular to the main trail. It divides the trail into segments,
computes a perpendicular direction at each segment, and collects brightness measurements
across these short "slices." To achieve this, it first derives a perpendicular unit vector based
on the trail’s endpoints, then uses map_coordinates to interpolate intensity values along evenly
spaced points across each slice. The method finally normalizes these brightness profiles and
stores both the resulting intensity arrays and the endpoint coordinates of each perpendicular
line.

The get_combined_median_profile method shown in Listing 13 produces a representa-
tive brightness curve of the trail by taking the median across the previously calculated bright-
ness profiles. Precisely, it stacks all input profiles into a single array and computes the median
value at each index along their length. This resulting profile characterizes the overall intensity
distribution of the trail across all sampled perpendicular lines, this mitigates the impact of out-
liers among individual slices that contain noise or other artifacts. The method can also save the
median profile as a plot, including a vertical line indicating the midpoint of the profile (i.e., the
intersection with the trail), thereby providing a visualization of the trail’s brightness.

Alongside its core logic for analyzing perpendicular brightness slices, TrailProfiler in-
cludes methods for loading and normalizing FITS data, generating various plots, and calculating
the metrics of each trail. The _load_image_data method handles reading the FITS file and ap-
plying an intensity stretch, _ensure_output_directory ensures that output folders exist. Plotting
routines like plot_brightness_profiles, plot_divided_image, and plot_all_perpendicular_lines pro-
vide convenient visualizations of the trail and its perpendicular sampling lines, whereas plot_profile_at_index
and plot_line_on_image focus on specific individual profiles. Metrics such as the median bright-
ness curve can be retrieved or displayed via get_combined_median_profile and plot_median_profile.

38

1 def _analyze_perpendicular_lines(self, num_perpendicular_lines=10,
short_window_size=100, step_size=0.1):↪→

2 x0, y0 = self.point1
3 x1, y1 = self.point2
4 main_line_length = np.hypot(x1 - x0, y1 - y0)

5 perp_dx = -(y1 - y0) / main_line_length
6 perp_dy = (x1 - x0) / main_line_length
7 step_along_main_line = main_line_length / (num_perpendicular_lines - 1)

8 self.brightness_profiles = []
9 self.line_coordinates = []

10 for i in range(num_perpendicular_lines):
11 t = i * step_along_main_line / main_line_length
12 x_center = x0 + t * (x1 - x0)
13 y_center = y0 + t * (y1 - y0)

14 x_perp_start = x_center - short_window_size * perp_dx
15 y_perp_start = y_center - short_window_size * perp_dy
16 x_perp_end = x_center + short_window_size * perp_dx
17 y_perp_end = y_center + short_window_size * perp_dy

18 num_samples = int(2 * short_window_size / step_size)
19 x_perpendicular_full = np.linspace(x_perp_start, x_perp_end,

num_samples)↪→

20 y_perpendicular_full = np.linspace(y_perp_start, y_perp_end,
num_samples)↪→

21 perpendicular_coords = np.vstack((y_perpendicular_full,
x_perpendicular_full))↪→

22 brightness = map_coordinates(self.image_data, perpendicular_coords,
order=3)↪→

23 normalized_brightness = (brightness - np.min(self.image_data)) / (
24 np.max(self.image_data) - np.min(self.image_data)
25)
26 self.brightness_profiles.append(normalized_brightness)
27 self.line_coordinates.append(((x_perp_start, y_perp_start), (x_perp_end,

y_perp_end)))↪→

Listing 12: The _analyze_perpendicular_lines method of the TrailProfiler class

39

1 def get_combined_median_profile(self, brightness_profiles=None,
profile_name="profile", save_median_profile=False):↪→

2 profiles_array = np.vstack(brightness_profiles if brightness_profiles else
self.brightness_profiles)↪→

3 median_profile = np.median(profiles_array, axis=0)

4 if save_median_profile:
5 output_file = os.path.join(self.output_dir, f"{profile_name}_median.png")
6 plt.figure(figsize=(12, 8))
7 plt.plot(median_profile, label='Combined Median Profile', color='blue')
8 plt.axvline(len(median_profile) // 2, color='red', linestyle='--',

label='Intersection Point')↪→

9 plt.xlabel('Position along perpendicular line')
10 plt.ylabel('Normalized Brightness (0-1)')
11 plt.title(f'Combined Median Profile: {profile_name}')
12 plt.legend()
13 plt.savefig(output_file, dpi=300, bbox_inches='tight')
14 plt.close()
15 print(f"Saved combined median profile plot to {output_file}")

16 return median_profile

Listing 13: The get_combined_median_profile method of the TrailProfiler class

1 from trail_profiler import TrailProfiler
2 t = TrailProfiler("frame-g-006371-5-0089.fits", (1186, 348),(8, 106))
3 t.plot_all_perp_lines()
4 t.plot_profile_by_index(1)
5 t.plot_perpendicular_profiles()
6 t.plot_median_profile()

Listing 14: Python session showing usage of the TrailProfiler class for various plots

Additional analyses are facilitated by calculate_auc and calculate_auc_with_global_max, each
of which measures the area under a brightness curve using slightly different normalization
schemes, and calculate_fwhm retrieves the full width at half maximum for a selected pro-
file. Utility methods like extend_line ensure geometry remains valid within the image bound-
aries, while remove_profile handles the deletion of unwanted brightness samples. Finally,
plot_main_line highlights the overarching linear feature on the FITS image.

The usage of the TrailProfiler class is demonstrated in Listing 14, where various profiling
methods analyze a FITS image containing a meteor trail. The image in question, shown in
Figure 20, is loaded into the TrailProfiler with specified trail start and end coordinates. The
function plot_all_perp_lines() is then invoked, producing Figure 21, visualizing all perpendicular
lines sampled along the meteor trail. The function plot_profile_by_index(1) is then used to
extract and display the brightness profile along a specific perpendicular slice, corresponding to
Figure 22. The method plot_perpendicular_profiles() is then executed, generating Figure 23,
which overlays all sampled brightness profiles from the perpendicular slices on a single plot.
Lastly, the method plot_median_profile() computes and visualizes the median brightness profile
across these sampled profiles, as depicted in Figure 24.

The complete code of the TrailProfiler class can be found in the appendices.

40

Figure 20: frame-g-006371-5-0089.fits [41]

Figure 21: All perpendicular lines visualized for meteor on image frame-g-006371-5-0089.fits

41

Figure 22: Brightness profile taken across the perpendicular line at index 1 of meteor in image
frame-g-006371-5-0089.fits

Figure 23: All brightness profiles taken across perpendicular lines of meteor in image frame-g-
006371-5-0089.fits

3.3.3. Classification of Linear Artifacts

Artificial neural networks [46] were inspired by how the human brain excels at tasks like
recognizing faces in low-quality images or understanding speech in noisy environments. These
problems still challenge conventional digital computing. The brain’s resilience and capacity for
learning without "software updates" contrast to standard computers, which typically fail if the
central processor is damaged. Neural networks usually output either a zero or a one each for

42

Figure 24: Example of median profile created using the TrailProfiler class

the output of one of two classes. Still, they also extend naturally to multi-class prediction by
allocating one output unit per target category. In a clinical setting, for instance, where three
treatments might exist for a given tumor, each output unit can correspond to whether that tumor
responds positively to a specific treatment. According to Krogh [46], neural networks have
succeeded in speech recognition, prediction of protein secondary structure, classification of
cancers, and gene prediction. However, some researchers might still regard them less favorably
since they risk misuse when more straightforward techniques suffice.

In the same way that neural networks can differentiate subtle signals in speech recog-
nition or detect complex patterns in data, they can also be harnessed to analyze trails on
astronomical images. For that reason, a neural network was developed for linear artifact classi-
fication. By converting linear artifacts in astronomical images into numerical brightness profiles,
the network can classify trails according to fine distinctions that simpler methods would fail to
recognize. In the particular neural networks developed for this work, an output of 1 would mean
that the network predicts the examined trail as a meteor, and an output of 0 would mean that it
predicts the trail to be of non-meteor origin.

Two sets of data were collected and were later used for the training and testing purposes
of the neural network. They were assembled by manually inspecting FITS images containing
linear features and documenting lines that appeared to be genuine meteor streaks versus those
that could be attributed to other causes. Each record consists of a file name and coordinates
marking the start and end of the observed line. Because these annotations required human
judgment and domain expertise, the resulting data set encapsulates many irregularities, such
as occluded trails, and is thus valuable data for training the neural network. 100 trails were

43

collected for the meteor data set and 100 trails were collected for the not_meteor data set.
Both data sets contain 20 trails for each filter (u, g, r, i, z).

Listing 15 shows part of the script that creates a test version of the trail classifying neural
network, which is run by providing a folder containing FITS files, and the program then reads
two text files that represent the two sets of trail data, meteors.txt and not_meteors.txt. One line
in these files is equal to data of one trail in the format "file.fits x1 y1 x2 y2", where the four values
are coordinates of the two points defining the trail. After confirming each filter has the expected
40 lines of data total (20 meteors and 20 non-meteors per filter), the script randomly chooses
10 lines per filter for training and 10 for testing, creating sets of line coordinates which are
then handed over to the TrailProfiler to convert into brightness profiles. The lines are skipped
if invalid or fed into a multilayer perceptron (MLP) classifier, which is initialized on lines 30
through 36 in the Listing. This configuration sets up an MLP with two hidden layers, containing
64 neurons in the first layer and 32 in the second. The activation function for each neuron is the
Rectified Linear Unit (ReLU), a choice generally perceived as efficient. Training employs the
"adam" solver, a gradient-based optimization algorithm, often leading to faster convergence in
practice (convergence here refers to the point at which further training achieves no significant
improvements). The max_iter parameter is set to 200; this means the training routine stops if it
hasn’t converged by 200 iterations. The classifier’s performance is evaluated on the test data,
with the results displayed via a classification report that distinguishes between "Meteor" and
"Not Meteor" predictions.

Because this version of the neural network was trained on half of the collected data and
tested on the other half, it was only used to test the concept of using a neural network for trail
classification. The results of this neural network are shown in Table 2. For the "Not Meteor"
class, the model achieved a high precision of 0.91, meaning that most predictions labeled as
not meteor were correct; however, the recall was 0.78, indicating that about 22% of actual
non-meteor cases were missed. In contrast, the "Meteor" class exhibited a high recall of 0.92,
demonstrating that the model correctly identified nearly all meteor trails but with a slightly lower
precision of 0.81, suggesting some false positives in this category. Overall, the classification
scores are promising. An accuracy of 85% indicates that the model correctly classifies most
instances.

Precision Recall F1-Score Support
Not Meteor 0.91 0.78 0.84 50
Meteor 0.81 0.92 0.86 50
Accuracy 0.85 100
Macro avg 0.86 0.85 0.85 100
Weighted avg 0.86 0.85 0.85 100

Table 2: Classification report of the test neural network

Along with a neural network for classifying between meteor and non-meteor trails, a set
of metrics was devised to measure their properties. The metrics used for the characterization
of trails are defined as follows. The Full Width at Half Maximum (FWHM) of a brightness profile

44

1 main():
2 args = parse_args()

3 meteor_file = "meteors.txt"
4 not_meteor_file = "not_meteors.txt"

5 meteor_lines = load_lines_from_file(meteor_file, label=1,
fits_folder=args.fits_folder)↪→

6 not_meteor_lines = load_lines_from_file(not_meteor_file, label=0,
fits_folder=args.fits_folder)↪→

7 data_by_filter = defaultdict(list)
8 for entry in (meteor_lines + not_meteor_lines):
9 fits_file, x1, y1, x2, y2, label = entry

10 flt = extract_filter(fits_file)
11 data_by_filter[flt].append(entry)

12 train_data = []
13 test_data = []
14 for flt in ['u', 'g', 'r',' i', 'z']:
15 lines_for_filter = data_by_filter[flt]
16 meteor_subset = [x for x in lines_for_filter if x[5] == 1]
17 not_meteor_subset = [x for x in lines_for_filter if x[5] == 0]

18 random.shuffle(meteor_subset)
19 random.shuffle(not_meteor_subset)

20 train_meteor = meteor_subset[:10]
21 test_meteor = meteor_subset[10:]
22 train_not_meteor = not_meteor_subset[:10]
23 test_not_meteor = not_meteor_subset[10:]

24 train_data.extend(train_meteor + train_not_meteor)
25 test_data.extend(test_meteor + test_not_meteor)

26 X_train, y_train = build_dataset(train_data)
27 X_test, y_test = build_dataset(test_data)

28 y_train = np.array(y_train)
29 y_test = np.array(y_test)

30 clf = MLPClassifier(
31 hidden_layer_sizes=(64, 32),
32 activation='relu',
33 solver='adam',
34 max_iter=200,
35 random_state=42
36)

37 clf.fit(X_train, y_train)

38 y_pred = clf.predict(X_test)

Listing 15: The main() function of the test_meteor_classifier.py file

45

f(x) is defined as the difference between the two positions, x1 and x2, where

f(x1) = f(x2) =
M

2
,

with
M = max

x
f(x).

A narrow FWHM implies a narrow trail, whereas a wide FWHM indicates a wide trail. In a
similar vein, the width measured at 95% of the maximum, denoted as FWHM0.95, is defined by
the condition

f(x1) = f(x2) = 0.95M,

so that
FWHM0.95 = x2 − x1,

which captures the extent of the brightest portion of the profile. The width at 70% of the maxi-
mum, FWHM0.7, is defined where

f(x1) = f(x2) = 0.7M.

The ratio
R =

FWHM0.7

FWHM0.95

shows how the profile’s width scales between these thresholds; a ratio close to 1 suggests a
consistently narrow profile and a lower ratio indicates a profile that tapers off more steeply. The
area under the curve (AUC) metrics are computed using different normalizations. Specifically,

AUCmed =

∫
f(x)

m
dx,

where m is the median brightness of the entire FITS image, providing a measure of overall light
coverage relative to the typical background. Similarly,

AUCpeak =

∫
f(x)

M
dx,

normalizes by the peak value M of the median profile, and

AUCfull =

∫
f(x)

MFITS
dx,

normalizes by the maximum pixel value MFITS of the FITS image. Finally, the kurtosis of the
brightness profile is defined as

kurtosis =

∑
n (xn − µ)4 f(xn)

σ4
∑

n f(xn)
− 3,

where µ and σ denote the mean and standard deviation of the profile, respectively, with f(xn)

serving as weights. A high kurtosis value indicates a sharply peaked brightness profile and a
lower kurtosis suggests a more broadly distributed brightness profile. Along with the kurtosis

46

1 median_profile = t.calculate_median_profile()

2 t.calculate_auc_full(median_profile) # Output: 0.0032025473
3 t.calculate_auc_med(median_profile) # Output: 273.3834228515625
4 t.calculate_auc_peak(median_profile) # Output: 1045.89208984375

5 t.calculate_fwhm_default(median_profile) # Output: 1989.0
6 t.calculate_fwhm_07(median_profile) # Output: 128.0
7 t.calculate_fwhm_095(median_profile) # Output: 59.0

8 t.calculate_kurtosis(median_profile) # Output: -1.0923731016909046
9 t.calculate_gaussian_kurtosis(median_profile) # Output: -1.1387414180921318

Listing 16: Computation of trail profile metrics for frame-g-006371-5-0089.fits

of the median trail, a kurtosis of the median trail fitted to a Gaussian curve is used alongside it,
which is referred to in this work as Gaussian kurtosis. Gaussian kurtosis evaluates how much
the brightness profile deviates from a normal distribution.

The median brightness profile extracted from the meteor trail in frame-g-006371-5-
0089.fits (Figure 24) was characterized in Listing 16. The Full Width at Half Maximum (FWHM)
was found to be FWHM = 1989.0. A narrower width at 70% of the maximum intensity, FWHM0.7 =

128.0, and an even narrower width at 95% of the maximum intensity, FWHM0.95 = 59.0, indicate
the profile’s shape. The compactness ratio defined as

R =
FWHM0.7

FWHM0.95
=

128.0

59.0
≈ 2.17,

suggests that the brightness distribution tapers off fairly quickly but is still in the expected
range of what a meteor would show.

The AUC, when normalized by the global maximum of the FITS image, results in AUCfull =

0.0032, while normalizing by the median image brightness gives AUCmed = 273.38. The in-
tegral normalized by the peak brightness of the median profile yields AUCpeak = 1045.89,
providing a measure of the total intensity concerning the brightest region. The kurtosis of
the profile was computed as kurtosis = −1.09, and a Gaussian kurtosis correction results in
GaussianKurtosis = −1.14. Since kurtosis measures the sharpness of a peak, these negative
values indicate a relatively broad distribution.

3.4. Findings and Interpretations

This final section describes insights gained from the linear artifact analysis. The first
subsection presents the results of the neural network classification and the differences between
trails classified as meteors and non-meteors through the characterization metrics described in
the previous section. It then highlights the graphical user interface (GUI) created for ease of
use regarding trail profiling when examining meteor trails case-by-case. In the last subsection,
potential pitfalls encountered during development are discussed, along with recommendations
to enhance the pipeline in future development.

47

3.4.1. Evaluation Metrics for Classification of Linear Artifacts

The dataset initially contained 26,600 images, of which 22,390 had at least one detected
linear feature; a portion of the original resulting dataset of the LFDA is not being taken into
account because of the difference in the detection process, most likely several either too faint
or too short trails that the TrailDetector class did not count. While this means that the final
dataset is slightly smaller, it also means that only prominent trails are considered. Among
these detected lines, 21,327 could be successfully fitted to a Gaussian function. The remaining
cases either lacked a coherent shape or contained irregularities that prevented Gaussian fitting,
making them less suitable for profiling.

Of these, 11,262 were classified as very likely meteors, having received a model predic-
tion score greater than 0.8, while 8,077 were classified as very likely non-meteors, with scores
below 0.2. A total of 12,373 trails were classified as meteors (with scores greater than 0.5),
and 8,954 were classified as non-meteors (with scores less than or equal to 0.5). This distribu-
tion indicates a strong separation in classification, with a considerable portion of detected trails
being confidently labeled as meteors.

With the TrailDetector class being used for detecting trails before classification, some of
the manually defined test samples were not detected. Among the 200 test samples, 12 meteors
and 18 non-meteors were missed, resulting in 170 detected test cases. Within these, the clas-
sification model correctly identified 78% (78/100) of meteors and 54% (54/100) of non-meteors.
When considering only the detected trails, the model achieved an accuracy of 77.65%, indicat-
ing that the classifier performs well when provided with a detected trail. The primary source of
error in overall classification performance stems from the TrailDetector ’s ability to capture trails
rather than the classifier itself.

The overall statistics of the metrics shown in Tables 3 and 4 provide insights into the
properties of the detected trails in the dataset. The FWHM measurements show a broad dis-
tribution, with a large gap between the average and median values, suggesting the presence
of both very wide and very narrow trails. The compactness metric, which represents the ratio
between FWHM0.7 and FWHM0.95, also shows a substantial range. The AUC values, which
measure the total brightness distribution of the trails under different normalizations, exhibit high
variation, especially in the case of AUCmed. The kurtosis values suggest that most profiles are
relatively flat, with an overall negative mean.

Table 3: Overall Metrics - FWHM and Compactness

Metric FWHMdefault FWHM0.7 FWHM0.95 Compactness
Average 984.16 743.00 264.49 37.20
Median 192.00 44.00 10.00 3.92
Std Dev 962.69 919.67 553.90 107.96
Range 1991.00 1996.00 1999.00 1940.00

The subset of trails classified as very likely meteors (having a prediction score greater
than 0.8) consists of 11,262 samples; their statistics are shown in Tables 5 and 6. The
FWHM metrics for these trails show significantly high average values, with FWHMdefault reach-

48

Table 4: Overall Metrics - AUC and Kurtosis

Metric AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Average 1467.33 864.43 0.05 -0.78 -0.98
Median 533.04 822.13 0.01 -1.12 -1.15
Std Dev 46667.57 581.26 1.17 1.27 0.38
Range 5391396.00 1963.34 140.73 58.20 1.24

ing 1677.23 pixels on average and FWHM0.7 reaching 1314.77 pixels, both suggesting that
trails in this category tend to be long and prominent. However, the median values are much
lower, particularly for FWHM0.95, indicating that while some trails are extensively wide, a more
significant portion are narrow. The compactness metric averages 61.80, suggesting that most
of these trails exhibit gradual brightness falloff.

Regarding AUC metrics, the AUCmed and AUCpeak values show that these trails con-
tain high relative brightness, averaging 1553.87 and 1273.39, respectively. AUCfull remains
extremely low since these trails do not typically reach the maximum pixel intensity of the FITS
images. Kurtosis values emphasize the shape differences, with the average kurtosis of -0.93
and Gaussian kurtosis of -1.11, indicating that these trails tend to be more spread out rather
than peaked. A high standard deviation in all metrics, particularly in FWHM and AUC, suggests
various meteor trails within this category.

Table 5: Metrics for Very Likely Meteors (score > 0.8) - FWHM and Compactness

Metric FWHMdefault FWHM0.7 FWHM0.95 Compactness
Average 1677.23 1314.77 475.24 61.80
Median 1999.00 1988.00 34.00 4.59
Std Dev 697.08 889.40 675.93 140.41
Range 1987.00 1993.00 1999.00 1940.00

Table 6: Metrics for Very Likely Meteors (score > 0.8) - AUC and Kurtosis

Metric AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Average 1553.87 1273.39 0.02 -0.93 -1.11
Median 470.57 1414.45 0.01 -1.18 -1.19
Std Dev 47568.27 429.36 0.21 1.29 0.26
Range 3753967.50 1898.30 14.51 30.05 1.20

The subset of trails classified as very likely non-meteors (having a prediction score lower
than 0.2) consists of 8,077 samples, and their data is shown on Tables 7 and 8. The FWHM
metrics for this group are significantly lower than those in the meteor group, with FWHMdefault

averaging only 112.66 pixels and FWHM0.7 at 76.18 pixels, indicating that these trails are much
shorter. The FWHM0.95 is only 23.22 pixels on average. The compactness metric, at 7.50 on
average, is also significantly lower than the values found for meteors.

The AUC metrics also suggest notable differences in brightness distribution from me-
teors. The AUCmed averages 1123.99, but the AUCpeak is much lower at 322.04, implying that
these trails tend to have less overall brightness concentration. The AUCfull, at 0.09, is slightly
higher than that of very likely meteors, suggesting that some of these trails may be noise. Fi-

49

nally, the kurtosis values are higher than those of meteors, with an average of -0.55 for kurtosis
and -0.77 for Gaussian kurtosis, meaning that these profiles tend to be more sharply peaked
than their meteor counterparts.

Table 7: Metrics for Very Likely Non-Meteors (score < 0.2) - FWHM and Compactness

Metric FWHMdefault FWHM0.7 FWHM0.95 Compactness
Average 112.66 76.18 23.22 7.50
Median 38.00 26.00 7.00 3.67
Std Dev 363.12 299.90 162.79 21.64
Range 1991.00 1996.00 1999.00 666.33

Table 8: Metrics for Very Likely Non-Meteors (score < 0.2) - AUC and Kurtosis

Metric AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Average 1123.99 322.04 0.09 -0.55 -0.77
Median 633.88 254.54 0.01 -0.89 -1.00
Std Dev 45725.25 279.20 1.89 1.23 0.45
Range 4135586.00 1963.34 140.73 58.20 1.24

The more significant subset of trails classified as meteors (having a prediction score
greater than 0.5) consists of 12,373 samples. As seen in Table 9, the FWHM metrics indi-
cate that these trails are significantly wider than non-meteors, with an average FWHMdefault

of 1604.06 pixels and FWHM0.7 at 1223.33 pixels. These values suggest that meteor trails
are generally long and continuous. The FWHM0.95 for this subset stands at 438.24 pixels on
average.

The AUC metrics of this subset can be seen in Table 10. The AUCmed averages 1624.14,
while the AUCpeak averages 1234.32, suggesting that meteor trails typically maintain a high
brightness level along their profile in this more significant subset. The AUCfull, though small
at 0.02, remains consistent with the fact that meteors tend to occupy substantial portions of
their images rather than appearing as isolated bright spots. The average kurtosis of -0.93 and
Gaussian kurtosis of -1.11 indicate that meteor profiles tend to be flatter and more spread out.

Table 9: Metrics for Meteors (score > 0.5) - FWHM and Compactness

Metric FWHMdefault FWHM0.7 FWHM0.95 Compactness
Average 1604.06 1223.33 438.24 58.54
Median 1999.00 1971.00 26.00 4.55
Std Dev 755.70 916.49 660.86 136.43
Range 1987.00 1993.00 1999.00 1940.00

The larger subset of trails classified as non-meteors (having a prediction score less
than or equal to 0.5) consists of 8,954 samples. As shown in Table 11, the FWHM metrics
indicate that these trails are narrower than those classified as meteors. The FWHMdefault has
an average of 127.55 pixels, with FWHM0.7 averaging 79.27 pixels, and FWHM0.95 at 24.40
pixels. This suggests that non-meteor trails tend to be shorter, thinner, or more fragmented.

The AUC metrics for this subset are shown in Table 12. The AUCmed averages 1250.64,
while the AUCpeak is 353.29. The AUCfull, at 0.09 on average, is also higher than that of meteors,

50

Table 10: Metrics for Meteors (score > 0.5) - AUC and Kurtosis

Metric AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Average 1624.14 1234.32 0.02 -0.93 -1.11
Median 470.13 1358.63 0.01 -1.17 -1.18
Std Dev 47120.54 439.84 0.20 1.27 0.26
Range 3753967.50 1898.30 14.51 30.05 1.20

indicating that these trails are much brighter when compared to the maximum pixel value of the
FITS image. The average kurtosis of -0.57 and Gaussian kurtosis of -0.80 suggest that these
trails tend to have more peaked, distinguishing them from the smoother profiles of meteor trails.
The relatively small standard deviation and range across the FWHM values reinforce the idea
that non-meteors are generally more consistent in their profile shapes.

Table 11: Metrics for Non-Meteors (score ≤ 0.5) - FWHM and Compactness

Metric FWHMdefault FWHM0.7 FWHM0.95 Compactness
Average 127.55 79.27 24.40 7.71
Median 39.00 27.00 7.00 3.67
Std Dev 391.77 307.42 167.06 23.27
Range 1991.00 1996.00 1999.00 666.33

Table 12: Metrics for Non-Meteors (score ≤ 0.5) - AUC and Kurtosis

Metric AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Average 1250.64 353.29 0.09 -0.57 -0.80
Median 616.46 277.23 0.01 -0.92 -1.02
Std Dev 46033.43 295.09 1.79 1.24 0.44
Range 4135586.00 1963.34 140.73 58.20 1.24

To show a direct comparison of average FWHM values across different prediction cat-
egories, an overview of FWHMdefault, FWHM0.7, and FWHM0.95 for each subset can be seen
in Table 13. This table shows the difference between the two groups: Meteors consistently
have much higher FWHM values, indicating more expansive trails, whereas non-meteors tend
to be significantly narrower. Table 14 compares the median values of FWHMdefault, FWHM0.7,
FWHM0.95, and Compactness for each category. Outliers less influence the median values,
but much as the averages, they point to the same conclusion: meteors tend to be wider, and
non-meteors tend to be slimmer.

Table 15 presents the average values of AUCmed, AUCpeak, AUCfull, Kurtosis, and Gaus-
sian Kurtosis for each category. The results show that meteors tend to have higher AUC values
and lower kurtosis, indicating that they are more extended and less sharply peaked than non-
meteor trails. Table 16 presents the median values of AUCmed, AUCpeak, AUCfull, Kurtosis,
and Gaussian Kurtosis for each classification category. The results demonstrate that meteors
consistently exhibit higher AUC values and lower kurtosis, again pointing to the trend seen in
comparing the averages of these values.

Trails classified as meteors generally exhibit significantly larger FWHM values across all
definitions (FWHMdefault, FWHM0.7, FWHM0.95) compared to non-meteors, which suggests that

51

Table 13: Comparison of Averages of FWHM Metrics and Compactness Across Prediction
Categories

Category FWHMdefault FWHM0.7 FWHM0.95 Compactness
Very Likely Meteors (score > 0.8) 1677.23 1314.77 475.24 61.80
Very Likely Non-Meteors (score < 0.2) 112.66 76.18 23.22 7.50
Meteors (score > 0.5) 1604.06 1223.33 438.24 58.54
Non-Meteors (score <= 0.5) 127.55 79.27 24.40 7.71

Table 14: Comparison of Medians of FWHM Metrics and Compactness Across Prediction Cat-
egories

Category FWHMdefault FWHM0.7 FWHM0.95 Compactness
Very Likely Meteors (score > 0.8) 1999.00 1988.00 34.00 4.59
Very Likely Non-Meteors (score < 0.2) 38.00 26.00 7.00 3.67
Meteors (score > 0.5) 1999.00 1971.00 26.00 4.55
Non-Meteors (score <= 0.5) 39.00 27.00 7.00 3.67

meteors tend to produce more expansive trails. In contrast, non-meteors are typically narrower
and more confined. The compactness metric, which represents the ratio FWHM0.7 / FWHM0.95,
is higher for meteors, meaning their brightness profiles extend gradually. Meteors consistently
have higher AUC values (AUCmed, AUCpeak than non-meteors. The higher AUCpeak values
for meteors suggest that they maintain a consistent close-to-peak value across their trail. In
contrast, non-meteors like satellites might more frequently have an intense spike in the center
of the profile, but after that, the profile dips and stays at the background level. The AUCfull

metric, which considers the global image maximum, is considerably lower in both categories.
Still, the average of this metric is almost five times larger for non-meteors than it is for meteors,
so while meteors dominate in the first two AUC metrics, non-meteors like satellites beat them in
this regard. This is not a surprise since satellites tend to appear as more intense streaks even
though they are condensed and less wide.

52

Table 15: Comparison of Averages of AUC and Kurtosis Across Prediction Categories

Category AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Very Likely Meteors (score > 0.8) 1553.87 1273.39 0.02 -0.93 -1.11
Very Likely Non-Meteors (score < 0.2) 1123.99 322.04 0.09 -0.55 -0.77
Meteors (score > 0.5) 1624.14 1234.32 0.02 -0.93 -1.11
Non-Meteors (score <= 0.5) 1250.64 353.29 0.09 -0.57 -0.80

Table 16: Comparison of Medians of AUC and Kurtosis Across Prediction Categories

Category AUCmed AUCpeak AUCfull Kurtosis Gaussian Kurtosis
Very Likely Meteors (score > 0.8) 470.57 1414.45 0.01 -1.18 -1.19
Very Likely Non-Meteors (score < 0.2) 633.88 254.54 0.01 -0.89 -1.00
Meteors (score > 0.5) 470.13 1358.63 0.01 -1.17 -1.18
Non-Meteors (score <= 0.5) 616.46 277.23 0.01 -0.92 -1.02

3.4.2. Graphical User Interface for Trail Examination

The graphical user interface (GUI) developed in this work is built using Python’s Tkinter
framework, and it uses several libraries to provide a tool for trail profiling and classification when
done on a case-by-case basis. It uses astropy for FITS file handling and image normalization,
OpenCV and NumPy for image processing, and Matplotlib for visualization. The GUI enables
users to load and display FITS images, automatically detect linear artifacts with the TrailDetec-
tor class, and perform trail profiling with the TrailProfiler class. The interface supports manual
line selection, reanalysis of perpendicular brightness profiles, and visualization of individual
and combined brightness profiles. It also allows users to load a neural network model, such
as the one evaluated in the previous chapter, and obtain predictions on the median brightness
profile of the given FITS image.

The application’s main menu shown in Figure 25 is organized into sections according
to phases of the workflow one would follow when doing trial analysis. The sections are shown
on the left side as follows: the File Controls section allows users to load FITS images; the
Detection Controls section provides tools for automatic and manual selection of trail lines; the
Profiling and Additional Controls sections offer options for managing the brightness profiles
derived from these trails; and finally, the Neural Network Model Controls enable the user to
load a model and obtain predictions based on the median brightness profile.

If the user decides to detect linear artifacts in the loaded FITS image automatically, they
can select the "Detect Lines Automatically" button in the main menu. The application displays
the detected lines in a dedicated panel, each with a label identifying them according to line
coordinates. This detection relies on the TrailDetector class. The user is then prompted to
review each detected line, with options to view a plot with the highlighted artifact and to toggle
whether the line should be extended to the image boundaries. Once the user is satisfied with a
particular line, they can select "Use this line for profiling," passing the chosen endpoints to the
TrailProfiler class.

After the user chooses an automatically detected trail or provides their own coordinates,

53

Figure 25: Main menu of the Trail Analysis Application

Figure 26: Detected lines menu of the Trail Analysis Application

they can move on to the profiling section of the application with tools to analyze the selected
trail’s brightness distribution in depth. Once a line from the detection panel is chosen, the

54

TrailProfiler is invoked to sample brightness values along multiple perpendicular slices across
the trail. Selecting the "Plot Main Line" button opens a plot of the main line overlaid on the
image, which can be viewed in Figure 27. Figure 28 shows the plot after selecting the "Plot All
Perpendicular Lines" button.

Figure 27: Plot of the main chosen line after selecting the "Plot Main Line" button

The sampled profiles along the perpendicular lines can be visualized individually or to-
gether; figure 29 shows the plot of a single profile at a chosen index, and figure 28 shows all
of them overlaid on the same plot. The interface also offers functions to compute the charac-
terization metrics shown in Figure 31, which can be viewed by selecting the "Analyze Median
Profile" button. Additionally, users can resample the trail with different parameters by clicking
the "Reanalyze Perpendicular Lines" button. When the user is done with trail profiling, they
may import a neural network model and get a prediction based on the median trail, an example
shown in Figure 32.

55

Figure 28: Plot of the perpendicular lines after selecting the "Plot All Perpendicular Lines"
button

Figure 29: Plot of a single profile after entering an index in the provided field and selecting the
"Plot Profile at Index" button

56

Figure 30: Plot of all of the perpendicular line profiles after selecting the "Plot All Profiles" button

Figure 31: View of calculated metrics after selecting the "Analyze Median Profile" button

Figure 32: Neural network prediction view after importing a model and selecting the "Predict on
Median Profile" button

57

3.4.3. Technical Obstacles and Improvement Possibilities

This work’s technical obstacles reveal avenues for future refinement of the linear artifact
classifying process. For instance, while effective, the current detection algorithm still fails to
identify a number of more ambiguous trails, resulting in valuable data being left out. In the pro-
filing stage, brightness profiles extending beyond the image boundaries are discarded outright
rather than being adaptively resampled to capture the entire trail; this limitation may result in
an incomplete characterization of trails that move close along the edge of the image. The neu-
ral network classifier is presently configured for binary classification—differentiating between
meteors and non-meteors—but it can be utilized for nuanced discrimination, distinguishing be-
tween many classes, such as wide meteor trails, sharp meteor trails, rotating satellites, and
other noise. Finally, the limited dataset used for training suggests that a larger volume of anno-
tated data could substantially improve the model’s performance.

Although these technical challenges have been identified, the scope of the current
project is focused on establishing a pipeline for meteor trail analysis. Addressing every issue
would require more standalone effort involving additional refinement in all areas of the project.
Nevertheless, the project succeeds in detecting, profiling, and classifying trails, demonstrating
the feasibility of automated meteor classification. At the same time, these challenges serve as
promising directions for future work rather than shortcomings in the present study.

58

4. Conclusion

This work proposes a solution to the problem of meteor classification through a pipeline
that detects, profiles, and classifies trails in astronomical images. The pipeline workflow mini-
mizes the effort required when manually inspecting the images to determine between meteor
and non-meteor trails.

Incorporating a neural network model for the classification between meteors and non-
meteors proved effective; the neural network consistently separated actual meteor events from
other lines with high accuracy. The clear separation of trails as meteors and non-meteors
indicates that the collected dataset of 200 trails used for the training of the neural network
model was sufficient enough to use for the classification process in the given dataset. However,
a larger dataset would yield better results since the developed model still has many examples
hovering around the 0.5 prediction value.

The findings of the characterization metrics demonstrate that FWHM, AUC, and kurtosis
are practical factors that distinguish between the most common meteor and non-meteor trails.
The classification model aligns well with initial expectations; the trails classified as meteors
produce broader trails, while those classified as non-meteors (e.g., noise or satellite trails) tend
to be sharper, more confined, and less intense across the whole profile but more intense in the
center.

59

5. Acknowledgments

I would like to express my sincere gratitude to Dr. Dejan Vinković for his invaluable
guidance throughout this work. His direction shaped the approach taken for the trail profiling
process, and I am genuinely grateful for his time, patience, and support. He was involved in
developing the LFDA, an essential foundation for this research.

I want to extend my sincere gratitude to Dr. Dino Bektešević for his assistance with the
LFDA and for giving me insights into its functionality. His willingness to share knowledge helped
me a great deal in developing this research, and I am grateful for the time he spared to meet
with me online despite the time zone difference.

I would like to express my gratitude to Dr. Željko Ivezić for his generosity in responding
to my inquiry and for directing me to the work and guidance of Dr. Dejan Vinković and Dr. Dino
Bektešević.

I sincerely thank Prof. Bogdan Okreša Ðurić for his patience, support, and invaluable
guidance throughout the development of this thesis. I am incredibly grateful for his constructive
feedback and encouragement, which kept me on the right path.

I also want to thank Nick Kanas, who kindly responded to my email early in the project.
Although the research ultimately took a different direction, his insights were greatly appreci-
ated. Additionally, I extend my thanks for his contributions in Star Maps: History, Artistry, and
Cartography [5], which inspired the early stages of this work.

60

Bibliography

[1] D. Bektešević and D. Vinković, “Linear feature detection algorithm for astronomical surveys–
i. algorithm description,” Monthly Notices of the Royal Astronomical Society, vol. 471,
no. 3, pp. 2626–2641, 2017.

[2] Wikipedia contributors, Celestial cartography — Wikipedia, the free encyclopedia, [On-
line; accessed 30-June-2024], 2024.

[3] Uranography, Merriam-Webster.com Dictionary, 2024.

[4] F. H. Shu, Cosmology, Encyclopedia Britannica, 2024.

[5] N. Kanas, Star Maps: History, Artistry, and Cartography. Springer, 2019.

[6] P. Natarajan, Mapping the Heavens: The Radical Scientific Ideas That Reveal the Cos-
mos. HarperCollins India, 2016, ISBN: 9789350297728.

[7] Wikipedia contributors, Nebra sky disc — Wikipedia, the free encyclopedia, [Online; ac-
cessed 22-June-2024], 2024.

[8] Wikipedia contributors, Ptolemy’s world map — Wikipedia, the free encyclopedia, [Online;
accessed 23-June-2024], 2024.

[9] L. of Congress, The daguerreotype medium.

[10] S. D. S. S. (SDSS), About sdss, https://skyserver.sdss.org/dr1/en/sdss/, Accessed: Jan-
uary 5, 2025.

[11] Encyclopedia Britannica, Spectroscopy, https://www.britannica.com/science/spectroscopy,
Accessed: January 5, 2025.

[12] Wikipedia contributors, Sloan digital sky survey — Wikipedia, the free encyclopedia, [On-
line; accessed 5-January-2025], 2024.

[13] Wikipedia contributors, Charge-coupled device — Wikipedia, the free encyclopedia, [On-
line; accessed 6-January-2025], 2025.

[14] D. L. Tucker, S. Kent, M. Richmond, et al., “The sloan digital sky survey monitor telescope
pipeline,” Astronomische Nachrichten: Astronomical Notes, vol. 327, no. 9, pp. 821–843,
2006.

[15] A. S. Szalay, P. Kunszt, A. Thakar, J. Gray, and D. Slutz, “The sloan digital sky survey
and its archive,” arXiv preprint astro-ph/9912382, 1999.

[16] Wikipedia contributors, Vera c. rubin observatory — Wikipedia, the free encyclopedia,
[Online; accessed 6-January-2025], 2025.

61

[17] Ž. Ivezić, S. M. Kahn, J. A. Tyson, et al., “Lsst: From science drivers to reference design
and anticipated data products,” The Astrophysical Journal, vol. 873, p. 111, 2019. DOI:
10.3847/1538-4357/ab042c.

[18] A. E. Rubin and J. N. Grossman, “Meteorite and meteoroid: New comprehensive defini-
tions,” Meteoritics & Planetary Science, vol. 45, no. 1, pp. 114–122, 2010.

[19] J. Rao, “The leonids: The lion king of meteor showers,” WGN, Journal of the International
Meteor Organization, vol. 23, no. 4, p. 120-135, vol. 23, pp. 120–135, 1995.

[20] P. Jenniskens, “Meteor showers and their parent comets,” in Proceedings of the Interna-
tional Meteor Conference, 25th IMC, Roden, Netherlands, 2006, 2007, pp. 56–62.

[21] Wikipedia contributors, Leonids — Wikipedia, the free encyclopedia, https://en.
wikipedia.org/w/index.php?title=Leonids&oldid=1254105817, [Online;
accessed 18-January-2025], 2024.

[22] Wikipedia contributors, Perseids — Wikipedia, the free encyclopedia, [Online; accessed
18-January-2025], 2025.

[23] Wikipedia contributors, Olympus-1 — Wikipedia, the free encyclopedia, [Online; accessed
18-January-2025], 2024.

[24] C. Price and M. Blum, “Elf/vlf radiation produced by the 1999 leonid meteors,” Earth,
Moon, and Planets, vol. 82, pp. 545–554, 1998.

[25] K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., “The first data release of
the sloan digital sky survey,” The Astronomical Journal, vol. 126, no. 4, p. 2081, 2003.

[26] K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., “The second data release
of the sloan digital sky survey,” The Astronomical Journal, vol. 128, no. 1, p. 502, 2004.

[27] K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., “The third data release of
the sloan digital sky survey,” The Astronomical Journal, vol. 129, no. 3, p. 1755, 2005.

[28] J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, et al., “The fourth data release
of the sloan digital sky survey,” The Astrophysical Journal Supplement Series, vol. 162,
no. 1, p. 38, 2006.

[29] K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., “The seventh data
release of the sloan digital sky survey,” The Astrophysical Journal Supplement Series,
vol. 182, no. 2, p. 543, 2009.

[30] H. Aihara, C. A. Prieto, D. An, et al., “The eighth data release of the sloan digital sky
survey: First data from sdss-iii,” The Astrophysical Journal Supplement Series, vol. 193,
no. 2, p. 29, 2011.

[31] I. Pâris, P. Petitjean, É. Aubourg, et al., “The sloan digital sky survey quasar catalog:
Ninth data release,” Astronomy & Astrophysics, vol. 548, A66, 2012.

[32] C. P. Ahn, R. Alexandroff, C. A. Prieto, et al., “The tenth data release of the sloan digital
sky survey: First spectroscopic data from the sdss-iii apache point observatory galac-
tic evolution experiment,” The Astrophysical Journal Supplement Series, vol. 211, no. 2,
p. 17, 2014.

62

https://doi.org/10.3847/1538-4357/ab042c
https://en.wikipedia.org/w/index.php?title=Leonids&oldid=1254105817
https://en.wikipedia.org/w/index.php?title=Leonids&oldid=1254105817

[33] S. Alam, F. D. Albareti, C. A. Prieto, et al., “The eleventh and twelfth data releases of the
sloan digital sky survey: Final data from sdss-iii,” The Astrophysical Journal Supplement
Series, vol. 219, no. 1, p. 12, 2015.

[34] F. D. Albareti, C. A. Prieto, A. Almeida, et al., “The 13th data release of the sloan digital
sky survey: First spectroscopic data from the sdss-iv survey mapping nearby galaxies at
apache point observatory,” The Astrophysical Journal Supplement Series, vol. 233, no. 2,
p. 25, 2017.

[35] I. Pâris, P. Petitjean, É. Aubourg, et al., “The sloan digital sky survey quasar catalog:
Fourteenth data release,” Astronomy & Astrophysics, vol. 613, A51, 2018.

[36] D. S. Aguado, R. Ahumada, A. Almeida, et al., “The fifteenth data release of the sloan
digital sky surveys: First release of manga-derived quantities, data visualization tools,
and stellar library,” The Astrophysical Journal Supplement Series, vol. 240, no. 2, p. 23,
2019.

[37] R. Ahumada, C. A. Prieto, A. Almeida, et al., “The 16th data release of the sloan digital
sky surveys: First release from the apogee-2 southern survey and full release of eboss
spectra,” The Astrophysical Journal Supplement Series, vol. 249, no. 1, p. 3, 2020.

[38] N. Abdurro’uf, K. Accetta, C. Aerts, et al., “The seventeenth data release of the sloan
digital sky surveys: Complete release of manga, mastar, and apogee-2 data,” The Astro-
physical Journal. Supplement Series, vol. 259, no. 2, 2022.

[39] A. Almeida, S. F. Anderson, M. Argudo-Fernández, et al., “The eighteenth data release of
the sloan digital sky surveys: Targeting and first spectra from sdss-v,” The Astrophysical
Journal Supplement Series, vol. 267, no. 2, p. 44, 2023.

[40] D. C. Wells and E. W. Greisen, “Fits-a flexible image transport system,” in Image process-
ing in astronomy, 1979, p. 445.

[41] Sloan digital sky survey (sdss) science archive, data release 12, Accessed: 19 January
2025.

[42] R. B. Fisher, Hough transform (hipr2 project), https://homepages.inf.ed.ac.uk/
rbf/HIPR2/hough.htm, Accessed: 2025-02-15, 2003.

[43] R. B. Fisher, Canny edge detection (hipr2 project), https://homepages.inf.ed.
ac.uk/rbf/HIPR2/canny.htm, Accessed: 2025-02-15, 2003.

[44] A. Mackey and G. Gilmore, “Surface brightness profiles and structural parameters for 53
rich stellar clusters in the large magellanic cloud,” Monthly Notices of the Royal Astro-
nomical Society, vol. 338, no. 1, pp. 85–119, 2003.

[45] D. Jewitt and K. J. Meech, “Surface brightness profiles of 10 comets,” Astrophysical Jour-
nal, Part 1 (ISSN 0004-637X), vol. 317, June 15, 1987, p. 992-1001. NASA-supported
research., vol. 317, pp. 992–1001, 1987.

[46] A. Krogh, “What are artificial neural networks?” Nature biotechnology, vol. 26, no. 2,
pp. 195–197, 2008.

63

https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/canny.htm

List of Figures

1. Photograph of the Nebra sky disc by Frank Vincentz [7] 4

2. Ptolemy’s 150 CE World Map (redrawn in the 15th century) [8] 5

3. A table of star positions from Volume I of Argelander’s "Beobachtungen". This
volume covers the area of the sky between +45 and +80 degrees declination,
published in 1846. The information includes star numbers, magnitudes, right
ascension, and declination. [5] . 7

4. The imaging camera of the SDSS telescope showcases the 5 rows (one for each
filter) of 6 charge-coupled devices per row. [12] 10

5. Image of a Leonid Meteor by Navicore [21] . 14

6. Image of Perseids by Ahmed abd Elkader Mohamed [22] 14

7. frame-g-004822-5-0011.fits adjusted using Z-scale, SDSS Data Release 12 [41] 19

8. frame-g-000109-5-0090.fits, showing a meteor trail [41] 22

9. frame-g-000109-5-0090.fits with reduced intensity [41] 22

10. frame-g-000109-5-0125.fits, showing a satellite trail [41] 23

11. frame-g-000109-5-0090.fits with reduced intensity [41] 24

12. frame-z-008149-5-0096.fits, containing a thin, faint meteor trail [41] 25

13. frame-i-006177-3-0331.fits, containing a wide, bright meteor trail [41] 25

14. frame-r-002566-1-0334.fits, containing a faint although wide meteor trail [41] . . 26

15. frame-z-003355-6-0110.fits, containing what appears to be a trail of a rotating
satellite [41] . 27

16. frame-u-002243-5-0072.fits, containing a very wide meteor trail [41] 27

17. frame-r-000094-5-0168.fits, containing a meteor trail with branching tails [41] . . 28

18. frame-g-000250-5-0189.fits altered using ZScale [41] 36

19. Result of the plot_trails method of the TrailDetector class for file frame-g-000250-
5-0189.fits . 36

20. frame-g-006371-5-0089.fits [41] . 41

64

21. All perpendicular lines visualized for meteor on image frame-g-006371-5-0089.fits 41

22. Brightness profile taken across the perpendicular line at index 1 of meteor in
image frame-g-006371-5-0089.fits . 42

23. All brightness profiles taken across perpendicular lines of meteor in image frame-
g-006371-5-0089.fits . 42

24. Example of median profile created using the TrailProfiler class 43

25. Main menu of the Trail Analysis Application . 54

26. Detected lines menu of the Trail Analysis Application 54

27. Plot of the main chosen line after selecting the "Plot Main Line" button 55

28. Plot of the perpendicular lines after selecting the "Plot All Perpendicular Lines"
button . 56

29. Plot of a single profile after entering an index in the provided field and selecting
the "Plot Profile at Index" button . 56

30. Plot of all of the perpendicular line profiles after selecting the "Plot All Profiles"
button . 57

31. View of calculated metrics after selecting the "Analyze Median Profile" button . . 57

32. Neural network prediction view after importing a model and selecting the "Predict
on Median Profile" button . 57

65

List of Tables

1. SDSS Photometric Filters and Their Assigned Letter and Wavelength 9

2. Classification report of the test neural network 44

3. Overall Metrics - FWHM and Compactness . 48

4. Overall Metrics - AUC and Kurtosis . 49

5. Metrics for Very Likely Meteors (score > 0.8) - FWHM and Compactness 49

6. Metrics for Very Likely Meteors (score > 0.8) - AUC and Kurtosis 49

7. Metrics for Very Likely Non-Meteors (score < 0.2) - FWHM and Compactness . . 50

8. Metrics for Very Likely Non-Meteors (score < 0.2) - AUC and Kurtosis 50

9. Metrics for Meteors (score > 0.5) - FWHM and Compactness 50

10. Metrics for Meteors (score > 0.5) - AUC and Kurtosis 51

11. Metrics for Non-Meteors (score ≤ 0.5) - FWHM and Compactness 51

12. Metrics for Non-Meteors (score ≤ 0.5) - AUC and Kurtosis 51

13. Comparison of Averages of FWHM Metrics and Compactness Across Prediction
Categories . 52

14. Comparison of Medians of FWHM Metrics and Compactness Across Prediction
Categories . 52

15. Comparison of Averages of AUC and Kurtosis Across Prediction Categories . . . 53

16. Comparison of Medians of AUC and Kurtosis Across Prediction Categories . . . 53

66

List of Listings

1. Opening a FITS file and displaying the header data information 19

2. Displaying the header data information of the primary HDU 20

3. Imports for the TrailDetector class . 31

4. Constructor of the TrailDetector class . 31

5. The detect_trails method of the TrailDetector class 32

6. The _attempt_detection method of the TrailDetector class 33

7. The _preprocess_bright method of the TrailDetector class 34

8. The _preprocess_dim method of the TrailDetector class 34

9. The _merge_lines method of the TrailDetector class 35

10. Example usage of the TrailDetector class . 35

11. Constructor of the TrailProfiler class . 38

12. The _analyze_perpendicular_lines method of the TrailProfiler class 39

13. The get_combined_median_profile method of the TrailProfiler class 40

14. Python session showing usage of the TrailProfiler class for various plots 40

15. The main() function of the test_meteor_classifier.py file 45

16. Computation of trail profile metrics for frame-g-006371-5-0089.fits 47

67

Appendices

1 import os

2 import numpy as np

3 import cv2

4 import matplotlib.pyplot as plt

5 from astropy.io import fits

6 from astropy.visualization import (

7 ImageNormalize,

8 PercentileInterval,

9 SqrtStretch,

10 ZScaleInterval,

11)

12 from scipy.spatial.distance import pdist, squareform

13 from sklearn.cluster import DBSCAN

14 """

15 TrailDetector is a class for detecting linear trails, such as meteor streaks,

16 in astronomical FITS images. It employs edge detection, Hough line detection,

17 and DBSCAN clustering to identify candidate trails.

18 """

19 class TrailDetector:

20 """

21 A class for detecting and analyzing linear trails in FITS images.

22 This class processes astronomical FITS images using edge detection,

23 Hough transforms, and DBSCAN clustering to extract linear features

24 corresponding to potential meteor trails. It attempts two levels of

25 detection: one for bright trails and another for dim ones.

26 Attributes:

27 canny_params (dict): Parameters for Canny edge detection.

28 hough_params (dict): Parameters for Hough line detection.

29 dbscan_eps (float): DBSCAN clustering epsilon value.

30 dbscan_min_samples (int): Minimum samples required for DBSCAN clustering.

31 merged_lines (list): List of detected and merged line segments.

32 best_line (list): The most prominent detected trail.

33 """

34 def __init__(

35 self,

36 canny_params=None,

37 hough_params=None,

38 dbscan_eps=150,

39 dbscan_min_samples=2,

40):

41 """

42 Initializes the TrailDetector class with default or provided parameters.

43 Args:

44 canny_params (dict, optional): Parameters for Canny edge detection.

45 hough_params (dict, optional): Parameters for Hough line detection.

46 dbscan_eps (float, optional): DBSCAN epsilon value for clustering.

69

47 dbscan_min_samples (int, optional): Minimum samples required for

clustering.↪→

48 """

49 self.canny_params = canny_params or {"threshold1": 6, "threshold2": 18}

50 self.hough_params = hough_params or {

51 "rho": 1,

52 "theta": np.pi / 180,

53 "threshold": 250,

54 "minLineLength": 300,

55 "maxLineGap": 150,

56 }

57 self.dbscan_eps = dbscan_eps

58 self.dbscan_min_samples = dbscan_min_samples

59 self.merged_lines = []

60 self.best_line = None

61 def detect_trails(self, fits_file, save_processed=False,

processed_dir="processed_images"):↪→

62 """

63 Detects linear trails in a given FITS file using image processing.

64 Args:

65 fits_file (str): Path to the FITS file.

66 save_processed (bool, optional): If True, saves preprocessed images.

67 processed_dir (str, optional): Directory to store processed images.

68 Returns:

69 list: A list containing the best detected line, or an empty list if none

are found.↪→

70 """

71 if save_processed:

72 os.makedirs(processed_dir, exist_ok=True)

73 lines_bright = self._attempt_detection(

74 fits_file=fits_file,

75 mode='bright',

76 save_processed=save_processed,

77 processed_dir=processed_dir

78)

79 if lines_bright:

80 self.merged_lines = lines_bright

81 self.best_line = self._choose_best_line(lines_bright)

82 return [self.best_line]

83 lines_dim = self._attempt_detection(

84 fits_file=fits_file,

85 mode='dim',

86 save_processed=save_processed,

87 processed_dir=processed_dir

88)

89 if lines_dim:

90 self.merged_lines = lines_dim

91 self.best_line = self._choose_best_line(lines_dim)

70

92 return [self.best_line]

93 print(f"No trails detected in {fits_file} after both attempts.")

94 return []

95 def _attempt_detection(self, fits_file, mode, save_processed=False,

processed_dir="processed_images"):↪→

96 """

97 Attempts to detect trails in an image by preprocessing and applying edge

detection.↪→

98 Args:

99 fits_file (str): Path to the FITS file.

100 mode (str): Either "bright" or "dim", determining preprocessing

strategy.↪→

101 save_processed (bool, optional): If True, saves processed images.

102 processed_dir (str, optional): Directory to store processed images.

103 Returns:

104 list: Merged detected line segments.

105 """

106 with fits.open(fits_file) as hdul:

107 image_data = hdul[0].data

108 if mode == 'bright':

109 processed = self._preprocess_bright(image_data)

110 else:

111 processed = self._preprocess_dim(image_data)

112 if save_processed:

113 base_no_ext = os.path.splitext(os.path.basename(fits_file))[0]

114 out_name = f"{base_no_ext}_{mode}_processed.png"

115 out_path = os.path.join(processed_dir, out_name)

116 cv2.imwrite(out_path, processed)

117 print(f"Saved pre-processed '{mode}' image to: {out_path}")

118 edges = cv2.Canny(processed, **self.canny_params)

119 lines = cv2.HoughLinesP(edges, **self.hough_params)

120 if lines is None:

121 return []

122 lines_data = self._process_lines(lines)

123 if len(lines_data) == 0:

124 return []

125 merged = self._merge_lines(lines_data)

126 return merged

127 def _preprocess_bright(self, image_data):

128 """

129 Preprocesses for detection of bright trails by applying normalization and

histogram equalization.↪→

71

130 Args:

131 image_data (numpy.ndarray): FITS image data.

132 Returns:

133 numpy.ndarray: Processed image.

134 """

135 norm = ImageNormalize(image_data, interval=ZScaleInterval())

136 float_img = norm(image_data)

137 gray_8u = cv2.convertScaleAbs(float_img)

138 equ = cv2.equalizeHist(gray_8u)

139 kernel = np.ones((4, 4), np.uint8)

140 equ = cv2.erode(equ, kernel, iterations=1)

141 equ = cv2.dilate(equ, kernel, iterations=1)

142 return equ

143 def _preprocess_dim(self, image_data):

144 """

145 Preprocesses for detection dim trails by applying normalization and

histogram equalization.↪→

146 Args:

147 image_data (numpy.ndarray): FITS image data.

148 Returns:

149 numpy.ndarray: Processed image.

150 """

151 norm = ImageNormalize(

152 image_data,

153 interval=PercentileInterval(1, 99),

154 stretch=SqrtStretch()

155)

156 float_img = norm(image_data)

157 gray_8u = cv2.convertScaleAbs(float_img)

158 equ = cv2.equalizeHist(gray_8u)

159 kernel = np.ones((3, 3), np.uint8)

160 equ = cv2.erode(equ, kernel, iterations=1)

161 kernel = np.ones((9, 9), np.uint8)

162 equ = cv2.dilate(equ, kernel, iterations=1)

163 return equ

164 def _process_lines(self, lines):

165 """

166 Converts raw Hough transform line detections into structured data.

167 Args:

168 lines (numpy.ndarray): An array of detected lines from HoughLinesP.

169 Returns:

170 numpy.ndarray: An array containing structured line data, where each row

consists of:↪→

171 - x1, y1, x2, y2: Start and end points of the line.

172 - length: Euclidean distance between start and end points.

173 - angle: Angle of the line with respect to the x-axis.

72

174 """

175 lines_data = []

176 for line in lines:

177 x1, y1, x2, y2 = line[0]

178 length = np.hypot(x2 - x1, y2 - y1)

179 angle = np.arctan2((y2 - y1), (x2 - x1))

180 lines_data.append([x1, y1, x2, y2, length, angle])

181 return np.array(lines_data)

182 def _choose_best_line(self, lines):

183 """

184 Selects the longest detected line from the given list of merged lines.

185 Args:

186 lines (list): A list of detected and merged lines, where each line is

187 represented as [x1, y1, x2, y2].

188 Returns:

189 list or None: The longest detected line in the form [x1, y1, x2, y2],

190 or None if no lines are found.

191 """

192 if not lines:

193 return None

194 best_line = None

195 best_length = 0

196 for line in lines:

197 x1, y1, x2, y2 = line

198 length = np.hypot(x2 - x1, y2 - y1)

199 if length > best_length:

200 best_length = length

201 best_line = line

202 return best_line

203 def _merge_lines(self, lines_data):

204 """

205 Merges similar lines using DBSCAN clustering.

206 Args:

207 lines_data (numpy.ndarray): Array of detected lines.

208 Returns:

209 list: List of merged lines.

210 """

211 def custom_distance(l1, l2):

212 pos_dist = np.hypot(l1[0] - l2[0], l1[1] - l2[1])

213 angle_dist = abs(l1[5] - l2[5])

214 return pos_dist + 50 * angle_dist

215 dist_matrix = squareform(pdist(lines_data, metric=custom_distance))

216 clustering = DBSCAN(

73

217 eps=self.dbscan_eps,

218 min_samples=self.dbscan_min_samples,

219 metric="precomputed"

220).fit(dist_matrix)

221 merged_lines = []

222 for label in set(clustering.labels_):

223 if label == -1:

224 continue

225 cluster = lines_data[clustering.labels_ == label]

226 x1_mean = int(cluster[:, 0].mean())

227 y1_mean = int(cluster[:, 1].mean())

228 x2_mean = int(cluster[:, 2].mean())

229 y2_mean = int(cluster[:, 3].mean())

230 merged_lines.append([x1_mean, y1_mean, x2_mean, y2_mean])

231 return merged_lines

232 def plot_trails(self, fits_file, output_file=None):

233 """

234 Plots the detected trail on the original FITS image.

235 Args:

236 fits_file (str): Path to the FITS file.

237 output_file (str, optional): If specified, saves the plot to the given

file.↪→

238 """

239 if not self.best_line:

240 print("No best line to plot.")

241 return

242 with fits.open(fits_file) as hdul:

243 image_data = hdul[0].data

244 plt.figure(figsize=(10, 10))

245 norm = ImageNormalize(

246 image_data,

247 interval=PercentileInterval(1, 99),

248 stretch=SqrtStretch()

249)

250 plt.imshow(image_data, cmap='gray', origin='lower', norm=norm)

251 x1, y1, x2, y2 = self.best_line

252 plt.plot([x1, x2], [y1, y2], color='cyan', linewidth=2)

253 plt.title("Detected Trail")

254 plt.xlabel("X pixel")

255 plt.ylabel("Y pixel")

256 plt.colorbar()

257 if output_file:

258 plt.savefig(output_file, dpi=300, bbox_inches='tight')

259 plt.show()

1 import os

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from astropy.visualization import ImageNormalize, PercentileInterval, SqrtStretch

74

5 from scipy.ndimage import map_coordinates

6 class TrailProfiler:

7 """

8 The TrailProfiler class measures brightness distributions along lines

9 perpendicular to a user-defined trail in an astronomical FITS image.

10 It also provides utility methods to visualize and analyze these profiles,

11 including metrics for further classification.

12 """

13 def __init__(self, fits_file, point1, point2, output_dir="trail_profiles"):

14 """

15 Initializes the profiler with a path to a FITS file and two points

16 (x0, y0) and (x1, y1) defining the main trail.

17 Args:

18 fits_file (str): Path to the FITS file containing the image data.

19 point1 (tuple): Coordinates of the first trail endpoint (x0, y0).

20 point2 (tuple): Coordinates of the second trail endpoint (x1, y1).

21 output_dir (str): Directory where plots and data will be saved.

22 """

23 self.fits_file = fits_file

24 self.point1 = point1

25 self.point2 = point2

26 self.output_dir = output_dir

27 self.image_data = None

28 self.normalized_data = None

29 self.brightness_profiles = []

30 self.line_coordinates = []

31 self._load_fits_data()

32 self._create_output_dir()

33 self._sample_perpendicular_profiles()

34 def _load_fits_data(self):

35 """

36 Loads the FITS image data from disk and applies a brightness normalization.

37 """

38 from astropy.io import fits

39 with fits.open(self.fits_file) as hdul:

40 self.image_data = hdul[0].data

41 norm = ImageNormalize(

42 self.image_data,

43 interval=PercentileInterval(99.5),

44 stretch=SqrtStretch()

45)

46 self.normalized_data = norm(self.image_data)

47 def _create_output_dir(self):

48 """

75

49 Ensures that the directory for output files exists.

50 """

51 if not os.path.exists(self.output_dir):

52 os.makedirs(self.output_dir)

53 def _sample_perpendicular_profiles(self, num_perp_lines=10,

half_line_length=100, sampling_step=0.1):↪→

54 """

55 Draws multiple perpendicular lines along the main trail, then samples

56 brightness values at regularly spaced points on each line. If any line

57 would go outside the image boundaries, it is skipped entirely.

58 Args:

59 num_perp_lines (int): Number of perpendicular slices to take along the

trail.↪→

60 half_line_length (float): Half the length of each perpendicular line in

pixels.↪→

61 sampling_step (float): Step size (in pixels) used for sampling

brightness.↪→

62 """

63 x0, y0 = self.point1

64 x1, y1 = self.point2

65 main_length = np.hypot(x1 - x0, y1 - y0)

66 perp_dx = -(y1 - y0) / main_length

67 perp_dy = (x1 - x0) / main_length

68 slice_spacing = main_length / (num_perp_lines - 1) if num_perp_lines > 1

else main_length↪→

69 height, width = self.image_data.shape

70 self.brightness_profiles.clear()

71 self.line_coordinates.clear()

72 for i in range(num_perp_lines):

73 t = i * slice_spacing / main_length

74 x_center = x0 + t * (x1 - x0)

75 y_center = y0 + t * (y1 - y0)

76 x_start = x_center - half_line_length * perp_dx

77 y_start = y_center - half_line_length * perp_dy

78 x_end = x_center + half_line_length * perp_dx

79 y_end = y_center + half_line_length * perp_dy

80 if not (0 <= x_start <= (width - 1) and 0 <= x_end <= (width - 1) and

81 0 <= y_start <= (height - 1) and 0 <= y_end <= (height - 1)):

82 continue

83 num_samples = int(2 * half_line_length / sampling_step)

84 x_coords = np.linspace(x_start, x_end, num_samples)

85 y_coords = np.linspace(y_start, y_end, num_samples)

86 coords_for_sampling = np.vstack((y_coords, x_coords))

76

87 brightness_vals = map_coordinates(self.image_data, coords_for_sampling,

order=3)↪→

88 data_min = np.min(self.image_data)

89 data_max = np.max(self.image_data)

90 if data_max == data_min:

91 norm_vals = np.zeros_like(brightness_vals)

92 else:

93 norm_vals = (brightness_vals - data_min) / (data_max - data_min)

94 self.brightness_profiles.append(norm_vals)

95 self.line_coordinates.append(((x_start, y_start), (x_end, y_end)))

96 def plot_perpendicular_profiles(self, save_plot=False,

filename="perp_profiles"):↪→

97 """

98 Plots all sampled brightness profiles in a single figure.

99 Args:

100 save_plot (bool): If True, saves the plot to disk.

101 filename (str): Filename (without extension) for the saved plot.

102 """

103 plt.figure(figsize=(12, 8))

104 for i, profile in enumerate(self.brightness_profiles):

105 plt.plot(profile, label=f"Profile {i+1}")

106 if self.brightness_profiles:

107 center_index = len(self.brightness_profiles[0]) // 2

108 plt.axvline(center_index, color='red', linestyle='--', label='Trail

Center')↪→

109 plt.xlabel("Sample Index Along Perpendicular")

110 plt.ylabel("Normalized Brightness")

111 plt.title("Perpendicular Brightness Profiles")

112 plt.legend()

113 plt.grid()

114 if save_plot:

115 outpath = os.path.join(self.output_dir, f"{filename}.png")

116 plt.savefig(outpath, dpi=300, bbox_inches="tight")

117 print(f"Perpendicular profiles plot saved to {outpath}")

118 plt.show()

119 def plot_main_line(self, save_plot=False, filename="main_line"):

120 """

121 Displays the original image with the main trail (point1-point2) overlaid.

122 Args:

123 save_plot (bool): If True, saves the plot to disk.

124 filename (str): Filename (without extension) for the saved plot.

125 """

126 x0, y0 = self.point1

77

127 x1, y1 = self.point2

128 plt.figure(figsize=(10, 10))

129 plt.imshow(self.normalized_data, cmap="gray", origin="lower")

130 plt.plot([x0, x1], [y0, y1], color="red", linestyle="-", linewidth=2,

label="Main Trail")↪→

131 plt.title("Main Trail on Image")

132 plt.xlabel("X Pixel")

133 plt.ylabel("Y Pixel")

134 plt.legend()

135 if save_plot:

136 outpath = os.path.join(self.output_dir, f"{filename}.png")

137 plt.savefig(outpath, dpi=300, bbox_inches="tight")

138 print(f"Main line plot saved to {outpath}")

139 plt.show()

140 def plot_all_perp_lines(self, save_plot=False, filename="all_perp_lines"):

141 """

142 Displays the original image with all perpendicular lines overlaid.

143 Args:

144 save_plot (bool): If True, saves the plot to disk.

145 filename (str): Filename (without extension) for the saved plot.

146 """

147 if not self.line_coordinates:

148 raise ValueError("No perpendicular lines to plot. Run

_sample_perpendicular_profiles first.")↪→

149 plt.figure(figsize=(10, 10))

150 plt.imshow(self.normalized_data, cmap="gray", origin="lower")

151 for i, (start, end) in enumerate(self.line_coordinates):

152 xs = [start[0], end[0]]

153 ys = [start[1], end[1]]

154 plt.plot(xs, ys, linestyle="--", linewidth=1, label=f"Line {i+1}")

155 plt.title("All Perpendicular Lines on Image")

156 plt.xlabel("X Pixel")

157 plt.ylabel("Y Pixel")

158 plt.legend(loc="upper right", fontsize="small")

159 if save_plot:

160 outpath = os.path.join(self.output_dir, f"{filename}.png")

161 plt.savefig(outpath, dpi=300, bbox_inches="tight")

162 print(f"All perpendicular lines plot saved to {outpath}")

163 plt.show()

164 def calculate_median_profile(self, profiles=None):

165 """

166 Calculates the median brightness profile across multiple samples.

78

167 Args:

168 profiles (list or None): Optional list of arrays containing brightness

profiles.↪→

169 Defaults to self.brightness_profiles if None.

170 Returns:

171 numpy.ndarray: Array of median brightness values.

172 """

173 chosen_profiles = profiles if profiles is not None else

self.brightness_profiles↪→

174 if not chosen_profiles:

175 raise ValueError("No brightness profiles available for median

calculation.")↪→

176 stacked = np.vstack(chosen_profiles)

177 median_vals = np.median(stacked, axis=0)

178 return median_vals

179 def plot_median_profile(self, profiles=None, save_plot=False,

filename="median_profile"):↪→

180 """

181 Displays and optionally saves the median brightness profile.

182 Args:

183 profiles (list or None): Optional list of arrays containing brightness

profiles.↪→

184 Defaults to self.brightness_profiles if None.

185 save_plot (bool): If True, saves the plot to disk.

186 filename (str): Filename (without extension) for the saved plot.

187 """

188 median_vals = self.calculate_median_profile(profiles=profiles)

189 plt.figure(figsize=(12, 8))

190 plt.plot(median_vals, label="Median Brightness Profile", color="blue")

191 center_idx = len(median_vals) // 2

192 plt.axvline(center_idx, color="red", linestyle="--", label="Approx. Trail

Center")↪→

193 plt.xlabel("Sample Index")

194 plt.ylabel("Normalized Brightness")

195 plt.title("Combined Median Profile")

196 plt.legend()

197 plt.grid()

198 if save_plot:

199 outpath = os.path.join(self.output_dir, f"{filename}.png")

200 plt.savefig(outpath, dpi=300, bbox_inches="tight")

201 print(f"Median profile plot saved to {outpath}")

202 plt.show()

203 def calculate_fwhm(self, profile, half_max_factor=0.5):

204 """

205 Determines the Full Width at Half Maximum (FWHM) of a profile.

79

206 Args:

207 profile (numpy.ndarray): Brightness profile of the trail.

208 half_max_factor (float): Fraction of the max intensity defining "half

max."↪→

209 Returns:

210 float: The FWHM in index units.

211 """

212 peak = np.max(profile)

213 if peak == 0:

214 return 0

215 half_max = peak * half_max_factor

216 indices = np.where(profile >= half_max)[0]

217 if len(indices) < 2:

218 return 0

219 return indices[-1] - indices[0]

220 def calculate_fwhm_default(self, profile):

221 """

222 Computes the default FWHM using half_max_factor = 0.5.

223 Returns:

224 float: FWHM (default).

225 """

226 return self.calculate_fwhm(profile, half_max_factor=0.5)

227 def calculate_fwhm_07(self, profile):

228 """

229 Computes the FWHM at 70\% of the peak intensity.

230 Returns:

231 float: FWHM with factor 0.7.

232 """

233 return self.calculate_fwhm(profile, half_max_factor=0.7)

234 def calculate_fwhm_095(self, profile):

235 """

236 Computes the FWHM at 95\% of the peak intensity.

237 Returns:

238 float: FWHM with factor 0.95.

239 """

240 return self.calculate_fwhm(profile, half_max_factor=0.95)

241 def calculate_auc_med(self, profile):

242 """

243 Computes the area under the curve (AUC) for a brightness profile normalized

244 by the median value of the entire FITS image.

245 Returns:

246 float: AUC with normalization by the median (CoverageMed).

247 """

80

248 m = np.median(self.image_data)

249 if m == 0:

250 return 0

251 normalized_profile = profile / m

252 return np.sum(normalized_profile)

253 def calculate_auc_peak(self, profile):

254 """

255 Computes the area under the curve (AUC) for a brightness profile normalized

256 by the peak value of the median profile.

257 Returns:

258 float: AUC with normalization by the profile's peak (CoveragePeak).

259 """

260 M = np.max(profile)

261 if M == 0:

262 return 0

263 normalized_profile = profile / M

264 return np.sum(normalized_profile)

265 def calculate_auc_full(self, profile):

266 """

267 Computes the area under the curve (AUC) for a brightness profile normalized

268 by the maximum pixel value of the entire FITS image.

269 Returns:

270 float: AUC with normalization by the global maximum (CoverageFull).

271 """

272 M_fits = np.max(self.image_data)

273 if M_fits == 0:

274 return 0

275 normalized_profile = profile / M_fits

276 return np.sum(normalized_profile)

277 def calculate_kurtosis(self, profile):

278 """

279 Calculates the weighted kurtosis of a brightness profile.

280 The brightness values serve as weights for the positional values.

281 Returns:

282 float: Kurtosis of the profile.

283 """

284 x = np.arange(len(profile))

285 weights = profile

286 total_weight = np.sum(weights)

287 if total_weight == 0:

288 return 0

289 mu = np.sum(x * weights) / total_weight

290 sigma2 = np.sum(((x - mu) ** 2) * weights) / total_weight

291 if sigma2 == 0:

292 return 0

293 sigma = np.sqrt(sigma2)

294 fourth_moment = np.sum(((x - mu) ** 4) * weights) / total_weight

81

295 return fourth_moment / (sigma ** 4) - 3

296 def calculate_gaussian_kurtosis(self, profile):

297 """

298 Fits the given brightness profile to a Gaussian function and computes the

weighted kurtosis↪→

299 of the fitted profile.

300 Args:

301 profile (numpy.ndarray): The brightness profile to be fitted.

302 Returns:

303 float: The kurtosis of the fitted Gaussian profile, or None if the

fitting fails.↪→

304 """

305 from scipy.optimize import curve_fit

306 def gaussian(x, A, mu, sigma):

307 return A * np.exp(-((x - mu) ** 2) / (2 * sigma ** 2))

308 x = np.arange(len(profile))

309 initial_guess = [np.max(profile), np.argmax(profile), len(profile) / 4]

310 try:

311 params, _ = curve_fit(gaussian, x, profile, p0=initial_guess)

312 except Exception as e:

313 print(f"[WARNING] Gaussian fitting failed: {e}.")

314 return None

315 fitted_profile = gaussian(x, *params)

316 total_weight = np.sum(fitted_profile)

317 if total_weight == 0:

318 return 0

319 mu_weighted = np.sum(x * fitted_profile) / total_weight

320 sigma2 = np.sum(((x - mu_weighted) ** 2) * fitted_profile) / total_weight

321 if sigma2 == 0:

322 return 0

323 sigma_val = np.sqrt(sigma2)

324 fourth_moment = np.sum(((x - mu_weighted) ** 4) * fitted_profile) /

total_weight↪→

325 gaussian_kurtosis = fourth_moment / (sigma_val ** 4) - 3

326 return gaussian_kurtosis

327 def remove_profile_by_index(self, index):

328 """

329 Removes one brightness profile and its associated line coordinates.

330 Args:

331 index (int): 1-based index of the profile to remove.

332 """

333 idx = index - 1

82

334 if idx < 0 or idx >= len(self.brightness_profiles):

335 raise IndexError(f"Index {index} out of range. Valid: 1 to

{len(self.brightness_profiles)}")↪→

336 del self.brightness_profiles[idx]

337 del self.line_coordinates[idx]

338 print(f"Removed brightness profile and line at index {index}.")

339 def plot_profile_by_index(self, index, save_plot=False,

filename="profile_by_index"):↪→

340 """

341 Plots a single brightness profile from the stored list by index.

342 Args:

343 index (int): 1-based index of the profile to plot.

344 save_plot (bool): If True, saves the plot to disk.

345 filename (str): Filename (without extension) for the saved plot.

346 """

347 idx = index - 1

348 if idx < 0 or idx >= len(self.brightness_profiles):

349 raise IndexError(f"Index {index} out of range. Valid: 1 to

{len(self.brightness_profiles)}")↪→

350 profile = self.brightness_profiles[idx]

351 plt.figure(figsize=(10, 6))

352 plt.plot(profile, label=f"Profile {index}", color="blue")

353 plt.axvline(len(profile) // 2, color="red", linestyle="--", label="Approx.

Trail Center")↪→

354 plt.xlabel("Sample Index Along Perpendicular")

355 plt.ylabel("Normalized Brightness")

356 plt.title(f"Brightness Profile {index}")

357 plt.legend()

358 plt.grid()

359 if save_plot:

360 outpath = os.path.join(self.output_dir, f"{filename}_index_{index}.png")

361 plt.savefig(outpath, dpi=300, bbox_inches="tight")

362 print(f"Profile {index} plot saved to {outpath}")

363 plt.show()

364 def plot_line_by_index(self, index, save_plot=False, filename="line_by_index"):

365 """

366 Overlays a single perpendicular line on the normalized image.

367 Args:

368 index (int): 1-based index of the line to plot.

369 save_plot (bool): If True, saves the plot to disk.

370 filename (str): Filename (without extension) for the saved plot.

371 """

372 idx = index - 1

373 if idx < 0 or idx >= len(self.line_coordinates):

374 raise IndexError(f"Index {index} out of range. Valid: 1 to

{len(self.line_coordinates)}")↪→

375 start, end = self.line_coordinates[idx]

376 plt.figure(figsize=(10, 10))

377 plt.imshow(self.normalized_data, cmap="gray", origin="lower")

83

378 plt.plot([start[0], end[0]], [start[1], end[1]], color="cyan",

linestyle="-", linewidth=2, label=f"Line {index}")↪→

379 plt.title(f"Perpendicular Line for Profile {index}")

380 plt.xlabel("X Pixel")

381 plt.ylabel("Y Pixel")

382 plt.legend()

383 if save_plot:

384 outpath = os.path.join(self.output_dir, f"{filename}_index_{index}.png")

385 plt.savefig(outpath, dpi=300, bbox_inches="tight")

386 print(f"Line {index} plot saved to {outpath}")

387 plt.show()

388 def extend_line_to_image_edges(self, x0, y0, x1, y1):

389 """

390 Extends a line segment so that it intersects the image boundaries,

391 ensuring the endpoints remain within valid pixel coordinates.

392 Args:

393 x0, y0 (float): Start of the line.

394 x1, y1 (float): End of the line.

395 Returns:

396 tuple: (x0_extended, y0_extended, x1_extended, y1_extended)

397 """

398 dx, dy = x1 - x0, y1 - y0

399 height, width = self.image_data.shape

400 if dx != 0:

401 t_left = -x0 / dx

402 t_right = (width - 1 - x0) / dx

403 else:

404 t_left = -np.inf

405 t_right = np.inf

406 if dy != 0:

407 t_top = -y0 / dy

408 t_bottom = (height - 1 - y0) / dy

409 else:

410 t_top = -np.inf

411 t_bottom = np.inf

412 t_min = max(min(t_left, t_right), min(t_top, t_bottom))

413 t_max = min(max(t_left, t_right), max(t_top, t_bottom))

414 x0_ext = x0 + t_min * dx

415 y0_ext = y0 + t_min * dy

416 x1_ext = x0 + t_max * dx

417 y1_ext = y0 + t_max * dy

418 x0_ext = np.clip(x0_ext, 0, width - 1)

419 x1_ext = np.clip(x1_ext, 0, width - 1)

420 y0_ext = np.clip(y0_ext, 0, height - 1)

421 y1_ext = np.clip(y1_ext, 0, height - 1)

422 return x0_ext, y0_ext, x1_ext, y1_ext

84

	1 Introduction
	2 Work Methods and Techniques
	3 Central Thesis
	3.1 The History of Celestial Cartography
	3.1.1 Early Conceptions of the Celestial Sphere
	3.1.2 Modern Age Star Catalogs and International Efforts
	3.1.3 Computer Technology and Current Day Projects

	3.2 Linear Artifacts in Astronomical Images
	3.2.1 Meteors and Meteor Trails
	3.2.2 SDSS Data Releases and FITS Files
	3.2.3 Linear Artifacts in FITS Images

	3.3 Identification and Classification of Linear Artifacts
	3.3.1 Automated Linear Artifact Detection
	3.3.2 Linear Artifact Profiling
	3.3.3 Classification of Linear Artifacts

	3.4 Findings and Interpretations
	3.4.1 Evaluation Metrics for Classification of Linear Artifacts
	3.4.2 Graphical User Interface for Trail Examination
	3.4.3 Technical Obstacles and Improvement Possibilities

	4 Conclusion
	5 Acknowledgments
	Bibliography
	List of Figures
	List of Tables
	List of Listings

